->permission() sanitizing: don't pass flags to generic_permission()
[deliverable/linux.git] / fs / namei.c
1 /*
2 * linux/fs/namei.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * Some corrections by tytso.
9 */
10
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12 * lookup logic.
13 */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15 */
16
17 #include <linux/init.h>
18 #include <linux/module.h>
19 #include <linux/slab.h>
20 #include <linux/fs.h>
21 #include <linux/namei.h>
22 #include <linux/pagemap.h>
23 #include <linux/fsnotify.h>
24 #include <linux/personality.h>
25 #include <linux/security.h>
26 #include <linux/ima.h>
27 #include <linux/syscalls.h>
28 #include <linux/mount.h>
29 #include <linux/audit.h>
30 #include <linux/capability.h>
31 #include <linux/file.h>
32 #include <linux/fcntl.h>
33 #include <linux/device_cgroup.h>
34 #include <linux/fs_struct.h>
35 #include <asm/uaccess.h>
36
37 #include "internal.h"
38
39 /* [Feb-1997 T. Schoebel-Theuer]
40 * Fundamental changes in the pathname lookup mechanisms (namei)
41 * were necessary because of omirr. The reason is that omirr needs
42 * to know the _real_ pathname, not the user-supplied one, in case
43 * of symlinks (and also when transname replacements occur).
44 *
45 * The new code replaces the old recursive symlink resolution with
46 * an iterative one (in case of non-nested symlink chains). It does
47 * this with calls to <fs>_follow_link().
48 * As a side effect, dir_namei(), _namei() and follow_link() are now
49 * replaced with a single function lookup_dentry() that can handle all
50 * the special cases of the former code.
51 *
52 * With the new dcache, the pathname is stored at each inode, at least as
53 * long as the refcount of the inode is positive. As a side effect, the
54 * size of the dcache depends on the inode cache and thus is dynamic.
55 *
56 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
57 * resolution to correspond with current state of the code.
58 *
59 * Note that the symlink resolution is not *completely* iterative.
60 * There is still a significant amount of tail- and mid- recursion in
61 * the algorithm. Also, note that <fs>_readlink() is not used in
62 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
63 * may return different results than <fs>_follow_link(). Many virtual
64 * filesystems (including /proc) exhibit this behavior.
65 */
66
67 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
68 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
69 * and the name already exists in form of a symlink, try to create the new
70 * name indicated by the symlink. The old code always complained that the
71 * name already exists, due to not following the symlink even if its target
72 * is nonexistent. The new semantics affects also mknod() and link() when
73 * the name is a symlink pointing to a non-existent name.
74 *
75 * I don't know which semantics is the right one, since I have no access
76 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
77 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
78 * "old" one. Personally, I think the new semantics is much more logical.
79 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
80 * file does succeed in both HP-UX and SunOs, but not in Solaris
81 * and in the old Linux semantics.
82 */
83
84 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
85 * semantics. See the comments in "open_namei" and "do_link" below.
86 *
87 * [10-Sep-98 Alan Modra] Another symlink change.
88 */
89
90 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
91 * inside the path - always follow.
92 * in the last component in creation/removal/renaming - never follow.
93 * if LOOKUP_FOLLOW passed - follow.
94 * if the pathname has trailing slashes - follow.
95 * otherwise - don't follow.
96 * (applied in that order).
97 *
98 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
99 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
100 * During the 2.4 we need to fix the userland stuff depending on it -
101 * hopefully we will be able to get rid of that wart in 2.5. So far only
102 * XEmacs seems to be relying on it...
103 */
104 /*
105 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
106 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
107 * any extra contention...
108 */
109
110 /* In order to reduce some races, while at the same time doing additional
111 * checking and hopefully speeding things up, we copy filenames to the
112 * kernel data space before using them..
113 *
114 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
115 * PATH_MAX includes the nul terminator --RR.
116 */
117 static int do_getname(const char __user *filename, char *page)
118 {
119 int retval;
120 unsigned long len = PATH_MAX;
121
122 if (!segment_eq(get_fs(), KERNEL_DS)) {
123 if ((unsigned long) filename >= TASK_SIZE)
124 return -EFAULT;
125 if (TASK_SIZE - (unsigned long) filename < PATH_MAX)
126 len = TASK_SIZE - (unsigned long) filename;
127 }
128
129 retval = strncpy_from_user(page, filename, len);
130 if (retval > 0) {
131 if (retval < len)
132 return 0;
133 return -ENAMETOOLONG;
134 } else if (!retval)
135 retval = -ENOENT;
136 return retval;
137 }
138
139 static char *getname_flags(const char __user * filename, int flags)
140 {
141 char *tmp, *result;
142
143 result = ERR_PTR(-ENOMEM);
144 tmp = __getname();
145 if (tmp) {
146 int retval = do_getname(filename, tmp);
147
148 result = tmp;
149 if (retval < 0) {
150 if (retval != -ENOENT || !(flags & LOOKUP_EMPTY)) {
151 __putname(tmp);
152 result = ERR_PTR(retval);
153 }
154 }
155 }
156 audit_getname(result);
157 return result;
158 }
159
160 char *getname(const char __user * filename)
161 {
162 return getname_flags(filename, 0);
163 }
164
165 #ifdef CONFIG_AUDITSYSCALL
166 void putname(const char *name)
167 {
168 if (unlikely(!audit_dummy_context()))
169 audit_putname(name);
170 else
171 __putname(name);
172 }
173 EXPORT_SYMBOL(putname);
174 #endif
175
176 /*
177 * This does basic POSIX ACL permission checking
178 */
179 static int acl_permission_check(struct inode *inode, int mask)
180 {
181 int (*check_acl)(struct inode *inode, int mask);
182 unsigned int mode = inode->i_mode;
183
184 mask &= MAY_READ | MAY_WRITE | MAY_EXEC | MAY_NOT_BLOCK;
185
186 if (current_user_ns() != inode_userns(inode))
187 goto other_perms;
188
189 if (current_fsuid() == inode->i_uid)
190 mode >>= 6;
191 else {
192 check_acl = inode->i_op->check_acl;
193 if (IS_POSIXACL(inode) && (mode & S_IRWXG) && check_acl) {
194 int error = check_acl(inode, mask);
195 if (error != -EAGAIN)
196 return error;
197 }
198
199 if (in_group_p(inode->i_gid))
200 mode >>= 3;
201 }
202
203 other_perms:
204 /*
205 * If the DACs are ok we don't need any capability check.
206 */
207 if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
208 return 0;
209 return -EACCES;
210 }
211
212 /**
213 * generic_permission - check for access rights on a Posix-like filesystem
214 * @inode: inode to check access rights for
215 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
216 * @flags: IPERM_FLAG_ flags.
217 *
218 * Used to check for read/write/execute permissions on a file.
219 * We use "fsuid" for this, letting us set arbitrary permissions
220 * for filesystem access without changing the "normal" uids which
221 * are used for other things.
222 *
223 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
224 * request cannot be satisfied (eg. requires blocking or too much complexity).
225 * It would then be called again in ref-walk mode.
226 */
227 int generic_permission(struct inode *inode, int mask)
228 {
229 int ret;
230
231 /*
232 * Do the basic POSIX ACL permission checks.
233 */
234 ret = acl_permission_check(inode, mask);
235 if (ret != -EACCES)
236 return ret;
237
238 /*
239 * Read/write DACs are always overridable.
240 * Executable DACs are overridable for all directories and
241 * for non-directories that have least one exec bit set.
242 */
243 if (!(mask & MAY_EXEC) || execute_ok(inode))
244 if (ns_capable(inode_userns(inode), CAP_DAC_OVERRIDE))
245 return 0;
246
247 /*
248 * Searching includes executable on directories, else just read.
249 */
250 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
251 if (mask == MAY_READ || (S_ISDIR(inode->i_mode) && !(mask & MAY_WRITE)))
252 if (ns_capable(inode_userns(inode), CAP_DAC_READ_SEARCH))
253 return 0;
254
255 return -EACCES;
256 }
257
258 /**
259 * inode_permission - check for access rights to a given inode
260 * @inode: inode to check permission on
261 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
262 *
263 * Used to check for read/write/execute permissions on an inode.
264 * We use "fsuid" for this, letting us set arbitrary permissions
265 * for filesystem access without changing the "normal" uids which
266 * are used for other things.
267 */
268 int inode_permission(struct inode *inode, int mask)
269 {
270 int retval;
271
272 if (mask & MAY_WRITE) {
273 umode_t mode = inode->i_mode;
274
275 /*
276 * Nobody gets write access to a read-only fs.
277 */
278 if (IS_RDONLY(inode) &&
279 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
280 return -EROFS;
281
282 /*
283 * Nobody gets write access to an immutable file.
284 */
285 if (IS_IMMUTABLE(inode))
286 return -EACCES;
287 }
288
289 if (inode->i_op->permission)
290 retval = inode->i_op->permission(inode, mask, 0);
291 else
292 retval = generic_permission(inode, mask);
293
294 if (retval)
295 return retval;
296
297 retval = devcgroup_inode_permission(inode, mask);
298 if (retval)
299 return retval;
300
301 return security_inode_permission(inode, mask);
302 }
303
304 /**
305 * exec_permission - check for right to do lookups in a given directory
306 * @inode: inode to check permission on
307 * @flags: IPERM_FLAG_ flags.
308 *
309 * Short-cut version of inode_permission(), for calling on directories
310 * during pathname resolution. Combines parts of inode_permission()
311 * and generic_permission(), and tests ONLY for MAY_EXEC permission.
312 *
313 * If appropriate, check DAC only. If not appropriate, or
314 * short-cut DAC fails, then call ->permission() to do more
315 * complete permission check.
316 */
317 static inline int exec_permission(struct inode *inode, unsigned int flags)
318 {
319 int ret;
320 struct user_namespace *ns = inode_userns(inode);
321 int mask = MAY_EXEC;
322 if (flags & IPERM_FLAG_RCU)
323 mask |= MAY_NOT_BLOCK;
324
325 if (inode->i_op->permission) {
326 ret = inode->i_op->permission(inode, mask, flags);
327 if (likely(!ret))
328 goto ok;
329 } else {
330 ret = acl_permission_check(inode, mask);
331 if (likely(!ret))
332 goto ok;
333 if (ret != -EACCES)
334 return ret;
335 if (ns_capable(ns, CAP_DAC_OVERRIDE) ||
336 ns_capable(ns, CAP_DAC_READ_SEARCH))
337 goto ok;
338 }
339 return ret;
340 ok:
341 return security_inode_exec_permission(inode, flags);
342 }
343
344 /**
345 * path_get - get a reference to a path
346 * @path: path to get the reference to
347 *
348 * Given a path increment the reference count to the dentry and the vfsmount.
349 */
350 void path_get(struct path *path)
351 {
352 mntget(path->mnt);
353 dget(path->dentry);
354 }
355 EXPORT_SYMBOL(path_get);
356
357 /**
358 * path_put - put a reference to a path
359 * @path: path to put the reference to
360 *
361 * Given a path decrement the reference count to the dentry and the vfsmount.
362 */
363 void path_put(struct path *path)
364 {
365 dput(path->dentry);
366 mntput(path->mnt);
367 }
368 EXPORT_SYMBOL(path_put);
369
370 /*
371 * Path walking has 2 modes, rcu-walk and ref-walk (see
372 * Documentation/filesystems/path-lookup.txt). In situations when we can't
373 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
374 * normal reference counts on dentries and vfsmounts to transition to rcu-walk
375 * mode. Refcounts are grabbed at the last known good point before rcu-walk
376 * got stuck, so ref-walk may continue from there. If this is not successful
377 * (eg. a seqcount has changed), then failure is returned and it's up to caller
378 * to restart the path walk from the beginning in ref-walk mode.
379 */
380
381 /**
382 * unlazy_walk - try to switch to ref-walk mode.
383 * @nd: nameidata pathwalk data
384 * @dentry: child of nd->path.dentry or NULL
385 * Returns: 0 on success, -ECHILD on failure
386 *
387 * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry
388 * for ref-walk mode. @dentry must be a path found by a do_lookup call on
389 * @nd or NULL. Must be called from rcu-walk context.
390 */
391 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry)
392 {
393 struct fs_struct *fs = current->fs;
394 struct dentry *parent = nd->path.dentry;
395 int want_root = 0;
396
397 BUG_ON(!(nd->flags & LOOKUP_RCU));
398 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
399 want_root = 1;
400 spin_lock(&fs->lock);
401 if (nd->root.mnt != fs->root.mnt ||
402 nd->root.dentry != fs->root.dentry)
403 goto err_root;
404 }
405 spin_lock(&parent->d_lock);
406 if (!dentry) {
407 if (!__d_rcu_to_refcount(parent, nd->seq))
408 goto err_parent;
409 BUG_ON(nd->inode != parent->d_inode);
410 } else {
411 if (dentry->d_parent != parent)
412 goto err_parent;
413 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
414 if (!__d_rcu_to_refcount(dentry, nd->seq))
415 goto err_child;
416 /*
417 * If the sequence check on the child dentry passed, then
418 * the child has not been removed from its parent. This
419 * means the parent dentry must be valid and able to take
420 * a reference at this point.
421 */
422 BUG_ON(!IS_ROOT(dentry) && dentry->d_parent != parent);
423 BUG_ON(!parent->d_count);
424 parent->d_count++;
425 spin_unlock(&dentry->d_lock);
426 }
427 spin_unlock(&parent->d_lock);
428 if (want_root) {
429 path_get(&nd->root);
430 spin_unlock(&fs->lock);
431 }
432 mntget(nd->path.mnt);
433
434 rcu_read_unlock();
435 br_read_unlock(vfsmount_lock);
436 nd->flags &= ~LOOKUP_RCU;
437 return 0;
438
439 err_child:
440 spin_unlock(&dentry->d_lock);
441 err_parent:
442 spin_unlock(&parent->d_lock);
443 err_root:
444 if (want_root)
445 spin_unlock(&fs->lock);
446 return -ECHILD;
447 }
448
449 /**
450 * release_open_intent - free up open intent resources
451 * @nd: pointer to nameidata
452 */
453 void release_open_intent(struct nameidata *nd)
454 {
455 struct file *file = nd->intent.open.file;
456
457 if (file && !IS_ERR(file)) {
458 if (file->f_path.dentry == NULL)
459 put_filp(file);
460 else
461 fput(file);
462 }
463 }
464
465 static inline int d_revalidate(struct dentry *dentry, struct nameidata *nd)
466 {
467 return dentry->d_op->d_revalidate(dentry, nd);
468 }
469
470 static struct dentry *
471 do_revalidate(struct dentry *dentry, struct nameidata *nd)
472 {
473 int status = d_revalidate(dentry, nd);
474 if (unlikely(status <= 0)) {
475 /*
476 * The dentry failed validation.
477 * If d_revalidate returned 0 attempt to invalidate
478 * the dentry otherwise d_revalidate is asking us
479 * to return a fail status.
480 */
481 if (status < 0) {
482 dput(dentry);
483 dentry = ERR_PTR(status);
484 } else if (!d_invalidate(dentry)) {
485 dput(dentry);
486 dentry = NULL;
487 }
488 }
489 return dentry;
490 }
491
492 /**
493 * complete_walk - successful completion of path walk
494 * @nd: pointer nameidata
495 *
496 * If we had been in RCU mode, drop out of it and legitimize nd->path.
497 * Revalidate the final result, unless we'd already done that during
498 * the path walk or the filesystem doesn't ask for it. Return 0 on
499 * success, -error on failure. In case of failure caller does not
500 * need to drop nd->path.
501 */
502 static int complete_walk(struct nameidata *nd)
503 {
504 struct dentry *dentry = nd->path.dentry;
505 int status;
506
507 if (nd->flags & LOOKUP_RCU) {
508 nd->flags &= ~LOOKUP_RCU;
509 if (!(nd->flags & LOOKUP_ROOT))
510 nd->root.mnt = NULL;
511 spin_lock(&dentry->d_lock);
512 if (unlikely(!__d_rcu_to_refcount(dentry, nd->seq))) {
513 spin_unlock(&dentry->d_lock);
514 rcu_read_unlock();
515 br_read_unlock(vfsmount_lock);
516 return -ECHILD;
517 }
518 BUG_ON(nd->inode != dentry->d_inode);
519 spin_unlock(&dentry->d_lock);
520 mntget(nd->path.mnt);
521 rcu_read_unlock();
522 br_read_unlock(vfsmount_lock);
523 }
524
525 if (likely(!(nd->flags & LOOKUP_JUMPED)))
526 return 0;
527
528 if (likely(!(dentry->d_flags & DCACHE_OP_REVALIDATE)))
529 return 0;
530
531 if (likely(!(dentry->d_sb->s_type->fs_flags & FS_REVAL_DOT)))
532 return 0;
533
534 /* Note: we do not d_invalidate() */
535 status = d_revalidate(dentry, nd);
536 if (status > 0)
537 return 0;
538
539 if (!status)
540 status = -ESTALE;
541
542 path_put(&nd->path);
543 return status;
544 }
545
546 static __always_inline void set_root(struct nameidata *nd)
547 {
548 if (!nd->root.mnt)
549 get_fs_root(current->fs, &nd->root);
550 }
551
552 static int link_path_walk(const char *, struct nameidata *);
553
554 static __always_inline void set_root_rcu(struct nameidata *nd)
555 {
556 if (!nd->root.mnt) {
557 struct fs_struct *fs = current->fs;
558 unsigned seq;
559
560 do {
561 seq = read_seqcount_begin(&fs->seq);
562 nd->root = fs->root;
563 nd->seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
564 } while (read_seqcount_retry(&fs->seq, seq));
565 }
566 }
567
568 static __always_inline int __vfs_follow_link(struct nameidata *nd, const char *link)
569 {
570 int ret;
571
572 if (IS_ERR(link))
573 goto fail;
574
575 if (*link == '/') {
576 set_root(nd);
577 path_put(&nd->path);
578 nd->path = nd->root;
579 path_get(&nd->root);
580 nd->flags |= LOOKUP_JUMPED;
581 }
582 nd->inode = nd->path.dentry->d_inode;
583
584 ret = link_path_walk(link, nd);
585 return ret;
586 fail:
587 path_put(&nd->path);
588 return PTR_ERR(link);
589 }
590
591 static void path_put_conditional(struct path *path, struct nameidata *nd)
592 {
593 dput(path->dentry);
594 if (path->mnt != nd->path.mnt)
595 mntput(path->mnt);
596 }
597
598 static inline void path_to_nameidata(const struct path *path,
599 struct nameidata *nd)
600 {
601 if (!(nd->flags & LOOKUP_RCU)) {
602 dput(nd->path.dentry);
603 if (nd->path.mnt != path->mnt)
604 mntput(nd->path.mnt);
605 }
606 nd->path.mnt = path->mnt;
607 nd->path.dentry = path->dentry;
608 }
609
610 static inline void put_link(struct nameidata *nd, struct path *link, void *cookie)
611 {
612 struct inode *inode = link->dentry->d_inode;
613 if (!IS_ERR(cookie) && inode->i_op->put_link)
614 inode->i_op->put_link(link->dentry, nd, cookie);
615 path_put(link);
616 }
617
618 static __always_inline int
619 follow_link(struct path *link, struct nameidata *nd, void **p)
620 {
621 int error;
622 struct dentry *dentry = link->dentry;
623
624 BUG_ON(nd->flags & LOOKUP_RCU);
625
626 if (link->mnt == nd->path.mnt)
627 mntget(link->mnt);
628
629 if (unlikely(current->total_link_count >= 40)) {
630 *p = ERR_PTR(-ELOOP); /* no ->put_link(), please */
631 path_put(&nd->path);
632 return -ELOOP;
633 }
634 cond_resched();
635 current->total_link_count++;
636
637 touch_atime(link->mnt, dentry);
638 nd_set_link(nd, NULL);
639
640 error = security_inode_follow_link(link->dentry, nd);
641 if (error) {
642 *p = ERR_PTR(error); /* no ->put_link(), please */
643 path_put(&nd->path);
644 return error;
645 }
646
647 nd->last_type = LAST_BIND;
648 *p = dentry->d_inode->i_op->follow_link(dentry, nd);
649 error = PTR_ERR(*p);
650 if (!IS_ERR(*p)) {
651 char *s = nd_get_link(nd);
652 error = 0;
653 if (s)
654 error = __vfs_follow_link(nd, s);
655 else if (nd->last_type == LAST_BIND) {
656 nd->flags |= LOOKUP_JUMPED;
657 nd->inode = nd->path.dentry->d_inode;
658 if (nd->inode->i_op->follow_link) {
659 /* stepped on a _really_ weird one */
660 path_put(&nd->path);
661 error = -ELOOP;
662 }
663 }
664 }
665 return error;
666 }
667
668 static int follow_up_rcu(struct path *path)
669 {
670 struct vfsmount *parent;
671 struct dentry *mountpoint;
672
673 parent = path->mnt->mnt_parent;
674 if (parent == path->mnt)
675 return 0;
676 mountpoint = path->mnt->mnt_mountpoint;
677 path->dentry = mountpoint;
678 path->mnt = parent;
679 return 1;
680 }
681
682 int follow_up(struct path *path)
683 {
684 struct vfsmount *parent;
685 struct dentry *mountpoint;
686
687 br_read_lock(vfsmount_lock);
688 parent = path->mnt->mnt_parent;
689 if (parent == path->mnt) {
690 br_read_unlock(vfsmount_lock);
691 return 0;
692 }
693 mntget(parent);
694 mountpoint = dget(path->mnt->mnt_mountpoint);
695 br_read_unlock(vfsmount_lock);
696 dput(path->dentry);
697 path->dentry = mountpoint;
698 mntput(path->mnt);
699 path->mnt = parent;
700 return 1;
701 }
702
703 /*
704 * Perform an automount
705 * - return -EISDIR to tell follow_managed() to stop and return the path we
706 * were called with.
707 */
708 static int follow_automount(struct path *path, unsigned flags,
709 bool *need_mntput)
710 {
711 struct vfsmount *mnt;
712 int err;
713
714 if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
715 return -EREMOTE;
716
717 /* We don't want to mount if someone supplied AT_NO_AUTOMOUNT
718 * and this is the terminal part of the path.
719 */
720 if ((flags & LOOKUP_NO_AUTOMOUNT) && !(flags & LOOKUP_CONTINUE))
721 return -EISDIR; /* we actually want to stop here */
722
723 /* We want to mount if someone is trying to open/create a file of any
724 * type under the mountpoint, wants to traverse through the mountpoint
725 * or wants to open the mounted directory.
726 *
727 * We don't want to mount if someone's just doing a stat and they've
728 * set AT_SYMLINK_NOFOLLOW - unless they're stat'ing a directory and
729 * appended a '/' to the name.
730 */
731 if (!(flags & LOOKUP_FOLLOW) &&
732 !(flags & (LOOKUP_CONTINUE | LOOKUP_DIRECTORY |
733 LOOKUP_OPEN | LOOKUP_CREATE)))
734 return -EISDIR;
735
736 current->total_link_count++;
737 if (current->total_link_count >= 40)
738 return -ELOOP;
739
740 mnt = path->dentry->d_op->d_automount(path);
741 if (IS_ERR(mnt)) {
742 /*
743 * The filesystem is allowed to return -EISDIR here to indicate
744 * it doesn't want to automount. For instance, autofs would do
745 * this so that its userspace daemon can mount on this dentry.
746 *
747 * However, we can only permit this if it's a terminal point in
748 * the path being looked up; if it wasn't then the remainder of
749 * the path is inaccessible and we should say so.
750 */
751 if (PTR_ERR(mnt) == -EISDIR && (flags & LOOKUP_CONTINUE))
752 return -EREMOTE;
753 return PTR_ERR(mnt);
754 }
755
756 if (!mnt) /* mount collision */
757 return 0;
758
759 if (!*need_mntput) {
760 /* lock_mount() may release path->mnt on error */
761 mntget(path->mnt);
762 *need_mntput = true;
763 }
764 err = finish_automount(mnt, path);
765
766 switch (err) {
767 case -EBUSY:
768 /* Someone else made a mount here whilst we were busy */
769 return 0;
770 case 0:
771 path_put(path);
772 path->mnt = mnt;
773 path->dentry = dget(mnt->mnt_root);
774 return 0;
775 default:
776 return err;
777 }
778
779 }
780
781 /*
782 * Handle a dentry that is managed in some way.
783 * - Flagged for transit management (autofs)
784 * - Flagged as mountpoint
785 * - Flagged as automount point
786 *
787 * This may only be called in refwalk mode.
788 *
789 * Serialization is taken care of in namespace.c
790 */
791 static int follow_managed(struct path *path, unsigned flags)
792 {
793 struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
794 unsigned managed;
795 bool need_mntput = false;
796 int ret = 0;
797
798 /* Given that we're not holding a lock here, we retain the value in a
799 * local variable for each dentry as we look at it so that we don't see
800 * the components of that value change under us */
801 while (managed = ACCESS_ONCE(path->dentry->d_flags),
802 managed &= DCACHE_MANAGED_DENTRY,
803 unlikely(managed != 0)) {
804 /* Allow the filesystem to manage the transit without i_mutex
805 * being held. */
806 if (managed & DCACHE_MANAGE_TRANSIT) {
807 BUG_ON(!path->dentry->d_op);
808 BUG_ON(!path->dentry->d_op->d_manage);
809 ret = path->dentry->d_op->d_manage(path->dentry, false);
810 if (ret < 0)
811 break;
812 }
813
814 /* Transit to a mounted filesystem. */
815 if (managed & DCACHE_MOUNTED) {
816 struct vfsmount *mounted = lookup_mnt(path);
817 if (mounted) {
818 dput(path->dentry);
819 if (need_mntput)
820 mntput(path->mnt);
821 path->mnt = mounted;
822 path->dentry = dget(mounted->mnt_root);
823 need_mntput = true;
824 continue;
825 }
826
827 /* Something is mounted on this dentry in another
828 * namespace and/or whatever was mounted there in this
829 * namespace got unmounted before we managed to get the
830 * vfsmount_lock */
831 }
832
833 /* Handle an automount point */
834 if (managed & DCACHE_NEED_AUTOMOUNT) {
835 ret = follow_automount(path, flags, &need_mntput);
836 if (ret < 0)
837 break;
838 continue;
839 }
840
841 /* We didn't change the current path point */
842 break;
843 }
844
845 if (need_mntput && path->mnt == mnt)
846 mntput(path->mnt);
847 if (ret == -EISDIR)
848 ret = 0;
849 return ret;
850 }
851
852 int follow_down_one(struct path *path)
853 {
854 struct vfsmount *mounted;
855
856 mounted = lookup_mnt(path);
857 if (mounted) {
858 dput(path->dentry);
859 mntput(path->mnt);
860 path->mnt = mounted;
861 path->dentry = dget(mounted->mnt_root);
862 return 1;
863 }
864 return 0;
865 }
866
867 static inline bool managed_dentry_might_block(struct dentry *dentry)
868 {
869 return (dentry->d_flags & DCACHE_MANAGE_TRANSIT &&
870 dentry->d_op->d_manage(dentry, true) < 0);
871 }
872
873 /*
874 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if
875 * we meet a managed dentry that would need blocking.
876 */
877 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
878 struct inode **inode)
879 {
880 for (;;) {
881 struct vfsmount *mounted;
882 /*
883 * Don't forget we might have a non-mountpoint managed dentry
884 * that wants to block transit.
885 */
886 if (unlikely(managed_dentry_might_block(path->dentry)))
887 return false;
888
889 if (!d_mountpoint(path->dentry))
890 break;
891
892 mounted = __lookup_mnt(path->mnt, path->dentry, 1);
893 if (!mounted)
894 break;
895 path->mnt = mounted;
896 path->dentry = mounted->mnt_root;
897 nd->seq = read_seqcount_begin(&path->dentry->d_seq);
898 /*
899 * Update the inode too. We don't need to re-check the
900 * dentry sequence number here after this d_inode read,
901 * because a mount-point is always pinned.
902 */
903 *inode = path->dentry->d_inode;
904 }
905 return true;
906 }
907
908 static void follow_mount_rcu(struct nameidata *nd)
909 {
910 while (d_mountpoint(nd->path.dentry)) {
911 struct vfsmount *mounted;
912 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry, 1);
913 if (!mounted)
914 break;
915 nd->path.mnt = mounted;
916 nd->path.dentry = mounted->mnt_root;
917 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
918 }
919 }
920
921 static int follow_dotdot_rcu(struct nameidata *nd)
922 {
923 set_root_rcu(nd);
924
925 while (1) {
926 if (nd->path.dentry == nd->root.dentry &&
927 nd->path.mnt == nd->root.mnt) {
928 break;
929 }
930 if (nd->path.dentry != nd->path.mnt->mnt_root) {
931 struct dentry *old = nd->path.dentry;
932 struct dentry *parent = old->d_parent;
933 unsigned seq;
934
935 seq = read_seqcount_begin(&parent->d_seq);
936 if (read_seqcount_retry(&old->d_seq, nd->seq))
937 goto failed;
938 nd->path.dentry = parent;
939 nd->seq = seq;
940 break;
941 }
942 if (!follow_up_rcu(&nd->path))
943 break;
944 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
945 }
946 follow_mount_rcu(nd);
947 nd->inode = nd->path.dentry->d_inode;
948 return 0;
949
950 failed:
951 nd->flags &= ~LOOKUP_RCU;
952 if (!(nd->flags & LOOKUP_ROOT))
953 nd->root.mnt = NULL;
954 rcu_read_unlock();
955 br_read_unlock(vfsmount_lock);
956 return -ECHILD;
957 }
958
959 /*
960 * Follow down to the covering mount currently visible to userspace. At each
961 * point, the filesystem owning that dentry may be queried as to whether the
962 * caller is permitted to proceed or not.
963 */
964 int follow_down(struct path *path)
965 {
966 unsigned managed;
967 int ret;
968
969 while (managed = ACCESS_ONCE(path->dentry->d_flags),
970 unlikely(managed & DCACHE_MANAGED_DENTRY)) {
971 /* Allow the filesystem to manage the transit without i_mutex
972 * being held.
973 *
974 * We indicate to the filesystem if someone is trying to mount
975 * something here. This gives autofs the chance to deny anyone
976 * other than its daemon the right to mount on its
977 * superstructure.
978 *
979 * The filesystem may sleep at this point.
980 */
981 if (managed & DCACHE_MANAGE_TRANSIT) {
982 BUG_ON(!path->dentry->d_op);
983 BUG_ON(!path->dentry->d_op->d_manage);
984 ret = path->dentry->d_op->d_manage(
985 path->dentry, false);
986 if (ret < 0)
987 return ret == -EISDIR ? 0 : ret;
988 }
989
990 /* Transit to a mounted filesystem. */
991 if (managed & DCACHE_MOUNTED) {
992 struct vfsmount *mounted = lookup_mnt(path);
993 if (!mounted)
994 break;
995 dput(path->dentry);
996 mntput(path->mnt);
997 path->mnt = mounted;
998 path->dentry = dget(mounted->mnt_root);
999 continue;
1000 }
1001
1002 /* Don't handle automount points here */
1003 break;
1004 }
1005 return 0;
1006 }
1007
1008 /*
1009 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1010 */
1011 static void follow_mount(struct path *path)
1012 {
1013 while (d_mountpoint(path->dentry)) {
1014 struct vfsmount *mounted = lookup_mnt(path);
1015 if (!mounted)
1016 break;
1017 dput(path->dentry);
1018 mntput(path->mnt);
1019 path->mnt = mounted;
1020 path->dentry = dget(mounted->mnt_root);
1021 }
1022 }
1023
1024 static void follow_dotdot(struct nameidata *nd)
1025 {
1026 set_root(nd);
1027
1028 while(1) {
1029 struct dentry *old = nd->path.dentry;
1030
1031 if (nd->path.dentry == nd->root.dentry &&
1032 nd->path.mnt == nd->root.mnt) {
1033 break;
1034 }
1035 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1036 /* rare case of legitimate dget_parent()... */
1037 nd->path.dentry = dget_parent(nd->path.dentry);
1038 dput(old);
1039 break;
1040 }
1041 if (!follow_up(&nd->path))
1042 break;
1043 }
1044 follow_mount(&nd->path);
1045 nd->inode = nd->path.dentry->d_inode;
1046 }
1047
1048 /*
1049 * Allocate a dentry with name and parent, and perform a parent
1050 * directory ->lookup on it. Returns the new dentry, or ERR_PTR
1051 * on error. parent->d_inode->i_mutex must be held. d_lookup must
1052 * have verified that no child exists while under i_mutex.
1053 */
1054 static struct dentry *d_alloc_and_lookup(struct dentry *parent,
1055 struct qstr *name, struct nameidata *nd)
1056 {
1057 struct inode *inode = parent->d_inode;
1058 struct dentry *dentry;
1059 struct dentry *old;
1060
1061 /* Don't create child dentry for a dead directory. */
1062 if (unlikely(IS_DEADDIR(inode)))
1063 return ERR_PTR(-ENOENT);
1064
1065 dentry = d_alloc(parent, name);
1066 if (unlikely(!dentry))
1067 return ERR_PTR(-ENOMEM);
1068
1069 old = inode->i_op->lookup(inode, dentry, nd);
1070 if (unlikely(old)) {
1071 dput(dentry);
1072 dentry = old;
1073 }
1074 return dentry;
1075 }
1076
1077 /*
1078 * We already have a dentry, but require a lookup to be performed on the parent
1079 * directory to fill in d_inode. Returns the new dentry, or ERR_PTR on error.
1080 * parent->d_inode->i_mutex must be held. d_lookup must have verified that no
1081 * child exists while under i_mutex.
1082 */
1083 static struct dentry *d_inode_lookup(struct dentry *parent, struct dentry *dentry,
1084 struct nameidata *nd)
1085 {
1086 struct inode *inode = parent->d_inode;
1087 struct dentry *old;
1088
1089 /* Don't create child dentry for a dead directory. */
1090 if (unlikely(IS_DEADDIR(inode)))
1091 return ERR_PTR(-ENOENT);
1092
1093 old = inode->i_op->lookup(inode, dentry, nd);
1094 if (unlikely(old)) {
1095 dput(dentry);
1096 dentry = old;
1097 }
1098 return dentry;
1099 }
1100
1101 /*
1102 * It's more convoluted than I'd like it to be, but... it's still fairly
1103 * small and for now I'd prefer to have fast path as straight as possible.
1104 * It _is_ time-critical.
1105 */
1106 static int do_lookup(struct nameidata *nd, struct qstr *name,
1107 struct path *path, struct inode **inode)
1108 {
1109 struct vfsmount *mnt = nd->path.mnt;
1110 struct dentry *dentry, *parent = nd->path.dentry;
1111 int need_reval = 1;
1112 int status = 1;
1113 int err;
1114
1115 /*
1116 * Rename seqlock is not required here because in the off chance
1117 * of a false negative due to a concurrent rename, we're going to
1118 * do the non-racy lookup, below.
1119 */
1120 if (nd->flags & LOOKUP_RCU) {
1121 unsigned seq;
1122 *inode = nd->inode;
1123 dentry = __d_lookup_rcu(parent, name, &seq, inode);
1124 if (!dentry)
1125 goto unlazy;
1126
1127 /* Memory barrier in read_seqcount_begin of child is enough */
1128 if (__read_seqcount_retry(&parent->d_seq, nd->seq))
1129 return -ECHILD;
1130 nd->seq = seq;
1131
1132 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) {
1133 status = d_revalidate(dentry, nd);
1134 if (unlikely(status <= 0)) {
1135 if (status != -ECHILD)
1136 need_reval = 0;
1137 goto unlazy;
1138 }
1139 }
1140 if (unlikely(d_need_lookup(dentry)))
1141 goto unlazy;
1142 path->mnt = mnt;
1143 path->dentry = dentry;
1144 if (unlikely(!__follow_mount_rcu(nd, path, inode)))
1145 goto unlazy;
1146 if (unlikely(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT))
1147 goto unlazy;
1148 return 0;
1149 unlazy:
1150 if (unlazy_walk(nd, dentry))
1151 return -ECHILD;
1152 } else {
1153 dentry = __d_lookup(parent, name);
1154 }
1155
1156 if (dentry && unlikely(d_need_lookup(dentry))) {
1157 dput(dentry);
1158 dentry = NULL;
1159 }
1160 retry:
1161 if (unlikely(!dentry)) {
1162 struct inode *dir = parent->d_inode;
1163 BUG_ON(nd->inode != dir);
1164
1165 mutex_lock(&dir->i_mutex);
1166 dentry = d_lookup(parent, name);
1167 if (likely(!dentry)) {
1168 dentry = d_alloc_and_lookup(parent, name, nd);
1169 if (IS_ERR(dentry)) {
1170 mutex_unlock(&dir->i_mutex);
1171 return PTR_ERR(dentry);
1172 }
1173 /* known good */
1174 need_reval = 0;
1175 status = 1;
1176 } else if (unlikely(d_need_lookup(dentry))) {
1177 dentry = d_inode_lookup(parent, dentry, nd);
1178 if (IS_ERR(dentry)) {
1179 mutex_unlock(&dir->i_mutex);
1180 return PTR_ERR(dentry);
1181 }
1182 /* known good */
1183 need_reval = 0;
1184 status = 1;
1185 }
1186 mutex_unlock(&dir->i_mutex);
1187 }
1188 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE) && need_reval)
1189 status = d_revalidate(dentry, nd);
1190 if (unlikely(status <= 0)) {
1191 if (status < 0) {
1192 dput(dentry);
1193 return status;
1194 }
1195 if (!d_invalidate(dentry)) {
1196 dput(dentry);
1197 dentry = NULL;
1198 need_reval = 1;
1199 goto retry;
1200 }
1201 }
1202
1203 path->mnt = mnt;
1204 path->dentry = dentry;
1205 err = follow_managed(path, nd->flags);
1206 if (unlikely(err < 0)) {
1207 path_put_conditional(path, nd);
1208 return err;
1209 }
1210 *inode = path->dentry->d_inode;
1211 return 0;
1212 }
1213
1214 static inline int may_lookup(struct nameidata *nd)
1215 {
1216 if (nd->flags & LOOKUP_RCU) {
1217 int err = exec_permission(nd->inode, IPERM_FLAG_RCU);
1218 if (err != -ECHILD)
1219 return err;
1220 if (unlazy_walk(nd, NULL))
1221 return -ECHILD;
1222 }
1223 return exec_permission(nd->inode, 0);
1224 }
1225
1226 static inline int handle_dots(struct nameidata *nd, int type)
1227 {
1228 if (type == LAST_DOTDOT) {
1229 if (nd->flags & LOOKUP_RCU) {
1230 if (follow_dotdot_rcu(nd))
1231 return -ECHILD;
1232 } else
1233 follow_dotdot(nd);
1234 }
1235 return 0;
1236 }
1237
1238 static void terminate_walk(struct nameidata *nd)
1239 {
1240 if (!(nd->flags & LOOKUP_RCU)) {
1241 path_put(&nd->path);
1242 } else {
1243 nd->flags &= ~LOOKUP_RCU;
1244 if (!(nd->flags & LOOKUP_ROOT))
1245 nd->root.mnt = NULL;
1246 rcu_read_unlock();
1247 br_read_unlock(vfsmount_lock);
1248 }
1249 }
1250
1251 static inline int walk_component(struct nameidata *nd, struct path *path,
1252 struct qstr *name, int type, int follow)
1253 {
1254 struct inode *inode;
1255 int err;
1256 /*
1257 * "." and ".." are special - ".." especially so because it has
1258 * to be able to know about the current root directory and
1259 * parent relationships.
1260 */
1261 if (unlikely(type != LAST_NORM))
1262 return handle_dots(nd, type);
1263 err = do_lookup(nd, name, path, &inode);
1264 if (unlikely(err)) {
1265 terminate_walk(nd);
1266 return err;
1267 }
1268 if (!inode) {
1269 path_to_nameidata(path, nd);
1270 terminate_walk(nd);
1271 return -ENOENT;
1272 }
1273 if (unlikely(inode->i_op->follow_link) && follow) {
1274 if (nd->flags & LOOKUP_RCU) {
1275 if (unlikely(unlazy_walk(nd, path->dentry))) {
1276 terminate_walk(nd);
1277 return -ECHILD;
1278 }
1279 }
1280 BUG_ON(inode != path->dentry->d_inode);
1281 return 1;
1282 }
1283 path_to_nameidata(path, nd);
1284 nd->inode = inode;
1285 return 0;
1286 }
1287
1288 /*
1289 * This limits recursive symlink follows to 8, while
1290 * limiting consecutive symlinks to 40.
1291 *
1292 * Without that kind of total limit, nasty chains of consecutive
1293 * symlinks can cause almost arbitrarily long lookups.
1294 */
1295 static inline int nested_symlink(struct path *path, struct nameidata *nd)
1296 {
1297 int res;
1298
1299 if (unlikely(current->link_count >= MAX_NESTED_LINKS)) {
1300 path_put_conditional(path, nd);
1301 path_put(&nd->path);
1302 return -ELOOP;
1303 }
1304 BUG_ON(nd->depth >= MAX_NESTED_LINKS);
1305
1306 nd->depth++;
1307 current->link_count++;
1308
1309 do {
1310 struct path link = *path;
1311 void *cookie;
1312
1313 res = follow_link(&link, nd, &cookie);
1314 if (!res)
1315 res = walk_component(nd, path, &nd->last,
1316 nd->last_type, LOOKUP_FOLLOW);
1317 put_link(nd, &link, cookie);
1318 } while (res > 0);
1319
1320 current->link_count--;
1321 nd->depth--;
1322 return res;
1323 }
1324
1325 /*
1326 * Name resolution.
1327 * This is the basic name resolution function, turning a pathname into
1328 * the final dentry. We expect 'base' to be positive and a directory.
1329 *
1330 * Returns 0 and nd will have valid dentry and mnt on success.
1331 * Returns error and drops reference to input namei data on failure.
1332 */
1333 static int link_path_walk(const char *name, struct nameidata *nd)
1334 {
1335 struct path next;
1336 int err;
1337 unsigned int lookup_flags = nd->flags;
1338
1339 while (*name=='/')
1340 name++;
1341 if (!*name)
1342 return 0;
1343
1344 /* At this point we know we have a real path component. */
1345 for(;;) {
1346 unsigned long hash;
1347 struct qstr this;
1348 unsigned int c;
1349 int type;
1350
1351 nd->flags |= LOOKUP_CONTINUE;
1352
1353 err = may_lookup(nd);
1354 if (err)
1355 break;
1356
1357 this.name = name;
1358 c = *(const unsigned char *)name;
1359
1360 hash = init_name_hash();
1361 do {
1362 name++;
1363 hash = partial_name_hash(c, hash);
1364 c = *(const unsigned char *)name;
1365 } while (c && (c != '/'));
1366 this.len = name - (const char *) this.name;
1367 this.hash = end_name_hash(hash);
1368
1369 type = LAST_NORM;
1370 if (this.name[0] == '.') switch (this.len) {
1371 case 2:
1372 if (this.name[1] == '.') {
1373 type = LAST_DOTDOT;
1374 nd->flags |= LOOKUP_JUMPED;
1375 }
1376 break;
1377 case 1:
1378 type = LAST_DOT;
1379 }
1380 if (likely(type == LAST_NORM)) {
1381 struct dentry *parent = nd->path.dentry;
1382 nd->flags &= ~LOOKUP_JUMPED;
1383 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
1384 err = parent->d_op->d_hash(parent, nd->inode,
1385 &this);
1386 if (err < 0)
1387 break;
1388 }
1389 }
1390
1391 /* remove trailing slashes? */
1392 if (!c)
1393 goto last_component;
1394 while (*++name == '/');
1395 if (!*name)
1396 goto last_component;
1397
1398 err = walk_component(nd, &next, &this, type, LOOKUP_FOLLOW);
1399 if (err < 0)
1400 return err;
1401
1402 if (err) {
1403 err = nested_symlink(&next, nd);
1404 if (err)
1405 return err;
1406 }
1407 err = -ENOTDIR;
1408 if (!nd->inode->i_op->lookup)
1409 break;
1410 continue;
1411 /* here ends the main loop */
1412
1413 last_component:
1414 /* Clear LOOKUP_CONTINUE iff it was previously unset */
1415 nd->flags &= lookup_flags | ~LOOKUP_CONTINUE;
1416 nd->last = this;
1417 nd->last_type = type;
1418 return 0;
1419 }
1420 terminate_walk(nd);
1421 return err;
1422 }
1423
1424 static int path_init(int dfd, const char *name, unsigned int flags,
1425 struct nameidata *nd, struct file **fp)
1426 {
1427 int retval = 0;
1428 int fput_needed;
1429 struct file *file;
1430
1431 nd->last_type = LAST_ROOT; /* if there are only slashes... */
1432 nd->flags = flags | LOOKUP_JUMPED;
1433 nd->depth = 0;
1434 if (flags & LOOKUP_ROOT) {
1435 struct inode *inode = nd->root.dentry->d_inode;
1436 if (*name) {
1437 if (!inode->i_op->lookup)
1438 return -ENOTDIR;
1439 retval = inode_permission(inode, MAY_EXEC);
1440 if (retval)
1441 return retval;
1442 }
1443 nd->path = nd->root;
1444 nd->inode = inode;
1445 if (flags & LOOKUP_RCU) {
1446 br_read_lock(vfsmount_lock);
1447 rcu_read_lock();
1448 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1449 } else {
1450 path_get(&nd->path);
1451 }
1452 return 0;
1453 }
1454
1455 nd->root.mnt = NULL;
1456
1457 if (*name=='/') {
1458 if (flags & LOOKUP_RCU) {
1459 br_read_lock(vfsmount_lock);
1460 rcu_read_lock();
1461 set_root_rcu(nd);
1462 } else {
1463 set_root(nd);
1464 path_get(&nd->root);
1465 }
1466 nd->path = nd->root;
1467 } else if (dfd == AT_FDCWD) {
1468 if (flags & LOOKUP_RCU) {
1469 struct fs_struct *fs = current->fs;
1470 unsigned seq;
1471
1472 br_read_lock(vfsmount_lock);
1473 rcu_read_lock();
1474
1475 do {
1476 seq = read_seqcount_begin(&fs->seq);
1477 nd->path = fs->pwd;
1478 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1479 } while (read_seqcount_retry(&fs->seq, seq));
1480 } else {
1481 get_fs_pwd(current->fs, &nd->path);
1482 }
1483 } else {
1484 struct dentry *dentry;
1485
1486 file = fget_raw_light(dfd, &fput_needed);
1487 retval = -EBADF;
1488 if (!file)
1489 goto out_fail;
1490
1491 dentry = file->f_path.dentry;
1492
1493 if (*name) {
1494 retval = -ENOTDIR;
1495 if (!S_ISDIR(dentry->d_inode->i_mode))
1496 goto fput_fail;
1497
1498 retval = exec_permission(dentry->d_inode, 0);
1499 if (retval)
1500 goto fput_fail;
1501 }
1502
1503 nd->path = file->f_path;
1504 if (flags & LOOKUP_RCU) {
1505 if (fput_needed)
1506 *fp = file;
1507 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1508 br_read_lock(vfsmount_lock);
1509 rcu_read_lock();
1510 } else {
1511 path_get(&file->f_path);
1512 fput_light(file, fput_needed);
1513 }
1514 }
1515
1516 nd->inode = nd->path.dentry->d_inode;
1517 return 0;
1518
1519 fput_fail:
1520 fput_light(file, fput_needed);
1521 out_fail:
1522 return retval;
1523 }
1524
1525 static inline int lookup_last(struct nameidata *nd, struct path *path)
1526 {
1527 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
1528 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
1529
1530 nd->flags &= ~LOOKUP_PARENT;
1531 return walk_component(nd, path, &nd->last, nd->last_type,
1532 nd->flags & LOOKUP_FOLLOW);
1533 }
1534
1535 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
1536 static int path_lookupat(int dfd, const char *name,
1537 unsigned int flags, struct nameidata *nd)
1538 {
1539 struct file *base = NULL;
1540 struct path path;
1541 int err;
1542
1543 /*
1544 * Path walking is largely split up into 2 different synchronisation
1545 * schemes, rcu-walk and ref-walk (explained in
1546 * Documentation/filesystems/path-lookup.txt). These share much of the
1547 * path walk code, but some things particularly setup, cleanup, and
1548 * following mounts are sufficiently divergent that functions are
1549 * duplicated. Typically there is a function foo(), and its RCU
1550 * analogue, foo_rcu().
1551 *
1552 * -ECHILD is the error number of choice (just to avoid clashes) that
1553 * is returned if some aspect of an rcu-walk fails. Such an error must
1554 * be handled by restarting a traditional ref-walk (which will always
1555 * be able to complete).
1556 */
1557 err = path_init(dfd, name, flags | LOOKUP_PARENT, nd, &base);
1558
1559 if (unlikely(err))
1560 return err;
1561
1562 current->total_link_count = 0;
1563 err = link_path_walk(name, nd);
1564
1565 if (!err && !(flags & LOOKUP_PARENT)) {
1566 err = lookup_last(nd, &path);
1567 while (err > 0) {
1568 void *cookie;
1569 struct path link = path;
1570 nd->flags |= LOOKUP_PARENT;
1571 err = follow_link(&link, nd, &cookie);
1572 if (!err)
1573 err = lookup_last(nd, &path);
1574 put_link(nd, &link, cookie);
1575 }
1576 }
1577
1578 if (!err)
1579 err = complete_walk(nd);
1580
1581 if (!err && nd->flags & LOOKUP_DIRECTORY) {
1582 if (!nd->inode->i_op->lookup) {
1583 path_put(&nd->path);
1584 err = -ENOTDIR;
1585 }
1586 }
1587
1588 if (base)
1589 fput(base);
1590
1591 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
1592 path_put(&nd->root);
1593 nd->root.mnt = NULL;
1594 }
1595 return err;
1596 }
1597
1598 static int do_path_lookup(int dfd, const char *name,
1599 unsigned int flags, struct nameidata *nd)
1600 {
1601 int retval = path_lookupat(dfd, name, flags | LOOKUP_RCU, nd);
1602 if (unlikely(retval == -ECHILD))
1603 retval = path_lookupat(dfd, name, flags, nd);
1604 if (unlikely(retval == -ESTALE))
1605 retval = path_lookupat(dfd, name, flags | LOOKUP_REVAL, nd);
1606
1607 if (likely(!retval)) {
1608 if (unlikely(!audit_dummy_context())) {
1609 if (nd->path.dentry && nd->inode)
1610 audit_inode(name, nd->path.dentry);
1611 }
1612 }
1613 return retval;
1614 }
1615
1616 int kern_path_parent(const char *name, struct nameidata *nd)
1617 {
1618 return do_path_lookup(AT_FDCWD, name, LOOKUP_PARENT, nd);
1619 }
1620
1621 int kern_path(const char *name, unsigned int flags, struct path *path)
1622 {
1623 struct nameidata nd;
1624 int res = do_path_lookup(AT_FDCWD, name, flags, &nd);
1625 if (!res)
1626 *path = nd.path;
1627 return res;
1628 }
1629
1630 /**
1631 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
1632 * @dentry: pointer to dentry of the base directory
1633 * @mnt: pointer to vfs mount of the base directory
1634 * @name: pointer to file name
1635 * @flags: lookup flags
1636 * @nd: pointer to nameidata
1637 */
1638 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
1639 const char *name, unsigned int flags,
1640 struct nameidata *nd)
1641 {
1642 nd->root.dentry = dentry;
1643 nd->root.mnt = mnt;
1644 /* the first argument of do_path_lookup() is ignored with LOOKUP_ROOT */
1645 return do_path_lookup(AT_FDCWD, name, flags | LOOKUP_ROOT, nd);
1646 }
1647
1648 static struct dentry *__lookup_hash(struct qstr *name,
1649 struct dentry *base, struct nameidata *nd)
1650 {
1651 struct inode *inode = base->d_inode;
1652 struct dentry *dentry;
1653 int err;
1654
1655 err = exec_permission(inode, 0);
1656 if (err)
1657 return ERR_PTR(err);
1658
1659 /*
1660 * Don't bother with __d_lookup: callers are for creat as
1661 * well as unlink, so a lot of the time it would cost
1662 * a double lookup.
1663 */
1664 dentry = d_lookup(base, name);
1665
1666 if (dentry && d_need_lookup(dentry)) {
1667 /*
1668 * __lookup_hash is called with the parent dir's i_mutex already
1669 * held, so we are good to go here.
1670 */
1671 dentry = d_inode_lookup(base, dentry, nd);
1672 if (IS_ERR(dentry))
1673 return dentry;
1674 }
1675
1676 if (dentry && (dentry->d_flags & DCACHE_OP_REVALIDATE))
1677 dentry = do_revalidate(dentry, nd);
1678
1679 if (!dentry)
1680 dentry = d_alloc_and_lookup(base, name, nd);
1681
1682 return dentry;
1683 }
1684
1685 /*
1686 * Restricted form of lookup. Doesn't follow links, single-component only,
1687 * needs parent already locked. Doesn't follow mounts.
1688 * SMP-safe.
1689 */
1690 static struct dentry *lookup_hash(struct nameidata *nd)
1691 {
1692 return __lookup_hash(&nd->last, nd->path.dentry, nd);
1693 }
1694
1695 /**
1696 * lookup_one_len - filesystem helper to lookup single pathname component
1697 * @name: pathname component to lookup
1698 * @base: base directory to lookup from
1699 * @len: maximum length @len should be interpreted to
1700 *
1701 * Note that this routine is purely a helper for filesystem usage and should
1702 * not be called by generic code. Also note that by using this function the
1703 * nameidata argument is passed to the filesystem methods and a filesystem
1704 * using this helper needs to be prepared for that.
1705 */
1706 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
1707 {
1708 struct qstr this;
1709 unsigned long hash;
1710 unsigned int c;
1711
1712 WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex));
1713
1714 this.name = name;
1715 this.len = len;
1716 if (!len)
1717 return ERR_PTR(-EACCES);
1718
1719 hash = init_name_hash();
1720 while (len--) {
1721 c = *(const unsigned char *)name++;
1722 if (c == '/' || c == '\0')
1723 return ERR_PTR(-EACCES);
1724 hash = partial_name_hash(c, hash);
1725 }
1726 this.hash = end_name_hash(hash);
1727 /*
1728 * See if the low-level filesystem might want
1729 * to use its own hash..
1730 */
1731 if (base->d_flags & DCACHE_OP_HASH) {
1732 int err = base->d_op->d_hash(base, base->d_inode, &this);
1733 if (err < 0)
1734 return ERR_PTR(err);
1735 }
1736
1737 return __lookup_hash(&this, base, NULL);
1738 }
1739
1740 int user_path_at(int dfd, const char __user *name, unsigned flags,
1741 struct path *path)
1742 {
1743 struct nameidata nd;
1744 char *tmp = getname_flags(name, flags);
1745 int err = PTR_ERR(tmp);
1746 if (!IS_ERR(tmp)) {
1747
1748 BUG_ON(flags & LOOKUP_PARENT);
1749
1750 err = do_path_lookup(dfd, tmp, flags, &nd);
1751 putname(tmp);
1752 if (!err)
1753 *path = nd.path;
1754 }
1755 return err;
1756 }
1757
1758 static int user_path_parent(int dfd, const char __user *path,
1759 struct nameidata *nd, char **name)
1760 {
1761 char *s = getname(path);
1762 int error;
1763
1764 if (IS_ERR(s))
1765 return PTR_ERR(s);
1766
1767 error = do_path_lookup(dfd, s, LOOKUP_PARENT, nd);
1768 if (error)
1769 putname(s);
1770 else
1771 *name = s;
1772
1773 return error;
1774 }
1775
1776 /*
1777 * It's inline, so penalty for filesystems that don't use sticky bit is
1778 * minimal.
1779 */
1780 static inline int check_sticky(struct inode *dir, struct inode *inode)
1781 {
1782 uid_t fsuid = current_fsuid();
1783
1784 if (!(dir->i_mode & S_ISVTX))
1785 return 0;
1786 if (current_user_ns() != inode_userns(inode))
1787 goto other_userns;
1788 if (inode->i_uid == fsuid)
1789 return 0;
1790 if (dir->i_uid == fsuid)
1791 return 0;
1792
1793 other_userns:
1794 return !ns_capable(inode_userns(inode), CAP_FOWNER);
1795 }
1796
1797 /*
1798 * Check whether we can remove a link victim from directory dir, check
1799 * whether the type of victim is right.
1800 * 1. We can't do it if dir is read-only (done in permission())
1801 * 2. We should have write and exec permissions on dir
1802 * 3. We can't remove anything from append-only dir
1803 * 4. We can't do anything with immutable dir (done in permission())
1804 * 5. If the sticky bit on dir is set we should either
1805 * a. be owner of dir, or
1806 * b. be owner of victim, or
1807 * c. have CAP_FOWNER capability
1808 * 6. If the victim is append-only or immutable we can't do antyhing with
1809 * links pointing to it.
1810 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
1811 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
1812 * 9. We can't remove a root or mountpoint.
1813 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
1814 * nfs_async_unlink().
1815 */
1816 static int may_delete(struct inode *dir,struct dentry *victim,int isdir)
1817 {
1818 int error;
1819
1820 if (!victim->d_inode)
1821 return -ENOENT;
1822
1823 BUG_ON(victim->d_parent->d_inode != dir);
1824 audit_inode_child(victim, dir);
1825
1826 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
1827 if (error)
1828 return error;
1829 if (IS_APPEND(dir))
1830 return -EPERM;
1831 if (check_sticky(dir, victim->d_inode)||IS_APPEND(victim->d_inode)||
1832 IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode))
1833 return -EPERM;
1834 if (isdir) {
1835 if (!S_ISDIR(victim->d_inode->i_mode))
1836 return -ENOTDIR;
1837 if (IS_ROOT(victim))
1838 return -EBUSY;
1839 } else if (S_ISDIR(victim->d_inode->i_mode))
1840 return -EISDIR;
1841 if (IS_DEADDIR(dir))
1842 return -ENOENT;
1843 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
1844 return -EBUSY;
1845 return 0;
1846 }
1847
1848 /* Check whether we can create an object with dentry child in directory
1849 * dir.
1850 * 1. We can't do it if child already exists (open has special treatment for
1851 * this case, but since we are inlined it's OK)
1852 * 2. We can't do it if dir is read-only (done in permission())
1853 * 3. We should have write and exec permissions on dir
1854 * 4. We can't do it if dir is immutable (done in permission())
1855 */
1856 static inline int may_create(struct inode *dir, struct dentry *child)
1857 {
1858 if (child->d_inode)
1859 return -EEXIST;
1860 if (IS_DEADDIR(dir))
1861 return -ENOENT;
1862 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
1863 }
1864
1865 /*
1866 * p1 and p2 should be directories on the same fs.
1867 */
1868 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
1869 {
1870 struct dentry *p;
1871
1872 if (p1 == p2) {
1873 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1874 return NULL;
1875 }
1876
1877 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
1878
1879 p = d_ancestor(p2, p1);
1880 if (p) {
1881 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
1882 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
1883 return p;
1884 }
1885
1886 p = d_ancestor(p1, p2);
1887 if (p) {
1888 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1889 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
1890 return p;
1891 }
1892
1893 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1894 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
1895 return NULL;
1896 }
1897
1898 void unlock_rename(struct dentry *p1, struct dentry *p2)
1899 {
1900 mutex_unlock(&p1->d_inode->i_mutex);
1901 if (p1 != p2) {
1902 mutex_unlock(&p2->d_inode->i_mutex);
1903 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
1904 }
1905 }
1906
1907 int vfs_create(struct inode *dir, struct dentry *dentry, int mode,
1908 struct nameidata *nd)
1909 {
1910 int error = may_create(dir, dentry);
1911
1912 if (error)
1913 return error;
1914
1915 if (!dir->i_op->create)
1916 return -EACCES; /* shouldn't it be ENOSYS? */
1917 mode &= S_IALLUGO;
1918 mode |= S_IFREG;
1919 error = security_inode_create(dir, dentry, mode);
1920 if (error)
1921 return error;
1922 error = dir->i_op->create(dir, dentry, mode, nd);
1923 if (!error)
1924 fsnotify_create(dir, dentry);
1925 return error;
1926 }
1927
1928 static int may_open(struct path *path, int acc_mode, int flag)
1929 {
1930 struct dentry *dentry = path->dentry;
1931 struct inode *inode = dentry->d_inode;
1932 int error;
1933
1934 /* O_PATH? */
1935 if (!acc_mode)
1936 return 0;
1937
1938 if (!inode)
1939 return -ENOENT;
1940
1941 switch (inode->i_mode & S_IFMT) {
1942 case S_IFLNK:
1943 return -ELOOP;
1944 case S_IFDIR:
1945 if (acc_mode & MAY_WRITE)
1946 return -EISDIR;
1947 break;
1948 case S_IFBLK:
1949 case S_IFCHR:
1950 if (path->mnt->mnt_flags & MNT_NODEV)
1951 return -EACCES;
1952 /*FALLTHRU*/
1953 case S_IFIFO:
1954 case S_IFSOCK:
1955 flag &= ~O_TRUNC;
1956 break;
1957 }
1958
1959 error = inode_permission(inode, acc_mode);
1960 if (error)
1961 return error;
1962
1963 /*
1964 * An append-only file must be opened in append mode for writing.
1965 */
1966 if (IS_APPEND(inode)) {
1967 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
1968 return -EPERM;
1969 if (flag & O_TRUNC)
1970 return -EPERM;
1971 }
1972
1973 /* O_NOATIME can only be set by the owner or superuser */
1974 if (flag & O_NOATIME && !inode_owner_or_capable(inode))
1975 return -EPERM;
1976
1977 /*
1978 * Ensure there are no outstanding leases on the file.
1979 */
1980 return break_lease(inode, flag);
1981 }
1982
1983 static int handle_truncate(struct file *filp)
1984 {
1985 struct path *path = &filp->f_path;
1986 struct inode *inode = path->dentry->d_inode;
1987 int error = get_write_access(inode);
1988 if (error)
1989 return error;
1990 /*
1991 * Refuse to truncate files with mandatory locks held on them.
1992 */
1993 error = locks_verify_locked(inode);
1994 if (!error)
1995 error = security_path_truncate(path);
1996 if (!error) {
1997 error = do_truncate(path->dentry, 0,
1998 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
1999 filp);
2000 }
2001 put_write_access(inode);
2002 return error;
2003 }
2004
2005 /*
2006 * Note that while the flag value (low two bits) for sys_open means:
2007 * 00 - read-only
2008 * 01 - write-only
2009 * 10 - read-write
2010 * 11 - special
2011 * it is changed into
2012 * 00 - no permissions needed
2013 * 01 - read-permission
2014 * 10 - write-permission
2015 * 11 - read-write
2016 * for the internal routines (ie open_namei()/follow_link() etc)
2017 * This is more logical, and also allows the 00 "no perm needed"
2018 * to be used for symlinks (where the permissions are checked
2019 * later).
2020 *
2021 */
2022 static inline int open_to_namei_flags(int flag)
2023 {
2024 if ((flag+1) & O_ACCMODE)
2025 flag++;
2026 return flag;
2027 }
2028
2029 /*
2030 * Handle the last step of open()
2031 */
2032 static struct file *do_last(struct nameidata *nd, struct path *path,
2033 const struct open_flags *op, const char *pathname)
2034 {
2035 struct dentry *dir = nd->path.dentry;
2036 struct dentry *dentry;
2037 int open_flag = op->open_flag;
2038 int will_truncate = open_flag & O_TRUNC;
2039 int want_write = 0;
2040 int acc_mode = op->acc_mode;
2041 struct file *filp;
2042 int error;
2043
2044 nd->flags &= ~LOOKUP_PARENT;
2045 nd->flags |= op->intent;
2046
2047 switch (nd->last_type) {
2048 case LAST_DOTDOT:
2049 case LAST_DOT:
2050 error = handle_dots(nd, nd->last_type);
2051 if (error)
2052 return ERR_PTR(error);
2053 /* fallthrough */
2054 case LAST_ROOT:
2055 error = complete_walk(nd);
2056 if (error)
2057 return ERR_PTR(error);
2058 audit_inode(pathname, nd->path.dentry);
2059 if (open_flag & O_CREAT) {
2060 error = -EISDIR;
2061 goto exit;
2062 }
2063 goto ok;
2064 case LAST_BIND:
2065 error = complete_walk(nd);
2066 if (error)
2067 return ERR_PTR(error);
2068 audit_inode(pathname, dir);
2069 goto ok;
2070 }
2071
2072 if (!(open_flag & O_CREAT)) {
2073 int symlink_ok = 0;
2074 if (nd->last.name[nd->last.len])
2075 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2076 if (open_flag & O_PATH && !(nd->flags & LOOKUP_FOLLOW))
2077 symlink_ok = 1;
2078 /* we _can_ be in RCU mode here */
2079 error = walk_component(nd, path, &nd->last, LAST_NORM,
2080 !symlink_ok);
2081 if (error < 0)
2082 return ERR_PTR(error);
2083 if (error) /* symlink */
2084 return NULL;
2085 /* sayonara */
2086 error = complete_walk(nd);
2087 if (error)
2088 return ERR_PTR(-ECHILD);
2089
2090 error = -ENOTDIR;
2091 if (nd->flags & LOOKUP_DIRECTORY) {
2092 if (!nd->inode->i_op->lookup)
2093 goto exit;
2094 }
2095 audit_inode(pathname, nd->path.dentry);
2096 goto ok;
2097 }
2098
2099 /* create side of things */
2100 error = complete_walk(nd);
2101 if (error)
2102 return ERR_PTR(error);
2103
2104 audit_inode(pathname, dir);
2105 error = -EISDIR;
2106 /* trailing slashes? */
2107 if (nd->last.name[nd->last.len])
2108 goto exit;
2109
2110 mutex_lock(&dir->d_inode->i_mutex);
2111
2112 dentry = lookup_hash(nd);
2113 error = PTR_ERR(dentry);
2114 if (IS_ERR(dentry)) {
2115 mutex_unlock(&dir->d_inode->i_mutex);
2116 goto exit;
2117 }
2118
2119 path->dentry = dentry;
2120 path->mnt = nd->path.mnt;
2121
2122 /* Negative dentry, just create the file */
2123 if (!dentry->d_inode) {
2124 int mode = op->mode;
2125 if (!IS_POSIXACL(dir->d_inode))
2126 mode &= ~current_umask();
2127 /*
2128 * This write is needed to ensure that a
2129 * rw->ro transition does not occur between
2130 * the time when the file is created and when
2131 * a permanent write count is taken through
2132 * the 'struct file' in nameidata_to_filp().
2133 */
2134 error = mnt_want_write(nd->path.mnt);
2135 if (error)
2136 goto exit_mutex_unlock;
2137 want_write = 1;
2138 /* Don't check for write permission, don't truncate */
2139 open_flag &= ~O_TRUNC;
2140 will_truncate = 0;
2141 acc_mode = MAY_OPEN;
2142 error = security_path_mknod(&nd->path, dentry, mode, 0);
2143 if (error)
2144 goto exit_mutex_unlock;
2145 error = vfs_create(dir->d_inode, dentry, mode, nd);
2146 if (error)
2147 goto exit_mutex_unlock;
2148 mutex_unlock(&dir->d_inode->i_mutex);
2149 dput(nd->path.dentry);
2150 nd->path.dentry = dentry;
2151 goto common;
2152 }
2153
2154 /*
2155 * It already exists.
2156 */
2157 mutex_unlock(&dir->d_inode->i_mutex);
2158 audit_inode(pathname, path->dentry);
2159
2160 error = -EEXIST;
2161 if (open_flag & O_EXCL)
2162 goto exit_dput;
2163
2164 error = follow_managed(path, nd->flags);
2165 if (error < 0)
2166 goto exit_dput;
2167
2168 error = -ENOENT;
2169 if (!path->dentry->d_inode)
2170 goto exit_dput;
2171
2172 if (path->dentry->d_inode->i_op->follow_link)
2173 return NULL;
2174
2175 path_to_nameidata(path, nd);
2176 nd->inode = path->dentry->d_inode;
2177 error = -EISDIR;
2178 if (S_ISDIR(nd->inode->i_mode))
2179 goto exit;
2180 ok:
2181 if (!S_ISREG(nd->inode->i_mode))
2182 will_truncate = 0;
2183
2184 if (will_truncate) {
2185 error = mnt_want_write(nd->path.mnt);
2186 if (error)
2187 goto exit;
2188 want_write = 1;
2189 }
2190 common:
2191 error = may_open(&nd->path, acc_mode, open_flag);
2192 if (error)
2193 goto exit;
2194 filp = nameidata_to_filp(nd);
2195 if (!IS_ERR(filp)) {
2196 error = ima_file_check(filp, op->acc_mode);
2197 if (error) {
2198 fput(filp);
2199 filp = ERR_PTR(error);
2200 }
2201 }
2202 if (!IS_ERR(filp)) {
2203 if (will_truncate) {
2204 error = handle_truncate(filp);
2205 if (error) {
2206 fput(filp);
2207 filp = ERR_PTR(error);
2208 }
2209 }
2210 }
2211 out:
2212 if (want_write)
2213 mnt_drop_write(nd->path.mnt);
2214 path_put(&nd->path);
2215 return filp;
2216
2217 exit_mutex_unlock:
2218 mutex_unlock(&dir->d_inode->i_mutex);
2219 exit_dput:
2220 path_put_conditional(path, nd);
2221 exit:
2222 filp = ERR_PTR(error);
2223 goto out;
2224 }
2225
2226 static struct file *path_openat(int dfd, const char *pathname,
2227 struct nameidata *nd, const struct open_flags *op, int flags)
2228 {
2229 struct file *base = NULL;
2230 struct file *filp;
2231 struct path path;
2232 int error;
2233
2234 filp = get_empty_filp();
2235 if (!filp)
2236 return ERR_PTR(-ENFILE);
2237
2238 filp->f_flags = op->open_flag;
2239 nd->intent.open.file = filp;
2240 nd->intent.open.flags = open_to_namei_flags(op->open_flag);
2241 nd->intent.open.create_mode = op->mode;
2242
2243 error = path_init(dfd, pathname, flags | LOOKUP_PARENT, nd, &base);
2244 if (unlikely(error))
2245 goto out_filp;
2246
2247 current->total_link_count = 0;
2248 error = link_path_walk(pathname, nd);
2249 if (unlikely(error))
2250 goto out_filp;
2251
2252 filp = do_last(nd, &path, op, pathname);
2253 while (unlikely(!filp)) { /* trailing symlink */
2254 struct path link = path;
2255 void *cookie;
2256 if (!(nd->flags & LOOKUP_FOLLOW)) {
2257 path_put_conditional(&path, nd);
2258 path_put(&nd->path);
2259 filp = ERR_PTR(-ELOOP);
2260 break;
2261 }
2262 nd->flags |= LOOKUP_PARENT;
2263 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
2264 error = follow_link(&link, nd, &cookie);
2265 if (unlikely(error))
2266 filp = ERR_PTR(error);
2267 else
2268 filp = do_last(nd, &path, op, pathname);
2269 put_link(nd, &link, cookie);
2270 }
2271 out:
2272 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT))
2273 path_put(&nd->root);
2274 if (base)
2275 fput(base);
2276 release_open_intent(nd);
2277 return filp;
2278
2279 out_filp:
2280 filp = ERR_PTR(error);
2281 goto out;
2282 }
2283
2284 struct file *do_filp_open(int dfd, const char *pathname,
2285 const struct open_flags *op, int flags)
2286 {
2287 struct nameidata nd;
2288 struct file *filp;
2289
2290 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_RCU);
2291 if (unlikely(filp == ERR_PTR(-ECHILD)))
2292 filp = path_openat(dfd, pathname, &nd, op, flags);
2293 if (unlikely(filp == ERR_PTR(-ESTALE)))
2294 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_REVAL);
2295 return filp;
2296 }
2297
2298 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
2299 const char *name, const struct open_flags *op, int flags)
2300 {
2301 struct nameidata nd;
2302 struct file *file;
2303
2304 nd.root.mnt = mnt;
2305 nd.root.dentry = dentry;
2306
2307 flags |= LOOKUP_ROOT;
2308
2309 if (dentry->d_inode->i_op->follow_link && op->intent & LOOKUP_OPEN)
2310 return ERR_PTR(-ELOOP);
2311
2312 file = path_openat(-1, name, &nd, op, flags | LOOKUP_RCU);
2313 if (unlikely(file == ERR_PTR(-ECHILD)))
2314 file = path_openat(-1, name, &nd, op, flags);
2315 if (unlikely(file == ERR_PTR(-ESTALE)))
2316 file = path_openat(-1, name, &nd, op, flags | LOOKUP_REVAL);
2317 return file;
2318 }
2319
2320 /**
2321 * lookup_create - lookup a dentry, creating it if it doesn't exist
2322 * @nd: nameidata info
2323 * @is_dir: directory flag
2324 *
2325 * Simple function to lookup and return a dentry and create it
2326 * if it doesn't exist. Is SMP-safe.
2327 *
2328 * Returns with nd->path.dentry->d_inode->i_mutex locked.
2329 */
2330 struct dentry *lookup_create(struct nameidata *nd, int is_dir)
2331 {
2332 struct dentry *dentry = ERR_PTR(-EEXIST);
2333
2334 mutex_lock_nested(&nd->path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2335 /*
2336 * Yucky last component or no last component at all?
2337 * (foo/., foo/.., /////)
2338 */
2339 if (nd->last_type != LAST_NORM)
2340 goto fail;
2341 nd->flags &= ~LOOKUP_PARENT;
2342 nd->flags |= LOOKUP_CREATE | LOOKUP_EXCL;
2343 nd->intent.open.flags = O_EXCL;
2344
2345 /*
2346 * Do the final lookup.
2347 */
2348 dentry = lookup_hash(nd);
2349 if (IS_ERR(dentry))
2350 goto fail;
2351
2352 if (dentry->d_inode)
2353 goto eexist;
2354 /*
2355 * Special case - lookup gave negative, but... we had foo/bar/
2356 * From the vfs_mknod() POV we just have a negative dentry -
2357 * all is fine. Let's be bastards - you had / on the end, you've
2358 * been asking for (non-existent) directory. -ENOENT for you.
2359 */
2360 if (unlikely(!is_dir && nd->last.name[nd->last.len])) {
2361 dput(dentry);
2362 dentry = ERR_PTR(-ENOENT);
2363 }
2364 return dentry;
2365 eexist:
2366 dput(dentry);
2367 dentry = ERR_PTR(-EEXIST);
2368 fail:
2369 return dentry;
2370 }
2371 EXPORT_SYMBOL_GPL(lookup_create);
2372
2373 int vfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
2374 {
2375 int error = may_create(dir, dentry);
2376
2377 if (error)
2378 return error;
2379
2380 if ((S_ISCHR(mode) || S_ISBLK(mode)) &&
2381 !ns_capable(inode_userns(dir), CAP_MKNOD))
2382 return -EPERM;
2383
2384 if (!dir->i_op->mknod)
2385 return -EPERM;
2386
2387 error = devcgroup_inode_mknod(mode, dev);
2388 if (error)
2389 return error;
2390
2391 error = security_inode_mknod(dir, dentry, mode, dev);
2392 if (error)
2393 return error;
2394
2395 error = dir->i_op->mknod(dir, dentry, mode, dev);
2396 if (!error)
2397 fsnotify_create(dir, dentry);
2398 return error;
2399 }
2400
2401 static int may_mknod(mode_t mode)
2402 {
2403 switch (mode & S_IFMT) {
2404 case S_IFREG:
2405 case S_IFCHR:
2406 case S_IFBLK:
2407 case S_IFIFO:
2408 case S_IFSOCK:
2409 case 0: /* zero mode translates to S_IFREG */
2410 return 0;
2411 case S_IFDIR:
2412 return -EPERM;
2413 default:
2414 return -EINVAL;
2415 }
2416 }
2417
2418 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, int, mode,
2419 unsigned, dev)
2420 {
2421 int error;
2422 char *tmp;
2423 struct dentry *dentry;
2424 struct nameidata nd;
2425
2426 if (S_ISDIR(mode))
2427 return -EPERM;
2428
2429 error = user_path_parent(dfd, filename, &nd, &tmp);
2430 if (error)
2431 return error;
2432
2433 dentry = lookup_create(&nd, 0);
2434 if (IS_ERR(dentry)) {
2435 error = PTR_ERR(dentry);
2436 goto out_unlock;
2437 }
2438 if (!IS_POSIXACL(nd.path.dentry->d_inode))
2439 mode &= ~current_umask();
2440 error = may_mknod(mode);
2441 if (error)
2442 goto out_dput;
2443 error = mnt_want_write(nd.path.mnt);
2444 if (error)
2445 goto out_dput;
2446 error = security_path_mknod(&nd.path, dentry, mode, dev);
2447 if (error)
2448 goto out_drop_write;
2449 switch (mode & S_IFMT) {
2450 case 0: case S_IFREG:
2451 error = vfs_create(nd.path.dentry->d_inode,dentry,mode,&nd);
2452 break;
2453 case S_IFCHR: case S_IFBLK:
2454 error = vfs_mknod(nd.path.dentry->d_inode,dentry,mode,
2455 new_decode_dev(dev));
2456 break;
2457 case S_IFIFO: case S_IFSOCK:
2458 error = vfs_mknod(nd.path.dentry->d_inode,dentry,mode,0);
2459 break;
2460 }
2461 out_drop_write:
2462 mnt_drop_write(nd.path.mnt);
2463 out_dput:
2464 dput(dentry);
2465 out_unlock:
2466 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2467 path_put(&nd.path);
2468 putname(tmp);
2469
2470 return error;
2471 }
2472
2473 SYSCALL_DEFINE3(mknod, const char __user *, filename, int, mode, unsigned, dev)
2474 {
2475 return sys_mknodat(AT_FDCWD, filename, mode, dev);
2476 }
2477
2478 int vfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
2479 {
2480 int error = may_create(dir, dentry);
2481
2482 if (error)
2483 return error;
2484
2485 if (!dir->i_op->mkdir)
2486 return -EPERM;
2487
2488 mode &= (S_IRWXUGO|S_ISVTX);
2489 error = security_inode_mkdir(dir, dentry, mode);
2490 if (error)
2491 return error;
2492
2493 error = dir->i_op->mkdir(dir, dentry, mode);
2494 if (!error)
2495 fsnotify_mkdir(dir, dentry);
2496 return error;
2497 }
2498
2499 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, int, mode)
2500 {
2501 int error = 0;
2502 char * tmp;
2503 struct dentry *dentry;
2504 struct nameidata nd;
2505
2506 error = user_path_parent(dfd, pathname, &nd, &tmp);
2507 if (error)
2508 goto out_err;
2509
2510 dentry = lookup_create(&nd, 1);
2511 error = PTR_ERR(dentry);
2512 if (IS_ERR(dentry))
2513 goto out_unlock;
2514
2515 if (!IS_POSIXACL(nd.path.dentry->d_inode))
2516 mode &= ~current_umask();
2517 error = mnt_want_write(nd.path.mnt);
2518 if (error)
2519 goto out_dput;
2520 error = security_path_mkdir(&nd.path, dentry, mode);
2521 if (error)
2522 goto out_drop_write;
2523 error = vfs_mkdir(nd.path.dentry->d_inode, dentry, mode);
2524 out_drop_write:
2525 mnt_drop_write(nd.path.mnt);
2526 out_dput:
2527 dput(dentry);
2528 out_unlock:
2529 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2530 path_put(&nd.path);
2531 putname(tmp);
2532 out_err:
2533 return error;
2534 }
2535
2536 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, int, mode)
2537 {
2538 return sys_mkdirat(AT_FDCWD, pathname, mode);
2539 }
2540
2541 /*
2542 * The dentry_unhash() helper will try to drop the dentry early: we
2543 * should have a usage count of 2 if we're the only user of this
2544 * dentry, and if that is true (possibly after pruning the dcache),
2545 * then we drop the dentry now.
2546 *
2547 * A low-level filesystem can, if it choses, legally
2548 * do a
2549 *
2550 * if (!d_unhashed(dentry))
2551 * return -EBUSY;
2552 *
2553 * if it cannot handle the case of removing a directory
2554 * that is still in use by something else..
2555 */
2556 void dentry_unhash(struct dentry *dentry)
2557 {
2558 shrink_dcache_parent(dentry);
2559 spin_lock(&dentry->d_lock);
2560 if (dentry->d_count == 1)
2561 __d_drop(dentry);
2562 spin_unlock(&dentry->d_lock);
2563 }
2564
2565 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
2566 {
2567 int error = may_delete(dir, dentry, 1);
2568
2569 if (error)
2570 return error;
2571
2572 if (!dir->i_op->rmdir)
2573 return -EPERM;
2574
2575 mutex_lock(&dentry->d_inode->i_mutex);
2576
2577 error = -EBUSY;
2578 if (d_mountpoint(dentry))
2579 goto out;
2580
2581 error = security_inode_rmdir(dir, dentry);
2582 if (error)
2583 goto out;
2584
2585 shrink_dcache_parent(dentry);
2586 error = dir->i_op->rmdir(dir, dentry);
2587 if (error)
2588 goto out;
2589
2590 dentry->d_inode->i_flags |= S_DEAD;
2591 dont_mount(dentry);
2592
2593 out:
2594 mutex_unlock(&dentry->d_inode->i_mutex);
2595 if (!error)
2596 d_delete(dentry);
2597 return error;
2598 }
2599
2600 static long do_rmdir(int dfd, const char __user *pathname)
2601 {
2602 int error = 0;
2603 char * name;
2604 struct dentry *dentry;
2605 struct nameidata nd;
2606
2607 error = user_path_parent(dfd, pathname, &nd, &name);
2608 if (error)
2609 return error;
2610
2611 switch(nd.last_type) {
2612 case LAST_DOTDOT:
2613 error = -ENOTEMPTY;
2614 goto exit1;
2615 case LAST_DOT:
2616 error = -EINVAL;
2617 goto exit1;
2618 case LAST_ROOT:
2619 error = -EBUSY;
2620 goto exit1;
2621 }
2622
2623 nd.flags &= ~LOOKUP_PARENT;
2624
2625 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2626 dentry = lookup_hash(&nd);
2627 error = PTR_ERR(dentry);
2628 if (IS_ERR(dentry))
2629 goto exit2;
2630 if (!dentry->d_inode) {
2631 error = -ENOENT;
2632 goto exit3;
2633 }
2634 error = mnt_want_write(nd.path.mnt);
2635 if (error)
2636 goto exit3;
2637 error = security_path_rmdir(&nd.path, dentry);
2638 if (error)
2639 goto exit4;
2640 error = vfs_rmdir(nd.path.dentry->d_inode, dentry);
2641 exit4:
2642 mnt_drop_write(nd.path.mnt);
2643 exit3:
2644 dput(dentry);
2645 exit2:
2646 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2647 exit1:
2648 path_put(&nd.path);
2649 putname(name);
2650 return error;
2651 }
2652
2653 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
2654 {
2655 return do_rmdir(AT_FDCWD, pathname);
2656 }
2657
2658 int vfs_unlink(struct inode *dir, struct dentry *dentry)
2659 {
2660 int error = may_delete(dir, dentry, 0);
2661
2662 if (error)
2663 return error;
2664
2665 if (!dir->i_op->unlink)
2666 return -EPERM;
2667
2668 mutex_lock(&dentry->d_inode->i_mutex);
2669 if (d_mountpoint(dentry))
2670 error = -EBUSY;
2671 else {
2672 error = security_inode_unlink(dir, dentry);
2673 if (!error) {
2674 error = dir->i_op->unlink(dir, dentry);
2675 if (!error)
2676 dont_mount(dentry);
2677 }
2678 }
2679 mutex_unlock(&dentry->d_inode->i_mutex);
2680
2681 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
2682 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
2683 fsnotify_link_count(dentry->d_inode);
2684 d_delete(dentry);
2685 }
2686
2687 return error;
2688 }
2689
2690 /*
2691 * Make sure that the actual truncation of the file will occur outside its
2692 * directory's i_mutex. Truncate can take a long time if there is a lot of
2693 * writeout happening, and we don't want to prevent access to the directory
2694 * while waiting on the I/O.
2695 */
2696 static long do_unlinkat(int dfd, const char __user *pathname)
2697 {
2698 int error;
2699 char *name;
2700 struct dentry *dentry;
2701 struct nameidata nd;
2702 struct inode *inode = NULL;
2703
2704 error = user_path_parent(dfd, pathname, &nd, &name);
2705 if (error)
2706 return error;
2707
2708 error = -EISDIR;
2709 if (nd.last_type != LAST_NORM)
2710 goto exit1;
2711
2712 nd.flags &= ~LOOKUP_PARENT;
2713
2714 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2715 dentry = lookup_hash(&nd);
2716 error = PTR_ERR(dentry);
2717 if (!IS_ERR(dentry)) {
2718 /* Why not before? Because we want correct error value */
2719 if (nd.last.name[nd.last.len])
2720 goto slashes;
2721 inode = dentry->d_inode;
2722 if (!inode)
2723 goto slashes;
2724 ihold(inode);
2725 error = mnt_want_write(nd.path.mnt);
2726 if (error)
2727 goto exit2;
2728 error = security_path_unlink(&nd.path, dentry);
2729 if (error)
2730 goto exit3;
2731 error = vfs_unlink(nd.path.dentry->d_inode, dentry);
2732 exit3:
2733 mnt_drop_write(nd.path.mnt);
2734 exit2:
2735 dput(dentry);
2736 }
2737 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2738 if (inode)
2739 iput(inode); /* truncate the inode here */
2740 exit1:
2741 path_put(&nd.path);
2742 putname(name);
2743 return error;
2744
2745 slashes:
2746 error = !dentry->d_inode ? -ENOENT :
2747 S_ISDIR(dentry->d_inode->i_mode) ? -EISDIR : -ENOTDIR;
2748 goto exit2;
2749 }
2750
2751 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
2752 {
2753 if ((flag & ~AT_REMOVEDIR) != 0)
2754 return -EINVAL;
2755
2756 if (flag & AT_REMOVEDIR)
2757 return do_rmdir(dfd, pathname);
2758
2759 return do_unlinkat(dfd, pathname);
2760 }
2761
2762 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
2763 {
2764 return do_unlinkat(AT_FDCWD, pathname);
2765 }
2766
2767 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
2768 {
2769 int error = may_create(dir, dentry);
2770
2771 if (error)
2772 return error;
2773
2774 if (!dir->i_op->symlink)
2775 return -EPERM;
2776
2777 error = security_inode_symlink(dir, dentry, oldname);
2778 if (error)
2779 return error;
2780
2781 error = dir->i_op->symlink(dir, dentry, oldname);
2782 if (!error)
2783 fsnotify_create(dir, dentry);
2784 return error;
2785 }
2786
2787 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
2788 int, newdfd, const char __user *, newname)
2789 {
2790 int error;
2791 char *from;
2792 char *to;
2793 struct dentry *dentry;
2794 struct nameidata nd;
2795
2796 from = getname(oldname);
2797 if (IS_ERR(from))
2798 return PTR_ERR(from);
2799
2800 error = user_path_parent(newdfd, newname, &nd, &to);
2801 if (error)
2802 goto out_putname;
2803
2804 dentry = lookup_create(&nd, 0);
2805 error = PTR_ERR(dentry);
2806 if (IS_ERR(dentry))
2807 goto out_unlock;
2808
2809 error = mnt_want_write(nd.path.mnt);
2810 if (error)
2811 goto out_dput;
2812 error = security_path_symlink(&nd.path, dentry, from);
2813 if (error)
2814 goto out_drop_write;
2815 error = vfs_symlink(nd.path.dentry->d_inode, dentry, from);
2816 out_drop_write:
2817 mnt_drop_write(nd.path.mnt);
2818 out_dput:
2819 dput(dentry);
2820 out_unlock:
2821 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2822 path_put(&nd.path);
2823 putname(to);
2824 out_putname:
2825 putname(from);
2826 return error;
2827 }
2828
2829 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
2830 {
2831 return sys_symlinkat(oldname, AT_FDCWD, newname);
2832 }
2833
2834 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2835 {
2836 struct inode *inode = old_dentry->d_inode;
2837 int error;
2838
2839 if (!inode)
2840 return -ENOENT;
2841
2842 error = may_create(dir, new_dentry);
2843 if (error)
2844 return error;
2845
2846 if (dir->i_sb != inode->i_sb)
2847 return -EXDEV;
2848
2849 /*
2850 * A link to an append-only or immutable file cannot be created.
2851 */
2852 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
2853 return -EPERM;
2854 if (!dir->i_op->link)
2855 return -EPERM;
2856 if (S_ISDIR(inode->i_mode))
2857 return -EPERM;
2858
2859 error = security_inode_link(old_dentry, dir, new_dentry);
2860 if (error)
2861 return error;
2862
2863 mutex_lock(&inode->i_mutex);
2864 /* Make sure we don't allow creating hardlink to an unlinked file */
2865 if (inode->i_nlink == 0)
2866 error = -ENOENT;
2867 else
2868 error = dir->i_op->link(old_dentry, dir, new_dentry);
2869 mutex_unlock(&inode->i_mutex);
2870 if (!error)
2871 fsnotify_link(dir, inode, new_dentry);
2872 return error;
2873 }
2874
2875 /*
2876 * Hardlinks are often used in delicate situations. We avoid
2877 * security-related surprises by not following symlinks on the
2878 * newname. --KAB
2879 *
2880 * We don't follow them on the oldname either to be compatible
2881 * with linux 2.0, and to avoid hard-linking to directories
2882 * and other special files. --ADM
2883 */
2884 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
2885 int, newdfd, const char __user *, newname, int, flags)
2886 {
2887 struct dentry *new_dentry;
2888 struct nameidata nd;
2889 struct path old_path;
2890 int how = 0;
2891 int error;
2892 char *to;
2893
2894 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
2895 return -EINVAL;
2896 /*
2897 * To use null names we require CAP_DAC_READ_SEARCH
2898 * This ensures that not everyone will be able to create
2899 * handlink using the passed filedescriptor.
2900 */
2901 if (flags & AT_EMPTY_PATH) {
2902 if (!capable(CAP_DAC_READ_SEARCH))
2903 return -ENOENT;
2904 how = LOOKUP_EMPTY;
2905 }
2906
2907 if (flags & AT_SYMLINK_FOLLOW)
2908 how |= LOOKUP_FOLLOW;
2909
2910 error = user_path_at(olddfd, oldname, how, &old_path);
2911 if (error)
2912 return error;
2913
2914 error = user_path_parent(newdfd, newname, &nd, &to);
2915 if (error)
2916 goto out;
2917 error = -EXDEV;
2918 if (old_path.mnt != nd.path.mnt)
2919 goto out_release;
2920 new_dentry = lookup_create(&nd, 0);
2921 error = PTR_ERR(new_dentry);
2922 if (IS_ERR(new_dentry))
2923 goto out_unlock;
2924 error = mnt_want_write(nd.path.mnt);
2925 if (error)
2926 goto out_dput;
2927 error = security_path_link(old_path.dentry, &nd.path, new_dentry);
2928 if (error)
2929 goto out_drop_write;
2930 error = vfs_link(old_path.dentry, nd.path.dentry->d_inode, new_dentry);
2931 out_drop_write:
2932 mnt_drop_write(nd.path.mnt);
2933 out_dput:
2934 dput(new_dentry);
2935 out_unlock:
2936 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2937 out_release:
2938 path_put(&nd.path);
2939 putname(to);
2940 out:
2941 path_put(&old_path);
2942
2943 return error;
2944 }
2945
2946 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
2947 {
2948 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
2949 }
2950
2951 /*
2952 * The worst of all namespace operations - renaming directory. "Perverted"
2953 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
2954 * Problems:
2955 * a) we can get into loop creation. Check is done in is_subdir().
2956 * b) race potential - two innocent renames can create a loop together.
2957 * That's where 4.4 screws up. Current fix: serialization on
2958 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
2959 * story.
2960 * c) we have to lock _three_ objects - parents and victim (if it exists).
2961 * And that - after we got ->i_mutex on parents (until then we don't know
2962 * whether the target exists). Solution: try to be smart with locking
2963 * order for inodes. We rely on the fact that tree topology may change
2964 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
2965 * move will be locked. Thus we can rank directories by the tree
2966 * (ancestors first) and rank all non-directories after them.
2967 * That works since everybody except rename does "lock parent, lookup,
2968 * lock child" and rename is under ->s_vfs_rename_mutex.
2969 * HOWEVER, it relies on the assumption that any object with ->lookup()
2970 * has no more than 1 dentry. If "hybrid" objects will ever appear,
2971 * we'd better make sure that there's no link(2) for them.
2972 * d) conversion from fhandle to dentry may come in the wrong moment - when
2973 * we are removing the target. Solution: we will have to grab ->i_mutex
2974 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
2975 * ->i_mutex on parents, which works but leads to some truly excessive
2976 * locking].
2977 */
2978 static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry,
2979 struct inode *new_dir, struct dentry *new_dentry)
2980 {
2981 int error = 0;
2982 struct inode *target = new_dentry->d_inode;
2983
2984 /*
2985 * If we are going to change the parent - check write permissions,
2986 * we'll need to flip '..'.
2987 */
2988 if (new_dir != old_dir) {
2989 error = inode_permission(old_dentry->d_inode, MAY_WRITE);
2990 if (error)
2991 return error;
2992 }
2993
2994 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
2995 if (error)
2996 return error;
2997
2998 if (target)
2999 mutex_lock(&target->i_mutex);
3000
3001 error = -EBUSY;
3002 if (d_mountpoint(old_dentry) || d_mountpoint(new_dentry))
3003 goto out;
3004
3005 if (target)
3006 shrink_dcache_parent(new_dentry);
3007 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
3008 if (error)
3009 goto out;
3010
3011 if (target) {
3012 target->i_flags |= S_DEAD;
3013 dont_mount(new_dentry);
3014 }
3015 out:
3016 if (target)
3017 mutex_unlock(&target->i_mutex);
3018 if (!error)
3019 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
3020 d_move(old_dentry,new_dentry);
3021 return error;
3022 }
3023
3024 static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry,
3025 struct inode *new_dir, struct dentry *new_dentry)
3026 {
3027 struct inode *target = new_dentry->d_inode;
3028 int error;
3029
3030 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
3031 if (error)
3032 return error;
3033
3034 dget(new_dentry);
3035 if (target)
3036 mutex_lock(&target->i_mutex);
3037
3038 error = -EBUSY;
3039 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
3040 goto out;
3041
3042 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
3043 if (error)
3044 goto out;
3045
3046 if (target)
3047 dont_mount(new_dentry);
3048 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
3049 d_move(old_dentry, new_dentry);
3050 out:
3051 if (target)
3052 mutex_unlock(&target->i_mutex);
3053 dput(new_dentry);
3054 return error;
3055 }
3056
3057 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
3058 struct inode *new_dir, struct dentry *new_dentry)
3059 {
3060 int error;
3061 int is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
3062 const unsigned char *old_name;
3063
3064 if (old_dentry->d_inode == new_dentry->d_inode)
3065 return 0;
3066
3067 error = may_delete(old_dir, old_dentry, is_dir);
3068 if (error)
3069 return error;
3070
3071 if (!new_dentry->d_inode)
3072 error = may_create(new_dir, new_dentry);
3073 else
3074 error = may_delete(new_dir, new_dentry, is_dir);
3075 if (error)
3076 return error;
3077
3078 if (!old_dir->i_op->rename)
3079 return -EPERM;
3080
3081 old_name = fsnotify_oldname_init(old_dentry->d_name.name);
3082
3083 if (is_dir)
3084 error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry);
3085 else
3086 error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry);
3087 if (!error)
3088 fsnotify_move(old_dir, new_dir, old_name, is_dir,
3089 new_dentry->d_inode, old_dentry);
3090 fsnotify_oldname_free(old_name);
3091
3092 return error;
3093 }
3094
3095 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
3096 int, newdfd, const char __user *, newname)
3097 {
3098 struct dentry *old_dir, *new_dir;
3099 struct dentry *old_dentry, *new_dentry;
3100 struct dentry *trap;
3101 struct nameidata oldnd, newnd;
3102 char *from;
3103 char *to;
3104 int error;
3105
3106 error = user_path_parent(olddfd, oldname, &oldnd, &from);
3107 if (error)
3108 goto exit;
3109
3110 error = user_path_parent(newdfd, newname, &newnd, &to);
3111 if (error)
3112 goto exit1;
3113
3114 error = -EXDEV;
3115 if (oldnd.path.mnt != newnd.path.mnt)
3116 goto exit2;
3117
3118 old_dir = oldnd.path.dentry;
3119 error = -EBUSY;
3120 if (oldnd.last_type != LAST_NORM)
3121 goto exit2;
3122
3123 new_dir = newnd.path.dentry;
3124 if (newnd.last_type != LAST_NORM)
3125 goto exit2;
3126
3127 oldnd.flags &= ~LOOKUP_PARENT;
3128 newnd.flags &= ~LOOKUP_PARENT;
3129 newnd.flags |= LOOKUP_RENAME_TARGET;
3130
3131 trap = lock_rename(new_dir, old_dir);
3132
3133 old_dentry = lookup_hash(&oldnd);
3134 error = PTR_ERR(old_dentry);
3135 if (IS_ERR(old_dentry))
3136 goto exit3;
3137 /* source must exist */
3138 error = -ENOENT;
3139 if (!old_dentry->d_inode)
3140 goto exit4;
3141 /* unless the source is a directory trailing slashes give -ENOTDIR */
3142 if (!S_ISDIR(old_dentry->d_inode->i_mode)) {
3143 error = -ENOTDIR;
3144 if (oldnd.last.name[oldnd.last.len])
3145 goto exit4;
3146 if (newnd.last.name[newnd.last.len])
3147 goto exit4;
3148 }
3149 /* source should not be ancestor of target */
3150 error = -EINVAL;
3151 if (old_dentry == trap)
3152 goto exit4;
3153 new_dentry = lookup_hash(&newnd);
3154 error = PTR_ERR(new_dentry);
3155 if (IS_ERR(new_dentry))
3156 goto exit4;
3157 /* target should not be an ancestor of source */
3158 error = -ENOTEMPTY;
3159 if (new_dentry == trap)
3160 goto exit5;
3161
3162 error = mnt_want_write(oldnd.path.mnt);
3163 if (error)
3164 goto exit5;
3165 error = security_path_rename(&oldnd.path, old_dentry,
3166 &newnd.path, new_dentry);
3167 if (error)
3168 goto exit6;
3169 error = vfs_rename(old_dir->d_inode, old_dentry,
3170 new_dir->d_inode, new_dentry);
3171 exit6:
3172 mnt_drop_write(oldnd.path.mnt);
3173 exit5:
3174 dput(new_dentry);
3175 exit4:
3176 dput(old_dentry);
3177 exit3:
3178 unlock_rename(new_dir, old_dir);
3179 exit2:
3180 path_put(&newnd.path);
3181 putname(to);
3182 exit1:
3183 path_put(&oldnd.path);
3184 putname(from);
3185 exit:
3186 return error;
3187 }
3188
3189 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
3190 {
3191 return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname);
3192 }
3193
3194 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link)
3195 {
3196 int len;
3197
3198 len = PTR_ERR(link);
3199 if (IS_ERR(link))
3200 goto out;
3201
3202 len = strlen(link);
3203 if (len > (unsigned) buflen)
3204 len = buflen;
3205 if (copy_to_user(buffer, link, len))
3206 len = -EFAULT;
3207 out:
3208 return len;
3209 }
3210
3211 /*
3212 * A helper for ->readlink(). This should be used *ONLY* for symlinks that
3213 * have ->follow_link() touching nd only in nd_set_link(). Using (or not
3214 * using) it for any given inode is up to filesystem.
3215 */
3216 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
3217 {
3218 struct nameidata nd;
3219 void *cookie;
3220 int res;
3221
3222 nd.depth = 0;
3223 cookie = dentry->d_inode->i_op->follow_link(dentry, &nd);
3224 if (IS_ERR(cookie))
3225 return PTR_ERR(cookie);
3226
3227 res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd));
3228 if (dentry->d_inode->i_op->put_link)
3229 dentry->d_inode->i_op->put_link(dentry, &nd, cookie);
3230 return res;
3231 }
3232
3233 int vfs_follow_link(struct nameidata *nd, const char *link)
3234 {
3235 return __vfs_follow_link(nd, link);
3236 }
3237
3238 /* get the link contents into pagecache */
3239 static char *page_getlink(struct dentry * dentry, struct page **ppage)
3240 {
3241 char *kaddr;
3242 struct page *page;
3243 struct address_space *mapping = dentry->d_inode->i_mapping;
3244 page = read_mapping_page(mapping, 0, NULL);
3245 if (IS_ERR(page))
3246 return (char*)page;
3247 *ppage = page;
3248 kaddr = kmap(page);
3249 nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
3250 return kaddr;
3251 }
3252
3253 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
3254 {
3255 struct page *page = NULL;
3256 char *s = page_getlink(dentry, &page);
3257 int res = vfs_readlink(dentry,buffer,buflen,s);
3258 if (page) {
3259 kunmap(page);
3260 page_cache_release(page);
3261 }
3262 return res;
3263 }
3264
3265 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd)
3266 {
3267 struct page *page = NULL;
3268 nd_set_link(nd, page_getlink(dentry, &page));
3269 return page;
3270 }
3271
3272 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
3273 {
3274 struct page *page = cookie;
3275
3276 if (page) {
3277 kunmap(page);
3278 page_cache_release(page);
3279 }
3280 }
3281
3282 /*
3283 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
3284 */
3285 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
3286 {
3287 struct address_space *mapping = inode->i_mapping;
3288 struct page *page;
3289 void *fsdata;
3290 int err;
3291 char *kaddr;
3292 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
3293 if (nofs)
3294 flags |= AOP_FLAG_NOFS;
3295
3296 retry:
3297 err = pagecache_write_begin(NULL, mapping, 0, len-1,
3298 flags, &page, &fsdata);
3299 if (err)
3300 goto fail;
3301
3302 kaddr = kmap_atomic(page, KM_USER0);
3303 memcpy(kaddr, symname, len-1);
3304 kunmap_atomic(kaddr, KM_USER0);
3305
3306 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
3307 page, fsdata);
3308 if (err < 0)
3309 goto fail;
3310 if (err < len-1)
3311 goto retry;
3312
3313 mark_inode_dirty(inode);
3314 return 0;
3315 fail:
3316 return err;
3317 }
3318
3319 int page_symlink(struct inode *inode, const char *symname, int len)
3320 {
3321 return __page_symlink(inode, symname, len,
3322 !(mapping_gfp_mask(inode->i_mapping) & __GFP_FS));
3323 }
3324
3325 const struct inode_operations page_symlink_inode_operations = {
3326 .readlink = generic_readlink,
3327 .follow_link = page_follow_link_light,
3328 .put_link = page_put_link,
3329 };
3330
3331 EXPORT_SYMBOL(user_path_at);
3332 EXPORT_SYMBOL(follow_down_one);
3333 EXPORT_SYMBOL(follow_down);
3334 EXPORT_SYMBOL(follow_up);
3335 EXPORT_SYMBOL(get_write_access); /* binfmt_aout */
3336 EXPORT_SYMBOL(getname);
3337 EXPORT_SYMBOL(lock_rename);
3338 EXPORT_SYMBOL(lookup_one_len);
3339 EXPORT_SYMBOL(page_follow_link_light);
3340 EXPORT_SYMBOL(page_put_link);
3341 EXPORT_SYMBOL(page_readlink);
3342 EXPORT_SYMBOL(__page_symlink);
3343 EXPORT_SYMBOL(page_symlink);
3344 EXPORT_SYMBOL(page_symlink_inode_operations);
3345 EXPORT_SYMBOL(kern_path_parent);
3346 EXPORT_SYMBOL(kern_path);
3347 EXPORT_SYMBOL(vfs_path_lookup);
3348 EXPORT_SYMBOL(inode_permission);
3349 EXPORT_SYMBOL(unlock_rename);
3350 EXPORT_SYMBOL(vfs_create);
3351 EXPORT_SYMBOL(vfs_follow_link);
3352 EXPORT_SYMBOL(vfs_link);
3353 EXPORT_SYMBOL(vfs_mkdir);
3354 EXPORT_SYMBOL(vfs_mknod);
3355 EXPORT_SYMBOL(generic_permission);
3356 EXPORT_SYMBOL(vfs_readlink);
3357 EXPORT_SYMBOL(vfs_rename);
3358 EXPORT_SYMBOL(vfs_rmdir);
3359 EXPORT_SYMBOL(vfs_symlink);
3360 EXPORT_SYMBOL(vfs_unlink);
3361 EXPORT_SYMBOL(dentry_unhash);
3362 EXPORT_SYMBOL(generic_readlink);
This page took 0.104456 seconds and 6 git commands to generate.