Take hash recalculation into do_lookup()
[deliverable/linux.git] / fs / namei.c
1 /*
2 * linux/fs/namei.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * Some corrections by tytso.
9 */
10
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12 * lookup logic.
13 */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15 */
16
17 #include <linux/init.h>
18 #include <linux/module.h>
19 #include <linux/slab.h>
20 #include <linux/fs.h>
21 #include <linux/namei.h>
22 #include <linux/quotaops.h>
23 #include <linux/pagemap.h>
24 #include <linux/fsnotify.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/ima.h>
28 #include <linux/syscalls.h>
29 #include <linux/mount.h>
30 #include <linux/audit.h>
31 #include <linux/capability.h>
32 #include <linux/file.h>
33 #include <linux/fcntl.h>
34 #include <linux/device_cgroup.h>
35 #include <linux/fs_struct.h>
36 #include <asm/uaccess.h>
37
38 #define ACC_MODE(x) ("\000\004\002\006"[(x)&O_ACCMODE])
39
40 /* [Feb-1997 T. Schoebel-Theuer]
41 * Fundamental changes in the pathname lookup mechanisms (namei)
42 * were necessary because of omirr. The reason is that omirr needs
43 * to know the _real_ pathname, not the user-supplied one, in case
44 * of symlinks (and also when transname replacements occur).
45 *
46 * The new code replaces the old recursive symlink resolution with
47 * an iterative one (in case of non-nested symlink chains). It does
48 * this with calls to <fs>_follow_link().
49 * As a side effect, dir_namei(), _namei() and follow_link() are now
50 * replaced with a single function lookup_dentry() that can handle all
51 * the special cases of the former code.
52 *
53 * With the new dcache, the pathname is stored at each inode, at least as
54 * long as the refcount of the inode is positive. As a side effect, the
55 * size of the dcache depends on the inode cache and thus is dynamic.
56 *
57 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
58 * resolution to correspond with current state of the code.
59 *
60 * Note that the symlink resolution is not *completely* iterative.
61 * There is still a significant amount of tail- and mid- recursion in
62 * the algorithm. Also, note that <fs>_readlink() is not used in
63 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
64 * may return different results than <fs>_follow_link(). Many virtual
65 * filesystems (including /proc) exhibit this behavior.
66 */
67
68 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
69 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
70 * and the name already exists in form of a symlink, try to create the new
71 * name indicated by the symlink. The old code always complained that the
72 * name already exists, due to not following the symlink even if its target
73 * is nonexistent. The new semantics affects also mknod() and link() when
74 * the name is a symlink pointing to a non-existant name.
75 *
76 * I don't know which semantics is the right one, since I have no access
77 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
78 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
79 * "old" one. Personally, I think the new semantics is much more logical.
80 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
81 * file does succeed in both HP-UX and SunOs, but not in Solaris
82 * and in the old Linux semantics.
83 */
84
85 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
86 * semantics. See the comments in "open_namei" and "do_link" below.
87 *
88 * [10-Sep-98 Alan Modra] Another symlink change.
89 */
90
91 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
92 * inside the path - always follow.
93 * in the last component in creation/removal/renaming - never follow.
94 * if LOOKUP_FOLLOW passed - follow.
95 * if the pathname has trailing slashes - follow.
96 * otherwise - don't follow.
97 * (applied in that order).
98 *
99 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
100 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
101 * During the 2.4 we need to fix the userland stuff depending on it -
102 * hopefully we will be able to get rid of that wart in 2.5. So far only
103 * XEmacs seems to be relying on it...
104 */
105 /*
106 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
107 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
108 * any extra contention...
109 */
110
111 /* In order to reduce some races, while at the same time doing additional
112 * checking and hopefully speeding things up, we copy filenames to the
113 * kernel data space before using them..
114 *
115 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
116 * PATH_MAX includes the nul terminator --RR.
117 */
118 static int do_getname(const char __user *filename, char *page)
119 {
120 int retval;
121 unsigned long len = PATH_MAX;
122
123 if (!segment_eq(get_fs(), KERNEL_DS)) {
124 if ((unsigned long) filename >= TASK_SIZE)
125 return -EFAULT;
126 if (TASK_SIZE - (unsigned long) filename < PATH_MAX)
127 len = TASK_SIZE - (unsigned long) filename;
128 }
129
130 retval = strncpy_from_user(page, filename, len);
131 if (retval > 0) {
132 if (retval < len)
133 return 0;
134 return -ENAMETOOLONG;
135 } else if (!retval)
136 retval = -ENOENT;
137 return retval;
138 }
139
140 char * getname(const char __user * filename)
141 {
142 char *tmp, *result;
143
144 result = ERR_PTR(-ENOMEM);
145 tmp = __getname();
146 if (tmp) {
147 int retval = do_getname(filename, tmp);
148
149 result = tmp;
150 if (retval < 0) {
151 __putname(tmp);
152 result = ERR_PTR(retval);
153 }
154 }
155 audit_getname(result);
156 return result;
157 }
158
159 #ifdef CONFIG_AUDITSYSCALL
160 void putname(const char *name)
161 {
162 if (unlikely(!audit_dummy_context()))
163 audit_putname(name);
164 else
165 __putname(name);
166 }
167 EXPORT_SYMBOL(putname);
168 #endif
169
170 /*
171 * This does basic POSIX ACL permission checking
172 */
173 static int acl_permission_check(struct inode *inode, int mask,
174 int (*check_acl)(struct inode *inode, int mask))
175 {
176 umode_t mode = inode->i_mode;
177
178 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
179
180 if (current_fsuid() == inode->i_uid)
181 mode >>= 6;
182 else {
183 if (IS_POSIXACL(inode) && (mode & S_IRWXG) && check_acl) {
184 int error = check_acl(inode, mask);
185 if (error != -EAGAIN)
186 return error;
187 }
188
189 if (in_group_p(inode->i_gid))
190 mode >>= 3;
191 }
192
193 /*
194 * If the DACs are ok we don't need any capability check.
195 */
196 if ((mask & ~mode) == 0)
197 return 0;
198 return -EACCES;
199 }
200
201 /**
202 * generic_permission - check for access rights on a Posix-like filesystem
203 * @inode: inode to check access rights for
204 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
205 * @check_acl: optional callback to check for Posix ACLs
206 *
207 * Used to check for read/write/execute permissions on a file.
208 * We use "fsuid" for this, letting us set arbitrary permissions
209 * for filesystem access without changing the "normal" uids which
210 * are used for other things..
211 */
212 int generic_permission(struct inode *inode, int mask,
213 int (*check_acl)(struct inode *inode, int mask))
214 {
215 int ret;
216
217 /*
218 * Do the basic POSIX ACL permission checks.
219 */
220 ret = acl_permission_check(inode, mask, check_acl);
221 if (ret != -EACCES)
222 return ret;
223
224 /*
225 * Read/write DACs are always overridable.
226 * Executable DACs are overridable if at least one exec bit is set.
227 */
228 if (!(mask & MAY_EXEC) || execute_ok(inode))
229 if (capable(CAP_DAC_OVERRIDE))
230 return 0;
231
232 /*
233 * Searching includes executable on directories, else just read.
234 */
235 if (mask == MAY_READ || (S_ISDIR(inode->i_mode) && !(mask & MAY_WRITE)))
236 if (capable(CAP_DAC_READ_SEARCH))
237 return 0;
238
239 return -EACCES;
240 }
241
242 /**
243 * inode_permission - check for access rights to a given inode
244 * @inode: inode to check permission on
245 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
246 *
247 * Used to check for read/write/execute permissions on an inode.
248 * We use "fsuid" for this, letting us set arbitrary permissions
249 * for filesystem access without changing the "normal" uids which
250 * are used for other things.
251 */
252 int inode_permission(struct inode *inode, int mask)
253 {
254 int retval;
255
256 if (mask & MAY_WRITE) {
257 umode_t mode = inode->i_mode;
258
259 /*
260 * Nobody gets write access to a read-only fs.
261 */
262 if (IS_RDONLY(inode) &&
263 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
264 return -EROFS;
265
266 /*
267 * Nobody gets write access to an immutable file.
268 */
269 if (IS_IMMUTABLE(inode))
270 return -EACCES;
271 }
272
273 if (inode->i_op->permission)
274 retval = inode->i_op->permission(inode, mask);
275 else
276 retval = generic_permission(inode, mask, inode->i_op->check_acl);
277
278 if (retval)
279 return retval;
280
281 retval = devcgroup_inode_permission(inode, mask);
282 if (retval)
283 return retval;
284
285 return security_inode_permission(inode,
286 mask & (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND));
287 }
288
289 /**
290 * file_permission - check for additional access rights to a given file
291 * @file: file to check access rights for
292 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
293 *
294 * Used to check for read/write/execute permissions on an already opened
295 * file.
296 *
297 * Note:
298 * Do not use this function in new code. All access checks should
299 * be done using inode_permission().
300 */
301 int file_permission(struct file *file, int mask)
302 {
303 return inode_permission(file->f_path.dentry->d_inode, mask);
304 }
305
306 /*
307 * get_write_access() gets write permission for a file.
308 * put_write_access() releases this write permission.
309 * This is used for regular files.
310 * We cannot support write (and maybe mmap read-write shared) accesses and
311 * MAP_DENYWRITE mmappings simultaneously. The i_writecount field of an inode
312 * can have the following values:
313 * 0: no writers, no VM_DENYWRITE mappings
314 * < 0: (-i_writecount) vm_area_structs with VM_DENYWRITE set exist
315 * > 0: (i_writecount) users are writing to the file.
316 *
317 * Normally we operate on that counter with atomic_{inc,dec} and it's safe
318 * except for the cases where we don't hold i_writecount yet. Then we need to
319 * use {get,deny}_write_access() - these functions check the sign and refuse
320 * to do the change if sign is wrong. Exclusion between them is provided by
321 * the inode->i_lock spinlock.
322 */
323
324 int get_write_access(struct inode * inode)
325 {
326 spin_lock(&inode->i_lock);
327 if (atomic_read(&inode->i_writecount) < 0) {
328 spin_unlock(&inode->i_lock);
329 return -ETXTBSY;
330 }
331 atomic_inc(&inode->i_writecount);
332 spin_unlock(&inode->i_lock);
333
334 return 0;
335 }
336
337 int deny_write_access(struct file * file)
338 {
339 struct inode *inode = file->f_path.dentry->d_inode;
340
341 spin_lock(&inode->i_lock);
342 if (atomic_read(&inode->i_writecount) > 0) {
343 spin_unlock(&inode->i_lock);
344 return -ETXTBSY;
345 }
346 atomic_dec(&inode->i_writecount);
347 spin_unlock(&inode->i_lock);
348
349 return 0;
350 }
351
352 /**
353 * path_get - get a reference to a path
354 * @path: path to get the reference to
355 *
356 * Given a path increment the reference count to the dentry and the vfsmount.
357 */
358 void path_get(struct path *path)
359 {
360 mntget(path->mnt);
361 dget(path->dentry);
362 }
363 EXPORT_SYMBOL(path_get);
364
365 /**
366 * path_put - put a reference to a path
367 * @path: path to put the reference to
368 *
369 * Given a path decrement the reference count to the dentry and the vfsmount.
370 */
371 void path_put(struct path *path)
372 {
373 dput(path->dentry);
374 mntput(path->mnt);
375 }
376 EXPORT_SYMBOL(path_put);
377
378 /**
379 * release_open_intent - free up open intent resources
380 * @nd: pointer to nameidata
381 */
382 void release_open_intent(struct nameidata *nd)
383 {
384 if (nd->intent.open.file->f_path.dentry == NULL)
385 put_filp(nd->intent.open.file);
386 else
387 fput(nd->intent.open.file);
388 }
389
390 static inline struct dentry *
391 do_revalidate(struct dentry *dentry, struct nameidata *nd)
392 {
393 int status = dentry->d_op->d_revalidate(dentry, nd);
394 if (unlikely(status <= 0)) {
395 /*
396 * The dentry failed validation.
397 * If d_revalidate returned 0 attempt to invalidate
398 * the dentry otherwise d_revalidate is asking us
399 * to return a fail status.
400 */
401 if (!status) {
402 if (!d_invalidate(dentry)) {
403 dput(dentry);
404 dentry = NULL;
405 }
406 } else {
407 dput(dentry);
408 dentry = ERR_PTR(status);
409 }
410 }
411 return dentry;
412 }
413
414 /*
415 * Internal lookup() using the new generic dcache.
416 * SMP-safe
417 */
418 static struct dentry * cached_lookup(struct dentry * parent, struct qstr * name, struct nameidata *nd)
419 {
420 struct dentry * dentry = __d_lookup(parent, name);
421
422 /* lockess __d_lookup may fail due to concurrent d_move()
423 * in some unrelated directory, so try with d_lookup
424 */
425 if (!dentry)
426 dentry = d_lookup(parent, name);
427
428 if (dentry && dentry->d_op && dentry->d_op->d_revalidate)
429 dentry = do_revalidate(dentry, nd);
430
431 return dentry;
432 }
433
434 /*
435 * Short-cut version of permission(), for calling by
436 * path_walk(), when dcache lock is held. Combines parts
437 * of permission() and generic_permission(), and tests ONLY for
438 * MAY_EXEC permission.
439 *
440 * If appropriate, check DAC only. If not appropriate, or
441 * short-cut DAC fails, then call permission() to do more
442 * complete permission check.
443 */
444 static int exec_permission_lite(struct inode *inode)
445 {
446 int ret;
447
448 if (inode->i_op->permission) {
449 ret = inode->i_op->permission(inode, MAY_EXEC);
450 if (!ret)
451 goto ok;
452 return ret;
453 }
454 ret = acl_permission_check(inode, MAY_EXEC, inode->i_op->check_acl);
455 if (!ret)
456 goto ok;
457
458 if (capable(CAP_DAC_OVERRIDE) || capable(CAP_DAC_READ_SEARCH))
459 goto ok;
460
461 return ret;
462 ok:
463 return security_inode_permission(inode, MAY_EXEC);
464 }
465
466 /*
467 * This is called when everything else fails, and we actually have
468 * to go to the low-level filesystem to find out what we should do..
469 *
470 * We get the directory semaphore, and after getting that we also
471 * make sure that nobody added the entry to the dcache in the meantime..
472 * SMP-safe
473 */
474 static struct dentry * real_lookup(struct dentry * parent, struct qstr * name, struct nameidata *nd)
475 {
476 struct dentry * result;
477 struct inode *dir = parent->d_inode;
478
479 mutex_lock(&dir->i_mutex);
480 /*
481 * First re-do the cached lookup just in case it was created
482 * while we waited for the directory semaphore..
483 *
484 * FIXME! This could use version numbering or similar to
485 * avoid unnecessary cache lookups.
486 *
487 * The "dcache_lock" is purely to protect the RCU list walker
488 * from concurrent renames at this point (we mustn't get false
489 * negatives from the RCU list walk here, unlike the optimistic
490 * fast walk).
491 *
492 * so doing d_lookup() (with seqlock), instead of lockfree __d_lookup
493 */
494 result = d_lookup(parent, name);
495 if (!result) {
496 struct dentry *dentry;
497
498 /* Don't create child dentry for a dead directory. */
499 result = ERR_PTR(-ENOENT);
500 if (IS_DEADDIR(dir))
501 goto out_unlock;
502
503 dentry = d_alloc(parent, name);
504 result = ERR_PTR(-ENOMEM);
505 if (dentry) {
506 result = dir->i_op->lookup(dir, dentry, nd);
507 if (result)
508 dput(dentry);
509 else
510 result = dentry;
511 }
512 out_unlock:
513 mutex_unlock(&dir->i_mutex);
514 return result;
515 }
516
517 /*
518 * Uhhuh! Nasty case: the cache was re-populated while
519 * we waited on the semaphore. Need to revalidate.
520 */
521 mutex_unlock(&dir->i_mutex);
522 if (result->d_op && result->d_op->d_revalidate) {
523 result = do_revalidate(result, nd);
524 if (!result)
525 result = ERR_PTR(-ENOENT);
526 }
527 return result;
528 }
529
530 static __always_inline void set_root(struct nameidata *nd)
531 {
532 if (!nd->root.mnt) {
533 struct fs_struct *fs = current->fs;
534 read_lock(&fs->lock);
535 nd->root = fs->root;
536 path_get(&nd->root);
537 read_unlock(&fs->lock);
538 }
539 }
540
541 static int link_path_walk(const char *, struct nameidata *);
542
543 static __always_inline int __vfs_follow_link(struct nameidata *nd, const char *link)
544 {
545 int res = 0;
546 char *name;
547 if (IS_ERR(link))
548 goto fail;
549
550 if (*link == '/') {
551 set_root(nd);
552 path_put(&nd->path);
553 nd->path = nd->root;
554 path_get(&nd->root);
555 }
556
557 res = link_path_walk(link, nd);
558 if (nd->depth || res || nd->last_type!=LAST_NORM)
559 return res;
560 /*
561 * If it is an iterative symlinks resolution in open_namei() we
562 * have to copy the last component. And all that crap because of
563 * bloody create() on broken symlinks. Furrfu...
564 */
565 name = __getname();
566 if (unlikely(!name)) {
567 path_put(&nd->path);
568 return -ENOMEM;
569 }
570 strcpy(name, nd->last.name);
571 nd->last.name = name;
572 return 0;
573 fail:
574 path_put(&nd->path);
575 return PTR_ERR(link);
576 }
577
578 static void path_put_conditional(struct path *path, struct nameidata *nd)
579 {
580 dput(path->dentry);
581 if (path->mnt != nd->path.mnt)
582 mntput(path->mnt);
583 }
584
585 static inline void path_to_nameidata(struct path *path, struct nameidata *nd)
586 {
587 dput(nd->path.dentry);
588 if (nd->path.mnt != path->mnt)
589 mntput(nd->path.mnt);
590 nd->path.mnt = path->mnt;
591 nd->path.dentry = path->dentry;
592 }
593
594 static __always_inline int __do_follow_link(struct path *path, struct nameidata *nd)
595 {
596 int error;
597 void *cookie;
598 struct dentry *dentry = path->dentry;
599
600 touch_atime(path->mnt, dentry);
601 nd_set_link(nd, NULL);
602
603 if (path->mnt != nd->path.mnt) {
604 path_to_nameidata(path, nd);
605 dget(dentry);
606 }
607 mntget(path->mnt);
608 cookie = dentry->d_inode->i_op->follow_link(dentry, nd);
609 error = PTR_ERR(cookie);
610 if (!IS_ERR(cookie)) {
611 char *s = nd_get_link(nd);
612 error = 0;
613 if (s)
614 error = __vfs_follow_link(nd, s);
615 if (dentry->d_inode->i_op->put_link)
616 dentry->d_inode->i_op->put_link(dentry, nd, cookie);
617 }
618 return error;
619 }
620
621 /*
622 * This limits recursive symlink follows to 8, while
623 * limiting consecutive symlinks to 40.
624 *
625 * Without that kind of total limit, nasty chains of consecutive
626 * symlinks can cause almost arbitrarily long lookups.
627 */
628 static inline int do_follow_link(struct path *path, struct nameidata *nd)
629 {
630 int err = -ELOOP;
631 if (current->link_count >= MAX_NESTED_LINKS)
632 goto loop;
633 if (current->total_link_count >= 40)
634 goto loop;
635 BUG_ON(nd->depth >= MAX_NESTED_LINKS);
636 cond_resched();
637 err = security_inode_follow_link(path->dentry, nd);
638 if (err)
639 goto loop;
640 current->link_count++;
641 current->total_link_count++;
642 nd->depth++;
643 err = __do_follow_link(path, nd);
644 path_put(path);
645 current->link_count--;
646 nd->depth--;
647 return err;
648 loop:
649 path_put_conditional(path, nd);
650 path_put(&nd->path);
651 return err;
652 }
653
654 int follow_up(struct path *path)
655 {
656 struct vfsmount *parent;
657 struct dentry *mountpoint;
658 spin_lock(&vfsmount_lock);
659 parent = path->mnt->mnt_parent;
660 if (parent == path->mnt) {
661 spin_unlock(&vfsmount_lock);
662 return 0;
663 }
664 mntget(parent);
665 mountpoint = dget(path->mnt->mnt_mountpoint);
666 spin_unlock(&vfsmount_lock);
667 dput(path->dentry);
668 path->dentry = mountpoint;
669 mntput(path->mnt);
670 path->mnt = parent;
671 return 1;
672 }
673
674 /* no need for dcache_lock, as serialization is taken care in
675 * namespace.c
676 */
677 static int __follow_mount(struct path *path)
678 {
679 int res = 0;
680 while (d_mountpoint(path->dentry)) {
681 struct vfsmount *mounted = lookup_mnt(path);
682 if (!mounted)
683 break;
684 dput(path->dentry);
685 if (res)
686 mntput(path->mnt);
687 path->mnt = mounted;
688 path->dentry = dget(mounted->mnt_root);
689 res = 1;
690 }
691 return res;
692 }
693
694 static void follow_mount(struct path *path)
695 {
696 while (d_mountpoint(path->dentry)) {
697 struct vfsmount *mounted = lookup_mnt(path);
698 if (!mounted)
699 break;
700 dput(path->dentry);
701 mntput(path->mnt);
702 path->mnt = mounted;
703 path->dentry = dget(mounted->mnt_root);
704 }
705 }
706
707 /* no need for dcache_lock, as serialization is taken care in
708 * namespace.c
709 */
710 int follow_down(struct path *path)
711 {
712 struct vfsmount *mounted;
713
714 mounted = lookup_mnt(path);
715 if (mounted) {
716 dput(path->dentry);
717 mntput(path->mnt);
718 path->mnt = mounted;
719 path->dentry = dget(mounted->mnt_root);
720 return 1;
721 }
722 return 0;
723 }
724
725 static __always_inline void follow_dotdot(struct nameidata *nd)
726 {
727 set_root(nd);
728
729 while(1) {
730 struct vfsmount *parent;
731 struct dentry *old = nd->path.dentry;
732
733 if (nd->path.dentry == nd->root.dentry &&
734 nd->path.mnt == nd->root.mnt) {
735 break;
736 }
737 spin_lock(&dcache_lock);
738 if (nd->path.dentry != nd->path.mnt->mnt_root) {
739 nd->path.dentry = dget(nd->path.dentry->d_parent);
740 spin_unlock(&dcache_lock);
741 dput(old);
742 break;
743 }
744 spin_unlock(&dcache_lock);
745 spin_lock(&vfsmount_lock);
746 parent = nd->path.mnt->mnt_parent;
747 if (parent == nd->path.mnt) {
748 spin_unlock(&vfsmount_lock);
749 break;
750 }
751 mntget(parent);
752 nd->path.dentry = dget(nd->path.mnt->mnt_mountpoint);
753 spin_unlock(&vfsmount_lock);
754 dput(old);
755 mntput(nd->path.mnt);
756 nd->path.mnt = parent;
757 }
758 follow_mount(&nd->path);
759 }
760
761 /*
762 * It's more convoluted than I'd like it to be, but... it's still fairly
763 * small and for now I'd prefer to have fast path as straight as possible.
764 * It _is_ time-critical.
765 */
766 static int do_lookup(struct nameidata *nd, struct qstr *name,
767 struct path *path)
768 {
769 struct vfsmount *mnt = nd->path.mnt;
770 struct dentry *dentry;
771 /*
772 * See if the low-level filesystem might want
773 * to use its own hash..
774 */
775 if (nd->path.dentry->d_op && nd->path.dentry->d_op->d_hash) {
776 int err = nd->path.dentry->d_op->d_hash(nd->path.dentry, name);
777 if (err < 0)
778 return err;
779 }
780
781 dentry = __d_lookup(nd->path.dentry, name);
782 if (!dentry)
783 goto need_lookup;
784 if (dentry->d_op && dentry->d_op->d_revalidate)
785 goto need_revalidate;
786 done:
787 path->mnt = mnt;
788 path->dentry = dentry;
789 __follow_mount(path);
790 return 0;
791
792 need_lookup:
793 dentry = real_lookup(nd->path.dentry, name, nd);
794 if (IS_ERR(dentry))
795 goto fail;
796 goto done;
797
798 need_revalidate:
799 dentry = do_revalidate(dentry, nd);
800 if (!dentry)
801 goto need_lookup;
802 if (IS_ERR(dentry))
803 goto fail;
804 goto done;
805
806 fail:
807 return PTR_ERR(dentry);
808 }
809
810 /*
811 * Name resolution.
812 * This is the basic name resolution function, turning a pathname into
813 * the final dentry. We expect 'base' to be positive and a directory.
814 *
815 * Returns 0 and nd will have valid dentry and mnt on success.
816 * Returns error and drops reference to input namei data on failure.
817 */
818 static int link_path_walk(const char *name, struct nameidata *nd)
819 {
820 struct path next;
821 struct inode *inode;
822 int err;
823 unsigned int lookup_flags = nd->flags;
824
825 while (*name=='/')
826 name++;
827 if (!*name)
828 goto return_reval;
829
830 inode = nd->path.dentry->d_inode;
831 if (nd->depth)
832 lookup_flags = LOOKUP_FOLLOW | (nd->flags & LOOKUP_CONTINUE);
833
834 /* At this point we know we have a real path component. */
835 for(;;) {
836 unsigned long hash;
837 struct qstr this;
838 unsigned int c;
839
840 nd->flags |= LOOKUP_CONTINUE;
841 err = exec_permission_lite(inode);
842 if (err)
843 break;
844
845 this.name = name;
846 c = *(const unsigned char *)name;
847
848 hash = init_name_hash();
849 do {
850 name++;
851 hash = partial_name_hash(c, hash);
852 c = *(const unsigned char *)name;
853 } while (c && (c != '/'));
854 this.len = name - (const char *) this.name;
855 this.hash = end_name_hash(hash);
856
857 /* remove trailing slashes? */
858 if (!c)
859 goto last_component;
860 while (*++name == '/');
861 if (!*name)
862 goto last_with_slashes;
863
864 /*
865 * "." and ".." are special - ".." especially so because it has
866 * to be able to know about the current root directory and
867 * parent relationships.
868 */
869 if (this.name[0] == '.') switch (this.len) {
870 default:
871 break;
872 case 2:
873 if (this.name[1] != '.')
874 break;
875 follow_dotdot(nd);
876 inode = nd->path.dentry->d_inode;
877 /* fallthrough */
878 case 1:
879 continue;
880 }
881 /* This does the actual lookups.. */
882 err = do_lookup(nd, &this, &next);
883 if (err)
884 break;
885
886 err = -ENOENT;
887 inode = next.dentry->d_inode;
888 if (!inode)
889 goto out_dput;
890
891 if (inode->i_op->follow_link) {
892 err = do_follow_link(&next, nd);
893 if (err)
894 goto return_err;
895 err = -ENOENT;
896 inode = nd->path.dentry->d_inode;
897 if (!inode)
898 break;
899 } else
900 path_to_nameidata(&next, nd);
901 err = -ENOTDIR;
902 if (!inode->i_op->lookup)
903 break;
904 continue;
905 /* here ends the main loop */
906
907 last_with_slashes:
908 lookup_flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
909 last_component:
910 /* Clear LOOKUP_CONTINUE iff it was previously unset */
911 nd->flags &= lookup_flags | ~LOOKUP_CONTINUE;
912 if (lookup_flags & LOOKUP_PARENT)
913 goto lookup_parent;
914 if (this.name[0] == '.') switch (this.len) {
915 default:
916 break;
917 case 2:
918 if (this.name[1] != '.')
919 break;
920 follow_dotdot(nd);
921 inode = nd->path.dentry->d_inode;
922 /* fallthrough */
923 case 1:
924 goto return_reval;
925 }
926 err = do_lookup(nd, &this, &next);
927 if (err)
928 break;
929 inode = next.dentry->d_inode;
930 if ((lookup_flags & LOOKUP_FOLLOW)
931 && inode && inode->i_op->follow_link) {
932 err = do_follow_link(&next, nd);
933 if (err)
934 goto return_err;
935 inode = nd->path.dentry->d_inode;
936 } else
937 path_to_nameidata(&next, nd);
938 err = -ENOENT;
939 if (!inode)
940 break;
941 if (lookup_flags & LOOKUP_DIRECTORY) {
942 err = -ENOTDIR;
943 if (!inode->i_op->lookup)
944 break;
945 }
946 goto return_base;
947 lookup_parent:
948 nd->last = this;
949 nd->last_type = LAST_NORM;
950 if (this.name[0] != '.')
951 goto return_base;
952 if (this.len == 1)
953 nd->last_type = LAST_DOT;
954 else if (this.len == 2 && this.name[1] == '.')
955 nd->last_type = LAST_DOTDOT;
956 else
957 goto return_base;
958 return_reval:
959 /*
960 * We bypassed the ordinary revalidation routines.
961 * We may need to check the cached dentry for staleness.
962 */
963 if (nd->path.dentry && nd->path.dentry->d_sb &&
964 (nd->path.dentry->d_sb->s_type->fs_flags & FS_REVAL_DOT)) {
965 err = -ESTALE;
966 /* Note: we do not d_invalidate() */
967 if (!nd->path.dentry->d_op->d_revalidate(
968 nd->path.dentry, nd))
969 break;
970 }
971 return_base:
972 return 0;
973 out_dput:
974 path_put_conditional(&next, nd);
975 break;
976 }
977 path_put(&nd->path);
978 return_err:
979 return err;
980 }
981
982 static int path_walk(const char *name, struct nameidata *nd)
983 {
984 struct path save = nd->path;
985 int result;
986
987 current->total_link_count = 0;
988
989 /* make sure the stuff we saved doesn't go away */
990 path_get(&save);
991
992 result = link_path_walk(name, nd);
993 if (result == -ESTALE) {
994 /* nd->path had been dropped */
995 current->total_link_count = 0;
996 nd->path = save;
997 path_get(&nd->path);
998 nd->flags |= LOOKUP_REVAL;
999 result = link_path_walk(name, nd);
1000 }
1001
1002 path_put(&save);
1003
1004 return result;
1005 }
1006
1007 static int path_init(int dfd, const char *name, unsigned int flags, struct nameidata *nd)
1008 {
1009 int retval = 0;
1010 int fput_needed;
1011 struct file *file;
1012
1013 nd->last_type = LAST_ROOT; /* if there are only slashes... */
1014 nd->flags = flags;
1015 nd->depth = 0;
1016 nd->root.mnt = NULL;
1017
1018 if (*name=='/') {
1019 set_root(nd);
1020 nd->path = nd->root;
1021 path_get(&nd->root);
1022 } else if (dfd == AT_FDCWD) {
1023 struct fs_struct *fs = current->fs;
1024 read_lock(&fs->lock);
1025 nd->path = fs->pwd;
1026 path_get(&fs->pwd);
1027 read_unlock(&fs->lock);
1028 } else {
1029 struct dentry *dentry;
1030
1031 file = fget_light(dfd, &fput_needed);
1032 retval = -EBADF;
1033 if (!file)
1034 goto out_fail;
1035
1036 dentry = file->f_path.dentry;
1037
1038 retval = -ENOTDIR;
1039 if (!S_ISDIR(dentry->d_inode->i_mode))
1040 goto fput_fail;
1041
1042 retval = file_permission(file, MAY_EXEC);
1043 if (retval)
1044 goto fput_fail;
1045
1046 nd->path = file->f_path;
1047 path_get(&file->f_path);
1048
1049 fput_light(file, fput_needed);
1050 }
1051 return 0;
1052
1053 fput_fail:
1054 fput_light(file, fput_needed);
1055 out_fail:
1056 return retval;
1057 }
1058
1059 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
1060 static int do_path_lookup(int dfd, const char *name,
1061 unsigned int flags, struct nameidata *nd)
1062 {
1063 int retval = path_init(dfd, name, flags, nd);
1064 if (!retval)
1065 retval = path_walk(name, nd);
1066 if (unlikely(!retval && !audit_dummy_context() && nd->path.dentry &&
1067 nd->path.dentry->d_inode))
1068 audit_inode(name, nd->path.dentry);
1069 if (nd->root.mnt) {
1070 path_put(&nd->root);
1071 nd->root.mnt = NULL;
1072 }
1073 return retval;
1074 }
1075
1076 int path_lookup(const char *name, unsigned int flags,
1077 struct nameidata *nd)
1078 {
1079 return do_path_lookup(AT_FDCWD, name, flags, nd);
1080 }
1081
1082 int kern_path(const char *name, unsigned int flags, struct path *path)
1083 {
1084 struct nameidata nd;
1085 int res = do_path_lookup(AT_FDCWD, name, flags, &nd);
1086 if (!res)
1087 *path = nd.path;
1088 return res;
1089 }
1090
1091 /**
1092 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
1093 * @dentry: pointer to dentry of the base directory
1094 * @mnt: pointer to vfs mount of the base directory
1095 * @name: pointer to file name
1096 * @flags: lookup flags
1097 * @nd: pointer to nameidata
1098 */
1099 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
1100 const char *name, unsigned int flags,
1101 struct nameidata *nd)
1102 {
1103 int retval;
1104
1105 /* same as do_path_lookup */
1106 nd->last_type = LAST_ROOT;
1107 nd->flags = flags;
1108 nd->depth = 0;
1109
1110 nd->path.dentry = dentry;
1111 nd->path.mnt = mnt;
1112 path_get(&nd->path);
1113 nd->root = nd->path;
1114 path_get(&nd->root);
1115
1116 retval = path_walk(name, nd);
1117 if (unlikely(!retval && !audit_dummy_context() && nd->path.dentry &&
1118 nd->path.dentry->d_inode))
1119 audit_inode(name, nd->path.dentry);
1120
1121 path_put(&nd->root);
1122 nd->root.mnt = NULL;
1123
1124 return retval;
1125 }
1126
1127 /**
1128 * path_lookup_open - lookup a file path with open intent
1129 * @dfd: the directory to use as base, or AT_FDCWD
1130 * @name: pointer to file name
1131 * @lookup_flags: lookup intent flags
1132 * @nd: pointer to nameidata
1133 * @open_flags: open intent flags
1134 */
1135 static int path_lookup_open(int dfd, const char *name,
1136 unsigned int lookup_flags, struct nameidata *nd, int open_flags)
1137 {
1138 struct file *filp = get_empty_filp();
1139 int err;
1140
1141 if (filp == NULL)
1142 return -ENFILE;
1143 nd->intent.open.file = filp;
1144 nd->intent.open.flags = open_flags;
1145 nd->intent.open.create_mode = 0;
1146 err = do_path_lookup(dfd, name, lookup_flags|LOOKUP_OPEN, nd);
1147 if (IS_ERR(nd->intent.open.file)) {
1148 if (err == 0) {
1149 err = PTR_ERR(nd->intent.open.file);
1150 path_put(&nd->path);
1151 }
1152 } else if (err != 0)
1153 release_open_intent(nd);
1154 return err;
1155 }
1156
1157 static struct dentry *__lookup_hash(struct qstr *name,
1158 struct dentry *base, struct nameidata *nd)
1159 {
1160 struct dentry *dentry;
1161 struct inode *inode;
1162 int err;
1163
1164 inode = base->d_inode;
1165
1166 /*
1167 * See if the low-level filesystem might want
1168 * to use its own hash..
1169 */
1170 if (base->d_op && base->d_op->d_hash) {
1171 err = base->d_op->d_hash(base, name);
1172 dentry = ERR_PTR(err);
1173 if (err < 0)
1174 goto out;
1175 }
1176
1177 dentry = cached_lookup(base, name, nd);
1178 if (!dentry) {
1179 struct dentry *new;
1180
1181 /* Don't create child dentry for a dead directory. */
1182 dentry = ERR_PTR(-ENOENT);
1183 if (IS_DEADDIR(inode))
1184 goto out;
1185
1186 new = d_alloc(base, name);
1187 dentry = ERR_PTR(-ENOMEM);
1188 if (!new)
1189 goto out;
1190 dentry = inode->i_op->lookup(inode, new, nd);
1191 if (!dentry)
1192 dentry = new;
1193 else
1194 dput(new);
1195 }
1196 out:
1197 return dentry;
1198 }
1199
1200 /*
1201 * Restricted form of lookup. Doesn't follow links, single-component only,
1202 * needs parent already locked. Doesn't follow mounts.
1203 * SMP-safe.
1204 */
1205 static struct dentry *lookup_hash(struct nameidata *nd)
1206 {
1207 int err;
1208
1209 err = inode_permission(nd->path.dentry->d_inode, MAY_EXEC);
1210 if (err)
1211 return ERR_PTR(err);
1212 return __lookup_hash(&nd->last, nd->path.dentry, nd);
1213 }
1214
1215 static int __lookup_one_len(const char *name, struct qstr *this,
1216 struct dentry *base, int len)
1217 {
1218 unsigned long hash;
1219 unsigned int c;
1220
1221 this->name = name;
1222 this->len = len;
1223 if (!len)
1224 return -EACCES;
1225
1226 hash = init_name_hash();
1227 while (len--) {
1228 c = *(const unsigned char *)name++;
1229 if (c == '/' || c == '\0')
1230 return -EACCES;
1231 hash = partial_name_hash(c, hash);
1232 }
1233 this->hash = end_name_hash(hash);
1234 return 0;
1235 }
1236
1237 /**
1238 * lookup_one_len - filesystem helper to lookup single pathname component
1239 * @name: pathname component to lookup
1240 * @base: base directory to lookup from
1241 * @len: maximum length @len should be interpreted to
1242 *
1243 * Note that this routine is purely a helper for filesystem usage and should
1244 * not be called by generic code. Also note that by using this function the
1245 * nameidata argument is passed to the filesystem methods and a filesystem
1246 * using this helper needs to be prepared for that.
1247 */
1248 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
1249 {
1250 int err;
1251 struct qstr this;
1252
1253 WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex));
1254
1255 err = __lookup_one_len(name, &this, base, len);
1256 if (err)
1257 return ERR_PTR(err);
1258
1259 err = inode_permission(base->d_inode, MAY_EXEC);
1260 if (err)
1261 return ERR_PTR(err);
1262 return __lookup_hash(&this, base, NULL);
1263 }
1264
1265 int user_path_at(int dfd, const char __user *name, unsigned flags,
1266 struct path *path)
1267 {
1268 struct nameidata nd;
1269 char *tmp = getname(name);
1270 int err = PTR_ERR(tmp);
1271 if (!IS_ERR(tmp)) {
1272
1273 BUG_ON(flags & LOOKUP_PARENT);
1274
1275 err = do_path_lookup(dfd, tmp, flags, &nd);
1276 putname(tmp);
1277 if (!err)
1278 *path = nd.path;
1279 }
1280 return err;
1281 }
1282
1283 static int user_path_parent(int dfd, const char __user *path,
1284 struct nameidata *nd, char **name)
1285 {
1286 char *s = getname(path);
1287 int error;
1288
1289 if (IS_ERR(s))
1290 return PTR_ERR(s);
1291
1292 error = do_path_lookup(dfd, s, LOOKUP_PARENT, nd);
1293 if (error)
1294 putname(s);
1295 else
1296 *name = s;
1297
1298 return error;
1299 }
1300
1301 /*
1302 * It's inline, so penalty for filesystems that don't use sticky bit is
1303 * minimal.
1304 */
1305 static inline int check_sticky(struct inode *dir, struct inode *inode)
1306 {
1307 uid_t fsuid = current_fsuid();
1308
1309 if (!(dir->i_mode & S_ISVTX))
1310 return 0;
1311 if (inode->i_uid == fsuid)
1312 return 0;
1313 if (dir->i_uid == fsuid)
1314 return 0;
1315 return !capable(CAP_FOWNER);
1316 }
1317
1318 /*
1319 * Check whether we can remove a link victim from directory dir, check
1320 * whether the type of victim is right.
1321 * 1. We can't do it if dir is read-only (done in permission())
1322 * 2. We should have write and exec permissions on dir
1323 * 3. We can't remove anything from append-only dir
1324 * 4. We can't do anything with immutable dir (done in permission())
1325 * 5. If the sticky bit on dir is set we should either
1326 * a. be owner of dir, or
1327 * b. be owner of victim, or
1328 * c. have CAP_FOWNER capability
1329 * 6. If the victim is append-only or immutable we can't do antyhing with
1330 * links pointing to it.
1331 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
1332 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
1333 * 9. We can't remove a root or mountpoint.
1334 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
1335 * nfs_async_unlink().
1336 */
1337 static int may_delete(struct inode *dir,struct dentry *victim,int isdir)
1338 {
1339 int error;
1340
1341 if (!victim->d_inode)
1342 return -ENOENT;
1343
1344 BUG_ON(victim->d_parent->d_inode != dir);
1345 audit_inode_child(victim->d_name.name, victim, dir);
1346
1347 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
1348 if (error)
1349 return error;
1350 if (IS_APPEND(dir))
1351 return -EPERM;
1352 if (check_sticky(dir, victim->d_inode)||IS_APPEND(victim->d_inode)||
1353 IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode))
1354 return -EPERM;
1355 if (isdir) {
1356 if (!S_ISDIR(victim->d_inode->i_mode))
1357 return -ENOTDIR;
1358 if (IS_ROOT(victim))
1359 return -EBUSY;
1360 } else if (S_ISDIR(victim->d_inode->i_mode))
1361 return -EISDIR;
1362 if (IS_DEADDIR(dir))
1363 return -ENOENT;
1364 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
1365 return -EBUSY;
1366 return 0;
1367 }
1368
1369 /* Check whether we can create an object with dentry child in directory
1370 * dir.
1371 * 1. We can't do it if child already exists (open has special treatment for
1372 * this case, but since we are inlined it's OK)
1373 * 2. We can't do it if dir is read-only (done in permission())
1374 * 3. We should have write and exec permissions on dir
1375 * 4. We can't do it if dir is immutable (done in permission())
1376 */
1377 static inline int may_create(struct inode *dir, struct dentry *child)
1378 {
1379 if (child->d_inode)
1380 return -EEXIST;
1381 if (IS_DEADDIR(dir))
1382 return -ENOENT;
1383 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
1384 }
1385
1386 /*
1387 * O_DIRECTORY translates into forcing a directory lookup.
1388 */
1389 static inline int lookup_flags(unsigned int f)
1390 {
1391 unsigned long retval = LOOKUP_FOLLOW;
1392
1393 if (f & O_NOFOLLOW)
1394 retval &= ~LOOKUP_FOLLOW;
1395
1396 if (f & O_DIRECTORY)
1397 retval |= LOOKUP_DIRECTORY;
1398
1399 return retval;
1400 }
1401
1402 /*
1403 * p1 and p2 should be directories on the same fs.
1404 */
1405 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
1406 {
1407 struct dentry *p;
1408
1409 if (p1 == p2) {
1410 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1411 return NULL;
1412 }
1413
1414 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
1415
1416 p = d_ancestor(p2, p1);
1417 if (p) {
1418 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
1419 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
1420 return p;
1421 }
1422
1423 p = d_ancestor(p1, p2);
1424 if (p) {
1425 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1426 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
1427 return p;
1428 }
1429
1430 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1431 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
1432 return NULL;
1433 }
1434
1435 void unlock_rename(struct dentry *p1, struct dentry *p2)
1436 {
1437 mutex_unlock(&p1->d_inode->i_mutex);
1438 if (p1 != p2) {
1439 mutex_unlock(&p2->d_inode->i_mutex);
1440 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
1441 }
1442 }
1443
1444 int vfs_create(struct inode *dir, struct dentry *dentry, int mode,
1445 struct nameidata *nd)
1446 {
1447 int error = may_create(dir, dentry);
1448
1449 if (error)
1450 return error;
1451
1452 if (!dir->i_op->create)
1453 return -EACCES; /* shouldn't it be ENOSYS? */
1454 mode &= S_IALLUGO;
1455 mode |= S_IFREG;
1456 error = security_inode_create(dir, dentry, mode);
1457 if (error)
1458 return error;
1459 vfs_dq_init(dir);
1460 error = dir->i_op->create(dir, dentry, mode, nd);
1461 if (!error)
1462 fsnotify_create(dir, dentry);
1463 return error;
1464 }
1465
1466 int may_open(struct path *path, int acc_mode, int flag)
1467 {
1468 struct dentry *dentry = path->dentry;
1469 struct inode *inode = dentry->d_inode;
1470 int error;
1471
1472 if (!inode)
1473 return -ENOENT;
1474
1475 switch (inode->i_mode & S_IFMT) {
1476 case S_IFLNK:
1477 return -ELOOP;
1478 case S_IFDIR:
1479 if (acc_mode & MAY_WRITE)
1480 return -EISDIR;
1481 break;
1482 case S_IFBLK:
1483 case S_IFCHR:
1484 if (path->mnt->mnt_flags & MNT_NODEV)
1485 return -EACCES;
1486 /*FALLTHRU*/
1487 case S_IFIFO:
1488 case S_IFSOCK:
1489 flag &= ~O_TRUNC;
1490 break;
1491 }
1492
1493 error = inode_permission(inode, acc_mode);
1494 if (error)
1495 return error;
1496
1497 error = ima_path_check(path, acc_mode ?
1498 acc_mode & (MAY_READ | MAY_WRITE | MAY_EXEC) :
1499 ACC_MODE(flag) & (MAY_READ | MAY_WRITE),
1500 IMA_COUNT_UPDATE);
1501
1502 if (error)
1503 return error;
1504 /*
1505 * An append-only file must be opened in append mode for writing.
1506 */
1507 if (IS_APPEND(inode)) {
1508 error = -EPERM;
1509 if ((flag & FMODE_WRITE) && !(flag & O_APPEND))
1510 goto err_out;
1511 if (flag & O_TRUNC)
1512 goto err_out;
1513 }
1514
1515 /* O_NOATIME can only be set by the owner or superuser */
1516 if (flag & O_NOATIME)
1517 if (!is_owner_or_cap(inode)) {
1518 error = -EPERM;
1519 goto err_out;
1520 }
1521
1522 /*
1523 * Ensure there are no outstanding leases on the file.
1524 */
1525 error = break_lease(inode, flag);
1526 if (error)
1527 goto err_out;
1528
1529 if (flag & O_TRUNC) {
1530 error = get_write_access(inode);
1531 if (error)
1532 goto err_out;
1533
1534 /*
1535 * Refuse to truncate files with mandatory locks held on them.
1536 */
1537 error = locks_verify_locked(inode);
1538 if (!error)
1539 error = security_path_truncate(path, 0,
1540 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN);
1541 if (!error) {
1542 vfs_dq_init(inode);
1543
1544 error = do_truncate(dentry, 0,
1545 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
1546 NULL);
1547 }
1548 put_write_access(inode);
1549 if (error)
1550 goto err_out;
1551 } else
1552 if (flag & FMODE_WRITE)
1553 vfs_dq_init(inode);
1554
1555 return 0;
1556 err_out:
1557 ima_counts_put(path, acc_mode ?
1558 acc_mode & (MAY_READ | MAY_WRITE | MAY_EXEC) :
1559 ACC_MODE(flag) & (MAY_READ | MAY_WRITE));
1560 return error;
1561 }
1562
1563 /*
1564 * Be careful about ever adding any more callers of this
1565 * function. Its flags must be in the namei format, not
1566 * what get passed to sys_open().
1567 */
1568 static int __open_namei_create(struct nameidata *nd, struct path *path,
1569 int flag, int mode)
1570 {
1571 int error;
1572 struct dentry *dir = nd->path.dentry;
1573
1574 if (!IS_POSIXACL(dir->d_inode))
1575 mode &= ~current_umask();
1576 error = security_path_mknod(&nd->path, path->dentry, mode, 0);
1577 if (error)
1578 goto out_unlock;
1579 error = vfs_create(dir->d_inode, path->dentry, mode, nd);
1580 out_unlock:
1581 mutex_unlock(&dir->d_inode->i_mutex);
1582 dput(nd->path.dentry);
1583 nd->path.dentry = path->dentry;
1584 if (error)
1585 return error;
1586 /* Don't check for write permission, don't truncate */
1587 return may_open(&nd->path, 0, flag & ~O_TRUNC);
1588 }
1589
1590 /*
1591 * Note that while the flag value (low two bits) for sys_open means:
1592 * 00 - read-only
1593 * 01 - write-only
1594 * 10 - read-write
1595 * 11 - special
1596 * it is changed into
1597 * 00 - no permissions needed
1598 * 01 - read-permission
1599 * 10 - write-permission
1600 * 11 - read-write
1601 * for the internal routines (ie open_namei()/follow_link() etc)
1602 * This is more logical, and also allows the 00 "no perm needed"
1603 * to be used for symlinks (where the permissions are checked
1604 * later).
1605 *
1606 */
1607 static inline int open_to_namei_flags(int flag)
1608 {
1609 if ((flag+1) & O_ACCMODE)
1610 flag++;
1611 return flag;
1612 }
1613
1614 static int open_will_write_to_fs(int flag, struct inode *inode)
1615 {
1616 /*
1617 * We'll never write to the fs underlying
1618 * a device file.
1619 */
1620 if (special_file(inode->i_mode))
1621 return 0;
1622 return (flag & O_TRUNC);
1623 }
1624
1625 /*
1626 * Note that the low bits of the passed in "open_flag"
1627 * are not the same as in the local variable "flag". See
1628 * open_to_namei_flags() for more details.
1629 */
1630 struct file *do_filp_open(int dfd, const char *pathname,
1631 int open_flag, int mode, int acc_mode)
1632 {
1633 struct file *filp;
1634 struct nameidata nd;
1635 int error;
1636 struct path path, save;
1637 struct dentry *dir;
1638 int count = 0;
1639 int will_write;
1640 int flag = open_to_namei_flags(open_flag);
1641
1642 /*
1643 * O_SYNC is implemented as __O_SYNC|O_DSYNC. As many places only
1644 * check for O_DSYNC if the need any syncing at all we enforce it's
1645 * always set instead of having to deal with possibly weird behaviour
1646 * for malicious applications setting only __O_SYNC.
1647 */
1648 if (open_flag & __O_SYNC)
1649 open_flag |= O_DSYNC;
1650
1651 if (!acc_mode)
1652 acc_mode = MAY_OPEN | ACC_MODE(flag);
1653
1654 /* O_TRUNC implies we need access checks for write permissions */
1655 if (flag & O_TRUNC)
1656 acc_mode |= MAY_WRITE;
1657
1658 /* Allow the LSM permission hook to distinguish append
1659 access from general write access. */
1660 if (flag & O_APPEND)
1661 acc_mode |= MAY_APPEND;
1662
1663 /*
1664 * The simplest case - just a plain lookup.
1665 */
1666 if (!(flag & O_CREAT)) {
1667 error = path_lookup_open(dfd, pathname, lookup_flags(flag),
1668 &nd, flag);
1669 if (error)
1670 return ERR_PTR(error);
1671 goto ok;
1672 }
1673
1674 /*
1675 * Create - we need to know the parent.
1676 */
1677 error = path_init(dfd, pathname, LOOKUP_PARENT, &nd);
1678 if (error)
1679 return ERR_PTR(error);
1680 error = path_walk(pathname, &nd);
1681 if (error) {
1682 if (nd.root.mnt)
1683 path_put(&nd.root);
1684 return ERR_PTR(error);
1685 }
1686 if (unlikely(!audit_dummy_context()))
1687 audit_inode(pathname, nd.path.dentry);
1688
1689 /*
1690 * We have the parent and last component. First of all, check
1691 * that we are not asked to creat(2) an obvious directory - that
1692 * will not do.
1693 */
1694 error = -EISDIR;
1695 if (nd.last_type != LAST_NORM || nd.last.name[nd.last.len])
1696 goto exit_parent;
1697
1698 error = -ENFILE;
1699 filp = get_empty_filp();
1700 if (filp == NULL)
1701 goto exit_parent;
1702 nd.intent.open.file = filp;
1703 nd.intent.open.flags = flag;
1704 nd.intent.open.create_mode = mode;
1705 dir = nd.path.dentry;
1706 nd.flags &= ~LOOKUP_PARENT;
1707 nd.flags |= LOOKUP_CREATE | LOOKUP_OPEN;
1708 if (flag & O_EXCL)
1709 nd.flags |= LOOKUP_EXCL;
1710 mutex_lock(&dir->d_inode->i_mutex);
1711 path.dentry = lookup_hash(&nd);
1712 path.mnt = nd.path.mnt;
1713
1714 do_last:
1715 error = PTR_ERR(path.dentry);
1716 if (IS_ERR(path.dentry)) {
1717 mutex_unlock(&dir->d_inode->i_mutex);
1718 goto exit;
1719 }
1720
1721 if (IS_ERR(nd.intent.open.file)) {
1722 error = PTR_ERR(nd.intent.open.file);
1723 goto exit_mutex_unlock;
1724 }
1725
1726 /* Negative dentry, just create the file */
1727 if (!path.dentry->d_inode) {
1728 /*
1729 * This write is needed to ensure that a
1730 * ro->rw transition does not occur between
1731 * the time when the file is created and when
1732 * a permanent write count is taken through
1733 * the 'struct file' in nameidata_to_filp().
1734 */
1735 error = mnt_want_write(nd.path.mnt);
1736 if (error)
1737 goto exit_mutex_unlock;
1738 error = __open_namei_create(&nd, &path, flag, mode);
1739 if (error) {
1740 mnt_drop_write(nd.path.mnt);
1741 goto exit;
1742 }
1743 filp = nameidata_to_filp(&nd, open_flag);
1744 if (IS_ERR(filp))
1745 ima_counts_put(&nd.path,
1746 acc_mode & (MAY_READ | MAY_WRITE |
1747 MAY_EXEC));
1748 mnt_drop_write(nd.path.mnt);
1749 if (nd.root.mnt)
1750 path_put(&nd.root);
1751 return filp;
1752 }
1753
1754 /*
1755 * It already exists.
1756 */
1757 mutex_unlock(&dir->d_inode->i_mutex);
1758 audit_inode(pathname, path.dentry);
1759
1760 error = -EEXIST;
1761 if (flag & O_EXCL)
1762 goto exit_dput;
1763
1764 if (__follow_mount(&path)) {
1765 error = -ELOOP;
1766 if (flag & O_NOFOLLOW)
1767 goto exit_dput;
1768 }
1769
1770 error = -ENOENT;
1771 if (!path.dentry->d_inode)
1772 goto exit_dput;
1773 if (path.dentry->d_inode->i_op->follow_link)
1774 goto do_link;
1775
1776 path_to_nameidata(&path, &nd);
1777 error = -EISDIR;
1778 if (path.dentry->d_inode && S_ISDIR(path.dentry->d_inode->i_mode))
1779 goto exit;
1780 ok:
1781 /*
1782 * Consider:
1783 * 1. may_open() truncates a file
1784 * 2. a rw->ro mount transition occurs
1785 * 3. nameidata_to_filp() fails due to
1786 * the ro mount.
1787 * That would be inconsistent, and should
1788 * be avoided. Taking this mnt write here
1789 * ensures that (2) can not occur.
1790 */
1791 will_write = open_will_write_to_fs(flag, nd.path.dentry->d_inode);
1792 if (will_write) {
1793 error = mnt_want_write(nd.path.mnt);
1794 if (error)
1795 goto exit;
1796 }
1797 error = may_open(&nd.path, acc_mode, flag);
1798 if (error) {
1799 if (will_write)
1800 mnt_drop_write(nd.path.mnt);
1801 goto exit;
1802 }
1803 filp = nameidata_to_filp(&nd, open_flag);
1804 if (IS_ERR(filp))
1805 ima_counts_put(&nd.path,
1806 acc_mode & (MAY_READ | MAY_WRITE | MAY_EXEC));
1807 /*
1808 * It is now safe to drop the mnt write
1809 * because the filp has had a write taken
1810 * on its behalf.
1811 */
1812 if (will_write)
1813 mnt_drop_write(nd.path.mnt);
1814 if (nd.root.mnt)
1815 path_put(&nd.root);
1816 return filp;
1817
1818 exit_mutex_unlock:
1819 mutex_unlock(&dir->d_inode->i_mutex);
1820 exit_dput:
1821 path_put_conditional(&path, &nd);
1822 exit:
1823 if (!IS_ERR(nd.intent.open.file))
1824 release_open_intent(&nd);
1825 exit_parent:
1826 if (nd.root.mnt)
1827 path_put(&nd.root);
1828 path_put(&nd.path);
1829 return ERR_PTR(error);
1830
1831 do_link:
1832 error = -ELOOP;
1833 if (flag & O_NOFOLLOW)
1834 goto exit_dput;
1835 /*
1836 * This is subtle. Instead of calling do_follow_link() we do the
1837 * thing by hands. The reason is that this way we have zero link_count
1838 * and path_walk() (called from ->follow_link) honoring LOOKUP_PARENT.
1839 * After that we have the parent and last component, i.e.
1840 * we are in the same situation as after the first path_walk().
1841 * Well, almost - if the last component is normal we get its copy
1842 * stored in nd->last.name and we will have to putname() it when we
1843 * are done. Procfs-like symlinks just set LAST_BIND.
1844 */
1845 nd.flags |= LOOKUP_PARENT;
1846 error = security_inode_follow_link(path.dentry, &nd);
1847 if (error)
1848 goto exit_dput;
1849 save = nd.path;
1850 path_get(&save);
1851 error = __do_follow_link(&path, &nd);
1852 if (error == -ESTALE) {
1853 /* nd.path had been dropped */
1854 nd.path = save;
1855 path_get(&nd.path);
1856 nd.flags |= LOOKUP_REVAL;
1857 error = __do_follow_link(&path, &nd);
1858 }
1859 path_put(&save);
1860 path_put(&path);
1861 if (error) {
1862 /* Does someone understand code flow here? Or it is only
1863 * me so stupid? Anathema to whoever designed this non-sense
1864 * with "intent.open".
1865 */
1866 release_open_intent(&nd);
1867 if (nd.root.mnt)
1868 path_put(&nd.root);
1869 return ERR_PTR(error);
1870 }
1871 nd.flags &= ~LOOKUP_PARENT;
1872 if (nd.last_type == LAST_BIND)
1873 goto ok;
1874 error = -EISDIR;
1875 if (nd.last_type != LAST_NORM)
1876 goto exit;
1877 if (nd.last.name[nd.last.len]) {
1878 __putname(nd.last.name);
1879 goto exit;
1880 }
1881 error = -ELOOP;
1882 if (count++==32) {
1883 __putname(nd.last.name);
1884 goto exit;
1885 }
1886 dir = nd.path.dentry;
1887 mutex_lock(&dir->d_inode->i_mutex);
1888 path.dentry = lookup_hash(&nd);
1889 path.mnt = nd.path.mnt;
1890 __putname(nd.last.name);
1891 goto do_last;
1892 }
1893
1894 /**
1895 * filp_open - open file and return file pointer
1896 *
1897 * @filename: path to open
1898 * @flags: open flags as per the open(2) second argument
1899 * @mode: mode for the new file if O_CREAT is set, else ignored
1900 *
1901 * This is the helper to open a file from kernelspace if you really
1902 * have to. But in generally you should not do this, so please move
1903 * along, nothing to see here..
1904 */
1905 struct file *filp_open(const char *filename, int flags, int mode)
1906 {
1907 return do_filp_open(AT_FDCWD, filename, flags, mode, 0);
1908 }
1909 EXPORT_SYMBOL(filp_open);
1910
1911 /**
1912 * lookup_create - lookup a dentry, creating it if it doesn't exist
1913 * @nd: nameidata info
1914 * @is_dir: directory flag
1915 *
1916 * Simple function to lookup and return a dentry and create it
1917 * if it doesn't exist. Is SMP-safe.
1918 *
1919 * Returns with nd->path.dentry->d_inode->i_mutex locked.
1920 */
1921 struct dentry *lookup_create(struct nameidata *nd, int is_dir)
1922 {
1923 struct dentry *dentry = ERR_PTR(-EEXIST);
1924
1925 mutex_lock_nested(&nd->path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
1926 /*
1927 * Yucky last component or no last component at all?
1928 * (foo/., foo/.., /////)
1929 */
1930 if (nd->last_type != LAST_NORM)
1931 goto fail;
1932 nd->flags &= ~LOOKUP_PARENT;
1933 nd->flags |= LOOKUP_CREATE | LOOKUP_EXCL;
1934 nd->intent.open.flags = O_EXCL;
1935
1936 /*
1937 * Do the final lookup.
1938 */
1939 dentry = lookup_hash(nd);
1940 if (IS_ERR(dentry))
1941 goto fail;
1942
1943 if (dentry->d_inode)
1944 goto eexist;
1945 /*
1946 * Special case - lookup gave negative, but... we had foo/bar/
1947 * From the vfs_mknod() POV we just have a negative dentry -
1948 * all is fine. Let's be bastards - you had / on the end, you've
1949 * been asking for (non-existent) directory. -ENOENT for you.
1950 */
1951 if (unlikely(!is_dir && nd->last.name[nd->last.len])) {
1952 dput(dentry);
1953 dentry = ERR_PTR(-ENOENT);
1954 }
1955 return dentry;
1956 eexist:
1957 dput(dentry);
1958 dentry = ERR_PTR(-EEXIST);
1959 fail:
1960 return dentry;
1961 }
1962 EXPORT_SYMBOL_GPL(lookup_create);
1963
1964 int vfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
1965 {
1966 int error = may_create(dir, dentry);
1967
1968 if (error)
1969 return error;
1970
1971 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
1972 return -EPERM;
1973
1974 if (!dir->i_op->mknod)
1975 return -EPERM;
1976
1977 error = devcgroup_inode_mknod(mode, dev);
1978 if (error)
1979 return error;
1980
1981 error = security_inode_mknod(dir, dentry, mode, dev);
1982 if (error)
1983 return error;
1984
1985 vfs_dq_init(dir);
1986 error = dir->i_op->mknod(dir, dentry, mode, dev);
1987 if (!error)
1988 fsnotify_create(dir, dentry);
1989 return error;
1990 }
1991
1992 static int may_mknod(mode_t mode)
1993 {
1994 switch (mode & S_IFMT) {
1995 case S_IFREG:
1996 case S_IFCHR:
1997 case S_IFBLK:
1998 case S_IFIFO:
1999 case S_IFSOCK:
2000 case 0: /* zero mode translates to S_IFREG */
2001 return 0;
2002 case S_IFDIR:
2003 return -EPERM;
2004 default:
2005 return -EINVAL;
2006 }
2007 }
2008
2009 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, int, mode,
2010 unsigned, dev)
2011 {
2012 int error;
2013 char *tmp;
2014 struct dentry *dentry;
2015 struct nameidata nd;
2016
2017 if (S_ISDIR(mode))
2018 return -EPERM;
2019
2020 error = user_path_parent(dfd, filename, &nd, &tmp);
2021 if (error)
2022 return error;
2023
2024 dentry = lookup_create(&nd, 0);
2025 if (IS_ERR(dentry)) {
2026 error = PTR_ERR(dentry);
2027 goto out_unlock;
2028 }
2029 if (!IS_POSIXACL(nd.path.dentry->d_inode))
2030 mode &= ~current_umask();
2031 error = may_mknod(mode);
2032 if (error)
2033 goto out_dput;
2034 error = mnt_want_write(nd.path.mnt);
2035 if (error)
2036 goto out_dput;
2037 error = security_path_mknod(&nd.path, dentry, mode, dev);
2038 if (error)
2039 goto out_drop_write;
2040 switch (mode & S_IFMT) {
2041 case 0: case S_IFREG:
2042 error = vfs_create(nd.path.dentry->d_inode,dentry,mode,&nd);
2043 break;
2044 case S_IFCHR: case S_IFBLK:
2045 error = vfs_mknod(nd.path.dentry->d_inode,dentry,mode,
2046 new_decode_dev(dev));
2047 break;
2048 case S_IFIFO: case S_IFSOCK:
2049 error = vfs_mknod(nd.path.dentry->d_inode,dentry,mode,0);
2050 break;
2051 }
2052 out_drop_write:
2053 mnt_drop_write(nd.path.mnt);
2054 out_dput:
2055 dput(dentry);
2056 out_unlock:
2057 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2058 path_put(&nd.path);
2059 putname(tmp);
2060
2061 return error;
2062 }
2063
2064 SYSCALL_DEFINE3(mknod, const char __user *, filename, int, mode, unsigned, dev)
2065 {
2066 return sys_mknodat(AT_FDCWD, filename, mode, dev);
2067 }
2068
2069 int vfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
2070 {
2071 int error = may_create(dir, dentry);
2072
2073 if (error)
2074 return error;
2075
2076 if (!dir->i_op->mkdir)
2077 return -EPERM;
2078
2079 mode &= (S_IRWXUGO|S_ISVTX);
2080 error = security_inode_mkdir(dir, dentry, mode);
2081 if (error)
2082 return error;
2083
2084 vfs_dq_init(dir);
2085 error = dir->i_op->mkdir(dir, dentry, mode);
2086 if (!error)
2087 fsnotify_mkdir(dir, dentry);
2088 return error;
2089 }
2090
2091 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, int, mode)
2092 {
2093 int error = 0;
2094 char * tmp;
2095 struct dentry *dentry;
2096 struct nameidata nd;
2097
2098 error = user_path_parent(dfd, pathname, &nd, &tmp);
2099 if (error)
2100 goto out_err;
2101
2102 dentry = lookup_create(&nd, 1);
2103 error = PTR_ERR(dentry);
2104 if (IS_ERR(dentry))
2105 goto out_unlock;
2106
2107 if (!IS_POSIXACL(nd.path.dentry->d_inode))
2108 mode &= ~current_umask();
2109 error = mnt_want_write(nd.path.mnt);
2110 if (error)
2111 goto out_dput;
2112 error = security_path_mkdir(&nd.path, dentry, mode);
2113 if (error)
2114 goto out_drop_write;
2115 error = vfs_mkdir(nd.path.dentry->d_inode, dentry, mode);
2116 out_drop_write:
2117 mnt_drop_write(nd.path.mnt);
2118 out_dput:
2119 dput(dentry);
2120 out_unlock:
2121 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2122 path_put(&nd.path);
2123 putname(tmp);
2124 out_err:
2125 return error;
2126 }
2127
2128 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, int, mode)
2129 {
2130 return sys_mkdirat(AT_FDCWD, pathname, mode);
2131 }
2132
2133 /*
2134 * We try to drop the dentry early: we should have
2135 * a usage count of 2 if we're the only user of this
2136 * dentry, and if that is true (possibly after pruning
2137 * the dcache), then we drop the dentry now.
2138 *
2139 * A low-level filesystem can, if it choses, legally
2140 * do a
2141 *
2142 * if (!d_unhashed(dentry))
2143 * return -EBUSY;
2144 *
2145 * if it cannot handle the case of removing a directory
2146 * that is still in use by something else..
2147 */
2148 void dentry_unhash(struct dentry *dentry)
2149 {
2150 dget(dentry);
2151 shrink_dcache_parent(dentry);
2152 spin_lock(&dcache_lock);
2153 spin_lock(&dentry->d_lock);
2154 if (atomic_read(&dentry->d_count) == 2)
2155 __d_drop(dentry);
2156 spin_unlock(&dentry->d_lock);
2157 spin_unlock(&dcache_lock);
2158 }
2159
2160 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
2161 {
2162 int error = may_delete(dir, dentry, 1);
2163
2164 if (error)
2165 return error;
2166
2167 if (!dir->i_op->rmdir)
2168 return -EPERM;
2169
2170 vfs_dq_init(dir);
2171
2172 mutex_lock(&dentry->d_inode->i_mutex);
2173 dentry_unhash(dentry);
2174 if (d_mountpoint(dentry))
2175 error = -EBUSY;
2176 else {
2177 error = security_inode_rmdir(dir, dentry);
2178 if (!error) {
2179 error = dir->i_op->rmdir(dir, dentry);
2180 if (!error)
2181 dentry->d_inode->i_flags |= S_DEAD;
2182 }
2183 }
2184 mutex_unlock(&dentry->d_inode->i_mutex);
2185 if (!error) {
2186 d_delete(dentry);
2187 }
2188 dput(dentry);
2189
2190 return error;
2191 }
2192
2193 static long do_rmdir(int dfd, const char __user *pathname)
2194 {
2195 int error = 0;
2196 char * name;
2197 struct dentry *dentry;
2198 struct nameidata nd;
2199
2200 error = user_path_parent(dfd, pathname, &nd, &name);
2201 if (error)
2202 return error;
2203
2204 switch(nd.last_type) {
2205 case LAST_DOTDOT:
2206 error = -ENOTEMPTY;
2207 goto exit1;
2208 case LAST_DOT:
2209 error = -EINVAL;
2210 goto exit1;
2211 case LAST_ROOT:
2212 error = -EBUSY;
2213 goto exit1;
2214 }
2215
2216 nd.flags &= ~LOOKUP_PARENT;
2217
2218 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2219 dentry = lookup_hash(&nd);
2220 error = PTR_ERR(dentry);
2221 if (IS_ERR(dentry))
2222 goto exit2;
2223 error = mnt_want_write(nd.path.mnt);
2224 if (error)
2225 goto exit3;
2226 error = security_path_rmdir(&nd.path, dentry);
2227 if (error)
2228 goto exit4;
2229 error = vfs_rmdir(nd.path.dentry->d_inode, dentry);
2230 exit4:
2231 mnt_drop_write(nd.path.mnt);
2232 exit3:
2233 dput(dentry);
2234 exit2:
2235 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2236 exit1:
2237 path_put(&nd.path);
2238 putname(name);
2239 return error;
2240 }
2241
2242 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
2243 {
2244 return do_rmdir(AT_FDCWD, pathname);
2245 }
2246
2247 int vfs_unlink(struct inode *dir, struct dentry *dentry)
2248 {
2249 int error = may_delete(dir, dentry, 0);
2250
2251 if (error)
2252 return error;
2253
2254 if (!dir->i_op->unlink)
2255 return -EPERM;
2256
2257 vfs_dq_init(dir);
2258
2259 mutex_lock(&dentry->d_inode->i_mutex);
2260 if (d_mountpoint(dentry))
2261 error = -EBUSY;
2262 else {
2263 error = security_inode_unlink(dir, dentry);
2264 if (!error)
2265 error = dir->i_op->unlink(dir, dentry);
2266 }
2267 mutex_unlock(&dentry->d_inode->i_mutex);
2268
2269 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
2270 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
2271 fsnotify_link_count(dentry->d_inode);
2272 d_delete(dentry);
2273 }
2274
2275 return error;
2276 }
2277
2278 /*
2279 * Make sure that the actual truncation of the file will occur outside its
2280 * directory's i_mutex. Truncate can take a long time if there is a lot of
2281 * writeout happening, and we don't want to prevent access to the directory
2282 * while waiting on the I/O.
2283 */
2284 static long do_unlinkat(int dfd, const char __user *pathname)
2285 {
2286 int error;
2287 char *name;
2288 struct dentry *dentry;
2289 struct nameidata nd;
2290 struct inode *inode = NULL;
2291
2292 error = user_path_parent(dfd, pathname, &nd, &name);
2293 if (error)
2294 return error;
2295
2296 error = -EISDIR;
2297 if (nd.last_type != LAST_NORM)
2298 goto exit1;
2299
2300 nd.flags &= ~LOOKUP_PARENT;
2301
2302 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2303 dentry = lookup_hash(&nd);
2304 error = PTR_ERR(dentry);
2305 if (!IS_ERR(dentry)) {
2306 /* Why not before? Because we want correct error value */
2307 if (nd.last.name[nd.last.len])
2308 goto slashes;
2309 inode = dentry->d_inode;
2310 if (inode)
2311 atomic_inc(&inode->i_count);
2312 error = mnt_want_write(nd.path.mnt);
2313 if (error)
2314 goto exit2;
2315 error = security_path_unlink(&nd.path, dentry);
2316 if (error)
2317 goto exit3;
2318 error = vfs_unlink(nd.path.dentry->d_inode, dentry);
2319 exit3:
2320 mnt_drop_write(nd.path.mnt);
2321 exit2:
2322 dput(dentry);
2323 }
2324 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2325 if (inode)
2326 iput(inode); /* truncate the inode here */
2327 exit1:
2328 path_put(&nd.path);
2329 putname(name);
2330 return error;
2331
2332 slashes:
2333 error = !dentry->d_inode ? -ENOENT :
2334 S_ISDIR(dentry->d_inode->i_mode) ? -EISDIR : -ENOTDIR;
2335 goto exit2;
2336 }
2337
2338 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
2339 {
2340 if ((flag & ~AT_REMOVEDIR) != 0)
2341 return -EINVAL;
2342
2343 if (flag & AT_REMOVEDIR)
2344 return do_rmdir(dfd, pathname);
2345
2346 return do_unlinkat(dfd, pathname);
2347 }
2348
2349 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
2350 {
2351 return do_unlinkat(AT_FDCWD, pathname);
2352 }
2353
2354 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
2355 {
2356 int error = may_create(dir, dentry);
2357
2358 if (error)
2359 return error;
2360
2361 if (!dir->i_op->symlink)
2362 return -EPERM;
2363
2364 error = security_inode_symlink(dir, dentry, oldname);
2365 if (error)
2366 return error;
2367
2368 vfs_dq_init(dir);
2369 error = dir->i_op->symlink(dir, dentry, oldname);
2370 if (!error)
2371 fsnotify_create(dir, dentry);
2372 return error;
2373 }
2374
2375 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
2376 int, newdfd, const char __user *, newname)
2377 {
2378 int error;
2379 char *from;
2380 char *to;
2381 struct dentry *dentry;
2382 struct nameidata nd;
2383
2384 from = getname(oldname);
2385 if (IS_ERR(from))
2386 return PTR_ERR(from);
2387
2388 error = user_path_parent(newdfd, newname, &nd, &to);
2389 if (error)
2390 goto out_putname;
2391
2392 dentry = lookup_create(&nd, 0);
2393 error = PTR_ERR(dentry);
2394 if (IS_ERR(dentry))
2395 goto out_unlock;
2396
2397 error = mnt_want_write(nd.path.mnt);
2398 if (error)
2399 goto out_dput;
2400 error = security_path_symlink(&nd.path, dentry, from);
2401 if (error)
2402 goto out_drop_write;
2403 error = vfs_symlink(nd.path.dentry->d_inode, dentry, from);
2404 out_drop_write:
2405 mnt_drop_write(nd.path.mnt);
2406 out_dput:
2407 dput(dentry);
2408 out_unlock:
2409 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2410 path_put(&nd.path);
2411 putname(to);
2412 out_putname:
2413 putname(from);
2414 return error;
2415 }
2416
2417 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
2418 {
2419 return sys_symlinkat(oldname, AT_FDCWD, newname);
2420 }
2421
2422 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2423 {
2424 struct inode *inode = old_dentry->d_inode;
2425 int error;
2426
2427 if (!inode)
2428 return -ENOENT;
2429
2430 error = may_create(dir, new_dentry);
2431 if (error)
2432 return error;
2433
2434 if (dir->i_sb != inode->i_sb)
2435 return -EXDEV;
2436
2437 /*
2438 * A link to an append-only or immutable file cannot be created.
2439 */
2440 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
2441 return -EPERM;
2442 if (!dir->i_op->link)
2443 return -EPERM;
2444 if (S_ISDIR(inode->i_mode))
2445 return -EPERM;
2446
2447 error = security_inode_link(old_dentry, dir, new_dentry);
2448 if (error)
2449 return error;
2450
2451 mutex_lock(&inode->i_mutex);
2452 vfs_dq_init(dir);
2453 error = dir->i_op->link(old_dentry, dir, new_dentry);
2454 mutex_unlock(&inode->i_mutex);
2455 if (!error)
2456 fsnotify_link(dir, inode, new_dentry);
2457 return error;
2458 }
2459
2460 /*
2461 * Hardlinks are often used in delicate situations. We avoid
2462 * security-related surprises by not following symlinks on the
2463 * newname. --KAB
2464 *
2465 * We don't follow them on the oldname either to be compatible
2466 * with linux 2.0, and to avoid hard-linking to directories
2467 * and other special files. --ADM
2468 */
2469 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
2470 int, newdfd, const char __user *, newname, int, flags)
2471 {
2472 struct dentry *new_dentry;
2473 struct nameidata nd;
2474 struct path old_path;
2475 int error;
2476 char *to;
2477
2478 if ((flags & ~AT_SYMLINK_FOLLOW) != 0)
2479 return -EINVAL;
2480
2481 error = user_path_at(olddfd, oldname,
2482 flags & AT_SYMLINK_FOLLOW ? LOOKUP_FOLLOW : 0,
2483 &old_path);
2484 if (error)
2485 return error;
2486
2487 error = user_path_parent(newdfd, newname, &nd, &to);
2488 if (error)
2489 goto out;
2490 error = -EXDEV;
2491 if (old_path.mnt != nd.path.mnt)
2492 goto out_release;
2493 new_dentry = lookup_create(&nd, 0);
2494 error = PTR_ERR(new_dentry);
2495 if (IS_ERR(new_dentry))
2496 goto out_unlock;
2497 error = mnt_want_write(nd.path.mnt);
2498 if (error)
2499 goto out_dput;
2500 error = security_path_link(old_path.dentry, &nd.path, new_dentry);
2501 if (error)
2502 goto out_drop_write;
2503 error = vfs_link(old_path.dentry, nd.path.dentry->d_inode, new_dentry);
2504 out_drop_write:
2505 mnt_drop_write(nd.path.mnt);
2506 out_dput:
2507 dput(new_dentry);
2508 out_unlock:
2509 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2510 out_release:
2511 path_put(&nd.path);
2512 putname(to);
2513 out:
2514 path_put(&old_path);
2515
2516 return error;
2517 }
2518
2519 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
2520 {
2521 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
2522 }
2523
2524 /*
2525 * The worst of all namespace operations - renaming directory. "Perverted"
2526 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
2527 * Problems:
2528 * a) we can get into loop creation. Check is done in is_subdir().
2529 * b) race potential - two innocent renames can create a loop together.
2530 * That's where 4.4 screws up. Current fix: serialization on
2531 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
2532 * story.
2533 * c) we have to lock _three_ objects - parents and victim (if it exists).
2534 * And that - after we got ->i_mutex on parents (until then we don't know
2535 * whether the target exists). Solution: try to be smart with locking
2536 * order for inodes. We rely on the fact that tree topology may change
2537 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
2538 * move will be locked. Thus we can rank directories by the tree
2539 * (ancestors first) and rank all non-directories after them.
2540 * That works since everybody except rename does "lock parent, lookup,
2541 * lock child" and rename is under ->s_vfs_rename_mutex.
2542 * HOWEVER, it relies on the assumption that any object with ->lookup()
2543 * has no more than 1 dentry. If "hybrid" objects will ever appear,
2544 * we'd better make sure that there's no link(2) for them.
2545 * d) some filesystems don't support opened-but-unlinked directories,
2546 * either because of layout or because they are not ready to deal with
2547 * all cases correctly. The latter will be fixed (taking this sort of
2548 * stuff into VFS), but the former is not going away. Solution: the same
2549 * trick as in rmdir().
2550 * e) conversion from fhandle to dentry may come in the wrong moment - when
2551 * we are removing the target. Solution: we will have to grab ->i_mutex
2552 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
2553 * ->i_mutex on parents, which works but leads to some truely excessive
2554 * locking].
2555 */
2556 static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry,
2557 struct inode *new_dir, struct dentry *new_dentry)
2558 {
2559 int error = 0;
2560 struct inode *target;
2561
2562 /*
2563 * If we are going to change the parent - check write permissions,
2564 * we'll need to flip '..'.
2565 */
2566 if (new_dir != old_dir) {
2567 error = inode_permission(old_dentry->d_inode, MAY_WRITE);
2568 if (error)
2569 return error;
2570 }
2571
2572 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
2573 if (error)
2574 return error;
2575
2576 target = new_dentry->d_inode;
2577 if (target) {
2578 mutex_lock(&target->i_mutex);
2579 dentry_unhash(new_dentry);
2580 }
2581 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
2582 error = -EBUSY;
2583 else
2584 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
2585 if (target) {
2586 if (!error)
2587 target->i_flags |= S_DEAD;
2588 mutex_unlock(&target->i_mutex);
2589 if (d_unhashed(new_dentry))
2590 d_rehash(new_dentry);
2591 dput(new_dentry);
2592 }
2593 if (!error)
2594 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
2595 d_move(old_dentry,new_dentry);
2596 return error;
2597 }
2598
2599 static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry,
2600 struct inode *new_dir, struct dentry *new_dentry)
2601 {
2602 struct inode *target;
2603 int error;
2604
2605 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
2606 if (error)
2607 return error;
2608
2609 dget(new_dentry);
2610 target = new_dentry->d_inode;
2611 if (target)
2612 mutex_lock(&target->i_mutex);
2613 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
2614 error = -EBUSY;
2615 else
2616 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
2617 if (!error) {
2618 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
2619 d_move(old_dentry, new_dentry);
2620 }
2621 if (target)
2622 mutex_unlock(&target->i_mutex);
2623 dput(new_dentry);
2624 return error;
2625 }
2626
2627 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
2628 struct inode *new_dir, struct dentry *new_dentry)
2629 {
2630 int error;
2631 int is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
2632 const char *old_name;
2633
2634 if (old_dentry->d_inode == new_dentry->d_inode)
2635 return 0;
2636
2637 error = may_delete(old_dir, old_dentry, is_dir);
2638 if (error)
2639 return error;
2640
2641 if (!new_dentry->d_inode)
2642 error = may_create(new_dir, new_dentry);
2643 else
2644 error = may_delete(new_dir, new_dentry, is_dir);
2645 if (error)
2646 return error;
2647
2648 if (!old_dir->i_op->rename)
2649 return -EPERM;
2650
2651 vfs_dq_init(old_dir);
2652 vfs_dq_init(new_dir);
2653
2654 old_name = fsnotify_oldname_init(old_dentry->d_name.name);
2655
2656 if (is_dir)
2657 error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry);
2658 else
2659 error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry);
2660 if (!error) {
2661 const char *new_name = old_dentry->d_name.name;
2662 fsnotify_move(old_dir, new_dir, old_name, new_name, is_dir,
2663 new_dentry->d_inode, old_dentry);
2664 }
2665 fsnotify_oldname_free(old_name);
2666
2667 return error;
2668 }
2669
2670 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
2671 int, newdfd, const char __user *, newname)
2672 {
2673 struct dentry *old_dir, *new_dir;
2674 struct dentry *old_dentry, *new_dentry;
2675 struct dentry *trap;
2676 struct nameidata oldnd, newnd;
2677 char *from;
2678 char *to;
2679 int error;
2680
2681 error = user_path_parent(olddfd, oldname, &oldnd, &from);
2682 if (error)
2683 goto exit;
2684
2685 error = user_path_parent(newdfd, newname, &newnd, &to);
2686 if (error)
2687 goto exit1;
2688
2689 error = -EXDEV;
2690 if (oldnd.path.mnt != newnd.path.mnt)
2691 goto exit2;
2692
2693 old_dir = oldnd.path.dentry;
2694 error = -EBUSY;
2695 if (oldnd.last_type != LAST_NORM)
2696 goto exit2;
2697
2698 new_dir = newnd.path.dentry;
2699 if (newnd.last_type != LAST_NORM)
2700 goto exit2;
2701
2702 oldnd.flags &= ~LOOKUP_PARENT;
2703 newnd.flags &= ~LOOKUP_PARENT;
2704 newnd.flags |= LOOKUP_RENAME_TARGET;
2705
2706 trap = lock_rename(new_dir, old_dir);
2707
2708 old_dentry = lookup_hash(&oldnd);
2709 error = PTR_ERR(old_dentry);
2710 if (IS_ERR(old_dentry))
2711 goto exit3;
2712 /* source must exist */
2713 error = -ENOENT;
2714 if (!old_dentry->d_inode)
2715 goto exit4;
2716 /* unless the source is a directory trailing slashes give -ENOTDIR */
2717 if (!S_ISDIR(old_dentry->d_inode->i_mode)) {
2718 error = -ENOTDIR;
2719 if (oldnd.last.name[oldnd.last.len])
2720 goto exit4;
2721 if (newnd.last.name[newnd.last.len])
2722 goto exit4;
2723 }
2724 /* source should not be ancestor of target */
2725 error = -EINVAL;
2726 if (old_dentry == trap)
2727 goto exit4;
2728 new_dentry = lookup_hash(&newnd);
2729 error = PTR_ERR(new_dentry);
2730 if (IS_ERR(new_dentry))
2731 goto exit4;
2732 /* target should not be an ancestor of source */
2733 error = -ENOTEMPTY;
2734 if (new_dentry == trap)
2735 goto exit5;
2736
2737 error = mnt_want_write(oldnd.path.mnt);
2738 if (error)
2739 goto exit5;
2740 error = security_path_rename(&oldnd.path, old_dentry,
2741 &newnd.path, new_dentry);
2742 if (error)
2743 goto exit6;
2744 error = vfs_rename(old_dir->d_inode, old_dentry,
2745 new_dir->d_inode, new_dentry);
2746 exit6:
2747 mnt_drop_write(oldnd.path.mnt);
2748 exit5:
2749 dput(new_dentry);
2750 exit4:
2751 dput(old_dentry);
2752 exit3:
2753 unlock_rename(new_dir, old_dir);
2754 exit2:
2755 path_put(&newnd.path);
2756 putname(to);
2757 exit1:
2758 path_put(&oldnd.path);
2759 putname(from);
2760 exit:
2761 return error;
2762 }
2763
2764 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
2765 {
2766 return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname);
2767 }
2768
2769 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link)
2770 {
2771 int len;
2772
2773 len = PTR_ERR(link);
2774 if (IS_ERR(link))
2775 goto out;
2776
2777 len = strlen(link);
2778 if (len > (unsigned) buflen)
2779 len = buflen;
2780 if (copy_to_user(buffer, link, len))
2781 len = -EFAULT;
2782 out:
2783 return len;
2784 }
2785
2786 /*
2787 * A helper for ->readlink(). This should be used *ONLY* for symlinks that
2788 * have ->follow_link() touching nd only in nd_set_link(). Using (or not
2789 * using) it for any given inode is up to filesystem.
2790 */
2791 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
2792 {
2793 struct nameidata nd;
2794 void *cookie;
2795 int res;
2796
2797 nd.depth = 0;
2798 cookie = dentry->d_inode->i_op->follow_link(dentry, &nd);
2799 if (IS_ERR(cookie))
2800 return PTR_ERR(cookie);
2801
2802 res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd));
2803 if (dentry->d_inode->i_op->put_link)
2804 dentry->d_inode->i_op->put_link(dentry, &nd, cookie);
2805 return res;
2806 }
2807
2808 int vfs_follow_link(struct nameidata *nd, const char *link)
2809 {
2810 return __vfs_follow_link(nd, link);
2811 }
2812
2813 /* get the link contents into pagecache */
2814 static char *page_getlink(struct dentry * dentry, struct page **ppage)
2815 {
2816 char *kaddr;
2817 struct page *page;
2818 struct address_space *mapping = dentry->d_inode->i_mapping;
2819 page = read_mapping_page(mapping, 0, NULL);
2820 if (IS_ERR(page))
2821 return (char*)page;
2822 *ppage = page;
2823 kaddr = kmap(page);
2824 nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
2825 return kaddr;
2826 }
2827
2828 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
2829 {
2830 struct page *page = NULL;
2831 char *s = page_getlink(dentry, &page);
2832 int res = vfs_readlink(dentry,buffer,buflen,s);
2833 if (page) {
2834 kunmap(page);
2835 page_cache_release(page);
2836 }
2837 return res;
2838 }
2839
2840 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd)
2841 {
2842 struct page *page = NULL;
2843 nd_set_link(nd, page_getlink(dentry, &page));
2844 return page;
2845 }
2846
2847 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
2848 {
2849 struct page *page = cookie;
2850
2851 if (page) {
2852 kunmap(page);
2853 page_cache_release(page);
2854 }
2855 }
2856
2857 /*
2858 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
2859 */
2860 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
2861 {
2862 struct address_space *mapping = inode->i_mapping;
2863 struct page *page;
2864 void *fsdata;
2865 int err;
2866 char *kaddr;
2867 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
2868 if (nofs)
2869 flags |= AOP_FLAG_NOFS;
2870
2871 retry:
2872 err = pagecache_write_begin(NULL, mapping, 0, len-1,
2873 flags, &page, &fsdata);
2874 if (err)
2875 goto fail;
2876
2877 kaddr = kmap_atomic(page, KM_USER0);
2878 memcpy(kaddr, symname, len-1);
2879 kunmap_atomic(kaddr, KM_USER0);
2880
2881 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
2882 page, fsdata);
2883 if (err < 0)
2884 goto fail;
2885 if (err < len-1)
2886 goto retry;
2887
2888 mark_inode_dirty(inode);
2889 return 0;
2890 fail:
2891 return err;
2892 }
2893
2894 int page_symlink(struct inode *inode, const char *symname, int len)
2895 {
2896 return __page_symlink(inode, symname, len,
2897 !(mapping_gfp_mask(inode->i_mapping) & __GFP_FS));
2898 }
2899
2900 const struct inode_operations page_symlink_inode_operations = {
2901 .readlink = generic_readlink,
2902 .follow_link = page_follow_link_light,
2903 .put_link = page_put_link,
2904 };
2905
2906 EXPORT_SYMBOL(user_path_at);
2907 EXPORT_SYMBOL(follow_down);
2908 EXPORT_SYMBOL(follow_up);
2909 EXPORT_SYMBOL(get_write_access); /* binfmt_aout */
2910 EXPORT_SYMBOL(getname);
2911 EXPORT_SYMBOL(lock_rename);
2912 EXPORT_SYMBOL(lookup_one_len);
2913 EXPORT_SYMBOL(page_follow_link_light);
2914 EXPORT_SYMBOL(page_put_link);
2915 EXPORT_SYMBOL(page_readlink);
2916 EXPORT_SYMBOL(__page_symlink);
2917 EXPORT_SYMBOL(page_symlink);
2918 EXPORT_SYMBOL(page_symlink_inode_operations);
2919 EXPORT_SYMBOL(path_lookup);
2920 EXPORT_SYMBOL(kern_path);
2921 EXPORT_SYMBOL(vfs_path_lookup);
2922 EXPORT_SYMBOL(inode_permission);
2923 EXPORT_SYMBOL(file_permission);
2924 EXPORT_SYMBOL(unlock_rename);
2925 EXPORT_SYMBOL(vfs_create);
2926 EXPORT_SYMBOL(vfs_follow_link);
2927 EXPORT_SYMBOL(vfs_link);
2928 EXPORT_SYMBOL(vfs_mkdir);
2929 EXPORT_SYMBOL(vfs_mknod);
2930 EXPORT_SYMBOL(generic_permission);
2931 EXPORT_SYMBOL(vfs_readlink);
2932 EXPORT_SYMBOL(vfs_rename);
2933 EXPORT_SYMBOL(vfs_rmdir);
2934 EXPORT_SYMBOL(vfs_symlink);
2935 EXPORT_SYMBOL(vfs_unlink);
2936 EXPORT_SYMBOL(dentry_unhash);
2937 EXPORT_SYMBOL(generic_readlink);
This page took 0.086882 seconds and 6 git commands to generate.