vfs: introduce helper function to safely NUL-terminate symlinks
[deliverable/linux.git] / fs / namei.c
1 /*
2 * linux/fs/namei.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * Some corrections by tytso.
9 */
10
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12 * lookup logic.
13 */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15 */
16
17 #include <linux/init.h>
18 #include <linux/module.h>
19 #include <linux/slab.h>
20 #include <linux/fs.h>
21 #include <linux/namei.h>
22 #include <linux/quotaops.h>
23 #include <linux/pagemap.h>
24 #include <linux/fsnotify.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/syscalls.h>
28 #include <linux/mount.h>
29 #include <linux/audit.h>
30 #include <linux/capability.h>
31 #include <linux/file.h>
32 #include <linux/fcntl.h>
33 #include <linux/device_cgroup.h>
34 #include <asm/uaccess.h>
35
36 #define ACC_MODE(x) ("\000\004\002\006"[(x)&O_ACCMODE])
37
38 /* [Feb-1997 T. Schoebel-Theuer]
39 * Fundamental changes in the pathname lookup mechanisms (namei)
40 * were necessary because of omirr. The reason is that omirr needs
41 * to know the _real_ pathname, not the user-supplied one, in case
42 * of symlinks (and also when transname replacements occur).
43 *
44 * The new code replaces the old recursive symlink resolution with
45 * an iterative one (in case of non-nested symlink chains). It does
46 * this with calls to <fs>_follow_link().
47 * As a side effect, dir_namei(), _namei() and follow_link() are now
48 * replaced with a single function lookup_dentry() that can handle all
49 * the special cases of the former code.
50 *
51 * With the new dcache, the pathname is stored at each inode, at least as
52 * long as the refcount of the inode is positive. As a side effect, the
53 * size of the dcache depends on the inode cache and thus is dynamic.
54 *
55 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
56 * resolution to correspond with current state of the code.
57 *
58 * Note that the symlink resolution is not *completely* iterative.
59 * There is still a significant amount of tail- and mid- recursion in
60 * the algorithm. Also, note that <fs>_readlink() is not used in
61 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
62 * may return different results than <fs>_follow_link(). Many virtual
63 * filesystems (including /proc) exhibit this behavior.
64 */
65
66 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
67 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
68 * and the name already exists in form of a symlink, try to create the new
69 * name indicated by the symlink. The old code always complained that the
70 * name already exists, due to not following the symlink even if its target
71 * is nonexistent. The new semantics affects also mknod() and link() when
72 * the name is a symlink pointing to a non-existant name.
73 *
74 * I don't know which semantics is the right one, since I have no access
75 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
76 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
77 * "old" one. Personally, I think the new semantics is much more logical.
78 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
79 * file does succeed in both HP-UX and SunOs, but not in Solaris
80 * and in the old Linux semantics.
81 */
82
83 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
84 * semantics. See the comments in "open_namei" and "do_link" below.
85 *
86 * [10-Sep-98 Alan Modra] Another symlink change.
87 */
88
89 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
90 * inside the path - always follow.
91 * in the last component in creation/removal/renaming - never follow.
92 * if LOOKUP_FOLLOW passed - follow.
93 * if the pathname has trailing slashes - follow.
94 * otherwise - don't follow.
95 * (applied in that order).
96 *
97 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
98 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
99 * During the 2.4 we need to fix the userland stuff depending on it -
100 * hopefully we will be able to get rid of that wart in 2.5. So far only
101 * XEmacs seems to be relying on it...
102 */
103 /*
104 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
105 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
106 * any extra contention...
107 */
108
109 static int __link_path_walk(const char *name, struct nameidata *nd);
110
111 /* In order to reduce some races, while at the same time doing additional
112 * checking and hopefully speeding things up, we copy filenames to the
113 * kernel data space before using them..
114 *
115 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
116 * PATH_MAX includes the nul terminator --RR.
117 */
118 static int do_getname(const char __user *filename, char *page)
119 {
120 int retval;
121 unsigned long len = PATH_MAX;
122
123 if (!segment_eq(get_fs(), KERNEL_DS)) {
124 if ((unsigned long) filename >= TASK_SIZE)
125 return -EFAULT;
126 if (TASK_SIZE - (unsigned long) filename < PATH_MAX)
127 len = TASK_SIZE - (unsigned long) filename;
128 }
129
130 retval = strncpy_from_user(page, filename, len);
131 if (retval > 0) {
132 if (retval < len)
133 return 0;
134 return -ENAMETOOLONG;
135 } else if (!retval)
136 retval = -ENOENT;
137 return retval;
138 }
139
140 char * getname(const char __user * filename)
141 {
142 char *tmp, *result;
143
144 result = ERR_PTR(-ENOMEM);
145 tmp = __getname();
146 if (tmp) {
147 int retval = do_getname(filename, tmp);
148
149 result = tmp;
150 if (retval < 0) {
151 __putname(tmp);
152 result = ERR_PTR(retval);
153 }
154 }
155 audit_getname(result);
156 return result;
157 }
158
159 #ifdef CONFIG_AUDITSYSCALL
160 void putname(const char *name)
161 {
162 if (unlikely(!audit_dummy_context()))
163 audit_putname(name);
164 else
165 __putname(name);
166 }
167 EXPORT_SYMBOL(putname);
168 #endif
169
170
171 /**
172 * generic_permission - check for access rights on a Posix-like filesystem
173 * @inode: inode to check access rights for
174 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
175 * @check_acl: optional callback to check for Posix ACLs
176 *
177 * Used to check for read/write/execute permissions on a file.
178 * We use "fsuid" for this, letting us set arbitrary permissions
179 * for filesystem access without changing the "normal" uids which
180 * are used for other things..
181 */
182 int generic_permission(struct inode *inode, int mask,
183 int (*check_acl)(struct inode *inode, int mask))
184 {
185 umode_t mode = inode->i_mode;
186
187 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
188
189 if (current_fsuid() == inode->i_uid)
190 mode >>= 6;
191 else {
192 if (IS_POSIXACL(inode) && (mode & S_IRWXG) && check_acl) {
193 int error = check_acl(inode, mask);
194 if (error == -EACCES)
195 goto check_capabilities;
196 else if (error != -EAGAIN)
197 return error;
198 }
199
200 if (in_group_p(inode->i_gid))
201 mode >>= 3;
202 }
203
204 /*
205 * If the DACs are ok we don't need any capability check.
206 */
207 if ((mask & ~mode) == 0)
208 return 0;
209
210 check_capabilities:
211 /*
212 * Read/write DACs are always overridable.
213 * Executable DACs are overridable if at least one exec bit is set.
214 */
215 if (!(mask & MAY_EXEC) || execute_ok(inode))
216 if (capable(CAP_DAC_OVERRIDE))
217 return 0;
218
219 /*
220 * Searching includes executable on directories, else just read.
221 */
222 if (mask == MAY_READ || (S_ISDIR(inode->i_mode) && !(mask & MAY_WRITE)))
223 if (capable(CAP_DAC_READ_SEARCH))
224 return 0;
225
226 return -EACCES;
227 }
228
229 int inode_permission(struct inode *inode, int mask)
230 {
231 int retval;
232
233 if (mask & MAY_WRITE) {
234 umode_t mode = inode->i_mode;
235
236 /*
237 * Nobody gets write access to a read-only fs.
238 */
239 if (IS_RDONLY(inode) &&
240 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
241 return -EROFS;
242
243 /*
244 * Nobody gets write access to an immutable file.
245 */
246 if (IS_IMMUTABLE(inode))
247 return -EACCES;
248 }
249
250 /* Ordinary permission routines do not understand MAY_APPEND. */
251 if (inode->i_op && inode->i_op->permission)
252 retval = inode->i_op->permission(inode, mask);
253 else
254 retval = generic_permission(inode, mask, NULL);
255
256 if (retval)
257 return retval;
258
259 retval = devcgroup_inode_permission(inode, mask);
260 if (retval)
261 return retval;
262
263 return security_inode_permission(inode,
264 mask & (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND));
265 }
266
267 /**
268 * vfs_permission - check for access rights to a given path
269 * @nd: lookup result that describes the path
270 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
271 *
272 * Used to check for read/write/execute permissions on a path.
273 * We use "fsuid" for this, letting us set arbitrary permissions
274 * for filesystem access without changing the "normal" uids which
275 * are used for other things.
276 */
277 int vfs_permission(struct nameidata *nd, int mask)
278 {
279 return inode_permission(nd->path.dentry->d_inode, mask);
280 }
281
282 /**
283 * file_permission - check for additional access rights to a given file
284 * @file: file to check access rights for
285 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
286 *
287 * Used to check for read/write/execute permissions on an already opened
288 * file.
289 *
290 * Note:
291 * Do not use this function in new code. All access checks should
292 * be done using vfs_permission().
293 */
294 int file_permission(struct file *file, int mask)
295 {
296 return inode_permission(file->f_path.dentry->d_inode, mask);
297 }
298
299 /*
300 * get_write_access() gets write permission for a file.
301 * put_write_access() releases this write permission.
302 * This is used for regular files.
303 * We cannot support write (and maybe mmap read-write shared) accesses and
304 * MAP_DENYWRITE mmappings simultaneously. The i_writecount field of an inode
305 * can have the following values:
306 * 0: no writers, no VM_DENYWRITE mappings
307 * < 0: (-i_writecount) vm_area_structs with VM_DENYWRITE set exist
308 * > 0: (i_writecount) users are writing to the file.
309 *
310 * Normally we operate on that counter with atomic_{inc,dec} and it's safe
311 * except for the cases where we don't hold i_writecount yet. Then we need to
312 * use {get,deny}_write_access() - these functions check the sign and refuse
313 * to do the change if sign is wrong. Exclusion between them is provided by
314 * the inode->i_lock spinlock.
315 */
316
317 int get_write_access(struct inode * inode)
318 {
319 spin_lock(&inode->i_lock);
320 if (atomic_read(&inode->i_writecount) < 0) {
321 spin_unlock(&inode->i_lock);
322 return -ETXTBSY;
323 }
324 atomic_inc(&inode->i_writecount);
325 spin_unlock(&inode->i_lock);
326
327 return 0;
328 }
329
330 int deny_write_access(struct file * file)
331 {
332 struct inode *inode = file->f_path.dentry->d_inode;
333
334 spin_lock(&inode->i_lock);
335 if (atomic_read(&inode->i_writecount) > 0) {
336 spin_unlock(&inode->i_lock);
337 return -ETXTBSY;
338 }
339 atomic_dec(&inode->i_writecount);
340 spin_unlock(&inode->i_lock);
341
342 return 0;
343 }
344
345 /**
346 * path_get - get a reference to a path
347 * @path: path to get the reference to
348 *
349 * Given a path increment the reference count to the dentry and the vfsmount.
350 */
351 void path_get(struct path *path)
352 {
353 mntget(path->mnt);
354 dget(path->dentry);
355 }
356 EXPORT_SYMBOL(path_get);
357
358 /**
359 * path_put - put a reference to a path
360 * @path: path to put the reference to
361 *
362 * Given a path decrement the reference count to the dentry and the vfsmount.
363 */
364 void path_put(struct path *path)
365 {
366 dput(path->dentry);
367 mntput(path->mnt);
368 }
369 EXPORT_SYMBOL(path_put);
370
371 /**
372 * release_open_intent - free up open intent resources
373 * @nd: pointer to nameidata
374 */
375 void release_open_intent(struct nameidata *nd)
376 {
377 if (nd->intent.open.file->f_path.dentry == NULL)
378 put_filp(nd->intent.open.file);
379 else
380 fput(nd->intent.open.file);
381 }
382
383 static inline struct dentry *
384 do_revalidate(struct dentry *dentry, struct nameidata *nd)
385 {
386 int status = dentry->d_op->d_revalidate(dentry, nd);
387 if (unlikely(status <= 0)) {
388 /*
389 * The dentry failed validation.
390 * If d_revalidate returned 0 attempt to invalidate
391 * the dentry otherwise d_revalidate is asking us
392 * to return a fail status.
393 */
394 if (!status) {
395 if (!d_invalidate(dentry)) {
396 dput(dentry);
397 dentry = NULL;
398 }
399 } else {
400 dput(dentry);
401 dentry = ERR_PTR(status);
402 }
403 }
404 return dentry;
405 }
406
407 /*
408 * Internal lookup() using the new generic dcache.
409 * SMP-safe
410 */
411 static struct dentry * cached_lookup(struct dentry * parent, struct qstr * name, struct nameidata *nd)
412 {
413 struct dentry * dentry = __d_lookup(parent, name);
414
415 /* lockess __d_lookup may fail due to concurrent d_move()
416 * in some unrelated directory, so try with d_lookup
417 */
418 if (!dentry)
419 dentry = d_lookup(parent, name);
420
421 if (dentry && dentry->d_op && dentry->d_op->d_revalidate)
422 dentry = do_revalidate(dentry, nd);
423
424 return dentry;
425 }
426
427 /*
428 * Short-cut version of permission(), for calling by
429 * path_walk(), when dcache lock is held. Combines parts
430 * of permission() and generic_permission(), and tests ONLY for
431 * MAY_EXEC permission.
432 *
433 * If appropriate, check DAC only. If not appropriate, or
434 * short-cut DAC fails, then call permission() to do more
435 * complete permission check.
436 */
437 static int exec_permission_lite(struct inode *inode)
438 {
439 umode_t mode = inode->i_mode;
440
441 if (inode->i_op && inode->i_op->permission)
442 return -EAGAIN;
443
444 if (current_fsuid() == inode->i_uid)
445 mode >>= 6;
446 else if (in_group_p(inode->i_gid))
447 mode >>= 3;
448
449 if (mode & MAY_EXEC)
450 goto ok;
451
452 if ((inode->i_mode & S_IXUGO) && capable(CAP_DAC_OVERRIDE))
453 goto ok;
454
455 if (S_ISDIR(inode->i_mode) && capable(CAP_DAC_OVERRIDE))
456 goto ok;
457
458 if (S_ISDIR(inode->i_mode) && capable(CAP_DAC_READ_SEARCH))
459 goto ok;
460
461 return -EACCES;
462 ok:
463 return security_inode_permission(inode, MAY_EXEC);
464 }
465
466 /*
467 * This is called when everything else fails, and we actually have
468 * to go to the low-level filesystem to find out what we should do..
469 *
470 * We get the directory semaphore, and after getting that we also
471 * make sure that nobody added the entry to the dcache in the meantime..
472 * SMP-safe
473 */
474 static struct dentry * real_lookup(struct dentry * parent, struct qstr * name, struct nameidata *nd)
475 {
476 struct dentry * result;
477 struct inode *dir = parent->d_inode;
478
479 mutex_lock(&dir->i_mutex);
480 /*
481 * First re-do the cached lookup just in case it was created
482 * while we waited for the directory semaphore..
483 *
484 * FIXME! This could use version numbering or similar to
485 * avoid unnecessary cache lookups.
486 *
487 * The "dcache_lock" is purely to protect the RCU list walker
488 * from concurrent renames at this point (we mustn't get false
489 * negatives from the RCU list walk here, unlike the optimistic
490 * fast walk).
491 *
492 * so doing d_lookup() (with seqlock), instead of lockfree __d_lookup
493 */
494 result = d_lookup(parent, name);
495 if (!result) {
496 struct dentry *dentry;
497
498 /* Don't create child dentry for a dead directory. */
499 result = ERR_PTR(-ENOENT);
500 if (IS_DEADDIR(dir))
501 goto out_unlock;
502
503 dentry = d_alloc(parent, name);
504 result = ERR_PTR(-ENOMEM);
505 if (dentry) {
506 result = dir->i_op->lookup(dir, dentry, nd);
507 if (result)
508 dput(dentry);
509 else
510 result = dentry;
511 }
512 out_unlock:
513 mutex_unlock(&dir->i_mutex);
514 return result;
515 }
516
517 /*
518 * Uhhuh! Nasty case: the cache was re-populated while
519 * we waited on the semaphore. Need to revalidate.
520 */
521 mutex_unlock(&dir->i_mutex);
522 if (result->d_op && result->d_op->d_revalidate) {
523 result = do_revalidate(result, nd);
524 if (!result)
525 result = ERR_PTR(-ENOENT);
526 }
527 return result;
528 }
529
530 /* SMP-safe */
531 static __always_inline void
532 walk_init_root(const char *name, struct nameidata *nd)
533 {
534 struct fs_struct *fs = current->fs;
535
536 read_lock(&fs->lock);
537 nd->path = fs->root;
538 path_get(&fs->root);
539 read_unlock(&fs->lock);
540 }
541
542 /*
543 * Wrapper to retry pathname resolution whenever the underlying
544 * file system returns an ESTALE.
545 *
546 * Retry the whole path once, forcing real lookup requests
547 * instead of relying on the dcache.
548 */
549 static __always_inline int link_path_walk(const char *name, struct nameidata *nd)
550 {
551 struct path save = nd->path;
552 int result;
553
554 /* make sure the stuff we saved doesn't go away */
555 path_get(&save);
556
557 result = __link_path_walk(name, nd);
558 if (result == -ESTALE) {
559 /* nd->path had been dropped */
560 nd->path = save;
561 path_get(&nd->path);
562 nd->flags |= LOOKUP_REVAL;
563 result = __link_path_walk(name, nd);
564 }
565
566 path_put(&save);
567
568 return result;
569 }
570
571 static __always_inline int __vfs_follow_link(struct nameidata *nd, const char *link)
572 {
573 int res = 0;
574 char *name;
575 if (IS_ERR(link))
576 goto fail;
577
578 if (*link == '/') {
579 path_put(&nd->path);
580 walk_init_root(link, nd);
581 }
582 res = link_path_walk(link, nd);
583 if (nd->depth || res || nd->last_type!=LAST_NORM)
584 return res;
585 /*
586 * If it is an iterative symlinks resolution in open_namei() we
587 * have to copy the last component. And all that crap because of
588 * bloody create() on broken symlinks. Furrfu...
589 */
590 name = __getname();
591 if (unlikely(!name)) {
592 path_put(&nd->path);
593 return -ENOMEM;
594 }
595 strcpy(name, nd->last.name);
596 nd->last.name = name;
597 return 0;
598 fail:
599 path_put(&nd->path);
600 return PTR_ERR(link);
601 }
602
603 static void path_put_conditional(struct path *path, struct nameidata *nd)
604 {
605 dput(path->dentry);
606 if (path->mnt != nd->path.mnt)
607 mntput(path->mnt);
608 }
609
610 static inline void path_to_nameidata(struct path *path, struct nameidata *nd)
611 {
612 dput(nd->path.dentry);
613 if (nd->path.mnt != path->mnt)
614 mntput(nd->path.mnt);
615 nd->path.mnt = path->mnt;
616 nd->path.dentry = path->dentry;
617 }
618
619 static __always_inline int __do_follow_link(struct path *path, struct nameidata *nd)
620 {
621 int error;
622 void *cookie;
623 struct dentry *dentry = path->dentry;
624
625 touch_atime(path->mnt, dentry);
626 nd_set_link(nd, NULL);
627
628 if (path->mnt != nd->path.mnt) {
629 path_to_nameidata(path, nd);
630 dget(dentry);
631 }
632 mntget(path->mnt);
633 cookie = dentry->d_inode->i_op->follow_link(dentry, nd);
634 error = PTR_ERR(cookie);
635 if (!IS_ERR(cookie)) {
636 char *s = nd_get_link(nd);
637 error = 0;
638 if (s)
639 error = __vfs_follow_link(nd, s);
640 if (dentry->d_inode->i_op->put_link)
641 dentry->d_inode->i_op->put_link(dentry, nd, cookie);
642 }
643 path_put(path);
644
645 return error;
646 }
647
648 /*
649 * This limits recursive symlink follows to 8, while
650 * limiting consecutive symlinks to 40.
651 *
652 * Without that kind of total limit, nasty chains of consecutive
653 * symlinks can cause almost arbitrarily long lookups.
654 */
655 static inline int do_follow_link(struct path *path, struct nameidata *nd)
656 {
657 int err = -ELOOP;
658 if (current->link_count >= MAX_NESTED_LINKS)
659 goto loop;
660 if (current->total_link_count >= 40)
661 goto loop;
662 BUG_ON(nd->depth >= MAX_NESTED_LINKS);
663 cond_resched();
664 err = security_inode_follow_link(path->dentry, nd);
665 if (err)
666 goto loop;
667 current->link_count++;
668 current->total_link_count++;
669 nd->depth++;
670 err = __do_follow_link(path, nd);
671 current->link_count--;
672 nd->depth--;
673 return err;
674 loop:
675 path_put_conditional(path, nd);
676 path_put(&nd->path);
677 return err;
678 }
679
680 int follow_up(struct vfsmount **mnt, struct dentry **dentry)
681 {
682 struct vfsmount *parent;
683 struct dentry *mountpoint;
684 spin_lock(&vfsmount_lock);
685 parent=(*mnt)->mnt_parent;
686 if (parent == *mnt) {
687 spin_unlock(&vfsmount_lock);
688 return 0;
689 }
690 mntget(parent);
691 mountpoint=dget((*mnt)->mnt_mountpoint);
692 spin_unlock(&vfsmount_lock);
693 dput(*dentry);
694 *dentry = mountpoint;
695 mntput(*mnt);
696 *mnt = parent;
697 return 1;
698 }
699
700 /* no need for dcache_lock, as serialization is taken care in
701 * namespace.c
702 */
703 static int __follow_mount(struct path *path)
704 {
705 int res = 0;
706 while (d_mountpoint(path->dentry)) {
707 struct vfsmount *mounted = lookup_mnt(path->mnt, path->dentry);
708 if (!mounted)
709 break;
710 dput(path->dentry);
711 if (res)
712 mntput(path->mnt);
713 path->mnt = mounted;
714 path->dentry = dget(mounted->mnt_root);
715 res = 1;
716 }
717 return res;
718 }
719
720 static void follow_mount(struct vfsmount **mnt, struct dentry **dentry)
721 {
722 while (d_mountpoint(*dentry)) {
723 struct vfsmount *mounted = lookup_mnt(*mnt, *dentry);
724 if (!mounted)
725 break;
726 dput(*dentry);
727 mntput(*mnt);
728 *mnt = mounted;
729 *dentry = dget(mounted->mnt_root);
730 }
731 }
732
733 /* no need for dcache_lock, as serialization is taken care in
734 * namespace.c
735 */
736 int follow_down(struct vfsmount **mnt, struct dentry **dentry)
737 {
738 struct vfsmount *mounted;
739
740 mounted = lookup_mnt(*mnt, *dentry);
741 if (mounted) {
742 dput(*dentry);
743 mntput(*mnt);
744 *mnt = mounted;
745 *dentry = dget(mounted->mnt_root);
746 return 1;
747 }
748 return 0;
749 }
750
751 static __always_inline void follow_dotdot(struct nameidata *nd)
752 {
753 struct fs_struct *fs = current->fs;
754
755 while(1) {
756 struct vfsmount *parent;
757 struct dentry *old = nd->path.dentry;
758
759 read_lock(&fs->lock);
760 if (nd->path.dentry == fs->root.dentry &&
761 nd->path.mnt == fs->root.mnt) {
762 read_unlock(&fs->lock);
763 break;
764 }
765 read_unlock(&fs->lock);
766 spin_lock(&dcache_lock);
767 if (nd->path.dentry != nd->path.mnt->mnt_root) {
768 nd->path.dentry = dget(nd->path.dentry->d_parent);
769 spin_unlock(&dcache_lock);
770 dput(old);
771 break;
772 }
773 spin_unlock(&dcache_lock);
774 spin_lock(&vfsmount_lock);
775 parent = nd->path.mnt->mnt_parent;
776 if (parent == nd->path.mnt) {
777 spin_unlock(&vfsmount_lock);
778 break;
779 }
780 mntget(parent);
781 nd->path.dentry = dget(nd->path.mnt->mnt_mountpoint);
782 spin_unlock(&vfsmount_lock);
783 dput(old);
784 mntput(nd->path.mnt);
785 nd->path.mnt = parent;
786 }
787 follow_mount(&nd->path.mnt, &nd->path.dentry);
788 }
789
790 /*
791 * It's more convoluted than I'd like it to be, but... it's still fairly
792 * small and for now I'd prefer to have fast path as straight as possible.
793 * It _is_ time-critical.
794 */
795 static int do_lookup(struct nameidata *nd, struct qstr *name,
796 struct path *path)
797 {
798 struct vfsmount *mnt = nd->path.mnt;
799 struct dentry *dentry = __d_lookup(nd->path.dentry, name);
800
801 if (!dentry)
802 goto need_lookup;
803 if (dentry->d_op && dentry->d_op->d_revalidate)
804 goto need_revalidate;
805 done:
806 path->mnt = mnt;
807 path->dentry = dentry;
808 __follow_mount(path);
809 return 0;
810
811 need_lookup:
812 dentry = real_lookup(nd->path.dentry, name, nd);
813 if (IS_ERR(dentry))
814 goto fail;
815 goto done;
816
817 need_revalidate:
818 dentry = do_revalidate(dentry, nd);
819 if (!dentry)
820 goto need_lookup;
821 if (IS_ERR(dentry))
822 goto fail;
823 goto done;
824
825 fail:
826 return PTR_ERR(dentry);
827 }
828
829 /*
830 * Name resolution.
831 * This is the basic name resolution function, turning a pathname into
832 * the final dentry. We expect 'base' to be positive and a directory.
833 *
834 * Returns 0 and nd will have valid dentry and mnt on success.
835 * Returns error and drops reference to input namei data on failure.
836 */
837 static int __link_path_walk(const char *name, struct nameidata *nd)
838 {
839 struct path next;
840 struct inode *inode;
841 int err;
842 unsigned int lookup_flags = nd->flags;
843
844 while (*name=='/')
845 name++;
846 if (!*name)
847 goto return_reval;
848
849 inode = nd->path.dentry->d_inode;
850 if (nd->depth)
851 lookup_flags = LOOKUP_FOLLOW | (nd->flags & LOOKUP_CONTINUE);
852
853 /* At this point we know we have a real path component. */
854 for(;;) {
855 unsigned long hash;
856 struct qstr this;
857 unsigned int c;
858
859 nd->flags |= LOOKUP_CONTINUE;
860 err = exec_permission_lite(inode);
861 if (err == -EAGAIN)
862 err = vfs_permission(nd, MAY_EXEC);
863 if (err)
864 break;
865
866 this.name = name;
867 c = *(const unsigned char *)name;
868
869 hash = init_name_hash();
870 do {
871 name++;
872 hash = partial_name_hash(c, hash);
873 c = *(const unsigned char *)name;
874 } while (c && (c != '/'));
875 this.len = name - (const char *) this.name;
876 this.hash = end_name_hash(hash);
877
878 /* remove trailing slashes? */
879 if (!c)
880 goto last_component;
881 while (*++name == '/');
882 if (!*name)
883 goto last_with_slashes;
884
885 /*
886 * "." and ".." are special - ".." especially so because it has
887 * to be able to know about the current root directory and
888 * parent relationships.
889 */
890 if (this.name[0] == '.') switch (this.len) {
891 default:
892 break;
893 case 2:
894 if (this.name[1] != '.')
895 break;
896 follow_dotdot(nd);
897 inode = nd->path.dentry->d_inode;
898 /* fallthrough */
899 case 1:
900 continue;
901 }
902 /*
903 * See if the low-level filesystem might want
904 * to use its own hash..
905 */
906 if (nd->path.dentry->d_op && nd->path.dentry->d_op->d_hash) {
907 err = nd->path.dentry->d_op->d_hash(nd->path.dentry,
908 &this);
909 if (err < 0)
910 break;
911 }
912 /* This does the actual lookups.. */
913 err = do_lookup(nd, &this, &next);
914 if (err)
915 break;
916
917 err = -ENOENT;
918 inode = next.dentry->d_inode;
919 if (!inode)
920 goto out_dput;
921 err = -ENOTDIR;
922 if (!inode->i_op)
923 goto out_dput;
924
925 if (inode->i_op->follow_link) {
926 err = do_follow_link(&next, nd);
927 if (err)
928 goto return_err;
929 err = -ENOENT;
930 inode = nd->path.dentry->d_inode;
931 if (!inode)
932 break;
933 err = -ENOTDIR;
934 if (!inode->i_op)
935 break;
936 } else
937 path_to_nameidata(&next, nd);
938 err = -ENOTDIR;
939 if (!inode->i_op->lookup)
940 break;
941 continue;
942 /* here ends the main loop */
943
944 last_with_slashes:
945 lookup_flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
946 last_component:
947 /* Clear LOOKUP_CONTINUE iff it was previously unset */
948 nd->flags &= lookup_flags | ~LOOKUP_CONTINUE;
949 if (lookup_flags & LOOKUP_PARENT)
950 goto lookup_parent;
951 if (this.name[0] == '.') switch (this.len) {
952 default:
953 break;
954 case 2:
955 if (this.name[1] != '.')
956 break;
957 follow_dotdot(nd);
958 inode = nd->path.dentry->d_inode;
959 /* fallthrough */
960 case 1:
961 goto return_reval;
962 }
963 if (nd->path.dentry->d_op && nd->path.dentry->d_op->d_hash) {
964 err = nd->path.dentry->d_op->d_hash(nd->path.dentry,
965 &this);
966 if (err < 0)
967 break;
968 }
969 err = do_lookup(nd, &this, &next);
970 if (err)
971 break;
972 inode = next.dentry->d_inode;
973 if ((lookup_flags & LOOKUP_FOLLOW)
974 && inode && inode->i_op && inode->i_op->follow_link) {
975 err = do_follow_link(&next, nd);
976 if (err)
977 goto return_err;
978 inode = nd->path.dentry->d_inode;
979 } else
980 path_to_nameidata(&next, nd);
981 err = -ENOENT;
982 if (!inode)
983 break;
984 if (lookup_flags & LOOKUP_DIRECTORY) {
985 err = -ENOTDIR;
986 if (!inode->i_op || !inode->i_op->lookup)
987 break;
988 }
989 goto return_base;
990 lookup_parent:
991 nd->last = this;
992 nd->last_type = LAST_NORM;
993 if (this.name[0] != '.')
994 goto return_base;
995 if (this.len == 1)
996 nd->last_type = LAST_DOT;
997 else if (this.len == 2 && this.name[1] == '.')
998 nd->last_type = LAST_DOTDOT;
999 else
1000 goto return_base;
1001 return_reval:
1002 /*
1003 * We bypassed the ordinary revalidation routines.
1004 * We may need to check the cached dentry for staleness.
1005 */
1006 if (nd->path.dentry && nd->path.dentry->d_sb &&
1007 (nd->path.dentry->d_sb->s_type->fs_flags & FS_REVAL_DOT)) {
1008 err = -ESTALE;
1009 /* Note: we do not d_invalidate() */
1010 if (!nd->path.dentry->d_op->d_revalidate(
1011 nd->path.dentry, nd))
1012 break;
1013 }
1014 return_base:
1015 return 0;
1016 out_dput:
1017 path_put_conditional(&next, nd);
1018 break;
1019 }
1020 path_put(&nd->path);
1021 return_err:
1022 return err;
1023 }
1024
1025 static int path_walk(const char *name, struct nameidata *nd)
1026 {
1027 current->total_link_count = 0;
1028 return link_path_walk(name, nd);
1029 }
1030
1031 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
1032 static int do_path_lookup(int dfd, const char *name,
1033 unsigned int flags, struct nameidata *nd)
1034 {
1035 int retval = 0;
1036 int fput_needed;
1037 struct file *file;
1038 struct fs_struct *fs = current->fs;
1039
1040 nd->last_type = LAST_ROOT; /* if there are only slashes... */
1041 nd->flags = flags;
1042 nd->depth = 0;
1043
1044 if (*name=='/') {
1045 read_lock(&fs->lock);
1046 nd->path = fs->root;
1047 path_get(&fs->root);
1048 read_unlock(&fs->lock);
1049 } else if (dfd == AT_FDCWD) {
1050 read_lock(&fs->lock);
1051 nd->path = fs->pwd;
1052 path_get(&fs->pwd);
1053 read_unlock(&fs->lock);
1054 } else {
1055 struct dentry *dentry;
1056
1057 file = fget_light(dfd, &fput_needed);
1058 retval = -EBADF;
1059 if (!file)
1060 goto out_fail;
1061
1062 dentry = file->f_path.dentry;
1063
1064 retval = -ENOTDIR;
1065 if (!S_ISDIR(dentry->d_inode->i_mode))
1066 goto fput_fail;
1067
1068 retval = file_permission(file, MAY_EXEC);
1069 if (retval)
1070 goto fput_fail;
1071
1072 nd->path = file->f_path;
1073 path_get(&file->f_path);
1074
1075 fput_light(file, fput_needed);
1076 }
1077
1078 retval = path_walk(name, nd);
1079 if (unlikely(!retval && !audit_dummy_context() && nd->path.dentry &&
1080 nd->path.dentry->d_inode))
1081 audit_inode(name, nd->path.dentry);
1082 out_fail:
1083 return retval;
1084
1085 fput_fail:
1086 fput_light(file, fput_needed);
1087 goto out_fail;
1088 }
1089
1090 int path_lookup(const char *name, unsigned int flags,
1091 struct nameidata *nd)
1092 {
1093 return do_path_lookup(AT_FDCWD, name, flags, nd);
1094 }
1095
1096 int kern_path(const char *name, unsigned int flags, struct path *path)
1097 {
1098 struct nameidata nd;
1099 int res = do_path_lookup(AT_FDCWD, name, flags, &nd);
1100 if (!res)
1101 *path = nd.path;
1102 return res;
1103 }
1104
1105 /**
1106 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
1107 * @dentry: pointer to dentry of the base directory
1108 * @mnt: pointer to vfs mount of the base directory
1109 * @name: pointer to file name
1110 * @flags: lookup flags
1111 * @nd: pointer to nameidata
1112 */
1113 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
1114 const char *name, unsigned int flags,
1115 struct nameidata *nd)
1116 {
1117 int retval;
1118
1119 /* same as do_path_lookup */
1120 nd->last_type = LAST_ROOT;
1121 nd->flags = flags;
1122 nd->depth = 0;
1123
1124 nd->path.dentry = dentry;
1125 nd->path.mnt = mnt;
1126 path_get(&nd->path);
1127
1128 retval = path_walk(name, nd);
1129 if (unlikely(!retval && !audit_dummy_context() && nd->path.dentry &&
1130 nd->path.dentry->d_inode))
1131 audit_inode(name, nd->path.dentry);
1132
1133 return retval;
1134
1135 }
1136
1137 /**
1138 * path_lookup_open - lookup a file path with open intent
1139 * @dfd: the directory to use as base, or AT_FDCWD
1140 * @name: pointer to file name
1141 * @lookup_flags: lookup intent flags
1142 * @nd: pointer to nameidata
1143 * @open_flags: open intent flags
1144 */
1145 int path_lookup_open(int dfd, const char *name, unsigned int lookup_flags,
1146 struct nameidata *nd, int open_flags)
1147 {
1148 struct file *filp = get_empty_filp();
1149 int err;
1150
1151 if (filp == NULL)
1152 return -ENFILE;
1153 nd->intent.open.file = filp;
1154 nd->intent.open.flags = open_flags;
1155 nd->intent.open.create_mode = 0;
1156 err = do_path_lookup(dfd, name, lookup_flags|LOOKUP_OPEN, nd);
1157 if (IS_ERR(nd->intent.open.file)) {
1158 if (err == 0) {
1159 err = PTR_ERR(nd->intent.open.file);
1160 path_put(&nd->path);
1161 }
1162 } else if (err != 0)
1163 release_open_intent(nd);
1164 return err;
1165 }
1166
1167 static struct dentry *__lookup_hash(struct qstr *name,
1168 struct dentry *base, struct nameidata *nd)
1169 {
1170 struct dentry *dentry;
1171 struct inode *inode;
1172 int err;
1173
1174 inode = base->d_inode;
1175
1176 /*
1177 * See if the low-level filesystem might want
1178 * to use its own hash..
1179 */
1180 if (base->d_op && base->d_op->d_hash) {
1181 err = base->d_op->d_hash(base, name);
1182 dentry = ERR_PTR(err);
1183 if (err < 0)
1184 goto out;
1185 }
1186
1187 dentry = cached_lookup(base, name, nd);
1188 if (!dentry) {
1189 struct dentry *new;
1190
1191 /* Don't create child dentry for a dead directory. */
1192 dentry = ERR_PTR(-ENOENT);
1193 if (IS_DEADDIR(inode))
1194 goto out;
1195
1196 new = d_alloc(base, name);
1197 dentry = ERR_PTR(-ENOMEM);
1198 if (!new)
1199 goto out;
1200 dentry = inode->i_op->lookup(inode, new, nd);
1201 if (!dentry)
1202 dentry = new;
1203 else
1204 dput(new);
1205 }
1206 out:
1207 return dentry;
1208 }
1209
1210 /*
1211 * Restricted form of lookup. Doesn't follow links, single-component only,
1212 * needs parent already locked. Doesn't follow mounts.
1213 * SMP-safe.
1214 */
1215 static struct dentry *lookup_hash(struct nameidata *nd)
1216 {
1217 int err;
1218
1219 err = inode_permission(nd->path.dentry->d_inode, MAY_EXEC);
1220 if (err)
1221 return ERR_PTR(err);
1222 return __lookup_hash(&nd->last, nd->path.dentry, nd);
1223 }
1224
1225 static int __lookup_one_len(const char *name, struct qstr *this,
1226 struct dentry *base, int len)
1227 {
1228 unsigned long hash;
1229 unsigned int c;
1230
1231 this->name = name;
1232 this->len = len;
1233 if (!len)
1234 return -EACCES;
1235
1236 hash = init_name_hash();
1237 while (len--) {
1238 c = *(const unsigned char *)name++;
1239 if (c == '/' || c == '\0')
1240 return -EACCES;
1241 hash = partial_name_hash(c, hash);
1242 }
1243 this->hash = end_name_hash(hash);
1244 return 0;
1245 }
1246
1247 /**
1248 * lookup_one_len - filesystem helper to lookup single pathname component
1249 * @name: pathname component to lookup
1250 * @base: base directory to lookup from
1251 * @len: maximum length @len should be interpreted to
1252 *
1253 * Note that this routine is purely a helper for filesystem usage and should
1254 * not be called by generic code. Also note that by using this function the
1255 * nameidata argument is passed to the filesystem methods and a filesystem
1256 * using this helper needs to be prepared for that.
1257 */
1258 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
1259 {
1260 int err;
1261 struct qstr this;
1262
1263 err = __lookup_one_len(name, &this, base, len);
1264 if (err)
1265 return ERR_PTR(err);
1266
1267 err = inode_permission(base->d_inode, MAY_EXEC);
1268 if (err)
1269 return ERR_PTR(err);
1270 return __lookup_hash(&this, base, NULL);
1271 }
1272
1273 /**
1274 * lookup_one_noperm - bad hack for sysfs
1275 * @name: pathname component to lookup
1276 * @base: base directory to lookup from
1277 *
1278 * This is a variant of lookup_one_len that doesn't perform any permission
1279 * checks. It's a horrible hack to work around the braindead sysfs
1280 * architecture and should not be used anywhere else.
1281 *
1282 * DON'T USE THIS FUNCTION EVER, thanks.
1283 */
1284 struct dentry *lookup_one_noperm(const char *name, struct dentry *base)
1285 {
1286 int err;
1287 struct qstr this;
1288
1289 err = __lookup_one_len(name, &this, base, strlen(name));
1290 if (err)
1291 return ERR_PTR(err);
1292 return __lookup_hash(&this, base, NULL);
1293 }
1294
1295 int user_path_at(int dfd, const char __user *name, unsigned flags,
1296 struct path *path)
1297 {
1298 struct nameidata nd;
1299 char *tmp = getname(name);
1300 int err = PTR_ERR(tmp);
1301 if (!IS_ERR(tmp)) {
1302
1303 BUG_ON(flags & LOOKUP_PARENT);
1304
1305 err = do_path_lookup(dfd, tmp, flags, &nd);
1306 putname(tmp);
1307 if (!err)
1308 *path = nd.path;
1309 }
1310 return err;
1311 }
1312
1313 static int user_path_parent(int dfd, const char __user *path,
1314 struct nameidata *nd, char **name)
1315 {
1316 char *s = getname(path);
1317 int error;
1318
1319 if (IS_ERR(s))
1320 return PTR_ERR(s);
1321
1322 error = do_path_lookup(dfd, s, LOOKUP_PARENT, nd);
1323 if (error)
1324 putname(s);
1325 else
1326 *name = s;
1327
1328 return error;
1329 }
1330
1331 /*
1332 * It's inline, so penalty for filesystems that don't use sticky bit is
1333 * minimal.
1334 */
1335 static inline int check_sticky(struct inode *dir, struct inode *inode)
1336 {
1337 uid_t fsuid = current_fsuid();
1338
1339 if (!(dir->i_mode & S_ISVTX))
1340 return 0;
1341 if (inode->i_uid == fsuid)
1342 return 0;
1343 if (dir->i_uid == fsuid)
1344 return 0;
1345 return !capable(CAP_FOWNER);
1346 }
1347
1348 /*
1349 * Check whether we can remove a link victim from directory dir, check
1350 * whether the type of victim is right.
1351 * 1. We can't do it if dir is read-only (done in permission())
1352 * 2. We should have write and exec permissions on dir
1353 * 3. We can't remove anything from append-only dir
1354 * 4. We can't do anything with immutable dir (done in permission())
1355 * 5. If the sticky bit on dir is set we should either
1356 * a. be owner of dir, or
1357 * b. be owner of victim, or
1358 * c. have CAP_FOWNER capability
1359 * 6. If the victim is append-only or immutable we can't do antyhing with
1360 * links pointing to it.
1361 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
1362 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
1363 * 9. We can't remove a root or mountpoint.
1364 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
1365 * nfs_async_unlink().
1366 */
1367 static int may_delete(struct inode *dir,struct dentry *victim,int isdir)
1368 {
1369 int error;
1370
1371 if (!victim->d_inode)
1372 return -ENOENT;
1373
1374 BUG_ON(victim->d_parent->d_inode != dir);
1375 audit_inode_child(victim->d_name.name, victim, dir);
1376
1377 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
1378 if (error)
1379 return error;
1380 if (IS_APPEND(dir))
1381 return -EPERM;
1382 if (check_sticky(dir, victim->d_inode)||IS_APPEND(victim->d_inode)||
1383 IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode))
1384 return -EPERM;
1385 if (isdir) {
1386 if (!S_ISDIR(victim->d_inode->i_mode))
1387 return -ENOTDIR;
1388 if (IS_ROOT(victim))
1389 return -EBUSY;
1390 } else if (S_ISDIR(victim->d_inode->i_mode))
1391 return -EISDIR;
1392 if (IS_DEADDIR(dir))
1393 return -ENOENT;
1394 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
1395 return -EBUSY;
1396 return 0;
1397 }
1398
1399 /* Check whether we can create an object with dentry child in directory
1400 * dir.
1401 * 1. We can't do it if child already exists (open has special treatment for
1402 * this case, but since we are inlined it's OK)
1403 * 2. We can't do it if dir is read-only (done in permission())
1404 * 3. We should have write and exec permissions on dir
1405 * 4. We can't do it if dir is immutable (done in permission())
1406 */
1407 static inline int may_create(struct inode *dir, struct dentry *child)
1408 {
1409 if (child->d_inode)
1410 return -EEXIST;
1411 if (IS_DEADDIR(dir))
1412 return -ENOENT;
1413 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
1414 }
1415
1416 /*
1417 * O_DIRECTORY translates into forcing a directory lookup.
1418 */
1419 static inline int lookup_flags(unsigned int f)
1420 {
1421 unsigned long retval = LOOKUP_FOLLOW;
1422
1423 if (f & O_NOFOLLOW)
1424 retval &= ~LOOKUP_FOLLOW;
1425
1426 if (f & O_DIRECTORY)
1427 retval |= LOOKUP_DIRECTORY;
1428
1429 return retval;
1430 }
1431
1432 /*
1433 * p1 and p2 should be directories on the same fs.
1434 */
1435 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
1436 {
1437 struct dentry *p;
1438
1439 if (p1 == p2) {
1440 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1441 return NULL;
1442 }
1443
1444 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
1445
1446 p = d_ancestor(p2, p1);
1447 if (p) {
1448 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
1449 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
1450 return p;
1451 }
1452
1453 p = d_ancestor(p1, p2);
1454 if (p) {
1455 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1456 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
1457 return p;
1458 }
1459
1460 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1461 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
1462 return NULL;
1463 }
1464
1465 void unlock_rename(struct dentry *p1, struct dentry *p2)
1466 {
1467 mutex_unlock(&p1->d_inode->i_mutex);
1468 if (p1 != p2) {
1469 mutex_unlock(&p2->d_inode->i_mutex);
1470 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
1471 }
1472 }
1473
1474 int vfs_create(struct inode *dir, struct dentry *dentry, int mode,
1475 struct nameidata *nd)
1476 {
1477 int error = may_create(dir, dentry);
1478
1479 if (error)
1480 return error;
1481
1482 if (!dir->i_op || !dir->i_op->create)
1483 return -EACCES; /* shouldn't it be ENOSYS? */
1484 mode &= S_IALLUGO;
1485 mode |= S_IFREG;
1486 error = security_inode_create(dir, dentry, mode);
1487 if (error)
1488 return error;
1489 DQUOT_INIT(dir);
1490 error = dir->i_op->create(dir, dentry, mode, nd);
1491 if (!error)
1492 fsnotify_create(dir, dentry);
1493 return error;
1494 }
1495
1496 int may_open(struct nameidata *nd, int acc_mode, int flag)
1497 {
1498 struct dentry *dentry = nd->path.dentry;
1499 struct inode *inode = dentry->d_inode;
1500 int error;
1501
1502 if (!inode)
1503 return -ENOENT;
1504
1505 if (S_ISLNK(inode->i_mode))
1506 return -ELOOP;
1507
1508 if (S_ISDIR(inode->i_mode) && (acc_mode & MAY_WRITE))
1509 return -EISDIR;
1510
1511 /*
1512 * FIFO's, sockets and device files are special: they don't
1513 * actually live on the filesystem itself, and as such you
1514 * can write to them even if the filesystem is read-only.
1515 */
1516 if (S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
1517 flag &= ~O_TRUNC;
1518 } else if (S_ISBLK(inode->i_mode) || S_ISCHR(inode->i_mode)) {
1519 if (nd->path.mnt->mnt_flags & MNT_NODEV)
1520 return -EACCES;
1521
1522 flag &= ~O_TRUNC;
1523 }
1524
1525 error = vfs_permission(nd, acc_mode);
1526 if (error)
1527 return error;
1528 /*
1529 * An append-only file must be opened in append mode for writing.
1530 */
1531 if (IS_APPEND(inode)) {
1532 if ((flag & FMODE_WRITE) && !(flag & O_APPEND))
1533 return -EPERM;
1534 if (flag & O_TRUNC)
1535 return -EPERM;
1536 }
1537
1538 /* O_NOATIME can only be set by the owner or superuser */
1539 if (flag & O_NOATIME)
1540 if (!is_owner_or_cap(inode))
1541 return -EPERM;
1542
1543 /*
1544 * Ensure there are no outstanding leases on the file.
1545 */
1546 error = break_lease(inode, flag);
1547 if (error)
1548 return error;
1549
1550 if (flag & O_TRUNC) {
1551 error = get_write_access(inode);
1552 if (error)
1553 return error;
1554
1555 /*
1556 * Refuse to truncate files with mandatory locks held on them.
1557 */
1558 error = locks_verify_locked(inode);
1559 if (!error)
1560 error = security_path_truncate(&nd->path, 0,
1561 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN);
1562 if (!error) {
1563 DQUOT_INIT(inode);
1564
1565 error = do_truncate(dentry, 0,
1566 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
1567 NULL);
1568 }
1569 put_write_access(inode);
1570 if (error)
1571 return error;
1572 } else
1573 if (flag & FMODE_WRITE)
1574 DQUOT_INIT(inode);
1575
1576 return 0;
1577 }
1578
1579 /*
1580 * Be careful about ever adding any more callers of this
1581 * function. Its flags must be in the namei format, not
1582 * what get passed to sys_open().
1583 */
1584 static int __open_namei_create(struct nameidata *nd, struct path *path,
1585 int flag, int mode)
1586 {
1587 int error;
1588 struct dentry *dir = nd->path.dentry;
1589
1590 if (!IS_POSIXACL(dir->d_inode))
1591 mode &= ~current->fs->umask;
1592 error = security_path_mknod(&nd->path, path->dentry, mode, 0);
1593 if (error)
1594 goto out_unlock;
1595 error = vfs_create(dir->d_inode, path->dentry, mode, nd);
1596 out_unlock:
1597 mutex_unlock(&dir->d_inode->i_mutex);
1598 dput(nd->path.dentry);
1599 nd->path.dentry = path->dentry;
1600 if (error)
1601 return error;
1602 /* Don't check for write permission, don't truncate */
1603 return may_open(nd, 0, flag & ~O_TRUNC);
1604 }
1605
1606 /*
1607 * Note that while the flag value (low two bits) for sys_open means:
1608 * 00 - read-only
1609 * 01 - write-only
1610 * 10 - read-write
1611 * 11 - special
1612 * it is changed into
1613 * 00 - no permissions needed
1614 * 01 - read-permission
1615 * 10 - write-permission
1616 * 11 - read-write
1617 * for the internal routines (ie open_namei()/follow_link() etc)
1618 * This is more logical, and also allows the 00 "no perm needed"
1619 * to be used for symlinks (where the permissions are checked
1620 * later).
1621 *
1622 */
1623 static inline int open_to_namei_flags(int flag)
1624 {
1625 if ((flag+1) & O_ACCMODE)
1626 flag++;
1627 return flag;
1628 }
1629
1630 static int open_will_write_to_fs(int flag, struct inode *inode)
1631 {
1632 /*
1633 * We'll never write to the fs underlying
1634 * a device file.
1635 */
1636 if (special_file(inode->i_mode))
1637 return 0;
1638 return (flag & O_TRUNC);
1639 }
1640
1641 /*
1642 * Note that the low bits of the passed in "open_flag"
1643 * are not the same as in the local variable "flag". See
1644 * open_to_namei_flags() for more details.
1645 */
1646 struct file *do_filp_open(int dfd, const char *pathname,
1647 int open_flag, int mode)
1648 {
1649 struct file *filp;
1650 struct nameidata nd;
1651 int acc_mode, error;
1652 struct path path;
1653 struct dentry *dir;
1654 int count = 0;
1655 int will_write;
1656 int flag = open_to_namei_flags(open_flag);
1657
1658 acc_mode = MAY_OPEN | ACC_MODE(flag);
1659
1660 /* O_TRUNC implies we need access checks for write permissions */
1661 if (flag & O_TRUNC)
1662 acc_mode |= MAY_WRITE;
1663
1664 /* Allow the LSM permission hook to distinguish append
1665 access from general write access. */
1666 if (flag & O_APPEND)
1667 acc_mode |= MAY_APPEND;
1668
1669 /*
1670 * The simplest case - just a plain lookup.
1671 */
1672 if (!(flag & O_CREAT)) {
1673 error = path_lookup_open(dfd, pathname, lookup_flags(flag),
1674 &nd, flag);
1675 if (error)
1676 return ERR_PTR(error);
1677 goto ok;
1678 }
1679
1680 /*
1681 * Create - we need to know the parent.
1682 */
1683 error = do_path_lookup(dfd, pathname, LOOKUP_PARENT, &nd);
1684 if (error)
1685 return ERR_PTR(error);
1686
1687 /*
1688 * We have the parent and last component. First of all, check
1689 * that we are not asked to creat(2) an obvious directory - that
1690 * will not do.
1691 */
1692 error = -EISDIR;
1693 if (nd.last_type != LAST_NORM || nd.last.name[nd.last.len])
1694 goto exit_parent;
1695
1696 error = -ENFILE;
1697 filp = get_empty_filp();
1698 if (filp == NULL)
1699 goto exit_parent;
1700 nd.intent.open.file = filp;
1701 nd.intent.open.flags = flag;
1702 nd.intent.open.create_mode = mode;
1703 dir = nd.path.dentry;
1704 nd.flags &= ~LOOKUP_PARENT;
1705 nd.flags |= LOOKUP_CREATE | LOOKUP_OPEN;
1706 if (flag & O_EXCL)
1707 nd.flags |= LOOKUP_EXCL;
1708 mutex_lock(&dir->d_inode->i_mutex);
1709 path.dentry = lookup_hash(&nd);
1710 path.mnt = nd.path.mnt;
1711
1712 do_last:
1713 error = PTR_ERR(path.dentry);
1714 if (IS_ERR(path.dentry)) {
1715 mutex_unlock(&dir->d_inode->i_mutex);
1716 goto exit;
1717 }
1718
1719 if (IS_ERR(nd.intent.open.file)) {
1720 error = PTR_ERR(nd.intent.open.file);
1721 goto exit_mutex_unlock;
1722 }
1723
1724 /* Negative dentry, just create the file */
1725 if (!path.dentry->d_inode) {
1726 /*
1727 * This write is needed to ensure that a
1728 * ro->rw transition does not occur between
1729 * the time when the file is created and when
1730 * a permanent write count is taken through
1731 * the 'struct file' in nameidata_to_filp().
1732 */
1733 error = mnt_want_write(nd.path.mnt);
1734 if (error)
1735 goto exit_mutex_unlock;
1736 error = __open_namei_create(&nd, &path, flag, mode);
1737 if (error) {
1738 mnt_drop_write(nd.path.mnt);
1739 goto exit;
1740 }
1741 filp = nameidata_to_filp(&nd, open_flag);
1742 mnt_drop_write(nd.path.mnt);
1743 return filp;
1744 }
1745
1746 /*
1747 * It already exists.
1748 */
1749 mutex_unlock(&dir->d_inode->i_mutex);
1750 audit_inode(pathname, path.dentry);
1751
1752 error = -EEXIST;
1753 if (flag & O_EXCL)
1754 goto exit_dput;
1755
1756 if (__follow_mount(&path)) {
1757 error = -ELOOP;
1758 if (flag & O_NOFOLLOW)
1759 goto exit_dput;
1760 }
1761
1762 error = -ENOENT;
1763 if (!path.dentry->d_inode)
1764 goto exit_dput;
1765 if (path.dentry->d_inode->i_op && path.dentry->d_inode->i_op->follow_link)
1766 goto do_link;
1767
1768 path_to_nameidata(&path, &nd);
1769 error = -EISDIR;
1770 if (path.dentry->d_inode && S_ISDIR(path.dentry->d_inode->i_mode))
1771 goto exit;
1772 ok:
1773 /*
1774 * Consider:
1775 * 1. may_open() truncates a file
1776 * 2. a rw->ro mount transition occurs
1777 * 3. nameidata_to_filp() fails due to
1778 * the ro mount.
1779 * That would be inconsistent, and should
1780 * be avoided. Taking this mnt write here
1781 * ensures that (2) can not occur.
1782 */
1783 will_write = open_will_write_to_fs(flag, nd.path.dentry->d_inode);
1784 if (will_write) {
1785 error = mnt_want_write(nd.path.mnt);
1786 if (error)
1787 goto exit;
1788 }
1789 error = may_open(&nd, acc_mode, flag);
1790 if (error) {
1791 if (will_write)
1792 mnt_drop_write(nd.path.mnt);
1793 goto exit;
1794 }
1795 filp = nameidata_to_filp(&nd, open_flag);
1796 /*
1797 * It is now safe to drop the mnt write
1798 * because the filp has had a write taken
1799 * on its behalf.
1800 */
1801 if (will_write)
1802 mnt_drop_write(nd.path.mnt);
1803 return filp;
1804
1805 exit_mutex_unlock:
1806 mutex_unlock(&dir->d_inode->i_mutex);
1807 exit_dput:
1808 path_put_conditional(&path, &nd);
1809 exit:
1810 if (!IS_ERR(nd.intent.open.file))
1811 release_open_intent(&nd);
1812 exit_parent:
1813 path_put(&nd.path);
1814 return ERR_PTR(error);
1815
1816 do_link:
1817 error = -ELOOP;
1818 if (flag & O_NOFOLLOW)
1819 goto exit_dput;
1820 /*
1821 * This is subtle. Instead of calling do_follow_link() we do the
1822 * thing by hands. The reason is that this way we have zero link_count
1823 * and path_walk() (called from ->follow_link) honoring LOOKUP_PARENT.
1824 * After that we have the parent and last component, i.e.
1825 * we are in the same situation as after the first path_walk().
1826 * Well, almost - if the last component is normal we get its copy
1827 * stored in nd->last.name and we will have to putname() it when we
1828 * are done. Procfs-like symlinks just set LAST_BIND.
1829 */
1830 nd.flags |= LOOKUP_PARENT;
1831 error = security_inode_follow_link(path.dentry, &nd);
1832 if (error)
1833 goto exit_dput;
1834 error = __do_follow_link(&path, &nd);
1835 if (error) {
1836 /* Does someone understand code flow here? Or it is only
1837 * me so stupid? Anathema to whoever designed this non-sense
1838 * with "intent.open".
1839 */
1840 release_open_intent(&nd);
1841 return ERR_PTR(error);
1842 }
1843 nd.flags &= ~LOOKUP_PARENT;
1844 if (nd.last_type == LAST_BIND)
1845 goto ok;
1846 error = -EISDIR;
1847 if (nd.last_type != LAST_NORM)
1848 goto exit;
1849 if (nd.last.name[nd.last.len]) {
1850 __putname(nd.last.name);
1851 goto exit;
1852 }
1853 error = -ELOOP;
1854 if (count++==32) {
1855 __putname(nd.last.name);
1856 goto exit;
1857 }
1858 dir = nd.path.dentry;
1859 mutex_lock(&dir->d_inode->i_mutex);
1860 path.dentry = lookup_hash(&nd);
1861 path.mnt = nd.path.mnt;
1862 __putname(nd.last.name);
1863 goto do_last;
1864 }
1865
1866 /**
1867 * filp_open - open file and return file pointer
1868 *
1869 * @filename: path to open
1870 * @flags: open flags as per the open(2) second argument
1871 * @mode: mode for the new file if O_CREAT is set, else ignored
1872 *
1873 * This is the helper to open a file from kernelspace if you really
1874 * have to. But in generally you should not do this, so please move
1875 * along, nothing to see here..
1876 */
1877 struct file *filp_open(const char *filename, int flags, int mode)
1878 {
1879 return do_filp_open(AT_FDCWD, filename, flags, mode);
1880 }
1881 EXPORT_SYMBOL(filp_open);
1882
1883 /**
1884 * lookup_create - lookup a dentry, creating it if it doesn't exist
1885 * @nd: nameidata info
1886 * @is_dir: directory flag
1887 *
1888 * Simple function to lookup and return a dentry and create it
1889 * if it doesn't exist. Is SMP-safe.
1890 *
1891 * Returns with nd->path.dentry->d_inode->i_mutex locked.
1892 */
1893 struct dentry *lookup_create(struct nameidata *nd, int is_dir)
1894 {
1895 struct dentry *dentry = ERR_PTR(-EEXIST);
1896
1897 mutex_lock_nested(&nd->path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
1898 /*
1899 * Yucky last component or no last component at all?
1900 * (foo/., foo/.., /////)
1901 */
1902 if (nd->last_type != LAST_NORM)
1903 goto fail;
1904 nd->flags &= ~LOOKUP_PARENT;
1905 nd->flags |= LOOKUP_CREATE | LOOKUP_EXCL;
1906 nd->intent.open.flags = O_EXCL;
1907
1908 /*
1909 * Do the final lookup.
1910 */
1911 dentry = lookup_hash(nd);
1912 if (IS_ERR(dentry))
1913 goto fail;
1914
1915 if (dentry->d_inode)
1916 goto eexist;
1917 /*
1918 * Special case - lookup gave negative, but... we had foo/bar/
1919 * From the vfs_mknod() POV we just have a negative dentry -
1920 * all is fine. Let's be bastards - you had / on the end, you've
1921 * been asking for (non-existent) directory. -ENOENT for you.
1922 */
1923 if (unlikely(!is_dir && nd->last.name[nd->last.len])) {
1924 dput(dentry);
1925 dentry = ERR_PTR(-ENOENT);
1926 }
1927 return dentry;
1928 eexist:
1929 dput(dentry);
1930 dentry = ERR_PTR(-EEXIST);
1931 fail:
1932 return dentry;
1933 }
1934 EXPORT_SYMBOL_GPL(lookup_create);
1935
1936 int vfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
1937 {
1938 int error = may_create(dir, dentry);
1939
1940 if (error)
1941 return error;
1942
1943 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
1944 return -EPERM;
1945
1946 if (!dir->i_op || !dir->i_op->mknod)
1947 return -EPERM;
1948
1949 error = devcgroup_inode_mknod(mode, dev);
1950 if (error)
1951 return error;
1952
1953 error = security_inode_mknod(dir, dentry, mode, dev);
1954 if (error)
1955 return error;
1956
1957 DQUOT_INIT(dir);
1958 error = dir->i_op->mknod(dir, dentry, mode, dev);
1959 if (!error)
1960 fsnotify_create(dir, dentry);
1961 return error;
1962 }
1963
1964 static int may_mknod(mode_t mode)
1965 {
1966 switch (mode & S_IFMT) {
1967 case S_IFREG:
1968 case S_IFCHR:
1969 case S_IFBLK:
1970 case S_IFIFO:
1971 case S_IFSOCK:
1972 case 0: /* zero mode translates to S_IFREG */
1973 return 0;
1974 case S_IFDIR:
1975 return -EPERM;
1976 default:
1977 return -EINVAL;
1978 }
1979 }
1980
1981 asmlinkage long sys_mknodat(int dfd, const char __user *filename, int mode,
1982 unsigned dev)
1983 {
1984 int error;
1985 char *tmp;
1986 struct dentry *dentry;
1987 struct nameidata nd;
1988
1989 if (S_ISDIR(mode))
1990 return -EPERM;
1991
1992 error = user_path_parent(dfd, filename, &nd, &tmp);
1993 if (error)
1994 return error;
1995
1996 dentry = lookup_create(&nd, 0);
1997 if (IS_ERR(dentry)) {
1998 error = PTR_ERR(dentry);
1999 goto out_unlock;
2000 }
2001 if (!IS_POSIXACL(nd.path.dentry->d_inode))
2002 mode &= ~current->fs->umask;
2003 error = may_mknod(mode);
2004 if (error)
2005 goto out_dput;
2006 error = mnt_want_write(nd.path.mnt);
2007 if (error)
2008 goto out_dput;
2009 error = security_path_mknod(&nd.path, dentry, mode, dev);
2010 if (error)
2011 goto out_drop_write;
2012 switch (mode & S_IFMT) {
2013 case 0: case S_IFREG:
2014 error = vfs_create(nd.path.dentry->d_inode,dentry,mode,&nd);
2015 break;
2016 case S_IFCHR: case S_IFBLK:
2017 error = vfs_mknod(nd.path.dentry->d_inode,dentry,mode,
2018 new_decode_dev(dev));
2019 break;
2020 case S_IFIFO: case S_IFSOCK:
2021 error = vfs_mknod(nd.path.dentry->d_inode,dentry,mode,0);
2022 break;
2023 }
2024 out_drop_write:
2025 mnt_drop_write(nd.path.mnt);
2026 out_dput:
2027 dput(dentry);
2028 out_unlock:
2029 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2030 path_put(&nd.path);
2031 putname(tmp);
2032
2033 return error;
2034 }
2035
2036 asmlinkage long sys_mknod(const char __user *filename, int mode, unsigned dev)
2037 {
2038 return sys_mknodat(AT_FDCWD, filename, mode, dev);
2039 }
2040
2041 int vfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
2042 {
2043 int error = may_create(dir, dentry);
2044
2045 if (error)
2046 return error;
2047
2048 if (!dir->i_op || !dir->i_op->mkdir)
2049 return -EPERM;
2050
2051 mode &= (S_IRWXUGO|S_ISVTX);
2052 error = security_inode_mkdir(dir, dentry, mode);
2053 if (error)
2054 return error;
2055
2056 DQUOT_INIT(dir);
2057 error = dir->i_op->mkdir(dir, dentry, mode);
2058 if (!error)
2059 fsnotify_mkdir(dir, dentry);
2060 return error;
2061 }
2062
2063 asmlinkage long sys_mkdirat(int dfd, const char __user *pathname, int mode)
2064 {
2065 int error = 0;
2066 char * tmp;
2067 struct dentry *dentry;
2068 struct nameidata nd;
2069
2070 error = user_path_parent(dfd, pathname, &nd, &tmp);
2071 if (error)
2072 goto out_err;
2073
2074 dentry = lookup_create(&nd, 1);
2075 error = PTR_ERR(dentry);
2076 if (IS_ERR(dentry))
2077 goto out_unlock;
2078
2079 if (!IS_POSIXACL(nd.path.dentry->d_inode))
2080 mode &= ~current->fs->umask;
2081 error = mnt_want_write(nd.path.mnt);
2082 if (error)
2083 goto out_dput;
2084 error = security_path_mkdir(&nd.path, dentry, mode);
2085 if (error)
2086 goto out_drop_write;
2087 error = vfs_mkdir(nd.path.dentry->d_inode, dentry, mode);
2088 out_drop_write:
2089 mnt_drop_write(nd.path.mnt);
2090 out_dput:
2091 dput(dentry);
2092 out_unlock:
2093 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2094 path_put(&nd.path);
2095 putname(tmp);
2096 out_err:
2097 return error;
2098 }
2099
2100 asmlinkage long sys_mkdir(const char __user *pathname, int mode)
2101 {
2102 return sys_mkdirat(AT_FDCWD, pathname, mode);
2103 }
2104
2105 /*
2106 * We try to drop the dentry early: we should have
2107 * a usage count of 2 if we're the only user of this
2108 * dentry, and if that is true (possibly after pruning
2109 * the dcache), then we drop the dentry now.
2110 *
2111 * A low-level filesystem can, if it choses, legally
2112 * do a
2113 *
2114 * if (!d_unhashed(dentry))
2115 * return -EBUSY;
2116 *
2117 * if it cannot handle the case of removing a directory
2118 * that is still in use by something else..
2119 */
2120 void dentry_unhash(struct dentry *dentry)
2121 {
2122 dget(dentry);
2123 shrink_dcache_parent(dentry);
2124 spin_lock(&dcache_lock);
2125 spin_lock(&dentry->d_lock);
2126 if (atomic_read(&dentry->d_count) == 2)
2127 __d_drop(dentry);
2128 spin_unlock(&dentry->d_lock);
2129 spin_unlock(&dcache_lock);
2130 }
2131
2132 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
2133 {
2134 int error = may_delete(dir, dentry, 1);
2135
2136 if (error)
2137 return error;
2138
2139 if (!dir->i_op || !dir->i_op->rmdir)
2140 return -EPERM;
2141
2142 DQUOT_INIT(dir);
2143
2144 mutex_lock(&dentry->d_inode->i_mutex);
2145 dentry_unhash(dentry);
2146 if (d_mountpoint(dentry))
2147 error = -EBUSY;
2148 else {
2149 error = security_inode_rmdir(dir, dentry);
2150 if (!error) {
2151 error = dir->i_op->rmdir(dir, dentry);
2152 if (!error)
2153 dentry->d_inode->i_flags |= S_DEAD;
2154 }
2155 }
2156 mutex_unlock(&dentry->d_inode->i_mutex);
2157 if (!error) {
2158 d_delete(dentry);
2159 }
2160 dput(dentry);
2161
2162 return error;
2163 }
2164
2165 static long do_rmdir(int dfd, const char __user *pathname)
2166 {
2167 int error = 0;
2168 char * name;
2169 struct dentry *dentry;
2170 struct nameidata nd;
2171
2172 error = user_path_parent(dfd, pathname, &nd, &name);
2173 if (error)
2174 return error;
2175
2176 switch(nd.last_type) {
2177 case LAST_DOTDOT:
2178 error = -ENOTEMPTY;
2179 goto exit1;
2180 case LAST_DOT:
2181 error = -EINVAL;
2182 goto exit1;
2183 case LAST_ROOT:
2184 error = -EBUSY;
2185 goto exit1;
2186 }
2187
2188 nd.flags &= ~LOOKUP_PARENT;
2189
2190 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2191 dentry = lookup_hash(&nd);
2192 error = PTR_ERR(dentry);
2193 if (IS_ERR(dentry))
2194 goto exit2;
2195 error = mnt_want_write(nd.path.mnt);
2196 if (error)
2197 goto exit3;
2198 error = security_path_rmdir(&nd.path, dentry);
2199 if (error)
2200 goto exit4;
2201 error = vfs_rmdir(nd.path.dentry->d_inode, dentry);
2202 exit4:
2203 mnt_drop_write(nd.path.mnt);
2204 exit3:
2205 dput(dentry);
2206 exit2:
2207 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2208 exit1:
2209 path_put(&nd.path);
2210 putname(name);
2211 return error;
2212 }
2213
2214 asmlinkage long sys_rmdir(const char __user *pathname)
2215 {
2216 return do_rmdir(AT_FDCWD, pathname);
2217 }
2218
2219 int vfs_unlink(struct inode *dir, struct dentry *dentry)
2220 {
2221 int error = may_delete(dir, dentry, 0);
2222
2223 if (error)
2224 return error;
2225
2226 if (!dir->i_op || !dir->i_op->unlink)
2227 return -EPERM;
2228
2229 DQUOT_INIT(dir);
2230
2231 mutex_lock(&dentry->d_inode->i_mutex);
2232 if (d_mountpoint(dentry))
2233 error = -EBUSY;
2234 else {
2235 error = security_inode_unlink(dir, dentry);
2236 if (!error)
2237 error = dir->i_op->unlink(dir, dentry);
2238 }
2239 mutex_unlock(&dentry->d_inode->i_mutex);
2240
2241 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
2242 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
2243 fsnotify_link_count(dentry->d_inode);
2244 d_delete(dentry);
2245 }
2246
2247 return error;
2248 }
2249
2250 /*
2251 * Make sure that the actual truncation of the file will occur outside its
2252 * directory's i_mutex. Truncate can take a long time if there is a lot of
2253 * writeout happening, and we don't want to prevent access to the directory
2254 * while waiting on the I/O.
2255 */
2256 static long do_unlinkat(int dfd, const char __user *pathname)
2257 {
2258 int error;
2259 char *name;
2260 struct dentry *dentry;
2261 struct nameidata nd;
2262 struct inode *inode = NULL;
2263
2264 error = user_path_parent(dfd, pathname, &nd, &name);
2265 if (error)
2266 return error;
2267
2268 error = -EISDIR;
2269 if (nd.last_type != LAST_NORM)
2270 goto exit1;
2271
2272 nd.flags &= ~LOOKUP_PARENT;
2273
2274 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2275 dentry = lookup_hash(&nd);
2276 error = PTR_ERR(dentry);
2277 if (!IS_ERR(dentry)) {
2278 /* Why not before? Because we want correct error value */
2279 if (nd.last.name[nd.last.len])
2280 goto slashes;
2281 inode = dentry->d_inode;
2282 if (inode)
2283 atomic_inc(&inode->i_count);
2284 error = mnt_want_write(nd.path.mnt);
2285 if (error)
2286 goto exit2;
2287 error = security_path_unlink(&nd.path, dentry);
2288 if (error)
2289 goto exit3;
2290 error = vfs_unlink(nd.path.dentry->d_inode, dentry);
2291 exit3:
2292 mnt_drop_write(nd.path.mnt);
2293 exit2:
2294 dput(dentry);
2295 }
2296 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2297 if (inode)
2298 iput(inode); /* truncate the inode here */
2299 exit1:
2300 path_put(&nd.path);
2301 putname(name);
2302 return error;
2303
2304 slashes:
2305 error = !dentry->d_inode ? -ENOENT :
2306 S_ISDIR(dentry->d_inode->i_mode) ? -EISDIR : -ENOTDIR;
2307 goto exit2;
2308 }
2309
2310 asmlinkage long sys_unlinkat(int dfd, const char __user *pathname, int flag)
2311 {
2312 if ((flag & ~AT_REMOVEDIR) != 0)
2313 return -EINVAL;
2314
2315 if (flag & AT_REMOVEDIR)
2316 return do_rmdir(dfd, pathname);
2317
2318 return do_unlinkat(dfd, pathname);
2319 }
2320
2321 asmlinkage long sys_unlink(const char __user *pathname)
2322 {
2323 return do_unlinkat(AT_FDCWD, pathname);
2324 }
2325
2326 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
2327 {
2328 int error = may_create(dir, dentry);
2329
2330 if (error)
2331 return error;
2332
2333 if (!dir->i_op || !dir->i_op->symlink)
2334 return -EPERM;
2335
2336 error = security_inode_symlink(dir, dentry, oldname);
2337 if (error)
2338 return error;
2339
2340 DQUOT_INIT(dir);
2341 error = dir->i_op->symlink(dir, dentry, oldname);
2342 if (!error)
2343 fsnotify_create(dir, dentry);
2344 return error;
2345 }
2346
2347 asmlinkage long sys_symlinkat(const char __user *oldname,
2348 int newdfd, const char __user *newname)
2349 {
2350 int error;
2351 char *from;
2352 char *to;
2353 struct dentry *dentry;
2354 struct nameidata nd;
2355
2356 from = getname(oldname);
2357 if (IS_ERR(from))
2358 return PTR_ERR(from);
2359
2360 error = user_path_parent(newdfd, newname, &nd, &to);
2361 if (error)
2362 goto out_putname;
2363
2364 dentry = lookup_create(&nd, 0);
2365 error = PTR_ERR(dentry);
2366 if (IS_ERR(dentry))
2367 goto out_unlock;
2368
2369 error = mnt_want_write(nd.path.mnt);
2370 if (error)
2371 goto out_dput;
2372 error = security_path_symlink(&nd.path, dentry, from);
2373 if (error)
2374 goto out_drop_write;
2375 error = vfs_symlink(nd.path.dentry->d_inode, dentry, from);
2376 out_drop_write:
2377 mnt_drop_write(nd.path.mnt);
2378 out_dput:
2379 dput(dentry);
2380 out_unlock:
2381 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2382 path_put(&nd.path);
2383 putname(to);
2384 out_putname:
2385 putname(from);
2386 return error;
2387 }
2388
2389 asmlinkage long sys_symlink(const char __user *oldname, const char __user *newname)
2390 {
2391 return sys_symlinkat(oldname, AT_FDCWD, newname);
2392 }
2393
2394 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2395 {
2396 struct inode *inode = old_dentry->d_inode;
2397 int error;
2398
2399 if (!inode)
2400 return -ENOENT;
2401
2402 error = may_create(dir, new_dentry);
2403 if (error)
2404 return error;
2405
2406 if (dir->i_sb != inode->i_sb)
2407 return -EXDEV;
2408
2409 /*
2410 * A link to an append-only or immutable file cannot be created.
2411 */
2412 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
2413 return -EPERM;
2414 if (!dir->i_op || !dir->i_op->link)
2415 return -EPERM;
2416 if (S_ISDIR(inode->i_mode))
2417 return -EPERM;
2418
2419 error = security_inode_link(old_dentry, dir, new_dentry);
2420 if (error)
2421 return error;
2422
2423 mutex_lock(&inode->i_mutex);
2424 DQUOT_INIT(dir);
2425 error = dir->i_op->link(old_dentry, dir, new_dentry);
2426 mutex_unlock(&inode->i_mutex);
2427 if (!error)
2428 fsnotify_link(dir, inode, new_dentry);
2429 return error;
2430 }
2431
2432 /*
2433 * Hardlinks are often used in delicate situations. We avoid
2434 * security-related surprises by not following symlinks on the
2435 * newname. --KAB
2436 *
2437 * We don't follow them on the oldname either to be compatible
2438 * with linux 2.0, and to avoid hard-linking to directories
2439 * and other special files. --ADM
2440 */
2441 asmlinkage long sys_linkat(int olddfd, const char __user *oldname,
2442 int newdfd, const char __user *newname,
2443 int flags)
2444 {
2445 struct dentry *new_dentry;
2446 struct nameidata nd;
2447 struct path old_path;
2448 int error;
2449 char *to;
2450
2451 if ((flags & ~AT_SYMLINK_FOLLOW) != 0)
2452 return -EINVAL;
2453
2454 error = user_path_at(olddfd, oldname,
2455 flags & AT_SYMLINK_FOLLOW ? LOOKUP_FOLLOW : 0,
2456 &old_path);
2457 if (error)
2458 return error;
2459
2460 error = user_path_parent(newdfd, newname, &nd, &to);
2461 if (error)
2462 goto out;
2463 error = -EXDEV;
2464 if (old_path.mnt != nd.path.mnt)
2465 goto out_release;
2466 new_dentry = lookup_create(&nd, 0);
2467 error = PTR_ERR(new_dentry);
2468 if (IS_ERR(new_dentry))
2469 goto out_unlock;
2470 error = mnt_want_write(nd.path.mnt);
2471 if (error)
2472 goto out_dput;
2473 error = security_path_link(old_path.dentry, &nd.path, new_dentry);
2474 if (error)
2475 goto out_drop_write;
2476 error = vfs_link(old_path.dentry, nd.path.dentry->d_inode, new_dentry);
2477 out_drop_write:
2478 mnt_drop_write(nd.path.mnt);
2479 out_dput:
2480 dput(new_dentry);
2481 out_unlock:
2482 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2483 out_release:
2484 path_put(&nd.path);
2485 putname(to);
2486 out:
2487 path_put(&old_path);
2488
2489 return error;
2490 }
2491
2492 asmlinkage long sys_link(const char __user *oldname, const char __user *newname)
2493 {
2494 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
2495 }
2496
2497 /*
2498 * The worst of all namespace operations - renaming directory. "Perverted"
2499 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
2500 * Problems:
2501 * a) we can get into loop creation. Check is done in is_subdir().
2502 * b) race potential - two innocent renames can create a loop together.
2503 * That's where 4.4 screws up. Current fix: serialization on
2504 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
2505 * story.
2506 * c) we have to lock _three_ objects - parents and victim (if it exists).
2507 * And that - after we got ->i_mutex on parents (until then we don't know
2508 * whether the target exists). Solution: try to be smart with locking
2509 * order for inodes. We rely on the fact that tree topology may change
2510 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
2511 * move will be locked. Thus we can rank directories by the tree
2512 * (ancestors first) and rank all non-directories after them.
2513 * That works since everybody except rename does "lock parent, lookup,
2514 * lock child" and rename is under ->s_vfs_rename_mutex.
2515 * HOWEVER, it relies on the assumption that any object with ->lookup()
2516 * has no more than 1 dentry. If "hybrid" objects will ever appear,
2517 * we'd better make sure that there's no link(2) for them.
2518 * d) some filesystems don't support opened-but-unlinked directories,
2519 * either because of layout or because they are not ready to deal with
2520 * all cases correctly. The latter will be fixed (taking this sort of
2521 * stuff into VFS), but the former is not going away. Solution: the same
2522 * trick as in rmdir().
2523 * e) conversion from fhandle to dentry may come in the wrong moment - when
2524 * we are removing the target. Solution: we will have to grab ->i_mutex
2525 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
2526 * ->i_mutex on parents, which works but leads to some truely excessive
2527 * locking].
2528 */
2529 static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry,
2530 struct inode *new_dir, struct dentry *new_dentry)
2531 {
2532 int error = 0;
2533 struct inode *target;
2534
2535 /*
2536 * If we are going to change the parent - check write permissions,
2537 * we'll need to flip '..'.
2538 */
2539 if (new_dir != old_dir) {
2540 error = inode_permission(old_dentry->d_inode, MAY_WRITE);
2541 if (error)
2542 return error;
2543 }
2544
2545 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
2546 if (error)
2547 return error;
2548
2549 target = new_dentry->d_inode;
2550 if (target) {
2551 mutex_lock(&target->i_mutex);
2552 dentry_unhash(new_dentry);
2553 }
2554 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
2555 error = -EBUSY;
2556 else
2557 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
2558 if (target) {
2559 if (!error)
2560 target->i_flags |= S_DEAD;
2561 mutex_unlock(&target->i_mutex);
2562 if (d_unhashed(new_dentry))
2563 d_rehash(new_dentry);
2564 dput(new_dentry);
2565 }
2566 if (!error)
2567 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
2568 d_move(old_dentry,new_dentry);
2569 return error;
2570 }
2571
2572 static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry,
2573 struct inode *new_dir, struct dentry *new_dentry)
2574 {
2575 struct inode *target;
2576 int error;
2577
2578 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
2579 if (error)
2580 return error;
2581
2582 dget(new_dentry);
2583 target = new_dentry->d_inode;
2584 if (target)
2585 mutex_lock(&target->i_mutex);
2586 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
2587 error = -EBUSY;
2588 else
2589 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
2590 if (!error) {
2591 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
2592 d_move(old_dentry, new_dentry);
2593 }
2594 if (target)
2595 mutex_unlock(&target->i_mutex);
2596 dput(new_dentry);
2597 return error;
2598 }
2599
2600 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
2601 struct inode *new_dir, struct dentry *new_dentry)
2602 {
2603 int error;
2604 int is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
2605 const char *old_name;
2606
2607 if (old_dentry->d_inode == new_dentry->d_inode)
2608 return 0;
2609
2610 error = may_delete(old_dir, old_dentry, is_dir);
2611 if (error)
2612 return error;
2613
2614 if (!new_dentry->d_inode)
2615 error = may_create(new_dir, new_dentry);
2616 else
2617 error = may_delete(new_dir, new_dentry, is_dir);
2618 if (error)
2619 return error;
2620
2621 if (!old_dir->i_op || !old_dir->i_op->rename)
2622 return -EPERM;
2623
2624 DQUOT_INIT(old_dir);
2625 DQUOT_INIT(new_dir);
2626
2627 old_name = fsnotify_oldname_init(old_dentry->d_name.name);
2628
2629 if (is_dir)
2630 error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry);
2631 else
2632 error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry);
2633 if (!error) {
2634 const char *new_name = old_dentry->d_name.name;
2635 fsnotify_move(old_dir, new_dir, old_name, new_name, is_dir,
2636 new_dentry->d_inode, old_dentry);
2637 }
2638 fsnotify_oldname_free(old_name);
2639
2640 return error;
2641 }
2642
2643 asmlinkage long sys_renameat(int olddfd, const char __user *oldname,
2644 int newdfd, const char __user *newname)
2645 {
2646 struct dentry *old_dir, *new_dir;
2647 struct dentry *old_dentry, *new_dentry;
2648 struct dentry *trap;
2649 struct nameidata oldnd, newnd;
2650 char *from;
2651 char *to;
2652 int error;
2653
2654 error = user_path_parent(olddfd, oldname, &oldnd, &from);
2655 if (error)
2656 goto exit;
2657
2658 error = user_path_parent(newdfd, newname, &newnd, &to);
2659 if (error)
2660 goto exit1;
2661
2662 error = -EXDEV;
2663 if (oldnd.path.mnt != newnd.path.mnt)
2664 goto exit2;
2665
2666 old_dir = oldnd.path.dentry;
2667 error = -EBUSY;
2668 if (oldnd.last_type != LAST_NORM)
2669 goto exit2;
2670
2671 new_dir = newnd.path.dentry;
2672 if (newnd.last_type != LAST_NORM)
2673 goto exit2;
2674
2675 oldnd.flags &= ~LOOKUP_PARENT;
2676 newnd.flags &= ~LOOKUP_PARENT;
2677 newnd.flags |= LOOKUP_RENAME_TARGET;
2678
2679 trap = lock_rename(new_dir, old_dir);
2680
2681 old_dentry = lookup_hash(&oldnd);
2682 error = PTR_ERR(old_dentry);
2683 if (IS_ERR(old_dentry))
2684 goto exit3;
2685 /* source must exist */
2686 error = -ENOENT;
2687 if (!old_dentry->d_inode)
2688 goto exit4;
2689 /* unless the source is a directory trailing slashes give -ENOTDIR */
2690 if (!S_ISDIR(old_dentry->d_inode->i_mode)) {
2691 error = -ENOTDIR;
2692 if (oldnd.last.name[oldnd.last.len])
2693 goto exit4;
2694 if (newnd.last.name[newnd.last.len])
2695 goto exit4;
2696 }
2697 /* source should not be ancestor of target */
2698 error = -EINVAL;
2699 if (old_dentry == trap)
2700 goto exit4;
2701 new_dentry = lookup_hash(&newnd);
2702 error = PTR_ERR(new_dentry);
2703 if (IS_ERR(new_dentry))
2704 goto exit4;
2705 /* target should not be an ancestor of source */
2706 error = -ENOTEMPTY;
2707 if (new_dentry == trap)
2708 goto exit5;
2709
2710 error = mnt_want_write(oldnd.path.mnt);
2711 if (error)
2712 goto exit5;
2713 error = security_path_rename(&oldnd.path, old_dentry,
2714 &newnd.path, new_dentry);
2715 if (error)
2716 goto exit6;
2717 error = vfs_rename(old_dir->d_inode, old_dentry,
2718 new_dir->d_inode, new_dentry);
2719 exit6:
2720 mnt_drop_write(oldnd.path.mnt);
2721 exit5:
2722 dput(new_dentry);
2723 exit4:
2724 dput(old_dentry);
2725 exit3:
2726 unlock_rename(new_dir, old_dir);
2727 exit2:
2728 path_put(&newnd.path);
2729 putname(to);
2730 exit1:
2731 path_put(&oldnd.path);
2732 putname(from);
2733 exit:
2734 return error;
2735 }
2736
2737 asmlinkage long sys_rename(const char __user *oldname, const char __user *newname)
2738 {
2739 return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname);
2740 }
2741
2742 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link)
2743 {
2744 int len;
2745
2746 len = PTR_ERR(link);
2747 if (IS_ERR(link))
2748 goto out;
2749
2750 len = strlen(link);
2751 if (len > (unsigned) buflen)
2752 len = buflen;
2753 if (copy_to_user(buffer, link, len))
2754 len = -EFAULT;
2755 out:
2756 return len;
2757 }
2758
2759 /*
2760 * A helper for ->readlink(). This should be used *ONLY* for symlinks that
2761 * have ->follow_link() touching nd only in nd_set_link(). Using (or not
2762 * using) it for any given inode is up to filesystem.
2763 */
2764 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
2765 {
2766 struct nameidata nd;
2767 void *cookie;
2768 int res;
2769
2770 nd.depth = 0;
2771 cookie = dentry->d_inode->i_op->follow_link(dentry, &nd);
2772 if (IS_ERR(cookie))
2773 return PTR_ERR(cookie);
2774
2775 res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd));
2776 if (dentry->d_inode->i_op->put_link)
2777 dentry->d_inode->i_op->put_link(dentry, &nd, cookie);
2778 return res;
2779 }
2780
2781 int vfs_follow_link(struct nameidata *nd, const char *link)
2782 {
2783 return __vfs_follow_link(nd, link);
2784 }
2785
2786 /* get the link contents into pagecache */
2787 static char *page_getlink(struct dentry * dentry, struct page **ppage)
2788 {
2789 struct page * page;
2790 struct address_space *mapping = dentry->d_inode->i_mapping;
2791 page = read_mapping_page(mapping, 0, NULL);
2792 if (IS_ERR(page))
2793 return (char*)page;
2794 *ppage = page;
2795 return kmap(page);
2796 }
2797
2798 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
2799 {
2800 struct page *page = NULL;
2801 char *s = page_getlink(dentry, &page);
2802 int res = vfs_readlink(dentry,buffer,buflen,s);
2803 if (page) {
2804 kunmap(page);
2805 page_cache_release(page);
2806 }
2807 return res;
2808 }
2809
2810 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd)
2811 {
2812 struct page *page = NULL;
2813 nd_set_link(nd, page_getlink(dentry, &page));
2814 return page;
2815 }
2816
2817 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
2818 {
2819 struct page *page = cookie;
2820
2821 if (page) {
2822 kunmap(page);
2823 page_cache_release(page);
2824 }
2825 }
2826
2827 int __page_symlink(struct inode *inode, const char *symname, int len,
2828 gfp_t gfp_mask)
2829 {
2830 struct address_space *mapping = inode->i_mapping;
2831 struct page *page;
2832 void *fsdata;
2833 int err;
2834 char *kaddr;
2835
2836 retry:
2837 err = pagecache_write_begin(NULL, mapping, 0, len-1,
2838 AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
2839 if (err)
2840 goto fail;
2841
2842 kaddr = kmap_atomic(page, KM_USER0);
2843 memcpy(kaddr, symname, len-1);
2844 kunmap_atomic(kaddr, KM_USER0);
2845
2846 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
2847 page, fsdata);
2848 if (err < 0)
2849 goto fail;
2850 if (err < len-1)
2851 goto retry;
2852
2853 mark_inode_dirty(inode);
2854 return 0;
2855 fail:
2856 return err;
2857 }
2858
2859 int page_symlink(struct inode *inode, const char *symname, int len)
2860 {
2861 return __page_symlink(inode, symname, len,
2862 mapping_gfp_mask(inode->i_mapping));
2863 }
2864
2865 const struct inode_operations page_symlink_inode_operations = {
2866 .readlink = generic_readlink,
2867 .follow_link = page_follow_link_light,
2868 .put_link = page_put_link,
2869 };
2870
2871 EXPORT_SYMBOL(user_path_at);
2872 EXPORT_SYMBOL(follow_down);
2873 EXPORT_SYMBOL(follow_up);
2874 EXPORT_SYMBOL(get_write_access); /* binfmt_aout */
2875 EXPORT_SYMBOL(getname);
2876 EXPORT_SYMBOL(lock_rename);
2877 EXPORT_SYMBOL(lookup_one_len);
2878 EXPORT_SYMBOL(page_follow_link_light);
2879 EXPORT_SYMBOL(page_put_link);
2880 EXPORT_SYMBOL(page_readlink);
2881 EXPORT_SYMBOL(__page_symlink);
2882 EXPORT_SYMBOL(page_symlink);
2883 EXPORT_SYMBOL(page_symlink_inode_operations);
2884 EXPORT_SYMBOL(path_lookup);
2885 EXPORT_SYMBOL(kern_path);
2886 EXPORT_SYMBOL(vfs_path_lookup);
2887 EXPORT_SYMBOL(inode_permission);
2888 EXPORT_SYMBOL(vfs_permission);
2889 EXPORT_SYMBOL(file_permission);
2890 EXPORT_SYMBOL(unlock_rename);
2891 EXPORT_SYMBOL(vfs_create);
2892 EXPORT_SYMBOL(vfs_follow_link);
2893 EXPORT_SYMBOL(vfs_link);
2894 EXPORT_SYMBOL(vfs_mkdir);
2895 EXPORT_SYMBOL(vfs_mknod);
2896 EXPORT_SYMBOL(generic_permission);
2897 EXPORT_SYMBOL(vfs_readlink);
2898 EXPORT_SYMBOL(vfs_rename);
2899 EXPORT_SYMBOL(vfs_rmdir);
2900 EXPORT_SYMBOL(vfs_symlink);
2901 EXPORT_SYMBOL(vfs_unlink);
2902 EXPORT_SYMBOL(dentry_unhash);
2903 EXPORT_SYMBOL(generic_readlink);
This page took 0.084636 seconds and 6 git commands to generate.