Merge branch 'acpi-pci-hotplug'
[deliverable/linux.git] / fs / namei.c
1 /*
2 * linux/fs/namei.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * Some corrections by tytso.
9 */
10
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12 * lookup logic.
13 */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15 */
16
17 #include <linux/init.h>
18 #include <linux/export.h>
19 #include <linux/kernel.h>
20 #include <linux/slab.h>
21 #include <linux/fs.h>
22 #include <linux/namei.h>
23 #include <linux/pagemap.h>
24 #include <linux/fsnotify.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/ima.h>
28 #include <linux/syscalls.h>
29 #include <linux/mount.h>
30 #include <linux/audit.h>
31 #include <linux/capability.h>
32 #include <linux/file.h>
33 #include <linux/fcntl.h>
34 #include <linux/device_cgroup.h>
35 #include <linux/fs_struct.h>
36 #include <linux/posix_acl.h>
37 #include <asm/uaccess.h>
38
39 #include "internal.h"
40 #include "mount.h"
41
42 /* [Feb-1997 T. Schoebel-Theuer]
43 * Fundamental changes in the pathname lookup mechanisms (namei)
44 * were necessary because of omirr. The reason is that omirr needs
45 * to know the _real_ pathname, not the user-supplied one, in case
46 * of symlinks (and also when transname replacements occur).
47 *
48 * The new code replaces the old recursive symlink resolution with
49 * an iterative one (in case of non-nested symlink chains). It does
50 * this with calls to <fs>_follow_link().
51 * As a side effect, dir_namei(), _namei() and follow_link() are now
52 * replaced with a single function lookup_dentry() that can handle all
53 * the special cases of the former code.
54 *
55 * With the new dcache, the pathname is stored at each inode, at least as
56 * long as the refcount of the inode is positive. As a side effect, the
57 * size of the dcache depends on the inode cache and thus is dynamic.
58 *
59 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
60 * resolution to correspond with current state of the code.
61 *
62 * Note that the symlink resolution is not *completely* iterative.
63 * There is still a significant amount of tail- and mid- recursion in
64 * the algorithm. Also, note that <fs>_readlink() is not used in
65 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
66 * may return different results than <fs>_follow_link(). Many virtual
67 * filesystems (including /proc) exhibit this behavior.
68 */
69
70 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
71 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
72 * and the name already exists in form of a symlink, try to create the new
73 * name indicated by the symlink. The old code always complained that the
74 * name already exists, due to not following the symlink even if its target
75 * is nonexistent. The new semantics affects also mknod() and link() when
76 * the name is a symlink pointing to a non-existent name.
77 *
78 * I don't know which semantics is the right one, since I have no access
79 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
80 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
81 * "old" one. Personally, I think the new semantics is much more logical.
82 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
83 * file does succeed in both HP-UX and SunOs, but not in Solaris
84 * and in the old Linux semantics.
85 */
86
87 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
88 * semantics. See the comments in "open_namei" and "do_link" below.
89 *
90 * [10-Sep-98 Alan Modra] Another symlink change.
91 */
92
93 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
94 * inside the path - always follow.
95 * in the last component in creation/removal/renaming - never follow.
96 * if LOOKUP_FOLLOW passed - follow.
97 * if the pathname has trailing slashes - follow.
98 * otherwise - don't follow.
99 * (applied in that order).
100 *
101 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
102 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
103 * During the 2.4 we need to fix the userland stuff depending on it -
104 * hopefully we will be able to get rid of that wart in 2.5. So far only
105 * XEmacs seems to be relying on it...
106 */
107 /*
108 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
109 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
110 * any extra contention...
111 */
112
113 /* In order to reduce some races, while at the same time doing additional
114 * checking and hopefully speeding things up, we copy filenames to the
115 * kernel data space before using them..
116 *
117 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
118 * PATH_MAX includes the nul terminator --RR.
119 */
120 void final_putname(struct filename *name)
121 {
122 if (name->separate) {
123 __putname(name->name);
124 kfree(name);
125 } else {
126 __putname(name);
127 }
128 }
129
130 #define EMBEDDED_NAME_MAX (PATH_MAX - sizeof(struct filename))
131
132 static struct filename *
133 getname_flags(const char __user *filename, int flags, int *empty)
134 {
135 struct filename *result, *err;
136 int len;
137 long max;
138 char *kname;
139
140 result = audit_reusename(filename);
141 if (result)
142 return result;
143
144 result = __getname();
145 if (unlikely(!result))
146 return ERR_PTR(-ENOMEM);
147
148 /*
149 * First, try to embed the struct filename inside the names_cache
150 * allocation
151 */
152 kname = (char *)result + sizeof(*result);
153 result->name = kname;
154 result->separate = false;
155 max = EMBEDDED_NAME_MAX;
156
157 recopy:
158 len = strncpy_from_user(kname, filename, max);
159 if (unlikely(len < 0)) {
160 err = ERR_PTR(len);
161 goto error;
162 }
163
164 /*
165 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
166 * separate struct filename so we can dedicate the entire
167 * names_cache allocation for the pathname, and re-do the copy from
168 * userland.
169 */
170 if (len == EMBEDDED_NAME_MAX && max == EMBEDDED_NAME_MAX) {
171 kname = (char *)result;
172
173 result = kzalloc(sizeof(*result), GFP_KERNEL);
174 if (!result) {
175 err = ERR_PTR(-ENOMEM);
176 result = (struct filename *)kname;
177 goto error;
178 }
179 result->name = kname;
180 result->separate = true;
181 max = PATH_MAX;
182 goto recopy;
183 }
184
185 /* The empty path is special. */
186 if (unlikely(!len)) {
187 if (empty)
188 *empty = 1;
189 err = ERR_PTR(-ENOENT);
190 if (!(flags & LOOKUP_EMPTY))
191 goto error;
192 }
193
194 err = ERR_PTR(-ENAMETOOLONG);
195 if (unlikely(len >= PATH_MAX))
196 goto error;
197
198 result->uptr = filename;
199 audit_getname(result);
200 return result;
201
202 error:
203 final_putname(result);
204 return err;
205 }
206
207 struct filename *
208 getname(const char __user * filename)
209 {
210 return getname_flags(filename, 0, NULL);
211 }
212 EXPORT_SYMBOL(getname);
213
214 #ifdef CONFIG_AUDITSYSCALL
215 void putname(struct filename *name)
216 {
217 if (unlikely(!audit_dummy_context()))
218 return audit_putname(name);
219 final_putname(name);
220 }
221 #endif
222
223 static int check_acl(struct inode *inode, int mask)
224 {
225 #ifdef CONFIG_FS_POSIX_ACL
226 struct posix_acl *acl;
227
228 if (mask & MAY_NOT_BLOCK) {
229 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
230 if (!acl)
231 return -EAGAIN;
232 /* no ->get_acl() calls in RCU mode... */
233 if (acl == ACL_NOT_CACHED)
234 return -ECHILD;
235 return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
236 }
237
238 acl = get_cached_acl(inode, ACL_TYPE_ACCESS);
239
240 /*
241 * A filesystem can force a ACL callback by just never filling the
242 * ACL cache. But normally you'd fill the cache either at inode
243 * instantiation time, or on the first ->get_acl call.
244 *
245 * If the filesystem doesn't have a get_acl() function at all, we'll
246 * just create the negative cache entry.
247 */
248 if (acl == ACL_NOT_CACHED) {
249 if (inode->i_op->get_acl) {
250 acl = inode->i_op->get_acl(inode, ACL_TYPE_ACCESS);
251 if (IS_ERR(acl))
252 return PTR_ERR(acl);
253 } else {
254 set_cached_acl(inode, ACL_TYPE_ACCESS, NULL);
255 return -EAGAIN;
256 }
257 }
258
259 if (acl) {
260 int error = posix_acl_permission(inode, acl, mask);
261 posix_acl_release(acl);
262 return error;
263 }
264 #endif
265
266 return -EAGAIN;
267 }
268
269 /*
270 * This does the basic permission checking
271 */
272 static int acl_permission_check(struct inode *inode, int mask)
273 {
274 unsigned int mode = inode->i_mode;
275
276 if (likely(uid_eq(current_fsuid(), inode->i_uid)))
277 mode >>= 6;
278 else {
279 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
280 int error = check_acl(inode, mask);
281 if (error != -EAGAIN)
282 return error;
283 }
284
285 if (in_group_p(inode->i_gid))
286 mode >>= 3;
287 }
288
289 /*
290 * If the DACs are ok we don't need any capability check.
291 */
292 if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
293 return 0;
294 return -EACCES;
295 }
296
297 /**
298 * generic_permission - check for access rights on a Posix-like filesystem
299 * @inode: inode to check access rights for
300 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
301 *
302 * Used to check for read/write/execute permissions on a file.
303 * We use "fsuid" for this, letting us set arbitrary permissions
304 * for filesystem access without changing the "normal" uids which
305 * are used for other things.
306 *
307 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
308 * request cannot be satisfied (eg. requires blocking or too much complexity).
309 * It would then be called again in ref-walk mode.
310 */
311 int generic_permission(struct inode *inode, int mask)
312 {
313 int ret;
314
315 /*
316 * Do the basic permission checks.
317 */
318 ret = acl_permission_check(inode, mask);
319 if (ret != -EACCES)
320 return ret;
321
322 if (S_ISDIR(inode->i_mode)) {
323 /* DACs are overridable for directories */
324 if (inode_capable(inode, CAP_DAC_OVERRIDE))
325 return 0;
326 if (!(mask & MAY_WRITE))
327 if (inode_capable(inode, CAP_DAC_READ_SEARCH))
328 return 0;
329 return -EACCES;
330 }
331 /*
332 * Read/write DACs are always overridable.
333 * Executable DACs are overridable when there is
334 * at least one exec bit set.
335 */
336 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
337 if (inode_capable(inode, CAP_DAC_OVERRIDE))
338 return 0;
339
340 /*
341 * Searching includes executable on directories, else just read.
342 */
343 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
344 if (mask == MAY_READ)
345 if (inode_capable(inode, CAP_DAC_READ_SEARCH))
346 return 0;
347
348 return -EACCES;
349 }
350
351 /*
352 * We _really_ want to just do "generic_permission()" without
353 * even looking at the inode->i_op values. So we keep a cache
354 * flag in inode->i_opflags, that says "this has not special
355 * permission function, use the fast case".
356 */
357 static inline int do_inode_permission(struct inode *inode, int mask)
358 {
359 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
360 if (likely(inode->i_op->permission))
361 return inode->i_op->permission(inode, mask);
362
363 /* This gets set once for the inode lifetime */
364 spin_lock(&inode->i_lock);
365 inode->i_opflags |= IOP_FASTPERM;
366 spin_unlock(&inode->i_lock);
367 }
368 return generic_permission(inode, mask);
369 }
370
371 /**
372 * __inode_permission - Check for access rights to a given inode
373 * @inode: Inode to check permission on
374 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
375 *
376 * Check for read/write/execute permissions on an inode.
377 *
378 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
379 *
380 * This does not check for a read-only file system. You probably want
381 * inode_permission().
382 */
383 int __inode_permission(struct inode *inode, int mask)
384 {
385 int retval;
386
387 if (unlikely(mask & MAY_WRITE)) {
388 /*
389 * Nobody gets write access to an immutable file.
390 */
391 if (IS_IMMUTABLE(inode))
392 return -EACCES;
393 }
394
395 retval = do_inode_permission(inode, mask);
396 if (retval)
397 return retval;
398
399 retval = devcgroup_inode_permission(inode, mask);
400 if (retval)
401 return retval;
402
403 return security_inode_permission(inode, mask);
404 }
405
406 /**
407 * sb_permission - Check superblock-level permissions
408 * @sb: Superblock of inode to check permission on
409 * @inode: Inode to check permission on
410 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
411 *
412 * Separate out file-system wide checks from inode-specific permission checks.
413 */
414 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
415 {
416 if (unlikely(mask & MAY_WRITE)) {
417 umode_t mode = inode->i_mode;
418
419 /* Nobody gets write access to a read-only fs. */
420 if ((sb->s_flags & MS_RDONLY) &&
421 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
422 return -EROFS;
423 }
424 return 0;
425 }
426
427 /**
428 * inode_permission - Check for access rights to a given inode
429 * @inode: Inode to check permission on
430 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
431 *
432 * Check for read/write/execute permissions on an inode. We use fs[ug]id for
433 * this, letting us set arbitrary permissions for filesystem access without
434 * changing the "normal" UIDs which are used for other things.
435 *
436 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
437 */
438 int inode_permission(struct inode *inode, int mask)
439 {
440 int retval;
441
442 retval = sb_permission(inode->i_sb, inode, mask);
443 if (retval)
444 return retval;
445 return __inode_permission(inode, mask);
446 }
447
448 /**
449 * path_get - get a reference to a path
450 * @path: path to get the reference to
451 *
452 * Given a path increment the reference count to the dentry and the vfsmount.
453 */
454 void path_get(const struct path *path)
455 {
456 mntget(path->mnt);
457 dget(path->dentry);
458 }
459 EXPORT_SYMBOL(path_get);
460
461 /**
462 * path_put - put a reference to a path
463 * @path: path to put the reference to
464 *
465 * Given a path decrement the reference count to the dentry and the vfsmount.
466 */
467 void path_put(const struct path *path)
468 {
469 dput(path->dentry);
470 mntput(path->mnt);
471 }
472 EXPORT_SYMBOL(path_put);
473
474 /*
475 * Path walking has 2 modes, rcu-walk and ref-walk (see
476 * Documentation/filesystems/path-lookup.txt). In situations when we can't
477 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
478 * normal reference counts on dentries and vfsmounts to transition to rcu-walk
479 * mode. Refcounts are grabbed at the last known good point before rcu-walk
480 * got stuck, so ref-walk may continue from there. If this is not successful
481 * (eg. a seqcount has changed), then failure is returned and it's up to caller
482 * to restart the path walk from the beginning in ref-walk mode.
483 */
484
485 static inline void lock_rcu_walk(void)
486 {
487 br_read_lock(&vfsmount_lock);
488 rcu_read_lock();
489 }
490
491 static inline void unlock_rcu_walk(void)
492 {
493 rcu_read_unlock();
494 br_read_unlock(&vfsmount_lock);
495 }
496
497 /*
498 * When we move over from the RCU domain to properly refcounted
499 * long-lived dentries, we need to check the sequence numbers
500 * we got before lookup very carefully.
501 *
502 * We cannot blindly increment a dentry refcount - even if it
503 * is not locked - if it is zero, because it may have gone
504 * through the final d_kill() logic already.
505 *
506 * So for a zero refcount, we need to get the spinlock (which is
507 * safe even for a dead dentry because the de-allocation is
508 * RCU-delayed), and check the sequence count under the lock.
509 *
510 * Once we have checked the sequence count, we know it is live,
511 * and since we hold the spinlock it cannot die from under us.
512 *
513 * In contrast, if the reference count wasn't zero, we can just
514 * increment the lockref without having to take the spinlock.
515 * Even if the sequence number ends up being stale, we haven't
516 * gone through the final dput() and killed the dentry yet.
517 */
518 static inline int d_rcu_to_refcount(struct dentry *dentry, seqcount_t *validate, unsigned seq)
519 {
520 int gotref;
521
522 gotref = lockref_get_or_lock(&dentry->d_lockref);
523
524 /* Does the sequence number still match? */
525 if (read_seqcount_retry(validate, seq)) {
526 if (gotref)
527 dput(dentry);
528 else
529 spin_unlock(&dentry->d_lock);
530 return -ECHILD;
531 }
532
533 /* Get the ref now, if we couldn't get it originally */
534 if (!gotref) {
535 dentry->d_lockref.count++;
536 spin_unlock(&dentry->d_lock);
537 }
538 return 0;
539 }
540
541 /**
542 * unlazy_walk - try to switch to ref-walk mode.
543 * @nd: nameidata pathwalk data
544 * @dentry: child of nd->path.dentry or NULL
545 * Returns: 0 on success, -ECHILD on failure
546 *
547 * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry
548 * for ref-walk mode. @dentry must be a path found by a do_lookup call on
549 * @nd or NULL. Must be called from rcu-walk context.
550 */
551 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry)
552 {
553 struct fs_struct *fs = current->fs;
554 struct dentry *parent = nd->path.dentry;
555 int want_root = 0;
556
557 BUG_ON(!(nd->flags & LOOKUP_RCU));
558 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
559 want_root = 1;
560 spin_lock(&fs->lock);
561 if (nd->root.mnt != fs->root.mnt ||
562 nd->root.dentry != fs->root.dentry)
563 goto err_root;
564 }
565
566 /*
567 * For a negative lookup, the lookup sequence point is the parents
568 * sequence point, and it only needs to revalidate the parent dentry.
569 *
570 * For a positive lookup, we need to move both the parent and the
571 * dentry from the RCU domain to be properly refcounted. And the
572 * sequence number in the dentry validates *both* dentry counters,
573 * since we checked the sequence number of the parent after we got
574 * the child sequence number. So we know the parent must still
575 * be valid if the child sequence number is still valid.
576 */
577 if (!dentry) {
578 if (d_rcu_to_refcount(parent, &parent->d_seq, nd->seq) < 0)
579 goto err_root;
580 BUG_ON(nd->inode != parent->d_inode);
581 } else {
582 if (d_rcu_to_refcount(dentry, &dentry->d_seq, nd->seq) < 0)
583 goto err_root;
584 if (d_rcu_to_refcount(parent, &dentry->d_seq, nd->seq) < 0)
585 goto err_parent;
586 }
587 if (want_root) {
588 path_get(&nd->root);
589 spin_unlock(&fs->lock);
590 }
591 mntget(nd->path.mnt);
592
593 unlock_rcu_walk();
594 nd->flags &= ~LOOKUP_RCU;
595 return 0;
596
597 err_parent:
598 dput(dentry);
599 err_root:
600 if (want_root)
601 spin_unlock(&fs->lock);
602 return -ECHILD;
603 }
604
605 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
606 {
607 return dentry->d_op->d_revalidate(dentry, flags);
608 }
609
610 /**
611 * complete_walk - successful completion of path walk
612 * @nd: pointer nameidata
613 *
614 * If we had been in RCU mode, drop out of it and legitimize nd->path.
615 * Revalidate the final result, unless we'd already done that during
616 * the path walk or the filesystem doesn't ask for it. Return 0 on
617 * success, -error on failure. In case of failure caller does not
618 * need to drop nd->path.
619 */
620 static int complete_walk(struct nameidata *nd)
621 {
622 struct dentry *dentry = nd->path.dentry;
623 int status;
624
625 if (nd->flags & LOOKUP_RCU) {
626 nd->flags &= ~LOOKUP_RCU;
627 if (!(nd->flags & LOOKUP_ROOT))
628 nd->root.mnt = NULL;
629
630 if (d_rcu_to_refcount(dentry, &dentry->d_seq, nd->seq) < 0) {
631 unlock_rcu_walk();
632 return -ECHILD;
633 }
634 mntget(nd->path.mnt);
635 unlock_rcu_walk();
636 }
637
638 if (likely(!(nd->flags & LOOKUP_JUMPED)))
639 return 0;
640
641 if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
642 return 0;
643
644 status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
645 if (status > 0)
646 return 0;
647
648 if (!status)
649 status = -ESTALE;
650
651 path_put(&nd->path);
652 return status;
653 }
654
655 static __always_inline void set_root(struct nameidata *nd)
656 {
657 if (!nd->root.mnt)
658 get_fs_root(current->fs, &nd->root);
659 }
660
661 static int link_path_walk(const char *, struct nameidata *);
662
663 static __always_inline void set_root_rcu(struct nameidata *nd)
664 {
665 if (!nd->root.mnt) {
666 struct fs_struct *fs = current->fs;
667 unsigned seq;
668
669 do {
670 seq = read_seqcount_begin(&fs->seq);
671 nd->root = fs->root;
672 nd->seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
673 } while (read_seqcount_retry(&fs->seq, seq));
674 }
675 }
676
677 static __always_inline int __vfs_follow_link(struct nameidata *nd, const char *link)
678 {
679 int ret;
680
681 if (IS_ERR(link))
682 goto fail;
683
684 if (*link == '/') {
685 set_root(nd);
686 path_put(&nd->path);
687 nd->path = nd->root;
688 path_get(&nd->root);
689 nd->flags |= LOOKUP_JUMPED;
690 }
691 nd->inode = nd->path.dentry->d_inode;
692
693 ret = link_path_walk(link, nd);
694 return ret;
695 fail:
696 path_put(&nd->path);
697 return PTR_ERR(link);
698 }
699
700 static void path_put_conditional(struct path *path, struct nameidata *nd)
701 {
702 dput(path->dentry);
703 if (path->mnt != nd->path.mnt)
704 mntput(path->mnt);
705 }
706
707 static inline void path_to_nameidata(const struct path *path,
708 struct nameidata *nd)
709 {
710 if (!(nd->flags & LOOKUP_RCU)) {
711 dput(nd->path.dentry);
712 if (nd->path.mnt != path->mnt)
713 mntput(nd->path.mnt);
714 }
715 nd->path.mnt = path->mnt;
716 nd->path.dentry = path->dentry;
717 }
718
719 /*
720 * Helper to directly jump to a known parsed path from ->follow_link,
721 * caller must have taken a reference to path beforehand.
722 */
723 void nd_jump_link(struct nameidata *nd, struct path *path)
724 {
725 path_put(&nd->path);
726
727 nd->path = *path;
728 nd->inode = nd->path.dentry->d_inode;
729 nd->flags |= LOOKUP_JUMPED;
730 }
731
732 static inline void put_link(struct nameidata *nd, struct path *link, void *cookie)
733 {
734 struct inode *inode = link->dentry->d_inode;
735 if (inode->i_op->put_link)
736 inode->i_op->put_link(link->dentry, nd, cookie);
737 path_put(link);
738 }
739
740 int sysctl_protected_symlinks __read_mostly = 0;
741 int sysctl_protected_hardlinks __read_mostly = 0;
742
743 /**
744 * may_follow_link - Check symlink following for unsafe situations
745 * @link: The path of the symlink
746 * @nd: nameidata pathwalk data
747 *
748 * In the case of the sysctl_protected_symlinks sysctl being enabled,
749 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
750 * in a sticky world-writable directory. This is to protect privileged
751 * processes from failing races against path names that may change out
752 * from under them by way of other users creating malicious symlinks.
753 * It will permit symlinks to be followed only when outside a sticky
754 * world-writable directory, or when the uid of the symlink and follower
755 * match, or when the directory owner matches the symlink's owner.
756 *
757 * Returns 0 if following the symlink is allowed, -ve on error.
758 */
759 static inline int may_follow_link(struct path *link, struct nameidata *nd)
760 {
761 const struct inode *inode;
762 const struct inode *parent;
763
764 if (!sysctl_protected_symlinks)
765 return 0;
766
767 /* Allowed if owner and follower match. */
768 inode = link->dentry->d_inode;
769 if (uid_eq(current_cred()->fsuid, inode->i_uid))
770 return 0;
771
772 /* Allowed if parent directory not sticky and world-writable. */
773 parent = nd->path.dentry->d_inode;
774 if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
775 return 0;
776
777 /* Allowed if parent directory and link owner match. */
778 if (uid_eq(parent->i_uid, inode->i_uid))
779 return 0;
780
781 audit_log_link_denied("follow_link", link);
782 path_put_conditional(link, nd);
783 path_put(&nd->path);
784 return -EACCES;
785 }
786
787 /**
788 * safe_hardlink_source - Check for safe hardlink conditions
789 * @inode: the source inode to hardlink from
790 *
791 * Return false if at least one of the following conditions:
792 * - inode is not a regular file
793 * - inode is setuid
794 * - inode is setgid and group-exec
795 * - access failure for read and write
796 *
797 * Otherwise returns true.
798 */
799 static bool safe_hardlink_source(struct inode *inode)
800 {
801 umode_t mode = inode->i_mode;
802
803 /* Special files should not get pinned to the filesystem. */
804 if (!S_ISREG(mode))
805 return false;
806
807 /* Setuid files should not get pinned to the filesystem. */
808 if (mode & S_ISUID)
809 return false;
810
811 /* Executable setgid files should not get pinned to the filesystem. */
812 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
813 return false;
814
815 /* Hardlinking to unreadable or unwritable sources is dangerous. */
816 if (inode_permission(inode, MAY_READ | MAY_WRITE))
817 return false;
818
819 return true;
820 }
821
822 /**
823 * may_linkat - Check permissions for creating a hardlink
824 * @link: the source to hardlink from
825 *
826 * Block hardlink when all of:
827 * - sysctl_protected_hardlinks enabled
828 * - fsuid does not match inode
829 * - hardlink source is unsafe (see safe_hardlink_source() above)
830 * - not CAP_FOWNER
831 *
832 * Returns 0 if successful, -ve on error.
833 */
834 static int may_linkat(struct path *link)
835 {
836 const struct cred *cred;
837 struct inode *inode;
838
839 if (!sysctl_protected_hardlinks)
840 return 0;
841
842 cred = current_cred();
843 inode = link->dentry->d_inode;
844
845 /* Source inode owner (or CAP_FOWNER) can hardlink all they like,
846 * otherwise, it must be a safe source.
847 */
848 if (uid_eq(cred->fsuid, inode->i_uid) || safe_hardlink_source(inode) ||
849 capable(CAP_FOWNER))
850 return 0;
851
852 audit_log_link_denied("linkat", link);
853 return -EPERM;
854 }
855
856 static __always_inline int
857 follow_link(struct path *link, struct nameidata *nd, void **p)
858 {
859 struct dentry *dentry = link->dentry;
860 int error;
861 char *s;
862
863 BUG_ON(nd->flags & LOOKUP_RCU);
864
865 if (link->mnt == nd->path.mnt)
866 mntget(link->mnt);
867
868 error = -ELOOP;
869 if (unlikely(current->total_link_count >= 40))
870 goto out_put_nd_path;
871
872 cond_resched();
873 current->total_link_count++;
874
875 touch_atime(link);
876 nd_set_link(nd, NULL);
877
878 error = security_inode_follow_link(link->dentry, nd);
879 if (error)
880 goto out_put_nd_path;
881
882 nd->last_type = LAST_BIND;
883 *p = dentry->d_inode->i_op->follow_link(dentry, nd);
884 error = PTR_ERR(*p);
885 if (IS_ERR(*p))
886 goto out_put_nd_path;
887
888 error = 0;
889 s = nd_get_link(nd);
890 if (s) {
891 error = __vfs_follow_link(nd, s);
892 if (unlikely(error))
893 put_link(nd, link, *p);
894 }
895
896 return error;
897
898 out_put_nd_path:
899 *p = NULL;
900 path_put(&nd->path);
901 path_put(link);
902 return error;
903 }
904
905 static int follow_up_rcu(struct path *path)
906 {
907 struct mount *mnt = real_mount(path->mnt);
908 struct mount *parent;
909 struct dentry *mountpoint;
910
911 parent = mnt->mnt_parent;
912 if (&parent->mnt == path->mnt)
913 return 0;
914 mountpoint = mnt->mnt_mountpoint;
915 path->dentry = mountpoint;
916 path->mnt = &parent->mnt;
917 return 1;
918 }
919
920 /*
921 * follow_up - Find the mountpoint of path's vfsmount
922 *
923 * Given a path, find the mountpoint of its source file system.
924 * Replace @path with the path of the mountpoint in the parent mount.
925 * Up is towards /.
926 *
927 * Return 1 if we went up a level and 0 if we were already at the
928 * root.
929 */
930 int follow_up(struct path *path)
931 {
932 struct mount *mnt = real_mount(path->mnt);
933 struct mount *parent;
934 struct dentry *mountpoint;
935
936 br_read_lock(&vfsmount_lock);
937 parent = mnt->mnt_parent;
938 if (parent == mnt) {
939 br_read_unlock(&vfsmount_lock);
940 return 0;
941 }
942 mntget(&parent->mnt);
943 mountpoint = dget(mnt->mnt_mountpoint);
944 br_read_unlock(&vfsmount_lock);
945 dput(path->dentry);
946 path->dentry = mountpoint;
947 mntput(path->mnt);
948 path->mnt = &parent->mnt;
949 return 1;
950 }
951
952 /*
953 * Perform an automount
954 * - return -EISDIR to tell follow_managed() to stop and return the path we
955 * were called with.
956 */
957 static int follow_automount(struct path *path, unsigned flags,
958 bool *need_mntput)
959 {
960 struct vfsmount *mnt;
961 int err;
962
963 if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
964 return -EREMOTE;
965
966 /* We don't want to mount if someone's just doing a stat -
967 * unless they're stat'ing a directory and appended a '/' to
968 * the name.
969 *
970 * We do, however, want to mount if someone wants to open or
971 * create a file of any type under the mountpoint, wants to
972 * traverse through the mountpoint or wants to open the
973 * mounted directory. Also, autofs may mark negative dentries
974 * as being automount points. These will need the attentions
975 * of the daemon to instantiate them before they can be used.
976 */
977 if (!(flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
978 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
979 path->dentry->d_inode)
980 return -EISDIR;
981
982 current->total_link_count++;
983 if (current->total_link_count >= 40)
984 return -ELOOP;
985
986 mnt = path->dentry->d_op->d_automount(path);
987 if (IS_ERR(mnt)) {
988 /*
989 * The filesystem is allowed to return -EISDIR here to indicate
990 * it doesn't want to automount. For instance, autofs would do
991 * this so that its userspace daemon can mount on this dentry.
992 *
993 * However, we can only permit this if it's a terminal point in
994 * the path being looked up; if it wasn't then the remainder of
995 * the path is inaccessible and we should say so.
996 */
997 if (PTR_ERR(mnt) == -EISDIR && (flags & LOOKUP_PARENT))
998 return -EREMOTE;
999 return PTR_ERR(mnt);
1000 }
1001
1002 if (!mnt) /* mount collision */
1003 return 0;
1004
1005 if (!*need_mntput) {
1006 /* lock_mount() may release path->mnt on error */
1007 mntget(path->mnt);
1008 *need_mntput = true;
1009 }
1010 err = finish_automount(mnt, path);
1011
1012 switch (err) {
1013 case -EBUSY:
1014 /* Someone else made a mount here whilst we were busy */
1015 return 0;
1016 case 0:
1017 path_put(path);
1018 path->mnt = mnt;
1019 path->dentry = dget(mnt->mnt_root);
1020 return 0;
1021 default:
1022 return err;
1023 }
1024
1025 }
1026
1027 /*
1028 * Handle a dentry that is managed in some way.
1029 * - Flagged for transit management (autofs)
1030 * - Flagged as mountpoint
1031 * - Flagged as automount point
1032 *
1033 * This may only be called in refwalk mode.
1034 *
1035 * Serialization is taken care of in namespace.c
1036 */
1037 static int follow_managed(struct path *path, unsigned flags)
1038 {
1039 struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
1040 unsigned managed;
1041 bool need_mntput = false;
1042 int ret = 0;
1043
1044 /* Given that we're not holding a lock here, we retain the value in a
1045 * local variable for each dentry as we look at it so that we don't see
1046 * the components of that value change under us */
1047 while (managed = ACCESS_ONCE(path->dentry->d_flags),
1048 managed &= DCACHE_MANAGED_DENTRY,
1049 unlikely(managed != 0)) {
1050 /* Allow the filesystem to manage the transit without i_mutex
1051 * being held. */
1052 if (managed & DCACHE_MANAGE_TRANSIT) {
1053 BUG_ON(!path->dentry->d_op);
1054 BUG_ON(!path->dentry->d_op->d_manage);
1055 ret = path->dentry->d_op->d_manage(path->dentry, false);
1056 if (ret < 0)
1057 break;
1058 }
1059
1060 /* Transit to a mounted filesystem. */
1061 if (managed & DCACHE_MOUNTED) {
1062 struct vfsmount *mounted = lookup_mnt(path);
1063 if (mounted) {
1064 dput(path->dentry);
1065 if (need_mntput)
1066 mntput(path->mnt);
1067 path->mnt = mounted;
1068 path->dentry = dget(mounted->mnt_root);
1069 need_mntput = true;
1070 continue;
1071 }
1072
1073 /* Something is mounted on this dentry in another
1074 * namespace and/or whatever was mounted there in this
1075 * namespace got unmounted before we managed to get the
1076 * vfsmount_lock */
1077 }
1078
1079 /* Handle an automount point */
1080 if (managed & DCACHE_NEED_AUTOMOUNT) {
1081 ret = follow_automount(path, flags, &need_mntput);
1082 if (ret < 0)
1083 break;
1084 continue;
1085 }
1086
1087 /* We didn't change the current path point */
1088 break;
1089 }
1090
1091 if (need_mntput && path->mnt == mnt)
1092 mntput(path->mnt);
1093 if (ret == -EISDIR)
1094 ret = 0;
1095 return ret < 0 ? ret : need_mntput;
1096 }
1097
1098 int follow_down_one(struct path *path)
1099 {
1100 struct vfsmount *mounted;
1101
1102 mounted = lookup_mnt(path);
1103 if (mounted) {
1104 dput(path->dentry);
1105 mntput(path->mnt);
1106 path->mnt = mounted;
1107 path->dentry = dget(mounted->mnt_root);
1108 return 1;
1109 }
1110 return 0;
1111 }
1112
1113 static inline bool managed_dentry_might_block(struct dentry *dentry)
1114 {
1115 return (dentry->d_flags & DCACHE_MANAGE_TRANSIT &&
1116 dentry->d_op->d_manage(dentry, true) < 0);
1117 }
1118
1119 /*
1120 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if
1121 * we meet a managed dentry that would need blocking.
1122 */
1123 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1124 struct inode **inode)
1125 {
1126 for (;;) {
1127 struct mount *mounted;
1128 /*
1129 * Don't forget we might have a non-mountpoint managed dentry
1130 * that wants to block transit.
1131 */
1132 if (unlikely(managed_dentry_might_block(path->dentry)))
1133 return false;
1134
1135 if (!d_mountpoint(path->dentry))
1136 break;
1137
1138 mounted = __lookup_mnt(path->mnt, path->dentry, 1);
1139 if (!mounted)
1140 break;
1141 path->mnt = &mounted->mnt;
1142 path->dentry = mounted->mnt.mnt_root;
1143 nd->flags |= LOOKUP_JUMPED;
1144 nd->seq = read_seqcount_begin(&path->dentry->d_seq);
1145 /*
1146 * Update the inode too. We don't need to re-check the
1147 * dentry sequence number here after this d_inode read,
1148 * because a mount-point is always pinned.
1149 */
1150 *inode = path->dentry->d_inode;
1151 }
1152 return true;
1153 }
1154
1155 static void follow_mount_rcu(struct nameidata *nd)
1156 {
1157 while (d_mountpoint(nd->path.dentry)) {
1158 struct mount *mounted;
1159 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry, 1);
1160 if (!mounted)
1161 break;
1162 nd->path.mnt = &mounted->mnt;
1163 nd->path.dentry = mounted->mnt.mnt_root;
1164 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1165 }
1166 }
1167
1168 static int follow_dotdot_rcu(struct nameidata *nd)
1169 {
1170 set_root_rcu(nd);
1171
1172 while (1) {
1173 if (nd->path.dentry == nd->root.dentry &&
1174 nd->path.mnt == nd->root.mnt) {
1175 break;
1176 }
1177 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1178 struct dentry *old = nd->path.dentry;
1179 struct dentry *parent = old->d_parent;
1180 unsigned seq;
1181
1182 seq = read_seqcount_begin(&parent->d_seq);
1183 if (read_seqcount_retry(&old->d_seq, nd->seq))
1184 goto failed;
1185 nd->path.dentry = parent;
1186 nd->seq = seq;
1187 break;
1188 }
1189 if (!follow_up_rcu(&nd->path))
1190 break;
1191 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1192 }
1193 follow_mount_rcu(nd);
1194 nd->inode = nd->path.dentry->d_inode;
1195 return 0;
1196
1197 failed:
1198 nd->flags &= ~LOOKUP_RCU;
1199 if (!(nd->flags & LOOKUP_ROOT))
1200 nd->root.mnt = NULL;
1201 unlock_rcu_walk();
1202 return -ECHILD;
1203 }
1204
1205 /*
1206 * Follow down to the covering mount currently visible to userspace. At each
1207 * point, the filesystem owning that dentry may be queried as to whether the
1208 * caller is permitted to proceed or not.
1209 */
1210 int follow_down(struct path *path)
1211 {
1212 unsigned managed;
1213 int ret;
1214
1215 while (managed = ACCESS_ONCE(path->dentry->d_flags),
1216 unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1217 /* Allow the filesystem to manage the transit without i_mutex
1218 * being held.
1219 *
1220 * We indicate to the filesystem if someone is trying to mount
1221 * something here. This gives autofs the chance to deny anyone
1222 * other than its daemon the right to mount on its
1223 * superstructure.
1224 *
1225 * The filesystem may sleep at this point.
1226 */
1227 if (managed & DCACHE_MANAGE_TRANSIT) {
1228 BUG_ON(!path->dentry->d_op);
1229 BUG_ON(!path->dentry->d_op->d_manage);
1230 ret = path->dentry->d_op->d_manage(
1231 path->dentry, false);
1232 if (ret < 0)
1233 return ret == -EISDIR ? 0 : ret;
1234 }
1235
1236 /* Transit to a mounted filesystem. */
1237 if (managed & DCACHE_MOUNTED) {
1238 struct vfsmount *mounted = lookup_mnt(path);
1239 if (!mounted)
1240 break;
1241 dput(path->dentry);
1242 mntput(path->mnt);
1243 path->mnt = mounted;
1244 path->dentry = dget(mounted->mnt_root);
1245 continue;
1246 }
1247
1248 /* Don't handle automount points here */
1249 break;
1250 }
1251 return 0;
1252 }
1253
1254 /*
1255 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1256 */
1257 static void follow_mount(struct path *path)
1258 {
1259 while (d_mountpoint(path->dentry)) {
1260 struct vfsmount *mounted = lookup_mnt(path);
1261 if (!mounted)
1262 break;
1263 dput(path->dentry);
1264 mntput(path->mnt);
1265 path->mnt = mounted;
1266 path->dentry = dget(mounted->mnt_root);
1267 }
1268 }
1269
1270 static void follow_dotdot(struct nameidata *nd)
1271 {
1272 set_root(nd);
1273
1274 while(1) {
1275 struct dentry *old = nd->path.dentry;
1276
1277 if (nd->path.dentry == nd->root.dentry &&
1278 nd->path.mnt == nd->root.mnt) {
1279 break;
1280 }
1281 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1282 /* rare case of legitimate dget_parent()... */
1283 nd->path.dentry = dget_parent(nd->path.dentry);
1284 dput(old);
1285 break;
1286 }
1287 if (!follow_up(&nd->path))
1288 break;
1289 }
1290 follow_mount(&nd->path);
1291 nd->inode = nd->path.dentry->d_inode;
1292 }
1293
1294 /*
1295 * This looks up the name in dcache, possibly revalidates the old dentry and
1296 * allocates a new one if not found or not valid. In the need_lookup argument
1297 * returns whether i_op->lookup is necessary.
1298 *
1299 * dir->d_inode->i_mutex must be held
1300 */
1301 static struct dentry *lookup_dcache(struct qstr *name, struct dentry *dir,
1302 unsigned int flags, bool *need_lookup)
1303 {
1304 struct dentry *dentry;
1305 int error;
1306
1307 *need_lookup = false;
1308 dentry = d_lookup(dir, name);
1309 if (dentry) {
1310 if (dentry->d_flags & DCACHE_OP_REVALIDATE) {
1311 error = d_revalidate(dentry, flags);
1312 if (unlikely(error <= 0)) {
1313 if (error < 0) {
1314 dput(dentry);
1315 return ERR_PTR(error);
1316 } else if (!d_invalidate(dentry)) {
1317 dput(dentry);
1318 dentry = NULL;
1319 }
1320 }
1321 }
1322 }
1323
1324 if (!dentry) {
1325 dentry = d_alloc(dir, name);
1326 if (unlikely(!dentry))
1327 return ERR_PTR(-ENOMEM);
1328
1329 *need_lookup = true;
1330 }
1331 return dentry;
1332 }
1333
1334 /*
1335 * Call i_op->lookup on the dentry. The dentry must be negative but may be
1336 * hashed if it was pouplated with DCACHE_NEED_LOOKUP.
1337 *
1338 * dir->d_inode->i_mutex must be held
1339 */
1340 static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry,
1341 unsigned int flags)
1342 {
1343 struct dentry *old;
1344
1345 /* Don't create child dentry for a dead directory. */
1346 if (unlikely(IS_DEADDIR(dir))) {
1347 dput(dentry);
1348 return ERR_PTR(-ENOENT);
1349 }
1350
1351 old = dir->i_op->lookup(dir, dentry, flags);
1352 if (unlikely(old)) {
1353 dput(dentry);
1354 dentry = old;
1355 }
1356 return dentry;
1357 }
1358
1359 static struct dentry *__lookup_hash(struct qstr *name,
1360 struct dentry *base, unsigned int flags)
1361 {
1362 bool need_lookup;
1363 struct dentry *dentry;
1364
1365 dentry = lookup_dcache(name, base, flags, &need_lookup);
1366 if (!need_lookup)
1367 return dentry;
1368
1369 return lookup_real(base->d_inode, dentry, flags);
1370 }
1371
1372 /*
1373 * It's more convoluted than I'd like it to be, but... it's still fairly
1374 * small and for now I'd prefer to have fast path as straight as possible.
1375 * It _is_ time-critical.
1376 */
1377 static int lookup_fast(struct nameidata *nd,
1378 struct path *path, struct inode **inode)
1379 {
1380 struct vfsmount *mnt = nd->path.mnt;
1381 struct dentry *dentry, *parent = nd->path.dentry;
1382 int need_reval = 1;
1383 int status = 1;
1384 int err;
1385
1386 /*
1387 * Rename seqlock is not required here because in the off chance
1388 * of a false negative due to a concurrent rename, we're going to
1389 * do the non-racy lookup, below.
1390 */
1391 if (nd->flags & LOOKUP_RCU) {
1392 unsigned seq;
1393 dentry = __d_lookup_rcu(parent, &nd->last, &seq);
1394 if (!dentry)
1395 goto unlazy;
1396
1397 /*
1398 * This sequence count validates that the inode matches
1399 * the dentry name information from lookup.
1400 */
1401 *inode = dentry->d_inode;
1402 if (read_seqcount_retry(&dentry->d_seq, seq))
1403 return -ECHILD;
1404
1405 /*
1406 * This sequence count validates that the parent had no
1407 * changes while we did the lookup of the dentry above.
1408 *
1409 * The memory barrier in read_seqcount_begin of child is
1410 * enough, we can use __read_seqcount_retry here.
1411 */
1412 if (__read_seqcount_retry(&parent->d_seq, nd->seq))
1413 return -ECHILD;
1414 nd->seq = seq;
1415
1416 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) {
1417 status = d_revalidate(dentry, nd->flags);
1418 if (unlikely(status <= 0)) {
1419 if (status != -ECHILD)
1420 need_reval = 0;
1421 goto unlazy;
1422 }
1423 }
1424 path->mnt = mnt;
1425 path->dentry = dentry;
1426 if (unlikely(!__follow_mount_rcu(nd, path, inode)))
1427 goto unlazy;
1428 if (unlikely(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT))
1429 goto unlazy;
1430 return 0;
1431 unlazy:
1432 if (unlazy_walk(nd, dentry))
1433 return -ECHILD;
1434 } else {
1435 dentry = __d_lookup(parent, &nd->last);
1436 }
1437
1438 if (unlikely(!dentry))
1439 goto need_lookup;
1440
1441 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE) && need_reval)
1442 status = d_revalidate(dentry, nd->flags);
1443 if (unlikely(status <= 0)) {
1444 if (status < 0) {
1445 dput(dentry);
1446 return status;
1447 }
1448 if (!d_invalidate(dentry)) {
1449 dput(dentry);
1450 goto need_lookup;
1451 }
1452 }
1453
1454 path->mnt = mnt;
1455 path->dentry = dentry;
1456 err = follow_managed(path, nd->flags);
1457 if (unlikely(err < 0)) {
1458 path_put_conditional(path, nd);
1459 return err;
1460 }
1461 if (err)
1462 nd->flags |= LOOKUP_JUMPED;
1463 *inode = path->dentry->d_inode;
1464 return 0;
1465
1466 need_lookup:
1467 return 1;
1468 }
1469
1470 /* Fast lookup failed, do it the slow way */
1471 static int lookup_slow(struct nameidata *nd, struct path *path)
1472 {
1473 struct dentry *dentry, *parent;
1474 int err;
1475
1476 parent = nd->path.dentry;
1477 BUG_ON(nd->inode != parent->d_inode);
1478
1479 mutex_lock(&parent->d_inode->i_mutex);
1480 dentry = __lookup_hash(&nd->last, parent, nd->flags);
1481 mutex_unlock(&parent->d_inode->i_mutex);
1482 if (IS_ERR(dentry))
1483 return PTR_ERR(dentry);
1484 path->mnt = nd->path.mnt;
1485 path->dentry = dentry;
1486 err = follow_managed(path, nd->flags);
1487 if (unlikely(err < 0)) {
1488 path_put_conditional(path, nd);
1489 return err;
1490 }
1491 if (err)
1492 nd->flags |= LOOKUP_JUMPED;
1493 return 0;
1494 }
1495
1496 static inline int may_lookup(struct nameidata *nd)
1497 {
1498 if (nd->flags & LOOKUP_RCU) {
1499 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1500 if (err != -ECHILD)
1501 return err;
1502 if (unlazy_walk(nd, NULL))
1503 return -ECHILD;
1504 }
1505 return inode_permission(nd->inode, MAY_EXEC);
1506 }
1507
1508 static inline int handle_dots(struct nameidata *nd, int type)
1509 {
1510 if (type == LAST_DOTDOT) {
1511 if (nd->flags & LOOKUP_RCU) {
1512 if (follow_dotdot_rcu(nd))
1513 return -ECHILD;
1514 } else
1515 follow_dotdot(nd);
1516 }
1517 return 0;
1518 }
1519
1520 static void terminate_walk(struct nameidata *nd)
1521 {
1522 if (!(nd->flags & LOOKUP_RCU)) {
1523 path_put(&nd->path);
1524 } else {
1525 nd->flags &= ~LOOKUP_RCU;
1526 if (!(nd->flags & LOOKUP_ROOT))
1527 nd->root.mnt = NULL;
1528 unlock_rcu_walk();
1529 }
1530 }
1531
1532 /*
1533 * Do we need to follow links? We _really_ want to be able
1534 * to do this check without having to look at inode->i_op,
1535 * so we keep a cache of "no, this doesn't need follow_link"
1536 * for the common case.
1537 */
1538 static inline int should_follow_link(struct inode *inode, int follow)
1539 {
1540 if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1541 if (likely(inode->i_op->follow_link))
1542 return follow;
1543
1544 /* This gets set once for the inode lifetime */
1545 spin_lock(&inode->i_lock);
1546 inode->i_opflags |= IOP_NOFOLLOW;
1547 spin_unlock(&inode->i_lock);
1548 }
1549 return 0;
1550 }
1551
1552 static inline int walk_component(struct nameidata *nd, struct path *path,
1553 int follow)
1554 {
1555 struct inode *inode;
1556 int err;
1557 /*
1558 * "." and ".." are special - ".." especially so because it has
1559 * to be able to know about the current root directory and
1560 * parent relationships.
1561 */
1562 if (unlikely(nd->last_type != LAST_NORM))
1563 return handle_dots(nd, nd->last_type);
1564 err = lookup_fast(nd, path, &inode);
1565 if (unlikely(err)) {
1566 if (err < 0)
1567 goto out_err;
1568
1569 err = lookup_slow(nd, path);
1570 if (err < 0)
1571 goto out_err;
1572
1573 inode = path->dentry->d_inode;
1574 }
1575 err = -ENOENT;
1576 if (!inode)
1577 goto out_path_put;
1578
1579 if (should_follow_link(inode, follow)) {
1580 if (nd->flags & LOOKUP_RCU) {
1581 if (unlikely(unlazy_walk(nd, path->dentry))) {
1582 err = -ECHILD;
1583 goto out_err;
1584 }
1585 }
1586 BUG_ON(inode != path->dentry->d_inode);
1587 return 1;
1588 }
1589 path_to_nameidata(path, nd);
1590 nd->inode = inode;
1591 return 0;
1592
1593 out_path_put:
1594 path_to_nameidata(path, nd);
1595 out_err:
1596 terminate_walk(nd);
1597 return err;
1598 }
1599
1600 /*
1601 * This limits recursive symlink follows to 8, while
1602 * limiting consecutive symlinks to 40.
1603 *
1604 * Without that kind of total limit, nasty chains of consecutive
1605 * symlinks can cause almost arbitrarily long lookups.
1606 */
1607 static inline int nested_symlink(struct path *path, struct nameidata *nd)
1608 {
1609 int res;
1610
1611 if (unlikely(current->link_count >= MAX_NESTED_LINKS)) {
1612 path_put_conditional(path, nd);
1613 path_put(&nd->path);
1614 return -ELOOP;
1615 }
1616 BUG_ON(nd->depth >= MAX_NESTED_LINKS);
1617
1618 nd->depth++;
1619 current->link_count++;
1620
1621 do {
1622 struct path link = *path;
1623 void *cookie;
1624
1625 res = follow_link(&link, nd, &cookie);
1626 if (res)
1627 break;
1628 res = walk_component(nd, path, LOOKUP_FOLLOW);
1629 put_link(nd, &link, cookie);
1630 } while (res > 0);
1631
1632 current->link_count--;
1633 nd->depth--;
1634 return res;
1635 }
1636
1637 /*
1638 * We really don't want to look at inode->i_op->lookup
1639 * when we don't have to. So we keep a cache bit in
1640 * the inode ->i_opflags field that says "yes, we can
1641 * do lookup on this inode".
1642 */
1643 static inline int can_lookup(struct inode *inode)
1644 {
1645 if (likely(inode->i_opflags & IOP_LOOKUP))
1646 return 1;
1647 if (likely(!inode->i_op->lookup))
1648 return 0;
1649
1650 /* We do this once for the lifetime of the inode */
1651 spin_lock(&inode->i_lock);
1652 inode->i_opflags |= IOP_LOOKUP;
1653 spin_unlock(&inode->i_lock);
1654 return 1;
1655 }
1656
1657 /*
1658 * We can do the critical dentry name comparison and hashing
1659 * operations one word at a time, but we are limited to:
1660 *
1661 * - Architectures with fast unaligned word accesses. We could
1662 * do a "get_unaligned()" if this helps and is sufficiently
1663 * fast.
1664 *
1665 * - Little-endian machines (so that we can generate the mask
1666 * of low bytes efficiently). Again, we *could* do a byte
1667 * swapping load on big-endian architectures if that is not
1668 * expensive enough to make the optimization worthless.
1669 *
1670 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1671 * do not trap on the (extremely unlikely) case of a page
1672 * crossing operation.
1673 *
1674 * - Furthermore, we need an efficient 64-bit compile for the
1675 * 64-bit case in order to generate the "number of bytes in
1676 * the final mask". Again, that could be replaced with a
1677 * efficient population count instruction or similar.
1678 */
1679 #ifdef CONFIG_DCACHE_WORD_ACCESS
1680
1681 #include <asm/word-at-a-time.h>
1682
1683 #ifdef CONFIG_64BIT
1684
1685 static inline unsigned int fold_hash(unsigned long hash)
1686 {
1687 hash += hash >> (8*sizeof(int));
1688 return hash;
1689 }
1690
1691 #else /* 32-bit case */
1692
1693 #define fold_hash(x) (x)
1694
1695 #endif
1696
1697 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1698 {
1699 unsigned long a, mask;
1700 unsigned long hash = 0;
1701
1702 for (;;) {
1703 a = load_unaligned_zeropad(name);
1704 if (len < sizeof(unsigned long))
1705 break;
1706 hash += a;
1707 hash *= 9;
1708 name += sizeof(unsigned long);
1709 len -= sizeof(unsigned long);
1710 if (!len)
1711 goto done;
1712 }
1713 mask = ~(~0ul << len*8);
1714 hash += mask & a;
1715 done:
1716 return fold_hash(hash);
1717 }
1718 EXPORT_SYMBOL(full_name_hash);
1719
1720 /*
1721 * Calculate the length and hash of the path component, and
1722 * return the length of the component;
1723 */
1724 static inline unsigned long hash_name(const char *name, unsigned int *hashp)
1725 {
1726 unsigned long a, b, adata, bdata, mask, hash, len;
1727 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1728
1729 hash = a = 0;
1730 len = -sizeof(unsigned long);
1731 do {
1732 hash = (hash + a) * 9;
1733 len += sizeof(unsigned long);
1734 a = load_unaligned_zeropad(name+len);
1735 b = a ^ REPEAT_BYTE('/');
1736 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
1737
1738 adata = prep_zero_mask(a, adata, &constants);
1739 bdata = prep_zero_mask(b, bdata, &constants);
1740
1741 mask = create_zero_mask(adata | bdata);
1742
1743 hash += a & zero_bytemask(mask);
1744 *hashp = fold_hash(hash);
1745
1746 return len + find_zero(mask);
1747 }
1748
1749 #else
1750
1751 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1752 {
1753 unsigned long hash = init_name_hash();
1754 while (len--)
1755 hash = partial_name_hash(*name++, hash);
1756 return end_name_hash(hash);
1757 }
1758 EXPORT_SYMBOL(full_name_hash);
1759
1760 /*
1761 * We know there's a real path component here of at least
1762 * one character.
1763 */
1764 static inline unsigned long hash_name(const char *name, unsigned int *hashp)
1765 {
1766 unsigned long hash = init_name_hash();
1767 unsigned long len = 0, c;
1768
1769 c = (unsigned char)*name;
1770 do {
1771 len++;
1772 hash = partial_name_hash(c, hash);
1773 c = (unsigned char)name[len];
1774 } while (c && c != '/');
1775 *hashp = end_name_hash(hash);
1776 return len;
1777 }
1778
1779 #endif
1780
1781 /*
1782 * Name resolution.
1783 * This is the basic name resolution function, turning a pathname into
1784 * the final dentry. We expect 'base' to be positive and a directory.
1785 *
1786 * Returns 0 and nd will have valid dentry and mnt on success.
1787 * Returns error and drops reference to input namei data on failure.
1788 */
1789 static int link_path_walk(const char *name, struct nameidata *nd)
1790 {
1791 struct path next;
1792 int err;
1793
1794 while (*name=='/')
1795 name++;
1796 if (!*name)
1797 return 0;
1798
1799 /* At this point we know we have a real path component. */
1800 for(;;) {
1801 struct qstr this;
1802 long len;
1803 int type;
1804
1805 err = may_lookup(nd);
1806 if (err)
1807 break;
1808
1809 len = hash_name(name, &this.hash);
1810 this.name = name;
1811 this.len = len;
1812
1813 type = LAST_NORM;
1814 if (name[0] == '.') switch (len) {
1815 case 2:
1816 if (name[1] == '.') {
1817 type = LAST_DOTDOT;
1818 nd->flags |= LOOKUP_JUMPED;
1819 }
1820 break;
1821 case 1:
1822 type = LAST_DOT;
1823 }
1824 if (likely(type == LAST_NORM)) {
1825 struct dentry *parent = nd->path.dentry;
1826 nd->flags &= ~LOOKUP_JUMPED;
1827 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
1828 err = parent->d_op->d_hash(parent, &this);
1829 if (err < 0)
1830 break;
1831 }
1832 }
1833
1834 nd->last = this;
1835 nd->last_type = type;
1836
1837 if (!name[len])
1838 return 0;
1839 /*
1840 * If it wasn't NUL, we know it was '/'. Skip that
1841 * slash, and continue until no more slashes.
1842 */
1843 do {
1844 len++;
1845 } while (unlikely(name[len] == '/'));
1846 if (!name[len])
1847 return 0;
1848
1849 name += len;
1850
1851 err = walk_component(nd, &next, LOOKUP_FOLLOW);
1852 if (err < 0)
1853 return err;
1854
1855 if (err) {
1856 err = nested_symlink(&next, nd);
1857 if (err)
1858 return err;
1859 }
1860 if (!can_lookup(nd->inode)) {
1861 err = -ENOTDIR;
1862 break;
1863 }
1864 }
1865 terminate_walk(nd);
1866 return err;
1867 }
1868
1869 static int path_init(int dfd, const char *name, unsigned int flags,
1870 struct nameidata *nd, struct file **fp)
1871 {
1872 int retval = 0;
1873
1874 nd->last_type = LAST_ROOT; /* if there are only slashes... */
1875 nd->flags = flags | LOOKUP_JUMPED;
1876 nd->depth = 0;
1877 if (flags & LOOKUP_ROOT) {
1878 struct inode *inode = nd->root.dentry->d_inode;
1879 if (*name) {
1880 if (!can_lookup(inode))
1881 return -ENOTDIR;
1882 retval = inode_permission(inode, MAY_EXEC);
1883 if (retval)
1884 return retval;
1885 }
1886 nd->path = nd->root;
1887 nd->inode = inode;
1888 if (flags & LOOKUP_RCU) {
1889 lock_rcu_walk();
1890 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1891 } else {
1892 path_get(&nd->path);
1893 }
1894 return 0;
1895 }
1896
1897 nd->root.mnt = NULL;
1898
1899 if (*name=='/') {
1900 if (flags & LOOKUP_RCU) {
1901 lock_rcu_walk();
1902 set_root_rcu(nd);
1903 } else {
1904 set_root(nd);
1905 path_get(&nd->root);
1906 }
1907 nd->path = nd->root;
1908 } else if (dfd == AT_FDCWD) {
1909 if (flags & LOOKUP_RCU) {
1910 struct fs_struct *fs = current->fs;
1911 unsigned seq;
1912
1913 lock_rcu_walk();
1914
1915 do {
1916 seq = read_seqcount_begin(&fs->seq);
1917 nd->path = fs->pwd;
1918 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1919 } while (read_seqcount_retry(&fs->seq, seq));
1920 } else {
1921 get_fs_pwd(current->fs, &nd->path);
1922 }
1923 } else {
1924 /* Caller must check execute permissions on the starting path component */
1925 struct fd f = fdget_raw(dfd);
1926 struct dentry *dentry;
1927
1928 if (!f.file)
1929 return -EBADF;
1930
1931 dentry = f.file->f_path.dentry;
1932
1933 if (*name) {
1934 if (!can_lookup(dentry->d_inode)) {
1935 fdput(f);
1936 return -ENOTDIR;
1937 }
1938 }
1939
1940 nd->path = f.file->f_path;
1941 if (flags & LOOKUP_RCU) {
1942 if (f.need_put)
1943 *fp = f.file;
1944 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1945 lock_rcu_walk();
1946 } else {
1947 path_get(&nd->path);
1948 fdput(f);
1949 }
1950 }
1951
1952 nd->inode = nd->path.dentry->d_inode;
1953 return 0;
1954 }
1955
1956 static inline int lookup_last(struct nameidata *nd, struct path *path)
1957 {
1958 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
1959 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
1960
1961 nd->flags &= ~LOOKUP_PARENT;
1962 return walk_component(nd, path, nd->flags & LOOKUP_FOLLOW);
1963 }
1964
1965 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
1966 static int path_lookupat(int dfd, const char *name,
1967 unsigned int flags, struct nameidata *nd)
1968 {
1969 struct file *base = NULL;
1970 struct path path;
1971 int err;
1972
1973 /*
1974 * Path walking is largely split up into 2 different synchronisation
1975 * schemes, rcu-walk and ref-walk (explained in
1976 * Documentation/filesystems/path-lookup.txt). These share much of the
1977 * path walk code, but some things particularly setup, cleanup, and
1978 * following mounts are sufficiently divergent that functions are
1979 * duplicated. Typically there is a function foo(), and its RCU
1980 * analogue, foo_rcu().
1981 *
1982 * -ECHILD is the error number of choice (just to avoid clashes) that
1983 * is returned if some aspect of an rcu-walk fails. Such an error must
1984 * be handled by restarting a traditional ref-walk (which will always
1985 * be able to complete).
1986 */
1987 err = path_init(dfd, name, flags | LOOKUP_PARENT, nd, &base);
1988
1989 if (unlikely(err))
1990 return err;
1991
1992 current->total_link_count = 0;
1993 err = link_path_walk(name, nd);
1994
1995 if (!err && !(flags & LOOKUP_PARENT)) {
1996 err = lookup_last(nd, &path);
1997 while (err > 0) {
1998 void *cookie;
1999 struct path link = path;
2000 err = may_follow_link(&link, nd);
2001 if (unlikely(err))
2002 break;
2003 nd->flags |= LOOKUP_PARENT;
2004 err = follow_link(&link, nd, &cookie);
2005 if (err)
2006 break;
2007 err = lookup_last(nd, &path);
2008 put_link(nd, &link, cookie);
2009 }
2010 }
2011
2012 if (!err)
2013 err = complete_walk(nd);
2014
2015 if (!err && nd->flags & LOOKUP_DIRECTORY) {
2016 if (!can_lookup(nd->inode)) {
2017 path_put(&nd->path);
2018 err = -ENOTDIR;
2019 }
2020 }
2021
2022 if (base)
2023 fput(base);
2024
2025 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
2026 path_put(&nd->root);
2027 nd->root.mnt = NULL;
2028 }
2029 return err;
2030 }
2031
2032 static int filename_lookup(int dfd, struct filename *name,
2033 unsigned int flags, struct nameidata *nd)
2034 {
2035 int retval = path_lookupat(dfd, name->name, flags | LOOKUP_RCU, nd);
2036 if (unlikely(retval == -ECHILD))
2037 retval = path_lookupat(dfd, name->name, flags, nd);
2038 if (unlikely(retval == -ESTALE))
2039 retval = path_lookupat(dfd, name->name,
2040 flags | LOOKUP_REVAL, nd);
2041
2042 if (likely(!retval))
2043 audit_inode(name, nd->path.dentry, flags & LOOKUP_PARENT);
2044 return retval;
2045 }
2046
2047 static int do_path_lookup(int dfd, const char *name,
2048 unsigned int flags, struct nameidata *nd)
2049 {
2050 struct filename filename = { .name = name };
2051
2052 return filename_lookup(dfd, &filename, flags, nd);
2053 }
2054
2055 /* does lookup, returns the object with parent locked */
2056 struct dentry *kern_path_locked(const char *name, struct path *path)
2057 {
2058 struct nameidata nd;
2059 struct dentry *d;
2060 int err = do_path_lookup(AT_FDCWD, name, LOOKUP_PARENT, &nd);
2061 if (err)
2062 return ERR_PTR(err);
2063 if (nd.last_type != LAST_NORM) {
2064 path_put(&nd.path);
2065 return ERR_PTR(-EINVAL);
2066 }
2067 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2068 d = __lookup_hash(&nd.last, nd.path.dentry, 0);
2069 if (IS_ERR(d)) {
2070 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2071 path_put(&nd.path);
2072 return d;
2073 }
2074 *path = nd.path;
2075 return d;
2076 }
2077
2078 int kern_path(const char *name, unsigned int flags, struct path *path)
2079 {
2080 struct nameidata nd;
2081 int res = do_path_lookup(AT_FDCWD, name, flags, &nd);
2082 if (!res)
2083 *path = nd.path;
2084 return res;
2085 }
2086
2087 /**
2088 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2089 * @dentry: pointer to dentry of the base directory
2090 * @mnt: pointer to vfs mount of the base directory
2091 * @name: pointer to file name
2092 * @flags: lookup flags
2093 * @path: pointer to struct path to fill
2094 */
2095 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2096 const char *name, unsigned int flags,
2097 struct path *path)
2098 {
2099 struct nameidata nd;
2100 int err;
2101 nd.root.dentry = dentry;
2102 nd.root.mnt = mnt;
2103 BUG_ON(flags & LOOKUP_PARENT);
2104 /* the first argument of do_path_lookup() is ignored with LOOKUP_ROOT */
2105 err = do_path_lookup(AT_FDCWD, name, flags | LOOKUP_ROOT, &nd);
2106 if (!err)
2107 *path = nd.path;
2108 return err;
2109 }
2110
2111 /*
2112 * Restricted form of lookup. Doesn't follow links, single-component only,
2113 * needs parent already locked. Doesn't follow mounts.
2114 * SMP-safe.
2115 */
2116 static struct dentry *lookup_hash(struct nameidata *nd)
2117 {
2118 return __lookup_hash(&nd->last, nd->path.dentry, nd->flags);
2119 }
2120
2121 /**
2122 * lookup_one_len - filesystem helper to lookup single pathname component
2123 * @name: pathname component to lookup
2124 * @base: base directory to lookup from
2125 * @len: maximum length @len should be interpreted to
2126 *
2127 * Note that this routine is purely a helper for filesystem usage and should
2128 * not be called by generic code. Also note that by using this function the
2129 * nameidata argument is passed to the filesystem methods and a filesystem
2130 * using this helper needs to be prepared for that.
2131 */
2132 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2133 {
2134 struct qstr this;
2135 unsigned int c;
2136 int err;
2137
2138 WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex));
2139
2140 this.name = name;
2141 this.len = len;
2142 this.hash = full_name_hash(name, len);
2143 if (!len)
2144 return ERR_PTR(-EACCES);
2145
2146 if (unlikely(name[0] == '.')) {
2147 if (len < 2 || (len == 2 && name[1] == '.'))
2148 return ERR_PTR(-EACCES);
2149 }
2150
2151 while (len--) {
2152 c = *(const unsigned char *)name++;
2153 if (c == '/' || c == '\0')
2154 return ERR_PTR(-EACCES);
2155 }
2156 /*
2157 * See if the low-level filesystem might want
2158 * to use its own hash..
2159 */
2160 if (base->d_flags & DCACHE_OP_HASH) {
2161 int err = base->d_op->d_hash(base, &this);
2162 if (err < 0)
2163 return ERR_PTR(err);
2164 }
2165
2166 err = inode_permission(base->d_inode, MAY_EXEC);
2167 if (err)
2168 return ERR_PTR(err);
2169
2170 return __lookup_hash(&this, base, 0);
2171 }
2172
2173 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2174 struct path *path, int *empty)
2175 {
2176 struct nameidata nd;
2177 struct filename *tmp = getname_flags(name, flags, empty);
2178 int err = PTR_ERR(tmp);
2179 if (!IS_ERR(tmp)) {
2180
2181 BUG_ON(flags & LOOKUP_PARENT);
2182
2183 err = filename_lookup(dfd, tmp, flags, &nd);
2184 putname(tmp);
2185 if (!err)
2186 *path = nd.path;
2187 }
2188 return err;
2189 }
2190
2191 int user_path_at(int dfd, const char __user *name, unsigned flags,
2192 struct path *path)
2193 {
2194 return user_path_at_empty(dfd, name, flags, path, NULL);
2195 }
2196
2197 /*
2198 * NB: most callers don't do anything directly with the reference to the
2199 * to struct filename, but the nd->last pointer points into the name string
2200 * allocated by getname. So we must hold the reference to it until all
2201 * path-walking is complete.
2202 */
2203 static struct filename *
2204 user_path_parent(int dfd, const char __user *path, struct nameidata *nd,
2205 unsigned int flags)
2206 {
2207 struct filename *s = getname(path);
2208 int error;
2209
2210 /* only LOOKUP_REVAL is allowed in extra flags */
2211 flags &= LOOKUP_REVAL;
2212
2213 if (IS_ERR(s))
2214 return s;
2215
2216 error = filename_lookup(dfd, s, flags | LOOKUP_PARENT, nd);
2217 if (error) {
2218 putname(s);
2219 return ERR_PTR(error);
2220 }
2221
2222 return s;
2223 }
2224
2225 /*
2226 * It's inline, so penalty for filesystems that don't use sticky bit is
2227 * minimal.
2228 */
2229 static inline int check_sticky(struct inode *dir, struct inode *inode)
2230 {
2231 kuid_t fsuid = current_fsuid();
2232
2233 if (!(dir->i_mode & S_ISVTX))
2234 return 0;
2235 if (uid_eq(inode->i_uid, fsuid))
2236 return 0;
2237 if (uid_eq(dir->i_uid, fsuid))
2238 return 0;
2239 return !inode_capable(inode, CAP_FOWNER);
2240 }
2241
2242 /*
2243 * Check whether we can remove a link victim from directory dir, check
2244 * whether the type of victim is right.
2245 * 1. We can't do it if dir is read-only (done in permission())
2246 * 2. We should have write and exec permissions on dir
2247 * 3. We can't remove anything from append-only dir
2248 * 4. We can't do anything with immutable dir (done in permission())
2249 * 5. If the sticky bit on dir is set we should either
2250 * a. be owner of dir, or
2251 * b. be owner of victim, or
2252 * c. have CAP_FOWNER capability
2253 * 6. If the victim is append-only or immutable we can't do antyhing with
2254 * links pointing to it.
2255 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2256 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2257 * 9. We can't remove a root or mountpoint.
2258 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
2259 * nfs_async_unlink().
2260 */
2261 static int may_delete(struct inode *dir,struct dentry *victim,int isdir)
2262 {
2263 int error;
2264
2265 if (!victim->d_inode)
2266 return -ENOENT;
2267
2268 BUG_ON(victim->d_parent->d_inode != dir);
2269 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2270
2271 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2272 if (error)
2273 return error;
2274 if (IS_APPEND(dir))
2275 return -EPERM;
2276 if (check_sticky(dir, victim->d_inode)||IS_APPEND(victim->d_inode)||
2277 IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode))
2278 return -EPERM;
2279 if (isdir) {
2280 if (!S_ISDIR(victim->d_inode->i_mode))
2281 return -ENOTDIR;
2282 if (IS_ROOT(victim))
2283 return -EBUSY;
2284 } else if (S_ISDIR(victim->d_inode->i_mode))
2285 return -EISDIR;
2286 if (IS_DEADDIR(dir))
2287 return -ENOENT;
2288 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2289 return -EBUSY;
2290 return 0;
2291 }
2292
2293 /* Check whether we can create an object with dentry child in directory
2294 * dir.
2295 * 1. We can't do it if child already exists (open has special treatment for
2296 * this case, but since we are inlined it's OK)
2297 * 2. We can't do it if dir is read-only (done in permission())
2298 * 3. We should have write and exec permissions on dir
2299 * 4. We can't do it if dir is immutable (done in permission())
2300 */
2301 static inline int may_create(struct inode *dir, struct dentry *child)
2302 {
2303 if (child->d_inode)
2304 return -EEXIST;
2305 if (IS_DEADDIR(dir))
2306 return -ENOENT;
2307 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2308 }
2309
2310 /*
2311 * p1 and p2 should be directories on the same fs.
2312 */
2313 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2314 {
2315 struct dentry *p;
2316
2317 if (p1 == p2) {
2318 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2319 return NULL;
2320 }
2321
2322 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2323
2324 p = d_ancestor(p2, p1);
2325 if (p) {
2326 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
2327 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
2328 return p;
2329 }
2330
2331 p = d_ancestor(p1, p2);
2332 if (p) {
2333 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2334 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2335 return p;
2336 }
2337
2338 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2339 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2340 return NULL;
2341 }
2342
2343 void unlock_rename(struct dentry *p1, struct dentry *p2)
2344 {
2345 mutex_unlock(&p1->d_inode->i_mutex);
2346 if (p1 != p2) {
2347 mutex_unlock(&p2->d_inode->i_mutex);
2348 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2349 }
2350 }
2351
2352 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2353 bool want_excl)
2354 {
2355 int error = may_create(dir, dentry);
2356 if (error)
2357 return error;
2358
2359 if (!dir->i_op->create)
2360 return -EACCES; /* shouldn't it be ENOSYS? */
2361 mode &= S_IALLUGO;
2362 mode |= S_IFREG;
2363 error = security_inode_create(dir, dentry, mode);
2364 if (error)
2365 return error;
2366 error = dir->i_op->create(dir, dentry, mode, want_excl);
2367 if (!error)
2368 fsnotify_create(dir, dentry);
2369 return error;
2370 }
2371
2372 static int may_open(struct path *path, int acc_mode, int flag)
2373 {
2374 struct dentry *dentry = path->dentry;
2375 struct inode *inode = dentry->d_inode;
2376 int error;
2377
2378 /* O_PATH? */
2379 if (!acc_mode)
2380 return 0;
2381
2382 if (!inode)
2383 return -ENOENT;
2384
2385 switch (inode->i_mode & S_IFMT) {
2386 case S_IFLNK:
2387 return -ELOOP;
2388 case S_IFDIR:
2389 if (acc_mode & MAY_WRITE)
2390 return -EISDIR;
2391 break;
2392 case S_IFBLK:
2393 case S_IFCHR:
2394 if (path->mnt->mnt_flags & MNT_NODEV)
2395 return -EACCES;
2396 /*FALLTHRU*/
2397 case S_IFIFO:
2398 case S_IFSOCK:
2399 flag &= ~O_TRUNC;
2400 break;
2401 }
2402
2403 error = inode_permission(inode, acc_mode);
2404 if (error)
2405 return error;
2406
2407 /*
2408 * An append-only file must be opened in append mode for writing.
2409 */
2410 if (IS_APPEND(inode)) {
2411 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2412 return -EPERM;
2413 if (flag & O_TRUNC)
2414 return -EPERM;
2415 }
2416
2417 /* O_NOATIME can only be set by the owner or superuser */
2418 if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2419 return -EPERM;
2420
2421 return 0;
2422 }
2423
2424 static int handle_truncate(struct file *filp)
2425 {
2426 struct path *path = &filp->f_path;
2427 struct inode *inode = path->dentry->d_inode;
2428 int error = get_write_access(inode);
2429 if (error)
2430 return error;
2431 /*
2432 * Refuse to truncate files with mandatory locks held on them.
2433 */
2434 error = locks_verify_locked(inode);
2435 if (!error)
2436 error = security_path_truncate(path);
2437 if (!error) {
2438 error = do_truncate(path->dentry, 0,
2439 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2440 filp);
2441 }
2442 put_write_access(inode);
2443 return error;
2444 }
2445
2446 static inline int open_to_namei_flags(int flag)
2447 {
2448 if ((flag & O_ACCMODE) == 3)
2449 flag--;
2450 return flag;
2451 }
2452
2453 static int may_o_create(struct path *dir, struct dentry *dentry, umode_t mode)
2454 {
2455 int error = security_path_mknod(dir, dentry, mode, 0);
2456 if (error)
2457 return error;
2458
2459 error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
2460 if (error)
2461 return error;
2462
2463 return security_inode_create(dir->dentry->d_inode, dentry, mode);
2464 }
2465
2466 /*
2467 * Attempt to atomically look up, create and open a file from a negative
2468 * dentry.
2469 *
2470 * Returns 0 if successful. The file will have been created and attached to
2471 * @file by the filesystem calling finish_open().
2472 *
2473 * Returns 1 if the file was looked up only or didn't need creating. The
2474 * caller will need to perform the open themselves. @path will have been
2475 * updated to point to the new dentry. This may be negative.
2476 *
2477 * Returns an error code otherwise.
2478 */
2479 static int atomic_open(struct nameidata *nd, struct dentry *dentry,
2480 struct path *path, struct file *file,
2481 const struct open_flags *op,
2482 bool got_write, bool need_lookup,
2483 int *opened)
2484 {
2485 struct inode *dir = nd->path.dentry->d_inode;
2486 unsigned open_flag = open_to_namei_flags(op->open_flag);
2487 umode_t mode;
2488 int error;
2489 int acc_mode;
2490 int create_error = 0;
2491 struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
2492
2493 BUG_ON(dentry->d_inode);
2494
2495 /* Don't create child dentry for a dead directory. */
2496 if (unlikely(IS_DEADDIR(dir))) {
2497 error = -ENOENT;
2498 goto out;
2499 }
2500
2501 mode = op->mode;
2502 if ((open_flag & O_CREAT) && !IS_POSIXACL(dir))
2503 mode &= ~current_umask();
2504
2505 if ((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT)) {
2506 open_flag &= ~O_TRUNC;
2507 *opened |= FILE_CREATED;
2508 }
2509
2510 /*
2511 * Checking write permission is tricky, bacuse we don't know if we are
2512 * going to actually need it: O_CREAT opens should work as long as the
2513 * file exists. But checking existence breaks atomicity. The trick is
2514 * to check access and if not granted clear O_CREAT from the flags.
2515 *
2516 * Another problem is returing the "right" error value (e.g. for an
2517 * O_EXCL open we want to return EEXIST not EROFS).
2518 */
2519 if (((open_flag & (O_CREAT | O_TRUNC)) ||
2520 (open_flag & O_ACCMODE) != O_RDONLY) && unlikely(!got_write)) {
2521 if (!(open_flag & O_CREAT)) {
2522 /*
2523 * No O_CREATE -> atomicity not a requirement -> fall
2524 * back to lookup + open
2525 */
2526 goto no_open;
2527 } else if (open_flag & (O_EXCL | O_TRUNC)) {
2528 /* Fall back and fail with the right error */
2529 create_error = -EROFS;
2530 goto no_open;
2531 } else {
2532 /* No side effects, safe to clear O_CREAT */
2533 create_error = -EROFS;
2534 open_flag &= ~O_CREAT;
2535 }
2536 }
2537
2538 if (open_flag & O_CREAT) {
2539 error = may_o_create(&nd->path, dentry, mode);
2540 if (error) {
2541 create_error = error;
2542 if (open_flag & O_EXCL)
2543 goto no_open;
2544 open_flag &= ~O_CREAT;
2545 }
2546 }
2547
2548 if (nd->flags & LOOKUP_DIRECTORY)
2549 open_flag |= O_DIRECTORY;
2550
2551 file->f_path.dentry = DENTRY_NOT_SET;
2552 file->f_path.mnt = nd->path.mnt;
2553 error = dir->i_op->atomic_open(dir, dentry, file, open_flag, mode,
2554 opened);
2555 if (error < 0) {
2556 if (create_error && error == -ENOENT)
2557 error = create_error;
2558 goto out;
2559 }
2560
2561 acc_mode = op->acc_mode;
2562 if (*opened & FILE_CREATED) {
2563 fsnotify_create(dir, dentry);
2564 acc_mode = MAY_OPEN;
2565 }
2566
2567 if (error) { /* returned 1, that is */
2568 if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
2569 error = -EIO;
2570 goto out;
2571 }
2572 if (file->f_path.dentry) {
2573 dput(dentry);
2574 dentry = file->f_path.dentry;
2575 }
2576 if (create_error && dentry->d_inode == NULL) {
2577 error = create_error;
2578 goto out;
2579 }
2580 goto looked_up;
2581 }
2582
2583 /*
2584 * We didn't have the inode before the open, so check open permission
2585 * here.
2586 */
2587 error = may_open(&file->f_path, acc_mode, open_flag);
2588 if (error)
2589 fput(file);
2590
2591 out:
2592 dput(dentry);
2593 return error;
2594
2595 no_open:
2596 if (need_lookup) {
2597 dentry = lookup_real(dir, dentry, nd->flags);
2598 if (IS_ERR(dentry))
2599 return PTR_ERR(dentry);
2600
2601 if (create_error) {
2602 int open_flag = op->open_flag;
2603
2604 error = create_error;
2605 if ((open_flag & O_EXCL)) {
2606 if (!dentry->d_inode)
2607 goto out;
2608 } else if (!dentry->d_inode) {
2609 goto out;
2610 } else if ((open_flag & O_TRUNC) &&
2611 S_ISREG(dentry->d_inode->i_mode)) {
2612 goto out;
2613 }
2614 /* will fail later, go on to get the right error */
2615 }
2616 }
2617 looked_up:
2618 path->dentry = dentry;
2619 path->mnt = nd->path.mnt;
2620 return 1;
2621 }
2622
2623 /*
2624 * Look up and maybe create and open the last component.
2625 *
2626 * Must be called with i_mutex held on parent.
2627 *
2628 * Returns 0 if the file was successfully atomically created (if necessary) and
2629 * opened. In this case the file will be returned attached to @file.
2630 *
2631 * Returns 1 if the file was not completely opened at this time, though lookups
2632 * and creations will have been performed and the dentry returned in @path will
2633 * be positive upon return if O_CREAT was specified. If O_CREAT wasn't
2634 * specified then a negative dentry may be returned.
2635 *
2636 * An error code is returned otherwise.
2637 *
2638 * FILE_CREATE will be set in @*opened if the dentry was created and will be
2639 * cleared otherwise prior to returning.
2640 */
2641 static int lookup_open(struct nameidata *nd, struct path *path,
2642 struct file *file,
2643 const struct open_flags *op,
2644 bool got_write, int *opened)
2645 {
2646 struct dentry *dir = nd->path.dentry;
2647 struct inode *dir_inode = dir->d_inode;
2648 struct dentry *dentry;
2649 int error;
2650 bool need_lookup;
2651
2652 *opened &= ~FILE_CREATED;
2653 dentry = lookup_dcache(&nd->last, dir, nd->flags, &need_lookup);
2654 if (IS_ERR(dentry))
2655 return PTR_ERR(dentry);
2656
2657 /* Cached positive dentry: will open in f_op->open */
2658 if (!need_lookup && dentry->d_inode)
2659 goto out_no_open;
2660
2661 if ((nd->flags & LOOKUP_OPEN) && dir_inode->i_op->atomic_open) {
2662 return atomic_open(nd, dentry, path, file, op, got_write,
2663 need_lookup, opened);
2664 }
2665
2666 if (need_lookup) {
2667 BUG_ON(dentry->d_inode);
2668
2669 dentry = lookup_real(dir_inode, dentry, nd->flags);
2670 if (IS_ERR(dentry))
2671 return PTR_ERR(dentry);
2672 }
2673
2674 /* Negative dentry, just create the file */
2675 if (!dentry->d_inode && (op->open_flag & O_CREAT)) {
2676 umode_t mode = op->mode;
2677 if (!IS_POSIXACL(dir->d_inode))
2678 mode &= ~current_umask();
2679 /*
2680 * This write is needed to ensure that a
2681 * rw->ro transition does not occur between
2682 * the time when the file is created and when
2683 * a permanent write count is taken through
2684 * the 'struct file' in finish_open().
2685 */
2686 if (!got_write) {
2687 error = -EROFS;
2688 goto out_dput;
2689 }
2690 *opened |= FILE_CREATED;
2691 error = security_path_mknod(&nd->path, dentry, mode, 0);
2692 if (error)
2693 goto out_dput;
2694 error = vfs_create(dir->d_inode, dentry, mode,
2695 nd->flags & LOOKUP_EXCL);
2696 if (error)
2697 goto out_dput;
2698 }
2699 out_no_open:
2700 path->dentry = dentry;
2701 path->mnt = nd->path.mnt;
2702 return 1;
2703
2704 out_dput:
2705 dput(dentry);
2706 return error;
2707 }
2708
2709 /*
2710 * Handle the last step of open()
2711 */
2712 static int do_last(struct nameidata *nd, struct path *path,
2713 struct file *file, const struct open_flags *op,
2714 int *opened, struct filename *name)
2715 {
2716 struct dentry *dir = nd->path.dentry;
2717 int open_flag = op->open_flag;
2718 bool will_truncate = (open_flag & O_TRUNC) != 0;
2719 bool got_write = false;
2720 int acc_mode = op->acc_mode;
2721 struct inode *inode;
2722 bool symlink_ok = false;
2723 struct path save_parent = { .dentry = NULL, .mnt = NULL };
2724 bool retried = false;
2725 int error;
2726
2727 nd->flags &= ~LOOKUP_PARENT;
2728 nd->flags |= op->intent;
2729
2730 if (nd->last_type != LAST_NORM) {
2731 error = handle_dots(nd, nd->last_type);
2732 if (error)
2733 return error;
2734 goto finish_open;
2735 }
2736
2737 if (!(open_flag & O_CREAT)) {
2738 if (nd->last.name[nd->last.len])
2739 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2740 if (open_flag & O_PATH && !(nd->flags & LOOKUP_FOLLOW))
2741 symlink_ok = true;
2742 /* we _can_ be in RCU mode here */
2743 error = lookup_fast(nd, path, &inode);
2744 if (likely(!error))
2745 goto finish_lookup;
2746
2747 if (error < 0)
2748 goto out;
2749
2750 BUG_ON(nd->inode != dir->d_inode);
2751 } else {
2752 /* create side of things */
2753 /*
2754 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED
2755 * has been cleared when we got to the last component we are
2756 * about to look up
2757 */
2758 error = complete_walk(nd);
2759 if (error)
2760 return error;
2761
2762 audit_inode(name, dir, LOOKUP_PARENT);
2763 error = -EISDIR;
2764 /* trailing slashes? */
2765 if (nd->last.name[nd->last.len])
2766 goto out;
2767 }
2768
2769 retry_lookup:
2770 if (op->open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
2771 error = mnt_want_write(nd->path.mnt);
2772 if (!error)
2773 got_write = true;
2774 /*
2775 * do _not_ fail yet - we might not need that or fail with
2776 * a different error; let lookup_open() decide; we'll be
2777 * dropping this one anyway.
2778 */
2779 }
2780 mutex_lock(&dir->d_inode->i_mutex);
2781 error = lookup_open(nd, path, file, op, got_write, opened);
2782 mutex_unlock(&dir->d_inode->i_mutex);
2783
2784 if (error <= 0) {
2785 if (error)
2786 goto out;
2787
2788 if ((*opened & FILE_CREATED) ||
2789 !S_ISREG(file_inode(file)->i_mode))
2790 will_truncate = false;
2791
2792 audit_inode(name, file->f_path.dentry, 0);
2793 goto opened;
2794 }
2795
2796 if (*opened & FILE_CREATED) {
2797 /* Don't check for write permission, don't truncate */
2798 open_flag &= ~O_TRUNC;
2799 will_truncate = false;
2800 acc_mode = MAY_OPEN;
2801 path_to_nameidata(path, nd);
2802 goto finish_open_created;
2803 }
2804
2805 /*
2806 * create/update audit record if it already exists.
2807 */
2808 if (path->dentry->d_inode)
2809 audit_inode(name, path->dentry, 0);
2810
2811 /*
2812 * If atomic_open() acquired write access it is dropped now due to
2813 * possible mount and symlink following (this might be optimized away if
2814 * necessary...)
2815 */
2816 if (got_write) {
2817 mnt_drop_write(nd->path.mnt);
2818 got_write = false;
2819 }
2820
2821 error = -EEXIST;
2822 if ((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))
2823 goto exit_dput;
2824
2825 error = follow_managed(path, nd->flags);
2826 if (error < 0)
2827 goto exit_dput;
2828
2829 if (error)
2830 nd->flags |= LOOKUP_JUMPED;
2831
2832 BUG_ON(nd->flags & LOOKUP_RCU);
2833 inode = path->dentry->d_inode;
2834 finish_lookup:
2835 /* we _can_ be in RCU mode here */
2836 error = -ENOENT;
2837 if (!inode) {
2838 path_to_nameidata(path, nd);
2839 goto out;
2840 }
2841
2842 if (should_follow_link(inode, !symlink_ok)) {
2843 if (nd->flags & LOOKUP_RCU) {
2844 if (unlikely(unlazy_walk(nd, path->dentry))) {
2845 error = -ECHILD;
2846 goto out;
2847 }
2848 }
2849 BUG_ON(inode != path->dentry->d_inode);
2850 return 1;
2851 }
2852
2853 if ((nd->flags & LOOKUP_RCU) || nd->path.mnt != path->mnt) {
2854 path_to_nameidata(path, nd);
2855 } else {
2856 save_parent.dentry = nd->path.dentry;
2857 save_parent.mnt = mntget(path->mnt);
2858 nd->path.dentry = path->dentry;
2859
2860 }
2861 nd->inode = inode;
2862 /* Why this, you ask? _Now_ we might have grown LOOKUP_JUMPED... */
2863 finish_open:
2864 error = complete_walk(nd);
2865 if (error) {
2866 path_put(&save_parent);
2867 return error;
2868 }
2869 audit_inode(name, nd->path.dentry, 0);
2870 error = -EISDIR;
2871 if ((open_flag & O_CREAT) && S_ISDIR(nd->inode->i_mode))
2872 goto out;
2873 error = -ENOTDIR;
2874 if ((nd->flags & LOOKUP_DIRECTORY) && !can_lookup(nd->inode))
2875 goto out;
2876 if (!S_ISREG(nd->inode->i_mode))
2877 will_truncate = false;
2878
2879 if (will_truncate) {
2880 error = mnt_want_write(nd->path.mnt);
2881 if (error)
2882 goto out;
2883 got_write = true;
2884 }
2885 finish_open_created:
2886 error = may_open(&nd->path, acc_mode, open_flag);
2887 if (error)
2888 goto out;
2889 file->f_path.mnt = nd->path.mnt;
2890 error = finish_open(file, nd->path.dentry, NULL, opened);
2891 if (error) {
2892 if (error == -EOPENSTALE)
2893 goto stale_open;
2894 goto out;
2895 }
2896 opened:
2897 error = open_check_o_direct(file);
2898 if (error)
2899 goto exit_fput;
2900 error = ima_file_check(file, op->acc_mode);
2901 if (error)
2902 goto exit_fput;
2903
2904 if (will_truncate) {
2905 error = handle_truncate(file);
2906 if (error)
2907 goto exit_fput;
2908 }
2909 out:
2910 if (got_write)
2911 mnt_drop_write(nd->path.mnt);
2912 path_put(&save_parent);
2913 terminate_walk(nd);
2914 return error;
2915
2916 exit_dput:
2917 path_put_conditional(path, nd);
2918 goto out;
2919 exit_fput:
2920 fput(file);
2921 goto out;
2922
2923 stale_open:
2924 /* If no saved parent or already retried then can't retry */
2925 if (!save_parent.dentry || retried)
2926 goto out;
2927
2928 BUG_ON(save_parent.dentry != dir);
2929 path_put(&nd->path);
2930 nd->path = save_parent;
2931 nd->inode = dir->d_inode;
2932 save_parent.mnt = NULL;
2933 save_parent.dentry = NULL;
2934 if (got_write) {
2935 mnt_drop_write(nd->path.mnt);
2936 got_write = false;
2937 }
2938 retried = true;
2939 goto retry_lookup;
2940 }
2941
2942 static int do_tmpfile(int dfd, struct filename *pathname,
2943 struct nameidata *nd, int flags,
2944 const struct open_flags *op,
2945 struct file *file, int *opened)
2946 {
2947 static const struct qstr name = QSTR_INIT("/", 1);
2948 struct dentry *dentry, *child;
2949 struct inode *dir;
2950 int error = path_lookupat(dfd, pathname->name,
2951 flags | LOOKUP_DIRECTORY, nd);
2952 if (unlikely(error))
2953 return error;
2954 error = mnt_want_write(nd->path.mnt);
2955 if (unlikely(error))
2956 goto out;
2957 /* we want directory to be writable */
2958 error = inode_permission(nd->inode, MAY_WRITE | MAY_EXEC);
2959 if (error)
2960 goto out2;
2961 dentry = nd->path.dentry;
2962 dir = dentry->d_inode;
2963 if (!dir->i_op->tmpfile) {
2964 error = -EOPNOTSUPP;
2965 goto out2;
2966 }
2967 child = d_alloc(dentry, &name);
2968 if (unlikely(!child)) {
2969 error = -ENOMEM;
2970 goto out2;
2971 }
2972 nd->flags &= ~LOOKUP_DIRECTORY;
2973 nd->flags |= op->intent;
2974 dput(nd->path.dentry);
2975 nd->path.dentry = child;
2976 error = dir->i_op->tmpfile(dir, nd->path.dentry, op->mode);
2977 if (error)
2978 goto out2;
2979 audit_inode(pathname, nd->path.dentry, 0);
2980 error = may_open(&nd->path, op->acc_mode, op->open_flag);
2981 if (error)
2982 goto out2;
2983 file->f_path.mnt = nd->path.mnt;
2984 error = finish_open(file, nd->path.dentry, NULL, opened);
2985 if (error)
2986 goto out2;
2987 error = open_check_o_direct(file);
2988 if (error) {
2989 fput(file);
2990 } else if (!(op->open_flag & O_EXCL)) {
2991 struct inode *inode = file_inode(file);
2992 spin_lock(&inode->i_lock);
2993 inode->i_state |= I_LINKABLE;
2994 spin_unlock(&inode->i_lock);
2995 }
2996 out2:
2997 mnt_drop_write(nd->path.mnt);
2998 out:
2999 path_put(&nd->path);
3000 return error;
3001 }
3002
3003 static struct file *path_openat(int dfd, struct filename *pathname,
3004 struct nameidata *nd, const struct open_flags *op, int flags)
3005 {
3006 struct file *base = NULL;
3007 struct file *file;
3008 struct path path;
3009 int opened = 0;
3010 int error;
3011
3012 file = get_empty_filp();
3013 if (IS_ERR(file))
3014 return file;
3015
3016 file->f_flags = op->open_flag;
3017
3018 if (unlikely(file->f_flags & __O_TMPFILE)) {
3019 error = do_tmpfile(dfd, pathname, nd, flags, op, file, &opened);
3020 goto out;
3021 }
3022
3023 error = path_init(dfd, pathname->name, flags | LOOKUP_PARENT, nd, &base);
3024 if (unlikely(error))
3025 goto out;
3026
3027 current->total_link_count = 0;
3028 error = link_path_walk(pathname->name, nd);
3029 if (unlikely(error))
3030 goto out;
3031
3032 error = do_last(nd, &path, file, op, &opened, pathname);
3033 while (unlikely(error > 0)) { /* trailing symlink */
3034 struct path link = path;
3035 void *cookie;
3036 if (!(nd->flags & LOOKUP_FOLLOW)) {
3037 path_put_conditional(&path, nd);
3038 path_put(&nd->path);
3039 error = -ELOOP;
3040 break;
3041 }
3042 error = may_follow_link(&link, nd);
3043 if (unlikely(error))
3044 break;
3045 nd->flags |= LOOKUP_PARENT;
3046 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3047 error = follow_link(&link, nd, &cookie);
3048 if (unlikely(error))
3049 break;
3050 error = do_last(nd, &path, file, op, &opened, pathname);
3051 put_link(nd, &link, cookie);
3052 }
3053 out:
3054 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT))
3055 path_put(&nd->root);
3056 if (base)
3057 fput(base);
3058 if (!(opened & FILE_OPENED)) {
3059 BUG_ON(!error);
3060 put_filp(file);
3061 }
3062 if (unlikely(error)) {
3063 if (error == -EOPENSTALE) {
3064 if (flags & LOOKUP_RCU)
3065 error = -ECHILD;
3066 else
3067 error = -ESTALE;
3068 }
3069 file = ERR_PTR(error);
3070 }
3071 return file;
3072 }
3073
3074 struct file *do_filp_open(int dfd, struct filename *pathname,
3075 const struct open_flags *op)
3076 {
3077 struct nameidata nd;
3078 int flags = op->lookup_flags;
3079 struct file *filp;
3080
3081 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_RCU);
3082 if (unlikely(filp == ERR_PTR(-ECHILD)))
3083 filp = path_openat(dfd, pathname, &nd, op, flags);
3084 if (unlikely(filp == ERR_PTR(-ESTALE)))
3085 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_REVAL);
3086 return filp;
3087 }
3088
3089 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
3090 const char *name, const struct open_flags *op)
3091 {
3092 struct nameidata nd;
3093 struct file *file;
3094 struct filename filename = { .name = name };
3095 int flags = op->lookup_flags | LOOKUP_ROOT;
3096
3097 nd.root.mnt = mnt;
3098 nd.root.dentry = dentry;
3099
3100 if (dentry->d_inode->i_op->follow_link && op->intent & LOOKUP_OPEN)
3101 return ERR_PTR(-ELOOP);
3102
3103 file = path_openat(-1, &filename, &nd, op, flags | LOOKUP_RCU);
3104 if (unlikely(file == ERR_PTR(-ECHILD)))
3105 file = path_openat(-1, &filename, &nd, op, flags);
3106 if (unlikely(file == ERR_PTR(-ESTALE)))
3107 file = path_openat(-1, &filename, &nd, op, flags | LOOKUP_REVAL);
3108 return file;
3109 }
3110
3111 struct dentry *kern_path_create(int dfd, const char *pathname,
3112 struct path *path, unsigned int lookup_flags)
3113 {
3114 struct dentry *dentry = ERR_PTR(-EEXIST);
3115 struct nameidata nd;
3116 int err2;
3117 int error;
3118 bool is_dir = (lookup_flags & LOOKUP_DIRECTORY);
3119
3120 /*
3121 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
3122 * other flags passed in are ignored!
3123 */
3124 lookup_flags &= LOOKUP_REVAL;
3125
3126 error = do_path_lookup(dfd, pathname, LOOKUP_PARENT|lookup_flags, &nd);
3127 if (error)
3128 return ERR_PTR(error);
3129
3130 /*
3131 * Yucky last component or no last component at all?
3132 * (foo/., foo/.., /////)
3133 */
3134 if (nd.last_type != LAST_NORM)
3135 goto out;
3136 nd.flags &= ~LOOKUP_PARENT;
3137 nd.flags |= LOOKUP_CREATE | LOOKUP_EXCL;
3138
3139 /* don't fail immediately if it's r/o, at least try to report other errors */
3140 err2 = mnt_want_write(nd.path.mnt);
3141 /*
3142 * Do the final lookup.
3143 */
3144 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3145 dentry = lookup_hash(&nd);
3146 if (IS_ERR(dentry))
3147 goto unlock;
3148
3149 error = -EEXIST;
3150 if (dentry->d_inode)
3151 goto fail;
3152 /*
3153 * Special case - lookup gave negative, but... we had foo/bar/
3154 * From the vfs_mknod() POV we just have a negative dentry -
3155 * all is fine. Let's be bastards - you had / on the end, you've
3156 * been asking for (non-existent) directory. -ENOENT for you.
3157 */
3158 if (unlikely(!is_dir && nd.last.name[nd.last.len])) {
3159 error = -ENOENT;
3160 goto fail;
3161 }
3162 if (unlikely(err2)) {
3163 error = err2;
3164 goto fail;
3165 }
3166 *path = nd.path;
3167 return dentry;
3168 fail:
3169 dput(dentry);
3170 dentry = ERR_PTR(error);
3171 unlock:
3172 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3173 if (!err2)
3174 mnt_drop_write(nd.path.mnt);
3175 out:
3176 path_put(&nd.path);
3177 return dentry;
3178 }
3179 EXPORT_SYMBOL(kern_path_create);
3180
3181 void done_path_create(struct path *path, struct dentry *dentry)
3182 {
3183 dput(dentry);
3184 mutex_unlock(&path->dentry->d_inode->i_mutex);
3185 mnt_drop_write(path->mnt);
3186 path_put(path);
3187 }
3188 EXPORT_SYMBOL(done_path_create);
3189
3190 struct dentry *user_path_create(int dfd, const char __user *pathname,
3191 struct path *path, unsigned int lookup_flags)
3192 {
3193 struct filename *tmp = getname(pathname);
3194 struct dentry *res;
3195 if (IS_ERR(tmp))
3196 return ERR_CAST(tmp);
3197 res = kern_path_create(dfd, tmp->name, path, lookup_flags);
3198 putname(tmp);
3199 return res;
3200 }
3201 EXPORT_SYMBOL(user_path_create);
3202
3203 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3204 {
3205 int error = may_create(dir, dentry);
3206
3207 if (error)
3208 return error;
3209
3210 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
3211 return -EPERM;
3212
3213 if (!dir->i_op->mknod)
3214 return -EPERM;
3215
3216 error = devcgroup_inode_mknod(mode, dev);
3217 if (error)
3218 return error;
3219
3220 error = security_inode_mknod(dir, dentry, mode, dev);
3221 if (error)
3222 return error;
3223
3224 error = dir->i_op->mknod(dir, dentry, mode, dev);
3225 if (!error)
3226 fsnotify_create(dir, dentry);
3227 return error;
3228 }
3229
3230 static int may_mknod(umode_t mode)
3231 {
3232 switch (mode & S_IFMT) {
3233 case S_IFREG:
3234 case S_IFCHR:
3235 case S_IFBLK:
3236 case S_IFIFO:
3237 case S_IFSOCK:
3238 case 0: /* zero mode translates to S_IFREG */
3239 return 0;
3240 case S_IFDIR:
3241 return -EPERM;
3242 default:
3243 return -EINVAL;
3244 }
3245 }
3246
3247 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3248 unsigned, dev)
3249 {
3250 struct dentry *dentry;
3251 struct path path;
3252 int error;
3253 unsigned int lookup_flags = 0;
3254
3255 error = may_mknod(mode);
3256 if (error)
3257 return error;
3258 retry:
3259 dentry = user_path_create(dfd, filename, &path, lookup_flags);
3260 if (IS_ERR(dentry))
3261 return PTR_ERR(dentry);
3262
3263 if (!IS_POSIXACL(path.dentry->d_inode))
3264 mode &= ~current_umask();
3265 error = security_path_mknod(&path, dentry, mode, dev);
3266 if (error)
3267 goto out;
3268 switch (mode & S_IFMT) {
3269 case 0: case S_IFREG:
3270 error = vfs_create(path.dentry->d_inode,dentry,mode,true);
3271 break;
3272 case S_IFCHR: case S_IFBLK:
3273 error = vfs_mknod(path.dentry->d_inode,dentry,mode,
3274 new_decode_dev(dev));
3275 break;
3276 case S_IFIFO: case S_IFSOCK:
3277 error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
3278 break;
3279 }
3280 out:
3281 done_path_create(&path, dentry);
3282 if (retry_estale(error, lookup_flags)) {
3283 lookup_flags |= LOOKUP_REVAL;
3284 goto retry;
3285 }
3286 return error;
3287 }
3288
3289 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3290 {
3291 return sys_mknodat(AT_FDCWD, filename, mode, dev);
3292 }
3293
3294 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3295 {
3296 int error = may_create(dir, dentry);
3297 unsigned max_links = dir->i_sb->s_max_links;
3298
3299 if (error)
3300 return error;
3301
3302 if (!dir->i_op->mkdir)
3303 return -EPERM;
3304
3305 mode &= (S_IRWXUGO|S_ISVTX);
3306 error = security_inode_mkdir(dir, dentry, mode);
3307 if (error)
3308 return error;
3309
3310 if (max_links && dir->i_nlink >= max_links)
3311 return -EMLINK;
3312
3313 error = dir->i_op->mkdir(dir, dentry, mode);
3314 if (!error)
3315 fsnotify_mkdir(dir, dentry);
3316 return error;
3317 }
3318
3319 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3320 {
3321 struct dentry *dentry;
3322 struct path path;
3323 int error;
3324 unsigned int lookup_flags = LOOKUP_DIRECTORY;
3325
3326 retry:
3327 dentry = user_path_create(dfd, pathname, &path, lookup_flags);
3328 if (IS_ERR(dentry))
3329 return PTR_ERR(dentry);
3330
3331 if (!IS_POSIXACL(path.dentry->d_inode))
3332 mode &= ~current_umask();
3333 error = security_path_mkdir(&path, dentry, mode);
3334 if (!error)
3335 error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
3336 done_path_create(&path, dentry);
3337 if (retry_estale(error, lookup_flags)) {
3338 lookup_flags |= LOOKUP_REVAL;
3339 goto retry;
3340 }
3341 return error;
3342 }
3343
3344 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3345 {
3346 return sys_mkdirat(AT_FDCWD, pathname, mode);
3347 }
3348
3349 /*
3350 * The dentry_unhash() helper will try to drop the dentry early: we
3351 * should have a usage count of 1 if we're the only user of this
3352 * dentry, and if that is true (possibly after pruning the dcache),
3353 * then we drop the dentry now.
3354 *
3355 * A low-level filesystem can, if it choses, legally
3356 * do a
3357 *
3358 * if (!d_unhashed(dentry))
3359 * return -EBUSY;
3360 *
3361 * if it cannot handle the case of removing a directory
3362 * that is still in use by something else..
3363 */
3364 void dentry_unhash(struct dentry *dentry)
3365 {
3366 shrink_dcache_parent(dentry);
3367 spin_lock(&dentry->d_lock);
3368 if (dentry->d_lockref.count == 1)
3369 __d_drop(dentry);
3370 spin_unlock(&dentry->d_lock);
3371 }
3372
3373 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
3374 {
3375 int error = may_delete(dir, dentry, 1);
3376
3377 if (error)
3378 return error;
3379
3380 if (!dir->i_op->rmdir)
3381 return -EPERM;
3382
3383 dget(dentry);
3384 mutex_lock(&dentry->d_inode->i_mutex);
3385
3386 error = -EBUSY;
3387 if (d_mountpoint(dentry))
3388 goto out;
3389
3390 error = security_inode_rmdir(dir, dentry);
3391 if (error)
3392 goto out;
3393
3394 shrink_dcache_parent(dentry);
3395 error = dir->i_op->rmdir(dir, dentry);
3396 if (error)
3397 goto out;
3398
3399 dentry->d_inode->i_flags |= S_DEAD;
3400 dont_mount(dentry);
3401
3402 out:
3403 mutex_unlock(&dentry->d_inode->i_mutex);
3404 dput(dentry);
3405 if (!error)
3406 d_delete(dentry);
3407 return error;
3408 }
3409
3410 static long do_rmdir(int dfd, const char __user *pathname)
3411 {
3412 int error = 0;
3413 struct filename *name;
3414 struct dentry *dentry;
3415 struct nameidata nd;
3416 unsigned int lookup_flags = 0;
3417 retry:
3418 name = user_path_parent(dfd, pathname, &nd, lookup_flags);
3419 if (IS_ERR(name))
3420 return PTR_ERR(name);
3421
3422 switch(nd.last_type) {
3423 case LAST_DOTDOT:
3424 error = -ENOTEMPTY;
3425 goto exit1;
3426 case LAST_DOT:
3427 error = -EINVAL;
3428 goto exit1;
3429 case LAST_ROOT:
3430 error = -EBUSY;
3431 goto exit1;
3432 }
3433
3434 nd.flags &= ~LOOKUP_PARENT;
3435 error = mnt_want_write(nd.path.mnt);
3436 if (error)
3437 goto exit1;
3438
3439 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3440 dentry = lookup_hash(&nd);
3441 error = PTR_ERR(dentry);
3442 if (IS_ERR(dentry))
3443 goto exit2;
3444 if (!dentry->d_inode) {
3445 error = -ENOENT;
3446 goto exit3;
3447 }
3448 error = security_path_rmdir(&nd.path, dentry);
3449 if (error)
3450 goto exit3;
3451 error = vfs_rmdir(nd.path.dentry->d_inode, dentry);
3452 exit3:
3453 dput(dentry);
3454 exit2:
3455 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3456 mnt_drop_write(nd.path.mnt);
3457 exit1:
3458 path_put(&nd.path);
3459 putname(name);
3460 if (retry_estale(error, lookup_flags)) {
3461 lookup_flags |= LOOKUP_REVAL;
3462 goto retry;
3463 }
3464 return error;
3465 }
3466
3467 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3468 {
3469 return do_rmdir(AT_FDCWD, pathname);
3470 }
3471
3472 int vfs_unlink(struct inode *dir, struct dentry *dentry)
3473 {
3474 int error = may_delete(dir, dentry, 0);
3475
3476 if (error)
3477 return error;
3478
3479 if (!dir->i_op->unlink)
3480 return -EPERM;
3481
3482 mutex_lock(&dentry->d_inode->i_mutex);
3483 if (d_mountpoint(dentry))
3484 error = -EBUSY;
3485 else {
3486 error = security_inode_unlink(dir, dentry);
3487 if (!error) {
3488 error = dir->i_op->unlink(dir, dentry);
3489 if (!error)
3490 dont_mount(dentry);
3491 }
3492 }
3493 mutex_unlock(&dentry->d_inode->i_mutex);
3494
3495 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
3496 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
3497 fsnotify_link_count(dentry->d_inode);
3498 d_delete(dentry);
3499 }
3500
3501 return error;
3502 }
3503
3504 /*
3505 * Make sure that the actual truncation of the file will occur outside its
3506 * directory's i_mutex. Truncate can take a long time if there is a lot of
3507 * writeout happening, and we don't want to prevent access to the directory
3508 * while waiting on the I/O.
3509 */
3510 static long do_unlinkat(int dfd, const char __user *pathname)
3511 {
3512 int error;
3513 struct filename *name;
3514 struct dentry *dentry;
3515 struct nameidata nd;
3516 struct inode *inode = NULL;
3517 unsigned int lookup_flags = 0;
3518 retry:
3519 name = user_path_parent(dfd, pathname, &nd, lookup_flags);
3520 if (IS_ERR(name))
3521 return PTR_ERR(name);
3522
3523 error = -EISDIR;
3524 if (nd.last_type != LAST_NORM)
3525 goto exit1;
3526
3527 nd.flags &= ~LOOKUP_PARENT;
3528 error = mnt_want_write(nd.path.mnt);
3529 if (error)
3530 goto exit1;
3531
3532 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3533 dentry = lookup_hash(&nd);
3534 error = PTR_ERR(dentry);
3535 if (!IS_ERR(dentry)) {
3536 /* Why not before? Because we want correct error value */
3537 if (nd.last.name[nd.last.len])
3538 goto slashes;
3539 inode = dentry->d_inode;
3540 if (!inode)
3541 goto slashes;
3542 ihold(inode);
3543 error = security_path_unlink(&nd.path, dentry);
3544 if (error)
3545 goto exit2;
3546 error = vfs_unlink(nd.path.dentry->d_inode, dentry);
3547 exit2:
3548 dput(dentry);
3549 }
3550 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3551 if (inode)
3552 iput(inode); /* truncate the inode here */
3553 mnt_drop_write(nd.path.mnt);
3554 exit1:
3555 path_put(&nd.path);
3556 putname(name);
3557 if (retry_estale(error, lookup_flags)) {
3558 lookup_flags |= LOOKUP_REVAL;
3559 inode = NULL;
3560 goto retry;
3561 }
3562 return error;
3563
3564 slashes:
3565 error = !dentry->d_inode ? -ENOENT :
3566 S_ISDIR(dentry->d_inode->i_mode) ? -EISDIR : -ENOTDIR;
3567 goto exit2;
3568 }
3569
3570 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
3571 {
3572 if ((flag & ~AT_REMOVEDIR) != 0)
3573 return -EINVAL;
3574
3575 if (flag & AT_REMOVEDIR)
3576 return do_rmdir(dfd, pathname);
3577
3578 return do_unlinkat(dfd, pathname);
3579 }
3580
3581 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
3582 {
3583 return do_unlinkat(AT_FDCWD, pathname);
3584 }
3585
3586 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
3587 {
3588 int error = may_create(dir, dentry);
3589
3590 if (error)
3591 return error;
3592
3593 if (!dir->i_op->symlink)
3594 return -EPERM;
3595
3596 error = security_inode_symlink(dir, dentry, oldname);
3597 if (error)
3598 return error;
3599
3600 error = dir->i_op->symlink(dir, dentry, oldname);
3601 if (!error)
3602 fsnotify_create(dir, dentry);
3603 return error;
3604 }
3605
3606 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
3607 int, newdfd, const char __user *, newname)
3608 {
3609 int error;
3610 struct filename *from;
3611 struct dentry *dentry;
3612 struct path path;
3613 unsigned int lookup_flags = 0;
3614
3615 from = getname(oldname);
3616 if (IS_ERR(from))
3617 return PTR_ERR(from);
3618 retry:
3619 dentry = user_path_create(newdfd, newname, &path, lookup_flags);
3620 error = PTR_ERR(dentry);
3621 if (IS_ERR(dentry))
3622 goto out_putname;
3623
3624 error = security_path_symlink(&path, dentry, from->name);
3625 if (!error)
3626 error = vfs_symlink(path.dentry->d_inode, dentry, from->name);
3627 done_path_create(&path, dentry);
3628 if (retry_estale(error, lookup_flags)) {
3629 lookup_flags |= LOOKUP_REVAL;
3630 goto retry;
3631 }
3632 out_putname:
3633 putname(from);
3634 return error;
3635 }
3636
3637 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
3638 {
3639 return sys_symlinkat(oldname, AT_FDCWD, newname);
3640 }
3641
3642 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
3643 {
3644 struct inode *inode = old_dentry->d_inode;
3645 unsigned max_links = dir->i_sb->s_max_links;
3646 int error;
3647
3648 if (!inode)
3649 return -ENOENT;
3650
3651 error = may_create(dir, new_dentry);
3652 if (error)
3653 return error;
3654
3655 if (dir->i_sb != inode->i_sb)
3656 return -EXDEV;
3657
3658 /*
3659 * A link to an append-only or immutable file cannot be created.
3660 */
3661 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3662 return -EPERM;
3663 if (!dir->i_op->link)
3664 return -EPERM;
3665 if (S_ISDIR(inode->i_mode))
3666 return -EPERM;
3667
3668 error = security_inode_link(old_dentry, dir, new_dentry);
3669 if (error)
3670 return error;
3671
3672 mutex_lock(&inode->i_mutex);
3673 /* Make sure we don't allow creating hardlink to an unlinked file */
3674 if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
3675 error = -ENOENT;
3676 else if (max_links && inode->i_nlink >= max_links)
3677 error = -EMLINK;
3678 else
3679 error = dir->i_op->link(old_dentry, dir, new_dentry);
3680
3681 if (!error && (inode->i_state & I_LINKABLE)) {
3682 spin_lock(&inode->i_lock);
3683 inode->i_state &= ~I_LINKABLE;
3684 spin_unlock(&inode->i_lock);
3685 }
3686 mutex_unlock(&inode->i_mutex);
3687 if (!error)
3688 fsnotify_link(dir, inode, new_dentry);
3689 return error;
3690 }
3691
3692 /*
3693 * Hardlinks are often used in delicate situations. We avoid
3694 * security-related surprises by not following symlinks on the
3695 * newname. --KAB
3696 *
3697 * We don't follow them on the oldname either to be compatible
3698 * with linux 2.0, and to avoid hard-linking to directories
3699 * and other special files. --ADM
3700 */
3701 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
3702 int, newdfd, const char __user *, newname, int, flags)
3703 {
3704 struct dentry *new_dentry;
3705 struct path old_path, new_path;
3706 int how = 0;
3707 int error;
3708
3709 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
3710 return -EINVAL;
3711 /*
3712 * To use null names we require CAP_DAC_READ_SEARCH
3713 * This ensures that not everyone will be able to create
3714 * handlink using the passed filedescriptor.
3715 */
3716 if (flags & AT_EMPTY_PATH) {
3717 if (!capable(CAP_DAC_READ_SEARCH))
3718 return -ENOENT;
3719 how = LOOKUP_EMPTY;
3720 }
3721
3722 if (flags & AT_SYMLINK_FOLLOW)
3723 how |= LOOKUP_FOLLOW;
3724 retry:
3725 error = user_path_at(olddfd, oldname, how, &old_path);
3726 if (error)
3727 return error;
3728
3729 new_dentry = user_path_create(newdfd, newname, &new_path,
3730 (how & LOOKUP_REVAL));
3731 error = PTR_ERR(new_dentry);
3732 if (IS_ERR(new_dentry))
3733 goto out;
3734
3735 error = -EXDEV;
3736 if (old_path.mnt != new_path.mnt)
3737 goto out_dput;
3738 error = may_linkat(&old_path);
3739 if (unlikely(error))
3740 goto out_dput;
3741 error = security_path_link(old_path.dentry, &new_path, new_dentry);
3742 if (error)
3743 goto out_dput;
3744 error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry);
3745 out_dput:
3746 done_path_create(&new_path, new_dentry);
3747 if (retry_estale(error, how)) {
3748 how |= LOOKUP_REVAL;
3749 goto retry;
3750 }
3751 out:
3752 path_put(&old_path);
3753
3754 return error;
3755 }
3756
3757 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
3758 {
3759 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
3760 }
3761
3762 /*
3763 * The worst of all namespace operations - renaming directory. "Perverted"
3764 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
3765 * Problems:
3766 * a) we can get into loop creation. Check is done in is_subdir().
3767 * b) race potential - two innocent renames can create a loop together.
3768 * That's where 4.4 screws up. Current fix: serialization on
3769 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
3770 * story.
3771 * c) we have to lock _three_ objects - parents and victim (if it exists).
3772 * And that - after we got ->i_mutex on parents (until then we don't know
3773 * whether the target exists). Solution: try to be smart with locking
3774 * order for inodes. We rely on the fact that tree topology may change
3775 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
3776 * move will be locked. Thus we can rank directories by the tree
3777 * (ancestors first) and rank all non-directories after them.
3778 * That works since everybody except rename does "lock parent, lookup,
3779 * lock child" and rename is under ->s_vfs_rename_mutex.
3780 * HOWEVER, it relies on the assumption that any object with ->lookup()
3781 * has no more than 1 dentry. If "hybrid" objects will ever appear,
3782 * we'd better make sure that there's no link(2) for them.
3783 * d) conversion from fhandle to dentry may come in the wrong moment - when
3784 * we are removing the target. Solution: we will have to grab ->i_mutex
3785 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
3786 * ->i_mutex on parents, which works but leads to some truly excessive
3787 * locking].
3788 */
3789 static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry,
3790 struct inode *new_dir, struct dentry *new_dentry)
3791 {
3792 int error = 0;
3793 struct inode *target = new_dentry->d_inode;
3794 unsigned max_links = new_dir->i_sb->s_max_links;
3795
3796 /*
3797 * If we are going to change the parent - check write permissions,
3798 * we'll need to flip '..'.
3799 */
3800 if (new_dir != old_dir) {
3801 error = inode_permission(old_dentry->d_inode, MAY_WRITE);
3802 if (error)
3803 return error;
3804 }
3805
3806 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
3807 if (error)
3808 return error;
3809
3810 dget(new_dentry);
3811 if (target)
3812 mutex_lock(&target->i_mutex);
3813
3814 error = -EBUSY;
3815 if (d_mountpoint(old_dentry) || d_mountpoint(new_dentry))
3816 goto out;
3817
3818 error = -EMLINK;
3819 if (max_links && !target && new_dir != old_dir &&
3820 new_dir->i_nlink >= max_links)
3821 goto out;
3822
3823 if (target)
3824 shrink_dcache_parent(new_dentry);
3825 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
3826 if (error)
3827 goto out;
3828
3829 if (target) {
3830 target->i_flags |= S_DEAD;
3831 dont_mount(new_dentry);
3832 }
3833 out:
3834 if (target)
3835 mutex_unlock(&target->i_mutex);
3836 dput(new_dentry);
3837 if (!error)
3838 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
3839 d_move(old_dentry,new_dentry);
3840 return error;
3841 }
3842
3843 static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry,
3844 struct inode *new_dir, struct dentry *new_dentry)
3845 {
3846 struct inode *target = new_dentry->d_inode;
3847 int error;
3848
3849 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
3850 if (error)
3851 return error;
3852
3853 dget(new_dentry);
3854 if (target)
3855 mutex_lock(&target->i_mutex);
3856
3857 error = -EBUSY;
3858 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
3859 goto out;
3860
3861 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
3862 if (error)
3863 goto out;
3864
3865 if (target)
3866 dont_mount(new_dentry);
3867 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
3868 d_move(old_dentry, new_dentry);
3869 out:
3870 if (target)
3871 mutex_unlock(&target->i_mutex);
3872 dput(new_dentry);
3873 return error;
3874 }
3875
3876 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
3877 struct inode *new_dir, struct dentry *new_dentry)
3878 {
3879 int error;
3880 int is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
3881 const unsigned char *old_name;
3882
3883 if (old_dentry->d_inode == new_dentry->d_inode)
3884 return 0;
3885
3886 error = may_delete(old_dir, old_dentry, is_dir);
3887 if (error)
3888 return error;
3889
3890 if (!new_dentry->d_inode)
3891 error = may_create(new_dir, new_dentry);
3892 else
3893 error = may_delete(new_dir, new_dentry, is_dir);
3894 if (error)
3895 return error;
3896
3897 if (!old_dir->i_op->rename)
3898 return -EPERM;
3899
3900 old_name = fsnotify_oldname_init(old_dentry->d_name.name);
3901
3902 if (is_dir)
3903 error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry);
3904 else
3905 error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry);
3906 if (!error)
3907 fsnotify_move(old_dir, new_dir, old_name, is_dir,
3908 new_dentry->d_inode, old_dentry);
3909 fsnotify_oldname_free(old_name);
3910
3911 return error;
3912 }
3913
3914 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
3915 int, newdfd, const char __user *, newname)
3916 {
3917 struct dentry *old_dir, *new_dir;
3918 struct dentry *old_dentry, *new_dentry;
3919 struct dentry *trap;
3920 struct nameidata oldnd, newnd;
3921 struct filename *from;
3922 struct filename *to;
3923 unsigned int lookup_flags = 0;
3924 bool should_retry = false;
3925 int error;
3926 retry:
3927 from = user_path_parent(olddfd, oldname, &oldnd, lookup_flags);
3928 if (IS_ERR(from)) {
3929 error = PTR_ERR(from);
3930 goto exit;
3931 }
3932
3933 to = user_path_parent(newdfd, newname, &newnd, lookup_flags);
3934 if (IS_ERR(to)) {
3935 error = PTR_ERR(to);
3936 goto exit1;
3937 }
3938
3939 error = -EXDEV;
3940 if (oldnd.path.mnt != newnd.path.mnt)
3941 goto exit2;
3942
3943 old_dir = oldnd.path.dentry;
3944 error = -EBUSY;
3945 if (oldnd.last_type != LAST_NORM)
3946 goto exit2;
3947
3948 new_dir = newnd.path.dentry;
3949 if (newnd.last_type != LAST_NORM)
3950 goto exit2;
3951
3952 error = mnt_want_write(oldnd.path.mnt);
3953 if (error)
3954 goto exit2;
3955
3956 oldnd.flags &= ~LOOKUP_PARENT;
3957 newnd.flags &= ~LOOKUP_PARENT;
3958 newnd.flags |= LOOKUP_RENAME_TARGET;
3959
3960 trap = lock_rename(new_dir, old_dir);
3961
3962 old_dentry = lookup_hash(&oldnd);
3963 error = PTR_ERR(old_dentry);
3964 if (IS_ERR(old_dentry))
3965 goto exit3;
3966 /* source must exist */
3967 error = -ENOENT;
3968 if (!old_dentry->d_inode)
3969 goto exit4;
3970 /* unless the source is a directory trailing slashes give -ENOTDIR */
3971 if (!S_ISDIR(old_dentry->d_inode->i_mode)) {
3972 error = -ENOTDIR;
3973 if (oldnd.last.name[oldnd.last.len])
3974 goto exit4;
3975 if (newnd.last.name[newnd.last.len])
3976 goto exit4;
3977 }
3978 /* source should not be ancestor of target */
3979 error = -EINVAL;
3980 if (old_dentry == trap)
3981 goto exit4;
3982 new_dentry = lookup_hash(&newnd);
3983 error = PTR_ERR(new_dentry);
3984 if (IS_ERR(new_dentry))
3985 goto exit4;
3986 /* target should not be an ancestor of source */
3987 error = -ENOTEMPTY;
3988 if (new_dentry == trap)
3989 goto exit5;
3990
3991 error = security_path_rename(&oldnd.path, old_dentry,
3992 &newnd.path, new_dentry);
3993 if (error)
3994 goto exit5;
3995 error = vfs_rename(old_dir->d_inode, old_dentry,
3996 new_dir->d_inode, new_dentry);
3997 exit5:
3998 dput(new_dentry);
3999 exit4:
4000 dput(old_dentry);
4001 exit3:
4002 unlock_rename(new_dir, old_dir);
4003 mnt_drop_write(oldnd.path.mnt);
4004 exit2:
4005 if (retry_estale(error, lookup_flags))
4006 should_retry = true;
4007 path_put(&newnd.path);
4008 putname(to);
4009 exit1:
4010 path_put(&oldnd.path);
4011 putname(from);
4012 if (should_retry) {
4013 should_retry = false;
4014 lookup_flags |= LOOKUP_REVAL;
4015 goto retry;
4016 }
4017 exit:
4018 return error;
4019 }
4020
4021 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4022 {
4023 return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname);
4024 }
4025
4026 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link)
4027 {
4028 int len;
4029
4030 len = PTR_ERR(link);
4031 if (IS_ERR(link))
4032 goto out;
4033
4034 len = strlen(link);
4035 if (len > (unsigned) buflen)
4036 len = buflen;
4037 if (copy_to_user(buffer, link, len))
4038 len = -EFAULT;
4039 out:
4040 return len;
4041 }
4042
4043 /*
4044 * A helper for ->readlink(). This should be used *ONLY* for symlinks that
4045 * have ->follow_link() touching nd only in nd_set_link(). Using (or not
4046 * using) it for any given inode is up to filesystem.
4047 */
4048 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4049 {
4050 struct nameidata nd;
4051 void *cookie;
4052 int res;
4053
4054 nd.depth = 0;
4055 cookie = dentry->d_inode->i_op->follow_link(dentry, &nd);
4056 if (IS_ERR(cookie))
4057 return PTR_ERR(cookie);
4058
4059 res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd));
4060 if (dentry->d_inode->i_op->put_link)
4061 dentry->d_inode->i_op->put_link(dentry, &nd, cookie);
4062 return res;
4063 }
4064
4065 int vfs_follow_link(struct nameidata *nd, const char *link)
4066 {
4067 return __vfs_follow_link(nd, link);
4068 }
4069
4070 /* get the link contents into pagecache */
4071 static char *page_getlink(struct dentry * dentry, struct page **ppage)
4072 {
4073 char *kaddr;
4074 struct page *page;
4075 struct address_space *mapping = dentry->d_inode->i_mapping;
4076 page = read_mapping_page(mapping, 0, NULL);
4077 if (IS_ERR(page))
4078 return (char*)page;
4079 *ppage = page;
4080 kaddr = kmap(page);
4081 nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
4082 return kaddr;
4083 }
4084
4085 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4086 {
4087 struct page *page = NULL;
4088 char *s = page_getlink(dentry, &page);
4089 int res = vfs_readlink(dentry,buffer,buflen,s);
4090 if (page) {
4091 kunmap(page);
4092 page_cache_release(page);
4093 }
4094 return res;
4095 }
4096
4097 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd)
4098 {
4099 struct page *page = NULL;
4100 nd_set_link(nd, page_getlink(dentry, &page));
4101 return page;
4102 }
4103
4104 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
4105 {
4106 struct page *page = cookie;
4107
4108 if (page) {
4109 kunmap(page);
4110 page_cache_release(page);
4111 }
4112 }
4113
4114 /*
4115 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
4116 */
4117 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
4118 {
4119 struct address_space *mapping = inode->i_mapping;
4120 struct page *page;
4121 void *fsdata;
4122 int err;
4123 char *kaddr;
4124 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
4125 if (nofs)
4126 flags |= AOP_FLAG_NOFS;
4127
4128 retry:
4129 err = pagecache_write_begin(NULL, mapping, 0, len-1,
4130 flags, &page, &fsdata);
4131 if (err)
4132 goto fail;
4133
4134 kaddr = kmap_atomic(page);
4135 memcpy(kaddr, symname, len-1);
4136 kunmap_atomic(kaddr);
4137
4138 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
4139 page, fsdata);
4140 if (err < 0)
4141 goto fail;
4142 if (err < len-1)
4143 goto retry;
4144
4145 mark_inode_dirty(inode);
4146 return 0;
4147 fail:
4148 return err;
4149 }
4150
4151 int page_symlink(struct inode *inode, const char *symname, int len)
4152 {
4153 return __page_symlink(inode, symname, len,
4154 !(mapping_gfp_mask(inode->i_mapping) & __GFP_FS));
4155 }
4156
4157 const struct inode_operations page_symlink_inode_operations = {
4158 .readlink = generic_readlink,
4159 .follow_link = page_follow_link_light,
4160 .put_link = page_put_link,
4161 };
4162
4163 EXPORT_SYMBOL(user_path_at);
4164 EXPORT_SYMBOL(follow_down_one);
4165 EXPORT_SYMBOL(follow_down);
4166 EXPORT_SYMBOL(follow_up);
4167 EXPORT_SYMBOL(get_write_access); /* nfsd */
4168 EXPORT_SYMBOL(lock_rename);
4169 EXPORT_SYMBOL(lookup_one_len);
4170 EXPORT_SYMBOL(page_follow_link_light);
4171 EXPORT_SYMBOL(page_put_link);
4172 EXPORT_SYMBOL(page_readlink);
4173 EXPORT_SYMBOL(__page_symlink);
4174 EXPORT_SYMBOL(page_symlink);
4175 EXPORT_SYMBOL(page_symlink_inode_operations);
4176 EXPORT_SYMBOL(kern_path);
4177 EXPORT_SYMBOL(vfs_path_lookup);
4178 EXPORT_SYMBOL(inode_permission);
4179 EXPORT_SYMBOL(unlock_rename);
4180 EXPORT_SYMBOL(vfs_create);
4181 EXPORT_SYMBOL(vfs_follow_link);
4182 EXPORT_SYMBOL(vfs_link);
4183 EXPORT_SYMBOL(vfs_mkdir);
4184 EXPORT_SYMBOL(vfs_mknod);
4185 EXPORT_SYMBOL(generic_permission);
4186 EXPORT_SYMBOL(vfs_readlink);
4187 EXPORT_SYMBOL(vfs_rename);
4188 EXPORT_SYMBOL(vfs_rmdir);
4189 EXPORT_SYMBOL(vfs_symlink);
4190 EXPORT_SYMBOL(vfs_unlink);
4191 EXPORT_SYMBOL(dentry_unhash);
4192 EXPORT_SYMBOL(generic_readlink);
This page took 0.180142 seconds and 6 git commands to generate.