VFS: Comment mount following code
[deliverable/linux.git] / fs / namei.c
1 /*
2 * linux/fs/namei.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * Some corrections by tytso.
9 */
10
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12 * lookup logic.
13 */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15 */
16
17 #include <linux/init.h>
18 #include <linux/export.h>
19 #include <linux/kernel.h>
20 #include <linux/slab.h>
21 #include <linux/fs.h>
22 #include <linux/namei.h>
23 #include <linux/pagemap.h>
24 #include <linux/fsnotify.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/ima.h>
28 #include <linux/syscalls.h>
29 #include <linux/mount.h>
30 #include <linux/audit.h>
31 #include <linux/capability.h>
32 #include <linux/file.h>
33 #include <linux/fcntl.h>
34 #include <linux/device_cgroup.h>
35 #include <linux/fs_struct.h>
36 #include <linux/posix_acl.h>
37 #include <asm/uaccess.h>
38
39 #include "internal.h"
40 #include "mount.h"
41
42 /* [Feb-1997 T. Schoebel-Theuer]
43 * Fundamental changes in the pathname lookup mechanisms (namei)
44 * were necessary because of omirr. The reason is that omirr needs
45 * to know the _real_ pathname, not the user-supplied one, in case
46 * of symlinks (and also when transname replacements occur).
47 *
48 * The new code replaces the old recursive symlink resolution with
49 * an iterative one (in case of non-nested symlink chains). It does
50 * this with calls to <fs>_follow_link().
51 * As a side effect, dir_namei(), _namei() and follow_link() are now
52 * replaced with a single function lookup_dentry() that can handle all
53 * the special cases of the former code.
54 *
55 * With the new dcache, the pathname is stored at each inode, at least as
56 * long as the refcount of the inode is positive. As a side effect, the
57 * size of the dcache depends on the inode cache and thus is dynamic.
58 *
59 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
60 * resolution to correspond with current state of the code.
61 *
62 * Note that the symlink resolution is not *completely* iterative.
63 * There is still a significant amount of tail- and mid- recursion in
64 * the algorithm. Also, note that <fs>_readlink() is not used in
65 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
66 * may return different results than <fs>_follow_link(). Many virtual
67 * filesystems (including /proc) exhibit this behavior.
68 */
69
70 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
71 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
72 * and the name already exists in form of a symlink, try to create the new
73 * name indicated by the symlink. The old code always complained that the
74 * name already exists, due to not following the symlink even if its target
75 * is nonexistent. The new semantics affects also mknod() and link() when
76 * the name is a symlink pointing to a non-existent name.
77 *
78 * I don't know which semantics is the right one, since I have no access
79 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
80 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
81 * "old" one. Personally, I think the new semantics is much more logical.
82 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
83 * file does succeed in both HP-UX and SunOs, but not in Solaris
84 * and in the old Linux semantics.
85 */
86
87 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
88 * semantics. See the comments in "open_namei" and "do_link" below.
89 *
90 * [10-Sep-98 Alan Modra] Another symlink change.
91 */
92
93 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
94 * inside the path - always follow.
95 * in the last component in creation/removal/renaming - never follow.
96 * if LOOKUP_FOLLOW passed - follow.
97 * if the pathname has trailing slashes - follow.
98 * otherwise - don't follow.
99 * (applied in that order).
100 *
101 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
102 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
103 * During the 2.4 we need to fix the userland stuff depending on it -
104 * hopefully we will be able to get rid of that wart in 2.5. So far only
105 * XEmacs seems to be relying on it...
106 */
107 /*
108 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
109 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
110 * any extra contention...
111 */
112
113 /* In order to reduce some races, while at the same time doing additional
114 * checking and hopefully speeding things up, we copy filenames to the
115 * kernel data space before using them..
116 *
117 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
118 * PATH_MAX includes the nul terminator --RR.
119 */
120 static char *getname_flags(const char __user *filename, int flags, int *empty)
121 {
122 char *result = __getname(), *err;
123 int len;
124
125 if (unlikely(!result))
126 return ERR_PTR(-ENOMEM);
127
128 len = strncpy_from_user(result, filename, PATH_MAX);
129 err = ERR_PTR(len);
130 if (unlikely(len < 0))
131 goto error;
132
133 /* The empty path is special. */
134 if (unlikely(!len)) {
135 if (empty)
136 *empty = 1;
137 err = ERR_PTR(-ENOENT);
138 if (!(flags & LOOKUP_EMPTY))
139 goto error;
140 }
141
142 err = ERR_PTR(-ENAMETOOLONG);
143 if (likely(len < PATH_MAX)) {
144 audit_getname(result);
145 return result;
146 }
147
148 error:
149 __putname(result);
150 return err;
151 }
152
153 char *getname(const char __user * filename)
154 {
155 return getname_flags(filename, 0, NULL);
156 }
157
158 #ifdef CONFIG_AUDITSYSCALL
159 void putname(const char *name)
160 {
161 if (unlikely(!audit_dummy_context()))
162 audit_putname(name);
163 else
164 __putname(name);
165 }
166 EXPORT_SYMBOL(putname);
167 #endif
168
169 static int check_acl(struct inode *inode, int mask)
170 {
171 #ifdef CONFIG_FS_POSIX_ACL
172 struct posix_acl *acl;
173
174 if (mask & MAY_NOT_BLOCK) {
175 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
176 if (!acl)
177 return -EAGAIN;
178 /* no ->get_acl() calls in RCU mode... */
179 if (acl == ACL_NOT_CACHED)
180 return -ECHILD;
181 return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
182 }
183
184 acl = get_cached_acl(inode, ACL_TYPE_ACCESS);
185
186 /*
187 * A filesystem can force a ACL callback by just never filling the
188 * ACL cache. But normally you'd fill the cache either at inode
189 * instantiation time, or on the first ->get_acl call.
190 *
191 * If the filesystem doesn't have a get_acl() function at all, we'll
192 * just create the negative cache entry.
193 */
194 if (acl == ACL_NOT_CACHED) {
195 if (inode->i_op->get_acl) {
196 acl = inode->i_op->get_acl(inode, ACL_TYPE_ACCESS);
197 if (IS_ERR(acl))
198 return PTR_ERR(acl);
199 } else {
200 set_cached_acl(inode, ACL_TYPE_ACCESS, NULL);
201 return -EAGAIN;
202 }
203 }
204
205 if (acl) {
206 int error = posix_acl_permission(inode, acl, mask);
207 posix_acl_release(acl);
208 return error;
209 }
210 #endif
211
212 return -EAGAIN;
213 }
214
215 /*
216 * This does the basic permission checking
217 */
218 static int acl_permission_check(struct inode *inode, int mask)
219 {
220 unsigned int mode = inode->i_mode;
221
222 if (likely(uid_eq(current_fsuid(), inode->i_uid)))
223 mode >>= 6;
224 else {
225 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
226 int error = check_acl(inode, mask);
227 if (error != -EAGAIN)
228 return error;
229 }
230
231 if (in_group_p(inode->i_gid))
232 mode >>= 3;
233 }
234
235 /*
236 * If the DACs are ok we don't need any capability check.
237 */
238 if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
239 return 0;
240 return -EACCES;
241 }
242
243 /**
244 * generic_permission - check for access rights on a Posix-like filesystem
245 * @inode: inode to check access rights for
246 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
247 *
248 * Used to check for read/write/execute permissions on a file.
249 * We use "fsuid" for this, letting us set arbitrary permissions
250 * for filesystem access without changing the "normal" uids which
251 * are used for other things.
252 *
253 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
254 * request cannot be satisfied (eg. requires blocking or too much complexity).
255 * It would then be called again in ref-walk mode.
256 */
257 int generic_permission(struct inode *inode, int mask)
258 {
259 int ret;
260
261 /*
262 * Do the basic permission checks.
263 */
264 ret = acl_permission_check(inode, mask);
265 if (ret != -EACCES)
266 return ret;
267
268 if (S_ISDIR(inode->i_mode)) {
269 /* DACs are overridable for directories */
270 if (inode_capable(inode, CAP_DAC_OVERRIDE))
271 return 0;
272 if (!(mask & MAY_WRITE))
273 if (inode_capable(inode, CAP_DAC_READ_SEARCH))
274 return 0;
275 return -EACCES;
276 }
277 /*
278 * Read/write DACs are always overridable.
279 * Executable DACs are overridable when there is
280 * at least one exec bit set.
281 */
282 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
283 if (inode_capable(inode, CAP_DAC_OVERRIDE))
284 return 0;
285
286 /*
287 * Searching includes executable on directories, else just read.
288 */
289 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
290 if (mask == MAY_READ)
291 if (inode_capable(inode, CAP_DAC_READ_SEARCH))
292 return 0;
293
294 return -EACCES;
295 }
296
297 /*
298 * We _really_ want to just do "generic_permission()" without
299 * even looking at the inode->i_op values. So we keep a cache
300 * flag in inode->i_opflags, that says "this has not special
301 * permission function, use the fast case".
302 */
303 static inline int do_inode_permission(struct inode *inode, int mask)
304 {
305 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
306 if (likely(inode->i_op->permission))
307 return inode->i_op->permission(inode, mask);
308
309 /* This gets set once for the inode lifetime */
310 spin_lock(&inode->i_lock);
311 inode->i_opflags |= IOP_FASTPERM;
312 spin_unlock(&inode->i_lock);
313 }
314 return generic_permission(inode, mask);
315 }
316
317 /**
318 * inode_permission - check for access rights to a given inode
319 * @inode: inode to check permission on
320 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
321 *
322 * Used to check for read/write/execute permissions on an inode.
323 * We use "fsuid" for this, letting us set arbitrary permissions
324 * for filesystem access without changing the "normal" uids which
325 * are used for other things.
326 *
327 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
328 */
329 int inode_permission(struct inode *inode, int mask)
330 {
331 int retval;
332
333 if (unlikely(mask & MAY_WRITE)) {
334 umode_t mode = inode->i_mode;
335
336 /*
337 * Nobody gets write access to a read-only fs.
338 */
339 if (IS_RDONLY(inode) &&
340 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
341 return -EROFS;
342
343 /*
344 * Nobody gets write access to an immutable file.
345 */
346 if (IS_IMMUTABLE(inode))
347 return -EACCES;
348 }
349
350 retval = do_inode_permission(inode, mask);
351 if (retval)
352 return retval;
353
354 retval = devcgroup_inode_permission(inode, mask);
355 if (retval)
356 return retval;
357
358 return security_inode_permission(inode, mask);
359 }
360
361 /**
362 * path_get - get a reference to a path
363 * @path: path to get the reference to
364 *
365 * Given a path increment the reference count to the dentry and the vfsmount.
366 */
367 void path_get(struct path *path)
368 {
369 mntget(path->mnt);
370 dget(path->dentry);
371 }
372 EXPORT_SYMBOL(path_get);
373
374 /**
375 * path_put - put a reference to a path
376 * @path: path to put the reference to
377 *
378 * Given a path decrement the reference count to the dentry and the vfsmount.
379 */
380 void path_put(struct path *path)
381 {
382 dput(path->dentry);
383 mntput(path->mnt);
384 }
385 EXPORT_SYMBOL(path_put);
386
387 /*
388 * Path walking has 2 modes, rcu-walk and ref-walk (see
389 * Documentation/filesystems/path-lookup.txt). In situations when we can't
390 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
391 * normal reference counts on dentries and vfsmounts to transition to rcu-walk
392 * mode. Refcounts are grabbed at the last known good point before rcu-walk
393 * got stuck, so ref-walk may continue from there. If this is not successful
394 * (eg. a seqcount has changed), then failure is returned and it's up to caller
395 * to restart the path walk from the beginning in ref-walk mode.
396 */
397
398 /**
399 * unlazy_walk - try to switch to ref-walk mode.
400 * @nd: nameidata pathwalk data
401 * @dentry: child of nd->path.dentry or NULL
402 * Returns: 0 on success, -ECHILD on failure
403 *
404 * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry
405 * for ref-walk mode. @dentry must be a path found by a do_lookup call on
406 * @nd or NULL. Must be called from rcu-walk context.
407 */
408 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry)
409 {
410 struct fs_struct *fs = current->fs;
411 struct dentry *parent = nd->path.dentry;
412 int want_root = 0;
413
414 BUG_ON(!(nd->flags & LOOKUP_RCU));
415 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
416 want_root = 1;
417 spin_lock(&fs->lock);
418 if (nd->root.mnt != fs->root.mnt ||
419 nd->root.dentry != fs->root.dentry)
420 goto err_root;
421 }
422 spin_lock(&parent->d_lock);
423 if (!dentry) {
424 if (!__d_rcu_to_refcount(parent, nd->seq))
425 goto err_parent;
426 BUG_ON(nd->inode != parent->d_inode);
427 } else {
428 if (dentry->d_parent != parent)
429 goto err_parent;
430 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
431 if (!__d_rcu_to_refcount(dentry, nd->seq))
432 goto err_child;
433 /*
434 * If the sequence check on the child dentry passed, then
435 * the child has not been removed from its parent. This
436 * means the parent dentry must be valid and able to take
437 * a reference at this point.
438 */
439 BUG_ON(!IS_ROOT(dentry) && dentry->d_parent != parent);
440 BUG_ON(!parent->d_count);
441 parent->d_count++;
442 spin_unlock(&dentry->d_lock);
443 }
444 spin_unlock(&parent->d_lock);
445 if (want_root) {
446 path_get(&nd->root);
447 spin_unlock(&fs->lock);
448 }
449 mntget(nd->path.mnt);
450
451 rcu_read_unlock();
452 br_read_unlock(&vfsmount_lock);
453 nd->flags &= ~LOOKUP_RCU;
454 return 0;
455
456 err_child:
457 spin_unlock(&dentry->d_lock);
458 err_parent:
459 spin_unlock(&parent->d_lock);
460 err_root:
461 if (want_root)
462 spin_unlock(&fs->lock);
463 return -ECHILD;
464 }
465
466 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
467 {
468 return dentry->d_op->d_revalidate(dentry, flags);
469 }
470
471 /**
472 * complete_walk - successful completion of path walk
473 * @nd: pointer nameidata
474 *
475 * If we had been in RCU mode, drop out of it and legitimize nd->path.
476 * Revalidate the final result, unless we'd already done that during
477 * the path walk or the filesystem doesn't ask for it. Return 0 on
478 * success, -error on failure. In case of failure caller does not
479 * need to drop nd->path.
480 */
481 static int complete_walk(struct nameidata *nd)
482 {
483 struct dentry *dentry = nd->path.dentry;
484 int status;
485
486 if (nd->flags & LOOKUP_RCU) {
487 nd->flags &= ~LOOKUP_RCU;
488 if (!(nd->flags & LOOKUP_ROOT))
489 nd->root.mnt = NULL;
490 spin_lock(&dentry->d_lock);
491 if (unlikely(!__d_rcu_to_refcount(dentry, nd->seq))) {
492 spin_unlock(&dentry->d_lock);
493 rcu_read_unlock();
494 br_read_unlock(&vfsmount_lock);
495 return -ECHILD;
496 }
497 BUG_ON(nd->inode != dentry->d_inode);
498 spin_unlock(&dentry->d_lock);
499 mntget(nd->path.mnt);
500 rcu_read_unlock();
501 br_read_unlock(&vfsmount_lock);
502 }
503
504 if (likely(!(nd->flags & LOOKUP_JUMPED)))
505 return 0;
506
507 if (likely(!(dentry->d_flags & DCACHE_OP_REVALIDATE)))
508 return 0;
509
510 if (likely(!(dentry->d_sb->s_type->fs_flags & FS_REVAL_DOT)))
511 return 0;
512
513 /* Note: we do not d_invalidate() */
514 status = d_revalidate(dentry, nd->flags);
515 if (status > 0)
516 return 0;
517
518 if (!status)
519 status = -ESTALE;
520
521 path_put(&nd->path);
522 return status;
523 }
524
525 static __always_inline void set_root(struct nameidata *nd)
526 {
527 if (!nd->root.mnt)
528 get_fs_root(current->fs, &nd->root);
529 }
530
531 static int link_path_walk(const char *, struct nameidata *);
532
533 static __always_inline void set_root_rcu(struct nameidata *nd)
534 {
535 if (!nd->root.mnt) {
536 struct fs_struct *fs = current->fs;
537 unsigned seq;
538
539 do {
540 seq = read_seqcount_begin(&fs->seq);
541 nd->root = fs->root;
542 nd->seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
543 } while (read_seqcount_retry(&fs->seq, seq));
544 }
545 }
546
547 static __always_inline int __vfs_follow_link(struct nameidata *nd, const char *link)
548 {
549 int ret;
550
551 if (IS_ERR(link))
552 goto fail;
553
554 if (*link == '/') {
555 set_root(nd);
556 path_put(&nd->path);
557 nd->path = nd->root;
558 path_get(&nd->root);
559 nd->flags |= LOOKUP_JUMPED;
560 }
561 nd->inode = nd->path.dentry->d_inode;
562
563 ret = link_path_walk(link, nd);
564 return ret;
565 fail:
566 path_put(&nd->path);
567 return PTR_ERR(link);
568 }
569
570 static void path_put_conditional(struct path *path, struct nameidata *nd)
571 {
572 dput(path->dentry);
573 if (path->mnt != nd->path.mnt)
574 mntput(path->mnt);
575 }
576
577 static inline void path_to_nameidata(const struct path *path,
578 struct nameidata *nd)
579 {
580 if (!(nd->flags & LOOKUP_RCU)) {
581 dput(nd->path.dentry);
582 if (nd->path.mnt != path->mnt)
583 mntput(nd->path.mnt);
584 }
585 nd->path.mnt = path->mnt;
586 nd->path.dentry = path->dentry;
587 }
588
589 /*
590 * Helper to directly jump to a known parsed path from ->follow_link,
591 * caller must have taken a reference to path beforehand.
592 */
593 void nd_jump_link(struct nameidata *nd, struct path *path)
594 {
595 path_put(&nd->path);
596
597 nd->path = *path;
598 nd->inode = nd->path.dentry->d_inode;
599 nd->flags |= LOOKUP_JUMPED;
600
601 BUG_ON(nd->inode->i_op->follow_link);
602 }
603
604 static inline void put_link(struct nameidata *nd, struct path *link, void *cookie)
605 {
606 struct inode *inode = link->dentry->d_inode;
607 if (inode->i_op->put_link)
608 inode->i_op->put_link(link->dentry, nd, cookie);
609 path_put(link);
610 }
611
612 static __always_inline int
613 follow_link(struct path *link, struct nameidata *nd, void **p)
614 {
615 struct dentry *dentry = link->dentry;
616 int error;
617 char *s;
618
619 BUG_ON(nd->flags & LOOKUP_RCU);
620
621 if (link->mnt == nd->path.mnt)
622 mntget(link->mnt);
623
624 error = -ELOOP;
625 if (unlikely(current->total_link_count >= 40))
626 goto out_put_nd_path;
627
628 cond_resched();
629 current->total_link_count++;
630
631 touch_atime(link);
632 nd_set_link(nd, NULL);
633
634 error = security_inode_follow_link(link->dentry, nd);
635 if (error)
636 goto out_put_nd_path;
637
638 nd->last_type = LAST_BIND;
639 *p = dentry->d_inode->i_op->follow_link(dentry, nd);
640 error = PTR_ERR(*p);
641 if (IS_ERR(*p))
642 goto out_put_nd_path;
643
644 error = 0;
645 s = nd_get_link(nd);
646 if (s) {
647 error = __vfs_follow_link(nd, s);
648 if (unlikely(error))
649 put_link(nd, link, *p);
650 }
651
652 return error;
653
654 out_put_nd_path:
655 path_put(&nd->path);
656 path_put(link);
657 return error;
658 }
659
660 static int follow_up_rcu(struct path *path)
661 {
662 struct mount *mnt = real_mount(path->mnt);
663 struct mount *parent;
664 struct dentry *mountpoint;
665
666 parent = mnt->mnt_parent;
667 if (&parent->mnt == path->mnt)
668 return 0;
669 mountpoint = mnt->mnt_mountpoint;
670 path->dentry = mountpoint;
671 path->mnt = &parent->mnt;
672 return 1;
673 }
674
675 /*
676 * follow_up - Find the mountpoint of path's vfsmount
677 *
678 * Given a path, find the mountpoint of its source file system.
679 * Replace @path with the path of the mountpoint in the parent mount.
680 * Up is towards /.
681 *
682 * Return 1 if we went up a level and 0 if we were already at the
683 * root.
684 */
685 int follow_up(struct path *path)
686 {
687 struct mount *mnt = real_mount(path->mnt);
688 struct mount *parent;
689 struct dentry *mountpoint;
690
691 br_read_lock(&vfsmount_lock);
692 parent = mnt->mnt_parent;
693 if (&parent->mnt == path->mnt) {
694 br_read_unlock(&vfsmount_lock);
695 return 0;
696 }
697 mntget(&parent->mnt);
698 mountpoint = dget(mnt->mnt_mountpoint);
699 br_read_unlock(&vfsmount_lock);
700 dput(path->dentry);
701 path->dentry = mountpoint;
702 mntput(path->mnt);
703 path->mnt = &parent->mnt;
704 return 1;
705 }
706
707 /*
708 * Perform an automount
709 * - return -EISDIR to tell follow_managed() to stop and return the path we
710 * were called with.
711 */
712 static int follow_automount(struct path *path, unsigned flags,
713 bool *need_mntput)
714 {
715 struct vfsmount *mnt;
716 int err;
717
718 if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
719 return -EREMOTE;
720
721 /* We don't want to mount if someone's just doing a stat -
722 * unless they're stat'ing a directory and appended a '/' to
723 * the name.
724 *
725 * We do, however, want to mount if someone wants to open or
726 * create a file of any type under the mountpoint, wants to
727 * traverse through the mountpoint or wants to open the
728 * mounted directory. Also, autofs may mark negative dentries
729 * as being automount points. These will need the attentions
730 * of the daemon to instantiate them before they can be used.
731 */
732 if (!(flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
733 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
734 path->dentry->d_inode)
735 return -EISDIR;
736
737 current->total_link_count++;
738 if (current->total_link_count >= 40)
739 return -ELOOP;
740
741 mnt = path->dentry->d_op->d_automount(path);
742 if (IS_ERR(mnt)) {
743 /*
744 * The filesystem is allowed to return -EISDIR here to indicate
745 * it doesn't want to automount. For instance, autofs would do
746 * this so that its userspace daemon can mount on this dentry.
747 *
748 * However, we can only permit this if it's a terminal point in
749 * the path being looked up; if it wasn't then the remainder of
750 * the path is inaccessible and we should say so.
751 */
752 if (PTR_ERR(mnt) == -EISDIR && (flags & LOOKUP_PARENT))
753 return -EREMOTE;
754 return PTR_ERR(mnt);
755 }
756
757 if (!mnt) /* mount collision */
758 return 0;
759
760 if (!*need_mntput) {
761 /* lock_mount() may release path->mnt on error */
762 mntget(path->mnt);
763 *need_mntput = true;
764 }
765 err = finish_automount(mnt, path);
766
767 switch (err) {
768 case -EBUSY:
769 /* Someone else made a mount here whilst we were busy */
770 return 0;
771 case 0:
772 path_put(path);
773 path->mnt = mnt;
774 path->dentry = dget(mnt->mnt_root);
775 return 0;
776 default:
777 return err;
778 }
779
780 }
781
782 /*
783 * Handle a dentry that is managed in some way.
784 * - Flagged for transit management (autofs)
785 * - Flagged as mountpoint
786 * - Flagged as automount point
787 *
788 * This may only be called in refwalk mode.
789 *
790 * Serialization is taken care of in namespace.c
791 */
792 static int follow_managed(struct path *path, unsigned flags)
793 {
794 struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
795 unsigned managed;
796 bool need_mntput = false;
797 int ret = 0;
798
799 /* Given that we're not holding a lock here, we retain the value in a
800 * local variable for each dentry as we look at it so that we don't see
801 * the components of that value change under us */
802 while (managed = ACCESS_ONCE(path->dentry->d_flags),
803 managed &= DCACHE_MANAGED_DENTRY,
804 unlikely(managed != 0)) {
805 /* Allow the filesystem to manage the transit without i_mutex
806 * being held. */
807 if (managed & DCACHE_MANAGE_TRANSIT) {
808 BUG_ON(!path->dentry->d_op);
809 BUG_ON(!path->dentry->d_op->d_manage);
810 ret = path->dentry->d_op->d_manage(path->dentry, false);
811 if (ret < 0)
812 break;
813 }
814
815 /* Transit to a mounted filesystem. */
816 if (managed & DCACHE_MOUNTED) {
817 struct vfsmount *mounted = lookup_mnt(path);
818 if (mounted) {
819 dput(path->dentry);
820 if (need_mntput)
821 mntput(path->mnt);
822 path->mnt = mounted;
823 path->dentry = dget(mounted->mnt_root);
824 need_mntput = true;
825 continue;
826 }
827
828 /* Something is mounted on this dentry in another
829 * namespace and/or whatever was mounted there in this
830 * namespace got unmounted before we managed to get the
831 * vfsmount_lock */
832 }
833
834 /* Handle an automount point */
835 if (managed & DCACHE_NEED_AUTOMOUNT) {
836 ret = follow_automount(path, flags, &need_mntput);
837 if (ret < 0)
838 break;
839 continue;
840 }
841
842 /* We didn't change the current path point */
843 break;
844 }
845
846 if (need_mntput && path->mnt == mnt)
847 mntput(path->mnt);
848 if (ret == -EISDIR)
849 ret = 0;
850 return ret < 0 ? ret : need_mntput;
851 }
852
853 int follow_down_one(struct path *path)
854 {
855 struct vfsmount *mounted;
856
857 mounted = lookup_mnt(path);
858 if (mounted) {
859 dput(path->dentry);
860 mntput(path->mnt);
861 path->mnt = mounted;
862 path->dentry = dget(mounted->mnt_root);
863 return 1;
864 }
865 return 0;
866 }
867
868 static inline bool managed_dentry_might_block(struct dentry *dentry)
869 {
870 return (dentry->d_flags & DCACHE_MANAGE_TRANSIT &&
871 dentry->d_op->d_manage(dentry, true) < 0);
872 }
873
874 /*
875 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if
876 * we meet a managed dentry that would need blocking.
877 */
878 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
879 struct inode **inode)
880 {
881 for (;;) {
882 struct mount *mounted;
883 /*
884 * Don't forget we might have a non-mountpoint managed dentry
885 * that wants to block transit.
886 */
887 if (unlikely(managed_dentry_might_block(path->dentry)))
888 return false;
889
890 if (!d_mountpoint(path->dentry))
891 break;
892
893 mounted = __lookup_mnt(path->mnt, path->dentry, 1);
894 if (!mounted)
895 break;
896 path->mnt = &mounted->mnt;
897 path->dentry = mounted->mnt.mnt_root;
898 nd->flags |= LOOKUP_JUMPED;
899 nd->seq = read_seqcount_begin(&path->dentry->d_seq);
900 /*
901 * Update the inode too. We don't need to re-check the
902 * dentry sequence number here after this d_inode read,
903 * because a mount-point is always pinned.
904 */
905 *inode = path->dentry->d_inode;
906 }
907 return true;
908 }
909
910 static void follow_mount_rcu(struct nameidata *nd)
911 {
912 while (d_mountpoint(nd->path.dentry)) {
913 struct mount *mounted;
914 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry, 1);
915 if (!mounted)
916 break;
917 nd->path.mnt = &mounted->mnt;
918 nd->path.dentry = mounted->mnt.mnt_root;
919 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
920 }
921 }
922
923 static int follow_dotdot_rcu(struct nameidata *nd)
924 {
925 set_root_rcu(nd);
926
927 while (1) {
928 if (nd->path.dentry == nd->root.dentry &&
929 nd->path.mnt == nd->root.mnt) {
930 break;
931 }
932 if (nd->path.dentry != nd->path.mnt->mnt_root) {
933 struct dentry *old = nd->path.dentry;
934 struct dentry *parent = old->d_parent;
935 unsigned seq;
936
937 seq = read_seqcount_begin(&parent->d_seq);
938 if (read_seqcount_retry(&old->d_seq, nd->seq))
939 goto failed;
940 nd->path.dentry = parent;
941 nd->seq = seq;
942 break;
943 }
944 if (!follow_up_rcu(&nd->path))
945 break;
946 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
947 }
948 follow_mount_rcu(nd);
949 nd->inode = nd->path.dentry->d_inode;
950 return 0;
951
952 failed:
953 nd->flags &= ~LOOKUP_RCU;
954 if (!(nd->flags & LOOKUP_ROOT))
955 nd->root.mnt = NULL;
956 rcu_read_unlock();
957 br_read_unlock(&vfsmount_lock);
958 return -ECHILD;
959 }
960
961 /*
962 * Follow down to the covering mount currently visible to userspace. At each
963 * point, the filesystem owning that dentry may be queried as to whether the
964 * caller is permitted to proceed or not.
965 */
966 int follow_down(struct path *path)
967 {
968 unsigned managed;
969 int ret;
970
971 while (managed = ACCESS_ONCE(path->dentry->d_flags),
972 unlikely(managed & DCACHE_MANAGED_DENTRY)) {
973 /* Allow the filesystem to manage the transit without i_mutex
974 * being held.
975 *
976 * We indicate to the filesystem if someone is trying to mount
977 * something here. This gives autofs the chance to deny anyone
978 * other than its daemon the right to mount on its
979 * superstructure.
980 *
981 * The filesystem may sleep at this point.
982 */
983 if (managed & DCACHE_MANAGE_TRANSIT) {
984 BUG_ON(!path->dentry->d_op);
985 BUG_ON(!path->dentry->d_op->d_manage);
986 ret = path->dentry->d_op->d_manage(
987 path->dentry, false);
988 if (ret < 0)
989 return ret == -EISDIR ? 0 : ret;
990 }
991
992 /* Transit to a mounted filesystem. */
993 if (managed & DCACHE_MOUNTED) {
994 struct vfsmount *mounted = lookup_mnt(path);
995 if (!mounted)
996 break;
997 dput(path->dentry);
998 mntput(path->mnt);
999 path->mnt = mounted;
1000 path->dentry = dget(mounted->mnt_root);
1001 continue;
1002 }
1003
1004 /* Don't handle automount points here */
1005 break;
1006 }
1007 return 0;
1008 }
1009
1010 /*
1011 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1012 */
1013 static void follow_mount(struct path *path)
1014 {
1015 while (d_mountpoint(path->dentry)) {
1016 struct vfsmount *mounted = lookup_mnt(path);
1017 if (!mounted)
1018 break;
1019 dput(path->dentry);
1020 mntput(path->mnt);
1021 path->mnt = mounted;
1022 path->dentry = dget(mounted->mnt_root);
1023 }
1024 }
1025
1026 static void follow_dotdot(struct nameidata *nd)
1027 {
1028 set_root(nd);
1029
1030 while(1) {
1031 struct dentry *old = nd->path.dentry;
1032
1033 if (nd->path.dentry == nd->root.dentry &&
1034 nd->path.mnt == nd->root.mnt) {
1035 break;
1036 }
1037 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1038 /* rare case of legitimate dget_parent()... */
1039 nd->path.dentry = dget_parent(nd->path.dentry);
1040 dput(old);
1041 break;
1042 }
1043 if (!follow_up(&nd->path))
1044 break;
1045 }
1046 follow_mount(&nd->path);
1047 nd->inode = nd->path.dentry->d_inode;
1048 }
1049
1050 /*
1051 * This looks up the name in dcache, possibly revalidates the old dentry and
1052 * allocates a new one if not found or not valid. In the need_lookup argument
1053 * returns whether i_op->lookup is necessary.
1054 *
1055 * dir->d_inode->i_mutex must be held
1056 */
1057 static struct dentry *lookup_dcache(struct qstr *name, struct dentry *dir,
1058 unsigned int flags, bool *need_lookup)
1059 {
1060 struct dentry *dentry;
1061 int error;
1062
1063 *need_lookup = false;
1064 dentry = d_lookup(dir, name);
1065 if (dentry) {
1066 if (d_need_lookup(dentry)) {
1067 *need_lookup = true;
1068 } else if (dentry->d_flags & DCACHE_OP_REVALIDATE) {
1069 error = d_revalidate(dentry, flags);
1070 if (unlikely(error <= 0)) {
1071 if (error < 0) {
1072 dput(dentry);
1073 return ERR_PTR(error);
1074 } else if (!d_invalidate(dentry)) {
1075 dput(dentry);
1076 dentry = NULL;
1077 }
1078 }
1079 }
1080 }
1081
1082 if (!dentry) {
1083 dentry = d_alloc(dir, name);
1084 if (unlikely(!dentry))
1085 return ERR_PTR(-ENOMEM);
1086
1087 *need_lookup = true;
1088 }
1089 return dentry;
1090 }
1091
1092 /*
1093 * Call i_op->lookup on the dentry. The dentry must be negative but may be
1094 * hashed if it was pouplated with DCACHE_NEED_LOOKUP.
1095 *
1096 * dir->d_inode->i_mutex must be held
1097 */
1098 static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry,
1099 unsigned int flags)
1100 {
1101 struct dentry *old;
1102
1103 /* Don't create child dentry for a dead directory. */
1104 if (unlikely(IS_DEADDIR(dir))) {
1105 dput(dentry);
1106 return ERR_PTR(-ENOENT);
1107 }
1108
1109 old = dir->i_op->lookup(dir, dentry, flags);
1110 if (unlikely(old)) {
1111 dput(dentry);
1112 dentry = old;
1113 }
1114 return dentry;
1115 }
1116
1117 static struct dentry *__lookup_hash(struct qstr *name,
1118 struct dentry *base, unsigned int flags)
1119 {
1120 bool need_lookup;
1121 struct dentry *dentry;
1122
1123 dentry = lookup_dcache(name, base, flags, &need_lookup);
1124 if (!need_lookup)
1125 return dentry;
1126
1127 return lookup_real(base->d_inode, dentry, flags);
1128 }
1129
1130 /*
1131 * It's more convoluted than I'd like it to be, but... it's still fairly
1132 * small and for now I'd prefer to have fast path as straight as possible.
1133 * It _is_ time-critical.
1134 */
1135 static int lookup_fast(struct nameidata *nd, struct qstr *name,
1136 struct path *path, struct inode **inode)
1137 {
1138 struct vfsmount *mnt = nd->path.mnt;
1139 struct dentry *dentry, *parent = nd->path.dentry;
1140 int need_reval = 1;
1141 int status = 1;
1142 int err;
1143
1144 /*
1145 * Rename seqlock is not required here because in the off chance
1146 * of a false negative due to a concurrent rename, we're going to
1147 * do the non-racy lookup, below.
1148 */
1149 if (nd->flags & LOOKUP_RCU) {
1150 unsigned seq;
1151 dentry = __d_lookup_rcu(parent, name, &seq, nd->inode);
1152 if (!dentry)
1153 goto unlazy;
1154
1155 /*
1156 * This sequence count validates that the inode matches
1157 * the dentry name information from lookup.
1158 */
1159 *inode = dentry->d_inode;
1160 if (read_seqcount_retry(&dentry->d_seq, seq))
1161 return -ECHILD;
1162
1163 /*
1164 * This sequence count validates that the parent had no
1165 * changes while we did the lookup of the dentry above.
1166 *
1167 * The memory barrier in read_seqcount_begin of child is
1168 * enough, we can use __read_seqcount_retry here.
1169 */
1170 if (__read_seqcount_retry(&parent->d_seq, nd->seq))
1171 return -ECHILD;
1172 nd->seq = seq;
1173
1174 if (unlikely(d_need_lookup(dentry)))
1175 goto unlazy;
1176 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) {
1177 status = d_revalidate(dentry, nd->flags);
1178 if (unlikely(status <= 0)) {
1179 if (status != -ECHILD)
1180 need_reval = 0;
1181 goto unlazy;
1182 }
1183 }
1184 path->mnt = mnt;
1185 path->dentry = dentry;
1186 if (unlikely(!__follow_mount_rcu(nd, path, inode)))
1187 goto unlazy;
1188 if (unlikely(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT))
1189 goto unlazy;
1190 return 0;
1191 unlazy:
1192 if (unlazy_walk(nd, dentry))
1193 return -ECHILD;
1194 } else {
1195 dentry = __d_lookup(parent, name);
1196 }
1197
1198 if (unlikely(!dentry))
1199 goto need_lookup;
1200
1201 if (unlikely(d_need_lookup(dentry))) {
1202 dput(dentry);
1203 goto need_lookup;
1204 }
1205
1206 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE) && need_reval)
1207 status = d_revalidate(dentry, nd->flags);
1208 if (unlikely(status <= 0)) {
1209 if (status < 0) {
1210 dput(dentry);
1211 return status;
1212 }
1213 if (!d_invalidate(dentry)) {
1214 dput(dentry);
1215 goto need_lookup;
1216 }
1217 }
1218
1219 path->mnt = mnt;
1220 path->dentry = dentry;
1221 err = follow_managed(path, nd->flags);
1222 if (unlikely(err < 0)) {
1223 path_put_conditional(path, nd);
1224 return err;
1225 }
1226 if (err)
1227 nd->flags |= LOOKUP_JUMPED;
1228 *inode = path->dentry->d_inode;
1229 return 0;
1230
1231 need_lookup:
1232 return 1;
1233 }
1234
1235 /* Fast lookup failed, do it the slow way */
1236 static int lookup_slow(struct nameidata *nd, struct qstr *name,
1237 struct path *path)
1238 {
1239 struct dentry *dentry, *parent;
1240 int err;
1241
1242 parent = nd->path.dentry;
1243 BUG_ON(nd->inode != parent->d_inode);
1244
1245 mutex_lock(&parent->d_inode->i_mutex);
1246 dentry = __lookup_hash(name, parent, nd->flags);
1247 mutex_unlock(&parent->d_inode->i_mutex);
1248 if (IS_ERR(dentry))
1249 return PTR_ERR(dentry);
1250 path->mnt = nd->path.mnt;
1251 path->dentry = dentry;
1252 err = follow_managed(path, nd->flags);
1253 if (unlikely(err < 0)) {
1254 path_put_conditional(path, nd);
1255 return err;
1256 }
1257 if (err)
1258 nd->flags |= LOOKUP_JUMPED;
1259 return 0;
1260 }
1261
1262 static inline int may_lookup(struct nameidata *nd)
1263 {
1264 if (nd->flags & LOOKUP_RCU) {
1265 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1266 if (err != -ECHILD)
1267 return err;
1268 if (unlazy_walk(nd, NULL))
1269 return -ECHILD;
1270 }
1271 return inode_permission(nd->inode, MAY_EXEC);
1272 }
1273
1274 static inline int handle_dots(struct nameidata *nd, int type)
1275 {
1276 if (type == LAST_DOTDOT) {
1277 if (nd->flags & LOOKUP_RCU) {
1278 if (follow_dotdot_rcu(nd))
1279 return -ECHILD;
1280 } else
1281 follow_dotdot(nd);
1282 }
1283 return 0;
1284 }
1285
1286 static void terminate_walk(struct nameidata *nd)
1287 {
1288 if (!(nd->flags & LOOKUP_RCU)) {
1289 path_put(&nd->path);
1290 } else {
1291 nd->flags &= ~LOOKUP_RCU;
1292 if (!(nd->flags & LOOKUP_ROOT))
1293 nd->root.mnt = NULL;
1294 rcu_read_unlock();
1295 br_read_unlock(&vfsmount_lock);
1296 }
1297 }
1298
1299 /*
1300 * Do we need to follow links? We _really_ want to be able
1301 * to do this check without having to look at inode->i_op,
1302 * so we keep a cache of "no, this doesn't need follow_link"
1303 * for the common case.
1304 */
1305 static inline int should_follow_link(struct inode *inode, int follow)
1306 {
1307 if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1308 if (likely(inode->i_op->follow_link))
1309 return follow;
1310
1311 /* This gets set once for the inode lifetime */
1312 spin_lock(&inode->i_lock);
1313 inode->i_opflags |= IOP_NOFOLLOW;
1314 spin_unlock(&inode->i_lock);
1315 }
1316 return 0;
1317 }
1318
1319 static inline int walk_component(struct nameidata *nd, struct path *path,
1320 struct qstr *name, int type, int follow)
1321 {
1322 struct inode *inode;
1323 int err;
1324 /*
1325 * "." and ".." are special - ".." especially so because it has
1326 * to be able to know about the current root directory and
1327 * parent relationships.
1328 */
1329 if (unlikely(type != LAST_NORM))
1330 return handle_dots(nd, type);
1331 err = lookup_fast(nd, name, path, &inode);
1332 if (unlikely(err)) {
1333 if (err < 0)
1334 goto out_err;
1335
1336 err = lookup_slow(nd, name, path);
1337 if (err < 0)
1338 goto out_err;
1339
1340 inode = path->dentry->d_inode;
1341 }
1342 err = -ENOENT;
1343 if (!inode)
1344 goto out_path_put;
1345
1346 if (should_follow_link(inode, follow)) {
1347 if (nd->flags & LOOKUP_RCU) {
1348 if (unlikely(unlazy_walk(nd, path->dentry))) {
1349 err = -ECHILD;
1350 goto out_err;
1351 }
1352 }
1353 BUG_ON(inode != path->dentry->d_inode);
1354 return 1;
1355 }
1356 path_to_nameidata(path, nd);
1357 nd->inode = inode;
1358 return 0;
1359
1360 out_path_put:
1361 path_to_nameidata(path, nd);
1362 out_err:
1363 terminate_walk(nd);
1364 return err;
1365 }
1366
1367 /*
1368 * This limits recursive symlink follows to 8, while
1369 * limiting consecutive symlinks to 40.
1370 *
1371 * Without that kind of total limit, nasty chains of consecutive
1372 * symlinks can cause almost arbitrarily long lookups.
1373 */
1374 static inline int nested_symlink(struct path *path, struct nameidata *nd)
1375 {
1376 int res;
1377
1378 if (unlikely(current->link_count >= MAX_NESTED_LINKS)) {
1379 path_put_conditional(path, nd);
1380 path_put(&nd->path);
1381 return -ELOOP;
1382 }
1383 BUG_ON(nd->depth >= MAX_NESTED_LINKS);
1384
1385 nd->depth++;
1386 current->link_count++;
1387
1388 do {
1389 struct path link = *path;
1390 void *cookie;
1391
1392 res = follow_link(&link, nd, &cookie);
1393 if (res)
1394 break;
1395 res = walk_component(nd, path, &nd->last,
1396 nd->last_type, LOOKUP_FOLLOW);
1397 put_link(nd, &link, cookie);
1398 } while (res > 0);
1399
1400 current->link_count--;
1401 nd->depth--;
1402 return res;
1403 }
1404
1405 /*
1406 * We really don't want to look at inode->i_op->lookup
1407 * when we don't have to. So we keep a cache bit in
1408 * the inode ->i_opflags field that says "yes, we can
1409 * do lookup on this inode".
1410 */
1411 static inline int can_lookup(struct inode *inode)
1412 {
1413 if (likely(inode->i_opflags & IOP_LOOKUP))
1414 return 1;
1415 if (likely(!inode->i_op->lookup))
1416 return 0;
1417
1418 /* We do this once for the lifetime of the inode */
1419 spin_lock(&inode->i_lock);
1420 inode->i_opflags |= IOP_LOOKUP;
1421 spin_unlock(&inode->i_lock);
1422 return 1;
1423 }
1424
1425 /*
1426 * We can do the critical dentry name comparison and hashing
1427 * operations one word at a time, but we are limited to:
1428 *
1429 * - Architectures with fast unaligned word accesses. We could
1430 * do a "get_unaligned()" if this helps and is sufficiently
1431 * fast.
1432 *
1433 * - Little-endian machines (so that we can generate the mask
1434 * of low bytes efficiently). Again, we *could* do a byte
1435 * swapping load on big-endian architectures if that is not
1436 * expensive enough to make the optimization worthless.
1437 *
1438 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1439 * do not trap on the (extremely unlikely) case of a page
1440 * crossing operation.
1441 *
1442 * - Furthermore, we need an efficient 64-bit compile for the
1443 * 64-bit case in order to generate the "number of bytes in
1444 * the final mask". Again, that could be replaced with a
1445 * efficient population count instruction or similar.
1446 */
1447 #ifdef CONFIG_DCACHE_WORD_ACCESS
1448
1449 #include <asm/word-at-a-time.h>
1450
1451 #ifdef CONFIG_64BIT
1452
1453 static inline unsigned int fold_hash(unsigned long hash)
1454 {
1455 hash += hash >> (8*sizeof(int));
1456 return hash;
1457 }
1458
1459 #else /* 32-bit case */
1460
1461 #define fold_hash(x) (x)
1462
1463 #endif
1464
1465 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1466 {
1467 unsigned long a, mask;
1468 unsigned long hash = 0;
1469
1470 for (;;) {
1471 a = load_unaligned_zeropad(name);
1472 if (len < sizeof(unsigned long))
1473 break;
1474 hash += a;
1475 hash *= 9;
1476 name += sizeof(unsigned long);
1477 len -= sizeof(unsigned long);
1478 if (!len)
1479 goto done;
1480 }
1481 mask = ~(~0ul << len*8);
1482 hash += mask & a;
1483 done:
1484 return fold_hash(hash);
1485 }
1486 EXPORT_SYMBOL(full_name_hash);
1487
1488 /*
1489 * Calculate the length and hash of the path component, and
1490 * return the length of the component;
1491 */
1492 static inline unsigned long hash_name(const char *name, unsigned int *hashp)
1493 {
1494 unsigned long a, b, adata, bdata, mask, hash, len;
1495 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1496
1497 hash = a = 0;
1498 len = -sizeof(unsigned long);
1499 do {
1500 hash = (hash + a) * 9;
1501 len += sizeof(unsigned long);
1502 a = load_unaligned_zeropad(name+len);
1503 b = a ^ REPEAT_BYTE('/');
1504 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
1505
1506 adata = prep_zero_mask(a, adata, &constants);
1507 bdata = prep_zero_mask(b, bdata, &constants);
1508
1509 mask = create_zero_mask(adata | bdata);
1510
1511 hash += a & zero_bytemask(mask);
1512 *hashp = fold_hash(hash);
1513
1514 return len + find_zero(mask);
1515 }
1516
1517 #else
1518
1519 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1520 {
1521 unsigned long hash = init_name_hash();
1522 while (len--)
1523 hash = partial_name_hash(*name++, hash);
1524 return end_name_hash(hash);
1525 }
1526 EXPORT_SYMBOL(full_name_hash);
1527
1528 /*
1529 * We know there's a real path component here of at least
1530 * one character.
1531 */
1532 static inline unsigned long hash_name(const char *name, unsigned int *hashp)
1533 {
1534 unsigned long hash = init_name_hash();
1535 unsigned long len = 0, c;
1536
1537 c = (unsigned char)*name;
1538 do {
1539 len++;
1540 hash = partial_name_hash(c, hash);
1541 c = (unsigned char)name[len];
1542 } while (c && c != '/');
1543 *hashp = end_name_hash(hash);
1544 return len;
1545 }
1546
1547 #endif
1548
1549 /*
1550 * Name resolution.
1551 * This is the basic name resolution function, turning a pathname into
1552 * the final dentry. We expect 'base' to be positive and a directory.
1553 *
1554 * Returns 0 and nd will have valid dentry and mnt on success.
1555 * Returns error and drops reference to input namei data on failure.
1556 */
1557 static int link_path_walk(const char *name, struct nameidata *nd)
1558 {
1559 struct path next;
1560 int err;
1561
1562 while (*name=='/')
1563 name++;
1564 if (!*name)
1565 return 0;
1566
1567 /* At this point we know we have a real path component. */
1568 for(;;) {
1569 struct qstr this;
1570 long len;
1571 int type;
1572
1573 err = may_lookup(nd);
1574 if (err)
1575 break;
1576
1577 len = hash_name(name, &this.hash);
1578 this.name = name;
1579 this.len = len;
1580
1581 type = LAST_NORM;
1582 if (name[0] == '.') switch (len) {
1583 case 2:
1584 if (name[1] == '.') {
1585 type = LAST_DOTDOT;
1586 nd->flags |= LOOKUP_JUMPED;
1587 }
1588 break;
1589 case 1:
1590 type = LAST_DOT;
1591 }
1592 if (likely(type == LAST_NORM)) {
1593 struct dentry *parent = nd->path.dentry;
1594 nd->flags &= ~LOOKUP_JUMPED;
1595 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
1596 err = parent->d_op->d_hash(parent, nd->inode,
1597 &this);
1598 if (err < 0)
1599 break;
1600 }
1601 }
1602
1603 if (!name[len])
1604 goto last_component;
1605 /*
1606 * If it wasn't NUL, we know it was '/'. Skip that
1607 * slash, and continue until no more slashes.
1608 */
1609 do {
1610 len++;
1611 } while (unlikely(name[len] == '/'));
1612 if (!name[len])
1613 goto last_component;
1614 name += len;
1615
1616 err = walk_component(nd, &next, &this, type, LOOKUP_FOLLOW);
1617 if (err < 0)
1618 return err;
1619
1620 if (err) {
1621 err = nested_symlink(&next, nd);
1622 if (err)
1623 return err;
1624 }
1625 if (can_lookup(nd->inode))
1626 continue;
1627 err = -ENOTDIR;
1628 break;
1629 /* here ends the main loop */
1630
1631 last_component:
1632 nd->last = this;
1633 nd->last_type = type;
1634 return 0;
1635 }
1636 terminate_walk(nd);
1637 return err;
1638 }
1639
1640 static int path_init(int dfd, const char *name, unsigned int flags,
1641 struct nameidata *nd, struct file **fp)
1642 {
1643 int retval = 0;
1644 int fput_needed;
1645 struct file *file;
1646
1647 nd->last_type = LAST_ROOT; /* if there are only slashes... */
1648 nd->flags = flags | LOOKUP_JUMPED;
1649 nd->depth = 0;
1650 if (flags & LOOKUP_ROOT) {
1651 struct inode *inode = nd->root.dentry->d_inode;
1652 if (*name) {
1653 if (!inode->i_op->lookup)
1654 return -ENOTDIR;
1655 retval = inode_permission(inode, MAY_EXEC);
1656 if (retval)
1657 return retval;
1658 }
1659 nd->path = nd->root;
1660 nd->inode = inode;
1661 if (flags & LOOKUP_RCU) {
1662 br_read_lock(&vfsmount_lock);
1663 rcu_read_lock();
1664 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1665 } else {
1666 path_get(&nd->path);
1667 }
1668 return 0;
1669 }
1670
1671 nd->root.mnt = NULL;
1672
1673 if (*name=='/') {
1674 if (flags & LOOKUP_RCU) {
1675 br_read_lock(&vfsmount_lock);
1676 rcu_read_lock();
1677 set_root_rcu(nd);
1678 } else {
1679 set_root(nd);
1680 path_get(&nd->root);
1681 }
1682 nd->path = nd->root;
1683 } else if (dfd == AT_FDCWD) {
1684 if (flags & LOOKUP_RCU) {
1685 struct fs_struct *fs = current->fs;
1686 unsigned seq;
1687
1688 br_read_lock(&vfsmount_lock);
1689 rcu_read_lock();
1690
1691 do {
1692 seq = read_seqcount_begin(&fs->seq);
1693 nd->path = fs->pwd;
1694 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1695 } while (read_seqcount_retry(&fs->seq, seq));
1696 } else {
1697 get_fs_pwd(current->fs, &nd->path);
1698 }
1699 } else {
1700 struct dentry *dentry;
1701
1702 file = fget_raw_light(dfd, &fput_needed);
1703 retval = -EBADF;
1704 if (!file)
1705 goto out_fail;
1706
1707 dentry = file->f_path.dentry;
1708
1709 if (*name) {
1710 retval = -ENOTDIR;
1711 if (!S_ISDIR(dentry->d_inode->i_mode))
1712 goto fput_fail;
1713
1714 retval = inode_permission(dentry->d_inode, MAY_EXEC);
1715 if (retval)
1716 goto fput_fail;
1717 }
1718
1719 nd->path = file->f_path;
1720 if (flags & LOOKUP_RCU) {
1721 if (fput_needed)
1722 *fp = file;
1723 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1724 br_read_lock(&vfsmount_lock);
1725 rcu_read_lock();
1726 } else {
1727 path_get(&file->f_path);
1728 fput_light(file, fput_needed);
1729 }
1730 }
1731
1732 nd->inode = nd->path.dentry->d_inode;
1733 return 0;
1734
1735 fput_fail:
1736 fput_light(file, fput_needed);
1737 out_fail:
1738 return retval;
1739 }
1740
1741 static inline int lookup_last(struct nameidata *nd, struct path *path)
1742 {
1743 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
1744 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
1745
1746 nd->flags &= ~LOOKUP_PARENT;
1747 return walk_component(nd, path, &nd->last, nd->last_type,
1748 nd->flags & LOOKUP_FOLLOW);
1749 }
1750
1751 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
1752 static int path_lookupat(int dfd, const char *name,
1753 unsigned int flags, struct nameidata *nd)
1754 {
1755 struct file *base = NULL;
1756 struct path path;
1757 int err;
1758
1759 /*
1760 * Path walking is largely split up into 2 different synchronisation
1761 * schemes, rcu-walk and ref-walk (explained in
1762 * Documentation/filesystems/path-lookup.txt). These share much of the
1763 * path walk code, but some things particularly setup, cleanup, and
1764 * following mounts are sufficiently divergent that functions are
1765 * duplicated. Typically there is a function foo(), and its RCU
1766 * analogue, foo_rcu().
1767 *
1768 * -ECHILD is the error number of choice (just to avoid clashes) that
1769 * is returned if some aspect of an rcu-walk fails. Such an error must
1770 * be handled by restarting a traditional ref-walk (which will always
1771 * be able to complete).
1772 */
1773 err = path_init(dfd, name, flags | LOOKUP_PARENT, nd, &base);
1774
1775 if (unlikely(err))
1776 return err;
1777
1778 current->total_link_count = 0;
1779 err = link_path_walk(name, nd);
1780
1781 if (!err && !(flags & LOOKUP_PARENT)) {
1782 err = lookup_last(nd, &path);
1783 while (err > 0) {
1784 void *cookie;
1785 struct path link = path;
1786 nd->flags |= LOOKUP_PARENT;
1787 err = follow_link(&link, nd, &cookie);
1788 if (err)
1789 break;
1790 err = lookup_last(nd, &path);
1791 put_link(nd, &link, cookie);
1792 }
1793 }
1794
1795 if (!err)
1796 err = complete_walk(nd);
1797
1798 if (!err && nd->flags & LOOKUP_DIRECTORY) {
1799 if (!nd->inode->i_op->lookup) {
1800 path_put(&nd->path);
1801 err = -ENOTDIR;
1802 }
1803 }
1804
1805 if (base)
1806 fput(base);
1807
1808 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
1809 path_put(&nd->root);
1810 nd->root.mnt = NULL;
1811 }
1812 return err;
1813 }
1814
1815 static int do_path_lookup(int dfd, const char *name,
1816 unsigned int flags, struct nameidata *nd)
1817 {
1818 int retval = path_lookupat(dfd, name, flags | LOOKUP_RCU, nd);
1819 if (unlikely(retval == -ECHILD))
1820 retval = path_lookupat(dfd, name, flags, nd);
1821 if (unlikely(retval == -ESTALE))
1822 retval = path_lookupat(dfd, name, flags | LOOKUP_REVAL, nd);
1823
1824 if (likely(!retval)) {
1825 if (unlikely(!audit_dummy_context())) {
1826 if (nd->path.dentry && nd->inode)
1827 audit_inode(name, nd->path.dentry);
1828 }
1829 }
1830 return retval;
1831 }
1832
1833 /* does lookup, returns the object with parent locked */
1834 struct dentry *kern_path_locked(const char *name, struct path *path)
1835 {
1836 struct nameidata nd;
1837 struct dentry *d;
1838 int err = do_path_lookup(AT_FDCWD, name, LOOKUP_PARENT, &nd);
1839 if (err)
1840 return ERR_PTR(err);
1841 if (nd.last_type != LAST_NORM) {
1842 path_put(&nd.path);
1843 return ERR_PTR(-EINVAL);
1844 }
1845 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
1846 d = lookup_one_len(nd.last.name, nd.path.dentry, nd.last.len);
1847 if (IS_ERR(d)) {
1848 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
1849 path_put(&nd.path);
1850 return d;
1851 }
1852 *path = nd.path;
1853 return d;
1854 }
1855
1856 int kern_path(const char *name, unsigned int flags, struct path *path)
1857 {
1858 struct nameidata nd;
1859 int res = do_path_lookup(AT_FDCWD, name, flags, &nd);
1860 if (!res)
1861 *path = nd.path;
1862 return res;
1863 }
1864
1865 /**
1866 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
1867 * @dentry: pointer to dentry of the base directory
1868 * @mnt: pointer to vfs mount of the base directory
1869 * @name: pointer to file name
1870 * @flags: lookup flags
1871 * @path: pointer to struct path to fill
1872 */
1873 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
1874 const char *name, unsigned int flags,
1875 struct path *path)
1876 {
1877 struct nameidata nd;
1878 int err;
1879 nd.root.dentry = dentry;
1880 nd.root.mnt = mnt;
1881 BUG_ON(flags & LOOKUP_PARENT);
1882 /* the first argument of do_path_lookup() is ignored with LOOKUP_ROOT */
1883 err = do_path_lookup(AT_FDCWD, name, flags | LOOKUP_ROOT, &nd);
1884 if (!err)
1885 *path = nd.path;
1886 return err;
1887 }
1888
1889 /*
1890 * Restricted form of lookup. Doesn't follow links, single-component only,
1891 * needs parent already locked. Doesn't follow mounts.
1892 * SMP-safe.
1893 */
1894 static struct dentry *lookup_hash(struct nameidata *nd)
1895 {
1896 return __lookup_hash(&nd->last, nd->path.dentry, nd->flags);
1897 }
1898
1899 /**
1900 * lookup_one_len - filesystem helper to lookup single pathname component
1901 * @name: pathname component to lookup
1902 * @base: base directory to lookup from
1903 * @len: maximum length @len should be interpreted to
1904 *
1905 * Note that this routine is purely a helper for filesystem usage and should
1906 * not be called by generic code. Also note that by using this function the
1907 * nameidata argument is passed to the filesystem methods and a filesystem
1908 * using this helper needs to be prepared for that.
1909 */
1910 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
1911 {
1912 struct qstr this;
1913 unsigned int c;
1914 int err;
1915
1916 WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex));
1917
1918 this.name = name;
1919 this.len = len;
1920 this.hash = full_name_hash(name, len);
1921 if (!len)
1922 return ERR_PTR(-EACCES);
1923
1924 while (len--) {
1925 c = *(const unsigned char *)name++;
1926 if (c == '/' || c == '\0')
1927 return ERR_PTR(-EACCES);
1928 }
1929 /*
1930 * See if the low-level filesystem might want
1931 * to use its own hash..
1932 */
1933 if (base->d_flags & DCACHE_OP_HASH) {
1934 int err = base->d_op->d_hash(base, base->d_inode, &this);
1935 if (err < 0)
1936 return ERR_PTR(err);
1937 }
1938
1939 err = inode_permission(base->d_inode, MAY_EXEC);
1940 if (err)
1941 return ERR_PTR(err);
1942
1943 return __lookup_hash(&this, base, 0);
1944 }
1945
1946 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
1947 struct path *path, int *empty)
1948 {
1949 struct nameidata nd;
1950 char *tmp = getname_flags(name, flags, empty);
1951 int err = PTR_ERR(tmp);
1952 if (!IS_ERR(tmp)) {
1953
1954 BUG_ON(flags & LOOKUP_PARENT);
1955
1956 err = do_path_lookup(dfd, tmp, flags, &nd);
1957 putname(tmp);
1958 if (!err)
1959 *path = nd.path;
1960 }
1961 return err;
1962 }
1963
1964 int user_path_at(int dfd, const char __user *name, unsigned flags,
1965 struct path *path)
1966 {
1967 return user_path_at_empty(dfd, name, flags, path, NULL);
1968 }
1969
1970 static int user_path_parent(int dfd, const char __user *path,
1971 struct nameidata *nd, char **name)
1972 {
1973 char *s = getname(path);
1974 int error;
1975
1976 if (IS_ERR(s))
1977 return PTR_ERR(s);
1978
1979 error = do_path_lookup(dfd, s, LOOKUP_PARENT, nd);
1980 if (error)
1981 putname(s);
1982 else
1983 *name = s;
1984
1985 return error;
1986 }
1987
1988 /*
1989 * It's inline, so penalty for filesystems that don't use sticky bit is
1990 * minimal.
1991 */
1992 static inline int check_sticky(struct inode *dir, struct inode *inode)
1993 {
1994 kuid_t fsuid = current_fsuid();
1995
1996 if (!(dir->i_mode & S_ISVTX))
1997 return 0;
1998 if (uid_eq(inode->i_uid, fsuid))
1999 return 0;
2000 if (uid_eq(dir->i_uid, fsuid))
2001 return 0;
2002 return !inode_capable(inode, CAP_FOWNER);
2003 }
2004
2005 /*
2006 * Check whether we can remove a link victim from directory dir, check
2007 * whether the type of victim is right.
2008 * 1. We can't do it if dir is read-only (done in permission())
2009 * 2. We should have write and exec permissions on dir
2010 * 3. We can't remove anything from append-only dir
2011 * 4. We can't do anything with immutable dir (done in permission())
2012 * 5. If the sticky bit on dir is set we should either
2013 * a. be owner of dir, or
2014 * b. be owner of victim, or
2015 * c. have CAP_FOWNER capability
2016 * 6. If the victim is append-only or immutable we can't do antyhing with
2017 * links pointing to it.
2018 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2019 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2020 * 9. We can't remove a root or mountpoint.
2021 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
2022 * nfs_async_unlink().
2023 */
2024 static int may_delete(struct inode *dir,struct dentry *victim,int isdir)
2025 {
2026 int error;
2027
2028 if (!victim->d_inode)
2029 return -ENOENT;
2030
2031 BUG_ON(victim->d_parent->d_inode != dir);
2032 audit_inode_child(victim, dir);
2033
2034 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2035 if (error)
2036 return error;
2037 if (IS_APPEND(dir))
2038 return -EPERM;
2039 if (check_sticky(dir, victim->d_inode)||IS_APPEND(victim->d_inode)||
2040 IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode))
2041 return -EPERM;
2042 if (isdir) {
2043 if (!S_ISDIR(victim->d_inode->i_mode))
2044 return -ENOTDIR;
2045 if (IS_ROOT(victim))
2046 return -EBUSY;
2047 } else if (S_ISDIR(victim->d_inode->i_mode))
2048 return -EISDIR;
2049 if (IS_DEADDIR(dir))
2050 return -ENOENT;
2051 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2052 return -EBUSY;
2053 return 0;
2054 }
2055
2056 /* Check whether we can create an object with dentry child in directory
2057 * dir.
2058 * 1. We can't do it if child already exists (open has special treatment for
2059 * this case, but since we are inlined it's OK)
2060 * 2. We can't do it if dir is read-only (done in permission())
2061 * 3. We should have write and exec permissions on dir
2062 * 4. We can't do it if dir is immutable (done in permission())
2063 */
2064 static inline int may_create(struct inode *dir, struct dentry *child)
2065 {
2066 if (child->d_inode)
2067 return -EEXIST;
2068 if (IS_DEADDIR(dir))
2069 return -ENOENT;
2070 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2071 }
2072
2073 /*
2074 * p1 and p2 should be directories on the same fs.
2075 */
2076 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2077 {
2078 struct dentry *p;
2079
2080 if (p1 == p2) {
2081 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2082 return NULL;
2083 }
2084
2085 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2086
2087 p = d_ancestor(p2, p1);
2088 if (p) {
2089 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
2090 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
2091 return p;
2092 }
2093
2094 p = d_ancestor(p1, p2);
2095 if (p) {
2096 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2097 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2098 return p;
2099 }
2100
2101 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2102 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2103 return NULL;
2104 }
2105
2106 void unlock_rename(struct dentry *p1, struct dentry *p2)
2107 {
2108 mutex_unlock(&p1->d_inode->i_mutex);
2109 if (p1 != p2) {
2110 mutex_unlock(&p2->d_inode->i_mutex);
2111 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2112 }
2113 }
2114
2115 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2116 bool want_excl)
2117 {
2118 int error = may_create(dir, dentry);
2119 if (error)
2120 return error;
2121
2122 if (!dir->i_op->create)
2123 return -EACCES; /* shouldn't it be ENOSYS? */
2124 mode &= S_IALLUGO;
2125 mode |= S_IFREG;
2126 error = security_inode_create(dir, dentry, mode);
2127 if (error)
2128 return error;
2129 error = dir->i_op->create(dir, dentry, mode, want_excl);
2130 if (!error)
2131 fsnotify_create(dir, dentry);
2132 return error;
2133 }
2134
2135 static int may_open(struct path *path, int acc_mode, int flag)
2136 {
2137 struct dentry *dentry = path->dentry;
2138 struct inode *inode = dentry->d_inode;
2139 int error;
2140
2141 /* O_PATH? */
2142 if (!acc_mode)
2143 return 0;
2144
2145 if (!inode)
2146 return -ENOENT;
2147
2148 switch (inode->i_mode & S_IFMT) {
2149 case S_IFLNK:
2150 return -ELOOP;
2151 case S_IFDIR:
2152 if (acc_mode & MAY_WRITE)
2153 return -EISDIR;
2154 break;
2155 case S_IFBLK:
2156 case S_IFCHR:
2157 if (path->mnt->mnt_flags & MNT_NODEV)
2158 return -EACCES;
2159 /*FALLTHRU*/
2160 case S_IFIFO:
2161 case S_IFSOCK:
2162 flag &= ~O_TRUNC;
2163 break;
2164 }
2165
2166 error = inode_permission(inode, acc_mode);
2167 if (error)
2168 return error;
2169
2170 /*
2171 * An append-only file must be opened in append mode for writing.
2172 */
2173 if (IS_APPEND(inode)) {
2174 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2175 return -EPERM;
2176 if (flag & O_TRUNC)
2177 return -EPERM;
2178 }
2179
2180 /* O_NOATIME can only be set by the owner or superuser */
2181 if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2182 return -EPERM;
2183
2184 return 0;
2185 }
2186
2187 static int handle_truncate(struct file *filp)
2188 {
2189 struct path *path = &filp->f_path;
2190 struct inode *inode = path->dentry->d_inode;
2191 int error = get_write_access(inode);
2192 if (error)
2193 return error;
2194 /*
2195 * Refuse to truncate files with mandatory locks held on them.
2196 */
2197 error = locks_verify_locked(inode);
2198 if (!error)
2199 error = security_path_truncate(path);
2200 if (!error) {
2201 error = do_truncate(path->dentry, 0,
2202 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2203 filp);
2204 }
2205 put_write_access(inode);
2206 return error;
2207 }
2208
2209 static inline int open_to_namei_flags(int flag)
2210 {
2211 if ((flag & O_ACCMODE) == 3)
2212 flag--;
2213 return flag;
2214 }
2215
2216 static int may_o_create(struct path *dir, struct dentry *dentry, umode_t mode)
2217 {
2218 int error = security_path_mknod(dir, dentry, mode, 0);
2219 if (error)
2220 return error;
2221
2222 error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
2223 if (error)
2224 return error;
2225
2226 return security_inode_create(dir->dentry->d_inode, dentry, mode);
2227 }
2228
2229 /*
2230 * Attempt to atomically look up, create and open a file from a negative
2231 * dentry.
2232 *
2233 * Returns 0 if successful. The file will have been created and attached to
2234 * @file by the filesystem calling finish_open().
2235 *
2236 * Returns 1 if the file was looked up only or didn't need creating. The
2237 * caller will need to perform the open themselves. @path will have been
2238 * updated to point to the new dentry. This may be negative.
2239 *
2240 * Returns an error code otherwise.
2241 */
2242 static int atomic_open(struct nameidata *nd, struct dentry *dentry,
2243 struct path *path, struct file *file,
2244 const struct open_flags *op,
2245 bool *want_write, bool need_lookup,
2246 int *opened)
2247 {
2248 struct inode *dir = nd->path.dentry->d_inode;
2249 unsigned open_flag = open_to_namei_flags(op->open_flag);
2250 umode_t mode;
2251 int error;
2252 int acc_mode;
2253 int create_error = 0;
2254 struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
2255
2256 BUG_ON(dentry->d_inode);
2257
2258 /* Don't create child dentry for a dead directory. */
2259 if (unlikely(IS_DEADDIR(dir))) {
2260 error = -ENOENT;
2261 goto out;
2262 }
2263
2264 mode = op->mode & S_IALLUGO;
2265 if ((open_flag & O_CREAT) && !IS_POSIXACL(dir))
2266 mode &= ~current_umask();
2267
2268 if (open_flag & O_EXCL) {
2269 open_flag &= ~O_TRUNC;
2270 *opened |= FILE_CREATED;
2271 }
2272
2273 /*
2274 * Checking write permission is tricky, bacuse we don't know if we are
2275 * going to actually need it: O_CREAT opens should work as long as the
2276 * file exists. But checking existence breaks atomicity. The trick is
2277 * to check access and if not granted clear O_CREAT from the flags.
2278 *
2279 * Another problem is returing the "right" error value (e.g. for an
2280 * O_EXCL open we want to return EEXIST not EROFS).
2281 */
2282 if ((open_flag & (O_CREAT | O_TRUNC)) ||
2283 (open_flag & O_ACCMODE) != O_RDONLY) {
2284 error = mnt_want_write(nd->path.mnt);
2285 if (!error) {
2286 *want_write = true;
2287 } else if (!(open_flag & O_CREAT)) {
2288 /*
2289 * No O_CREATE -> atomicity not a requirement -> fall
2290 * back to lookup + open
2291 */
2292 goto no_open;
2293 } else if (open_flag & (O_EXCL | O_TRUNC)) {
2294 /* Fall back and fail with the right error */
2295 create_error = error;
2296 goto no_open;
2297 } else {
2298 /* No side effects, safe to clear O_CREAT */
2299 create_error = error;
2300 open_flag &= ~O_CREAT;
2301 }
2302 }
2303
2304 if (open_flag & O_CREAT) {
2305 error = may_o_create(&nd->path, dentry, op->mode);
2306 if (error) {
2307 create_error = error;
2308 if (open_flag & O_EXCL)
2309 goto no_open;
2310 open_flag &= ~O_CREAT;
2311 }
2312 }
2313
2314 if (nd->flags & LOOKUP_DIRECTORY)
2315 open_flag |= O_DIRECTORY;
2316
2317 file->f_path.dentry = DENTRY_NOT_SET;
2318 file->f_path.mnt = nd->path.mnt;
2319 error = dir->i_op->atomic_open(dir, dentry, file, open_flag, mode,
2320 opened);
2321 if (error < 0) {
2322 if (create_error && error == -ENOENT)
2323 error = create_error;
2324 goto out;
2325 }
2326
2327 acc_mode = op->acc_mode;
2328 if (*opened & FILE_CREATED) {
2329 fsnotify_create(dir, dentry);
2330 acc_mode = MAY_OPEN;
2331 }
2332
2333 if (error) { /* returned 1, that is */
2334 if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
2335 error = -EIO;
2336 goto out;
2337 }
2338 if (file->f_path.dentry) {
2339 dput(dentry);
2340 dentry = file->f_path.dentry;
2341 }
2342 goto looked_up;
2343 }
2344
2345 /*
2346 * We didn't have the inode before the open, so check open permission
2347 * here.
2348 */
2349 error = may_open(&file->f_path, acc_mode, open_flag);
2350 if (error)
2351 fput(file);
2352
2353 out:
2354 dput(dentry);
2355 return error;
2356
2357 no_open:
2358 if (need_lookup) {
2359 dentry = lookup_real(dir, dentry, nd->flags);
2360 if (IS_ERR(dentry))
2361 return PTR_ERR(dentry);
2362
2363 if (create_error) {
2364 int open_flag = op->open_flag;
2365
2366 error = create_error;
2367 if ((open_flag & O_EXCL)) {
2368 if (!dentry->d_inode)
2369 goto out;
2370 } else if (!dentry->d_inode) {
2371 goto out;
2372 } else if ((open_flag & O_TRUNC) &&
2373 S_ISREG(dentry->d_inode->i_mode)) {
2374 goto out;
2375 }
2376 /* will fail later, go on to get the right error */
2377 }
2378 }
2379 looked_up:
2380 path->dentry = dentry;
2381 path->mnt = nd->path.mnt;
2382 return 1;
2383 }
2384
2385 /*
2386 * Look up and maybe create and open the last component.
2387 *
2388 * Must be called with i_mutex held on parent.
2389 *
2390 * Returns 0 if the file was successfully atomically created (if necessary) and
2391 * opened. In this case the file will be returned attached to @file.
2392 *
2393 * Returns 1 if the file was not completely opened at this time, though lookups
2394 * and creations will have been performed and the dentry returned in @path will
2395 * be positive upon return if O_CREAT was specified. If O_CREAT wasn't
2396 * specified then a negative dentry may be returned.
2397 *
2398 * An error code is returned otherwise.
2399 *
2400 * FILE_CREATE will be set in @*opened if the dentry was created and will be
2401 * cleared otherwise prior to returning.
2402 */
2403 static int lookup_open(struct nameidata *nd, struct path *path,
2404 struct file *file,
2405 const struct open_flags *op,
2406 bool *want_write, int *opened)
2407 {
2408 struct dentry *dir = nd->path.dentry;
2409 struct inode *dir_inode = dir->d_inode;
2410 struct dentry *dentry;
2411 int error;
2412 bool need_lookup;
2413
2414 *opened &= ~FILE_CREATED;
2415 dentry = lookup_dcache(&nd->last, dir, nd->flags, &need_lookup);
2416 if (IS_ERR(dentry))
2417 return PTR_ERR(dentry);
2418
2419 /* Cached positive dentry: will open in f_op->open */
2420 if (!need_lookup && dentry->d_inode)
2421 goto out_no_open;
2422
2423 if ((nd->flags & LOOKUP_OPEN) && dir_inode->i_op->atomic_open) {
2424 return atomic_open(nd, dentry, path, file, op, want_write,
2425 need_lookup, opened);
2426 }
2427
2428 if (need_lookup) {
2429 BUG_ON(dentry->d_inode);
2430
2431 dentry = lookup_real(dir_inode, dentry, nd->flags);
2432 if (IS_ERR(dentry))
2433 return PTR_ERR(dentry);
2434 }
2435
2436 /* Negative dentry, just create the file */
2437 if (!dentry->d_inode && (op->open_flag & O_CREAT)) {
2438 umode_t mode = op->mode;
2439 if (!IS_POSIXACL(dir->d_inode))
2440 mode &= ~current_umask();
2441 /*
2442 * This write is needed to ensure that a
2443 * rw->ro transition does not occur between
2444 * the time when the file is created and when
2445 * a permanent write count is taken through
2446 * the 'struct file' in finish_open().
2447 */
2448 error = mnt_want_write(nd->path.mnt);
2449 if (error)
2450 goto out_dput;
2451 *want_write = true;
2452 *opened |= FILE_CREATED;
2453 error = security_path_mknod(&nd->path, dentry, mode, 0);
2454 if (error)
2455 goto out_dput;
2456 error = vfs_create(dir->d_inode, dentry, mode,
2457 nd->flags & LOOKUP_EXCL);
2458 if (error)
2459 goto out_dput;
2460 }
2461 out_no_open:
2462 path->dentry = dentry;
2463 path->mnt = nd->path.mnt;
2464 return 1;
2465
2466 out_dput:
2467 dput(dentry);
2468 return error;
2469 }
2470
2471 /*
2472 * Handle the last step of open()
2473 */
2474 static int do_last(struct nameidata *nd, struct path *path,
2475 struct file *file, const struct open_flags *op,
2476 int *opened, const char *pathname)
2477 {
2478 struct dentry *dir = nd->path.dentry;
2479 int open_flag = op->open_flag;
2480 bool will_truncate = (open_flag & O_TRUNC) != 0;
2481 bool want_write = false;
2482 int acc_mode = op->acc_mode;
2483 struct inode *inode;
2484 bool symlink_ok = false;
2485 struct path save_parent = { .dentry = NULL, .mnt = NULL };
2486 bool retried = false;
2487 int error;
2488
2489 nd->flags &= ~LOOKUP_PARENT;
2490 nd->flags |= op->intent;
2491
2492 switch (nd->last_type) {
2493 case LAST_DOTDOT:
2494 case LAST_DOT:
2495 error = handle_dots(nd, nd->last_type);
2496 if (error)
2497 return error;
2498 /* fallthrough */
2499 case LAST_ROOT:
2500 error = complete_walk(nd);
2501 if (error)
2502 return error;
2503 audit_inode(pathname, nd->path.dentry);
2504 if (open_flag & O_CREAT) {
2505 error = -EISDIR;
2506 goto out;
2507 }
2508 goto finish_open;
2509 case LAST_BIND:
2510 error = complete_walk(nd);
2511 if (error)
2512 return error;
2513 audit_inode(pathname, dir);
2514 goto finish_open;
2515 }
2516
2517 if (!(open_flag & O_CREAT)) {
2518 if (nd->last.name[nd->last.len])
2519 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2520 if (open_flag & O_PATH && !(nd->flags & LOOKUP_FOLLOW))
2521 symlink_ok = true;
2522 /* we _can_ be in RCU mode here */
2523 error = lookup_fast(nd, &nd->last, path, &inode);
2524 if (likely(!error))
2525 goto finish_lookup;
2526
2527 if (error < 0)
2528 goto out;
2529
2530 BUG_ON(nd->inode != dir->d_inode);
2531 } else {
2532 /* create side of things */
2533 /*
2534 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED
2535 * has been cleared when we got to the last component we are
2536 * about to look up
2537 */
2538 error = complete_walk(nd);
2539 if (error)
2540 return error;
2541
2542 audit_inode(pathname, dir);
2543 error = -EISDIR;
2544 /* trailing slashes? */
2545 if (nd->last.name[nd->last.len])
2546 goto out;
2547 }
2548
2549 retry_lookup:
2550 mutex_lock(&dir->d_inode->i_mutex);
2551 error = lookup_open(nd, path, file, op, &want_write, opened);
2552 mutex_unlock(&dir->d_inode->i_mutex);
2553
2554 if (error <= 0) {
2555 if (error)
2556 goto out;
2557
2558 if ((*opened & FILE_CREATED) ||
2559 !S_ISREG(file->f_path.dentry->d_inode->i_mode))
2560 will_truncate = false;
2561
2562 audit_inode(pathname, file->f_path.dentry);
2563 goto opened;
2564 }
2565
2566 if (*opened & FILE_CREATED) {
2567 /* Don't check for write permission, don't truncate */
2568 open_flag &= ~O_TRUNC;
2569 will_truncate = false;
2570 acc_mode = MAY_OPEN;
2571 path_to_nameidata(path, nd);
2572 goto finish_open_created;
2573 }
2574
2575 /*
2576 * It already exists.
2577 */
2578 audit_inode(pathname, path->dentry);
2579
2580 /*
2581 * If atomic_open() acquired write access it is dropped now due to
2582 * possible mount and symlink following (this might be optimized away if
2583 * necessary...)
2584 */
2585 if (want_write) {
2586 mnt_drop_write(nd->path.mnt);
2587 want_write = false;
2588 }
2589
2590 error = -EEXIST;
2591 if (open_flag & O_EXCL)
2592 goto exit_dput;
2593
2594 error = follow_managed(path, nd->flags);
2595 if (error < 0)
2596 goto exit_dput;
2597
2598 if (error)
2599 nd->flags |= LOOKUP_JUMPED;
2600
2601 BUG_ON(nd->flags & LOOKUP_RCU);
2602 inode = path->dentry->d_inode;
2603 finish_lookup:
2604 /* we _can_ be in RCU mode here */
2605 error = -ENOENT;
2606 if (!inode) {
2607 path_to_nameidata(path, nd);
2608 goto out;
2609 }
2610
2611 if (should_follow_link(inode, !symlink_ok)) {
2612 if (nd->flags & LOOKUP_RCU) {
2613 if (unlikely(unlazy_walk(nd, path->dentry))) {
2614 error = -ECHILD;
2615 goto out;
2616 }
2617 }
2618 BUG_ON(inode != path->dentry->d_inode);
2619 return 1;
2620 }
2621
2622 if ((nd->flags & LOOKUP_RCU) || nd->path.mnt != path->mnt) {
2623 path_to_nameidata(path, nd);
2624 } else {
2625 save_parent.dentry = nd->path.dentry;
2626 save_parent.mnt = mntget(path->mnt);
2627 nd->path.dentry = path->dentry;
2628
2629 }
2630 nd->inode = inode;
2631 /* Why this, you ask? _Now_ we might have grown LOOKUP_JUMPED... */
2632 error = complete_walk(nd);
2633 if (error) {
2634 path_put(&save_parent);
2635 return error;
2636 }
2637 error = -EISDIR;
2638 if ((open_flag & O_CREAT) && S_ISDIR(nd->inode->i_mode))
2639 goto out;
2640 error = -ENOTDIR;
2641 if ((nd->flags & LOOKUP_DIRECTORY) && !nd->inode->i_op->lookup)
2642 goto out;
2643 audit_inode(pathname, nd->path.dentry);
2644 finish_open:
2645 if (!S_ISREG(nd->inode->i_mode))
2646 will_truncate = false;
2647
2648 if (will_truncate) {
2649 error = mnt_want_write(nd->path.mnt);
2650 if (error)
2651 goto out;
2652 want_write = true;
2653 }
2654 finish_open_created:
2655 error = may_open(&nd->path, acc_mode, open_flag);
2656 if (error)
2657 goto out;
2658 file->f_path.mnt = nd->path.mnt;
2659 error = finish_open(file, nd->path.dentry, NULL, opened);
2660 if (error) {
2661 if (error == -EOPENSTALE)
2662 goto stale_open;
2663 goto out;
2664 }
2665 opened:
2666 error = open_check_o_direct(file);
2667 if (error)
2668 goto exit_fput;
2669 error = ima_file_check(file, op->acc_mode);
2670 if (error)
2671 goto exit_fput;
2672
2673 if (will_truncate) {
2674 error = handle_truncate(file);
2675 if (error)
2676 goto exit_fput;
2677 }
2678 out:
2679 if (want_write)
2680 mnt_drop_write(nd->path.mnt);
2681 path_put(&save_parent);
2682 terminate_walk(nd);
2683 return error;
2684
2685 exit_dput:
2686 path_put_conditional(path, nd);
2687 goto out;
2688 exit_fput:
2689 fput(file);
2690 goto out;
2691
2692 stale_open:
2693 /* If no saved parent or already retried then can't retry */
2694 if (!save_parent.dentry || retried)
2695 goto out;
2696
2697 BUG_ON(save_parent.dentry != dir);
2698 path_put(&nd->path);
2699 nd->path = save_parent;
2700 nd->inode = dir->d_inode;
2701 save_parent.mnt = NULL;
2702 save_parent.dentry = NULL;
2703 if (want_write) {
2704 mnt_drop_write(nd->path.mnt);
2705 want_write = false;
2706 }
2707 retried = true;
2708 goto retry_lookup;
2709 }
2710
2711 static struct file *path_openat(int dfd, const char *pathname,
2712 struct nameidata *nd, const struct open_flags *op, int flags)
2713 {
2714 struct file *base = NULL;
2715 struct file *file;
2716 struct path path;
2717 int opened = 0;
2718 int error;
2719
2720 file = get_empty_filp();
2721 if (!file)
2722 return ERR_PTR(-ENFILE);
2723
2724 file->f_flags = op->open_flag;
2725
2726 error = path_init(dfd, pathname, flags | LOOKUP_PARENT, nd, &base);
2727 if (unlikely(error))
2728 goto out;
2729
2730 current->total_link_count = 0;
2731 error = link_path_walk(pathname, nd);
2732 if (unlikely(error))
2733 goto out;
2734
2735 error = do_last(nd, &path, file, op, &opened, pathname);
2736 while (unlikely(error > 0)) { /* trailing symlink */
2737 struct path link = path;
2738 void *cookie;
2739 if (!(nd->flags & LOOKUP_FOLLOW)) {
2740 path_put_conditional(&path, nd);
2741 path_put(&nd->path);
2742 error = -ELOOP;
2743 break;
2744 }
2745 nd->flags |= LOOKUP_PARENT;
2746 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
2747 error = follow_link(&link, nd, &cookie);
2748 if (unlikely(error))
2749 break;
2750 error = do_last(nd, &path, file, op, &opened, pathname);
2751 put_link(nd, &link, cookie);
2752 }
2753 out:
2754 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT))
2755 path_put(&nd->root);
2756 if (base)
2757 fput(base);
2758 if (!(opened & FILE_OPENED)) {
2759 BUG_ON(!error);
2760 put_filp(file);
2761 }
2762 if (unlikely(error)) {
2763 if (error == -EOPENSTALE) {
2764 if (flags & LOOKUP_RCU)
2765 error = -ECHILD;
2766 else
2767 error = -ESTALE;
2768 }
2769 file = ERR_PTR(error);
2770 }
2771 return file;
2772 }
2773
2774 struct file *do_filp_open(int dfd, const char *pathname,
2775 const struct open_flags *op, int flags)
2776 {
2777 struct nameidata nd;
2778 struct file *filp;
2779
2780 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_RCU);
2781 if (unlikely(filp == ERR_PTR(-ECHILD)))
2782 filp = path_openat(dfd, pathname, &nd, op, flags);
2783 if (unlikely(filp == ERR_PTR(-ESTALE)))
2784 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_REVAL);
2785 return filp;
2786 }
2787
2788 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
2789 const char *name, const struct open_flags *op, int flags)
2790 {
2791 struct nameidata nd;
2792 struct file *file;
2793
2794 nd.root.mnt = mnt;
2795 nd.root.dentry = dentry;
2796
2797 flags |= LOOKUP_ROOT;
2798
2799 if (dentry->d_inode->i_op->follow_link && op->intent & LOOKUP_OPEN)
2800 return ERR_PTR(-ELOOP);
2801
2802 file = path_openat(-1, name, &nd, op, flags | LOOKUP_RCU);
2803 if (unlikely(file == ERR_PTR(-ECHILD)))
2804 file = path_openat(-1, name, &nd, op, flags);
2805 if (unlikely(file == ERR_PTR(-ESTALE)))
2806 file = path_openat(-1, name, &nd, op, flags | LOOKUP_REVAL);
2807 return file;
2808 }
2809
2810 struct dentry *kern_path_create(int dfd, const char *pathname, struct path *path, int is_dir)
2811 {
2812 struct dentry *dentry = ERR_PTR(-EEXIST);
2813 struct nameidata nd;
2814 int error = do_path_lookup(dfd, pathname, LOOKUP_PARENT, &nd);
2815 if (error)
2816 return ERR_PTR(error);
2817
2818 /*
2819 * Yucky last component or no last component at all?
2820 * (foo/., foo/.., /////)
2821 */
2822 if (nd.last_type != LAST_NORM)
2823 goto out;
2824 nd.flags &= ~LOOKUP_PARENT;
2825 nd.flags |= LOOKUP_CREATE | LOOKUP_EXCL;
2826
2827 /*
2828 * Do the final lookup.
2829 */
2830 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2831 dentry = lookup_hash(&nd);
2832 if (IS_ERR(dentry))
2833 goto fail;
2834
2835 if (dentry->d_inode)
2836 goto eexist;
2837 /*
2838 * Special case - lookup gave negative, but... we had foo/bar/
2839 * From the vfs_mknod() POV we just have a negative dentry -
2840 * all is fine. Let's be bastards - you had / on the end, you've
2841 * been asking for (non-existent) directory. -ENOENT for you.
2842 */
2843 if (unlikely(!is_dir && nd.last.name[nd.last.len])) {
2844 dput(dentry);
2845 dentry = ERR_PTR(-ENOENT);
2846 goto fail;
2847 }
2848 *path = nd.path;
2849 return dentry;
2850 eexist:
2851 dput(dentry);
2852 dentry = ERR_PTR(-EEXIST);
2853 fail:
2854 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2855 out:
2856 path_put(&nd.path);
2857 return dentry;
2858 }
2859 EXPORT_SYMBOL(kern_path_create);
2860
2861 struct dentry *user_path_create(int dfd, const char __user *pathname, struct path *path, int is_dir)
2862 {
2863 char *tmp = getname(pathname);
2864 struct dentry *res;
2865 if (IS_ERR(tmp))
2866 return ERR_CAST(tmp);
2867 res = kern_path_create(dfd, tmp, path, is_dir);
2868 putname(tmp);
2869 return res;
2870 }
2871 EXPORT_SYMBOL(user_path_create);
2872
2873 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2874 {
2875 int error = may_create(dir, dentry);
2876
2877 if (error)
2878 return error;
2879
2880 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
2881 return -EPERM;
2882
2883 if (!dir->i_op->mknod)
2884 return -EPERM;
2885
2886 error = devcgroup_inode_mknod(mode, dev);
2887 if (error)
2888 return error;
2889
2890 error = security_inode_mknod(dir, dentry, mode, dev);
2891 if (error)
2892 return error;
2893
2894 error = dir->i_op->mknod(dir, dentry, mode, dev);
2895 if (!error)
2896 fsnotify_create(dir, dentry);
2897 return error;
2898 }
2899
2900 static int may_mknod(umode_t mode)
2901 {
2902 switch (mode & S_IFMT) {
2903 case S_IFREG:
2904 case S_IFCHR:
2905 case S_IFBLK:
2906 case S_IFIFO:
2907 case S_IFSOCK:
2908 case 0: /* zero mode translates to S_IFREG */
2909 return 0;
2910 case S_IFDIR:
2911 return -EPERM;
2912 default:
2913 return -EINVAL;
2914 }
2915 }
2916
2917 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
2918 unsigned, dev)
2919 {
2920 struct dentry *dentry;
2921 struct path path;
2922 int error;
2923
2924 if (S_ISDIR(mode))
2925 return -EPERM;
2926
2927 dentry = user_path_create(dfd, filename, &path, 0);
2928 if (IS_ERR(dentry))
2929 return PTR_ERR(dentry);
2930
2931 if (!IS_POSIXACL(path.dentry->d_inode))
2932 mode &= ~current_umask();
2933 error = may_mknod(mode);
2934 if (error)
2935 goto out_dput;
2936 error = mnt_want_write(path.mnt);
2937 if (error)
2938 goto out_dput;
2939 error = security_path_mknod(&path, dentry, mode, dev);
2940 if (error)
2941 goto out_drop_write;
2942 switch (mode & S_IFMT) {
2943 case 0: case S_IFREG:
2944 error = vfs_create(path.dentry->d_inode,dentry,mode,true);
2945 break;
2946 case S_IFCHR: case S_IFBLK:
2947 error = vfs_mknod(path.dentry->d_inode,dentry,mode,
2948 new_decode_dev(dev));
2949 break;
2950 case S_IFIFO: case S_IFSOCK:
2951 error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
2952 break;
2953 }
2954 out_drop_write:
2955 mnt_drop_write(path.mnt);
2956 out_dput:
2957 dput(dentry);
2958 mutex_unlock(&path.dentry->d_inode->i_mutex);
2959 path_put(&path);
2960
2961 return error;
2962 }
2963
2964 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
2965 {
2966 return sys_mknodat(AT_FDCWD, filename, mode, dev);
2967 }
2968
2969 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2970 {
2971 int error = may_create(dir, dentry);
2972 unsigned max_links = dir->i_sb->s_max_links;
2973
2974 if (error)
2975 return error;
2976
2977 if (!dir->i_op->mkdir)
2978 return -EPERM;
2979
2980 mode &= (S_IRWXUGO|S_ISVTX);
2981 error = security_inode_mkdir(dir, dentry, mode);
2982 if (error)
2983 return error;
2984
2985 if (max_links && dir->i_nlink >= max_links)
2986 return -EMLINK;
2987
2988 error = dir->i_op->mkdir(dir, dentry, mode);
2989 if (!error)
2990 fsnotify_mkdir(dir, dentry);
2991 return error;
2992 }
2993
2994 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
2995 {
2996 struct dentry *dentry;
2997 struct path path;
2998 int error;
2999
3000 dentry = user_path_create(dfd, pathname, &path, 1);
3001 if (IS_ERR(dentry))
3002 return PTR_ERR(dentry);
3003
3004 if (!IS_POSIXACL(path.dentry->d_inode))
3005 mode &= ~current_umask();
3006 error = mnt_want_write(path.mnt);
3007 if (error)
3008 goto out_dput;
3009 error = security_path_mkdir(&path, dentry, mode);
3010 if (error)
3011 goto out_drop_write;
3012 error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
3013 out_drop_write:
3014 mnt_drop_write(path.mnt);
3015 out_dput:
3016 dput(dentry);
3017 mutex_unlock(&path.dentry->d_inode->i_mutex);
3018 path_put(&path);
3019 return error;
3020 }
3021
3022 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3023 {
3024 return sys_mkdirat(AT_FDCWD, pathname, mode);
3025 }
3026
3027 /*
3028 * The dentry_unhash() helper will try to drop the dentry early: we
3029 * should have a usage count of 1 if we're the only user of this
3030 * dentry, and if that is true (possibly after pruning the dcache),
3031 * then we drop the dentry now.
3032 *
3033 * A low-level filesystem can, if it choses, legally
3034 * do a
3035 *
3036 * if (!d_unhashed(dentry))
3037 * return -EBUSY;
3038 *
3039 * if it cannot handle the case of removing a directory
3040 * that is still in use by something else..
3041 */
3042 void dentry_unhash(struct dentry *dentry)
3043 {
3044 shrink_dcache_parent(dentry);
3045 spin_lock(&dentry->d_lock);
3046 if (dentry->d_count == 1)
3047 __d_drop(dentry);
3048 spin_unlock(&dentry->d_lock);
3049 }
3050
3051 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
3052 {
3053 int error = may_delete(dir, dentry, 1);
3054
3055 if (error)
3056 return error;
3057
3058 if (!dir->i_op->rmdir)
3059 return -EPERM;
3060
3061 dget(dentry);
3062 mutex_lock(&dentry->d_inode->i_mutex);
3063
3064 error = -EBUSY;
3065 if (d_mountpoint(dentry))
3066 goto out;
3067
3068 error = security_inode_rmdir(dir, dentry);
3069 if (error)
3070 goto out;
3071
3072 shrink_dcache_parent(dentry);
3073 error = dir->i_op->rmdir(dir, dentry);
3074 if (error)
3075 goto out;
3076
3077 dentry->d_inode->i_flags |= S_DEAD;
3078 dont_mount(dentry);
3079
3080 out:
3081 mutex_unlock(&dentry->d_inode->i_mutex);
3082 dput(dentry);
3083 if (!error)
3084 d_delete(dentry);
3085 return error;
3086 }
3087
3088 static long do_rmdir(int dfd, const char __user *pathname)
3089 {
3090 int error = 0;
3091 char * name;
3092 struct dentry *dentry;
3093 struct nameidata nd;
3094
3095 error = user_path_parent(dfd, pathname, &nd, &name);
3096 if (error)
3097 return error;
3098
3099 switch(nd.last_type) {
3100 case LAST_DOTDOT:
3101 error = -ENOTEMPTY;
3102 goto exit1;
3103 case LAST_DOT:
3104 error = -EINVAL;
3105 goto exit1;
3106 case LAST_ROOT:
3107 error = -EBUSY;
3108 goto exit1;
3109 }
3110
3111 nd.flags &= ~LOOKUP_PARENT;
3112
3113 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3114 dentry = lookup_hash(&nd);
3115 error = PTR_ERR(dentry);
3116 if (IS_ERR(dentry))
3117 goto exit2;
3118 if (!dentry->d_inode) {
3119 error = -ENOENT;
3120 goto exit3;
3121 }
3122 error = mnt_want_write(nd.path.mnt);
3123 if (error)
3124 goto exit3;
3125 error = security_path_rmdir(&nd.path, dentry);
3126 if (error)
3127 goto exit4;
3128 error = vfs_rmdir(nd.path.dentry->d_inode, dentry);
3129 exit4:
3130 mnt_drop_write(nd.path.mnt);
3131 exit3:
3132 dput(dentry);
3133 exit2:
3134 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3135 exit1:
3136 path_put(&nd.path);
3137 putname(name);
3138 return error;
3139 }
3140
3141 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3142 {
3143 return do_rmdir(AT_FDCWD, pathname);
3144 }
3145
3146 int vfs_unlink(struct inode *dir, struct dentry *dentry)
3147 {
3148 int error = may_delete(dir, dentry, 0);
3149
3150 if (error)
3151 return error;
3152
3153 if (!dir->i_op->unlink)
3154 return -EPERM;
3155
3156 mutex_lock(&dentry->d_inode->i_mutex);
3157 if (d_mountpoint(dentry))
3158 error = -EBUSY;
3159 else {
3160 error = security_inode_unlink(dir, dentry);
3161 if (!error) {
3162 error = dir->i_op->unlink(dir, dentry);
3163 if (!error)
3164 dont_mount(dentry);
3165 }
3166 }
3167 mutex_unlock(&dentry->d_inode->i_mutex);
3168
3169 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
3170 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
3171 fsnotify_link_count(dentry->d_inode);
3172 d_delete(dentry);
3173 }
3174
3175 return error;
3176 }
3177
3178 /*
3179 * Make sure that the actual truncation of the file will occur outside its
3180 * directory's i_mutex. Truncate can take a long time if there is a lot of
3181 * writeout happening, and we don't want to prevent access to the directory
3182 * while waiting on the I/O.
3183 */
3184 static long do_unlinkat(int dfd, const char __user *pathname)
3185 {
3186 int error;
3187 char *name;
3188 struct dentry *dentry;
3189 struct nameidata nd;
3190 struct inode *inode = NULL;
3191
3192 error = user_path_parent(dfd, pathname, &nd, &name);
3193 if (error)
3194 return error;
3195
3196 error = -EISDIR;
3197 if (nd.last_type != LAST_NORM)
3198 goto exit1;
3199
3200 nd.flags &= ~LOOKUP_PARENT;
3201
3202 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3203 dentry = lookup_hash(&nd);
3204 error = PTR_ERR(dentry);
3205 if (!IS_ERR(dentry)) {
3206 /* Why not before? Because we want correct error value */
3207 if (nd.last.name[nd.last.len])
3208 goto slashes;
3209 inode = dentry->d_inode;
3210 if (!inode)
3211 goto slashes;
3212 ihold(inode);
3213 error = mnt_want_write(nd.path.mnt);
3214 if (error)
3215 goto exit2;
3216 error = security_path_unlink(&nd.path, dentry);
3217 if (error)
3218 goto exit3;
3219 error = vfs_unlink(nd.path.dentry->d_inode, dentry);
3220 exit3:
3221 mnt_drop_write(nd.path.mnt);
3222 exit2:
3223 dput(dentry);
3224 }
3225 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3226 if (inode)
3227 iput(inode); /* truncate the inode here */
3228 exit1:
3229 path_put(&nd.path);
3230 putname(name);
3231 return error;
3232
3233 slashes:
3234 error = !dentry->d_inode ? -ENOENT :
3235 S_ISDIR(dentry->d_inode->i_mode) ? -EISDIR : -ENOTDIR;
3236 goto exit2;
3237 }
3238
3239 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
3240 {
3241 if ((flag & ~AT_REMOVEDIR) != 0)
3242 return -EINVAL;
3243
3244 if (flag & AT_REMOVEDIR)
3245 return do_rmdir(dfd, pathname);
3246
3247 return do_unlinkat(dfd, pathname);
3248 }
3249
3250 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
3251 {
3252 return do_unlinkat(AT_FDCWD, pathname);
3253 }
3254
3255 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
3256 {
3257 int error = may_create(dir, dentry);
3258
3259 if (error)
3260 return error;
3261
3262 if (!dir->i_op->symlink)
3263 return -EPERM;
3264
3265 error = security_inode_symlink(dir, dentry, oldname);
3266 if (error)
3267 return error;
3268
3269 error = dir->i_op->symlink(dir, dentry, oldname);
3270 if (!error)
3271 fsnotify_create(dir, dentry);
3272 return error;
3273 }
3274
3275 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
3276 int, newdfd, const char __user *, newname)
3277 {
3278 int error;
3279 char *from;
3280 struct dentry *dentry;
3281 struct path path;
3282
3283 from = getname(oldname);
3284 if (IS_ERR(from))
3285 return PTR_ERR(from);
3286
3287 dentry = user_path_create(newdfd, newname, &path, 0);
3288 error = PTR_ERR(dentry);
3289 if (IS_ERR(dentry))
3290 goto out_putname;
3291
3292 error = mnt_want_write(path.mnt);
3293 if (error)
3294 goto out_dput;
3295 error = security_path_symlink(&path, dentry, from);
3296 if (error)
3297 goto out_drop_write;
3298 error = vfs_symlink(path.dentry->d_inode, dentry, from);
3299 out_drop_write:
3300 mnt_drop_write(path.mnt);
3301 out_dput:
3302 dput(dentry);
3303 mutex_unlock(&path.dentry->d_inode->i_mutex);
3304 path_put(&path);
3305 out_putname:
3306 putname(from);
3307 return error;
3308 }
3309
3310 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
3311 {
3312 return sys_symlinkat(oldname, AT_FDCWD, newname);
3313 }
3314
3315 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
3316 {
3317 struct inode *inode = old_dentry->d_inode;
3318 unsigned max_links = dir->i_sb->s_max_links;
3319 int error;
3320
3321 if (!inode)
3322 return -ENOENT;
3323
3324 error = may_create(dir, new_dentry);
3325 if (error)
3326 return error;
3327
3328 if (dir->i_sb != inode->i_sb)
3329 return -EXDEV;
3330
3331 /*
3332 * A link to an append-only or immutable file cannot be created.
3333 */
3334 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3335 return -EPERM;
3336 if (!dir->i_op->link)
3337 return -EPERM;
3338 if (S_ISDIR(inode->i_mode))
3339 return -EPERM;
3340
3341 error = security_inode_link(old_dentry, dir, new_dentry);
3342 if (error)
3343 return error;
3344
3345 mutex_lock(&inode->i_mutex);
3346 /* Make sure we don't allow creating hardlink to an unlinked file */
3347 if (inode->i_nlink == 0)
3348 error = -ENOENT;
3349 else if (max_links && inode->i_nlink >= max_links)
3350 error = -EMLINK;
3351 else
3352 error = dir->i_op->link(old_dentry, dir, new_dentry);
3353 mutex_unlock(&inode->i_mutex);
3354 if (!error)
3355 fsnotify_link(dir, inode, new_dentry);
3356 return error;
3357 }
3358
3359 /*
3360 * Hardlinks are often used in delicate situations. We avoid
3361 * security-related surprises by not following symlinks on the
3362 * newname. --KAB
3363 *
3364 * We don't follow them on the oldname either to be compatible
3365 * with linux 2.0, and to avoid hard-linking to directories
3366 * and other special files. --ADM
3367 */
3368 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
3369 int, newdfd, const char __user *, newname, int, flags)
3370 {
3371 struct dentry *new_dentry;
3372 struct path old_path, new_path;
3373 int how = 0;
3374 int error;
3375
3376 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
3377 return -EINVAL;
3378 /*
3379 * To use null names we require CAP_DAC_READ_SEARCH
3380 * This ensures that not everyone will be able to create
3381 * handlink using the passed filedescriptor.
3382 */
3383 if (flags & AT_EMPTY_PATH) {
3384 if (!capable(CAP_DAC_READ_SEARCH))
3385 return -ENOENT;
3386 how = LOOKUP_EMPTY;
3387 }
3388
3389 if (flags & AT_SYMLINK_FOLLOW)
3390 how |= LOOKUP_FOLLOW;
3391
3392 error = user_path_at(olddfd, oldname, how, &old_path);
3393 if (error)
3394 return error;
3395
3396 new_dentry = user_path_create(newdfd, newname, &new_path, 0);
3397 error = PTR_ERR(new_dentry);
3398 if (IS_ERR(new_dentry))
3399 goto out;
3400
3401 error = -EXDEV;
3402 if (old_path.mnt != new_path.mnt)
3403 goto out_dput;
3404 error = mnt_want_write(new_path.mnt);
3405 if (error)
3406 goto out_dput;
3407 error = security_path_link(old_path.dentry, &new_path, new_dentry);
3408 if (error)
3409 goto out_drop_write;
3410 error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry);
3411 out_drop_write:
3412 mnt_drop_write(new_path.mnt);
3413 out_dput:
3414 dput(new_dentry);
3415 mutex_unlock(&new_path.dentry->d_inode->i_mutex);
3416 path_put(&new_path);
3417 out:
3418 path_put(&old_path);
3419
3420 return error;
3421 }
3422
3423 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
3424 {
3425 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
3426 }
3427
3428 /*
3429 * The worst of all namespace operations - renaming directory. "Perverted"
3430 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
3431 * Problems:
3432 * a) we can get into loop creation. Check is done in is_subdir().
3433 * b) race potential - two innocent renames can create a loop together.
3434 * That's where 4.4 screws up. Current fix: serialization on
3435 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
3436 * story.
3437 * c) we have to lock _three_ objects - parents and victim (if it exists).
3438 * And that - after we got ->i_mutex on parents (until then we don't know
3439 * whether the target exists). Solution: try to be smart with locking
3440 * order for inodes. We rely on the fact that tree topology may change
3441 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
3442 * move will be locked. Thus we can rank directories by the tree
3443 * (ancestors first) and rank all non-directories after them.
3444 * That works since everybody except rename does "lock parent, lookup,
3445 * lock child" and rename is under ->s_vfs_rename_mutex.
3446 * HOWEVER, it relies on the assumption that any object with ->lookup()
3447 * has no more than 1 dentry. If "hybrid" objects will ever appear,
3448 * we'd better make sure that there's no link(2) for them.
3449 * d) conversion from fhandle to dentry may come in the wrong moment - when
3450 * we are removing the target. Solution: we will have to grab ->i_mutex
3451 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
3452 * ->i_mutex on parents, which works but leads to some truly excessive
3453 * locking].
3454 */
3455 static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry,
3456 struct inode *new_dir, struct dentry *new_dentry)
3457 {
3458 int error = 0;
3459 struct inode *target = new_dentry->d_inode;
3460 unsigned max_links = new_dir->i_sb->s_max_links;
3461
3462 /*
3463 * If we are going to change the parent - check write permissions,
3464 * we'll need to flip '..'.
3465 */
3466 if (new_dir != old_dir) {
3467 error = inode_permission(old_dentry->d_inode, MAY_WRITE);
3468 if (error)
3469 return error;
3470 }
3471
3472 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
3473 if (error)
3474 return error;
3475
3476 dget(new_dentry);
3477 if (target)
3478 mutex_lock(&target->i_mutex);
3479
3480 error = -EBUSY;
3481 if (d_mountpoint(old_dentry) || d_mountpoint(new_dentry))
3482 goto out;
3483
3484 error = -EMLINK;
3485 if (max_links && !target && new_dir != old_dir &&
3486 new_dir->i_nlink >= max_links)
3487 goto out;
3488
3489 if (target)
3490 shrink_dcache_parent(new_dentry);
3491 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
3492 if (error)
3493 goto out;
3494
3495 if (target) {
3496 target->i_flags |= S_DEAD;
3497 dont_mount(new_dentry);
3498 }
3499 out:
3500 if (target)
3501 mutex_unlock(&target->i_mutex);
3502 dput(new_dentry);
3503 if (!error)
3504 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
3505 d_move(old_dentry,new_dentry);
3506 return error;
3507 }
3508
3509 static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry,
3510 struct inode *new_dir, struct dentry *new_dentry)
3511 {
3512 struct inode *target = new_dentry->d_inode;
3513 int error;
3514
3515 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
3516 if (error)
3517 return error;
3518
3519 dget(new_dentry);
3520 if (target)
3521 mutex_lock(&target->i_mutex);
3522
3523 error = -EBUSY;
3524 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
3525 goto out;
3526
3527 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
3528 if (error)
3529 goto out;
3530
3531 if (target)
3532 dont_mount(new_dentry);
3533 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
3534 d_move(old_dentry, new_dentry);
3535 out:
3536 if (target)
3537 mutex_unlock(&target->i_mutex);
3538 dput(new_dentry);
3539 return error;
3540 }
3541
3542 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
3543 struct inode *new_dir, struct dentry *new_dentry)
3544 {
3545 int error;
3546 int is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
3547 const unsigned char *old_name;
3548
3549 if (old_dentry->d_inode == new_dentry->d_inode)
3550 return 0;
3551
3552 error = may_delete(old_dir, old_dentry, is_dir);
3553 if (error)
3554 return error;
3555
3556 if (!new_dentry->d_inode)
3557 error = may_create(new_dir, new_dentry);
3558 else
3559 error = may_delete(new_dir, new_dentry, is_dir);
3560 if (error)
3561 return error;
3562
3563 if (!old_dir->i_op->rename)
3564 return -EPERM;
3565
3566 old_name = fsnotify_oldname_init(old_dentry->d_name.name);
3567
3568 if (is_dir)
3569 error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry);
3570 else
3571 error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry);
3572 if (!error)
3573 fsnotify_move(old_dir, new_dir, old_name, is_dir,
3574 new_dentry->d_inode, old_dentry);
3575 fsnotify_oldname_free(old_name);
3576
3577 return error;
3578 }
3579
3580 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
3581 int, newdfd, const char __user *, newname)
3582 {
3583 struct dentry *old_dir, *new_dir;
3584 struct dentry *old_dentry, *new_dentry;
3585 struct dentry *trap;
3586 struct nameidata oldnd, newnd;
3587 char *from;
3588 char *to;
3589 int error;
3590
3591 error = user_path_parent(olddfd, oldname, &oldnd, &from);
3592 if (error)
3593 goto exit;
3594
3595 error = user_path_parent(newdfd, newname, &newnd, &to);
3596 if (error)
3597 goto exit1;
3598
3599 error = -EXDEV;
3600 if (oldnd.path.mnt != newnd.path.mnt)
3601 goto exit2;
3602
3603 old_dir = oldnd.path.dentry;
3604 error = -EBUSY;
3605 if (oldnd.last_type != LAST_NORM)
3606 goto exit2;
3607
3608 new_dir = newnd.path.dentry;
3609 if (newnd.last_type != LAST_NORM)
3610 goto exit2;
3611
3612 oldnd.flags &= ~LOOKUP_PARENT;
3613 newnd.flags &= ~LOOKUP_PARENT;
3614 newnd.flags |= LOOKUP_RENAME_TARGET;
3615
3616 trap = lock_rename(new_dir, old_dir);
3617
3618 old_dentry = lookup_hash(&oldnd);
3619 error = PTR_ERR(old_dentry);
3620 if (IS_ERR(old_dentry))
3621 goto exit3;
3622 /* source must exist */
3623 error = -ENOENT;
3624 if (!old_dentry->d_inode)
3625 goto exit4;
3626 /* unless the source is a directory trailing slashes give -ENOTDIR */
3627 if (!S_ISDIR(old_dentry->d_inode->i_mode)) {
3628 error = -ENOTDIR;
3629 if (oldnd.last.name[oldnd.last.len])
3630 goto exit4;
3631 if (newnd.last.name[newnd.last.len])
3632 goto exit4;
3633 }
3634 /* source should not be ancestor of target */
3635 error = -EINVAL;
3636 if (old_dentry == trap)
3637 goto exit4;
3638 new_dentry = lookup_hash(&newnd);
3639 error = PTR_ERR(new_dentry);
3640 if (IS_ERR(new_dentry))
3641 goto exit4;
3642 /* target should not be an ancestor of source */
3643 error = -ENOTEMPTY;
3644 if (new_dentry == trap)
3645 goto exit5;
3646
3647 error = mnt_want_write(oldnd.path.mnt);
3648 if (error)
3649 goto exit5;
3650 error = security_path_rename(&oldnd.path, old_dentry,
3651 &newnd.path, new_dentry);
3652 if (error)
3653 goto exit6;
3654 error = vfs_rename(old_dir->d_inode, old_dentry,
3655 new_dir->d_inode, new_dentry);
3656 exit6:
3657 mnt_drop_write(oldnd.path.mnt);
3658 exit5:
3659 dput(new_dentry);
3660 exit4:
3661 dput(old_dentry);
3662 exit3:
3663 unlock_rename(new_dir, old_dir);
3664 exit2:
3665 path_put(&newnd.path);
3666 putname(to);
3667 exit1:
3668 path_put(&oldnd.path);
3669 putname(from);
3670 exit:
3671 return error;
3672 }
3673
3674 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
3675 {
3676 return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname);
3677 }
3678
3679 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link)
3680 {
3681 int len;
3682
3683 len = PTR_ERR(link);
3684 if (IS_ERR(link))
3685 goto out;
3686
3687 len = strlen(link);
3688 if (len > (unsigned) buflen)
3689 len = buflen;
3690 if (copy_to_user(buffer, link, len))
3691 len = -EFAULT;
3692 out:
3693 return len;
3694 }
3695
3696 /*
3697 * A helper for ->readlink(). This should be used *ONLY* for symlinks that
3698 * have ->follow_link() touching nd only in nd_set_link(). Using (or not
3699 * using) it for any given inode is up to filesystem.
3700 */
3701 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
3702 {
3703 struct nameidata nd;
3704 void *cookie;
3705 int res;
3706
3707 nd.depth = 0;
3708 cookie = dentry->d_inode->i_op->follow_link(dentry, &nd);
3709 if (IS_ERR(cookie))
3710 return PTR_ERR(cookie);
3711
3712 res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd));
3713 if (dentry->d_inode->i_op->put_link)
3714 dentry->d_inode->i_op->put_link(dentry, &nd, cookie);
3715 return res;
3716 }
3717
3718 int vfs_follow_link(struct nameidata *nd, const char *link)
3719 {
3720 return __vfs_follow_link(nd, link);
3721 }
3722
3723 /* get the link contents into pagecache */
3724 static char *page_getlink(struct dentry * dentry, struct page **ppage)
3725 {
3726 char *kaddr;
3727 struct page *page;
3728 struct address_space *mapping = dentry->d_inode->i_mapping;
3729 page = read_mapping_page(mapping, 0, NULL);
3730 if (IS_ERR(page))
3731 return (char*)page;
3732 *ppage = page;
3733 kaddr = kmap(page);
3734 nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
3735 return kaddr;
3736 }
3737
3738 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
3739 {
3740 struct page *page = NULL;
3741 char *s = page_getlink(dentry, &page);
3742 int res = vfs_readlink(dentry,buffer,buflen,s);
3743 if (page) {
3744 kunmap(page);
3745 page_cache_release(page);
3746 }
3747 return res;
3748 }
3749
3750 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd)
3751 {
3752 struct page *page = NULL;
3753 nd_set_link(nd, page_getlink(dentry, &page));
3754 return page;
3755 }
3756
3757 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
3758 {
3759 struct page *page = cookie;
3760
3761 if (page) {
3762 kunmap(page);
3763 page_cache_release(page);
3764 }
3765 }
3766
3767 /*
3768 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
3769 */
3770 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
3771 {
3772 struct address_space *mapping = inode->i_mapping;
3773 struct page *page;
3774 void *fsdata;
3775 int err;
3776 char *kaddr;
3777 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
3778 if (nofs)
3779 flags |= AOP_FLAG_NOFS;
3780
3781 retry:
3782 err = pagecache_write_begin(NULL, mapping, 0, len-1,
3783 flags, &page, &fsdata);
3784 if (err)
3785 goto fail;
3786
3787 kaddr = kmap_atomic(page);
3788 memcpy(kaddr, symname, len-1);
3789 kunmap_atomic(kaddr);
3790
3791 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
3792 page, fsdata);
3793 if (err < 0)
3794 goto fail;
3795 if (err < len-1)
3796 goto retry;
3797
3798 mark_inode_dirty(inode);
3799 return 0;
3800 fail:
3801 return err;
3802 }
3803
3804 int page_symlink(struct inode *inode, const char *symname, int len)
3805 {
3806 return __page_symlink(inode, symname, len,
3807 !(mapping_gfp_mask(inode->i_mapping) & __GFP_FS));
3808 }
3809
3810 const struct inode_operations page_symlink_inode_operations = {
3811 .readlink = generic_readlink,
3812 .follow_link = page_follow_link_light,
3813 .put_link = page_put_link,
3814 };
3815
3816 EXPORT_SYMBOL(user_path_at);
3817 EXPORT_SYMBOL(follow_down_one);
3818 EXPORT_SYMBOL(follow_down);
3819 EXPORT_SYMBOL(follow_up);
3820 EXPORT_SYMBOL(get_write_access); /* binfmt_aout */
3821 EXPORT_SYMBOL(getname);
3822 EXPORT_SYMBOL(lock_rename);
3823 EXPORT_SYMBOL(lookup_one_len);
3824 EXPORT_SYMBOL(page_follow_link_light);
3825 EXPORT_SYMBOL(page_put_link);
3826 EXPORT_SYMBOL(page_readlink);
3827 EXPORT_SYMBOL(__page_symlink);
3828 EXPORT_SYMBOL(page_symlink);
3829 EXPORT_SYMBOL(page_symlink_inode_operations);
3830 EXPORT_SYMBOL(kern_path);
3831 EXPORT_SYMBOL(vfs_path_lookup);
3832 EXPORT_SYMBOL(inode_permission);
3833 EXPORT_SYMBOL(unlock_rename);
3834 EXPORT_SYMBOL(vfs_create);
3835 EXPORT_SYMBOL(vfs_follow_link);
3836 EXPORT_SYMBOL(vfs_link);
3837 EXPORT_SYMBOL(vfs_mkdir);
3838 EXPORT_SYMBOL(vfs_mknod);
3839 EXPORT_SYMBOL(generic_permission);
3840 EXPORT_SYMBOL(vfs_readlink);
3841 EXPORT_SYMBOL(vfs_rename);
3842 EXPORT_SYMBOL(vfs_rmdir);
3843 EXPORT_SYMBOL(vfs_symlink);
3844 EXPORT_SYMBOL(vfs_unlink);
3845 EXPORT_SYMBOL(dentry_unhash);
3846 EXPORT_SYMBOL(generic_readlink);
This page took 0.109948 seconds and 5 git commands to generate.