New kind of open files - "location only".
[deliverable/linux.git] / fs / namei.c
1 /*
2 * linux/fs/namei.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * Some corrections by tytso.
9 */
10
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12 * lookup logic.
13 */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15 */
16
17 #include <linux/init.h>
18 #include <linux/module.h>
19 #include <linux/slab.h>
20 #include <linux/fs.h>
21 #include <linux/namei.h>
22 #include <linux/pagemap.h>
23 #include <linux/fsnotify.h>
24 #include <linux/personality.h>
25 #include <linux/security.h>
26 #include <linux/ima.h>
27 #include <linux/syscalls.h>
28 #include <linux/mount.h>
29 #include <linux/audit.h>
30 #include <linux/capability.h>
31 #include <linux/file.h>
32 #include <linux/fcntl.h>
33 #include <linux/device_cgroup.h>
34 #include <linux/fs_struct.h>
35 #include <asm/uaccess.h>
36
37 #include "internal.h"
38
39 /* [Feb-1997 T. Schoebel-Theuer]
40 * Fundamental changes in the pathname lookup mechanisms (namei)
41 * were necessary because of omirr. The reason is that omirr needs
42 * to know the _real_ pathname, not the user-supplied one, in case
43 * of symlinks (and also when transname replacements occur).
44 *
45 * The new code replaces the old recursive symlink resolution with
46 * an iterative one (in case of non-nested symlink chains). It does
47 * this with calls to <fs>_follow_link().
48 * As a side effect, dir_namei(), _namei() and follow_link() are now
49 * replaced with a single function lookup_dentry() that can handle all
50 * the special cases of the former code.
51 *
52 * With the new dcache, the pathname is stored at each inode, at least as
53 * long as the refcount of the inode is positive. As a side effect, the
54 * size of the dcache depends on the inode cache and thus is dynamic.
55 *
56 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
57 * resolution to correspond with current state of the code.
58 *
59 * Note that the symlink resolution is not *completely* iterative.
60 * There is still a significant amount of tail- and mid- recursion in
61 * the algorithm. Also, note that <fs>_readlink() is not used in
62 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
63 * may return different results than <fs>_follow_link(). Many virtual
64 * filesystems (including /proc) exhibit this behavior.
65 */
66
67 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
68 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
69 * and the name already exists in form of a symlink, try to create the new
70 * name indicated by the symlink. The old code always complained that the
71 * name already exists, due to not following the symlink even if its target
72 * is nonexistent. The new semantics affects also mknod() and link() when
73 * the name is a symlink pointing to a non-existant name.
74 *
75 * I don't know which semantics is the right one, since I have no access
76 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
77 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
78 * "old" one. Personally, I think the new semantics is much more logical.
79 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
80 * file does succeed in both HP-UX and SunOs, but not in Solaris
81 * and in the old Linux semantics.
82 */
83
84 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
85 * semantics. See the comments in "open_namei" and "do_link" below.
86 *
87 * [10-Sep-98 Alan Modra] Another symlink change.
88 */
89
90 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
91 * inside the path - always follow.
92 * in the last component in creation/removal/renaming - never follow.
93 * if LOOKUP_FOLLOW passed - follow.
94 * if the pathname has trailing slashes - follow.
95 * otherwise - don't follow.
96 * (applied in that order).
97 *
98 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
99 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
100 * During the 2.4 we need to fix the userland stuff depending on it -
101 * hopefully we will be able to get rid of that wart in 2.5. So far only
102 * XEmacs seems to be relying on it...
103 */
104 /*
105 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
106 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
107 * any extra contention...
108 */
109
110 /* In order to reduce some races, while at the same time doing additional
111 * checking and hopefully speeding things up, we copy filenames to the
112 * kernel data space before using them..
113 *
114 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
115 * PATH_MAX includes the nul terminator --RR.
116 */
117 static int do_getname(const char __user *filename, char *page)
118 {
119 int retval;
120 unsigned long len = PATH_MAX;
121
122 if (!segment_eq(get_fs(), KERNEL_DS)) {
123 if ((unsigned long) filename >= TASK_SIZE)
124 return -EFAULT;
125 if (TASK_SIZE - (unsigned long) filename < PATH_MAX)
126 len = TASK_SIZE - (unsigned long) filename;
127 }
128
129 retval = strncpy_from_user(page, filename, len);
130 if (retval > 0) {
131 if (retval < len)
132 return 0;
133 return -ENAMETOOLONG;
134 } else if (!retval)
135 retval = -ENOENT;
136 return retval;
137 }
138
139 static char *getname_flags(const char __user * filename, int flags)
140 {
141 char *tmp, *result;
142
143 result = ERR_PTR(-ENOMEM);
144 tmp = __getname();
145 if (tmp) {
146 int retval = do_getname(filename, tmp);
147
148 result = tmp;
149 if (retval < 0) {
150 if (retval != -ENOENT || !(flags & LOOKUP_EMPTY)) {
151 __putname(tmp);
152 result = ERR_PTR(retval);
153 }
154 }
155 }
156 audit_getname(result);
157 return result;
158 }
159
160 char *getname(const char __user * filename)
161 {
162 return getname_flags(filename, 0);
163 }
164
165 #ifdef CONFIG_AUDITSYSCALL
166 void putname(const char *name)
167 {
168 if (unlikely(!audit_dummy_context()))
169 audit_putname(name);
170 else
171 __putname(name);
172 }
173 EXPORT_SYMBOL(putname);
174 #endif
175
176 /*
177 * This does basic POSIX ACL permission checking
178 */
179 static int acl_permission_check(struct inode *inode, int mask, unsigned int flags,
180 int (*check_acl)(struct inode *inode, int mask, unsigned int flags))
181 {
182 umode_t mode = inode->i_mode;
183
184 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
185
186 if (current_fsuid() == inode->i_uid)
187 mode >>= 6;
188 else {
189 if (IS_POSIXACL(inode) && (mode & S_IRWXG) && check_acl) {
190 int error = check_acl(inode, mask, flags);
191 if (error != -EAGAIN)
192 return error;
193 }
194
195 if (in_group_p(inode->i_gid))
196 mode >>= 3;
197 }
198
199 /*
200 * If the DACs are ok we don't need any capability check.
201 */
202 if ((mask & ~mode) == 0)
203 return 0;
204 return -EACCES;
205 }
206
207 /**
208 * generic_permission - check for access rights on a Posix-like filesystem
209 * @inode: inode to check access rights for
210 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
211 * @check_acl: optional callback to check for Posix ACLs
212 * @flags: IPERM_FLAG_ flags.
213 *
214 * Used to check for read/write/execute permissions on a file.
215 * We use "fsuid" for this, letting us set arbitrary permissions
216 * for filesystem access without changing the "normal" uids which
217 * are used for other things.
218 *
219 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
220 * request cannot be satisfied (eg. requires blocking or too much complexity).
221 * It would then be called again in ref-walk mode.
222 */
223 int generic_permission(struct inode *inode, int mask, unsigned int flags,
224 int (*check_acl)(struct inode *inode, int mask, unsigned int flags))
225 {
226 int ret;
227
228 /*
229 * Do the basic POSIX ACL permission checks.
230 */
231 ret = acl_permission_check(inode, mask, flags, check_acl);
232 if (ret != -EACCES)
233 return ret;
234
235 /*
236 * Read/write DACs are always overridable.
237 * Executable DACs are overridable if at least one exec bit is set.
238 */
239 if (!(mask & MAY_EXEC) || execute_ok(inode))
240 if (capable(CAP_DAC_OVERRIDE))
241 return 0;
242
243 /*
244 * Searching includes executable on directories, else just read.
245 */
246 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
247 if (mask == MAY_READ || (S_ISDIR(inode->i_mode) && !(mask & MAY_WRITE)))
248 if (capable(CAP_DAC_READ_SEARCH))
249 return 0;
250
251 return -EACCES;
252 }
253
254 /**
255 * inode_permission - check for access rights to a given inode
256 * @inode: inode to check permission on
257 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
258 *
259 * Used to check for read/write/execute permissions on an inode.
260 * We use "fsuid" for this, letting us set arbitrary permissions
261 * for filesystem access without changing the "normal" uids which
262 * are used for other things.
263 */
264 int inode_permission(struct inode *inode, int mask)
265 {
266 int retval;
267
268 if (mask & MAY_WRITE) {
269 umode_t mode = inode->i_mode;
270
271 /*
272 * Nobody gets write access to a read-only fs.
273 */
274 if (IS_RDONLY(inode) &&
275 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
276 return -EROFS;
277
278 /*
279 * Nobody gets write access to an immutable file.
280 */
281 if (IS_IMMUTABLE(inode))
282 return -EACCES;
283 }
284
285 if (inode->i_op->permission)
286 retval = inode->i_op->permission(inode, mask, 0);
287 else
288 retval = generic_permission(inode, mask, 0,
289 inode->i_op->check_acl);
290
291 if (retval)
292 return retval;
293
294 retval = devcgroup_inode_permission(inode, mask);
295 if (retval)
296 return retval;
297
298 return security_inode_permission(inode, mask);
299 }
300
301 /**
302 * file_permission - check for additional access rights to a given file
303 * @file: file to check access rights for
304 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
305 *
306 * Used to check for read/write/execute permissions on an already opened
307 * file.
308 *
309 * Note:
310 * Do not use this function in new code. All access checks should
311 * be done using inode_permission().
312 */
313 int file_permission(struct file *file, int mask)
314 {
315 return inode_permission(file->f_path.dentry->d_inode, mask);
316 }
317
318 /*
319 * get_write_access() gets write permission for a file.
320 * put_write_access() releases this write permission.
321 * This is used for regular files.
322 * We cannot support write (and maybe mmap read-write shared) accesses and
323 * MAP_DENYWRITE mmappings simultaneously. The i_writecount field of an inode
324 * can have the following values:
325 * 0: no writers, no VM_DENYWRITE mappings
326 * < 0: (-i_writecount) vm_area_structs with VM_DENYWRITE set exist
327 * > 0: (i_writecount) users are writing to the file.
328 *
329 * Normally we operate on that counter with atomic_{inc,dec} and it's safe
330 * except for the cases where we don't hold i_writecount yet. Then we need to
331 * use {get,deny}_write_access() - these functions check the sign and refuse
332 * to do the change if sign is wrong. Exclusion between them is provided by
333 * the inode->i_lock spinlock.
334 */
335
336 int get_write_access(struct inode * inode)
337 {
338 spin_lock(&inode->i_lock);
339 if (atomic_read(&inode->i_writecount) < 0) {
340 spin_unlock(&inode->i_lock);
341 return -ETXTBSY;
342 }
343 atomic_inc(&inode->i_writecount);
344 spin_unlock(&inode->i_lock);
345
346 return 0;
347 }
348
349 int deny_write_access(struct file * file)
350 {
351 struct inode *inode = file->f_path.dentry->d_inode;
352
353 spin_lock(&inode->i_lock);
354 if (atomic_read(&inode->i_writecount) > 0) {
355 spin_unlock(&inode->i_lock);
356 return -ETXTBSY;
357 }
358 atomic_dec(&inode->i_writecount);
359 spin_unlock(&inode->i_lock);
360
361 return 0;
362 }
363
364 /**
365 * path_get - get a reference to a path
366 * @path: path to get the reference to
367 *
368 * Given a path increment the reference count to the dentry and the vfsmount.
369 */
370 void path_get(struct path *path)
371 {
372 mntget(path->mnt);
373 dget(path->dentry);
374 }
375 EXPORT_SYMBOL(path_get);
376
377 /**
378 * path_put - put a reference to a path
379 * @path: path to put the reference to
380 *
381 * Given a path decrement the reference count to the dentry and the vfsmount.
382 */
383 void path_put(struct path *path)
384 {
385 dput(path->dentry);
386 mntput(path->mnt);
387 }
388 EXPORT_SYMBOL(path_put);
389
390 /**
391 * nameidata_drop_rcu - drop this nameidata out of rcu-walk
392 * @nd: nameidata pathwalk data to drop
393 * Returns: 0 on success, -ECHILD on failure
394 *
395 * Path walking has 2 modes, rcu-walk and ref-walk (see
396 * Documentation/filesystems/path-lookup.txt). __drop_rcu* functions attempt
397 * to drop out of rcu-walk mode and take normal reference counts on dentries
398 * and vfsmounts to transition to rcu-walk mode. __drop_rcu* functions take
399 * refcounts at the last known good point before rcu-walk got stuck, so
400 * ref-walk may continue from there. If this is not successful (eg. a seqcount
401 * has changed), then failure is returned and path walk restarts from the
402 * beginning in ref-walk mode.
403 *
404 * nameidata_drop_rcu attempts to drop the current nd->path and nd->root into
405 * ref-walk. Must be called from rcu-walk context.
406 */
407 static int nameidata_drop_rcu(struct nameidata *nd)
408 {
409 struct fs_struct *fs = current->fs;
410 struct dentry *dentry = nd->path.dentry;
411 int want_root = 0;
412
413 BUG_ON(!(nd->flags & LOOKUP_RCU));
414 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
415 want_root = 1;
416 spin_lock(&fs->lock);
417 if (nd->root.mnt != fs->root.mnt ||
418 nd->root.dentry != fs->root.dentry)
419 goto err_root;
420 }
421 spin_lock(&dentry->d_lock);
422 if (!__d_rcu_to_refcount(dentry, nd->seq))
423 goto err;
424 BUG_ON(nd->inode != dentry->d_inode);
425 spin_unlock(&dentry->d_lock);
426 if (want_root) {
427 path_get(&nd->root);
428 spin_unlock(&fs->lock);
429 }
430 mntget(nd->path.mnt);
431
432 rcu_read_unlock();
433 br_read_unlock(vfsmount_lock);
434 nd->flags &= ~LOOKUP_RCU;
435 return 0;
436 err:
437 spin_unlock(&dentry->d_lock);
438 err_root:
439 if (want_root)
440 spin_unlock(&fs->lock);
441 return -ECHILD;
442 }
443
444 /* Try to drop out of rcu-walk mode if we were in it, otherwise do nothing. */
445 static inline int nameidata_drop_rcu_maybe(struct nameidata *nd)
446 {
447 if (nd->flags & LOOKUP_RCU)
448 return nameidata_drop_rcu(nd);
449 return 0;
450 }
451
452 /**
453 * nameidata_dentry_drop_rcu - drop nameidata and dentry out of rcu-walk
454 * @nd: nameidata pathwalk data to drop
455 * @dentry: dentry to drop
456 * Returns: 0 on success, -ECHILD on failure
457 *
458 * nameidata_dentry_drop_rcu attempts to drop the current nd->path and nd->root,
459 * and dentry into ref-walk. @dentry must be a path found by a do_lookup call on
460 * @nd. Must be called from rcu-walk context.
461 */
462 static int nameidata_dentry_drop_rcu(struct nameidata *nd, struct dentry *dentry)
463 {
464 struct fs_struct *fs = current->fs;
465 struct dentry *parent = nd->path.dentry;
466 int want_root = 0;
467
468 BUG_ON(!(nd->flags & LOOKUP_RCU));
469 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
470 want_root = 1;
471 spin_lock(&fs->lock);
472 if (nd->root.mnt != fs->root.mnt ||
473 nd->root.dentry != fs->root.dentry)
474 goto err_root;
475 }
476 spin_lock(&parent->d_lock);
477 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
478 if (!__d_rcu_to_refcount(dentry, nd->seq))
479 goto err;
480 /*
481 * If the sequence check on the child dentry passed, then the child has
482 * not been removed from its parent. This means the parent dentry must
483 * be valid and able to take a reference at this point.
484 */
485 BUG_ON(!IS_ROOT(dentry) && dentry->d_parent != parent);
486 BUG_ON(!parent->d_count);
487 parent->d_count++;
488 spin_unlock(&dentry->d_lock);
489 spin_unlock(&parent->d_lock);
490 if (want_root) {
491 path_get(&nd->root);
492 spin_unlock(&fs->lock);
493 }
494 mntget(nd->path.mnt);
495
496 rcu_read_unlock();
497 br_read_unlock(vfsmount_lock);
498 nd->flags &= ~LOOKUP_RCU;
499 return 0;
500 err:
501 spin_unlock(&dentry->d_lock);
502 spin_unlock(&parent->d_lock);
503 err_root:
504 if (want_root)
505 spin_unlock(&fs->lock);
506 return -ECHILD;
507 }
508
509 /* Try to drop out of rcu-walk mode if we were in it, otherwise do nothing. */
510 static inline int nameidata_dentry_drop_rcu_maybe(struct nameidata *nd, struct dentry *dentry)
511 {
512 if (nd->flags & LOOKUP_RCU) {
513 if (unlikely(nameidata_dentry_drop_rcu(nd, dentry))) {
514 nd->flags &= ~LOOKUP_RCU;
515 if (!(nd->flags & LOOKUP_ROOT))
516 nd->root.mnt = NULL;
517 rcu_read_unlock();
518 br_read_unlock(vfsmount_lock);
519 return -ECHILD;
520 }
521 }
522 return 0;
523 }
524
525 /**
526 * nameidata_drop_rcu_last - drop nameidata ending path walk out of rcu-walk
527 * @nd: nameidata pathwalk data to drop
528 * Returns: 0 on success, -ECHILD on failure
529 *
530 * nameidata_drop_rcu_last attempts to drop the current nd->path into ref-walk.
531 * nd->path should be the final element of the lookup, so nd->root is discarded.
532 * Must be called from rcu-walk context.
533 */
534 static int nameidata_drop_rcu_last(struct nameidata *nd)
535 {
536 struct dentry *dentry = nd->path.dentry;
537
538 BUG_ON(!(nd->flags & LOOKUP_RCU));
539 nd->flags &= ~LOOKUP_RCU;
540 if (!(nd->flags & LOOKUP_ROOT))
541 nd->root.mnt = NULL;
542 spin_lock(&dentry->d_lock);
543 if (!__d_rcu_to_refcount(dentry, nd->seq))
544 goto err_unlock;
545 BUG_ON(nd->inode != dentry->d_inode);
546 spin_unlock(&dentry->d_lock);
547
548 mntget(nd->path.mnt);
549
550 rcu_read_unlock();
551 br_read_unlock(vfsmount_lock);
552
553 return 0;
554
555 err_unlock:
556 spin_unlock(&dentry->d_lock);
557 rcu_read_unlock();
558 br_read_unlock(vfsmount_lock);
559 return -ECHILD;
560 }
561
562 /**
563 * release_open_intent - free up open intent resources
564 * @nd: pointer to nameidata
565 */
566 void release_open_intent(struct nameidata *nd)
567 {
568 struct file *file = nd->intent.open.file;
569
570 if (file && !IS_ERR(file)) {
571 if (file->f_path.dentry == NULL)
572 put_filp(file);
573 else
574 fput(file);
575 }
576 }
577
578 static inline int d_revalidate(struct dentry *dentry, struct nameidata *nd)
579 {
580 return dentry->d_op->d_revalidate(dentry, nd);
581 }
582
583 static struct dentry *
584 do_revalidate(struct dentry *dentry, struct nameidata *nd)
585 {
586 int status = d_revalidate(dentry, nd);
587 if (unlikely(status <= 0)) {
588 /*
589 * The dentry failed validation.
590 * If d_revalidate returned 0 attempt to invalidate
591 * the dentry otherwise d_revalidate is asking us
592 * to return a fail status.
593 */
594 if (status < 0) {
595 dput(dentry);
596 dentry = ERR_PTR(status);
597 } else if (!d_invalidate(dentry)) {
598 dput(dentry);
599 dentry = NULL;
600 }
601 }
602 return dentry;
603 }
604
605 /*
606 * handle_reval_path - force revalidation of a dentry
607 *
608 * In some situations the path walking code will trust dentries without
609 * revalidating them. This causes problems for filesystems that depend on
610 * d_revalidate to handle file opens (e.g. NFSv4). When FS_REVAL_DOT is set
611 * (which indicates that it's possible for the dentry to go stale), force
612 * a d_revalidate call before proceeding.
613 *
614 * Returns 0 if the revalidation was successful. If the revalidation fails,
615 * either return the error returned by d_revalidate or -ESTALE if the
616 * revalidation it just returned 0. If d_revalidate returns 0, we attempt to
617 * invalidate the dentry. It's up to the caller to handle putting references
618 * to the path if necessary.
619 */
620 static inline int handle_reval_path(struct nameidata *nd)
621 {
622 struct dentry *dentry = nd->path.dentry;
623 int status;
624
625 if (likely(!(nd->flags & LOOKUP_JUMPED)))
626 return 0;
627
628 if (likely(!(dentry->d_flags & DCACHE_OP_REVALIDATE)))
629 return 0;
630
631 if (likely(!(dentry->d_sb->s_type->fs_flags & FS_REVAL_DOT)))
632 return 0;
633
634 /* Note: we do not d_invalidate() */
635 status = d_revalidate(dentry, nd);
636 if (status > 0)
637 return 0;
638
639 if (!status)
640 status = -ESTALE;
641
642 return status;
643 }
644
645 /*
646 * Short-cut version of permission(), for calling on directories
647 * during pathname resolution. Combines parts of permission()
648 * and generic_permission(), and tests ONLY for MAY_EXEC permission.
649 *
650 * If appropriate, check DAC only. If not appropriate, or
651 * short-cut DAC fails, then call ->permission() to do more
652 * complete permission check.
653 */
654 static inline int exec_permission(struct inode *inode, unsigned int flags)
655 {
656 int ret;
657
658 if (inode->i_op->permission) {
659 ret = inode->i_op->permission(inode, MAY_EXEC, flags);
660 } else {
661 ret = acl_permission_check(inode, MAY_EXEC, flags,
662 inode->i_op->check_acl);
663 }
664 if (likely(!ret))
665 goto ok;
666 if (ret == -ECHILD)
667 return ret;
668
669 if (capable(CAP_DAC_OVERRIDE) || capable(CAP_DAC_READ_SEARCH))
670 goto ok;
671
672 return ret;
673 ok:
674 return security_inode_exec_permission(inode, flags);
675 }
676
677 static __always_inline void set_root(struct nameidata *nd)
678 {
679 if (!nd->root.mnt)
680 get_fs_root(current->fs, &nd->root);
681 }
682
683 static int link_path_walk(const char *, struct nameidata *);
684
685 static __always_inline void set_root_rcu(struct nameidata *nd)
686 {
687 if (!nd->root.mnt) {
688 struct fs_struct *fs = current->fs;
689 unsigned seq;
690
691 do {
692 seq = read_seqcount_begin(&fs->seq);
693 nd->root = fs->root;
694 } while (read_seqcount_retry(&fs->seq, seq));
695 }
696 }
697
698 static __always_inline int __vfs_follow_link(struct nameidata *nd, const char *link)
699 {
700 int ret;
701
702 if (IS_ERR(link))
703 goto fail;
704
705 if (*link == '/') {
706 set_root(nd);
707 path_put(&nd->path);
708 nd->path = nd->root;
709 path_get(&nd->root);
710 nd->flags |= LOOKUP_JUMPED;
711 }
712 nd->inode = nd->path.dentry->d_inode;
713
714 ret = link_path_walk(link, nd);
715 return ret;
716 fail:
717 path_put(&nd->path);
718 return PTR_ERR(link);
719 }
720
721 static void path_put_conditional(struct path *path, struct nameidata *nd)
722 {
723 dput(path->dentry);
724 if (path->mnt != nd->path.mnt)
725 mntput(path->mnt);
726 }
727
728 static inline void path_to_nameidata(const struct path *path,
729 struct nameidata *nd)
730 {
731 if (!(nd->flags & LOOKUP_RCU)) {
732 dput(nd->path.dentry);
733 if (nd->path.mnt != path->mnt)
734 mntput(nd->path.mnt);
735 }
736 nd->path.mnt = path->mnt;
737 nd->path.dentry = path->dentry;
738 }
739
740 static __always_inline int
741 __do_follow_link(const struct path *link, struct nameidata *nd, void **p)
742 {
743 int error;
744 struct dentry *dentry = link->dentry;
745
746 BUG_ON(nd->flags & LOOKUP_RCU);
747
748 touch_atime(link->mnt, dentry);
749 nd_set_link(nd, NULL);
750
751 if (link->mnt == nd->path.mnt)
752 mntget(link->mnt);
753
754 error = security_inode_follow_link(link->dentry, nd);
755 if (error) {
756 *p = ERR_PTR(error); /* no ->put_link(), please */
757 path_put(&nd->path);
758 return error;
759 }
760
761 nd->last_type = LAST_BIND;
762 *p = dentry->d_inode->i_op->follow_link(dentry, nd);
763 error = PTR_ERR(*p);
764 if (!IS_ERR(*p)) {
765 char *s = nd_get_link(nd);
766 error = 0;
767 if (s)
768 error = __vfs_follow_link(nd, s);
769 else if (nd->last_type == LAST_BIND)
770 nd->flags |= LOOKUP_JUMPED;
771 }
772 return error;
773 }
774
775 /*
776 * This limits recursive symlink follows to 8, while
777 * limiting consecutive symlinks to 40.
778 *
779 * Without that kind of total limit, nasty chains of consecutive
780 * symlinks can cause almost arbitrarily long lookups.
781 */
782 static inline int do_follow_link(struct inode *inode, struct path *path, struct nameidata *nd)
783 {
784 void *cookie;
785 int err = -ELOOP;
786
787 /* We drop rcu-walk here */
788 if (nameidata_dentry_drop_rcu_maybe(nd, path->dentry))
789 return -ECHILD;
790 BUG_ON(inode != path->dentry->d_inode);
791
792 if (current->link_count >= MAX_NESTED_LINKS)
793 goto loop;
794 if (current->total_link_count >= 40)
795 goto loop;
796 BUG_ON(nd->depth >= MAX_NESTED_LINKS);
797 cond_resched();
798 current->link_count++;
799 current->total_link_count++;
800 nd->depth++;
801 err = __do_follow_link(path, nd, &cookie);
802 if (!IS_ERR(cookie) && path->dentry->d_inode->i_op->put_link)
803 path->dentry->d_inode->i_op->put_link(path->dentry, nd, cookie);
804 path_put(path);
805 current->link_count--;
806 nd->depth--;
807 return err;
808 loop:
809 path_put_conditional(path, nd);
810 path_put(&nd->path);
811 return err;
812 }
813
814 static int follow_up_rcu(struct path *path)
815 {
816 struct vfsmount *parent;
817 struct dentry *mountpoint;
818
819 parent = path->mnt->mnt_parent;
820 if (parent == path->mnt)
821 return 0;
822 mountpoint = path->mnt->mnt_mountpoint;
823 path->dentry = mountpoint;
824 path->mnt = parent;
825 return 1;
826 }
827
828 int follow_up(struct path *path)
829 {
830 struct vfsmount *parent;
831 struct dentry *mountpoint;
832
833 br_read_lock(vfsmount_lock);
834 parent = path->mnt->mnt_parent;
835 if (parent == path->mnt) {
836 br_read_unlock(vfsmount_lock);
837 return 0;
838 }
839 mntget(parent);
840 mountpoint = dget(path->mnt->mnt_mountpoint);
841 br_read_unlock(vfsmount_lock);
842 dput(path->dentry);
843 path->dentry = mountpoint;
844 mntput(path->mnt);
845 path->mnt = parent;
846 return 1;
847 }
848
849 /*
850 * Perform an automount
851 * - return -EISDIR to tell follow_managed() to stop and return the path we
852 * were called with.
853 */
854 static int follow_automount(struct path *path, unsigned flags,
855 bool *need_mntput)
856 {
857 struct vfsmount *mnt;
858 int err;
859
860 if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
861 return -EREMOTE;
862
863 /* We don't want to mount if someone supplied AT_NO_AUTOMOUNT
864 * and this is the terminal part of the path.
865 */
866 if ((flags & LOOKUP_NO_AUTOMOUNT) && !(flags & LOOKUP_CONTINUE))
867 return -EISDIR; /* we actually want to stop here */
868
869 /* We want to mount if someone is trying to open/create a file of any
870 * type under the mountpoint, wants to traverse through the mountpoint
871 * or wants to open the mounted directory.
872 *
873 * We don't want to mount if someone's just doing a stat and they've
874 * set AT_SYMLINK_NOFOLLOW - unless they're stat'ing a directory and
875 * appended a '/' to the name.
876 */
877 if (!(flags & LOOKUP_FOLLOW) &&
878 !(flags & (LOOKUP_CONTINUE | LOOKUP_DIRECTORY |
879 LOOKUP_OPEN | LOOKUP_CREATE)))
880 return -EISDIR;
881
882 current->total_link_count++;
883 if (current->total_link_count >= 40)
884 return -ELOOP;
885
886 mnt = path->dentry->d_op->d_automount(path);
887 if (IS_ERR(mnt)) {
888 /*
889 * The filesystem is allowed to return -EISDIR here to indicate
890 * it doesn't want to automount. For instance, autofs would do
891 * this so that its userspace daemon can mount on this dentry.
892 *
893 * However, we can only permit this if it's a terminal point in
894 * the path being looked up; if it wasn't then the remainder of
895 * the path is inaccessible and we should say so.
896 */
897 if (PTR_ERR(mnt) == -EISDIR && (flags & LOOKUP_CONTINUE))
898 return -EREMOTE;
899 return PTR_ERR(mnt);
900 }
901
902 if (!mnt) /* mount collision */
903 return 0;
904
905 err = finish_automount(mnt, path);
906
907 switch (err) {
908 case -EBUSY:
909 /* Someone else made a mount here whilst we were busy */
910 return 0;
911 case 0:
912 dput(path->dentry);
913 if (*need_mntput)
914 mntput(path->mnt);
915 path->mnt = mnt;
916 path->dentry = dget(mnt->mnt_root);
917 *need_mntput = true;
918 return 0;
919 default:
920 return err;
921 }
922
923 }
924
925 /*
926 * Handle a dentry that is managed in some way.
927 * - Flagged for transit management (autofs)
928 * - Flagged as mountpoint
929 * - Flagged as automount point
930 *
931 * This may only be called in refwalk mode.
932 *
933 * Serialization is taken care of in namespace.c
934 */
935 static int follow_managed(struct path *path, unsigned flags)
936 {
937 unsigned managed;
938 bool need_mntput = false;
939 int ret;
940
941 /* Given that we're not holding a lock here, we retain the value in a
942 * local variable for each dentry as we look at it so that we don't see
943 * the components of that value change under us */
944 while (managed = ACCESS_ONCE(path->dentry->d_flags),
945 managed &= DCACHE_MANAGED_DENTRY,
946 unlikely(managed != 0)) {
947 /* Allow the filesystem to manage the transit without i_mutex
948 * being held. */
949 if (managed & DCACHE_MANAGE_TRANSIT) {
950 BUG_ON(!path->dentry->d_op);
951 BUG_ON(!path->dentry->d_op->d_manage);
952 ret = path->dentry->d_op->d_manage(path->dentry,
953 false, false);
954 if (ret < 0)
955 return ret == -EISDIR ? 0 : ret;
956 }
957
958 /* Transit to a mounted filesystem. */
959 if (managed & DCACHE_MOUNTED) {
960 struct vfsmount *mounted = lookup_mnt(path);
961 if (mounted) {
962 dput(path->dentry);
963 if (need_mntput)
964 mntput(path->mnt);
965 path->mnt = mounted;
966 path->dentry = dget(mounted->mnt_root);
967 need_mntput = true;
968 continue;
969 }
970
971 /* Something is mounted on this dentry in another
972 * namespace and/or whatever was mounted there in this
973 * namespace got unmounted before we managed to get the
974 * vfsmount_lock */
975 }
976
977 /* Handle an automount point */
978 if (managed & DCACHE_NEED_AUTOMOUNT) {
979 ret = follow_automount(path, flags, &need_mntput);
980 if (ret < 0)
981 return ret == -EISDIR ? 0 : ret;
982 continue;
983 }
984
985 /* We didn't change the current path point */
986 break;
987 }
988 return 0;
989 }
990
991 int follow_down_one(struct path *path)
992 {
993 struct vfsmount *mounted;
994
995 mounted = lookup_mnt(path);
996 if (mounted) {
997 dput(path->dentry);
998 mntput(path->mnt);
999 path->mnt = mounted;
1000 path->dentry = dget(mounted->mnt_root);
1001 return 1;
1002 }
1003 return 0;
1004 }
1005
1006 /*
1007 * Skip to top of mountpoint pile in rcuwalk mode. We abort the rcu-walk if we
1008 * meet a managed dentry and we're not walking to "..". True is returned to
1009 * continue, false to abort.
1010 */
1011 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1012 struct inode **inode, bool reverse_transit)
1013 {
1014 while (d_mountpoint(path->dentry)) {
1015 struct vfsmount *mounted;
1016 if (unlikely(path->dentry->d_flags & DCACHE_MANAGE_TRANSIT) &&
1017 !reverse_transit &&
1018 path->dentry->d_op->d_manage(path->dentry, false, true) < 0)
1019 return false;
1020 mounted = __lookup_mnt(path->mnt, path->dentry, 1);
1021 if (!mounted)
1022 break;
1023 path->mnt = mounted;
1024 path->dentry = mounted->mnt_root;
1025 nd->seq = read_seqcount_begin(&path->dentry->d_seq);
1026 *inode = path->dentry->d_inode;
1027 }
1028
1029 if (unlikely(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT))
1030 return reverse_transit;
1031 return true;
1032 }
1033
1034 static int follow_dotdot_rcu(struct nameidata *nd)
1035 {
1036 struct inode *inode = nd->inode;
1037
1038 set_root_rcu(nd);
1039
1040 while (1) {
1041 if (nd->path.dentry == nd->root.dentry &&
1042 nd->path.mnt == nd->root.mnt) {
1043 break;
1044 }
1045 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1046 struct dentry *old = nd->path.dentry;
1047 struct dentry *parent = old->d_parent;
1048 unsigned seq;
1049
1050 seq = read_seqcount_begin(&parent->d_seq);
1051 if (read_seqcount_retry(&old->d_seq, nd->seq))
1052 goto failed;
1053 inode = parent->d_inode;
1054 nd->path.dentry = parent;
1055 nd->seq = seq;
1056 break;
1057 }
1058 if (!follow_up_rcu(&nd->path))
1059 break;
1060 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1061 inode = nd->path.dentry->d_inode;
1062 }
1063 __follow_mount_rcu(nd, &nd->path, &inode, true);
1064 nd->inode = inode;
1065 return 0;
1066
1067 failed:
1068 nd->flags &= ~LOOKUP_RCU;
1069 if (!(nd->flags & LOOKUP_ROOT))
1070 nd->root.mnt = NULL;
1071 rcu_read_unlock();
1072 br_read_unlock(vfsmount_lock);
1073 return -ECHILD;
1074 }
1075
1076 /*
1077 * Follow down to the covering mount currently visible to userspace. At each
1078 * point, the filesystem owning that dentry may be queried as to whether the
1079 * caller is permitted to proceed or not.
1080 *
1081 * Care must be taken as namespace_sem may be held (indicated by mounting_here
1082 * being true).
1083 */
1084 int follow_down(struct path *path, bool mounting_here)
1085 {
1086 unsigned managed;
1087 int ret;
1088
1089 while (managed = ACCESS_ONCE(path->dentry->d_flags),
1090 unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1091 /* Allow the filesystem to manage the transit without i_mutex
1092 * being held.
1093 *
1094 * We indicate to the filesystem if someone is trying to mount
1095 * something here. This gives autofs the chance to deny anyone
1096 * other than its daemon the right to mount on its
1097 * superstructure.
1098 *
1099 * The filesystem may sleep at this point.
1100 */
1101 if (managed & DCACHE_MANAGE_TRANSIT) {
1102 BUG_ON(!path->dentry->d_op);
1103 BUG_ON(!path->dentry->d_op->d_manage);
1104 ret = path->dentry->d_op->d_manage(
1105 path->dentry, mounting_here, false);
1106 if (ret < 0)
1107 return ret == -EISDIR ? 0 : ret;
1108 }
1109
1110 /* Transit to a mounted filesystem. */
1111 if (managed & DCACHE_MOUNTED) {
1112 struct vfsmount *mounted = lookup_mnt(path);
1113 if (!mounted)
1114 break;
1115 dput(path->dentry);
1116 mntput(path->mnt);
1117 path->mnt = mounted;
1118 path->dentry = dget(mounted->mnt_root);
1119 continue;
1120 }
1121
1122 /* Don't handle automount points here */
1123 break;
1124 }
1125 return 0;
1126 }
1127
1128 /*
1129 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1130 */
1131 static void follow_mount(struct path *path)
1132 {
1133 while (d_mountpoint(path->dentry)) {
1134 struct vfsmount *mounted = lookup_mnt(path);
1135 if (!mounted)
1136 break;
1137 dput(path->dentry);
1138 mntput(path->mnt);
1139 path->mnt = mounted;
1140 path->dentry = dget(mounted->mnt_root);
1141 }
1142 }
1143
1144 static void follow_dotdot(struct nameidata *nd)
1145 {
1146 set_root(nd);
1147
1148 while(1) {
1149 struct dentry *old = nd->path.dentry;
1150
1151 if (nd->path.dentry == nd->root.dentry &&
1152 nd->path.mnt == nd->root.mnt) {
1153 break;
1154 }
1155 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1156 /* rare case of legitimate dget_parent()... */
1157 nd->path.dentry = dget_parent(nd->path.dentry);
1158 dput(old);
1159 break;
1160 }
1161 if (!follow_up(&nd->path))
1162 break;
1163 }
1164 follow_mount(&nd->path);
1165 nd->inode = nd->path.dentry->d_inode;
1166 }
1167
1168 /*
1169 * Allocate a dentry with name and parent, and perform a parent
1170 * directory ->lookup on it. Returns the new dentry, or ERR_PTR
1171 * on error. parent->d_inode->i_mutex must be held. d_lookup must
1172 * have verified that no child exists while under i_mutex.
1173 */
1174 static struct dentry *d_alloc_and_lookup(struct dentry *parent,
1175 struct qstr *name, struct nameidata *nd)
1176 {
1177 struct inode *inode = parent->d_inode;
1178 struct dentry *dentry;
1179 struct dentry *old;
1180
1181 /* Don't create child dentry for a dead directory. */
1182 if (unlikely(IS_DEADDIR(inode)))
1183 return ERR_PTR(-ENOENT);
1184
1185 dentry = d_alloc(parent, name);
1186 if (unlikely(!dentry))
1187 return ERR_PTR(-ENOMEM);
1188
1189 old = inode->i_op->lookup(inode, dentry, nd);
1190 if (unlikely(old)) {
1191 dput(dentry);
1192 dentry = old;
1193 }
1194 return dentry;
1195 }
1196
1197 /*
1198 * It's more convoluted than I'd like it to be, but... it's still fairly
1199 * small and for now I'd prefer to have fast path as straight as possible.
1200 * It _is_ time-critical.
1201 */
1202 static int do_lookup(struct nameidata *nd, struct qstr *name,
1203 struct path *path, struct inode **inode)
1204 {
1205 struct vfsmount *mnt = nd->path.mnt;
1206 struct dentry *dentry, *parent = nd->path.dentry;
1207 int need_reval = 1;
1208 int status = 1;
1209 int err;
1210
1211 /*
1212 * Rename seqlock is not required here because in the off chance
1213 * of a false negative due to a concurrent rename, we're going to
1214 * do the non-racy lookup, below.
1215 */
1216 if (nd->flags & LOOKUP_RCU) {
1217 unsigned seq;
1218 *inode = nd->inode;
1219 dentry = __d_lookup_rcu(parent, name, &seq, inode);
1220 if (!dentry)
1221 goto unlazy;
1222
1223 /* Memory barrier in read_seqcount_begin of child is enough */
1224 if (__read_seqcount_retry(&parent->d_seq, nd->seq))
1225 return -ECHILD;
1226 nd->seq = seq;
1227
1228 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) {
1229 status = d_revalidate(dentry, nd);
1230 if (unlikely(status <= 0)) {
1231 if (status != -ECHILD)
1232 need_reval = 0;
1233 goto unlazy;
1234 }
1235 }
1236 path->mnt = mnt;
1237 path->dentry = dentry;
1238 if (likely(__follow_mount_rcu(nd, path, inode, false)))
1239 return 0;
1240 unlazy:
1241 if (dentry) {
1242 if (nameidata_dentry_drop_rcu(nd, dentry))
1243 return -ECHILD;
1244 } else {
1245 if (nameidata_drop_rcu(nd))
1246 return -ECHILD;
1247 }
1248 } else {
1249 dentry = __d_lookup(parent, name);
1250 }
1251
1252 retry:
1253 if (unlikely(!dentry)) {
1254 struct inode *dir = parent->d_inode;
1255 BUG_ON(nd->inode != dir);
1256
1257 mutex_lock(&dir->i_mutex);
1258 dentry = d_lookup(parent, name);
1259 if (likely(!dentry)) {
1260 dentry = d_alloc_and_lookup(parent, name, nd);
1261 if (IS_ERR(dentry)) {
1262 mutex_unlock(&dir->i_mutex);
1263 return PTR_ERR(dentry);
1264 }
1265 /* known good */
1266 need_reval = 0;
1267 status = 1;
1268 }
1269 mutex_unlock(&dir->i_mutex);
1270 }
1271 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE) && need_reval)
1272 status = d_revalidate(dentry, nd);
1273 if (unlikely(status <= 0)) {
1274 if (status < 0) {
1275 dput(dentry);
1276 return status;
1277 }
1278 if (!d_invalidate(dentry)) {
1279 dput(dentry);
1280 dentry = NULL;
1281 need_reval = 1;
1282 goto retry;
1283 }
1284 }
1285
1286 path->mnt = mnt;
1287 path->dentry = dentry;
1288 err = follow_managed(path, nd->flags);
1289 if (unlikely(err < 0)) {
1290 path_put_conditional(path, nd);
1291 return err;
1292 }
1293 *inode = path->dentry->d_inode;
1294 return 0;
1295 }
1296
1297 static inline int may_lookup(struct nameidata *nd)
1298 {
1299 if (nd->flags & LOOKUP_RCU) {
1300 int err = exec_permission(nd->inode, IPERM_FLAG_RCU);
1301 if (err != -ECHILD)
1302 return err;
1303 if (nameidata_drop_rcu(nd))
1304 return -ECHILD;
1305 }
1306 return exec_permission(nd->inode, 0);
1307 }
1308
1309 static inline int handle_dots(struct nameidata *nd, int type)
1310 {
1311 if (type == LAST_DOTDOT) {
1312 if (nd->flags & LOOKUP_RCU) {
1313 if (follow_dotdot_rcu(nd))
1314 return -ECHILD;
1315 } else
1316 follow_dotdot(nd);
1317 }
1318 return 0;
1319 }
1320
1321 static void terminate_walk(struct nameidata *nd)
1322 {
1323 if (!(nd->flags & LOOKUP_RCU)) {
1324 path_put(&nd->path);
1325 } else {
1326 nd->flags &= ~LOOKUP_RCU;
1327 if (!(nd->flags & LOOKUP_ROOT))
1328 nd->root.mnt = NULL;
1329 rcu_read_unlock();
1330 br_read_unlock(vfsmount_lock);
1331 }
1332 }
1333
1334 /*
1335 * Name resolution.
1336 * This is the basic name resolution function, turning a pathname into
1337 * the final dentry. We expect 'base' to be positive and a directory.
1338 *
1339 * Returns 0 and nd will have valid dentry and mnt on success.
1340 * Returns error and drops reference to input namei data on failure.
1341 */
1342 static int link_path_walk(const char *name, struct nameidata *nd)
1343 {
1344 struct path next;
1345 int err;
1346 unsigned int lookup_flags = nd->flags;
1347
1348 while (*name=='/')
1349 name++;
1350 if (!*name)
1351 return 0;
1352
1353 if (nd->depth)
1354 lookup_flags = LOOKUP_FOLLOW | (nd->flags & LOOKUP_CONTINUE);
1355
1356 /* At this point we know we have a real path component. */
1357 for(;;) {
1358 struct inode *inode;
1359 unsigned long hash;
1360 struct qstr this;
1361 unsigned int c;
1362 int type;
1363
1364 nd->flags |= LOOKUP_CONTINUE;
1365
1366 err = may_lookup(nd);
1367 if (err)
1368 break;
1369
1370 this.name = name;
1371 c = *(const unsigned char *)name;
1372
1373 hash = init_name_hash();
1374 do {
1375 name++;
1376 hash = partial_name_hash(c, hash);
1377 c = *(const unsigned char *)name;
1378 } while (c && (c != '/'));
1379 this.len = name - (const char *) this.name;
1380 this.hash = end_name_hash(hash);
1381
1382 type = LAST_NORM;
1383 if (this.name[0] == '.') switch (this.len) {
1384 case 2:
1385 if (this.name[1] == '.') {
1386 type = LAST_DOTDOT;
1387 nd->flags |= LOOKUP_JUMPED;
1388 }
1389 break;
1390 case 1:
1391 type = LAST_DOT;
1392 }
1393 if (likely(type == LAST_NORM)) {
1394 struct dentry *parent = nd->path.dentry;
1395 nd->flags &= ~LOOKUP_JUMPED;
1396 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
1397 err = parent->d_op->d_hash(parent, nd->inode,
1398 &this);
1399 if (err < 0)
1400 break;
1401 }
1402 }
1403
1404 /* remove trailing slashes? */
1405 if (!c)
1406 goto last_component;
1407 while (*++name == '/');
1408 if (!*name)
1409 goto last_with_slashes;
1410
1411 /*
1412 * "." and ".." are special - ".." especially so because it has
1413 * to be able to know about the current root directory and
1414 * parent relationships.
1415 */
1416 if (unlikely(type != LAST_NORM)) {
1417 if (handle_dots(nd, type))
1418 return -ECHILD;
1419 continue;
1420 }
1421
1422 /* This does the actual lookups.. */
1423 err = do_lookup(nd, &this, &next, &inode);
1424 if (err)
1425 break;
1426
1427 if (inode && inode->i_op->follow_link) {
1428 err = do_follow_link(inode, &next, nd);
1429 if (err)
1430 return err;
1431 nd->inode = nd->path.dentry->d_inode;
1432 } else {
1433 path_to_nameidata(&next, nd);
1434 nd->inode = inode;
1435 }
1436 err = -ENOENT;
1437 if (!nd->inode)
1438 break;
1439 err = -ENOTDIR;
1440 if (!nd->inode->i_op->lookup)
1441 break;
1442 continue;
1443 /* here ends the main loop */
1444
1445 last_with_slashes:
1446 lookup_flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
1447 last_component:
1448 /* Clear LOOKUP_CONTINUE iff it was previously unset */
1449 nd->flags &= lookup_flags | ~LOOKUP_CONTINUE;
1450 if (lookup_flags & LOOKUP_PARENT)
1451 goto lookup_parent;
1452 if (unlikely(type != LAST_NORM))
1453 return handle_dots(nd, type);
1454 err = do_lookup(nd, &this, &next, &inode);
1455 if (err)
1456 break;
1457 if (inode && unlikely(inode->i_op->follow_link) &&
1458 (lookup_flags & LOOKUP_FOLLOW)) {
1459 err = do_follow_link(inode, &next, nd);
1460 if (err)
1461 return err;
1462 nd->inode = nd->path.dentry->d_inode;
1463 } else {
1464 path_to_nameidata(&next, nd);
1465 nd->inode = inode;
1466 }
1467 err = -ENOENT;
1468 if (!nd->inode)
1469 break;
1470 if (lookup_flags & LOOKUP_DIRECTORY) {
1471 err = -ENOTDIR;
1472 if (!nd->inode->i_op->lookup)
1473 break;
1474 }
1475 return 0;
1476 lookup_parent:
1477 nd->last = this;
1478 nd->last_type = type;
1479 return 0;
1480 }
1481 terminate_walk(nd);
1482 return err;
1483 }
1484
1485 static int path_init(int dfd, const char *name, unsigned int flags,
1486 struct nameidata *nd, struct file **fp)
1487 {
1488 int retval = 0;
1489 int fput_needed;
1490 struct file *file;
1491
1492 nd->last_type = LAST_ROOT; /* if there are only slashes... */
1493 nd->flags = flags | LOOKUP_JUMPED;
1494 nd->depth = 0;
1495 if (flags & LOOKUP_ROOT) {
1496 struct inode *inode = nd->root.dentry->d_inode;
1497 if (*name) {
1498 if (!inode->i_op->lookup)
1499 return -ENOTDIR;
1500 retval = inode_permission(inode, MAY_EXEC);
1501 if (retval)
1502 return retval;
1503 }
1504 nd->path = nd->root;
1505 nd->inode = inode;
1506 if (flags & LOOKUP_RCU) {
1507 br_read_lock(vfsmount_lock);
1508 rcu_read_lock();
1509 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1510 } else {
1511 path_get(&nd->path);
1512 }
1513 return 0;
1514 }
1515
1516 nd->root.mnt = NULL;
1517
1518 if (*name=='/') {
1519 if (flags & LOOKUP_RCU) {
1520 br_read_lock(vfsmount_lock);
1521 rcu_read_lock();
1522 set_root_rcu(nd);
1523 } else {
1524 set_root(nd);
1525 path_get(&nd->root);
1526 }
1527 nd->path = nd->root;
1528 } else if (dfd == AT_FDCWD) {
1529 if (flags & LOOKUP_RCU) {
1530 struct fs_struct *fs = current->fs;
1531 unsigned seq;
1532
1533 br_read_lock(vfsmount_lock);
1534 rcu_read_lock();
1535
1536 do {
1537 seq = read_seqcount_begin(&fs->seq);
1538 nd->path = fs->pwd;
1539 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1540 } while (read_seqcount_retry(&fs->seq, seq));
1541 } else {
1542 get_fs_pwd(current->fs, &nd->path);
1543 }
1544 } else {
1545 struct dentry *dentry;
1546
1547 file = fget_raw_light(dfd, &fput_needed);
1548 retval = -EBADF;
1549 if (!file)
1550 goto out_fail;
1551
1552 dentry = file->f_path.dentry;
1553
1554 if (*name) {
1555 retval = -ENOTDIR;
1556 if (!S_ISDIR(dentry->d_inode->i_mode))
1557 goto fput_fail;
1558
1559 retval = file_permission(file, MAY_EXEC);
1560 if (retval)
1561 goto fput_fail;
1562 }
1563
1564 nd->path = file->f_path;
1565 if (flags & LOOKUP_RCU) {
1566 if (fput_needed)
1567 *fp = file;
1568 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1569 br_read_lock(vfsmount_lock);
1570 rcu_read_lock();
1571 } else {
1572 path_get(&file->f_path);
1573 fput_light(file, fput_needed);
1574 }
1575 }
1576
1577 nd->inode = nd->path.dentry->d_inode;
1578 return 0;
1579
1580 fput_fail:
1581 fput_light(file, fput_needed);
1582 out_fail:
1583 return retval;
1584 }
1585
1586 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
1587 static int path_lookupat(int dfd, const char *name,
1588 unsigned int flags, struct nameidata *nd)
1589 {
1590 struct file *base = NULL;
1591 int retval;
1592
1593 /*
1594 * Path walking is largely split up into 2 different synchronisation
1595 * schemes, rcu-walk and ref-walk (explained in
1596 * Documentation/filesystems/path-lookup.txt). These share much of the
1597 * path walk code, but some things particularly setup, cleanup, and
1598 * following mounts are sufficiently divergent that functions are
1599 * duplicated. Typically there is a function foo(), and its RCU
1600 * analogue, foo_rcu().
1601 *
1602 * -ECHILD is the error number of choice (just to avoid clashes) that
1603 * is returned if some aspect of an rcu-walk fails. Such an error must
1604 * be handled by restarting a traditional ref-walk (which will always
1605 * be able to complete).
1606 */
1607 retval = path_init(dfd, name, flags, nd, &base);
1608
1609 if (unlikely(retval))
1610 return retval;
1611
1612 current->total_link_count = 0;
1613 retval = link_path_walk(name, nd);
1614
1615 if (nd->flags & LOOKUP_RCU) {
1616 /* went all way through without dropping RCU */
1617 BUG_ON(retval);
1618 if (nameidata_drop_rcu_last(nd))
1619 retval = -ECHILD;
1620 }
1621
1622 if (!retval)
1623 retval = handle_reval_path(nd);
1624
1625 if (base)
1626 fput(base);
1627
1628 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
1629 path_put(&nd->root);
1630 nd->root.mnt = NULL;
1631 }
1632 return retval;
1633 }
1634
1635 static int do_path_lookup(int dfd, const char *name,
1636 unsigned int flags, struct nameidata *nd)
1637 {
1638 int retval = path_lookupat(dfd, name, flags | LOOKUP_RCU, nd);
1639 if (unlikely(retval == -ECHILD))
1640 retval = path_lookupat(dfd, name, flags, nd);
1641 if (unlikely(retval == -ESTALE))
1642 retval = path_lookupat(dfd, name, flags | LOOKUP_REVAL, nd);
1643
1644 if (likely(!retval)) {
1645 if (unlikely(!audit_dummy_context())) {
1646 if (nd->path.dentry && nd->inode)
1647 audit_inode(name, nd->path.dentry);
1648 }
1649 }
1650 return retval;
1651 }
1652
1653 int kern_path_parent(const char *name, struct nameidata *nd)
1654 {
1655 return do_path_lookup(AT_FDCWD, name, LOOKUP_PARENT, nd);
1656 }
1657
1658 int kern_path(const char *name, unsigned int flags, struct path *path)
1659 {
1660 struct nameidata nd;
1661 int res = do_path_lookup(AT_FDCWD, name, flags, &nd);
1662 if (!res)
1663 *path = nd.path;
1664 return res;
1665 }
1666
1667 /**
1668 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
1669 * @dentry: pointer to dentry of the base directory
1670 * @mnt: pointer to vfs mount of the base directory
1671 * @name: pointer to file name
1672 * @flags: lookup flags
1673 * @nd: pointer to nameidata
1674 */
1675 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
1676 const char *name, unsigned int flags,
1677 struct nameidata *nd)
1678 {
1679 nd->root.dentry = dentry;
1680 nd->root.mnt = mnt;
1681 /* the first argument of do_path_lookup() is ignored with LOOKUP_ROOT */
1682 return do_path_lookup(AT_FDCWD, name, flags | LOOKUP_ROOT, nd);
1683 }
1684
1685 static struct dentry *__lookup_hash(struct qstr *name,
1686 struct dentry *base, struct nameidata *nd)
1687 {
1688 struct inode *inode = base->d_inode;
1689 struct dentry *dentry;
1690 int err;
1691
1692 err = exec_permission(inode, 0);
1693 if (err)
1694 return ERR_PTR(err);
1695
1696 /*
1697 * Don't bother with __d_lookup: callers are for creat as
1698 * well as unlink, so a lot of the time it would cost
1699 * a double lookup.
1700 */
1701 dentry = d_lookup(base, name);
1702
1703 if (dentry && (dentry->d_flags & DCACHE_OP_REVALIDATE))
1704 dentry = do_revalidate(dentry, nd);
1705
1706 if (!dentry)
1707 dentry = d_alloc_and_lookup(base, name, nd);
1708
1709 return dentry;
1710 }
1711
1712 /*
1713 * Restricted form of lookup. Doesn't follow links, single-component only,
1714 * needs parent already locked. Doesn't follow mounts.
1715 * SMP-safe.
1716 */
1717 static struct dentry *lookup_hash(struct nameidata *nd)
1718 {
1719 return __lookup_hash(&nd->last, nd->path.dentry, nd);
1720 }
1721
1722 /**
1723 * lookup_one_len - filesystem helper to lookup single pathname component
1724 * @name: pathname component to lookup
1725 * @base: base directory to lookup from
1726 * @len: maximum length @len should be interpreted to
1727 *
1728 * Note that this routine is purely a helper for filesystem usage and should
1729 * not be called by generic code. Also note that by using this function the
1730 * nameidata argument is passed to the filesystem methods and a filesystem
1731 * using this helper needs to be prepared for that.
1732 */
1733 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
1734 {
1735 struct qstr this;
1736 unsigned long hash;
1737 unsigned int c;
1738
1739 WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex));
1740
1741 this.name = name;
1742 this.len = len;
1743 if (!len)
1744 return ERR_PTR(-EACCES);
1745
1746 hash = init_name_hash();
1747 while (len--) {
1748 c = *(const unsigned char *)name++;
1749 if (c == '/' || c == '\0')
1750 return ERR_PTR(-EACCES);
1751 hash = partial_name_hash(c, hash);
1752 }
1753 this.hash = end_name_hash(hash);
1754 /*
1755 * See if the low-level filesystem might want
1756 * to use its own hash..
1757 */
1758 if (base->d_flags & DCACHE_OP_HASH) {
1759 int err = base->d_op->d_hash(base, base->d_inode, &this);
1760 if (err < 0)
1761 return ERR_PTR(err);
1762 }
1763
1764 return __lookup_hash(&this, base, NULL);
1765 }
1766
1767 int user_path_at(int dfd, const char __user *name, unsigned flags,
1768 struct path *path)
1769 {
1770 struct nameidata nd;
1771 char *tmp = getname_flags(name, flags);
1772 int err = PTR_ERR(tmp);
1773 if (!IS_ERR(tmp)) {
1774
1775 BUG_ON(flags & LOOKUP_PARENT);
1776
1777 err = do_path_lookup(dfd, tmp, flags, &nd);
1778 putname(tmp);
1779 if (!err)
1780 *path = nd.path;
1781 }
1782 return err;
1783 }
1784
1785 static int user_path_parent(int dfd, const char __user *path,
1786 struct nameidata *nd, char **name)
1787 {
1788 char *s = getname(path);
1789 int error;
1790
1791 if (IS_ERR(s))
1792 return PTR_ERR(s);
1793
1794 error = do_path_lookup(dfd, s, LOOKUP_PARENT, nd);
1795 if (error)
1796 putname(s);
1797 else
1798 *name = s;
1799
1800 return error;
1801 }
1802
1803 /*
1804 * It's inline, so penalty for filesystems that don't use sticky bit is
1805 * minimal.
1806 */
1807 static inline int check_sticky(struct inode *dir, struct inode *inode)
1808 {
1809 uid_t fsuid = current_fsuid();
1810
1811 if (!(dir->i_mode & S_ISVTX))
1812 return 0;
1813 if (inode->i_uid == fsuid)
1814 return 0;
1815 if (dir->i_uid == fsuid)
1816 return 0;
1817 return !capable(CAP_FOWNER);
1818 }
1819
1820 /*
1821 * Check whether we can remove a link victim from directory dir, check
1822 * whether the type of victim is right.
1823 * 1. We can't do it if dir is read-only (done in permission())
1824 * 2. We should have write and exec permissions on dir
1825 * 3. We can't remove anything from append-only dir
1826 * 4. We can't do anything with immutable dir (done in permission())
1827 * 5. If the sticky bit on dir is set we should either
1828 * a. be owner of dir, or
1829 * b. be owner of victim, or
1830 * c. have CAP_FOWNER capability
1831 * 6. If the victim is append-only or immutable we can't do antyhing with
1832 * links pointing to it.
1833 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
1834 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
1835 * 9. We can't remove a root or mountpoint.
1836 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
1837 * nfs_async_unlink().
1838 */
1839 static int may_delete(struct inode *dir,struct dentry *victim,int isdir)
1840 {
1841 int error;
1842
1843 if (!victim->d_inode)
1844 return -ENOENT;
1845
1846 BUG_ON(victim->d_parent->d_inode != dir);
1847 audit_inode_child(victim, dir);
1848
1849 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
1850 if (error)
1851 return error;
1852 if (IS_APPEND(dir))
1853 return -EPERM;
1854 if (check_sticky(dir, victim->d_inode)||IS_APPEND(victim->d_inode)||
1855 IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode))
1856 return -EPERM;
1857 if (isdir) {
1858 if (!S_ISDIR(victim->d_inode->i_mode))
1859 return -ENOTDIR;
1860 if (IS_ROOT(victim))
1861 return -EBUSY;
1862 } else if (S_ISDIR(victim->d_inode->i_mode))
1863 return -EISDIR;
1864 if (IS_DEADDIR(dir))
1865 return -ENOENT;
1866 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
1867 return -EBUSY;
1868 return 0;
1869 }
1870
1871 /* Check whether we can create an object with dentry child in directory
1872 * dir.
1873 * 1. We can't do it if child already exists (open has special treatment for
1874 * this case, but since we are inlined it's OK)
1875 * 2. We can't do it if dir is read-only (done in permission())
1876 * 3. We should have write and exec permissions on dir
1877 * 4. We can't do it if dir is immutable (done in permission())
1878 */
1879 static inline int may_create(struct inode *dir, struct dentry *child)
1880 {
1881 if (child->d_inode)
1882 return -EEXIST;
1883 if (IS_DEADDIR(dir))
1884 return -ENOENT;
1885 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
1886 }
1887
1888 /*
1889 * p1 and p2 should be directories on the same fs.
1890 */
1891 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
1892 {
1893 struct dentry *p;
1894
1895 if (p1 == p2) {
1896 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1897 return NULL;
1898 }
1899
1900 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
1901
1902 p = d_ancestor(p2, p1);
1903 if (p) {
1904 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
1905 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
1906 return p;
1907 }
1908
1909 p = d_ancestor(p1, p2);
1910 if (p) {
1911 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1912 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
1913 return p;
1914 }
1915
1916 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1917 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
1918 return NULL;
1919 }
1920
1921 void unlock_rename(struct dentry *p1, struct dentry *p2)
1922 {
1923 mutex_unlock(&p1->d_inode->i_mutex);
1924 if (p1 != p2) {
1925 mutex_unlock(&p2->d_inode->i_mutex);
1926 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
1927 }
1928 }
1929
1930 int vfs_create(struct inode *dir, struct dentry *dentry, int mode,
1931 struct nameidata *nd)
1932 {
1933 int error = may_create(dir, dentry);
1934
1935 if (error)
1936 return error;
1937
1938 if (!dir->i_op->create)
1939 return -EACCES; /* shouldn't it be ENOSYS? */
1940 mode &= S_IALLUGO;
1941 mode |= S_IFREG;
1942 error = security_inode_create(dir, dentry, mode);
1943 if (error)
1944 return error;
1945 error = dir->i_op->create(dir, dentry, mode, nd);
1946 if (!error)
1947 fsnotify_create(dir, dentry);
1948 return error;
1949 }
1950
1951 static int may_open(struct path *path, int acc_mode, int flag)
1952 {
1953 struct dentry *dentry = path->dentry;
1954 struct inode *inode = dentry->d_inode;
1955 int error;
1956
1957 if (!inode)
1958 return -ENOENT;
1959
1960 switch (inode->i_mode & S_IFMT) {
1961 case S_IFLNK:
1962 return -ELOOP;
1963 case S_IFDIR:
1964 if (acc_mode & MAY_WRITE)
1965 return -EISDIR;
1966 break;
1967 case S_IFBLK:
1968 case S_IFCHR:
1969 if (path->mnt->mnt_flags & MNT_NODEV)
1970 return -EACCES;
1971 /*FALLTHRU*/
1972 case S_IFIFO:
1973 case S_IFSOCK:
1974 flag &= ~O_TRUNC;
1975 break;
1976 }
1977
1978 error = inode_permission(inode, acc_mode);
1979 if (error)
1980 return error;
1981
1982 /*
1983 * An append-only file must be opened in append mode for writing.
1984 */
1985 if (IS_APPEND(inode)) {
1986 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
1987 return -EPERM;
1988 if (flag & O_TRUNC)
1989 return -EPERM;
1990 }
1991
1992 /* O_NOATIME can only be set by the owner or superuser */
1993 if (flag & O_NOATIME && !is_owner_or_cap(inode))
1994 return -EPERM;
1995
1996 /*
1997 * Ensure there are no outstanding leases on the file.
1998 */
1999 return break_lease(inode, flag);
2000 }
2001
2002 static int handle_truncate(struct file *filp)
2003 {
2004 struct path *path = &filp->f_path;
2005 struct inode *inode = path->dentry->d_inode;
2006 int error = get_write_access(inode);
2007 if (error)
2008 return error;
2009 /*
2010 * Refuse to truncate files with mandatory locks held on them.
2011 */
2012 error = locks_verify_locked(inode);
2013 if (!error)
2014 error = security_path_truncate(path);
2015 if (!error) {
2016 error = do_truncate(path->dentry, 0,
2017 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2018 filp);
2019 }
2020 put_write_access(inode);
2021 return error;
2022 }
2023
2024 /*
2025 * Note that while the flag value (low two bits) for sys_open means:
2026 * 00 - read-only
2027 * 01 - write-only
2028 * 10 - read-write
2029 * 11 - special
2030 * it is changed into
2031 * 00 - no permissions needed
2032 * 01 - read-permission
2033 * 10 - write-permission
2034 * 11 - read-write
2035 * for the internal routines (ie open_namei()/follow_link() etc)
2036 * This is more logical, and also allows the 00 "no perm needed"
2037 * to be used for symlinks (where the permissions are checked
2038 * later).
2039 *
2040 */
2041 static inline int open_to_namei_flags(int flag)
2042 {
2043 if ((flag+1) & O_ACCMODE)
2044 flag++;
2045 return flag;
2046 }
2047
2048 /*
2049 * Handle the last step of open()
2050 */
2051 static struct file *do_last(struct nameidata *nd, struct path *path,
2052 const struct open_flags *op, const char *pathname)
2053 {
2054 struct dentry *dir = nd->path.dentry;
2055 struct dentry *dentry;
2056 int open_flag = op->open_flag;
2057 int will_truncate = open_flag & O_TRUNC;
2058 int want_write = 0;
2059 int skip_perm = 0;
2060 struct file *filp;
2061 struct inode *inode;
2062 int error;
2063
2064 nd->flags &= ~LOOKUP_PARENT;
2065 nd->flags |= op->intent;
2066
2067 switch (nd->last_type) {
2068 case LAST_DOTDOT:
2069 case LAST_DOT:
2070 error = handle_dots(nd, nd->last_type);
2071 if (error)
2072 return ERR_PTR(error);
2073 /* fallthrough */
2074 case LAST_ROOT:
2075 if (nd->flags & LOOKUP_RCU) {
2076 if (nameidata_drop_rcu_last(nd))
2077 return ERR_PTR(-ECHILD);
2078 }
2079 error = handle_reval_path(nd);
2080 if (error)
2081 goto exit;
2082 audit_inode(pathname, nd->path.dentry);
2083 if (open_flag & O_CREAT) {
2084 error = -EISDIR;
2085 goto exit;
2086 }
2087 goto ok;
2088 case LAST_BIND:
2089 /* can't be RCU mode here */
2090 error = handle_reval_path(nd);
2091 if (error)
2092 goto exit;
2093 audit_inode(pathname, dir);
2094 goto ok;
2095 }
2096
2097 if (!(open_flag & O_CREAT)) {
2098 if (nd->last.name[nd->last.len])
2099 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2100 /* we _can_ be in RCU mode here */
2101 error = do_lookup(nd, &nd->last, path, &inode);
2102 if (error) {
2103 terminate_walk(nd);
2104 return ERR_PTR(error);
2105 }
2106 if (!inode) {
2107 path_to_nameidata(path, nd);
2108 terminate_walk(nd);
2109 return ERR_PTR(-ENOENT);
2110 }
2111 if (unlikely(inode->i_op->follow_link)) {
2112 /* We drop rcu-walk here */
2113 if (nameidata_dentry_drop_rcu_maybe(nd, path->dentry))
2114 return ERR_PTR(-ECHILD);
2115 return NULL;
2116 }
2117 path_to_nameidata(path, nd);
2118 nd->inode = inode;
2119 /* sayonara */
2120 if (nd->flags & LOOKUP_RCU) {
2121 if (nameidata_drop_rcu_last(nd))
2122 return ERR_PTR(-ECHILD);
2123 }
2124
2125 error = -ENOTDIR;
2126 if (nd->flags & LOOKUP_DIRECTORY) {
2127 if (!inode->i_op->lookup)
2128 goto exit;
2129 }
2130 audit_inode(pathname, nd->path.dentry);
2131 goto ok;
2132 }
2133
2134 /* create side of things */
2135
2136 if (nd->flags & LOOKUP_RCU) {
2137 if (nameidata_drop_rcu_last(nd))
2138 return ERR_PTR(-ECHILD);
2139 }
2140
2141 audit_inode(pathname, dir);
2142 error = -EISDIR;
2143 /* trailing slashes? */
2144 if (nd->last.name[nd->last.len])
2145 goto exit;
2146
2147 mutex_lock(&dir->d_inode->i_mutex);
2148
2149 dentry = lookup_hash(nd);
2150 error = PTR_ERR(dentry);
2151 if (IS_ERR(dentry)) {
2152 mutex_unlock(&dir->d_inode->i_mutex);
2153 goto exit;
2154 }
2155
2156 path->dentry = dentry;
2157 path->mnt = nd->path.mnt;
2158
2159 /* Negative dentry, just create the file */
2160 if (!dentry->d_inode) {
2161 int mode = op->mode;
2162 if (!IS_POSIXACL(dir->d_inode))
2163 mode &= ~current_umask();
2164 /*
2165 * This write is needed to ensure that a
2166 * rw->ro transition does not occur between
2167 * the time when the file is created and when
2168 * a permanent write count is taken through
2169 * the 'struct file' in nameidata_to_filp().
2170 */
2171 error = mnt_want_write(nd->path.mnt);
2172 if (error)
2173 goto exit_mutex_unlock;
2174 want_write = 1;
2175 /* Don't check for write permission, don't truncate */
2176 open_flag &= ~O_TRUNC;
2177 will_truncate = 0;
2178 skip_perm = 1;
2179 error = security_path_mknod(&nd->path, dentry, mode, 0);
2180 if (error)
2181 goto exit_mutex_unlock;
2182 error = vfs_create(dir->d_inode, dentry, mode, nd);
2183 if (error)
2184 goto exit_mutex_unlock;
2185 mutex_unlock(&dir->d_inode->i_mutex);
2186 dput(nd->path.dentry);
2187 nd->path.dentry = dentry;
2188 goto common;
2189 }
2190
2191 /*
2192 * It already exists.
2193 */
2194 mutex_unlock(&dir->d_inode->i_mutex);
2195 audit_inode(pathname, path->dentry);
2196
2197 error = -EEXIST;
2198 if (open_flag & O_EXCL)
2199 goto exit_dput;
2200
2201 error = follow_managed(path, nd->flags);
2202 if (error < 0)
2203 goto exit_dput;
2204
2205 error = -ENOENT;
2206 if (!path->dentry->d_inode)
2207 goto exit_dput;
2208
2209 if (path->dentry->d_inode->i_op->follow_link)
2210 return NULL;
2211
2212 path_to_nameidata(path, nd);
2213 nd->inode = path->dentry->d_inode;
2214 error = -EISDIR;
2215 if (S_ISDIR(nd->inode->i_mode))
2216 goto exit;
2217 ok:
2218 if (!S_ISREG(nd->inode->i_mode))
2219 will_truncate = 0;
2220
2221 if (will_truncate) {
2222 error = mnt_want_write(nd->path.mnt);
2223 if (error)
2224 goto exit;
2225 want_write = 1;
2226 }
2227 common:
2228 error = may_open(&nd->path, skip_perm ? 0 : op->acc_mode, open_flag);
2229 if (error)
2230 goto exit;
2231 filp = nameidata_to_filp(nd);
2232 if (!IS_ERR(filp)) {
2233 error = ima_file_check(filp, op->acc_mode);
2234 if (error) {
2235 fput(filp);
2236 filp = ERR_PTR(error);
2237 }
2238 }
2239 if (!IS_ERR(filp)) {
2240 if (will_truncate) {
2241 error = handle_truncate(filp);
2242 if (error) {
2243 fput(filp);
2244 filp = ERR_PTR(error);
2245 }
2246 }
2247 }
2248 out:
2249 if (want_write)
2250 mnt_drop_write(nd->path.mnt);
2251 path_put(&nd->path);
2252 return filp;
2253
2254 exit_mutex_unlock:
2255 mutex_unlock(&dir->d_inode->i_mutex);
2256 exit_dput:
2257 path_put_conditional(path, nd);
2258 exit:
2259 filp = ERR_PTR(error);
2260 goto out;
2261 }
2262
2263 static struct file *path_openat(int dfd, const char *pathname,
2264 struct nameidata *nd, const struct open_flags *op, int flags)
2265 {
2266 struct file *base = NULL;
2267 struct file *filp;
2268 struct path path;
2269 int count = 0;
2270 int error;
2271
2272 filp = get_empty_filp();
2273 if (!filp)
2274 return ERR_PTR(-ENFILE);
2275
2276 filp->f_flags = op->open_flag;
2277 nd->intent.open.file = filp;
2278 nd->intent.open.flags = open_to_namei_flags(op->open_flag);
2279 nd->intent.open.create_mode = op->mode;
2280
2281 error = path_init(dfd, pathname, flags | LOOKUP_PARENT, nd, &base);
2282 if (unlikely(error))
2283 goto out_filp;
2284
2285 current->total_link_count = 0;
2286 error = link_path_walk(pathname, nd);
2287 if (unlikely(error))
2288 goto out_filp;
2289
2290 filp = do_last(nd, &path, op, pathname);
2291 while (unlikely(!filp)) { /* trailing symlink */
2292 struct path link = path;
2293 struct inode *linki = link.dentry->d_inode;
2294 void *cookie;
2295 if (!(nd->flags & LOOKUP_FOLLOW) || count++ == 32) {
2296 path_put_conditional(&path, nd);
2297 path_put(&nd->path);
2298 filp = ERR_PTR(-ELOOP);
2299 break;
2300 }
2301 /*
2302 * This is subtle. Instead of calling do_follow_link() we do
2303 * the thing by hands. The reason is that this way we have zero
2304 * link_count and path_walk() (called from ->follow_link)
2305 * honoring LOOKUP_PARENT. After that we have the parent and
2306 * last component, i.e. we are in the same situation as after
2307 * the first path_walk(). Well, almost - if the last component
2308 * is normal we get its copy stored in nd->last.name and we will
2309 * have to putname() it when we are done. Procfs-like symlinks
2310 * just set LAST_BIND.
2311 */
2312 nd->flags |= LOOKUP_PARENT;
2313 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
2314 error = __do_follow_link(&link, nd, &cookie);
2315 if (unlikely(error))
2316 filp = ERR_PTR(error);
2317 else
2318 filp = do_last(nd, &path, op, pathname);
2319 if (!IS_ERR(cookie) && linki->i_op->put_link)
2320 linki->i_op->put_link(link.dentry, nd, cookie);
2321 path_put(&link);
2322 }
2323 out:
2324 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT))
2325 path_put(&nd->root);
2326 if (base)
2327 fput(base);
2328 release_open_intent(nd);
2329 return filp;
2330
2331 out_filp:
2332 filp = ERR_PTR(error);
2333 goto out;
2334 }
2335
2336 struct file *do_filp_open(int dfd, const char *pathname,
2337 const struct open_flags *op, int flags)
2338 {
2339 struct nameidata nd;
2340 struct file *filp;
2341
2342 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_RCU);
2343 if (unlikely(filp == ERR_PTR(-ECHILD)))
2344 filp = path_openat(dfd, pathname, &nd, op, flags);
2345 if (unlikely(filp == ERR_PTR(-ESTALE)))
2346 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_REVAL);
2347 return filp;
2348 }
2349
2350 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
2351 const char *name, const struct open_flags *op, int flags)
2352 {
2353 struct nameidata nd;
2354 struct file *file;
2355
2356 nd.root.mnt = mnt;
2357 nd.root.dentry = dentry;
2358
2359 flags |= LOOKUP_ROOT;
2360
2361 if (dentry->d_inode->i_op->follow_link)
2362 return ERR_PTR(-ELOOP);
2363
2364 file = path_openat(-1, name, &nd, op, flags | LOOKUP_RCU);
2365 if (unlikely(file == ERR_PTR(-ECHILD)))
2366 file = path_openat(-1, name, &nd, op, flags);
2367 if (unlikely(file == ERR_PTR(-ESTALE)))
2368 file = path_openat(-1, name, &nd, op, flags | LOOKUP_REVAL);
2369 return file;
2370 }
2371
2372 /**
2373 * lookup_create - lookup a dentry, creating it if it doesn't exist
2374 * @nd: nameidata info
2375 * @is_dir: directory flag
2376 *
2377 * Simple function to lookup and return a dentry and create it
2378 * if it doesn't exist. Is SMP-safe.
2379 *
2380 * Returns with nd->path.dentry->d_inode->i_mutex locked.
2381 */
2382 struct dentry *lookup_create(struct nameidata *nd, int is_dir)
2383 {
2384 struct dentry *dentry = ERR_PTR(-EEXIST);
2385
2386 mutex_lock_nested(&nd->path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2387 /*
2388 * Yucky last component or no last component at all?
2389 * (foo/., foo/.., /////)
2390 */
2391 if (nd->last_type != LAST_NORM)
2392 goto fail;
2393 nd->flags &= ~LOOKUP_PARENT;
2394 nd->flags |= LOOKUP_CREATE | LOOKUP_EXCL;
2395 nd->intent.open.flags = O_EXCL;
2396
2397 /*
2398 * Do the final lookup.
2399 */
2400 dentry = lookup_hash(nd);
2401 if (IS_ERR(dentry))
2402 goto fail;
2403
2404 if (dentry->d_inode)
2405 goto eexist;
2406 /*
2407 * Special case - lookup gave negative, but... we had foo/bar/
2408 * From the vfs_mknod() POV we just have a negative dentry -
2409 * all is fine. Let's be bastards - you had / on the end, you've
2410 * been asking for (non-existent) directory. -ENOENT for you.
2411 */
2412 if (unlikely(!is_dir && nd->last.name[nd->last.len])) {
2413 dput(dentry);
2414 dentry = ERR_PTR(-ENOENT);
2415 }
2416 return dentry;
2417 eexist:
2418 dput(dentry);
2419 dentry = ERR_PTR(-EEXIST);
2420 fail:
2421 return dentry;
2422 }
2423 EXPORT_SYMBOL_GPL(lookup_create);
2424
2425 int vfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
2426 {
2427 int error = may_create(dir, dentry);
2428
2429 if (error)
2430 return error;
2431
2432 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
2433 return -EPERM;
2434
2435 if (!dir->i_op->mknod)
2436 return -EPERM;
2437
2438 error = devcgroup_inode_mknod(mode, dev);
2439 if (error)
2440 return error;
2441
2442 error = security_inode_mknod(dir, dentry, mode, dev);
2443 if (error)
2444 return error;
2445
2446 error = dir->i_op->mknod(dir, dentry, mode, dev);
2447 if (!error)
2448 fsnotify_create(dir, dentry);
2449 return error;
2450 }
2451
2452 static int may_mknod(mode_t mode)
2453 {
2454 switch (mode & S_IFMT) {
2455 case S_IFREG:
2456 case S_IFCHR:
2457 case S_IFBLK:
2458 case S_IFIFO:
2459 case S_IFSOCK:
2460 case 0: /* zero mode translates to S_IFREG */
2461 return 0;
2462 case S_IFDIR:
2463 return -EPERM;
2464 default:
2465 return -EINVAL;
2466 }
2467 }
2468
2469 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, int, mode,
2470 unsigned, dev)
2471 {
2472 int error;
2473 char *tmp;
2474 struct dentry *dentry;
2475 struct nameidata nd;
2476
2477 if (S_ISDIR(mode))
2478 return -EPERM;
2479
2480 error = user_path_parent(dfd, filename, &nd, &tmp);
2481 if (error)
2482 return error;
2483
2484 dentry = lookup_create(&nd, 0);
2485 if (IS_ERR(dentry)) {
2486 error = PTR_ERR(dentry);
2487 goto out_unlock;
2488 }
2489 if (!IS_POSIXACL(nd.path.dentry->d_inode))
2490 mode &= ~current_umask();
2491 error = may_mknod(mode);
2492 if (error)
2493 goto out_dput;
2494 error = mnt_want_write(nd.path.mnt);
2495 if (error)
2496 goto out_dput;
2497 error = security_path_mknod(&nd.path, dentry, mode, dev);
2498 if (error)
2499 goto out_drop_write;
2500 switch (mode & S_IFMT) {
2501 case 0: case S_IFREG:
2502 error = vfs_create(nd.path.dentry->d_inode,dentry,mode,&nd);
2503 break;
2504 case S_IFCHR: case S_IFBLK:
2505 error = vfs_mknod(nd.path.dentry->d_inode,dentry,mode,
2506 new_decode_dev(dev));
2507 break;
2508 case S_IFIFO: case S_IFSOCK:
2509 error = vfs_mknod(nd.path.dentry->d_inode,dentry,mode,0);
2510 break;
2511 }
2512 out_drop_write:
2513 mnt_drop_write(nd.path.mnt);
2514 out_dput:
2515 dput(dentry);
2516 out_unlock:
2517 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2518 path_put(&nd.path);
2519 putname(tmp);
2520
2521 return error;
2522 }
2523
2524 SYSCALL_DEFINE3(mknod, const char __user *, filename, int, mode, unsigned, dev)
2525 {
2526 return sys_mknodat(AT_FDCWD, filename, mode, dev);
2527 }
2528
2529 int vfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
2530 {
2531 int error = may_create(dir, dentry);
2532
2533 if (error)
2534 return error;
2535
2536 if (!dir->i_op->mkdir)
2537 return -EPERM;
2538
2539 mode &= (S_IRWXUGO|S_ISVTX);
2540 error = security_inode_mkdir(dir, dentry, mode);
2541 if (error)
2542 return error;
2543
2544 error = dir->i_op->mkdir(dir, dentry, mode);
2545 if (!error)
2546 fsnotify_mkdir(dir, dentry);
2547 return error;
2548 }
2549
2550 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, int, mode)
2551 {
2552 int error = 0;
2553 char * tmp;
2554 struct dentry *dentry;
2555 struct nameidata nd;
2556
2557 error = user_path_parent(dfd, pathname, &nd, &tmp);
2558 if (error)
2559 goto out_err;
2560
2561 dentry = lookup_create(&nd, 1);
2562 error = PTR_ERR(dentry);
2563 if (IS_ERR(dentry))
2564 goto out_unlock;
2565
2566 if (!IS_POSIXACL(nd.path.dentry->d_inode))
2567 mode &= ~current_umask();
2568 error = mnt_want_write(nd.path.mnt);
2569 if (error)
2570 goto out_dput;
2571 error = security_path_mkdir(&nd.path, dentry, mode);
2572 if (error)
2573 goto out_drop_write;
2574 error = vfs_mkdir(nd.path.dentry->d_inode, dentry, mode);
2575 out_drop_write:
2576 mnt_drop_write(nd.path.mnt);
2577 out_dput:
2578 dput(dentry);
2579 out_unlock:
2580 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2581 path_put(&nd.path);
2582 putname(tmp);
2583 out_err:
2584 return error;
2585 }
2586
2587 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, int, mode)
2588 {
2589 return sys_mkdirat(AT_FDCWD, pathname, mode);
2590 }
2591
2592 /*
2593 * We try to drop the dentry early: we should have
2594 * a usage count of 2 if we're the only user of this
2595 * dentry, and if that is true (possibly after pruning
2596 * the dcache), then we drop the dentry now.
2597 *
2598 * A low-level filesystem can, if it choses, legally
2599 * do a
2600 *
2601 * if (!d_unhashed(dentry))
2602 * return -EBUSY;
2603 *
2604 * if it cannot handle the case of removing a directory
2605 * that is still in use by something else..
2606 */
2607 void dentry_unhash(struct dentry *dentry)
2608 {
2609 dget(dentry);
2610 shrink_dcache_parent(dentry);
2611 spin_lock(&dentry->d_lock);
2612 if (dentry->d_count == 2)
2613 __d_drop(dentry);
2614 spin_unlock(&dentry->d_lock);
2615 }
2616
2617 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
2618 {
2619 int error = may_delete(dir, dentry, 1);
2620
2621 if (error)
2622 return error;
2623
2624 if (!dir->i_op->rmdir)
2625 return -EPERM;
2626
2627 mutex_lock(&dentry->d_inode->i_mutex);
2628 dentry_unhash(dentry);
2629 if (d_mountpoint(dentry))
2630 error = -EBUSY;
2631 else {
2632 error = security_inode_rmdir(dir, dentry);
2633 if (!error) {
2634 error = dir->i_op->rmdir(dir, dentry);
2635 if (!error) {
2636 dentry->d_inode->i_flags |= S_DEAD;
2637 dont_mount(dentry);
2638 }
2639 }
2640 }
2641 mutex_unlock(&dentry->d_inode->i_mutex);
2642 if (!error) {
2643 d_delete(dentry);
2644 }
2645 dput(dentry);
2646
2647 return error;
2648 }
2649
2650 static long do_rmdir(int dfd, const char __user *pathname)
2651 {
2652 int error = 0;
2653 char * name;
2654 struct dentry *dentry;
2655 struct nameidata nd;
2656
2657 error = user_path_parent(dfd, pathname, &nd, &name);
2658 if (error)
2659 return error;
2660
2661 switch(nd.last_type) {
2662 case LAST_DOTDOT:
2663 error = -ENOTEMPTY;
2664 goto exit1;
2665 case LAST_DOT:
2666 error = -EINVAL;
2667 goto exit1;
2668 case LAST_ROOT:
2669 error = -EBUSY;
2670 goto exit1;
2671 }
2672
2673 nd.flags &= ~LOOKUP_PARENT;
2674
2675 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2676 dentry = lookup_hash(&nd);
2677 error = PTR_ERR(dentry);
2678 if (IS_ERR(dentry))
2679 goto exit2;
2680 error = mnt_want_write(nd.path.mnt);
2681 if (error)
2682 goto exit3;
2683 error = security_path_rmdir(&nd.path, dentry);
2684 if (error)
2685 goto exit4;
2686 error = vfs_rmdir(nd.path.dentry->d_inode, dentry);
2687 exit4:
2688 mnt_drop_write(nd.path.mnt);
2689 exit3:
2690 dput(dentry);
2691 exit2:
2692 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2693 exit1:
2694 path_put(&nd.path);
2695 putname(name);
2696 return error;
2697 }
2698
2699 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
2700 {
2701 return do_rmdir(AT_FDCWD, pathname);
2702 }
2703
2704 int vfs_unlink(struct inode *dir, struct dentry *dentry)
2705 {
2706 int error = may_delete(dir, dentry, 0);
2707
2708 if (error)
2709 return error;
2710
2711 if (!dir->i_op->unlink)
2712 return -EPERM;
2713
2714 mutex_lock(&dentry->d_inode->i_mutex);
2715 if (d_mountpoint(dentry))
2716 error = -EBUSY;
2717 else {
2718 error = security_inode_unlink(dir, dentry);
2719 if (!error) {
2720 error = dir->i_op->unlink(dir, dentry);
2721 if (!error)
2722 dont_mount(dentry);
2723 }
2724 }
2725 mutex_unlock(&dentry->d_inode->i_mutex);
2726
2727 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
2728 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
2729 fsnotify_link_count(dentry->d_inode);
2730 d_delete(dentry);
2731 }
2732
2733 return error;
2734 }
2735
2736 /*
2737 * Make sure that the actual truncation of the file will occur outside its
2738 * directory's i_mutex. Truncate can take a long time if there is a lot of
2739 * writeout happening, and we don't want to prevent access to the directory
2740 * while waiting on the I/O.
2741 */
2742 static long do_unlinkat(int dfd, const char __user *pathname)
2743 {
2744 int error;
2745 char *name;
2746 struct dentry *dentry;
2747 struct nameidata nd;
2748 struct inode *inode = NULL;
2749
2750 error = user_path_parent(dfd, pathname, &nd, &name);
2751 if (error)
2752 return error;
2753
2754 error = -EISDIR;
2755 if (nd.last_type != LAST_NORM)
2756 goto exit1;
2757
2758 nd.flags &= ~LOOKUP_PARENT;
2759
2760 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2761 dentry = lookup_hash(&nd);
2762 error = PTR_ERR(dentry);
2763 if (!IS_ERR(dentry)) {
2764 /* Why not before? Because we want correct error value */
2765 if (nd.last.name[nd.last.len])
2766 goto slashes;
2767 inode = dentry->d_inode;
2768 if (inode)
2769 ihold(inode);
2770 error = mnt_want_write(nd.path.mnt);
2771 if (error)
2772 goto exit2;
2773 error = security_path_unlink(&nd.path, dentry);
2774 if (error)
2775 goto exit3;
2776 error = vfs_unlink(nd.path.dentry->d_inode, dentry);
2777 exit3:
2778 mnt_drop_write(nd.path.mnt);
2779 exit2:
2780 dput(dentry);
2781 }
2782 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2783 if (inode)
2784 iput(inode); /* truncate the inode here */
2785 exit1:
2786 path_put(&nd.path);
2787 putname(name);
2788 return error;
2789
2790 slashes:
2791 error = !dentry->d_inode ? -ENOENT :
2792 S_ISDIR(dentry->d_inode->i_mode) ? -EISDIR : -ENOTDIR;
2793 goto exit2;
2794 }
2795
2796 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
2797 {
2798 if ((flag & ~AT_REMOVEDIR) != 0)
2799 return -EINVAL;
2800
2801 if (flag & AT_REMOVEDIR)
2802 return do_rmdir(dfd, pathname);
2803
2804 return do_unlinkat(dfd, pathname);
2805 }
2806
2807 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
2808 {
2809 return do_unlinkat(AT_FDCWD, pathname);
2810 }
2811
2812 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
2813 {
2814 int error = may_create(dir, dentry);
2815
2816 if (error)
2817 return error;
2818
2819 if (!dir->i_op->symlink)
2820 return -EPERM;
2821
2822 error = security_inode_symlink(dir, dentry, oldname);
2823 if (error)
2824 return error;
2825
2826 error = dir->i_op->symlink(dir, dentry, oldname);
2827 if (!error)
2828 fsnotify_create(dir, dentry);
2829 return error;
2830 }
2831
2832 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
2833 int, newdfd, const char __user *, newname)
2834 {
2835 int error;
2836 char *from;
2837 char *to;
2838 struct dentry *dentry;
2839 struct nameidata nd;
2840
2841 from = getname(oldname);
2842 if (IS_ERR(from))
2843 return PTR_ERR(from);
2844
2845 error = user_path_parent(newdfd, newname, &nd, &to);
2846 if (error)
2847 goto out_putname;
2848
2849 dentry = lookup_create(&nd, 0);
2850 error = PTR_ERR(dentry);
2851 if (IS_ERR(dentry))
2852 goto out_unlock;
2853
2854 error = mnt_want_write(nd.path.mnt);
2855 if (error)
2856 goto out_dput;
2857 error = security_path_symlink(&nd.path, dentry, from);
2858 if (error)
2859 goto out_drop_write;
2860 error = vfs_symlink(nd.path.dentry->d_inode, dentry, from);
2861 out_drop_write:
2862 mnt_drop_write(nd.path.mnt);
2863 out_dput:
2864 dput(dentry);
2865 out_unlock:
2866 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2867 path_put(&nd.path);
2868 putname(to);
2869 out_putname:
2870 putname(from);
2871 return error;
2872 }
2873
2874 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
2875 {
2876 return sys_symlinkat(oldname, AT_FDCWD, newname);
2877 }
2878
2879 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2880 {
2881 struct inode *inode = old_dentry->d_inode;
2882 int error;
2883
2884 if (!inode)
2885 return -ENOENT;
2886
2887 error = may_create(dir, new_dentry);
2888 if (error)
2889 return error;
2890
2891 if (dir->i_sb != inode->i_sb)
2892 return -EXDEV;
2893
2894 /*
2895 * A link to an append-only or immutable file cannot be created.
2896 */
2897 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
2898 return -EPERM;
2899 if (!dir->i_op->link)
2900 return -EPERM;
2901 if (S_ISDIR(inode->i_mode))
2902 return -EPERM;
2903
2904 error = security_inode_link(old_dentry, dir, new_dentry);
2905 if (error)
2906 return error;
2907
2908 mutex_lock(&inode->i_mutex);
2909 /* Make sure we don't allow creating hardlink to an unlinked file */
2910 if (inode->i_nlink == 0)
2911 error = -ENOENT;
2912 else
2913 error = dir->i_op->link(old_dentry, dir, new_dentry);
2914 mutex_unlock(&inode->i_mutex);
2915 if (!error)
2916 fsnotify_link(dir, inode, new_dentry);
2917 return error;
2918 }
2919
2920 /*
2921 * Hardlinks are often used in delicate situations. We avoid
2922 * security-related surprises by not following symlinks on the
2923 * newname. --KAB
2924 *
2925 * We don't follow them on the oldname either to be compatible
2926 * with linux 2.0, and to avoid hard-linking to directories
2927 * and other special files. --ADM
2928 */
2929 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
2930 int, newdfd, const char __user *, newname, int, flags)
2931 {
2932 struct dentry *new_dentry;
2933 struct nameidata nd;
2934 struct path old_path;
2935 int error;
2936 char *to;
2937
2938 if ((flags & ~AT_SYMLINK_FOLLOW) != 0)
2939 return -EINVAL;
2940
2941 error = user_path_at(olddfd, oldname,
2942 flags & AT_SYMLINK_FOLLOW ? LOOKUP_FOLLOW : 0,
2943 &old_path);
2944 if (error)
2945 return error;
2946
2947 error = user_path_parent(newdfd, newname, &nd, &to);
2948 if (error)
2949 goto out;
2950 error = -EXDEV;
2951 if (old_path.mnt != nd.path.mnt)
2952 goto out_release;
2953 new_dentry = lookup_create(&nd, 0);
2954 error = PTR_ERR(new_dentry);
2955 if (IS_ERR(new_dentry))
2956 goto out_unlock;
2957 error = mnt_want_write(nd.path.mnt);
2958 if (error)
2959 goto out_dput;
2960 error = security_path_link(old_path.dentry, &nd.path, new_dentry);
2961 if (error)
2962 goto out_drop_write;
2963 error = vfs_link(old_path.dentry, nd.path.dentry->d_inode, new_dentry);
2964 out_drop_write:
2965 mnt_drop_write(nd.path.mnt);
2966 out_dput:
2967 dput(new_dentry);
2968 out_unlock:
2969 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2970 out_release:
2971 path_put(&nd.path);
2972 putname(to);
2973 out:
2974 path_put(&old_path);
2975
2976 return error;
2977 }
2978
2979 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
2980 {
2981 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
2982 }
2983
2984 /*
2985 * The worst of all namespace operations - renaming directory. "Perverted"
2986 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
2987 * Problems:
2988 * a) we can get into loop creation. Check is done in is_subdir().
2989 * b) race potential - two innocent renames can create a loop together.
2990 * That's where 4.4 screws up. Current fix: serialization on
2991 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
2992 * story.
2993 * c) we have to lock _three_ objects - parents and victim (if it exists).
2994 * And that - after we got ->i_mutex on parents (until then we don't know
2995 * whether the target exists). Solution: try to be smart with locking
2996 * order for inodes. We rely on the fact that tree topology may change
2997 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
2998 * move will be locked. Thus we can rank directories by the tree
2999 * (ancestors first) and rank all non-directories after them.
3000 * That works since everybody except rename does "lock parent, lookup,
3001 * lock child" and rename is under ->s_vfs_rename_mutex.
3002 * HOWEVER, it relies on the assumption that any object with ->lookup()
3003 * has no more than 1 dentry. If "hybrid" objects will ever appear,
3004 * we'd better make sure that there's no link(2) for them.
3005 * d) some filesystems don't support opened-but-unlinked directories,
3006 * either because of layout or because they are not ready to deal with
3007 * all cases correctly. The latter will be fixed (taking this sort of
3008 * stuff into VFS), but the former is not going away. Solution: the same
3009 * trick as in rmdir().
3010 * e) conversion from fhandle to dentry may come in the wrong moment - when
3011 * we are removing the target. Solution: we will have to grab ->i_mutex
3012 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
3013 * ->i_mutex on parents, which works but leads to some truly excessive
3014 * locking].
3015 */
3016 static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry,
3017 struct inode *new_dir, struct dentry *new_dentry)
3018 {
3019 int error = 0;
3020 struct inode *target;
3021
3022 /*
3023 * If we are going to change the parent - check write permissions,
3024 * we'll need to flip '..'.
3025 */
3026 if (new_dir != old_dir) {
3027 error = inode_permission(old_dentry->d_inode, MAY_WRITE);
3028 if (error)
3029 return error;
3030 }
3031
3032 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
3033 if (error)
3034 return error;
3035
3036 target = new_dentry->d_inode;
3037 if (target)
3038 mutex_lock(&target->i_mutex);
3039 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
3040 error = -EBUSY;
3041 else {
3042 if (target)
3043 dentry_unhash(new_dentry);
3044 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
3045 }
3046 if (target) {
3047 if (!error) {
3048 target->i_flags |= S_DEAD;
3049 dont_mount(new_dentry);
3050 }
3051 mutex_unlock(&target->i_mutex);
3052 if (d_unhashed(new_dentry))
3053 d_rehash(new_dentry);
3054 dput(new_dentry);
3055 }
3056 if (!error)
3057 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
3058 d_move(old_dentry,new_dentry);
3059 return error;
3060 }
3061
3062 static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry,
3063 struct inode *new_dir, struct dentry *new_dentry)
3064 {
3065 struct inode *target;
3066 int error;
3067
3068 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
3069 if (error)
3070 return error;
3071
3072 dget(new_dentry);
3073 target = new_dentry->d_inode;
3074 if (target)
3075 mutex_lock(&target->i_mutex);
3076 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
3077 error = -EBUSY;
3078 else
3079 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
3080 if (!error) {
3081 if (target)
3082 dont_mount(new_dentry);
3083 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
3084 d_move(old_dentry, new_dentry);
3085 }
3086 if (target)
3087 mutex_unlock(&target->i_mutex);
3088 dput(new_dentry);
3089 return error;
3090 }
3091
3092 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
3093 struct inode *new_dir, struct dentry *new_dentry)
3094 {
3095 int error;
3096 int is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
3097 const unsigned char *old_name;
3098
3099 if (old_dentry->d_inode == new_dentry->d_inode)
3100 return 0;
3101
3102 error = may_delete(old_dir, old_dentry, is_dir);
3103 if (error)
3104 return error;
3105
3106 if (!new_dentry->d_inode)
3107 error = may_create(new_dir, new_dentry);
3108 else
3109 error = may_delete(new_dir, new_dentry, is_dir);
3110 if (error)
3111 return error;
3112
3113 if (!old_dir->i_op->rename)
3114 return -EPERM;
3115
3116 old_name = fsnotify_oldname_init(old_dentry->d_name.name);
3117
3118 if (is_dir)
3119 error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry);
3120 else
3121 error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry);
3122 if (!error)
3123 fsnotify_move(old_dir, new_dir, old_name, is_dir,
3124 new_dentry->d_inode, old_dentry);
3125 fsnotify_oldname_free(old_name);
3126
3127 return error;
3128 }
3129
3130 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
3131 int, newdfd, const char __user *, newname)
3132 {
3133 struct dentry *old_dir, *new_dir;
3134 struct dentry *old_dentry, *new_dentry;
3135 struct dentry *trap;
3136 struct nameidata oldnd, newnd;
3137 char *from;
3138 char *to;
3139 int error;
3140
3141 error = user_path_parent(olddfd, oldname, &oldnd, &from);
3142 if (error)
3143 goto exit;
3144
3145 error = user_path_parent(newdfd, newname, &newnd, &to);
3146 if (error)
3147 goto exit1;
3148
3149 error = -EXDEV;
3150 if (oldnd.path.mnt != newnd.path.mnt)
3151 goto exit2;
3152
3153 old_dir = oldnd.path.dentry;
3154 error = -EBUSY;
3155 if (oldnd.last_type != LAST_NORM)
3156 goto exit2;
3157
3158 new_dir = newnd.path.dentry;
3159 if (newnd.last_type != LAST_NORM)
3160 goto exit2;
3161
3162 oldnd.flags &= ~LOOKUP_PARENT;
3163 newnd.flags &= ~LOOKUP_PARENT;
3164 newnd.flags |= LOOKUP_RENAME_TARGET;
3165
3166 trap = lock_rename(new_dir, old_dir);
3167
3168 old_dentry = lookup_hash(&oldnd);
3169 error = PTR_ERR(old_dentry);
3170 if (IS_ERR(old_dentry))
3171 goto exit3;
3172 /* source must exist */
3173 error = -ENOENT;
3174 if (!old_dentry->d_inode)
3175 goto exit4;
3176 /* unless the source is a directory trailing slashes give -ENOTDIR */
3177 if (!S_ISDIR(old_dentry->d_inode->i_mode)) {
3178 error = -ENOTDIR;
3179 if (oldnd.last.name[oldnd.last.len])
3180 goto exit4;
3181 if (newnd.last.name[newnd.last.len])
3182 goto exit4;
3183 }
3184 /* source should not be ancestor of target */
3185 error = -EINVAL;
3186 if (old_dentry == trap)
3187 goto exit4;
3188 new_dentry = lookup_hash(&newnd);
3189 error = PTR_ERR(new_dentry);
3190 if (IS_ERR(new_dentry))
3191 goto exit4;
3192 /* target should not be an ancestor of source */
3193 error = -ENOTEMPTY;
3194 if (new_dentry == trap)
3195 goto exit5;
3196
3197 error = mnt_want_write(oldnd.path.mnt);
3198 if (error)
3199 goto exit5;
3200 error = security_path_rename(&oldnd.path, old_dentry,
3201 &newnd.path, new_dentry);
3202 if (error)
3203 goto exit6;
3204 error = vfs_rename(old_dir->d_inode, old_dentry,
3205 new_dir->d_inode, new_dentry);
3206 exit6:
3207 mnt_drop_write(oldnd.path.mnt);
3208 exit5:
3209 dput(new_dentry);
3210 exit4:
3211 dput(old_dentry);
3212 exit3:
3213 unlock_rename(new_dir, old_dir);
3214 exit2:
3215 path_put(&newnd.path);
3216 putname(to);
3217 exit1:
3218 path_put(&oldnd.path);
3219 putname(from);
3220 exit:
3221 return error;
3222 }
3223
3224 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
3225 {
3226 return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname);
3227 }
3228
3229 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link)
3230 {
3231 int len;
3232
3233 len = PTR_ERR(link);
3234 if (IS_ERR(link))
3235 goto out;
3236
3237 len = strlen(link);
3238 if (len > (unsigned) buflen)
3239 len = buflen;
3240 if (copy_to_user(buffer, link, len))
3241 len = -EFAULT;
3242 out:
3243 return len;
3244 }
3245
3246 /*
3247 * A helper for ->readlink(). This should be used *ONLY* for symlinks that
3248 * have ->follow_link() touching nd only in nd_set_link(). Using (or not
3249 * using) it for any given inode is up to filesystem.
3250 */
3251 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
3252 {
3253 struct nameidata nd;
3254 void *cookie;
3255 int res;
3256
3257 nd.depth = 0;
3258 cookie = dentry->d_inode->i_op->follow_link(dentry, &nd);
3259 if (IS_ERR(cookie))
3260 return PTR_ERR(cookie);
3261
3262 res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd));
3263 if (dentry->d_inode->i_op->put_link)
3264 dentry->d_inode->i_op->put_link(dentry, &nd, cookie);
3265 return res;
3266 }
3267
3268 int vfs_follow_link(struct nameidata *nd, const char *link)
3269 {
3270 return __vfs_follow_link(nd, link);
3271 }
3272
3273 /* get the link contents into pagecache */
3274 static char *page_getlink(struct dentry * dentry, struct page **ppage)
3275 {
3276 char *kaddr;
3277 struct page *page;
3278 struct address_space *mapping = dentry->d_inode->i_mapping;
3279 page = read_mapping_page(mapping, 0, NULL);
3280 if (IS_ERR(page))
3281 return (char*)page;
3282 *ppage = page;
3283 kaddr = kmap(page);
3284 nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
3285 return kaddr;
3286 }
3287
3288 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
3289 {
3290 struct page *page = NULL;
3291 char *s = page_getlink(dentry, &page);
3292 int res = vfs_readlink(dentry,buffer,buflen,s);
3293 if (page) {
3294 kunmap(page);
3295 page_cache_release(page);
3296 }
3297 return res;
3298 }
3299
3300 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd)
3301 {
3302 struct page *page = NULL;
3303 nd_set_link(nd, page_getlink(dentry, &page));
3304 return page;
3305 }
3306
3307 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
3308 {
3309 struct page *page = cookie;
3310
3311 if (page) {
3312 kunmap(page);
3313 page_cache_release(page);
3314 }
3315 }
3316
3317 /*
3318 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
3319 */
3320 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
3321 {
3322 struct address_space *mapping = inode->i_mapping;
3323 struct page *page;
3324 void *fsdata;
3325 int err;
3326 char *kaddr;
3327 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
3328 if (nofs)
3329 flags |= AOP_FLAG_NOFS;
3330
3331 retry:
3332 err = pagecache_write_begin(NULL, mapping, 0, len-1,
3333 flags, &page, &fsdata);
3334 if (err)
3335 goto fail;
3336
3337 kaddr = kmap_atomic(page, KM_USER0);
3338 memcpy(kaddr, symname, len-1);
3339 kunmap_atomic(kaddr, KM_USER0);
3340
3341 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
3342 page, fsdata);
3343 if (err < 0)
3344 goto fail;
3345 if (err < len-1)
3346 goto retry;
3347
3348 mark_inode_dirty(inode);
3349 return 0;
3350 fail:
3351 return err;
3352 }
3353
3354 int page_symlink(struct inode *inode, const char *symname, int len)
3355 {
3356 return __page_symlink(inode, symname, len,
3357 !(mapping_gfp_mask(inode->i_mapping) & __GFP_FS));
3358 }
3359
3360 const struct inode_operations page_symlink_inode_operations = {
3361 .readlink = generic_readlink,
3362 .follow_link = page_follow_link_light,
3363 .put_link = page_put_link,
3364 };
3365
3366 EXPORT_SYMBOL(user_path_at);
3367 EXPORT_SYMBOL(follow_down_one);
3368 EXPORT_SYMBOL(follow_down);
3369 EXPORT_SYMBOL(follow_up);
3370 EXPORT_SYMBOL(get_write_access); /* binfmt_aout */
3371 EXPORT_SYMBOL(getname);
3372 EXPORT_SYMBOL(lock_rename);
3373 EXPORT_SYMBOL(lookup_one_len);
3374 EXPORT_SYMBOL(page_follow_link_light);
3375 EXPORT_SYMBOL(page_put_link);
3376 EXPORT_SYMBOL(page_readlink);
3377 EXPORT_SYMBOL(__page_symlink);
3378 EXPORT_SYMBOL(page_symlink);
3379 EXPORT_SYMBOL(page_symlink_inode_operations);
3380 EXPORT_SYMBOL(kern_path_parent);
3381 EXPORT_SYMBOL(kern_path);
3382 EXPORT_SYMBOL(vfs_path_lookup);
3383 EXPORT_SYMBOL(inode_permission);
3384 EXPORT_SYMBOL(file_permission);
3385 EXPORT_SYMBOL(unlock_rename);
3386 EXPORT_SYMBOL(vfs_create);
3387 EXPORT_SYMBOL(vfs_follow_link);
3388 EXPORT_SYMBOL(vfs_link);
3389 EXPORT_SYMBOL(vfs_mkdir);
3390 EXPORT_SYMBOL(vfs_mknod);
3391 EXPORT_SYMBOL(generic_permission);
3392 EXPORT_SYMBOL(vfs_readlink);
3393 EXPORT_SYMBOL(vfs_rename);
3394 EXPORT_SYMBOL(vfs_rmdir);
3395 EXPORT_SYMBOL(vfs_symlink);
3396 EXPORT_SYMBOL(vfs_unlink);
3397 EXPORT_SYMBOL(dentry_unhash);
3398 EXPORT_SYMBOL(generic_readlink);
This page took 0.325983 seconds and 5 git commands to generate.