kill check_acl callback of generic_permission()
[deliverable/linux.git] / fs / namei.c
1 /*
2 * linux/fs/namei.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * Some corrections by tytso.
9 */
10
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12 * lookup logic.
13 */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15 */
16
17 #include <linux/init.h>
18 #include <linux/module.h>
19 #include <linux/slab.h>
20 #include <linux/fs.h>
21 #include <linux/namei.h>
22 #include <linux/pagemap.h>
23 #include <linux/fsnotify.h>
24 #include <linux/personality.h>
25 #include <linux/security.h>
26 #include <linux/ima.h>
27 #include <linux/syscalls.h>
28 #include <linux/mount.h>
29 #include <linux/audit.h>
30 #include <linux/capability.h>
31 #include <linux/file.h>
32 #include <linux/fcntl.h>
33 #include <linux/device_cgroup.h>
34 #include <linux/fs_struct.h>
35 #include <asm/uaccess.h>
36
37 #include "internal.h"
38
39 /* [Feb-1997 T. Schoebel-Theuer]
40 * Fundamental changes in the pathname lookup mechanisms (namei)
41 * were necessary because of omirr. The reason is that omirr needs
42 * to know the _real_ pathname, not the user-supplied one, in case
43 * of symlinks (and also when transname replacements occur).
44 *
45 * The new code replaces the old recursive symlink resolution with
46 * an iterative one (in case of non-nested symlink chains). It does
47 * this with calls to <fs>_follow_link().
48 * As a side effect, dir_namei(), _namei() and follow_link() are now
49 * replaced with a single function lookup_dentry() that can handle all
50 * the special cases of the former code.
51 *
52 * With the new dcache, the pathname is stored at each inode, at least as
53 * long as the refcount of the inode is positive. As a side effect, the
54 * size of the dcache depends on the inode cache and thus is dynamic.
55 *
56 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
57 * resolution to correspond with current state of the code.
58 *
59 * Note that the symlink resolution is not *completely* iterative.
60 * There is still a significant amount of tail- and mid- recursion in
61 * the algorithm. Also, note that <fs>_readlink() is not used in
62 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
63 * may return different results than <fs>_follow_link(). Many virtual
64 * filesystems (including /proc) exhibit this behavior.
65 */
66
67 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
68 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
69 * and the name already exists in form of a symlink, try to create the new
70 * name indicated by the symlink. The old code always complained that the
71 * name already exists, due to not following the symlink even if its target
72 * is nonexistent. The new semantics affects also mknod() and link() when
73 * the name is a symlink pointing to a non-existent name.
74 *
75 * I don't know which semantics is the right one, since I have no access
76 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
77 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
78 * "old" one. Personally, I think the new semantics is much more logical.
79 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
80 * file does succeed in both HP-UX and SunOs, but not in Solaris
81 * and in the old Linux semantics.
82 */
83
84 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
85 * semantics. See the comments in "open_namei" and "do_link" below.
86 *
87 * [10-Sep-98 Alan Modra] Another symlink change.
88 */
89
90 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
91 * inside the path - always follow.
92 * in the last component in creation/removal/renaming - never follow.
93 * if LOOKUP_FOLLOW passed - follow.
94 * if the pathname has trailing slashes - follow.
95 * otherwise - don't follow.
96 * (applied in that order).
97 *
98 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
99 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
100 * During the 2.4 we need to fix the userland stuff depending on it -
101 * hopefully we will be able to get rid of that wart in 2.5. So far only
102 * XEmacs seems to be relying on it...
103 */
104 /*
105 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
106 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
107 * any extra contention...
108 */
109
110 /* In order to reduce some races, while at the same time doing additional
111 * checking and hopefully speeding things up, we copy filenames to the
112 * kernel data space before using them..
113 *
114 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
115 * PATH_MAX includes the nul terminator --RR.
116 */
117 static int do_getname(const char __user *filename, char *page)
118 {
119 int retval;
120 unsigned long len = PATH_MAX;
121
122 if (!segment_eq(get_fs(), KERNEL_DS)) {
123 if ((unsigned long) filename >= TASK_SIZE)
124 return -EFAULT;
125 if (TASK_SIZE - (unsigned long) filename < PATH_MAX)
126 len = TASK_SIZE - (unsigned long) filename;
127 }
128
129 retval = strncpy_from_user(page, filename, len);
130 if (retval > 0) {
131 if (retval < len)
132 return 0;
133 return -ENAMETOOLONG;
134 } else if (!retval)
135 retval = -ENOENT;
136 return retval;
137 }
138
139 static char *getname_flags(const char __user * filename, int flags)
140 {
141 char *tmp, *result;
142
143 result = ERR_PTR(-ENOMEM);
144 tmp = __getname();
145 if (tmp) {
146 int retval = do_getname(filename, tmp);
147
148 result = tmp;
149 if (retval < 0) {
150 if (retval != -ENOENT || !(flags & LOOKUP_EMPTY)) {
151 __putname(tmp);
152 result = ERR_PTR(retval);
153 }
154 }
155 }
156 audit_getname(result);
157 return result;
158 }
159
160 char *getname(const char __user * filename)
161 {
162 return getname_flags(filename, 0);
163 }
164
165 #ifdef CONFIG_AUDITSYSCALL
166 void putname(const char *name)
167 {
168 if (unlikely(!audit_dummy_context()))
169 audit_putname(name);
170 else
171 __putname(name);
172 }
173 EXPORT_SYMBOL(putname);
174 #endif
175
176 /*
177 * This does basic POSIX ACL permission checking
178 */
179 static int acl_permission_check(struct inode *inode, int mask, unsigned int flags)
180 {
181 int (*check_acl)(struct inode *inode, int mask, unsigned int flags);
182 unsigned int mode = inode->i_mode;
183
184 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
185
186 if (current_user_ns() != inode_userns(inode))
187 goto other_perms;
188
189 if (current_fsuid() == inode->i_uid)
190 mode >>= 6;
191 else {
192 check_acl = inode->i_op->check_acl;
193 if (IS_POSIXACL(inode) && (mode & S_IRWXG) && check_acl) {
194 int error = check_acl(inode, mask, flags);
195 if (error != -EAGAIN)
196 return error;
197 }
198
199 if (in_group_p(inode->i_gid))
200 mode >>= 3;
201 }
202
203 other_perms:
204 /*
205 * If the DACs are ok we don't need any capability check.
206 */
207 if ((mask & ~mode) == 0)
208 return 0;
209 return -EACCES;
210 }
211
212 /**
213 * generic_permission - check for access rights on a Posix-like filesystem
214 * @inode: inode to check access rights for
215 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
216 * @flags: IPERM_FLAG_ flags.
217 *
218 * Used to check for read/write/execute permissions on a file.
219 * We use "fsuid" for this, letting us set arbitrary permissions
220 * for filesystem access without changing the "normal" uids which
221 * are used for other things.
222 *
223 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
224 * request cannot be satisfied (eg. requires blocking or too much complexity).
225 * It would then be called again in ref-walk mode.
226 */
227 int generic_permission(struct inode *inode, int mask, unsigned int flags)
228 {
229 int ret;
230
231 /*
232 * Do the basic POSIX ACL permission checks.
233 */
234 ret = acl_permission_check(inode, mask, flags);
235 if (ret != -EACCES)
236 return ret;
237
238 /*
239 * Read/write DACs are always overridable.
240 * Executable DACs are overridable for all directories and
241 * for non-directories that have least one exec bit set.
242 */
243 if (!(mask & MAY_EXEC) || execute_ok(inode))
244 if (ns_capable(inode_userns(inode), CAP_DAC_OVERRIDE))
245 return 0;
246
247 /*
248 * Searching includes executable on directories, else just read.
249 */
250 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
251 if (mask == MAY_READ || (S_ISDIR(inode->i_mode) && !(mask & MAY_WRITE)))
252 if (ns_capable(inode_userns(inode), CAP_DAC_READ_SEARCH))
253 return 0;
254
255 return -EACCES;
256 }
257
258 /**
259 * inode_permission - check for access rights to a given inode
260 * @inode: inode to check permission on
261 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
262 *
263 * Used to check for read/write/execute permissions on an inode.
264 * We use "fsuid" for this, letting us set arbitrary permissions
265 * for filesystem access without changing the "normal" uids which
266 * are used for other things.
267 */
268 int inode_permission(struct inode *inode, int mask)
269 {
270 int retval;
271
272 if (mask & MAY_WRITE) {
273 umode_t mode = inode->i_mode;
274
275 /*
276 * Nobody gets write access to a read-only fs.
277 */
278 if (IS_RDONLY(inode) &&
279 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
280 return -EROFS;
281
282 /*
283 * Nobody gets write access to an immutable file.
284 */
285 if (IS_IMMUTABLE(inode))
286 return -EACCES;
287 }
288
289 if (inode->i_op->permission)
290 retval = inode->i_op->permission(inode, mask, 0);
291 else
292 retval = generic_permission(inode, mask, 0);
293
294 if (retval)
295 return retval;
296
297 retval = devcgroup_inode_permission(inode, mask);
298 if (retval)
299 return retval;
300
301 return security_inode_permission(inode, mask);
302 }
303
304 /**
305 * exec_permission - check for right to do lookups in a given directory
306 * @inode: inode to check permission on
307 * @flags: IPERM_FLAG_ flags.
308 *
309 * Short-cut version of inode_permission(), for calling on directories
310 * during pathname resolution. Combines parts of inode_permission()
311 * and generic_permission(), and tests ONLY for MAY_EXEC permission.
312 *
313 * If appropriate, check DAC only. If not appropriate, or
314 * short-cut DAC fails, then call ->permission() to do more
315 * complete permission check.
316 */
317 static inline int exec_permission(struct inode *inode, unsigned int flags)
318 {
319 int ret;
320 struct user_namespace *ns = inode_userns(inode);
321
322 if (inode->i_op->permission) {
323 ret = inode->i_op->permission(inode, MAY_EXEC, flags);
324 if (likely(!ret))
325 goto ok;
326 } else {
327 ret = acl_permission_check(inode, MAY_EXEC, flags);
328 if (likely(!ret))
329 goto ok;
330 if (ret != -EACCES)
331 return ret;
332 if (ns_capable(ns, CAP_DAC_OVERRIDE) ||
333 ns_capable(ns, CAP_DAC_READ_SEARCH))
334 goto ok;
335 }
336 return ret;
337 ok:
338 return security_inode_exec_permission(inode, flags);
339 }
340
341 /**
342 * path_get - get a reference to a path
343 * @path: path to get the reference to
344 *
345 * Given a path increment the reference count to the dentry and the vfsmount.
346 */
347 void path_get(struct path *path)
348 {
349 mntget(path->mnt);
350 dget(path->dentry);
351 }
352 EXPORT_SYMBOL(path_get);
353
354 /**
355 * path_put - put a reference to a path
356 * @path: path to put the reference to
357 *
358 * Given a path decrement the reference count to the dentry and the vfsmount.
359 */
360 void path_put(struct path *path)
361 {
362 dput(path->dentry);
363 mntput(path->mnt);
364 }
365 EXPORT_SYMBOL(path_put);
366
367 /*
368 * Path walking has 2 modes, rcu-walk and ref-walk (see
369 * Documentation/filesystems/path-lookup.txt). In situations when we can't
370 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
371 * normal reference counts on dentries and vfsmounts to transition to rcu-walk
372 * mode. Refcounts are grabbed at the last known good point before rcu-walk
373 * got stuck, so ref-walk may continue from there. If this is not successful
374 * (eg. a seqcount has changed), then failure is returned and it's up to caller
375 * to restart the path walk from the beginning in ref-walk mode.
376 */
377
378 /**
379 * unlazy_walk - try to switch to ref-walk mode.
380 * @nd: nameidata pathwalk data
381 * @dentry: child of nd->path.dentry or NULL
382 * Returns: 0 on success, -ECHILD on failure
383 *
384 * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry
385 * for ref-walk mode. @dentry must be a path found by a do_lookup call on
386 * @nd or NULL. Must be called from rcu-walk context.
387 */
388 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry)
389 {
390 struct fs_struct *fs = current->fs;
391 struct dentry *parent = nd->path.dentry;
392 int want_root = 0;
393
394 BUG_ON(!(nd->flags & LOOKUP_RCU));
395 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
396 want_root = 1;
397 spin_lock(&fs->lock);
398 if (nd->root.mnt != fs->root.mnt ||
399 nd->root.dentry != fs->root.dentry)
400 goto err_root;
401 }
402 spin_lock(&parent->d_lock);
403 if (!dentry) {
404 if (!__d_rcu_to_refcount(parent, nd->seq))
405 goto err_parent;
406 BUG_ON(nd->inode != parent->d_inode);
407 } else {
408 if (dentry->d_parent != parent)
409 goto err_parent;
410 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
411 if (!__d_rcu_to_refcount(dentry, nd->seq))
412 goto err_child;
413 /*
414 * If the sequence check on the child dentry passed, then
415 * the child has not been removed from its parent. This
416 * means the parent dentry must be valid and able to take
417 * a reference at this point.
418 */
419 BUG_ON(!IS_ROOT(dentry) && dentry->d_parent != parent);
420 BUG_ON(!parent->d_count);
421 parent->d_count++;
422 spin_unlock(&dentry->d_lock);
423 }
424 spin_unlock(&parent->d_lock);
425 if (want_root) {
426 path_get(&nd->root);
427 spin_unlock(&fs->lock);
428 }
429 mntget(nd->path.mnt);
430
431 rcu_read_unlock();
432 br_read_unlock(vfsmount_lock);
433 nd->flags &= ~LOOKUP_RCU;
434 return 0;
435
436 err_child:
437 spin_unlock(&dentry->d_lock);
438 err_parent:
439 spin_unlock(&parent->d_lock);
440 err_root:
441 if (want_root)
442 spin_unlock(&fs->lock);
443 return -ECHILD;
444 }
445
446 /**
447 * release_open_intent - free up open intent resources
448 * @nd: pointer to nameidata
449 */
450 void release_open_intent(struct nameidata *nd)
451 {
452 struct file *file = nd->intent.open.file;
453
454 if (file && !IS_ERR(file)) {
455 if (file->f_path.dentry == NULL)
456 put_filp(file);
457 else
458 fput(file);
459 }
460 }
461
462 static inline int d_revalidate(struct dentry *dentry, struct nameidata *nd)
463 {
464 return dentry->d_op->d_revalidate(dentry, nd);
465 }
466
467 static struct dentry *
468 do_revalidate(struct dentry *dentry, struct nameidata *nd)
469 {
470 int status = d_revalidate(dentry, nd);
471 if (unlikely(status <= 0)) {
472 /*
473 * The dentry failed validation.
474 * If d_revalidate returned 0 attempt to invalidate
475 * the dentry otherwise d_revalidate is asking us
476 * to return a fail status.
477 */
478 if (status < 0) {
479 dput(dentry);
480 dentry = ERR_PTR(status);
481 } else if (!d_invalidate(dentry)) {
482 dput(dentry);
483 dentry = NULL;
484 }
485 }
486 return dentry;
487 }
488
489 /**
490 * complete_walk - successful completion of path walk
491 * @nd: pointer nameidata
492 *
493 * If we had been in RCU mode, drop out of it and legitimize nd->path.
494 * Revalidate the final result, unless we'd already done that during
495 * the path walk or the filesystem doesn't ask for it. Return 0 on
496 * success, -error on failure. In case of failure caller does not
497 * need to drop nd->path.
498 */
499 static int complete_walk(struct nameidata *nd)
500 {
501 struct dentry *dentry = nd->path.dentry;
502 int status;
503
504 if (nd->flags & LOOKUP_RCU) {
505 nd->flags &= ~LOOKUP_RCU;
506 if (!(nd->flags & LOOKUP_ROOT))
507 nd->root.mnt = NULL;
508 spin_lock(&dentry->d_lock);
509 if (unlikely(!__d_rcu_to_refcount(dentry, nd->seq))) {
510 spin_unlock(&dentry->d_lock);
511 rcu_read_unlock();
512 br_read_unlock(vfsmount_lock);
513 return -ECHILD;
514 }
515 BUG_ON(nd->inode != dentry->d_inode);
516 spin_unlock(&dentry->d_lock);
517 mntget(nd->path.mnt);
518 rcu_read_unlock();
519 br_read_unlock(vfsmount_lock);
520 }
521
522 if (likely(!(nd->flags & LOOKUP_JUMPED)))
523 return 0;
524
525 if (likely(!(dentry->d_flags & DCACHE_OP_REVALIDATE)))
526 return 0;
527
528 if (likely(!(dentry->d_sb->s_type->fs_flags & FS_REVAL_DOT)))
529 return 0;
530
531 /* Note: we do not d_invalidate() */
532 status = d_revalidate(dentry, nd);
533 if (status > 0)
534 return 0;
535
536 if (!status)
537 status = -ESTALE;
538
539 path_put(&nd->path);
540 return status;
541 }
542
543 static __always_inline void set_root(struct nameidata *nd)
544 {
545 if (!nd->root.mnt)
546 get_fs_root(current->fs, &nd->root);
547 }
548
549 static int link_path_walk(const char *, struct nameidata *);
550
551 static __always_inline void set_root_rcu(struct nameidata *nd)
552 {
553 if (!nd->root.mnt) {
554 struct fs_struct *fs = current->fs;
555 unsigned seq;
556
557 do {
558 seq = read_seqcount_begin(&fs->seq);
559 nd->root = fs->root;
560 nd->seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
561 } while (read_seqcount_retry(&fs->seq, seq));
562 }
563 }
564
565 static __always_inline int __vfs_follow_link(struct nameidata *nd, const char *link)
566 {
567 int ret;
568
569 if (IS_ERR(link))
570 goto fail;
571
572 if (*link == '/') {
573 set_root(nd);
574 path_put(&nd->path);
575 nd->path = nd->root;
576 path_get(&nd->root);
577 nd->flags |= LOOKUP_JUMPED;
578 }
579 nd->inode = nd->path.dentry->d_inode;
580
581 ret = link_path_walk(link, nd);
582 return ret;
583 fail:
584 path_put(&nd->path);
585 return PTR_ERR(link);
586 }
587
588 static void path_put_conditional(struct path *path, struct nameidata *nd)
589 {
590 dput(path->dentry);
591 if (path->mnt != nd->path.mnt)
592 mntput(path->mnt);
593 }
594
595 static inline void path_to_nameidata(const struct path *path,
596 struct nameidata *nd)
597 {
598 if (!(nd->flags & LOOKUP_RCU)) {
599 dput(nd->path.dentry);
600 if (nd->path.mnt != path->mnt)
601 mntput(nd->path.mnt);
602 }
603 nd->path.mnt = path->mnt;
604 nd->path.dentry = path->dentry;
605 }
606
607 static inline void put_link(struct nameidata *nd, struct path *link, void *cookie)
608 {
609 struct inode *inode = link->dentry->d_inode;
610 if (!IS_ERR(cookie) && inode->i_op->put_link)
611 inode->i_op->put_link(link->dentry, nd, cookie);
612 path_put(link);
613 }
614
615 static __always_inline int
616 follow_link(struct path *link, struct nameidata *nd, void **p)
617 {
618 int error;
619 struct dentry *dentry = link->dentry;
620
621 BUG_ON(nd->flags & LOOKUP_RCU);
622
623 if (link->mnt == nd->path.mnt)
624 mntget(link->mnt);
625
626 if (unlikely(current->total_link_count >= 40)) {
627 *p = ERR_PTR(-ELOOP); /* no ->put_link(), please */
628 path_put(&nd->path);
629 return -ELOOP;
630 }
631 cond_resched();
632 current->total_link_count++;
633
634 touch_atime(link->mnt, dentry);
635 nd_set_link(nd, NULL);
636
637 error = security_inode_follow_link(link->dentry, nd);
638 if (error) {
639 *p = ERR_PTR(error); /* no ->put_link(), please */
640 path_put(&nd->path);
641 return error;
642 }
643
644 nd->last_type = LAST_BIND;
645 *p = dentry->d_inode->i_op->follow_link(dentry, nd);
646 error = PTR_ERR(*p);
647 if (!IS_ERR(*p)) {
648 char *s = nd_get_link(nd);
649 error = 0;
650 if (s)
651 error = __vfs_follow_link(nd, s);
652 else if (nd->last_type == LAST_BIND) {
653 nd->flags |= LOOKUP_JUMPED;
654 nd->inode = nd->path.dentry->d_inode;
655 if (nd->inode->i_op->follow_link) {
656 /* stepped on a _really_ weird one */
657 path_put(&nd->path);
658 error = -ELOOP;
659 }
660 }
661 }
662 return error;
663 }
664
665 static int follow_up_rcu(struct path *path)
666 {
667 struct vfsmount *parent;
668 struct dentry *mountpoint;
669
670 parent = path->mnt->mnt_parent;
671 if (parent == path->mnt)
672 return 0;
673 mountpoint = path->mnt->mnt_mountpoint;
674 path->dentry = mountpoint;
675 path->mnt = parent;
676 return 1;
677 }
678
679 int follow_up(struct path *path)
680 {
681 struct vfsmount *parent;
682 struct dentry *mountpoint;
683
684 br_read_lock(vfsmount_lock);
685 parent = path->mnt->mnt_parent;
686 if (parent == path->mnt) {
687 br_read_unlock(vfsmount_lock);
688 return 0;
689 }
690 mntget(parent);
691 mountpoint = dget(path->mnt->mnt_mountpoint);
692 br_read_unlock(vfsmount_lock);
693 dput(path->dentry);
694 path->dentry = mountpoint;
695 mntput(path->mnt);
696 path->mnt = parent;
697 return 1;
698 }
699
700 /*
701 * Perform an automount
702 * - return -EISDIR to tell follow_managed() to stop and return the path we
703 * were called with.
704 */
705 static int follow_automount(struct path *path, unsigned flags,
706 bool *need_mntput)
707 {
708 struct vfsmount *mnt;
709 int err;
710
711 if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
712 return -EREMOTE;
713
714 /* We don't want to mount if someone supplied AT_NO_AUTOMOUNT
715 * and this is the terminal part of the path.
716 */
717 if ((flags & LOOKUP_NO_AUTOMOUNT) && !(flags & LOOKUP_CONTINUE))
718 return -EISDIR; /* we actually want to stop here */
719
720 /* We want to mount if someone is trying to open/create a file of any
721 * type under the mountpoint, wants to traverse through the mountpoint
722 * or wants to open the mounted directory.
723 *
724 * We don't want to mount if someone's just doing a stat and they've
725 * set AT_SYMLINK_NOFOLLOW - unless they're stat'ing a directory and
726 * appended a '/' to the name.
727 */
728 if (!(flags & LOOKUP_FOLLOW) &&
729 !(flags & (LOOKUP_CONTINUE | LOOKUP_DIRECTORY |
730 LOOKUP_OPEN | LOOKUP_CREATE)))
731 return -EISDIR;
732
733 current->total_link_count++;
734 if (current->total_link_count >= 40)
735 return -ELOOP;
736
737 mnt = path->dentry->d_op->d_automount(path);
738 if (IS_ERR(mnt)) {
739 /*
740 * The filesystem is allowed to return -EISDIR here to indicate
741 * it doesn't want to automount. For instance, autofs would do
742 * this so that its userspace daemon can mount on this dentry.
743 *
744 * However, we can only permit this if it's a terminal point in
745 * the path being looked up; if it wasn't then the remainder of
746 * the path is inaccessible and we should say so.
747 */
748 if (PTR_ERR(mnt) == -EISDIR && (flags & LOOKUP_CONTINUE))
749 return -EREMOTE;
750 return PTR_ERR(mnt);
751 }
752
753 if (!mnt) /* mount collision */
754 return 0;
755
756 if (!*need_mntput) {
757 /* lock_mount() may release path->mnt on error */
758 mntget(path->mnt);
759 *need_mntput = true;
760 }
761 err = finish_automount(mnt, path);
762
763 switch (err) {
764 case -EBUSY:
765 /* Someone else made a mount here whilst we were busy */
766 return 0;
767 case 0:
768 path_put(path);
769 path->mnt = mnt;
770 path->dentry = dget(mnt->mnt_root);
771 return 0;
772 default:
773 return err;
774 }
775
776 }
777
778 /*
779 * Handle a dentry that is managed in some way.
780 * - Flagged for transit management (autofs)
781 * - Flagged as mountpoint
782 * - Flagged as automount point
783 *
784 * This may only be called in refwalk mode.
785 *
786 * Serialization is taken care of in namespace.c
787 */
788 static int follow_managed(struct path *path, unsigned flags)
789 {
790 struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
791 unsigned managed;
792 bool need_mntput = false;
793 int ret = 0;
794
795 /* Given that we're not holding a lock here, we retain the value in a
796 * local variable for each dentry as we look at it so that we don't see
797 * the components of that value change under us */
798 while (managed = ACCESS_ONCE(path->dentry->d_flags),
799 managed &= DCACHE_MANAGED_DENTRY,
800 unlikely(managed != 0)) {
801 /* Allow the filesystem to manage the transit without i_mutex
802 * being held. */
803 if (managed & DCACHE_MANAGE_TRANSIT) {
804 BUG_ON(!path->dentry->d_op);
805 BUG_ON(!path->dentry->d_op->d_manage);
806 ret = path->dentry->d_op->d_manage(path->dentry, false);
807 if (ret < 0)
808 break;
809 }
810
811 /* Transit to a mounted filesystem. */
812 if (managed & DCACHE_MOUNTED) {
813 struct vfsmount *mounted = lookup_mnt(path);
814 if (mounted) {
815 dput(path->dentry);
816 if (need_mntput)
817 mntput(path->mnt);
818 path->mnt = mounted;
819 path->dentry = dget(mounted->mnt_root);
820 need_mntput = true;
821 continue;
822 }
823
824 /* Something is mounted on this dentry in another
825 * namespace and/or whatever was mounted there in this
826 * namespace got unmounted before we managed to get the
827 * vfsmount_lock */
828 }
829
830 /* Handle an automount point */
831 if (managed & DCACHE_NEED_AUTOMOUNT) {
832 ret = follow_automount(path, flags, &need_mntput);
833 if (ret < 0)
834 break;
835 continue;
836 }
837
838 /* We didn't change the current path point */
839 break;
840 }
841
842 if (need_mntput && path->mnt == mnt)
843 mntput(path->mnt);
844 if (ret == -EISDIR)
845 ret = 0;
846 return ret;
847 }
848
849 int follow_down_one(struct path *path)
850 {
851 struct vfsmount *mounted;
852
853 mounted = lookup_mnt(path);
854 if (mounted) {
855 dput(path->dentry);
856 mntput(path->mnt);
857 path->mnt = mounted;
858 path->dentry = dget(mounted->mnt_root);
859 return 1;
860 }
861 return 0;
862 }
863
864 static inline bool managed_dentry_might_block(struct dentry *dentry)
865 {
866 return (dentry->d_flags & DCACHE_MANAGE_TRANSIT &&
867 dentry->d_op->d_manage(dentry, true) < 0);
868 }
869
870 /*
871 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if
872 * we meet a managed dentry that would need blocking.
873 */
874 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
875 struct inode **inode)
876 {
877 for (;;) {
878 struct vfsmount *mounted;
879 /*
880 * Don't forget we might have a non-mountpoint managed dentry
881 * that wants to block transit.
882 */
883 if (unlikely(managed_dentry_might_block(path->dentry)))
884 return false;
885
886 if (!d_mountpoint(path->dentry))
887 break;
888
889 mounted = __lookup_mnt(path->mnt, path->dentry, 1);
890 if (!mounted)
891 break;
892 path->mnt = mounted;
893 path->dentry = mounted->mnt_root;
894 nd->seq = read_seqcount_begin(&path->dentry->d_seq);
895 /*
896 * Update the inode too. We don't need to re-check the
897 * dentry sequence number here after this d_inode read,
898 * because a mount-point is always pinned.
899 */
900 *inode = path->dentry->d_inode;
901 }
902 return true;
903 }
904
905 static void follow_mount_rcu(struct nameidata *nd)
906 {
907 while (d_mountpoint(nd->path.dentry)) {
908 struct vfsmount *mounted;
909 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry, 1);
910 if (!mounted)
911 break;
912 nd->path.mnt = mounted;
913 nd->path.dentry = mounted->mnt_root;
914 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
915 }
916 }
917
918 static int follow_dotdot_rcu(struct nameidata *nd)
919 {
920 set_root_rcu(nd);
921
922 while (1) {
923 if (nd->path.dentry == nd->root.dentry &&
924 nd->path.mnt == nd->root.mnt) {
925 break;
926 }
927 if (nd->path.dentry != nd->path.mnt->mnt_root) {
928 struct dentry *old = nd->path.dentry;
929 struct dentry *parent = old->d_parent;
930 unsigned seq;
931
932 seq = read_seqcount_begin(&parent->d_seq);
933 if (read_seqcount_retry(&old->d_seq, nd->seq))
934 goto failed;
935 nd->path.dentry = parent;
936 nd->seq = seq;
937 break;
938 }
939 if (!follow_up_rcu(&nd->path))
940 break;
941 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
942 }
943 follow_mount_rcu(nd);
944 nd->inode = nd->path.dentry->d_inode;
945 return 0;
946
947 failed:
948 nd->flags &= ~LOOKUP_RCU;
949 if (!(nd->flags & LOOKUP_ROOT))
950 nd->root.mnt = NULL;
951 rcu_read_unlock();
952 br_read_unlock(vfsmount_lock);
953 return -ECHILD;
954 }
955
956 /*
957 * Follow down to the covering mount currently visible to userspace. At each
958 * point, the filesystem owning that dentry may be queried as to whether the
959 * caller is permitted to proceed or not.
960 */
961 int follow_down(struct path *path)
962 {
963 unsigned managed;
964 int ret;
965
966 while (managed = ACCESS_ONCE(path->dentry->d_flags),
967 unlikely(managed & DCACHE_MANAGED_DENTRY)) {
968 /* Allow the filesystem to manage the transit without i_mutex
969 * being held.
970 *
971 * We indicate to the filesystem if someone is trying to mount
972 * something here. This gives autofs the chance to deny anyone
973 * other than its daemon the right to mount on its
974 * superstructure.
975 *
976 * The filesystem may sleep at this point.
977 */
978 if (managed & DCACHE_MANAGE_TRANSIT) {
979 BUG_ON(!path->dentry->d_op);
980 BUG_ON(!path->dentry->d_op->d_manage);
981 ret = path->dentry->d_op->d_manage(
982 path->dentry, false);
983 if (ret < 0)
984 return ret == -EISDIR ? 0 : ret;
985 }
986
987 /* Transit to a mounted filesystem. */
988 if (managed & DCACHE_MOUNTED) {
989 struct vfsmount *mounted = lookup_mnt(path);
990 if (!mounted)
991 break;
992 dput(path->dentry);
993 mntput(path->mnt);
994 path->mnt = mounted;
995 path->dentry = dget(mounted->mnt_root);
996 continue;
997 }
998
999 /* Don't handle automount points here */
1000 break;
1001 }
1002 return 0;
1003 }
1004
1005 /*
1006 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1007 */
1008 static void follow_mount(struct path *path)
1009 {
1010 while (d_mountpoint(path->dentry)) {
1011 struct vfsmount *mounted = lookup_mnt(path);
1012 if (!mounted)
1013 break;
1014 dput(path->dentry);
1015 mntput(path->mnt);
1016 path->mnt = mounted;
1017 path->dentry = dget(mounted->mnt_root);
1018 }
1019 }
1020
1021 static void follow_dotdot(struct nameidata *nd)
1022 {
1023 set_root(nd);
1024
1025 while(1) {
1026 struct dentry *old = nd->path.dentry;
1027
1028 if (nd->path.dentry == nd->root.dentry &&
1029 nd->path.mnt == nd->root.mnt) {
1030 break;
1031 }
1032 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1033 /* rare case of legitimate dget_parent()... */
1034 nd->path.dentry = dget_parent(nd->path.dentry);
1035 dput(old);
1036 break;
1037 }
1038 if (!follow_up(&nd->path))
1039 break;
1040 }
1041 follow_mount(&nd->path);
1042 nd->inode = nd->path.dentry->d_inode;
1043 }
1044
1045 /*
1046 * Allocate a dentry with name and parent, and perform a parent
1047 * directory ->lookup on it. Returns the new dentry, or ERR_PTR
1048 * on error. parent->d_inode->i_mutex must be held. d_lookup must
1049 * have verified that no child exists while under i_mutex.
1050 */
1051 static struct dentry *d_alloc_and_lookup(struct dentry *parent,
1052 struct qstr *name, struct nameidata *nd)
1053 {
1054 struct inode *inode = parent->d_inode;
1055 struct dentry *dentry;
1056 struct dentry *old;
1057
1058 /* Don't create child dentry for a dead directory. */
1059 if (unlikely(IS_DEADDIR(inode)))
1060 return ERR_PTR(-ENOENT);
1061
1062 dentry = d_alloc(parent, name);
1063 if (unlikely(!dentry))
1064 return ERR_PTR(-ENOMEM);
1065
1066 old = inode->i_op->lookup(inode, dentry, nd);
1067 if (unlikely(old)) {
1068 dput(dentry);
1069 dentry = old;
1070 }
1071 return dentry;
1072 }
1073
1074 /*
1075 * We already have a dentry, but require a lookup to be performed on the parent
1076 * directory to fill in d_inode. Returns the new dentry, or ERR_PTR on error.
1077 * parent->d_inode->i_mutex must be held. d_lookup must have verified that no
1078 * child exists while under i_mutex.
1079 */
1080 static struct dentry *d_inode_lookup(struct dentry *parent, struct dentry *dentry,
1081 struct nameidata *nd)
1082 {
1083 struct inode *inode = parent->d_inode;
1084 struct dentry *old;
1085
1086 /* Don't create child dentry for a dead directory. */
1087 if (unlikely(IS_DEADDIR(inode)))
1088 return ERR_PTR(-ENOENT);
1089
1090 old = inode->i_op->lookup(inode, dentry, nd);
1091 if (unlikely(old)) {
1092 dput(dentry);
1093 dentry = old;
1094 }
1095 return dentry;
1096 }
1097
1098 /*
1099 * It's more convoluted than I'd like it to be, but... it's still fairly
1100 * small and for now I'd prefer to have fast path as straight as possible.
1101 * It _is_ time-critical.
1102 */
1103 static int do_lookup(struct nameidata *nd, struct qstr *name,
1104 struct path *path, struct inode **inode)
1105 {
1106 struct vfsmount *mnt = nd->path.mnt;
1107 struct dentry *dentry, *parent = nd->path.dentry;
1108 int need_reval = 1;
1109 int status = 1;
1110 int err;
1111
1112 /*
1113 * Rename seqlock is not required here because in the off chance
1114 * of a false negative due to a concurrent rename, we're going to
1115 * do the non-racy lookup, below.
1116 */
1117 if (nd->flags & LOOKUP_RCU) {
1118 unsigned seq;
1119 *inode = nd->inode;
1120 dentry = __d_lookup_rcu(parent, name, &seq, inode);
1121 if (!dentry)
1122 goto unlazy;
1123
1124 /* Memory barrier in read_seqcount_begin of child is enough */
1125 if (__read_seqcount_retry(&parent->d_seq, nd->seq))
1126 return -ECHILD;
1127 nd->seq = seq;
1128
1129 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) {
1130 status = d_revalidate(dentry, nd);
1131 if (unlikely(status <= 0)) {
1132 if (status != -ECHILD)
1133 need_reval = 0;
1134 goto unlazy;
1135 }
1136 }
1137 if (unlikely(d_need_lookup(dentry)))
1138 goto unlazy;
1139 path->mnt = mnt;
1140 path->dentry = dentry;
1141 if (unlikely(!__follow_mount_rcu(nd, path, inode)))
1142 goto unlazy;
1143 if (unlikely(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT))
1144 goto unlazy;
1145 return 0;
1146 unlazy:
1147 if (unlazy_walk(nd, dentry))
1148 return -ECHILD;
1149 } else {
1150 dentry = __d_lookup(parent, name);
1151 }
1152
1153 if (dentry && unlikely(d_need_lookup(dentry))) {
1154 dput(dentry);
1155 dentry = NULL;
1156 }
1157 retry:
1158 if (unlikely(!dentry)) {
1159 struct inode *dir = parent->d_inode;
1160 BUG_ON(nd->inode != dir);
1161
1162 mutex_lock(&dir->i_mutex);
1163 dentry = d_lookup(parent, name);
1164 if (likely(!dentry)) {
1165 dentry = d_alloc_and_lookup(parent, name, nd);
1166 if (IS_ERR(dentry)) {
1167 mutex_unlock(&dir->i_mutex);
1168 return PTR_ERR(dentry);
1169 }
1170 /* known good */
1171 need_reval = 0;
1172 status = 1;
1173 } else if (unlikely(d_need_lookup(dentry))) {
1174 dentry = d_inode_lookup(parent, dentry, nd);
1175 if (IS_ERR(dentry)) {
1176 mutex_unlock(&dir->i_mutex);
1177 return PTR_ERR(dentry);
1178 }
1179 /* known good */
1180 need_reval = 0;
1181 status = 1;
1182 }
1183 mutex_unlock(&dir->i_mutex);
1184 }
1185 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE) && need_reval)
1186 status = d_revalidate(dentry, nd);
1187 if (unlikely(status <= 0)) {
1188 if (status < 0) {
1189 dput(dentry);
1190 return status;
1191 }
1192 if (!d_invalidate(dentry)) {
1193 dput(dentry);
1194 dentry = NULL;
1195 need_reval = 1;
1196 goto retry;
1197 }
1198 }
1199
1200 path->mnt = mnt;
1201 path->dentry = dentry;
1202 err = follow_managed(path, nd->flags);
1203 if (unlikely(err < 0)) {
1204 path_put_conditional(path, nd);
1205 return err;
1206 }
1207 *inode = path->dentry->d_inode;
1208 return 0;
1209 }
1210
1211 static inline int may_lookup(struct nameidata *nd)
1212 {
1213 if (nd->flags & LOOKUP_RCU) {
1214 int err = exec_permission(nd->inode, IPERM_FLAG_RCU);
1215 if (err != -ECHILD)
1216 return err;
1217 if (unlazy_walk(nd, NULL))
1218 return -ECHILD;
1219 }
1220 return exec_permission(nd->inode, 0);
1221 }
1222
1223 static inline int handle_dots(struct nameidata *nd, int type)
1224 {
1225 if (type == LAST_DOTDOT) {
1226 if (nd->flags & LOOKUP_RCU) {
1227 if (follow_dotdot_rcu(nd))
1228 return -ECHILD;
1229 } else
1230 follow_dotdot(nd);
1231 }
1232 return 0;
1233 }
1234
1235 static void terminate_walk(struct nameidata *nd)
1236 {
1237 if (!(nd->flags & LOOKUP_RCU)) {
1238 path_put(&nd->path);
1239 } else {
1240 nd->flags &= ~LOOKUP_RCU;
1241 if (!(nd->flags & LOOKUP_ROOT))
1242 nd->root.mnt = NULL;
1243 rcu_read_unlock();
1244 br_read_unlock(vfsmount_lock);
1245 }
1246 }
1247
1248 static inline int walk_component(struct nameidata *nd, struct path *path,
1249 struct qstr *name, int type, int follow)
1250 {
1251 struct inode *inode;
1252 int err;
1253 /*
1254 * "." and ".." are special - ".." especially so because it has
1255 * to be able to know about the current root directory and
1256 * parent relationships.
1257 */
1258 if (unlikely(type != LAST_NORM))
1259 return handle_dots(nd, type);
1260 err = do_lookup(nd, name, path, &inode);
1261 if (unlikely(err)) {
1262 terminate_walk(nd);
1263 return err;
1264 }
1265 if (!inode) {
1266 path_to_nameidata(path, nd);
1267 terminate_walk(nd);
1268 return -ENOENT;
1269 }
1270 if (unlikely(inode->i_op->follow_link) && follow) {
1271 if (nd->flags & LOOKUP_RCU) {
1272 if (unlikely(unlazy_walk(nd, path->dentry))) {
1273 terminate_walk(nd);
1274 return -ECHILD;
1275 }
1276 }
1277 BUG_ON(inode != path->dentry->d_inode);
1278 return 1;
1279 }
1280 path_to_nameidata(path, nd);
1281 nd->inode = inode;
1282 return 0;
1283 }
1284
1285 /*
1286 * This limits recursive symlink follows to 8, while
1287 * limiting consecutive symlinks to 40.
1288 *
1289 * Without that kind of total limit, nasty chains of consecutive
1290 * symlinks can cause almost arbitrarily long lookups.
1291 */
1292 static inline int nested_symlink(struct path *path, struct nameidata *nd)
1293 {
1294 int res;
1295
1296 if (unlikely(current->link_count >= MAX_NESTED_LINKS)) {
1297 path_put_conditional(path, nd);
1298 path_put(&nd->path);
1299 return -ELOOP;
1300 }
1301 BUG_ON(nd->depth >= MAX_NESTED_LINKS);
1302
1303 nd->depth++;
1304 current->link_count++;
1305
1306 do {
1307 struct path link = *path;
1308 void *cookie;
1309
1310 res = follow_link(&link, nd, &cookie);
1311 if (!res)
1312 res = walk_component(nd, path, &nd->last,
1313 nd->last_type, LOOKUP_FOLLOW);
1314 put_link(nd, &link, cookie);
1315 } while (res > 0);
1316
1317 current->link_count--;
1318 nd->depth--;
1319 return res;
1320 }
1321
1322 /*
1323 * Name resolution.
1324 * This is the basic name resolution function, turning a pathname into
1325 * the final dentry. We expect 'base' to be positive and a directory.
1326 *
1327 * Returns 0 and nd will have valid dentry and mnt on success.
1328 * Returns error and drops reference to input namei data on failure.
1329 */
1330 static int link_path_walk(const char *name, struct nameidata *nd)
1331 {
1332 struct path next;
1333 int err;
1334 unsigned int lookup_flags = nd->flags;
1335
1336 while (*name=='/')
1337 name++;
1338 if (!*name)
1339 return 0;
1340
1341 /* At this point we know we have a real path component. */
1342 for(;;) {
1343 unsigned long hash;
1344 struct qstr this;
1345 unsigned int c;
1346 int type;
1347
1348 nd->flags |= LOOKUP_CONTINUE;
1349
1350 err = may_lookup(nd);
1351 if (err)
1352 break;
1353
1354 this.name = name;
1355 c = *(const unsigned char *)name;
1356
1357 hash = init_name_hash();
1358 do {
1359 name++;
1360 hash = partial_name_hash(c, hash);
1361 c = *(const unsigned char *)name;
1362 } while (c && (c != '/'));
1363 this.len = name - (const char *) this.name;
1364 this.hash = end_name_hash(hash);
1365
1366 type = LAST_NORM;
1367 if (this.name[0] == '.') switch (this.len) {
1368 case 2:
1369 if (this.name[1] == '.') {
1370 type = LAST_DOTDOT;
1371 nd->flags |= LOOKUP_JUMPED;
1372 }
1373 break;
1374 case 1:
1375 type = LAST_DOT;
1376 }
1377 if (likely(type == LAST_NORM)) {
1378 struct dentry *parent = nd->path.dentry;
1379 nd->flags &= ~LOOKUP_JUMPED;
1380 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
1381 err = parent->d_op->d_hash(parent, nd->inode,
1382 &this);
1383 if (err < 0)
1384 break;
1385 }
1386 }
1387
1388 /* remove trailing slashes? */
1389 if (!c)
1390 goto last_component;
1391 while (*++name == '/');
1392 if (!*name)
1393 goto last_component;
1394
1395 err = walk_component(nd, &next, &this, type, LOOKUP_FOLLOW);
1396 if (err < 0)
1397 return err;
1398
1399 if (err) {
1400 err = nested_symlink(&next, nd);
1401 if (err)
1402 return err;
1403 }
1404 err = -ENOTDIR;
1405 if (!nd->inode->i_op->lookup)
1406 break;
1407 continue;
1408 /* here ends the main loop */
1409
1410 last_component:
1411 /* Clear LOOKUP_CONTINUE iff it was previously unset */
1412 nd->flags &= lookup_flags | ~LOOKUP_CONTINUE;
1413 nd->last = this;
1414 nd->last_type = type;
1415 return 0;
1416 }
1417 terminate_walk(nd);
1418 return err;
1419 }
1420
1421 static int path_init(int dfd, const char *name, unsigned int flags,
1422 struct nameidata *nd, struct file **fp)
1423 {
1424 int retval = 0;
1425 int fput_needed;
1426 struct file *file;
1427
1428 nd->last_type = LAST_ROOT; /* if there are only slashes... */
1429 nd->flags = flags | LOOKUP_JUMPED;
1430 nd->depth = 0;
1431 if (flags & LOOKUP_ROOT) {
1432 struct inode *inode = nd->root.dentry->d_inode;
1433 if (*name) {
1434 if (!inode->i_op->lookup)
1435 return -ENOTDIR;
1436 retval = inode_permission(inode, MAY_EXEC);
1437 if (retval)
1438 return retval;
1439 }
1440 nd->path = nd->root;
1441 nd->inode = inode;
1442 if (flags & LOOKUP_RCU) {
1443 br_read_lock(vfsmount_lock);
1444 rcu_read_lock();
1445 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1446 } else {
1447 path_get(&nd->path);
1448 }
1449 return 0;
1450 }
1451
1452 nd->root.mnt = NULL;
1453
1454 if (*name=='/') {
1455 if (flags & LOOKUP_RCU) {
1456 br_read_lock(vfsmount_lock);
1457 rcu_read_lock();
1458 set_root_rcu(nd);
1459 } else {
1460 set_root(nd);
1461 path_get(&nd->root);
1462 }
1463 nd->path = nd->root;
1464 } else if (dfd == AT_FDCWD) {
1465 if (flags & LOOKUP_RCU) {
1466 struct fs_struct *fs = current->fs;
1467 unsigned seq;
1468
1469 br_read_lock(vfsmount_lock);
1470 rcu_read_lock();
1471
1472 do {
1473 seq = read_seqcount_begin(&fs->seq);
1474 nd->path = fs->pwd;
1475 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1476 } while (read_seqcount_retry(&fs->seq, seq));
1477 } else {
1478 get_fs_pwd(current->fs, &nd->path);
1479 }
1480 } else {
1481 struct dentry *dentry;
1482
1483 file = fget_raw_light(dfd, &fput_needed);
1484 retval = -EBADF;
1485 if (!file)
1486 goto out_fail;
1487
1488 dentry = file->f_path.dentry;
1489
1490 if (*name) {
1491 retval = -ENOTDIR;
1492 if (!S_ISDIR(dentry->d_inode->i_mode))
1493 goto fput_fail;
1494
1495 retval = exec_permission(dentry->d_inode, 0);
1496 if (retval)
1497 goto fput_fail;
1498 }
1499
1500 nd->path = file->f_path;
1501 if (flags & LOOKUP_RCU) {
1502 if (fput_needed)
1503 *fp = file;
1504 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1505 br_read_lock(vfsmount_lock);
1506 rcu_read_lock();
1507 } else {
1508 path_get(&file->f_path);
1509 fput_light(file, fput_needed);
1510 }
1511 }
1512
1513 nd->inode = nd->path.dentry->d_inode;
1514 return 0;
1515
1516 fput_fail:
1517 fput_light(file, fput_needed);
1518 out_fail:
1519 return retval;
1520 }
1521
1522 static inline int lookup_last(struct nameidata *nd, struct path *path)
1523 {
1524 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
1525 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
1526
1527 nd->flags &= ~LOOKUP_PARENT;
1528 return walk_component(nd, path, &nd->last, nd->last_type,
1529 nd->flags & LOOKUP_FOLLOW);
1530 }
1531
1532 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
1533 static int path_lookupat(int dfd, const char *name,
1534 unsigned int flags, struct nameidata *nd)
1535 {
1536 struct file *base = NULL;
1537 struct path path;
1538 int err;
1539
1540 /*
1541 * Path walking is largely split up into 2 different synchronisation
1542 * schemes, rcu-walk and ref-walk (explained in
1543 * Documentation/filesystems/path-lookup.txt). These share much of the
1544 * path walk code, but some things particularly setup, cleanup, and
1545 * following mounts are sufficiently divergent that functions are
1546 * duplicated. Typically there is a function foo(), and its RCU
1547 * analogue, foo_rcu().
1548 *
1549 * -ECHILD is the error number of choice (just to avoid clashes) that
1550 * is returned if some aspect of an rcu-walk fails. Such an error must
1551 * be handled by restarting a traditional ref-walk (which will always
1552 * be able to complete).
1553 */
1554 err = path_init(dfd, name, flags | LOOKUP_PARENT, nd, &base);
1555
1556 if (unlikely(err))
1557 return err;
1558
1559 current->total_link_count = 0;
1560 err = link_path_walk(name, nd);
1561
1562 if (!err && !(flags & LOOKUP_PARENT)) {
1563 err = lookup_last(nd, &path);
1564 while (err > 0) {
1565 void *cookie;
1566 struct path link = path;
1567 nd->flags |= LOOKUP_PARENT;
1568 err = follow_link(&link, nd, &cookie);
1569 if (!err)
1570 err = lookup_last(nd, &path);
1571 put_link(nd, &link, cookie);
1572 }
1573 }
1574
1575 if (!err)
1576 err = complete_walk(nd);
1577
1578 if (!err && nd->flags & LOOKUP_DIRECTORY) {
1579 if (!nd->inode->i_op->lookup) {
1580 path_put(&nd->path);
1581 err = -ENOTDIR;
1582 }
1583 }
1584
1585 if (base)
1586 fput(base);
1587
1588 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
1589 path_put(&nd->root);
1590 nd->root.mnt = NULL;
1591 }
1592 return err;
1593 }
1594
1595 static int do_path_lookup(int dfd, const char *name,
1596 unsigned int flags, struct nameidata *nd)
1597 {
1598 int retval = path_lookupat(dfd, name, flags | LOOKUP_RCU, nd);
1599 if (unlikely(retval == -ECHILD))
1600 retval = path_lookupat(dfd, name, flags, nd);
1601 if (unlikely(retval == -ESTALE))
1602 retval = path_lookupat(dfd, name, flags | LOOKUP_REVAL, nd);
1603
1604 if (likely(!retval)) {
1605 if (unlikely(!audit_dummy_context())) {
1606 if (nd->path.dentry && nd->inode)
1607 audit_inode(name, nd->path.dentry);
1608 }
1609 }
1610 return retval;
1611 }
1612
1613 int kern_path_parent(const char *name, struct nameidata *nd)
1614 {
1615 return do_path_lookup(AT_FDCWD, name, LOOKUP_PARENT, nd);
1616 }
1617
1618 int kern_path(const char *name, unsigned int flags, struct path *path)
1619 {
1620 struct nameidata nd;
1621 int res = do_path_lookup(AT_FDCWD, name, flags, &nd);
1622 if (!res)
1623 *path = nd.path;
1624 return res;
1625 }
1626
1627 /**
1628 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
1629 * @dentry: pointer to dentry of the base directory
1630 * @mnt: pointer to vfs mount of the base directory
1631 * @name: pointer to file name
1632 * @flags: lookup flags
1633 * @nd: pointer to nameidata
1634 */
1635 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
1636 const char *name, unsigned int flags,
1637 struct nameidata *nd)
1638 {
1639 nd->root.dentry = dentry;
1640 nd->root.mnt = mnt;
1641 /* the first argument of do_path_lookup() is ignored with LOOKUP_ROOT */
1642 return do_path_lookup(AT_FDCWD, name, flags | LOOKUP_ROOT, nd);
1643 }
1644
1645 static struct dentry *__lookup_hash(struct qstr *name,
1646 struct dentry *base, struct nameidata *nd)
1647 {
1648 struct inode *inode = base->d_inode;
1649 struct dentry *dentry;
1650 int err;
1651
1652 err = exec_permission(inode, 0);
1653 if (err)
1654 return ERR_PTR(err);
1655
1656 /*
1657 * Don't bother with __d_lookup: callers are for creat as
1658 * well as unlink, so a lot of the time it would cost
1659 * a double lookup.
1660 */
1661 dentry = d_lookup(base, name);
1662
1663 if (dentry && d_need_lookup(dentry)) {
1664 /*
1665 * __lookup_hash is called with the parent dir's i_mutex already
1666 * held, so we are good to go here.
1667 */
1668 dentry = d_inode_lookup(base, dentry, nd);
1669 if (IS_ERR(dentry))
1670 return dentry;
1671 }
1672
1673 if (dentry && (dentry->d_flags & DCACHE_OP_REVALIDATE))
1674 dentry = do_revalidate(dentry, nd);
1675
1676 if (!dentry)
1677 dentry = d_alloc_and_lookup(base, name, nd);
1678
1679 return dentry;
1680 }
1681
1682 /*
1683 * Restricted form of lookup. Doesn't follow links, single-component only,
1684 * needs parent already locked. Doesn't follow mounts.
1685 * SMP-safe.
1686 */
1687 static struct dentry *lookup_hash(struct nameidata *nd)
1688 {
1689 return __lookup_hash(&nd->last, nd->path.dentry, nd);
1690 }
1691
1692 /**
1693 * lookup_one_len - filesystem helper to lookup single pathname component
1694 * @name: pathname component to lookup
1695 * @base: base directory to lookup from
1696 * @len: maximum length @len should be interpreted to
1697 *
1698 * Note that this routine is purely a helper for filesystem usage and should
1699 * not be called by generic code. Also note that by using this function the
1700 * nameidata argument is passed to the filesystem methods and a filesystem
1701 * using this helper needs to be prepared for that.
1702 */
1703 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
1704 {
1705 struct qstr this;
1706 unsigned long hash;
1707 unsigned int c;
1708
1709 WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex));
1710
1711 this.name = name;
1712 this.len = len;
1713 if (!len)
1714 return ERR_PTR(-EACCES);
1715
1716 hash = init_name_hash();
1717 while (len--) {
1718 c = *(const unsigned char *)name++;
1719 if (c == '/' || c == '\0')
1720 return ERR_PTR(-EACCES);
1721 hash = partial_name_hash(c, hash);
1722 }
1723 this.hash = end_name_hash(hash);
1724 /*
1725 * See if the low-level filesystem might want
1726 * to use its own hash..
1727 */
1728 if (base->d_flags & DCACHE_OP_HASH) {
1729 int err = base->d_op->d_hash(base, base->d_inode, &this);
1730 if (err < 0)
1731 return ERR_PTR(err);
1732 }
1733
1734 return __lookup_hash(&this, base, NULL);
1735 }
1736
1737 int user_path_at(int dfd, const char __user *name, unsigned flags,
1738 struct path *path)
1739 {
1740 struct nameidata nd;
1741 char *tmp = getname_flags(name, flags);
1742 int err = PTR_ERR(tmp);
1743 if (!IS_ERR(tmp)) {
1744
1745 BUG_ON(flags & LOOKUP_PARENT);
1746
1747 err = do_path_lookup(dfd, tmp, flags, &nd);
1748 putname(tmp);
1749 if (!err)
1750 *path = nd.path;
1751 }
1752 return err;
1753 }
1754
1755 static int user_path_parent(int dfd, const char __user *path,
1756 struct nameidata *nd, char **name)
1757 {
1758 char *s = getname(path);
1759 int error;
1760
1761 if (IS_ERR(s))
1762 return PTR_ERR(s);
1763
1764 error = do_path_lookup(dfd, s, LOOKUP_PARENT, nd);
1765 if (error)
1766 putname(s);
1767 else
1768 *name = s;
1769
1770 return error;
1771 }
1772
1773 /*
1774 * It's inline, so penalty for filesystems that don't use sticky bit is
1775 * minimal.
1776 */
1777 static inline int check_sticky(struct inode *dir, struct inode *inode)
1778 {
1779 uid_t fsuid = current_fsuid();
1780
1781 if (!(dir->i_mode & S_ISVTX))
1782 return 0;
1783 if (current_user_ns() != inode_userns(inode))
1784 goto other_userns;
1785 if (inode->i_uid == fsuid)
1786 return 0;
1787 if (dir->i_uid == fsuid)
1788 return 0;
1789
1790 other_userns:
1791 return !ns_capable(inode_userns(inode), CAP_FOWNER);
1792 }
1793
1794 /*
1795 * Check whether we can remove a link victim from directory dir, check
1796 * whether the type of victim is right.
1797 * 1. We can't do it if dir is read-only (done in permission())
1798 * 2. We should have write and exec permissions on dir
1799 * 3. We can't remove anything from append-only dir
1800 * 4. We can't do anything with immutable dir (done in permission())
1801 * 5. If the sticky bit on dir is set we should either
1802 * a. be owner of dir, or
1803 * b. be owner of victim, or
1804 * c. have CAP_FOWNER capability
1805 * 6. If the victim is append-only or immutable we can't do antyhing with
1806 * links pointing to it.
1807 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
1808 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
1809 * 9. We can't remove a root or mountpoint.
1810 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
1811 * nfs_async_unlink().
1812 */
1813 static int may_delete(struct inode *dir,struct dentry *victim,int isdir)
1814 {
1815 int error;
1816
1817 if (!victim->d_inode)
1818 return -ENOENT;
1819
1820 BUG_ON(victim->d_parent->d_inode != dir);
1821 audit_inode_child(victim, dir);
1822
1823 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
1824 if (error)
1825 return error;
1826 if (IS_APPEND(dir))
1827 return -EPERM;
1828 if (check_sticky(dir, victim->d_inode)||IS_APPEND(victim->d_inode)||
1829 IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode))
1830 return -EPERM;
1831 if (isdir) {
1832 if (!S_ISDIR(victim->d_inode->i_mode))
1833 return -ENOTDIR;
1834 if (IS_ROOT(victim))
1835 return -EBUSY;
1836 } else if (S_ISDIR(victim->d_inode->i_mode))
1837 return -EISDIR;
1838 if (IS_DEADDIR(dir))
1839 return -ENOENT;
1840 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
1841 return -EBUSY;
1842 return 0;
1843 }
1844
1845 /* Check whether we can create an object with dentry child in directory
1846 * dir.
1847 * 1. We can't do it if child already exists (open has special treatment for
1848 * this case, but since we are inlined it's OK)
1849 * 2. We can't do it if dir is read-only (done in permission())
1850 * 3. We should have write and exec permissions on dir
1851 * 4. We can't do it if dir is immutable (done in permission())
1852 */
1853 static inline int may_create(struct inode *dir, struct dentry *child)
1854 {
1855 if (child->d_inode)
1856 return -EEXIST;
1857 if (IS_DEADDIR(dir))
1858 return -ENOENT;
1859 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
1860 }
1861
1862 /*
1863 * p1 and p2 should be directories on the same fs.
1864 */
1865 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
1866 {
1867 struct dentry *p;
1868
1869 if (p1 == p2) {
1870 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1871 return NULL;
1872 }
1873
1874 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
1875
1876 p = d_ancestor(p2, p1);
1877 if (p) {
1878 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
1879 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
1880 return p;
1881 }
1882
1883 p = d_ancestor(p1, p2);
1884 if (p) {
1885 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1886 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
1887 return p;
1888 }
1889
1890 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1891 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
1892 return NULL;
1893 }
1894
1895 void unlock_rename(struct dentry *p1, struct dentry *p2)
1896 {
1897 mutex_unlock(&p1->d_inode->i_mutex);
1898 if (p1 != p2) {
1899 mutex_unlock(&p2->d_inode->i_mutex);
1900 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
1901 }
1902 }
1903
1904 int vfs_create(struct inode *dir, struct dentry *dentry, int mode,
1905 struct nameidata *nd)
1906 {
1907 int error = may_create(dir, dentry);
1908
1909 if (error)
1910 return error;
1911
1912 if (!dir->i_op->create)
1913 return -EACCES; /* shouldn't it be ENOSYS? */
1914 mode &= S_IALLUGO;
1915 mode |= S_IFREG;
1916 error = security_inode_create(dir, dentry, mode);
1917 if (error)
1918 return error;
1919 error = dir->i_op->create(dir, dentry, mode, nd);
1920 if (!error)
1921 fsnotify_create(dir, dentry);
1922 return error;
1923 }
1924
1925 static int may_open(struct path *path, int acc_mode, int flag)
1926 {
1927 struct dentry *dentry = path->dentry;
1928 struct inode *inode = dentry->d_inode;
1929 int error;
1930
1931 /* O_PATH? */
1932 if (!acc_mode)
1933 return 0;
1934
1935 if (!inode)
1936 return -ENOENT;
1937
1938 switch (inode->i_mode & S_IFMT) {
1939 case S_IFLNK:
1940 return -ELOOP;
1941 case S_IFDIR:
1942 if (acc_mode & MAY_WRITE)
1943 return -EISDIR;
1944 break;
1945 case S_IFBLK:
1946 case S_IFCHR:
1947 if (path->mnt->mnt_flags & MNT_NODEV)
1948 return -EACCES;
1949 /*FALLTHRU*/
1950 case S_IFIFO:
1951 case S_IFSOCK:
1952 flag &= ~O_TRUNC;
1953 break;
1954 }
1955
1956 error = inode_permission(inode, acc_mode);
1957 if (error)
1958 return error;
1959
1960 /*
1961 * An append-only file must be opened in append mode for writing.
1962 */
1963 if (IS_APPEND(inode)) {
1964 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
1965 return -EPERM;
1966 if (flag & O_TRUNC)
1967 return -EPERM;
1968 }
1969
1970 /* O_NOATIME can only be set by the owner or superuser */
1971 if (flag & O_NOATIME && !inode_owner_or_capable(inode))
1972 return -EPERM;
1973
1974 /*
1975 * Ensure there are no outstanding leases on the file.
1976 */
1977 return break_lease(inode, flag);
1978 }
1979
1980 static int handle_truncate(struct file *filp)
1981 {
1982 struct path *path = &filp->f_path;
1983 struct inode *inode = path->dentry->d_inode;
1984 int error = get_write_access(inode);
1985 if (error)
1986 return error;
1987 /*
1988 * Refuse to truncate files with mandatory locks held on them.
1989 */
1990 error = locks_verify_locked(inode);
1991 if (!error)
1992 error = security_path_truncate(path);
1993 if (!error) {
1994 error = do_truncate(path->dentry, 0,
1995 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
1996 filp);
1997 }
1998 put_write_access(inode);
1999 return error;
2000 }
2001
2002 /*
2003 * Note that while the flag value (low two bits) for sys_open means:
2004 * 00 - read-only
2005 * 01 - write-only
2006 * 10 - read-write
2007 * 11 - special
2008 * it is changed into
2009 * 00 - no permissions needed
2010 * 01 - read-permission
2011 * 10 - write-permission
2012 * 11 - read-write
2013 * for the internal routines (ie open_namei()/follow_link() etc)
2014 * This is more logical, and also allows the 00 "no perm needed"
2015 * to be used for symlinks (where the permissions are checked
2016 * later).
2017 *
2018 */
2019 static inline int open_to_namei_flags(int flag)
2020 {
2021 if ((flag+1) & O_ACCMODE)
2022 flag++;
2023 return flag;
2024 }
2025
2026 /*
2027 * Handle the last step of open()
2028 */
2029 static struct file *do_last(struct nameidata *nd, struct path *path,
2030 const struct open_flags *op, const char *pathname)
2031 {
2032 struct dentry *dir = nd->path.dentry;
2033 struct dentry *dentry;
2034 int open_flag = op->open_flag;
2035 int will_truncate = open_flag & O_TRUNC;
2036 int want_write = 0;
2037 int acc_mode = op->acc_mode;
2038 struct file *filp;
2039 int error;
2040
2041 nd->flags &= ~LOOKUP_PARENT;
2042 nd->flags |= op->intent;
2043
2044 switch (nd->last_type) {
2045 case LAST_DOTDOT:
2046 case LAST_DOT:
2047 error = handle_dots(nd, nd->last_type);
2048 if (error)
2049 return ERR_PTR(error);
2050 /* fallthrough */
2051 case LAST_ROOT:
2052 error = complete_walk(nd);
2053 if (error)
2054 return ERR_PTR(error);
2055 audit_inode(pathname, nd->path.dentry);
2056 if (open_flag & O_CREAT) {
2057 error = -EISDIR;
2058 goto exit;
2059 }
2060 goto ok;
2061 case LAST_BIND:
2062 error = complete_walk(nd);
2063 if (error)
2064 return ERR_PTR(error);
2065 audit_inode(pathname, dir);
2066 goto ok;
2067 }
2068
2069 if (!(open_flag & O_CREAT)) {
2070 int symlink_ok = 0;
2071 if (nd->last.name[nd->last.len])
2072 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2073 if (open_flag & O_PATH && !(nd->flags & LOOKUP_FOLLOW))
2074 symlink_ok = 1;
2075 /* we _can_ be in RCU mode here */
2076 error = walk_component(nd, path, &nd->last, LAST_NORM,
2077 !symlink_ok);
2078 if (error < 0)
2079 return ERR_PTR(error);
2080 if (error) /* symlink */
2081 return NULL;
2082 /* sayonara */
2083 error = complete_walk(nd);
2084 if (error)
2085 return ERR_PTR(-ECHILD);
2086
2087 error = -ENOTDIR;
2088 if (nd->flags & LOOKUP_DIRECTORY) {
2089 if (!nd->inode->i_op->lookup)
2090 goto exit;
2091 }
2092 audit_inode(pathname, nd->path.dentry);
2093 goto ok;
2094 }
2095
2096 /* create side of things */
2097 error = complete_walk(nd);
2098 if (error)
2099 return ERR_PTR(error);
2100
2101 audit_inode(pathname, dir);
2102 error = -EISDIR;
2103 /* trailing slashes? */
2104 if (nd->last.name[nd->last.len])
2105 goto exit;
2106
2107 mutex_lock(&dir->d_inode->i_mutex);
2108
2109 dentry = lookup_hash(nd);
2110 error = PTR_ERR(dentry);
2111 if (IS_ERR(dentry)) {
2112 mutex_unlock(&dir->d_inode->i_mutex);
2113 goto exit;
2114 }
2115
2116 path->dentry = dentry;
2117 path->mnt = nd->path.mnt;
2118
2119 /* Negative dentry, just create the file */
2120 if (!dentry->d_inode) {
2121 int mode = op->mode;
2122 if (!IS_POSIXACL(dir->d_inode))
2123 mode &= ~current_umask();
2124 /*
2125 * This write is needed to ensure that a
2126 * rw->ro transition does not occur between
2127 * the time when the file is created and when
2128 * a permanent write count is taken through
2129 * the 'struct file' in nameidata_to_filp().
2130 */
2131 error = mnt_want_write(nd->path.mnt);
2132 if (error)
2133 goto exit_mutex_unlock;
2134 want_write = 1;
2135 /* Don't check for write permission, don't truncate */
2136 open_flag &= ~O_TRUNC;
2137 will_truncate = 0;
2138 acc_mode = MAY_OPEN;
2139 error = security_path_mknod(&nd->path, dentry, mode, 0);
2140 if (error)
2141 goto exit_mutex_unlock;
2142 error = vfs_create(dir->d_inode, dentry, mode, nd);
2143 if (error)
2144 goto exit_mutex_unlock;
2145 mutex_unlock(&dir->d_inode->i_mutex);
2146 dput(nd->path.dentry);
2147 nd->path.dentry = dentry;
2148 goto common;
2149 }
2150
2151 /*
2152 * It already exists.
2153 */
2154 mutex_unlock(&dir->d_inode->i_mutex);
2155 audit_inode(pathname, path->dentry);
2156
2157 error = -EEXIST;
2158 if (open_flag & O_EXCL)
2159 goto exit_dput;
2160
2161 error = follow_managed(path, nd->flags);
2162 if (error < 0)
2163 goto exit_dput;
2164
2165 error = -ENOENT;
2166 if (!path->dentry->d_inode)
2167 goto exit_dput;
2168
2169 if (path->dentry->d_inode->i_op->follow_link)
2170 return NULL;
2171
2172 path_to_nameidata(path, nd);
2173 nd->inode = path->dentry->d_inode;
2174 error = -EISDIR;
2175 if (S_ISDIR(nd->inode->i_mode))
2176 goto exit;
2177 ok:
2178 if (!S_ISREG(nd->inode->i_mode))
2179 will_truncate = 0;
2180
2181 if (will_truncate) {
2182 error = mnt_want_write(nd->path.mnt);
2183 if (error)
2184 goto exit;
2185 want_write = 1;
2186 }
2187 common:
2188 error = may_open(&nd->path, acc_mode, open_flag);
2189 if (error)
2190 goto exit;
2191 filp = nameidata_to_filp(nd);
2192 if (!IS_ERR(filp)) {
2193 error = ima_file_check(filp, op->acc_mode);
2194 if (error) {
2195 fput(filp);
2196 filp = ERR_PTR(error);
2197 }
2198 }
2199 if (!IS_ERR(filp)) {
2200 if (will_truncate) {
2201 error = handle_truncate(filp);
2202 if (error) {
2203 fput(filp);
2204 filp = ERR_PTR(error);
2205 }
2206 }
2207 }
2208 out:
2209 if (want_write)
2210 mnt_drop_write(nd->path.mnt);
2211 path_put(&nd->path);
2212 return filp;
2213
2214 exit_mutex_unlock:
2215 mutex_unlock(&dir->d_inode->i_mutex);
2216 exit_dput:
2217 path_put_conditional(path, nd);
2218 exit:
2219 filp = ERR_PTR(error);
2220 goto out;
2221 }
2222
2223 static struct file *path_openat(int dfd, const char *pathname,
2224 struct nameidata *nd, const struct open_flags *op, int flags)
2225 {
2226 struct file *base = NULL;
2227 struct file *filp;
2228 struct path path;
2229 int error;
2230
2231 filp = get_empty_filp();
2232 if (!filp)
2233 return ERR_PTR(-ENFILE);
2234
2235 filp->f_flags = op->open_flag;
2236 nd->intent.open.file = filp;
2237 nd->intent.open.flags = open_to_namei_flags(op->open_flag);
2238 nd->intent.open.create_mode = op->mode;
2239
2240 error = path_init(dfd, pathname, flags | LOOKUP_PARENT, nd, &base);
2241 if (unlikely(error))
2242 goto out_filp;
2243
2244 current->total_link_count = 0;
2245 error = link_path_walk(pathname, nd);
2246 if (unlikely(error))
2247 goto out_filp;
2248
2249 filp = do_last(nd, &path, op, pathname);
2250 while (unlikely(!filp)) { /* trailing symlink */
2251 struct path link = path;
2252 void *cookie;
2253 if (!(nd->flags & LOOKUP_FOLLOW)) {
2254 path_put_conditional(&path, nd);
2255 path_put(&nd->path);
2256 filp = ERR_PTR(-ELOOP);
2257 break;
2258 }
2259 nd->flags |= LOOKUP_PARENT;
2260 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
2261 error = follow_link(&link, nd, &cookie);
2262 if (unlikely(error))
2263 filp = ERR_PTR(error);
2264 else
2265 filp = do_last(nd, &path, op, pathname);
2266 put_link(nd, &link, cookie);
2267 }
2268 out:
2269 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT))
2270 path_put(&nd->root);
2271 if (base)
2272 fput(base);
2273 release_open_intent(nd);
2274 return filp;
2275
2276 out_filp:
2277 filp = ERR_PTR(error);
2278 goto out;
2279 }
2280
2281 struct file *do_filp_open(int dfd, const char *pathname,
2282 const struct open_flags *op, int flags)
2283 {
2284 struct nameidata nd;
2285 struct file *filp;
2286
2287 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_RCU);
2288 if (unlikely(filp == ERR_PTR(-ECHILD)))
2289 filp = path_openat(dfd, pathname, &nd, op, flags);
2290 if (unlikely(filp == ERR_PTR(-ESTALE)))
2291 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_REVAL);
2292 return filp;
2293 }
2294
2295 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
2296 const char *name, const struct open_flags *op, int flags)
2297 {
2298 struct nameidata nd;
2299 struct file *file;
2300
2301 nd.root.mnt = mnt;
2302 nd.root.dentry = dentry;
2303
2304 flags |= LOOKUP_ROOT;
2305
2306 if (dentry->d_inode->i_op->follow_link && op->intent & LOOKUP_OPEN)
2307 return ERR_PTR(-ELOOP);
2308
2309 file = path_openat(-1, name, &nd, op, flags | LOOKUP_RCU);
2310 if (unlikely(file == ERR_PTR(-ECHILD)))
2311 file = path_openat(-1, name, &nd, op, flags);
2312 if (unlikely(file == ERR_PTR(-ESTALE)))
2313 file = path_openat(-1, name, &nd, op, flags | LOOKUP_REVAL);
2314 return file;
2315 }
2316
2317 /**
2318 * lookup_create - lookup a dentry, creating it if it doesn't exist
2319 * @nd: nameidata info
2320 * @is_dir: directory flag
2321 *
2322 * Simple function to lookup and return a dentry and create it
2323 * if it doesn't exist. Is SMP-safe.
2324 *
2325 * Returns with nd->path.dentry->d_inode->i_mutex locked.
2326 */
2327 struct dentry *lookup_create(struct nameidata *nd, int is_dir)
2328 {
2329 struct dentry *dentry = ERR_PTR(-EEXIST);
2330
2331 mutex_lock_nested(&nd->path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2332 /*
2333 * Yucky last component or no last component at all?
2334 * (foo/., foo/.., /////)
2335 */
2336 if (nd->last_type != LAST_NORM)
2337 goto fail;
2338 nd->flags &= ~LOOKUP_PARENT;
2339 nd->flags |= LOOKUP_CREATE | LOOKUP_EXCL;
2340 nd->intent.open.flags = O_EXCL;
2341
2342 /*
2343 * Do the final lookup.
2344 */
2345 dentry = lookup_hash(nd);
2346 if (IS_ERR(dentry))
2347 goto fail;
2348
2349 if (dentry->d_inode)
2350 goto eexist;
2351 /*
2352 * Special case - lookup gave negative, but... we had foo/bar/
2353 * From the vfs_mknod() POV we just have a negative dentry -
2354 * all is fine. Let's be bastards - you had / on the end, you've
2355 * been asking for (non-existent) directory. -ENOENT for you.
2356 */
2357 if (unlikely(!is_dir && nd->last.name[nd->last.len])) {
2358 dput(dentry);
2359 dentry = ERR_PTR(-ENOENT);
2360 }
2361 return dentry;
2362 eexist:
2363 dput(dentry);
2364 dentry = ERR_PTR(-EEXIST);
2365 fail:
2366 return dentry;
2367 }
2368 EXPORT_SYMBOL_GPL(lookup_create);
2369
2370 int vfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
2371 {
2372 int error = may_create(dir, dentry);
2373
2374 if (error)
2375 return error;
2376
2377 if ((S_ISCHR(mode) || S_ISBLK(mode)) &&
2378 !ns_capable(inode_userns(dir), CAP_MKNOD))
2379 return -EPERM;
2380
2381 if (!dir->i_op->mknod)
2382 return -EPERM;
2383
2384 error = devcgroup_inode_mknod(mode, dev);
2385 if (error)
2386 return error;
2387
2388 error = security_inode_mknod(dir, dentry, mode, dev);
2389 if (error)
2390 return error;
2391
2392 error = dir->i_op->mknod(dir, dentry, mode, dev);
2393 if (!error)
2394 fsnotify_create(dir, dentry);
2395 return error;
2396 }
2397
2398 static int may_mknod(mode_t mode)
2399 {
2400 switch (mode & S_IFMT) {
2401 case S_IFREG:
2402 case S_IFCHR:
2403 case S_IFBLK:
2404 case S_IFIFO:
2405 case S_IFSOCK:
2406 case 0: /* zero mode translates to S_IFREG */
2407 return 0;
2408 case S_IFDIR:
2409 return -EPERM;
2410 default:
2411 return -EINVAL;
2412 }
2413 }
2414
2415 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, int, mode,
2416 unsigned, dev)
2417 {
2418 int error;
2419 char *tmp;
2420 struct dentry *dentry;
2421 struct nameidata nd;
2422
2423 if (S_ISDIR(mode))
2424 return -EPERM;
2425
2426 error = user_path_parent(dfd, filename, &nd, &tmp);
2427 if (error)
2428 return error;
2429
2430 dentry = lookup_create(&nd, 0);
2431 if (IS_ERR(dentry)) {
2432 error = PTR_ERR(dentry);
2433 goto out_unlock;
2434 }
2435 if (!IS_POSIXACL(nd.path.dentry->d_inode))
2436 mode &= ~current_umask();
2437 error = may_mknod(mode);
2438 if (error)
2439 goto out_dput;
2440 error = mnt_want_write(nd.path.mnt);
2441 if (error)
2442 goto out_dput;
2443 error = security_path_mknod(&nd.path, dentry, mode, dev);
2444 if (error)
2445 goto out_drop_write;
2446 switch (mode & S_IFMT) {
2447 case 0: case S_IFREG:
2448 error = vfs_create(nd.path.dentry->d_inode,dentry,mode,&nd);
2449 break;
2450 case S_IFCHR: case S_IFBLK:
2451 error = vfs_mknod(nd.path.dentry->d_inode,dentry,mode,
2452 new_decode_dev(dev));
2453 break;
2454 case S_IFIFO: case S_IFSOCK:
2455 error = vfs_mknod(nd.path.dentry->d_inode,dentry,mode,0);
2456 break;
2457 }
2458 out_drop_write:
2459 mnt_drop_write(nd.path.mnt);
2460 out_dput:
2461 dput(dentry);
2462 out_unlock:
2463 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2464 path_put(&nd.path);
2465 putname(tmp);
2466
2467 return error;
2468 }
2469
2470 SYSCALL_DEFINE3(mknod, const char __user *, filename, int, mode, unsigned, dev)
2471 {
2472 return sys_mknodat(AT_FDCWD, filename, mode, dev);
2473 }
2474
2475 int vfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
2476 {
2477 int error = may_create(dir, dentry);
2478
2479 if (error)
2480 return error;
2481
2482 if (!dir->i_op->mkdir)
2483 return -EPERM;
2484
2485 mode &= (S_IRWXUGO|S_ISVTX);
2486 error = security_inode_mkdir(dir, dentry, mode);
2487 if (error)
2488 return error;
2489
2490 error = dir->i_op->mkdir(dir, dentry, mode);
2491 if (!error)
2492 fsnotify_mkdir(dir, dentry);
2493 return error;
2494 }
2495
2496 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, int, mode)
2497 {
2498 int error = 0;
2499 char * tmp;
2500 struct dentry *dentry;
2501 struct nameidata nd;
2502
2503 error = user_path_parent(dfd, pathname, &nd, &tmp);
2504 if (error)
2505 goto out_err;
2506
2507 dentry = lookup_create(&nd, 1);
2508 error = PTR_ERR(dentry);
2509 if (IS_ERR(dentry))
2510 goto out_unlock;
2511
2512 if (!IS_POSIXACL(nd.path.dentry->d_inode))
2513 mode &= ~current_umask();
2514 error = mnt_want_write(nd.path.mnt);
2515 if (error)
2516 goto out_dput;
2517 error = security_path_mkdir(&nd.path, dentry, mode);
2518 if (error)
2519 goto out_drop_write;
2520 error = vfs_mkdir(nd.path.dentry->d_inode, dentry, mode);
2521 out_drop_write:
2522 mnt_drop_write(nd.path.mnt);
2523 out_dput:
2524 dput(dentry);
2525 out_unlock:
2526 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2527 path_put(&nd.path);
2528 putname(tmp);
2529 out_err:
2530 return error;
2531 }
2532
2533 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, int, mode)
2534 {
2535 return sys_mkdirat(AT_FDCWD, pathname, mode);
2536 }
2537
2538 /*
2539 * The dentry_unhash() helper will try to drop the dentry early: we
2540 * should have a usage count of 2 if we're the only user of this
2541 * dentry, and if that is true (possibly after pruning the dcache),
2542 * then we drop the dentry now.
2543 *
2544 * A low-level filesystem can, if it choses, legally
2545 * do a
2546 *
2547 * if (!d_unhashed(dentry))
2548 * return -EBUSY;
2549 *
2550 * if it cannot handle the case of removing a directory
2551 * that is still in use by something else..
2552 */
2553 void dentry_unhash(struct dentry *dentry)
2554 {
2555 shrink_dcache_parent(dentry);
2556 spin_lock(&dentry->d_lock);
2557 if (dentry->d_count == 1)
2558 __d_drop(dentry);
2559 spin_unlock(&dentry->d_lock);
2560 }
2561
2562 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
2563 {
2564 int error = may_delete(dir, dentry, 1);
2565
2566 if (error)
2567 return error;
2568
2569 if (!dir->i_op->rmdir)
2570 return -EPERM;
2571
2572 mutex_lock(&dentry->d_inode->i_mutex);
2573
2574 error = -EBUSY;
2575 if (d_mountpoint(dentry))
2576 goto out;
2577
2578 error = security_inode_rmdir(dir, dentry);
2579 if (error)
2580 goto out;
2581
2582 shrink_dcache_parent(dentry);
2583 error = dir->i_op->rmdir(dir, dentry);
2584 if (error)
2585 goto out;
2586
2587 dentry->d_inode->i_flags |= S_DEAD;
2588 dont_mount(dentry);
2589
2590 out:
2591 mutex_unlock(&dentry->d_inode->i_mutex);
2592 if (!error)
2593 d_delete(dentry);
2594 return error;
2595 }
2596
2597 static long do_rmdir(int dfd, const char __user *pathname)
2598 {
2599 int error = 0;
2600 char * name;
2601 struct dentry *dentry;
2602 struct nameidata nd;
2603
2604 error = user_path_parent(dfd, pathname, &nd, &name);
2605 if (error)
2606 return error;
2607
2608 switch(nd.last_type) {
2609 case LAST_DOTDOT:
2610 error = -ENOTEMPTY;
2611 goto exit1;
2612 case LAST_DOT:
2613 error = -EINVAL;
2614 goto exit1;
2615 case LAST_ROOT:
2616 error = -EBUSY;
2617 goto exit1;
2618 }
2619
2620 nd.flags &= ~LOOKUP_PARENT;
2621
2622 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2623 dentry = lookup_hash(&nd);
2624 error = PTR_ERR(dentry);
2625 if (IS_ERR(dentry))
2626 goto exit2;
2627 if (!dentry->d_inode) {
2628 error = -ENOENT;
2629 goto exit3;
2630 }
2631 error = mnt_want_write(nd.path.mnt);
2632 if (error)
2633 goto exit3;
2634 error = security_path_rmdir(&nd.path, dentry);
2635 if (error)
2636 goto exit4;
2637 error = vfs_rmdir(nd.path.dentry->d_inode, dentry);
2638 exit4:
2639 mnt_drop_write(nd.path.mnt);
2640 exit3:
2641 dput(dentry);
2642 exit2:
2643 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2644 exit1:
2645 path_put(&nd.path);
2646 putname(name);
2647 return error;
2648 }
2649
2650 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
2651 {
2652 return do_rmdir(AT_FDCWD, pathname);
2653 }
2654
2655 int vfs_unlink(struct inode *dir, struct dentry *dentry)
2656 {
2657 int error = may_delete(dir, dentry, 0);
2658
2659 if (error)
2660 return error;
2661
2662 if (!dir->i_op->unlink)
2663 return -EPERM;
2664
2665 mutex_lock(&dentry->d_inode->i_mutex);
2666 if (d_mountpoint(dentry))
2667 error = -EBUSY;
2668 else {
2669 error = security_inode_unlink(dir, dentry);
2670 if (!error) {
2671 error = dir->i_op->unlink(dir, dentry);
2672 if (!error)
2673 dont_mount(dentry);
2674 }
2675 }
2676 mutex_unlock(&dentry->d_inode->i_mutex);
2677
2678 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
2679 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
2680 fsnotify_link_count(dentry->d_inode);
2681 d_delete(dentry);
2682 }
2683
2684 return error;
2685 }
2686
2687 /*
2688 * Make sure that the actual truncation of the file will occur outside its
2689 * directory's i_mutex. Truncate can take a long time if there is a lot of
2690 * writeout happening, and we don't want to prevent access to the directory
2691 * while waiting on the I/O.
2692 */
2693 static long do_unlinkat(int dfd, const char __user *pathname)
2694 {
2695 int error;
2696 char *name;
2697 struct dentry *dentry;
2698 struct nameidata nd;
2699 struct inode *inode = NULL;
2700
2701 error = user_path_parent(dfd, pathname, &nd, &name);
2702 if (error)
2703 return error;
2704
2705 error = -EISDIR;
2706 if (nd.last_type != LAST_NORM)
2707 goto exit1;
2708
2709 nd.flags &= ~LOOKUP_PARENT;
2710
2711 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2712 dentry = lookup_hash(&nd);
2713 error = PTR_ERR(dentry);
2714 if (!IS_ERR(dentry)) {
2715 /* Why not before? Because we want correct error value */
2716 if (nd.last.name[nd.last.len])
2717 goto slashes;
2718 inode = dentry->d_inode;
2719 if (!inode)
2720 goto slashes;
2721 ihold(inode);
2722 error = mnt_want_write(nd.path.mnt);
2723 if (error)
2724 goto exit2;
2725 error = security_path_unlink(&nd.path, dentry);
2726 if (error)
2727 goto exit3;
2728 error = vfs_unlink(nd.path.dentry->d_inode, dentry);
2729 exit3:
2730 mnt_drop_write(nd.path.mnt);
2731 exit2:
2732 dput(dentry);
2733 }
2734 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2735 if (inode)
2736 iput(inode); /* truncate the inode here */
2737 exit1:
2738 path_put(&nd.path);
2739 putname(name);
2740 return error;
2741
2742 slashes:
2743 error = !dentry->d_inode ? -ENOENT :
2744 S_ISDIR(dentry->d_inode->i_mode) ? -EISDIR : -ENOTDIR;
2745 goto exit2;
2746 }
2747
2748 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
2749 {
2750 if ((flag & ~AT_REMOVEDIR) != 0)
2751 return -EINVAL;
2752
2753 if (flag & AT_REMOVEDIR)
2754 return do_rmdir(dfd, pathname);
2755
2756 return do_unlinkat(dfd, pathname);
2757 }
2758
2759 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
2760 {
2761 return do_unlinkat(AT_FDCWD, pathname);
2762 }
2763
2764 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
2765 {
2766 int error = may_create(dir, dentry);
2767
2768 if (error)
2769 return error;
2770
2771 if (!dir->i_op->symlink)
2772 return -EPERM;
2773
2774 error = security_inode_symlink(dir, dentry, oldname);
2775 if (error)
2776 return error;
2777
2778 error = dir->i_op->symlink(dir, dentry, oldname);
2779 if (!error)
2780 fsnotify_create(dir, dentry);
2781 return error;
2782 }
2783
2784 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
2785 int, newdfd, const char __user *, newname)
2786 {
2787 int error;
2788 char *from;
2789 char *to;
2790 struct dentry *dentry;
2791 struct nameidata nd;
2792
2793 from = getname(oldname);
2794 if (IS_ERR(from))
2795 return PTR_ERR(from);
2796
2797 error = user_path_parent(newdfd, newname, &nd, &to);
2798 if (error)
2799 goto out_putname;
2800
2801 dentry = lookup_create(&nd, 0);
2802 error = PTR_ERR(dentry);
2803 if (IS_ERR(dentry))
2804 goto out_unlock;
2805
2806 error = mnt_want_write(nd.path.mnt);
2807 if (error)
2808 goto out_dput;
2809 error = security_path_symlink(&nd.path, dentry, from);
2810 if (error)
2811 goto out_drop_write;
2812 error = vfs_symlink(nd.path.dentry->d_inode, dentry, from);
2813 out_drop_write:
2814 mnt_drop_write(nd.path.mnt);
2815 out_dput:
2816 dput(dentry);
2817 out_unlock:
2818 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2819 path_put(&nd.path);
2820 putname(to);
2821 out_putname:
2822 putname(from);
2823 return error;
2824 }
2825
2826 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
2827 {
2828 return sys_symlinkat(oldname, AT_FDCWD, newname);
2829 }
2830
2831 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2832 {
2833 struct inode *inode = old_dentry->d_inode;
2834 int error;
2835
2836 if (!inode)
2837 return -ENOENT;
2838
2839 error = may_create(dir, new_dentry);
2840 if (error)
2841 return error;
2842
2843 if (dir->i_sb != inode->i_sb)
2844 return -EXDEV;
2845
2846 /*
2847 * A link to an append-only or immutable file cannot be created.
2848 */
2849 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
2850 return -EPERM;
2851 if (!dir->i_op->link)
2852 return -EPERM;
2853 if (S_ISDIR(inode->i_mode))
2854 return -EPERM;
2855
2856 error = security_inode_link(old_dentry, dir, new_dentry);
2857 if (error)
2858 return error;
2859
2860 mutex_lock(&inode->i_mutex);
2861 /* Make sure we don't allow creating hardlink to an unlinked file */
2862 if (inode->i_nlink == 0)
2863 error = -ENOENT;
2864 else
2865 error = dir->i_op->link(old_dentry, dir, new_dentry);
2866 mutex_unlock(&inode->i_mutex);
2867 if (!error)
2868 fsnotify_link(dir, inode, new_dentry);
2869 return error;
2870 }
2871
2872 /*
2873 * Hardlinks are often used in delicate situations. We avoid
2874 * security-related surprises by not following symlinks on the
2875 * newname. --KAB
2876 *
2877 * We don't follow them on the oldname either to be compatible
2878 * with linux 2.0, and to avoid hard-linking to directories
2879 * and other special files. --ADM
2880 */
2881 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
2882 int, newdfd, const char __user *, newname, int, flags)
2883 {
2884 struct dentry *new_dentry;
2885 struct nameidata nd;
2886 struct path old_path;
2887 int how = 0;
2888 int error;
2889 char *to;
2890
2891 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
2892 return -EINVAL;
2893 /*
2894 * To use null names we require CAP_DAC_READ_SEARCH
2895 * This ensures that not everyone will be able to create
2896 * handlink using the passed filedescriptor.
2897 */
2898 if (flags & AT_EMPTY_PATH) {
2899 if (!capable(CAP_DAC_READ_SEARCH))
2900 return -ENOENT;
2901 how = LOOKUP_EMPTY;
2902 }
2903
2904 if (flags & AT_SYMLINK_FOLLOW)
2905 how |= LOOKUP_FOLLOW;
2906
2907 error = user_path_at(olddfd, oldname, how, &old_path);
2908 if (error)
2909 return error;
2910
2911 error = user_path_parent(newdfd, newname, &nd, &to);
2912 if (error)
2913 goto out;
2914 error = -EXDEV;
2915 if (old_path.mnt != nd.path.mnt)
2916 goto out_release;
2917 new_dentry = lookup_create(&nd, 0);
2918 error = PTR_ERR(new_dentry);
2919 if (IS_ERR(new_dentry))
2920 goto out_unlock;
2921 error = mnt_want_write(nd.path.mnt);
2922 if (error)
2923 goto out_dput;
2924 error = security_path_link(old_path.dentry, &nd.path, new_dentry);
2925 if (error)
2926 goto out_drop_write;
2927 error = vfs_link(old_path.dentry, nd.path.dentry->d_inode, new_dentry);
2928 out_drop_write:
2929 mnt_drop_write(nd.path.mnt);
2930 out_dput:
2931 dput(new_dentry);
2932 out_unlock:
2933 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2934 out_release:
2935 path_put(&nd.path);
2936 putname(to);
2937 out:
2938 path_put(&old_path);
2939
2940 return error;
2941 }
2942
2943 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
2944 {
2945 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
2946 }
2947
2948 /*
2949 * The worst of all namespace operations - renaming directory. "Perverted"
2950 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
2951 * Problems:
2952 * a) we can get into loop creation. Check is done in is_subdir().
2953 * b) race potential - two innocent renames can create a loop together.
2954 * That's where 4.4 screws up. Current fix: serialization on
2955 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
2956 * story.
2957 * c) we have to lock _three_ objects - parents and victim (if it exists).
2958 * And that - after we got ->i_mutex on parents (until then we don't know
2959 * whether the target exists). Solution: try to be smart with locking
2960 * order for inodes. We rely on the fact that tree topology may change
2961 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
2962 * move will be locked. Thus we can rank directories by the tree
2963 * (ancestors first) and rank all non-directories after them.
2964 * That works since everybody except rename does "lock parent, lookup,
2965 * lock child" and rename is under ->s_vfs_rename_mutex.
2966 * HOWEVER, it relies on the assumption that any object with ->lookup()
2967 * has no more than 1 dentry. If "hybrid" objects will ever appear,
2968 * we'd better make sure that there's no link(2) for them.
2969 * d) conversion from fhandle to dentry may come in the wrong moment - when
2970 * we are removing the target. Solution: we will have to grab ->i_mutex
2971 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
2972 * ->i_mutex on parents, which works but leads to some truly excessive
2973 * locking].
2974 */
2975 static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry,
2976 struct inode *new_dir, struct dentry *new_dentry)
2977 {
2978 int error = 0;
2979 struct inode *target = new_dentry->d_inode;
2980
2981 /*
2982 * If we are going to change the parent - check write permissions,
2983 * we'll need to flip '..'.
2984 */
2985 if (new_dir != old_dir) {
2986 error = inode_permission(old_dentry->d_inode, MAY_WRITE);
2987 if (error)
2988 return error;
2989 }
2990
2991 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
2992 if (error)
2993 return error;
2994
2995 if (target)
2996 mutex_lock(&target->i_mutex);
2997
2998 error = -EBUSY;
2999 if (d_mountpoint(old_dentry) || d_mountpoint(new_dentry))
3000 goto out;
3001
3002 if (target)
3003 shrink_dcache_parent(new_dentry);
3004 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
3005 if (error)
3006 goto out;
3007
3008 if (target) {
3009 target->i_flags |= S_DEAD;
3010 dont_mount(new_dentry);
3011 }
3012 out:
3013 if (target)
3014 mutex_unlock(&target->i_mutex);
3015 if (!error)
3016 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
3017 d_move(old_dentry,new_dentry);
3018 return error;
3019 }
3020
3021 static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry,
3022 struct inode *new_dir, struct dentry *new_dentry)
3023 {
3024 struct inode *target = new_dentry->d_inode;
3025 int error;
3026
3027 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
3028 if (error)
3029 return error;
3030
3031 dget(new_dentry);
3032 if (target)
3033 mutex_lock(&target->i_mutex);
3034
3035 error = -EBUSY;
3036 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
3037 goto out;
3038
3039 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
3040 if (error)
3041 goto out;
3042
3043 if (target)
3044 dont_mount(new_dentry);
3045 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
3046 d_move(old_dentry, new_dentry);
3047 out:
3048 if (target)
3049 mutex_unlock(&target->i_mutex);
3050 dput(new_dentry);
3051 return error;
3052 }
3053
3054 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
3055 struct inode *new_dir, struct dentry *new_dentry)
3056 {
3057 int error;
3058 int is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
3059 const unsigned char *old_name;
3060
3061 if (old_dentry->d_inode == new_dentry->d_inode)
3062 return 0;
3063
3064 error = may_delete(old_dir, old_dentry, is_dir);
3065 if (error)
3066 return error;
3067
3068 if (!new_dentry->d_inode)
3069 error = may_create(new_dir, new_dentry);
3070 else
3071 error = may_delete(new_dir, new_dentry, is_dir);
3072 if (error)
3073 return error;
3074
3075 if (!old_dir->i_op->rename)
3076 return -EPERM;
3077
3078 old_name = fsnotify_oldname_init(old_dentry->d_name.name);
3079
3080 if (is_dir)
3081 error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry);
3082 else
3083 error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry);
3084 if (!error)
3085 fsnotify_move(old_dir, new_dir, old_name, is_dir,
3086 new_dentry->d_inode, old_dentry);
3087 fsnotify_oldname_free(old_name);
3088
3089 return error;
3090 }
3091
3092 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
3093 int, newdfd, const char __user *, newname)
3094 {
3095 struct dentry *old_dir, *new_dir;
3096 struct dentry *old_dentry, *new_dentry;
3097 struct dentry *trap;
3098 struct nameidata oldnd, newnd;
3099 char *from;
3100 char *to;
3101 int error;
3102
3103 error = user_path_parent(olddfd, oldname, &oldnd, &from);
3104 if (error)
3105 goto exit;
3106
3107 error = user_path_parent(newdfd, newname, &newnd, &to);
3108 if (error)
3109 goto exit1;
3110
3111 error = -EXDEV;
3112 if (oldnd.path.mnt != newnd.path.mnt)
3113 goto exit2;
3114
3115 old_dir = oldnd.path.dentry;
3116 error = -EBUSY;
3117 if (oldnd.last_type != LAST_NORM)
3118 goto exit2;
3119
3120 new_dir = newnd.path.dentry;
3121 if (newnd.last_type != LAST_NORM)
3122 goto exit2;
3123
3124 oldnd.flags &= ~LOOKUP_PARENT;
3125 newnd.flags &= ~LOOKUP_PARENT;
3126 newnd.flags |= LOOKUP_RENAME_TARGET;
3127
3128 trap = lock_rename(new_dir, old_dir);
3129
3130 old_dentry = lookup_hash(&oldnd);
3131 error = PTR_ERR(old_dentry);
3132 if (IS_ERR(old_dentry))
3133 goto exit3;
3134 /* source must exist */
3135 error = -ENOENT;
3136 if (!old_dentry->d_inode)
3137 goto exit4;
3138 /* unless the source is a directory trailing slashes give -ENOTDIR */
3139 if (!S_ISDIR(old_dentry->d_inode->i_mode)) {
3140 error = -ENOTDIR;
3141 if (oldnd.last.name[oldnd.last.len])
3142 goto exit4;
3143 if (newnd.last.name[newnd.last.len])
3144 goto exit4;
3145 }
3146 /* source should not be ancestor of target */
3147 error = -EINVAL;
3148 if (old_dentry == trap)
3149 goto exit4;
3150 new_dentry = lookup_hash(&newnd);
3151 error = PTR_ERR(new_dentry);
3152 if (IS_ERR(new_dentry))
3153 goto exit4;
3154 /* target should not be an ancestor of source */
3155 error = -ENOTEMPTY;
3156 if (new_dentry == trap)
3157 goto exit5;
3158
3159 error = mnt_want_write(oldnd.path.mnt);
3160 if (error)
3161 goto exit5;
3162 error = security_path_rename(&oldnd.path, old_dentry,
3163 &newnd.path, new_dentry);
3164 if (error)
3165 goto exit6;
3166 error = vfs_rename(old_dir->d_inode, old_dentry,
3167 new_dir->d_inode, new_dentry);
3168 exit6:
3169 mnt_drop_write(oldnd.path.mnt);
3170 exit5:
3171 dput(new_dentry);
3172 exit4:
3173 dput(old_dentry);
3174 exit3:
3175 unlock_rename(new_dir, old_dir);
3176 exit2:
3177 path_put(&newnd.path);
3178 putname(to);
3179 exit1:
3180 path_put(&oldnd.path);
3181 putname(from);
3182 exit:
3183 return error;
3184 }
3185
3186 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
3187 {
3188 return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname);
3189 }
3190
3191 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link)
3192 {
3193 int len;
3194
3195 len = PTR_ERR(link);
3196 if (IS_ERR(link))
3197 goto out;
3198
3199 len = strlen(link);
3200 if (len > (unsigned) buflen)
3201 len = buflen;
3202 if (copy_to_user(buffer, link, len))
3203 len = -EFAULT;
3204 out:
3205 return len;
3206 }
3207
3208 /*
3209 * A helper for ->readlink(). This should be used *ONLY* for symlinks that
3210 * have ->follow_link() touching nd only in nd_set_link(). Using (or not
3211 * using) it for any given inode is up to filesystem.
3212 */
3213 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
3214 {
3215 struct nameidata nd;
3216 void *cookie;
3217 int res;
3218
3219 nd.depth = 0;
3220 cookie = dentry->d_inode->i_op->follow_link(dentry, &nd);
3221 if (IS_ERR(cookie))
3222 return PTR_ERR(cookie);
3223
3224 res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd));
3225 if (dentry->d_inode->i_op->put_link)
3226 dentry->d_inode->i_op->put_link(dentry, &nd, cookie);
3227 return res;
3228 }
3229
3230 int vfs_follow_link(struct nameidata *nd, const char *link)
3231 {
3232 return __vfs_follow_link(nd, link);
3233 }
3234
3235 /* get the link contents into pagecache */
3236 static char *page_getlink(struct dentry * dentry, struct page **ppage)
3237 {
3238 char *kaddr;
3239 struct page *page;
3240 struct address_space *mapping = dentry->d_inode->i_mapping;
3241 page = read_mapping_page(mapping, 0, NULL);
3242 if (IS_ERR(page))
3243 return (char*)page;
3244 *ppage = page;
3245 kaddr = kmap(page);
3246 nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
3247 return kaddr;
3248 }
3249
3250 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
3251 {
3252 struct page *page = NULL;
3253 char *s = page_getlink(dentry, &page);
3254 int res = vfs_readlink(dentry,buffer,buflen,s);
3255 if (page) {
3256 kunmap(page);
3257 page_cache_release(page);
3258 }
3259 return res;
3260 }
3261
3262 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd)
3263 {
3264 struct page *page = NULL;
3265 nd_set_link(nd, page_getlink(dentry, &page));
3266 return page;
3267 }
3268
3269 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
3270 {
3271 struct page *page = cookie;
3272
3273 if (page) {
3274 kunmap(page);
3275 page_cache_release(page);
3276 }
3277 }
3278
3279 /*
3280 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
3281 */
3282 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
3283 {
3284 struct address_space *mapping = inode->i_mapping;
3285 struct page *page;
3286 void *fsdata;
3287 int err;
3288 char *kaddr;
3289 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
3290 if (nofs)
3291 flags |= AOP_FLAG_NOFS;
3292
3293 retry:
3294 err = pagecache_write_begin(NULL, mapping, 0, len-1,
3295 flags, &page, &fsdata);
3296 if (err)
3297 goto fail;
3298
3299 kaddr = kmap_atomic(page, KM_USER0);
3300 memcpy(kaddr, symname, len-1);
3301 kunmap_atomic(kaddr, KM_USER0);
3302
3303 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
3304 page, fsdata);
3305 if (err < 0)
3306 goto fail;
3307 if (err < len-1)
3308 goto retry;
3309
3310 mark_inode_dirty(inode);
3311 return 0;
3312 fail:
3313 return err;
3314 }
3315
3316 int page_symlink(struct inode *inode, const char *symname, int len)
3317 {
3318 return __page_symlink(inode, symname, len,
3319 !(mapping_gfp_mask(inode->i_mapping) & __GFP_FS));
3320 }
3321
3322 const struct inode_operations page_symlink_inode_operations = {
3323 .readlink = generic_readlink,
3324 .follow_link = page_follow_link_light,
3325 .put_link = page_put_link,
3326 };
3327
3328 EXPORT_SYMBOL(user_path_at);
3329 EXPORT_SYMBOL(follow_down_one);
3330 EXPORT_SYMBOL(follow_down);
3331 EXPORT_SYMBOL(follow_up);
3332 EXPORT_SYMBOL(get_write_access); /* binfmt_aout */
3333 EXPORT_SYMBOL(getname);
3334 EXPORT_SYMBOL(lock_rename);
3335 EXPORT_SYMBOL(lookup_one_len);
3336 EXPORT_SYMBOL(page_follow_link_light);
3337 EXPORT_SYMBOL(page_put_link);
3338 EXPORT_SYMBOL(page_readlink);
3339 EXPORT_SYMBOL(__page_symlink);
3340 EXPORT_SYMBOL(page_symlink);
3341 EXPORT_SYMBOL(page_symlink_inode_operations);
3342 EXPORT_SYMBOL(kern_path_parent);
3343 EXPORT_SYMBOL(kern_path);
3344 EXPORT_SYMBOL(vfs_path_lookup);
3345 EXPORT_SYMBOL(inode_permission);
3346 EXPORT_SYMBOL(unlock_rename);
3347 EXPORT_SYMBOL(vfs_create);
3348 EXPORT_SYMBOL(vfs_follow_link);
3349 EXPORT_SYMBOL(vfs_link);
3350 EXPORT_SYMBOL(vfs_mkdir);
3351 EXPORT_SYMBOL(vfs_mknod);
3352 EXPORT_SYMBOL(generic_permission);
3353 EXPORT_SYMBOL(vfs_readlink);
3354 EXPORT_SYMBOL(vfs_rename);
3355 EXPORT_SYMBOL(vfs_rmdir);
3356 EXPORT_SYMBOL(vfs_symlink);
3357 EXPORT_SYMBOL(vfs_unlink);
3358 EXPORT_SYMBOL(dentry_unhash);
3359 EXPORT_SYMBOL(generic_readlink);
This page took 0.093791 seconds and 6 git commands to generate.