clear RCU on all failure exits from link_path_walk()
[deliverable/linux.git] / fs / namei.c
1 /*
2 * linux/fs/namei.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * Some corrections by tytso.
9 */
10
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12 * lookup logic.
13 */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15 */
16
17 #include <linux/init.h>
18 #include <linux/module.h>
19 #include <linux/slab.h>
20 #include <linux/fs.h>
21 #include <linux/namei.h>
22 #include <linux/pagemap.h>
23 #include <linux/fsnotify.h>
24 #include <linux/personality.h>
25 #include <linux/security.h>
26 #include <linux/ima.h>
27 #include <linux/syscalls.h>
28 #include <linux/mount.h>
29 #include <linux/audit.h>
30 #include <linux/capability.h>
31 #include <linux/file.h>
32 #include <linux/fcntl.h>
33 #include <linux/device_cgroup.h>
34 #include <linux/fs_struct.h>
35 #include <asm/uaccess.h>
36
37 #include "internal.h"
38
39 /* [Feb-1997 T. Schoebel-Theuer]
40 * Fundamental changes in the pathname lookup mechanisms (namei)
41 * were necessary because of omirr. The reason is that omirr needs
42 * to know the _real_ pathname, not the user-supplied one, in case
43 * of symlinks (and also when transname replacements occur).
44 *
45 * The new code replaces the old recursive symlink resolution with
46 * an iterative one (in case of non-nested symlink chains). It does
47 * this with calls to <fs>_follow_link().
48 * As a side effect, dir_namei(), _namei() and follow_link() are now
49 * replaced with a single function lookup_dentry() that can handle all
50 * the special cases of the former code.
51 *
52 * With the new dcache, the pathname is stored at each inode, at least as
53 * long as the refcount of the inode is positive. As a side effect, the
54 * size of the dcache depends on the inode cache and thus is dynamic.
55 *
56 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
57 * resolution to correspond with current state of the code.
58 *
59 * Note that the symlink resolution is not *completely* iterative.
60 * There is still a significant amount of tail- and mid- recursion in
61 * the algorithm. Also, note that <fs>_readlink() is not used in
62 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
63 * may return different results than <fs>_follow_link(). Many virtual
64 * filesystems (including /proc) exhibit this behavior.
65 */
66
67 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
68 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
69 * and the name already exists in form of a symlink, try to create the new
70 * name indicated by the symlink. The old code always complained that the
71 * name already exists, due to not following the symlink even if its target
72 * is nonexistent. The new semantics affects also mknod() and link() when
73 * the name is a symlink pointing to a non-existant name.
74 *
75 * I don't know which semantics is the right one, since I have no access
76 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
77 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
78 * "old" one. Personally, I think the new semantics is much more logical.
79 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
80 * file does succeed in both HP-UX and SunOs, but not in Solaris
81 * and in the old Linux semantics.
82 */
83
84 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
85 * semantics. See the comments in "open_namei" and "do_link" below.
86 *
87 * [10-Sep-98 Alan Modra] Another symlink change.
88 */
89
90 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
91 * inside the path - always follow.
92 * in the last component in creation/removal/renaming - never follow.
93 * if LOOKUP_FOLLOW passed - follow.
94 * if the pathname has trailing slashes - follow.
95 * otherwise - don't follow.
96 * (applied in that order).
97 *
98 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
99 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
100 * During the 2.4 we need to fix the userland stuff depending on it -
101 * hopefully we will be able to get rid of that wart in 2.5. So far only
102 * XEmacs seems to be relying on it...
103 */
104 /*
105 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
106 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
107 * any extra contention...
108 */
109
110 /* In order to reduce some races, while at the same time doing additional
111 * checking and hopefully speeding things up, we copy filenames to the
112 * kernel data space before using them..
113 *
114 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
115 * PATH_MAX includes the nul terminator --RR.
116 */
117 static int do_getname(const char __user *filename, char *page)
118 {
119 int retval;
120 unsigned long len = PATH_MAX;
121
122 if (!segment_eq(get_fs(), KERNEL_DS)) {
123 if ((unsigned long) filename >= TASK_SIZE)
124 return -EFAULT;
125 if (TASK_SIZE - (unsigned long) filename < PATH_MAX)
126 len = TASK_SIZE - (unsigned long) filename;
127 }
128
129 retval = strncpy_from_user(page, filename, len);
130 if (retval > 0) {
131 if (retval < len)
132 return 0;
133 return -ENAMETOOLONG;
134 } else if (!retval)
135 retval = -ENOENT;
136 return retval;
137 }
138
139 char * getname(const char __user * filename)
140 {
141 char *tmp, *result;
142
143 result = ERR_PTR(-ENOMEM);
144 tmp = __getname();
145 if (tmp) {
146 int retval = do_getname(filename, tmp);
147
148 result = tmp;
149 if (retval < 0) {
150 __putname(tmp);
151 result = ERR_PTR(retval);
152 }
153 }
154 audit_getname(result);
155 return result;
156 }
157
158 #ifdef CONFIG_AUDITSYSCALL
159 void putname(const char *name)
160 {
161 if (unlikely(!audit_dummy_context()))
162 audit_putname(name);
163 else
164 __putname(name);
165 }
166 EXPORT_SYMBOL(putname);
167 #endif
168
169 /*
170 * This does basic POSIX ACL permission checking
171 */
172 static int acl_permission_check(struct inode *inode, int mask, unsigned int flags,
173 int (*check_acl)(struct inode *inode, int mask, unsigned int flags))
174 {
175 umode_t mode = inode->i_mode;
176
177 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
178
179 if (current_fsuid() == inode->i_uid)
180 mode >>= 6;
181 else {
182 if (IS_POSIXACL(inode) && (mode & S_IRWXG) && check_acl) {
183 int error = check_acl(inode, mask, flags);
184 if (error != -EAGAIN)
185 return error;
186 }
187
188 if (in_group_p(inode->i_gid))
189 mode >>= 3;
190 }
191
192 /*
193 * If the DACs are ok we don't need any capability check.
194 */
195 if ((mask & ~mode) == 0)
196 return 0;
197 return -EACCES;
198 }
199
200 /**
201 * generic_permission - check for access rights on a Posix-like filesystem
202 * @inode: inode to check access rights for
203 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
204 * @check_acl: optional callback to check for Posix ACLs
205 * @flags: IPERM_FLAG_ flags.
206 *
207 * Used to check for read/write/execute permissions on a file.
208 * We use "fsuid" for this, letting us set arbitrary permissions
209 * for filesystem access without changing the "normal" uids which
210 * are used for other things.
211 *
212 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
213 * request cannot be satisfied (eg. requires blocking or too much complexity).
214 * It would then be called again in ref-walk mode.
215 */
216 int generic_permission(struct inode *inode, int mask, unsigned int flags,
217 int (*check_acl)(struct inode *inode, int mask, unsigned int flags))
218 {
219 int ret;
220
221 /*
222 * Do the basic POSIX ACL permission checks.
223 */
224 ret = acl_permission_check(inode, mask, flags, check_acl);
225 if (ret != -EACCES)
226 return ret;
227
228 /*
229 * Read/write DACs are always overridable.
230 * Executable DACs are overridable if at least one exec bit is set.
231 */
232 if (!(mask & MAY_EXEC) || execute_ok(inode))
233 if (capable(CAP_DAC_OVERRIDE))
234 return 0;
235
236 /*
237 * Searching includes executable on directories, else just read.
238 */
239 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
240 if (mask == MAY_READ || (S_ISDIR(inode->i_mode) && !(mask & MAY_WRITE)))
241 if (capable(CAP_DAC_READ_SEARCH))
242 return 0;
243
244 return -EACCES;
245 }
246
247 /**
248 * inode_permission - check for access rights to a given inode
249 * @inode: inode to check permission on
250 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
251 *
252 * Used to check for read/write/execute permissions on an inode.
253 * We use "fsuid" for this, letting us set arbitrary permissions
254 * for filesystem access without changing the "normal" uids which
255 * are used for other things.
256 */
257 int inode_permission(struct inode *inode, int mask)
258 {
259 int retval;
260
261 if (mask & MAY_WRITE) {
262 umode_t mode = inode->i_mode;
263
264 /*
265 * Nobody gets write access to a read-only fs.
266 */
267 if (IS_RDONLY(inode) &&
268 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
269 return -EROFS;
270
271 /*
272 * Nobody gets write access to an immutable file.
273 */
274 if (IS_IMMUTABLE(inode))
275 return -EACCES;
276 }
277
278 if (inode->i_op->permission)
279 retval = inode->i_op->permission(inode, mask, 0);
280 else
281 retval = generic_permission(inode, mask, 0,
282 inode->i_op->check_acl);
283
284 if (retval)
285 return retval;
286
287 retval = devcgroup_inode_permission(inode, mask);
288 if (retval)
289 return retval;
290
291 return security_inode_permission(inode, mask);
292 }
293
294 /**
295 * file_permission - check for additional access rights to a given file
296 * @file: file to check access rights for
297 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
298 *
299 * Used to check for read/write/execute permissions on an already opened
300 * file.
301 *
302 * Note:
303 * Do not use this function in new code. All access checks should
304 * be done using inode_permission().
305 */
306 int file_permission(struct file *file, int mask)
307 {
308 return inode_permission(file->f_path.dentry->d_inode, mask);
309 }
310
311 /*
312 * get_write_access() gets write permission for a file.
313 * put_write_access() releases this write permission.
314 * This is used for regular files.
315 * We cannot support write (and maybe mmap read-write shared) accesses and
316 * MAP_DENYWRITE mmappings simultaneously. The i_writecount field of an inode
317 * can have the following values:
318 * 0: no writers, no VM_DENYWRITE mappings
319 * < 0: (-i_writecount) vm_area_structs with VM_DENYWRITE set exist
320 * > 0: (i_writecount) users are writing to the file.
321 *
322 * Normally we operate on that counter with atomic_{inc,dec} and it's safe
323 * except for the cases where we don't hold i_writecount yet. Then we need to
324 * use {get,deny}_write_access() - these functions check the sign and refuse
325 * to do the change if sign is wrong. Exclusion between them is provided by
326 * the inode->i_lock spinlock.
327 */
328
329 int get_write_access(struct inode * inode)
330 {
331 spin_lock(&inode->i_lock);
332 if (atomic_read(&inode->i_writecount) < 0) {
333 spin_unlock(&inode->i_lock);
334 return -ETXTBSY;
335 }
336 atomic_inc(&inode->i_writecount);
337 spin_unlock(&inode->i_lock);
338
339 return 0;
340 }
341
342 int deny_write_access(struct file * file)
343 {
344 struct inode *inode = file->f_path.dentry->d_inode;
345
346 spin_lock(&inode->i_lock);
347 if (atomic_read(&inode->i_writecount) > 0) {
348 spin_unlock(&inode->i_lock);
349 return -ETXTBSY;
350 }
351 atomic_dec(&inode->i_writecount);
352 spin_unlock(&inode->i_lock);
353
354 return 0;
355 }
356
357 /**
358 * path_get - get a reference to a path
359 * @path: path to get the reference to
360 *
361 * Given a path increment the reference count to the dentry and the vfsmount.
362 */
363 void path_get(struct path *path)
364 {
365 mntget(path->mnt);
366 dget(path->dentry);
367 }
368 EXPORT_SYMBOL(path_get);
369
370 /**
371 * path_put - put a reference to a path
372 * @path: path to put the reference to
373 *
374 * Given a path decrement the reference count to the dentry and the vfsmount.
375 */
376 void path_put(struct path *path)
377 {
378 dput(path->dentry);
379 mntput(path->mnt);
380 }
381 EXPORT_SYMBOL(path_put);
382
383 /**
384 * nameidata_drop_rcu - drop this nameidata out of rcu-walk
385 * @nd: nameidata pathwalk data to drop
386 * Returns: 0 on success, -ECHILD on failure
387 *
388 * Path walking has 2 modes, rcu-walk and ref-walk (see
389 * Documentation/filesystems/path-lookup.txt). __drop_rcu* functions attempt
390 * to drop out of rcu-walk mode and take normal reference counts on dentries
391 * and vfsmounts to transition to rcu-walk mode. __drop_rcu* functions take
392 * refcounts at the last known good point before rcu-walk got stuck, so
393 * ref-walk may continue from there. If this is not successful (eg. a seqcount
394 * has changed), then failure is returned and path walk restarts from the
395 * beginning in ref-walk mode.
396 *
397 * nameidata_drop_rcu attempts to drop the current nd->path and nd->root into
398 * ref-walk. Must be called from rcu-walk context.
399 */
400 static int nameidata_drop_rcu(struct nameidata *nd)
401 {
402 struct fs_struct *fs = current->fs;
403 struct dentry *dentry = nd->path.dentry;
404
405 BUG_ON(!(nd->flags & LOOKUP_RCU));
406 if (nd->root.mnt) {
407 spin_lock(&fs->lock);
408 if (nd->root.mnt != fs->root.mnt ||
409 nd->root.dentry != fs->root.dentry)
410 goto err_root;
411 }
412 spin_lock(&dentry->d_lock);
413 if (!__d_rcu_to_refcount(dentry, nd->seq))
414 goto err;
415 BUG_ON(nd->inode != dentry->d_inode);
416 spin_unlock(&dentry->d_lock);
417 if (nd->root.mnt) {
418 path_get(&nd->root);
419 spin_unlock(&fs->lock);
420 }
421 mntget(nd->path.mnt);
422
423 rcu_read_unlock();
424 br_read_unlock(vfsmount_lock);
425 nd->flags &= ~LOOKUP_RCU;
426 return 0;
427 err:
428 spin_unlock(&dentry->d_lock);
429 err_root:
430 if (nd->root.mnt)
431 spin_unlock(&fs->lock);
432 return -ECHILD;
433 }
434
435 /* Try to drop out of rcu-walk mode if we were in it, otherwise do nothing. */
436 static inline int nameidata_drop_rcu_maybe(struct nameidata *nd)
437 {
438 if (nd->flags & LOOKUP_RCU)
439 return nameidata_drop_rcu(nd);
440 return 0;
441 }
442
443 /**
444 * nameidata_dentry_drop_rcu - drop nameidata and dentry out of rcu-walk
445 * @nd: nameidata pathwalk data to drop
446 * @dentry: dentry to drop
447 * Returns: 0 on success, -ECHILD on failure
448 *
449 * nameidata_dentry_drop_rcu attempts to drop the current nd->path and nd->root,
450 * and dentry into ref-walk. @dentry must be a path found by a do_lookup call on
451 * @nd. Must be called from rcu-walk context.
452 */
453 static int nameidata_dentry_drop_rcu(struct nameidata *nd, struct dentry *dentry)
454 {
455 struct fs_struct *fs = current->fs;
456 struct dentry *parent = nd->path.dentry;
457
458 BUG_ON(!(nd->flags & LOOKUP_RCU));
459 if (nd->root.mnt) {
460 spin_lock(&fs->lock);
461 if (nd->root.mnt != fs->root.mnt ||
462 nd->root.dentry != fs->root.dentry)
463 goto err_root;
464 }
465 spin_lock(&parent->d_lock);
466 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
467 if (!__d_rcu_to_refcount(dentry, nd->seq))
468 goto err;
469 /*
470 * If the sequence check on the child dentry passed, then the child has
471 * not been removed from its parent. This means the parent dentry must
472 * be valid and able to take a reference at this point.
473 */
474 BUG_ON(!IS_ROOT(dentry) && dentry->d_parent != parent);
475 BUG_ON(!parent->d_count);
476 parent->d_count++;
477 spin_unlock(&dentry->d_lock);
478 spin_unlock(&parent->d_lock);
479 if (nd->root.mnt) {
480 path_get(&nd->root);
481 spin_unlock(&fs->lock);
482 }
483 mntget(nd->path.mnt);
484
485 rcu_read_unlock();
486 br_read_unlock(vfsmount_lock);
487 nd->flags &= ~LOOKUP_RCU;
488 return 0;
489 err:
490 spin_unlock(&dentry->d_lock);
491 spin_unlock(&parent->d_lock);
492 err_root:
493 if (nd->root.mnt)
494 spin_unlock(&fs->lock);
495 return -ECHILD;
496 }
497
498 /* Try to drop out of rcu-walk mode if we were in it, otherwise do nothing. */
499 static inline int nameidata_dentry_drop_rcu_maybe(struct nameidata *nd, struct dentry *dentry)
500 {
501 if (nd->flags & LOOKUP_RCU)
502 return nameidata_dentry_drop_rcu(nd, dentry);
503 return 0;
504 }
505
506 /**
507 * nameidata_drop_rcu_last - drop nameidata ending path walk out of rcu-walk
508 * @nd: nameidata pathwalk data to drop
509 * Returns: 0 on success, -ECHILD on failure
510 *
511 * nameidata_drop_rcu_last attempts to drop the current nd->path into ref-walk.
512 * nd->path should be the final element of the lookup, so nd->root is discarded.
513 * Must be called from rcu-walk context.
514 */
515 static int nameidata_drop_rcu_last(struct nameidata *nd)
516 {
517 struct dentry *dentry = nd->path.dentry;
518
519 BUG_ON(!(nd->flags & LOOKUP_RCU));
520 nd->flags &= ~LOOKUP_RCU;
521 nd->root.mnt = NULL;
522 spin_lock(&dentry->d_lock);
523 if (!__d_rcu_to_refcount(dentry, nd->seq))
524 goto err_unlock;
525 BUG_ON(nd->inode != dentry->d_inode);
526 spin_unlock(&dentry->d_lock);
527
528 mntget(nd->path.mnt);
529
530 rcu_read_unlock();
531 br_read_unlock(vfsmount_lock);
532
533 return 0;
534
535 err_unlock:
536 spin_unlock(&dentry->d_lock);
537 rcu_read_unlock();
538 br_read_unlock(vfsmount_lock);
539 return -ECHILD;
540 }
541
542 /**
543 * release_open_intent - free up open intent resources
544 * @nd: pointer to nameidata
545 */
546 void release_open_intent(struct nameidata *nd)
547 {
548 struct file *file = nd->intent.open.file;
549
550 if (file && !IS_ERR(file)) {
551 if (file->f_path.dentry == NULL)
552 put_filp(file);
553 else
554 fput(file);
555 }
556 }
557
558 static inline int d_revalidate(struct dentry *dentry, struct nameidata *nd)
559 {
560 return dentry->d_op->d_revalidate(dentry, nd);
561 }
562
563 static struct dentry *
564 do_revalidate(struct dentry *dentry, struct nameidata *nd)
565 {
566 int status = d_revalidate(dentry, nd);
567 if (unlikely(status <= 0)) {
568 /*
569 * The dentry failed validation.
570 * If d_revalidate returned 0 attempt to invalidate
571 * the dentry otherwise d_revalidate is asking us
572 * to return a fail status.
573 */
574 if (status < 0) {
575 dput(dentry);
576 dentry = ERR_PTR(status);
577 } else if (!d_invalidate(dentry)) {
578 dput(dentry);
579 dentry = NULL;
580 }
581 }
582 return dentry;
583 }
584
585 static inline struct dentry *
586 do_revalidate_rcu(struct dentry *dentry, struct nameidata *nd)
587 {
588 int status = d_revalidate(dentry, nd);
589 if (likely(status > 0))
590 return dentry;
591 if (status == -ECHILD) {
592 if (nameidata_dentry_drop_rcu(nd, dentry))
593 return ERR_PTR(-ECHILD);
594 return do_revalidate(dentry, nd);
595 }
596 if (status < 0)
597 return ERR_PTR(status);
598 /* Don't d_invalidate in rcu-walk mode */
599 if (nameidata_dentry_drop_rcu(nd, dentry))
600 return ERR_PTR(-ECHILD);
601 if (!d_invalidate(dentry)) {
602 dput(dentry);
603 dentry = NULL;
604 }
605 return dentry;
606 }
607
608 /*
609 * handle_reval_path - force revalidation of a dentry
610 *
611 * In some situations the path walking code will trust dentries without
612 * revalidating them. This causes problems for filesystems that depend on
613 * d_revalidate to handle file opens (e.g. NFSv4). When FS_REVAL_DOT is set
614 * (which indicates that it's possible for the dentry to go stale), force
615 * a d_revalidate call before proceeding.
616 *
617 * Returns 0 if the revalidation was successful. If the revalidation fails,
618 * either return the error returned by d_revalidate or -ESTALE if the
619 * revalidation it just returned 0. If d_revalidate returns 0, we attempt to
620 * invalidate the dentry. It's up to the caller to handle putting references
621 * to the path if necessary.
622 */
623 static inline int handle_reval_path(struct nameidata *nd)
624 {
625 struct dentry *dentry = nd->path.dentry;
626 int status;
627
628 if (likely(!(nd->flags & LOOKUP_JUMPED)))
629 return 0;
630
631 if (likely(!(dentry->d_flags & DCACHE_OP_REVALIDATE)))
632 return 0;
633
634 if (likely(!(dentry->d_sb->s_type->fs_flags & FS_REVAL_DOT)))
635 return 0;
636
637 /* Note: we do not d_invalidate() */
638 status = d_revalidate(dentry, nd);
639 if (status > 0)
640 return 0;
641
642 if (!status)
643 status = -ESTALE;
644
645 return status;
646 }
647
648 /*
649 * Short-cut version of permission(), for calling on directories
650 * during pathname resolution. Combines parts of permission()
651 * and generic_permission(), and tests ONLY for MAY_EXEC permission.
652 *
653 * If appropriate, check DAC only. If not appropriate, or
654 * short-cut DAC fails, then call ->permission() to do more
655 * complete permission check.
656 */
657 static inline int exec_permission(struct inode *inode, unsigned int flags)
658 {
659 int ret;
660
661 if (inode->i_op->permission) {
662 ret = inode->i_op->permission(inode, MAY_EXEC, flags);
663 } else {
664 ret = acl_permission_check(inode, MAY_EXEC, flags,
665 inode->i_op->check_acl);
666 }
667 if (likely(!ret))
668 goto ok;
669 if (ret == -ECHILD)
670 return ret;
671
672 if (capable(CAP_DAC_OVERRIDE) || capable(CAP_DAC_READ_SEARCH))
673 goto ok;
674
675 return ret;
676 ok:
677 return security_inode_exec_permission(inode, flags);
678 }
679
680 static __always_inline void set_root(struct nameidata *nd)
681 {
682 if (!nd->root.mnt)
683 get_fs_root(current->fs, &nd->root);
684 }
685
686 static int link_path_walk(const char *, struct nameidata *);
687
688 static __always_inline void set_root_rcu(struct nameidata *nd)
689 {
690 if (!nd->root.mnt) {
691 struct fs_struct *fs = current->fs;
692 unsigned seq;
693
694 do {
695 seq = read_seqcount_begin(&fs->seq);
696 nd->root = fs->root;
697 } while (read_seqcount_retry(&fs->seq, seq));
698 }
699 }
700
701 static __always_inline int __vfs_follow_link(struct nameidata *nd, const char *link)
702 {
703 int ret;
704
705 if (IS_ERR(link))
706 goto fail;
707
708 if (*link == '/') {
709 set_root(nd);
710 path_put(&nd->path);
711 nd->path = nd->root;
712 path_get(&nd->root);
713 nd->flags |= LOOKUP_JUMPED;
714 }
715 nd->inode = nd->path.dentry->d_inode;
716
717 ret = link_path_walk(link, nd);
718 return ret;
719 fail:
720 path_put(&nd->path);
721 return PTR_ERR(link);
722 }
723
724 static void path_put_conditional(struct path *path, struct nameidata *nd)
725 {
726 dput(path->dentry);
727 if (path->mnt != nd->path.mnt)
728 mntput(path->mnt);
729 }
730
731 static inline void path_to_nameidata(const struct path *path,
732 struct nameidata *nd)
733 {
734 if (!(nd->flags & LOOKUP_RCU)) {
735 dput(nd->path.dentry);
736 if (nd->path.mnt != path->mnt)
737 mntput(nd->path.mnt);
738 }
739 nd->path.mnt = path->mnt;
740 nd->path.dentry = path->dentry;
741 }
742
743 static __always_inline int
744 __do_follow_link(const struct path *link, struct nameidata *nd, void **p)
745 {
746 int error;
747 struct dentry *dentry = link->dentry;
748
749 BUG_ON(nd->flags & LOOKUP_RCU);
750
751 touch_atime(link->mnt, dentry);
752 nd_set_link(nd, NULL);
753
754 if (link->mnt == nd->path.mnt)
755 mntget(link->mnt);
756
757 error = security_inode_follow_link(link->dentry, nd);
758 if (error) {
759 *p = ERR_PTR(error); /* no ->put_link(), please */
760 path_put(&nd->path);
761 return error;
762 }
763
764 nd->last_type = LAST_BIND;
765 *p = dentry->d_inode->i_op->follow_link(dentry, nd);
766 error = PTR_ERR(*p);
767 if (!IS_ERR(*p)) {
768 char *s = nd_get_link(nd);
769 error = 0;
770 if (s)
771 error = __vfs_follow_link(nd, s);
772 else if (nd->last_type == LAST_BIND)
773 nd->flags |= LOOKUP_JUMPED;
774 }
775 return error;
776 }
777
778 /*
779 * This limits recursive symlink follows to 8, while
780 * limiting consecutive symlinks to 40.
781 *
782 * Without that kind of total limit, nasty chains of consecutive
783 * symlinks can cause almost arbitrarily long lookups.
784 */
785 static inline int do_follow_link(struct inode *inode, struct path *path, struct nameidata *nd)
786 {
787 void *cookie;
788 int err = -ELOOP;
789
790 /* We drop rcu-walk here */
791 if (nameidata_dentry_drop_rcu_maybe(nd, path->dentry))
792 return -ECHILD;
793 BUG_ON(inode != path->dentry->d_inode);
794
795 if (current->link_count >= MAX_NESTED_LINKS)
796 goto loop;
797 if (current->total_link_count >= 40)
798 goto loop;
799 BUG_ON(nd->depth >= MAX_NESTED_LINKS);
800 cond_resched();
801 current->link_count++;
802 current->total_link_count++;
803 nd->depth++;
804 err = __do_follow_link(path, nd, &cookie);
805 if (!IS_ERR(cookie) && path->dentry->d_inode->i_op->put_link)
806 path->dentry->d_inode->i_op->put_link(path->dentry, nd, cookie);
807 path_put(path);
808 current->link_count--;
809 nd->depth--;
810 return err;
811 loop:
812 path_put_conditional(path, nd);
813 path_put(&nd->path);
814 return err;
815 }
816
817 static int follow_up_rcu(struct path *path)
818 {
819 struct vfsmount *parent;
820 struct dentry *mountpoint;
821
822 parent = path->mnt->mnt_parent;
823 if (parent == path->mnt)
824 return 0;
825 mountpoint = path->mnt->mnt_mountpoint;
826 path->dentry = mountpoint;
827 path->mnt = parent;
828 return 1;
829 }
830
831 int follow_up(struct path *path)
832 {
833 struct vfsmount *parent;
834 struct dentry *mountpoint;
835
836 br_read_lock(vfsmount_lock);
837 parent = path->mnt->mnt_parent;
838 if (parent == path->mnt) {
839 br_read_unlock(vfsmount_lock);
840 return 0;
841 }
842 mntget(parent);
843 mountpoint = dget(path->mnt->mnt_mountpoint);
844 br_read_unlock(vfsmount_lock);
845 dput(path->dentry);
846 path->dentry = mountpoint;
847 mntput(path->mnt);
848 path->mnt = parent;
849 return 1;
850 }
851
852 /*
853 * Perform an automount
854 * - return -EISDIR to tell follow_managed() to stop and return the path we
855 * were called with.
856 */
857 static int follow_automount(struct path *path, unsigned flags,
858 bool *need_mntput)
859 {
860 struct vfsmount *mnt;
861 int err;
862
863 if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
864 return -EREMOTE;
865
866 /* We don't want to mount if someone supplied AT_NO_AUTOMOUNT
867 * and this is the terminal part of the path.
868 */
869 if ((flags & LOOKUP_NO_AUTOMOUNT) && !(flags & LOOKUP_CONTINUE))
870 return -EISDIR; /* we actually want to stop here */
871
872 /* We want to mount if someone is trying to open/create a file of any
873 * type under the mountpoint, wants to traverse through the mountpoint
874 * or wants to open the mounted directory.
875 *
876 * We don't want to mount if someone's just doing a stat and they've
877 * set AT_SYMLINK_NOFOLLOW - unless they're stat'ing a directory and
878 * appended a '/' to the name.
879 */
880 if (!(flags & LOOKUP_FOLLOW) &&
881 !(flags & (LOOKUP_CONTINUE | LOOKUP_DIRECTORY |
882 LOOKUP_OPEN | LOOKUP_CREATE)))
883 return -EISDIR;
884
885 current->total_link_count++;
886 if (current->total_link_count >= 40)
887 return -ELOOP;
888
889 mnt = path->dentry->d_op->d_automount(path);
890 if (IS_ERR(mnt)) {
891 /*
892 * The filesystem is allowed to return -EISDIR here to indicate
893 * it doesn't want to automount. For instance, autofs would do
894 * this so that its userspace daemon can mount on this dentry.
895 *
896 * However, we can only permit this if it's a terminal point in
897 * the path being looked up; if it wasn't then the remainder of
898 * the path is inaccessible and we should say so.
899 */
900 if (PTR_ERR(mnt) == -EISDIR && (flags & LOOKUP_CONTINUE))
901 return -EREMOTE;
902 return PTR_ERR(mnt);
903 }
904
905 if (!mnt) /* mount collision */
906 return 0;
907
908 err = finish_automount(mnt, path);
909
910 switch (err) {
911 case -EBUSY:
912 /* Someone else made a mount here whilst we were busy */
913 return 0;
914 case 0:
915 dput(path->dentry);
916 if (*need_mntput)
917 mntput(path->mnt);
918 path->mnt = mnt;
919 path->dentry = dget(mnt->mnt_root);
920 *need_mntput = true;
921 return 0;
922 default:
923 return err;
924 }
925
926 }
927
928 /*
929 * Handle a dentry that is managed in some way.
930 * - Flagged for transit management (autofs)
931 * - Flagged as mountpoint
932 * - Flagged as automount point
933 *
934 * This may only be called in refwalk mode.
935 *
936 * Serialization is taken care of in namespace.c
937 */
938 static int follow_managed(struct path *path, unsigned flags)
939 {
940 unsigned managed;
941 bool need_mntput = false;
942 int ret;
943
944 /* Given that we're not holding a lock here, we retain the value in a
945 * local variable for each dentry as we look at it so that we don't see
946 * the components of that value change under us */
947 while (managed = ACCESS_ONCE(path->dentry->d_flags),
948 managed &= DCACHE_MANAGED_DENTRY,
949 unlikely(managed != 0)) {
950 /* Allow the filesystem to manage the transit without i_mutex
951 * being held. */
952 if (managed & DCACHE_MANAGE_TRANSIT) {
953 BUG_ON(!path->dentry->d_op);
954 BUG_ON(!path->dentry->d_op->d_manage);
955 ret = path->dentry->d_op->d_manage(path->dentry,
956 false, false);
957 if (ret < 0)
958 return ret == -EISDIR ? 0 : ret;
959 }
960
961 /* Transit to a mounted filesystem. */
962 if (managed & DCACHE_MOUNTED) {
963 struct vfsmount *mounted = lookup_mnt(path);
964 if (mounted) {
965 dput(path->dentry);
966 if (need_mntput)
967 mntput(path->mnt);
968 path->mnt = mounted;
969 path->dentry = dget(mounted->mnt_root);
970 need_mntput = true;
971 continue;
972 }
973
974 /* Something is mounted on this dentry in another
975 * namespace and/or whatever was mounted there in this
976 * namespace got unmounted before we managed to get the
977 * vfsmount_lock */
978 }
979
980 /* Handle an automount point */
981 if (managed & DCACHE_NEED_AUTOMOUNT) {
982 ret = follow_automount(path, flags, &need_mntput);
983 if (ret < 0)
984 return ret == -EISDIR ? 0 : ret;
985 continue;
986 }
987
988 /* We didn't change the current path point */
989 break;
990 }
991 return 0;
992 }
993
994 int follow_down_one(struct path *path)
995 {
996 struct vfsmount *mounted;
997
998 mounted = lookup_mnt(path);
999 if (mounted) {
1000 dput(path->dentry);
1001 mntput(path->mnt);
1002 path->mnt = mounted;
1003 path->dentry = dget(mounted->mnt_root);
1004 return 1;
1005 }
1006 return 0;
1007 }
1008
1009 /*
1010 * Skip to top of mountpoint pile in rcuwalk mode. We abort the rcu-walk if we
1011 * meet a managed dentry and we're not walking to "..". True is returned to
1012 * continue, false to abort.
1013 */
1014 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1015 struct inode **inode, bool reverse_transit)
1016 {
1017 while (d_mountpoint(path->dentry)) {
1018 struct vfsmount *mounted;
1019 if (unlikely(path->dentry->d_flags & DCACHE_MANAGE_TRANSIT) &&
1020 !reverse_transit &&
1021 path->dentry->d_op->d_manage(path->dentry, false, true) < 0)
1022 return false;
1023 mounted = __lookup_mnt(path->mnt, path->dentry, 1);
1024 if (!mounted)
1025 break;
1026 path->mnt = mounted;
1027 path->dentry = mounted->mnt_root;
1028 nd->seq = read_seqcount_begin(&path->dentry->d_seq);
1029 *inode = path->dentry->d_inode;
1030 }
1031
1032 if (unlikely(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT))
1033 return reverse_transit;
1034 return true;
1035 }
1036
1037 static int follow_dotdot_rcu(struct nameidata *nd)
1038 {
1039 struct inode *inode = nd->inode;
1040
1041 set_root_rcu(nd);
1042
1043 while (1) {
1044 if (nd->path.dentry == nd->root.dentry &&
1045 nd->path.mnt == nd->root.mnt) {
1046 break;
1047 }
1048 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1049 struct dentry *old = nd->path.dentry;
1050 struct dentry *parent = old->d_parent;
1051 unsigned seq;
1052
1053 seq = read_seqcount_begin(&parent->d_seq);
1054 if (read_seqcount_retry(&old->d_seq, nd->seq))
1055 return -ECHILD;
1056 inode = parent->d_inode;
1057 nd->path.dentry = parent;
1058 nd->seq = seq;
1059 break;
1060 }
1061 if (!follow_up_rcu(&nd->path))
1062 break;
1063 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1064 inode = nd->path.dentry->d_inode;
1065 }
1066 __follow_mount_rcu(nd, &nd->path, &inode, true);
1067 nd->inode = inode;
1068
1069 return 0;
1070 }
1071
1072 /*
1073 * Follow down to the covering mount currently visible to userspace. At each
1074 * point, the filesystem owning that dentry may be queried as to whether the
1075 * caller is permitted to proceed or not.
1076 *
1077 * Care must be taken as namespace_sem may be held (indicated by mounting_here
1078 * being true).
1079 */
1080 int follow_down(struct path *path, bool mounting_here)
1081 {
1082 unsigned managed;
1083 int ret;
1084
1085 while (managed = ACCESS_ONCE(path->dentry->d_flags),
1086 unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1087 /* Allow the filesystem to manage the transit without i_mutex
1088 * being held.
1089 *
1090 * We indicate to the filesystem if someone is trying to mount
1091 * something here. This gives autofs the chance to deny anyone
1092 * other than its daemon the right to mount on its
1093 * superstructure.
1094 *
1095 * The filesystem may sleep at this point.
1096 */
1097 if (managed & DCACHE_MANAGE_TRANSIT) {
1098 BUG_ON(!path->dentry->d_op);
1099 BUG_ON(!path->dentry->d_op->d_manage);
1100 ret = path->dentry->d_op->d_manage(
1101 path->dentry, mounting_here, false);
1102 if (ret < 0)
1103 return ret == -EISDIR ? 0 : ret;
1104 }
1105
1106 /* Transit to a mounted filesystem. */
1107 if (managed & DCACHE_MOUNTED) {
1108 struct vfsmount *mounted = lookup_mnt(path);
1109 if (!mounted)
1110 break;
1111 dput(path->dentry);
1112 mntput(path->mnt);
1113 path->mnt = mounted;
1114 path->dentry = dget(mounted->mnt_root);
1115 continue;
1116 }
1117
1118 /* Don't handle automount points here */
1119 break;
1120 }
1121 return 0;
1122 }
1123
1124 /*
1125 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1126 */
1127 static void follow_mount(struct path *path)
1128 {
1129 while (d_mountpoint(path->dentry)) {
1130 struct vfsmount *mounted = lookup_mnt(path);
1131 if (!mounted)
1132 break;
1133 dput(path->dentry);
1134 mntput(path->mnt);
1135 path->mnt = mounted;
1136 path->dentry = dget(mounted->mnt_root);
1137 }
1138 }
1139
1140 static void follow_dotdot(struct nameidata *nd)
1141 {
1142 set_root(nd);
1143
1144 while(1) {
1145 struct dentry *old = nd->path.dentry;
1146
1147 if (nd->path.dentry == nd->root.dentry &&
1148 nd->path.mnt == nd->root.mnt) {
1149 break;
1150 }
1151 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1152 /* rare case of legitimate dget_parent()... */
1153 nd->path.dentry = dget_parent(nd->path.dentry);
1154 dput(old);
1155 break;
1156 }
1157 if (!follow_up(&nd->path))
1158 break;
1159 }
1160 follow_mount(&nd->path);
1161 nd->inode = nd->path.dentry->d_inode;
1162 }
1163
1164 /*
1165 * Allocate a dentry with name and parent, and perform a parent
1166 * directory ->lookup on it. Returns the new dentry, or ERR_PTR
1167 * on error. parent->d_inode->i_mutex must be held. d_lookup must
1168 * have verified that no child exists while under i_mutex.
1169 */
1170 static struct dentry *d_alloc_and_lookup(struct dentry *parent,
1171 struct qstr *name, struct nameidata *nd)
1172 {
1173 struct inode *inode = parent->d_inode;
1174 struct dentry *dentry;
1175 struct dentry *old;
1176
1177 /* Don't create child dentry for a dead directory. */
1178 if (unlikely(IS_DEADDIR(inode)))
1179 return ERR_PTR(-ENOENT);
1180
1181 dentry = d_alloc(parent, name);
1182 if (unlikely(!dentry))
1183 return ERR_PTR(-ENOMEM);
1184
1185 old = inode->i_op->lookup(inode, dentry, nd);
1186 if (unlikely(old)) {
1187 dput(dentry);
1188 dentry = old;
1189 }
1190 return dentry;
1191 }
1192
1193 /*
1194 * It's more convoluted than I'd like it to be, but... it's still fairly
1195 * small and for now I'd prefer to have fast path as straight as possible.
1196 * It _is_ time-critical.
1197 */
1198 static int do_lookup(struct nameidata *nd, struct qstr *name,
1199 struct path *path, struct inode **inode)
1200 {
1201 struct vfsmount *mnt = nd->path.mnt;
1202 struct dentry *dentry, *parent = nd->path.dentry;
1203 struct inode *dir;
1204 int err;
1205
1206 /*
1207 * See if the low-level filesystem might want
1208 * to use its own hash..
1209 */
1210 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
1211 err = parent->d_op->d_hash(parent, nd->inode, name);
1212 if (err < 0)
1213 return err;
1214 }
1215
1216 /*
1217 * Rename seqlock is not required here because in the off chance
1218 * of a false negative due to a concurrent rename, we're going to
1219 * do the non-racy lookup, below.
1220 */
1221 if (nd->flags & LOOKUP_RCU) {
1222 unsigned seq;
1223
1224 *inode = nd->inode;
1225 dentry = __d_lookup_rcu(parent, name, &seq, inode);
1226 if (!dentry) {
1227 if (nameidata_drop_rcu(nd))
1228 return -ECHILD;
1229 goto need_lookup;
1230 }
1231 /* Memory barrier in read_seqcount_begin of child is enough */
1232 if (__read_seqcount_retry(&parent->d_seq, nd->seq))
1233 return -ECHILD;
1234
1235 nd->seq = seq;
1236 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) {
1237 dentry = do_revalidate_rcu(dentry, nd);
1238 if (!dentry)
1239 goto need_lookup;
1240 if (IS_ERR(dentry))
1241 goto fail;
1242 if (!(nd->flags & LOOKUP_RCU))
1243 goto done;
1244 }
1245 path->mnt = mnt;
1246 path->dentry = dentry;
1247 if (likely(__follow_mount_rcu(nd, path, inode, false)))
1248 return 0;
1249 if (nameidata_drop_rcu(nd))
1250 return -ECHILD;
1251 /* fallthru */
1252 }
1253 dentry = __d_lookup(parent, name);
1254 if (!dentry)
1255 goto need_lookup;
1256 found:
1257 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) {
1258 dentry = do_revalidate(dentry, nd);
1259 if (!dentry)
1260 goto need_lookup;
1261 if (IS_ERR(dentry))
1262 goto fail;
1263 }
1264 done:
1265 path->mnt = mnt;
1266 path->dentry = dentry;
1267 err = follow_managed(path, nd->flags);
1268 if (unlikely(err < 0)) {
1269 path_put_conditional(path, nd);
1270 return err;
1271 }
1272 *inode = path->dentry->d_inode;
1273 return 0;
1274
1275 need_lookup:
1276 dir = parent->d_inode;
1277 BUG_ON(nd->inode != dir);
1278
1279 mutex_lock(&dir->i_mutex);
1280 /*
1281 * First re-do the cached lookup just in case it was created
1282 * while we waited for the directory semaphore, or the first
1283 * lookup failed due to an unrelated rename.
1284 *
1285 * This could use version numbering or similar to avoid unnecessary
1286 * cache lookups, but then we'd have to do the first lookup in the
1287 * non-racy way. However in the common case here, everything should
1288 * be hot in cache, so would it be a big win?
1289 */
1290 dentry = d_lookup(parent, name);
1291 if (likely(!dentry)) {
1292 dentry = d_alloc_and_lookup(parent, name, nd);
1293 mutex_unlock(&dir->i_mutex);
1294 if (IS_ERR(dentry))
1295 goto fail;
1296 goto done;
1297 }
1298 /*
1299 * Uhhuh! Nasty case: the cache was re-populated while
1300 * we waited on the semaphore. Need to revalidate.
1301 */
1302 mutex_unlock(&dir->i_mutex);
1303 goto found;
1304
1305 fail:
1306 return PTR_ERR(dentry);
1307 }
1308
1309 static inline int may_lookup(struct nameidata *nd)
1310 {
1311 if (nd->flags & LOOKUP_RCU) {
1312 int err = exec_permission(nd->inode, IPERM_FLAG_RCU);
1313 if (err != -ECHILD)
1314 return err;
1315 if (nameidata_drop_rcu(nd))
1316 return -ECHILD;
1317 }
1318 return exec_permission(nd->inode, 0);
1319 }
1320
1321 static inline int handle_dots(struct nameidata *nd, int type)
1322 {
1323 if (type == LAST_DOTDOT) {
1324 if (nd->flags & LOOKUP_RCU) {
1325 if (follow_dotdot_rcu(nd))
1326 return -ECHILD;
1327 } else
1328 follow_dotdot(nd);
1329 }
1330 return 0;
1331 }
1332
1333 /*
1334 * Name resolution.
1335 * This is the basic name resolution function, turning a pathname into
1336 * the final dentry. We expect 'base' to be positive and a directory.
1337 *
1338 * Returns 0 and nd will have valid dentry and mnt on success.
1339 * Returns error and drops reference to input namei data on failure.
1340 */
1341 static int link_path_walk(const char *name, struct nameidata *nd)
1342 {
1343 struct path next;
1344 int err;
1345 unsigned int lookup_flags = nd->flags;
1346
1347 while (*name=='/')
1348 name++;
1349 if (!*name)
1350 return 0;
1351
1352 if (nd->depth)
1353 lookup_flags = LOOKUP_FOLLOW | (nd->flags & LOOKUP_CONTINUE);
1354
1355 /* At this point we know we have a real path component. */
1356 for(;;) {
1357 struct inode *inode;
1358 unsigned long hash;
1359 struct qstr this;
1360 unsigned int c;
1361 int type;
1362
1363 nd->flags |= LOOKUP_CONTINUE;
1364
1365 err = may_lookup(nd);
1366 if (err)
1367 break;
1368
1369 this.name = name;
1370 c = *(const unsigned char *)name;
1371
1372 hash = init_name_hash();
1373 do {
1374 name++;
1375 hash = partial_name_hash(c, hash);
1376 c = *(const unsigned char *)name;
1377 } while (c && (c != '/'));
1378 this.len = name - (const char *) this.name;
1379 this.hash = end_name_hash(hash);
1380
1381 type = LAST_NORM;
1382 if (this.name[0] == '.') switch (this.len) {
1383 case 2:
1384 if (this.name[1] == '.') {
1385 type = LAST_DOTDOT;
1386 nd->flags |= LOOKUP_JUMPED;
1387 }
1388 break;
1389 case 1:
1390 type = LAST_DOT;
1391 }
1392 if (likely(type == LAST_NORM))
1393 nd->flags &= ~LOOKUP_JUMPED;
1394
1395 /* remove trailing slashes? */
1396 if (!c)
1397 goto last_component;
1398 while (*++name == '/');
1399 if (!*name)
1400 goto last_with_slashes;
1401
1402 /*
1403 * "." and ".." are special - ".." especially so because it has
1404 * to be able to know about the current root directory and
1405 * parent relationships.
1406 */
1407 if (unlikely(type != LAST_NORM)) {
1408 err = handle_dots(nd, type);
1409 if (err)
1410 goto return_err;
1411 continue;
1412 }
1413
1414 /* This does the actual lookups.. */
1415 err = do_lookup(nd, &this, &next, &inode);
1416 if (err)
1417 break;
1418
1419 if (inode && inode->i_op->follow_link) {
1420 err = do_follow_link(inode, &next, nd);
1421 if (err)
1422 goto return_err;
1423 nd->inode = nd->path.dentry->d_inode;
1424 } else {
1425 path_to_nameidata(&next, nd);
1426 nd->inode = inode;
1427 }
1428 err = -ENOENT;
1429 if (!nd->inode)
1430 break;
1431 err = -ENOTDIR;
1432 if (!nd->inode->i_op->lookup)
1433 break;
1434 continue;
1435 /* here ends the main loop */
1436
1437 last_with_slashes:
1438 lookup_flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
1439 last_component:
1440 /* Clear LOOKUP_CONTINUE iff it was previously unset */
1441 nd->flags &= lookup_flags | ~LOOKUP_CONTINUE;
1442 if (lookup_flags & LOOKUP_PARENT)
1443 goto lookup_parent;
1444 if (unlikely(type != LAST_NORM)) {
1445 err = handle_dots(nd, type);
1446 if (err)
1447 goto return_err;
1448 return 0;
1449 }
1450 err = do_lookup(nd, &this, &next, &inode);
1451 if (err)
1452 break;
1453 if (inode && unlikely(inode->i_op->follow_link) &&
1454 (lookup_flags & LOOKUP_FOLLOW)) {
1455 err = do_follow_link(inode, &next, nd);
1456 if (err)
1457 goto return_err;
1458 nd->inode = nd->path.dentry->d_inode;
1459 } else {
1460 path_to_nameidata(&next, nd);
1461 nd->inode = inode;
1462 }
1463 err = -ENOENT;
1464 if (!nd->inode)
1465 break;
1466 if (lookup_flags & LOOKUP_DIRECTORY) {
1467 err = -ENOTDIR;
1468 if (!nd->inode->i_op->lookup)
1469 break;
1470 }
1471 return 0;
1472 lookup_parent:
1473 nd->last = this;
1474 nd->last_type = type;
1475 return 0;
1476 }
1477 if (!(nd->flags & LOOKUP_RCU))
1478 path_put(&nd->path);
1479 return_err:
1480 if (nd->flags & LOOKUP_RCU) {
1481 nd->flags &= ~LOOKUP_RCU;
1482 nd->root.mnt = NULL;
1483 rcu_read_unlock();
1484 br_read_unlock(vfsmount_lock);
1485 }
1486 return err;
1487 }
1488
1489 static int path_init(int dfd, const char *name, unsigned int flags, struct nameidata *nd)
1490 {
1491 int retval = 0;
1492 int fput_needed;
1493 struct file *file;
1494
1495 nd->last_type = LAST_ROOT; /* if there are only slashes... */
1496 nd->flags = flags | LOOKUP_JUMPED;
1497 nd->depth = 0;
1498 nd->root.mnt = NULL;
1499 nd->file = NULL;
1500
1501 if (*name=='/') {
1502 if (flags & LOOKUP_RCU) {
1503 br_read_lock(vfsmount_lock);
1504 rcu_read_lock();
1505 set_root_rcu(nd);
1506 } else {
1507 set_root(nd);
1508 path_get(&nd->root);
1509 }
1510 nd->path = nd->root;
1511 } else if (dfd == AT_FDCWD) {
1512 if (flags & LOOKUP_RCU) {
1513 struct fs_struct *fs = current->fs;
1514 unsigned seq;
1515
1516 br_read_lock(vfsmount_lock);
1517 rcu_read_lock();
1518
1519 do {
1520 seq = read_seqcount_begin(&fs->seq);
1521 nd->path = fs->pwd;
1522 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1523 } while (read_seqcount_retry(&fs->seq, seq));
1524 } else {
1525 get_fs_pwd(current->fs, &nd->path);
1526 }
1527 } else {
1528 struct dentry *dentry;
1529
1530 file = fget_light(dfd, &fput_needed);
1531 retval = -EBADF;
1532 if (!file)
1533 goto out_fail;
1534
1535 dentry = file->f_path.dentry;
1536
1537 retval = -ENOTDIR;
1538 if (!S_ISDIR(dentry->d_inode->i_mode))
1539 goto fput_fail;
1540
1541 retval = file_permission(file, MAY_EXEC);
1542 if (retval)
1543 goto fput_fail;
1544
1545 nd->path = file->f_path;
1546 if (flags & LOOKUP_RCU) {
1547 if (fput_needed)
1548 nd->file = file;
1549 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1550 br_read_lock(vfsmount_lock);
1551 rcu_read_lock();
1552 } else {
1553 path_get(&file->f_path);
1554 fput_light(file, fput_needed);
1555 }
1556 }
1557
1558 nd->inode = nd->path.dentry->d_inode;
1559 return 0;
1560
1561 fput_fail:
1562 fput_light(file, fput_needed);
1563 out_fail:
1564 return retval;
1565 }
1566
1567 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
1568 static int path_lookupat(int dfd, const char *name,
1569 unsigned int flags, struct nameidata *nd)
1570 {
1571 int retval;
1572
1573 /*
1574 * Path walking is largely split up into 2 different synchronisation
1575 * schemes, rcu-walk and ref-walk (explained in
1576 * Documentation/filesystems/path-lookup.txt). These share much of the
1577 * path walk code, but some things particularly setup, cleanup, and
1578 * following mounts are sufficiently divergent that functions are
1579 * duplicated. Typically there is a function foo(), and its RCU
1580 * analogue, foo_rcu().
1581 *
1582 * -ECHILD is the error number of choice (just to avoid clashes) that
1583 * is returned if some aspect of an rcu-walk fails. Such an error must
1584 * be handled by restarting a traditional ref-walk (which will always
1585 * be able to complete).
1586 */
1587 retval = path_init(dfd, name, flags, nd);
1588
1589 if (unlikely(retval))
1590 return retval;
1591
1592 current->total_link_count = 0;
1593 retval = link_path_walk(name, nd);
1594
1595 if (nd->flags & LOOKUP_RCU) {
1596 /* went all way through without dropping RCU */
1597 BUG_ON(retval);
1598 if (nameidata_drop_rcu_last(nd))
1599 retval = -ECHILD;
1600 }
1601
1602 if (!retval)
1603 retval = handle_reval_path(nd);
1604
1605 if (nd->file) {
1606 fput(nd->file);
1607 nd->file = NULL;
1608 }
1609
1610 if (nd->root.mnt) {
1611 path_put(&nd->root);
1612 nd->root.mnt = NULL;
1613 }
1614 return retval;
1615 }
1616
1617 static int do_path_lookup(int dfd, const char *name,
1618 unsigned int flags, struct nameidata *nd)
1619 {
1620 int retval = path_lookupat(dfd, name, flags | LOOKUP_RCU, nd);
1621 if (unlikely(retval == -ECHILD))
1622 retval = path_lookupat(dfd, name, flags, nd);
1623 if (unlikely(retval == -ESTALE))
1624 retval = path_lookupat(dfd, name, flags | LOOKUP_REVAL, nd);
1625
1626 if (likely(!retval)) {
1627 if (unlikely(!audit_dummy_context())) {
1628 if (nd->path.dentry && nd->inode)
1629 audit_inode(name, nd->path.dentry);
1630 }
1631 }
1632 return retval;
1633 }
1634
1635 int kern_path_parent(const char *name, struct nameidata *nd)
1636 {
1637 return do_path_lookup(AT_FDCWD, name, LOOKUP_PARENT, nd);
1638 }
1639
1640 int kern_path(const char *name, unsigned int flags, struct path *path)
1641 {
1642 struct nameidata nd;
1643 int res = do_path_lookup(AT_FDCWD, name, flags, &nd);
1644 if (!res)
1645 *path = nd.path;
1646 return res;
1647 }
1648
1649 /**
1650 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
1651 * @dentry: pointer to dentry of the base directory
1652 * @mnt: pointer to vfs mount of the base directory
1653 * @name: pointer to file name
1654 * @flags: lookup flags
1655 * @nd: pointer to nameidata
1656 */
1657 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
1658 const char *name, unsigned int flags,
1659 struct nameidata *nd)
1660 {
1661 int result;
1662
1663 /* same as do_path_lookup */
1664 nd->last_type = LAST_ROOT;
1665 nd->flags = flags | LOOKUP_JUMPED;
1666 nd->depth = 0;
1667
1668 nd->path.dentry = dentry;
1669 nd->path.mnt = mnt;
1670 path_get(&nd->path);
1671 nd->root = nd->path;
1672 path_get(&nd->root);
1673 nd->inode = nd->path.dentry->d_inode;
1674
1675 current->total_link_count = 0;
1676
1677 result = link_path_walk(name, nd);
1678 if (!result)
1679 result = handle_reval_path(nd);
1680 if (result == -ESTALE) {
1681 /* nd->path had been dropped */
1682 current->total_link_count = 0;
1683 nd->path.dentry = dentry;
1684 nd->path.mnt = mnt;
1685 nd->inode = dentry->d_inode;
1686 path_get(&nd->path);
1687 nd->flags = flags | LOOKUP_JUMPED | LOOKUP_REVAL;
1688
1689 result = link_path_walk(name, nd);
1690 if (!result)
1691 result = handle_reval_path(nd);
1692 }
1693 if (unlikely(!result && !audit_dummy_context() && nd->path.dentry &&
1694 nd->inode))
1695 audit_inode(name, nd->path.dentry);
1696
1697 path_put(&nd->root);
1698 nd->root.mnt = NULL;
1699
1700 return result;
1701 }
1702
1703 static struct dentry *__lookup_hash(struct qstr *name,
1704 struct dentry *base, struct nameidata *nd)
1705 {
1706 struct inode *inode = base->d_inode;
1707 struct dentry *dentry;
1708 int err;
1709
1710 err = exec_permission(inode, 0);
1711 if (err)
1712 return ERR_PTR(err);
1713
1714 /*
1715 * See if the low-level filesystem might want
1716 * to use its own hash..
1717 */
1718 if (base->d_flags & DCACHE_OP_HASH) {
1719 err = base->d_op->d_hash(base, inode, name);
1720 dentry = ERR_PTR(err);
1721 if (err < 0)
1722 goto out;
1723 }
1724
1725 /*
1726 * Don't bother with __d_lookup: callers are for creat as
1727 * well as unlink, so a lot of the time it would cost
1728 * a double lookup.
1729 */
1730 dentry = d_lookup(base, name);
1731
1732 if (dentry && (dentry->d_flags & DCACHE_OP_REVALIDATE))
1733 dentry = do_revalidate(dentry, nd);
1734
1735 if (!dentry)
1736 dentry = d_alloc_and_lookup(base, name, nd);
1737 out:
1738 return dentry;
1739 }
1740
1741 /*
1742 * Restricted form of lookup. Doesn't follow links, single-component only,
1743 * needs parent already locked. Doesn't follow mounts.
1744 * SMP-safe.
1745 */
1746 static struct dentry *lookup_hash(struct nameidata *nd)
1747 {
1748 return __lookup_hash(&nd->last, nd->path.dentry, nd);
1749 }
1750
1751 static int __lookup_one_len(const char *name, struct qstr *this,
1752 struct dentry *base, int len)
1753 {
1754 unsigned long hash;
1755 unsigned int c;
1756
1757 this->name = name;
1758 this->len = len;
1759 if (!len)
1760 return -EACCES;
1761
1762 hash = init_name_hash();
1763 while (len--) {
1764 c = *(const unsigned char *)name++;
1765 if (c == '/' || c == '\0')
1766 return -EACCES;
1767 hash = partial_name_hash(c, hash);
1768 }
1769 this->hash = end_name_hash(hash);
1770 return 0;
1771 }
1772
1773 /**
1774 * lookup_one_len - filesystem helper to lookup single pathname component
1775 * @name: pathname component to lookup
1776 * @base: base directory to lookup from
1777 * @len: maximum length @len should be interpreted to
1778 *
1779 * Note that this routine is purely a helper for filesystem usage and should
1780 * not be called by generic code. Also note that by using this function the
1781 * nameidata argument is passed to the filesystem methods and a filesystem
1782 * using this helper needs to be prepared for that.
1783 */
1784 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
1785 {
1786 int err;
1787 struct qstr this;
1788
1789 WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex));
1790
1791 err = __lookup_one_len(name, &this, base, len);
1792 if (err)
1793 return ERR_PTR(err);
1794
1795 return __lookup_hash(&this, base, NULL);
1796 }
1797
1798 int user_path_at(int dfd, const char __user *name, unsigned flags,
1799 struct path *path)
1800 {
1801 struct nameidata nd;
1802 char *tmp = getname(name);
1803 int err = PTR_ERR(tmp);
1804 if (!IS_ERR(tmp)) {
1805
1806 BUG_ON(flags & LOOKUP_PARENT);
1807
1808 err = do_path_lookup(dfd, tmp, flags, &nd);
1809 putname(tmp);
1810 if (!err)
1811 *path = nd.path;
1812 }
1813 return err;
1814 }
1815
1816 static int user_path_parent(int dfd, const char __user *path,
1817 struct nameidata *nd, char **name)
1818 {
1819 char *s = getname(path);
1820 int error;
1821
1822 if (IS_ERR(s))
1823 return PTR_ERR(s);
1824
1825 error = do_path_lookup(dfd, s, LOOKUP_PARENT, nd);
1826 if (error)
1827 putname(s);
1828 else
1829 *name = s;
1830
1831 return error;
1832 }
1833
1834 /*
1835 * It's inline, so penalty for filesystems that don't use sticky bit is
1836 * minimal.
1837 */
1838 static inline int check_sticky(struct inode *dir, struct inode *inode)
1839 {
1840 uid_t fsuid = current_fsuid();
1841
1842 if (!(dir->i_mode & S_ISVTX))
1843 return 0;
1844 if (inode->i_uid == fsuid)
1845 return 0;
1846 if (dir->i_uid == fsuid)
1847 return 0;
1848 return !capable(CAP_FOWNER);
1849 }
1850
1851 /*
1852 * Check whether we can remove a link victim from directory dir, check
1853 * whether the type of victim is right.
1854 * 1. We can't do it if dir is read-only (done in permission())
1855 * 2. We should have write and exec permissions on dir
1856 * 3. We can't remove anything from append-only dir
1857 * 4. We can't do anything with immutable dir (done in permission())
1858 * 5. If the sticky bit on dir is set we should either
1859 * a. be owner of dir, or
1860 * b. be owner of victim, or
1861 * c. have CAP_FOWNER capability
1862 * 6. If the victim is append-only or immutable we can't do antyhing with
1863 * links pointing to it.
1864 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
1865 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
1866 * 9. We can't remove a root or mountpoint.
1867 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
1868 * nfs_async_unlink().
1869 */
1870 static int may_delete(struct inode *dir,struct dentry *victim,int isdir)
1871 {
1872 int error;
1873
1874 if (!victim->d_inode)
1875 return -ENOENT;
1876
1877 BUG_ON(victim->d_parent->d_inode != dir);
1878 audit_inode_child(victim, dir);
1879
1880 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
1881 if (error)
1882 return error;
1883 if (IS_APPEND(dir))
1884 return -EPERM;
1885 if (check_sticky(dir, victim->d_inode)||IS_APPEND(victim->d_inode)||
1886 IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode))
1887 return -EPERM;
1888 if (isdir) {
1889 if (!S_ISDIR(victim->d_inode->i_mode))
1890 return -ENOTDIR;
1891 if (IS_ROOT(victim))
1892 return -EBUSY;
1893 } else if (S_ISDIR(victim->d_inode->i_mode))
1894 return -EISDIR;
1895 if (IS_DEADDIR(dir))
1896 return -ENOENT;
1897 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
1898 return -EBUSY;
1899 return 0;
1900 }
1901
1902 /* Check whether we can create an object with dentry child in directory
1903 * dir.
1904 * 1. We can't do it if child already exists (open has special treatment for
1905 * this case, but since we are inlined it's OK)
1906 * 2. We can't do it if dir is read-only (done in permission())
1907 * 3. We should have write and exec permissions on dir
1908 * 4. We can't do it if dir is immutable (done in permission())
1909 */
1910 static inline int may_create(struct inode *dir, struct dentry *child)
1911 {
1912 if (child->d_inode)
1913 return -EEXIST;
1914 if (IS_DEADDIR(dir))
1915 return -ENOENT;
1916 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
1917 }
1918
1919 /*
1920 * p1 and p2 should be directories on the same fs.
1921 */
1922 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
1923 {
1924 struct dentry *p;
1925
1926 if (p1 == p2) {
1927 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1928 return NULL;
1929 }
1930
1931 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
1932
1933 p = d_ancestor(p2, p1);
1934 if (p) {
1935 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
1936 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
1937 return p;
1938 }
1939
1940 p = d_ancestor(p1, p2);
1941 if (p) {
1942 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1943 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
1944 return p;
1945 }
1946
1947 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1948 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
1949 return NULL;
1950 }
1951
1952 void unlock_rename(struct dentry *p1, struct dentry *p2)
1953 {
1954 mutex_unlock(&p1->d_inode->i_mutex);
1955 if (p1 != p2) {
1956 mutex_unlock(&p2->d_inode->i_mutex);
1957 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
1958 }
1959 }
1960
1961 int vfs_create(struct inode *dir, struct dentry *dentry, int mode,
1962 struct nameidata *nd)
1963 {
1964 int error = may_create(dir, dentry);
1965
1966 if (error)
1967 return error;
1968
1969 if (!dir->i_op->create)
1970 return -EACCES; /* shouldn't it be ENOSYS? */
1971 mode &= S_IALLUGO;
1972 mode |= S_IFREG;
1973 error = security_inode_create(dir, dentry, mode);
1974 if (error)
1975 return error;
1976 error = dir->i_op->create(dir, dentry, mode, nd);
1977 if (!error)
1978 fsnotify_create(dir, dentry);
1979 return error;
1980 }
1981
1982 int may_open(struct path *path, int acc_mode, int flag)
1983 {
1984 struct dentry *dentry = path->dentry;
1985 struct inode *inode = dentry->d_inode;
1986 int error;
1987
1988 if (!inode)
1989 return -ENOENT;
1990
1991 switch (inode->i_mode & S_IFMT) {
1992 case S_IFLNK:
1993 return -ELOOP;
1994 case S_IFDIR:
1995 if (acc_mode & MAY_WRITE)
1996 return -EISDIR;
1997 break;
1998 case S_IFBLK:
1999 case S_IFCHR:
2000 if (path->mnt->mnt_flags & MNT_NODEV)
2001 return -EACCES;
2002 /*FALLTHRU*/
2003 case S_IFIFO:
2004 case S_IFSOCK:
2005 flag &= ~O_TRUNC;
2006 break;
2007 }
2008
2009 error = inode_permission(inode, acc_mode);
2010 if (error)
2011 return error;
2012
2013 /*
2014 * An append-only file must be opened in append mode for writing.
2015 */
2016 if (IS_APPEND(inode)) {
2017 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2018 return -EPERM;
2019 if (flag & O_TRUNC)
2020 return -EPERM;
2021 }
2022
2023 /* O_NOATIME can only be set by the owner or superuser */
2024 if (flag & O_NOATIME && !is_owner_or_cap(inode))
2025 return -EPERM;
2026
2027 /*
2028 * Ensure there are no outstanding leases on the file.
2029 */
2030 return break_lease(inode, flag);
2031 }
2032
2033 static int handle_truncate(struct file *filp)
2034 {
2035 struct path *path = &filp->f_path;
2036 struct inode *inode = path->dentry->d_inode;
2037 int error = get_write_access(inode);
2038 if (error)
2039 return error;
2040 /*
2041 * Refuse to truncate files with mandatory locks held on them.
2042 */
2043 error = locks_verify_locked(inode);
2044 if (!error)
2045 error = security_path_truncate(path);
2046 if (!error) {
2047 error = do_truncate(path->dentry, 0,
2048 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2049 filp);
2050 }
2051 put_write_access(inode);
2052 return error;
2053 }
2054
2055 /*
2056 * Be careful about ever adding any more callers of this
2057 * function. Its flags must be in the namei format, not
2058 * what get passed to sys_open().
2059 */
2060 static int __open_namei_create(struct nameidata *nd, struct path *path,
2061 int open_flag, int mode)
2062 {
2063 int error;
2064 struct dentry *dir = nd->path.dentry;
2065
2066 if (!IS_POSIXACL(dir->d_inode))
2067 mode &= ~current_umask();
2068 error = security_path_mknod(&nd->path, path->dentry, mode, 0);
2069 if (error)
2070 goto out_unlock;
2071 error = vfs_create(dir->d_inode, path->dentry, mode, nd);
2072 out_unlock:
2073 mutex_unlock(&dir->d_inode->i_mutex);
2074 dput(nd->path.dentry);
2075 nd->path.dentry = path->dentry;
2076
2077 if (error)
2078 return error;
2079 /* Don't check for write permission, don't truncate */
2080 return may_open(&nd->path, 0, open_flag & ~O_TRUNC);
2081 }
2082
2083 /*
2084 * Note that while the flag value (low two bits) for sys_open means:
2085 * 00 - read-only
2086 * 01 - write-only
2087 * 10 - read-write
2088 * 11 - special
2089 * it is changed into
2090 * 00 - no permissions needed
2091 * 01 - read-permission
2092 * 10 - write-permission
2093 * 11 - read-write
2094 * for the internal routines (ie open_namei()/follow_link() etc)
2095 * This is more logical, and also allows the 00 "no perm needed"
2096 * to be used for symlinks (where the permissions are checked
2097 * later).
2098 *
2099 */
2100 static inline int open_to_namei_flags(int flag)
2101 {
2102 if ((flag+1) & O_ACCMODE)
2103 flag++;
2104 return flag;
2105 }
2106
2107 static int open_will_truncate(int flag, struct inode *inode)
2108 {
2109 /*
2110 * We'll never write to the fs underlying
2111 * a device file.
2112 */
2113 if (special_file(inode->i_mode))
2114 return 0;
2115 return (flag & O_TRUNC);
2116 }
2117
2118 static struct file *finish_open(struct nameidata *nd,
2119 int open_flag, int acc_mode)
2120 {
2121 struct file *filp;
2122 int will_truncate;
2123 int error;
2124
2125 will_truncate = open_will_truncate(open_flag, nd->path.dentry->d_inode);
2126 if (will_truncate) {
2127 error = mnt_want_write(nd->path.mnt);
2128 if (error)
2129 goto exit;
2130 }
2131 error = may_open(&nd->path, acc_mode, open_flag);
2132 if (error) {
2133 if (will_truncate)
2134 mnt_drop_write(nd->path.mnt);
2135 goto exit;
2136 }
2137 filp = nameidata_to_filp(nd);
2138 if (!IS_ERR(filp)) {
2139 error = ima_file_check(filp, acc_mode);
2140 if (error) {
2141 fput(filp);
2142 filp = ERR_PTR(error);
2143 }
2144 }
2145 if (!IS_ERR(filp)) {
2146 if (will_truncate) {
2147 error = handle_truncate(filp);
2148 if (error) {
2149 fput(filp);
2150 filp = ERR_PTR(error);
2151 }
2152 }
2153 }
2154 /*
2155 * It is now safe to drop the mnt write
2156 * because the filp has had a write taken
2157 * on its behalf.
2158 */
2159 if (will_truncate)
2160 mnt_drop_write(nd->path.mnt);
2161 path_put(&nd->path);
2162 return filp;
2163
2164 exit:
2165 path_put(&nd->path);
2166 return ERR_PTR(error);
2167 }
2168
2169 /*
2170 * Handle O_CREAT case for do_filp_open
2171 */
2172 static struct file *do_last(struct nameidata *nd, struct path *path,
2173 const struct open_flags *op, const char *pathname)
2174 {
2175 struct dentry *dir = nd->path.dentry;
2176 struct file *filp;
2177 int error;
2178
2179 nd->flags &= ~LOOKUP_PARENT;
2180 nd->flags |= op->intent;
2181
2182 switch (nd->last_type) {
2183 case LAST_DOTDOT:
2184 follow_dotdot(nd);
2185 dir = nd->path.dentry;
2186 case LAST_DOT:
2187 /* fallthrough */
2188 case LAST_ROOT:
2189 error = handle_reval_path(nd);
2190 if (error)
2191 goto exit;
2192 error = -EISDIR;
2193 goto exit;
2194 case LAST_BIND:
2195 error = handle_reval_path(nd);
2196 if (error)
2197 goto exit;
2198 audit_inode(pathname, dir);
2199 goto ok;
2200 }
2201
2202 error = -EISDIR;
2203 /* trailing slashes? */
2204 if (nd->last.name[nd->last.len])
2205 goto exit;
2206
2207 mutex_lock(&dir->d_inode->i_mutex);
2208
2209 path->dentry = lookup_hash(nd);
2210 path->mnt = nd->path.mnt;
2211
2212 error = PTR_ERR(path->dentry);
2213 if (IS_ERR(path->dentry)) {
2214 mutex_unlock(&dir->d_inode->i_mutex);
2215 goto exit;
2216 }
2217
2218 if (IS_ERR(nd->intent.open.file)) {
2219 error = PTR_ERR(nd->intent.open.file);
2220 goto exit_mutex_unlock;
2221 }
2222
2223 /* Negative dentry, just create the file */
2224 if (!path->dentry->d_inode) {
2225 /*
2226 * This write is needed to ensure that a
2227 * ro->rw transition does not occur between
2228 * the time when the file is created and when
2229 * a permanent write count is taken through
2230 * the 'struct file' in nameidata_to_filp().
2231 */
2232 error = mnt_want_write(nd->path.mnt);
2233 if (error)
2234 goto exit_mutex_unlock;
2235 error = __open_namei_create(nd, path, op->open_flag, op->mode);
2236 if (error) {
2237 mnt_drop_write(nd->path.mnt);
2238 goto exit;
2239 }
2240 filp = nameidata_to_filp(nd);
2241 mnt_drop_write(nd->path.mnt);
2242 path_put(&nd->path);
2243 if (!IS_ERR(filp)) {
2244 error = ima_file_check(filp, op->acc_mode);
2245 if (error) {
2246 fput(filp);
2247 filp = ERR_PTR(error);
2248 }
2249 }
2250 return filp;
2251 }
2252
2253 /*
2254 * It already exists.
2255 */
2256 mutex_unlock(&dir->d_inode->i_mutex);
2257 audit_inode(pathname, path->dentry);
2258
2259 error = -EEXIST;
2260 if (op->open_flag & O_EXCL)
2261 goto exit_dput;
2262
2263 error = follow_managed(path, nd->flags);
2264 if (error < 0)
2265 goto exit_dput;
2266
2267 error = -ENOENT;
2268 if (!path->dentry->d_inode)
2269 goto exit_dput;
2270
2271 if (path->dentry->d_inode->i_op->follow_link)
2272 return NULL;
2273
2274 path_to_nameidata(path, nd);
2275 nd->inode = path->dentry->d_inode;
2276 error = -EISDIR;
2277 if (S_ISDIR(nd->inode->i_mode))
2278 goto exit;
2279 ok:
2280 filp = finish_open(nd, op->open_flag, op->acc_mode);
2281 return filp;
2282
2283 exit_mutex_unlock:
2284 mutex_unlock(&dir->d_inode->i_mutex);
2285 exit_dput:
2286 path_put_conditional(path, nd);
2287 exit:
2288 path_put(&nd->path);
2289 return ERR_PTR(error);
2290 }
2291
2292 static struct file *path_openat(int dfd, const char *pathname,
2293 const struct open_flags *op, int flags)
2294 {
2295 struct file *filp;
2296 struct nameidata nd;
2297 struct path path;
2298 int count = 0;
2299 int error;
2300
2301 filp = get_empty_filp();
2302 if (!filp)
2303 return ERR_PTR(-ENFILE);
2304
2305 filp->f_flags = op->open_flag;
2306 nd.intent.open.file = filp;
2307 nd.intent.open.flags = open_to_namei_flags(op->open_flag);
2308 nd.intent.open.create_mode = op->mode;
2309
2310 if (op->open_flag & O_CREAT)
2311 goto creat;
2312
2313 /* !O_CREAT, simple open */
2314 error = path_lookupat(dfd, pathname, flags | op->intent, &nd);
2315 if (unlikely(error))
2316 goto out_filp;
2317 error = -ELOOP;
2318 if (!(nd.flags & LOOKUP_FOLLOW)) {
2319 if (nd.inode->i_op->follow_link)
2320 goto out_path;
2321 }
2322 error = -ENOTDIR;
2323 if (nd.flags & LOOKUP_DIRECTORY) {
2324 if (!nd.inode->i_op->lookup)
2325 goto out_path;
2326 }
2327 audit_inode(pathname, nd.path.dentry);
2328 filp = finish_open(&nd, op->open_flag, op->acc_mode);
2329 release_open_intent(&nd);
2330 return filp;
2331
2332 creat:
2333 /* OK, have to create the file. Find the parent. */
2334 error = path_lookupat(dfd, pathname, LOOKUP_PARENT | flags, &nd);
2335 if (unlikely(error))
2336 goto out_filp;
2337 if (unlikely(!audit_dummy_context()))
2338 audit_inode(pathname, nd.path.dentry);
2339
2340 /*
2341 * We have the parent and last component.
2342 */
2343 filp = do_last(&nd, &path, op, pathname);
2344 while (unlikely(!filp)) { /* trailing symlink */
2345 struct path link = path;
2346 struct inode *linki = link.dentry->d_inode;
2347 void *cookie;
2348 error = -ELOOP;
2349 if (!(nd.flags & LOOKUP_FOLLOW))
2350 goto exit_dput;
2351 if (count++ == 32)
2352 goto exit_dput;
2353 /*
2354 * This is subtle. Instead of calling do_follow_link() we do
2355 * the thing by hands. The reason is that this way we have zero
2356 * link_count and path_walk() (called from ->follow_link)
2357 * honoring LOOKUP_PARENT. After that we have the parent and
2358 * last component, i.e. we are in the same situation as after
2359 * the first path_walk(). Well, almost - if the last component
2360 * is normal we get its copy stored in nd->last.name and we will
2361 * have to putname() it when we are done. Procfs-like symlinks
2362 * just set LAST_BIND.
2363 */
2364 nd.flags |= LOOKUP_PARENT;
2365 nd.flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
2366 error = __do_follow_link(&link, &nd, &cookie);
2367 if (unlikely(error))
2368 filp = ERR_PTR(error);
2369 else
2370 filp = do_last(&nd, &path, op, pathname);
2371 if (!IS_ERR(cookie) && linki->i_op->put_link)
2372 linki->i_op->put_link(link.dentry, &nd, cookie);
2373 path_put(&link);
2374 }
2375 out:
2376 if (nd.root.mnt)
2377 path_put(&nd.root);
2378 release_open_intent(&nd);
2379 return filp;
2380
2381 exit_dput:
2382 path_put_conditional(&path, &nd);
2383 out_path:
2384 path_put(&nd.path);
2385 out_filp:
2386 filp = ERR_PTR(error);
2387 goto out;
2388 }
2389
2390 struct file *do_filp_open(int dfd, const char *pathname,
2391 const struct open_flags *op, int flags)
2392 {
2393 struct file *filp;
2394
2395 filp = path_openat(dfd, pathname, op, flags | LOOKUP_RCU);
2396 if (unlikely(filp == ERR_PTR(-ECHILD)))
2397 filp = path_openat(dfd, pathname, op, flags);
2398 if (unlikely(filp == ERR_PTR(-ESTALE)))
2399 filp = path_openat(dfd, pathname, op, flags | LOOKUP_REVAL);
2400 return filp;
2401 }
2402
2403 /**
2404 * lookup_create - lookup a dentry, creating it if it doesn't exist
2405 * @nd: nameidata info
2406 * @is_dir: directory flag
2407 *
2408 * Simple function to lookup and return a dentry and create it
2409 * if it doesn't exist. Is SMP-safe.
2410 *
2411 * Returns with nd->path.dentry->d_inode->i_mutex locked.
2412 */
2413 struct dentry *lookup_create(struct nameidata *nd, int is_dir)
2414 {
2415 struct dentry *dentry = ERR_PTR(-EEXIST);
2416
2417 mutex_lock_nested(&nd->path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2418 /*
2419 * Yucky last component or no last component at all?
2420 * (foo/., foo/.., /////)
2421 */
2422 if (nd->last_type != LAST_NORM)
2423 goto fail;
2424 nd->flags &= ~LOOKUP_PARENT;
2425 nd->flags |= LOOKUP_CREATE | LOOKUP_EXCL;
2426 nd->intent.open.flags = O_EXCL;
2427
2428 /*
2429 * Do the final lookup.
2430 */
2431 dentry = lookup_hash(nd);
2432 if (IS_ERR(dentry))
2433 goto fail;
2434
2435 if (dentry->d_inode)
2436 goto eexist;
2437 /*
2438 * Special case - lookup gave negative, but... we had foo/bar/
2439 * From the vfs_mknod() POV we just have a negative dentry -
2440 * all is fine. Let's be bastards - you had / on the end, you've
2441 * been asking for (non-existent) directory. -ENOENT for you.
2442 */
2443 if (unlikely(!is_dir && nd->last.name[nd->last.len])) {
2444 dput(dentry);
2445 dentry = ERR_PTR(-ENOENT);
2446 }
2447 return dentry;
2448 eexist:
2449 dput(dentry);
2450 dentry = ERR_PTR(-EEXIST);
2451 fail:
2452 return dentry;
2453 }
2454 EXPORT_SYMBOL_GPL(lookup_create);
2455
2456 int vfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
2457 {
2458 int error = may_create(dir, dentry);
2459
2460 if (error)
2461 return error;
2462
2463 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
2464 return -EPERM;
2465
2466 if (!dir->i_op->mknod)
2467 return -EPERM;
2468
2469 error = devcgroup_inode_mknod(mode, dev);
2470 if (error)
2471 return error;
2472
2473 error = security_inode_mknod(dir, dentry, mode, dev);
2474 if (error)
2475 return error;
2476
2477 error = dir->i_op->mknod(dir, dentry, mode, dev);
2478 if (!error)
2479 fsnotify_create(dir, dentry);
2480 return error;
2481 }
2482
2483 static int may_mknod(mode_t mode)
2484 {
2485 switch (mode & S_IFMT) {
2486 case S_IFREG:
2487 case S_IFCHR:
2488 case S_IFBLK:
2489 case S_IFIFO:
2490 case S_IFSOCK:
2491 case 0: /* zero mode translates to S_IFREG */
2492 return 0;
2493 case S_IFDIR:
2494 return -EPERM;
2495 default:
2496 return -EINVAL;
2497 }
2498 }
2499
2500 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, int, mode,
2501 unsigned, dev)
2502 {
2503 int error;
2504 char *tmp;
2505 struct dentry *dentry;
2506 struct nameidata nd;
2507
2508 if (S_ISDIR(mode))
2509 return -EPERM;
2510
2511 error = user_path_parent(dfd, filename, &nd, &tmp);
2512 if (error)
2513 return error;
2514
2515 dentry = lookup_create(&nd, 0);
2516 if (IS_ERR(dentry)) {
2517 error = PTR_ERR(dentry);
2518 goto out_unlock;
2519 }
2520 if (!IS_POSIXACL(nd.path.dentry->d_inode))
2521 mode &= ~current_umask();
2522 error = may_mknod(mode);
2523 if (error)
2524 goto out_dput;
2525 error = mnt_want_write(nd.path.mnt);
2526 if (error)
2527 goto out_dput;
2528 error = security_path_mknod(&nd.path, dentry, mode, dev);
2529 if (error)
2530 goto out_drop_write;
2531 switch (mode & S_IFMT) {
2532 case 0: case S_IFREG:
2533 error = vfs_create(nd.path.dentry->d_inode,dentry,mode,&nd);
2534 break;
2535 case S_IFCHR: case S_IFBLK:
2536 error = vfs_mknod(nd.path.dentry->d_inode,dentry,mode,
2537 new_decode_dev(dev));
2538 break;
2539 case S_IFIFO: case S_IFSOCK:
2540 error = vfs_mknod(nd.path.dentry->d_inode,dentry,mode,0);
2541 break;
2542 }
2543 out_drop_write:
2544 mnt_drop_write(nd.path.mnt);
2545 out_dput:
2546 dput(dentry);
2547 out_unlock:
2548 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2549 path_put(&nd.path);
2550 putname(tmp);
2551
2552 return error;
2553 }
2554
2555 SYSCALL_DEFINE3(mknod, const char __user *, filename, int, mode, unsigned, dev)
2556 {
2557 return sys_mknodat(AT_FDCWD, filename, mode, dev);
2558 }
2559
2560 int vfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
2561 {
2562 int error = may_create(dir, dentry);
2563
2564 if (error)
2565 return error;
2566
2567 if (!dir->i_op->mkdir)
2568 return -EPERM;
2569
2570 mode &= (S_IRWXUGO|S_ISVTX);
2571 error = security_inode_mkdir(dir, dentry, mode);
2572 if (error)
2573 return error;
2574
2575 error = dir->i_op->mkdir(dir, dentry, mode);
2576 if (!error)
2577 fsnotify_mkdir(dir, dentry);
2578 return error;
2579 }
2580
2581 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, int, mode)
2582 {
2583 int error = 0;
2584 char * tmp;
2585 struct dentry *dentry;
2586 struct nameidata nd;
2587
2588 error = user_path_parent(dfd, pathname, &nd, &tmp);
2589 if (error)
2590 goto out_err;
2591
2592 dentry = lookup_create(&nd, 1);
2593 error = PTR_ERR(dentry);
2594 if (IS_ERR(dentry))
2595 goto out_unlock;
2596
2597 if (!IS_POSIXACL(nd.path.dentry->d_inode))
2598 mode &= ~current_umask();
2599 error = mnt_want_write(nd.path.mnt);
2600 if (error)
2601 goto out_dput;
2602 error = security_path_mkdir(&nd.path, dentry, mode);
2603 if (error)
2604 goto out_drop_write;
2605 error = vfs_mkdir(nd.path.dentry->d_inode, dentry, mode);
2606 out_drop_write:
2607 mnt_drop_write(nd.path.mnt);
2608 out_dput:
2609 dput(dentry);
2610 out_unlock:
2611 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2612 path_put(&nd.path);
2613 putname(tmp);
2614 out_err:
2615 return error;
2616 }
2617
2618 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, int, mode)
2619 {
2620 return sys_mkdirat(AT_FDCWD, pathname, mode);
2621 }
2622
2623 /*
2624 * We try to drop the dentry early: we should have
2625 * a usage count of 2 if we're the only user of this
2626 * dentry, and if that is true (possibly after pruning
2627 * the dcache), then we drop the dentry now.
2628 *
2629 * A low-level filesystem can, if it choses, legally
2630 * do a
2631 *
2632 * if (!d_unhashed(dentry))
2633 * return -EBUSY;
2634 *
2635 * if it cannot handle the case of removing a directory
2636 * that is still in use by something else..
2637 */
2638 void dentry_unhash(struct dentry *dentry)
2639 {
2640 dget(dentry);
2641 shrink_dcache_parent(dentry);
2642 spin_lock(&dentry->d_lock);
2643 if (dentry->d_count == 2)
2644 __d_drop(dentry);
2645 spin_unlock(&dentry->d_lock);
2646 }
2647
2648 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
2649 {
2650 int error = may_delete(dir, dentry, 1);
2651
2652 if (error)
2653 return error;
2654
2655 if (!dir->i_op->rmdir)
2656 return -EPERM;
2657
2658 mutex_lock(&dentry->d_inode->i_mutex);
2659 dentry_unhash(dentry);
2660 if (d_mountpoint(dentry))
2661 error = -EBUSY;
2662 else {
2663 error = security_inode_rmdir(dir, dentry);
2664 if (!error) {
2665 error = dir->i_op->rmdir(dir, dentry);
2666 if (!error) {
2667 dentry->d_inode->i_flags |= S_DEAD;
2668 dont_mount(dentry);
2669 }
2670 }
2671 }
2672 mutex_unlock(&dentry->d_inode->i_mutex);
2673 if (!error) {
2674 d_delete(dentry);
2675 }
2676 dput(dentry);
2677
2678 return error;
2679 }
2680
2681 static long do_rmdir(int dfd, const char __user *pathname)
2682 {
2683 int error = 0;
2684 char * name;
2685 struct dentry *dentry;
2686 struct nameidata nd;
2687
2688 error = user_path_parent(dfd, pathname, &nd, &name);
2689 if (error)
2690 return error;
2691
2692 switch(nd.last_type) {
2693 case LAST_DOTDOT:
2694 error = -ENOTEMPTY;
2695 goto exit1;
2696 case LAST_DOT:
2697 error = -EINVAL;
2698 goto exit1;
2699 case LAST_ROOT:
2700 error = -EBUSY;
2701 goto exit1;
2702 }
2703
2704 nd.flags &= ~LOOKUP_PARENT;
2705
2706 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2707 dentry = lookup_hash(&nd);
2708 error = PTR_ERR(dentry);
2709 if (IS_ERR(dentry))
2710 goto exit2;
2711 error = mnt_want_write(nd.path.mnt);
2712 if (error)
2713 goto exit3;
2714 error = security_path_rmdir(&nd.path, dentry);
2715 if (error)
2716 goto exit4;
2717 error = vfs_rmdir(nd.path.dentry->d_inode, dentry);
2718 exit4:
2719 mnt_drop_write(nd.path.mnt);
2720 exit3:
2721 dput(dentry);
2722 exit2:
2723 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2724 exit1:
2725 path_put(&nd.path);
2726 putname(name);
2727 return error;
2728 }
2729
2730 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
2731 {
2732 return do_rmdir(AT_FDCWD, pathname);
2733 }
2734
2735 int vfs_unlink(struct inode *dir, struct dentry *dentry)
2736 {
2737 int error = may_delete(dir, dentry, 0);
2738
2739 if (error)
2740 return error;
2741
2742 if (!dir->i_op->unlink)
2743 return -EPERM;
2744
2745 mutex_lock(&dentry->d_inode->i_mutex);
2746 if (d_mountpoint(dentry))
2747 error = -EBUSY;
2748 else {
2749 error = security_inode_unlink(dir, dentry);
2750 if (!error) {
2751 error = dir->i_op->unlink(dir, dentry);
2752 if (!error)
2753 dont_mount(dentry);
2754 }
2755 }
2756 mutex_unlock(&dentry->d_inode->i_mutex);
2757
2758 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
2759 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
2760 fsnotify_link_count(dentry->d_inode);
2761 d_delete(dentry);
2762 }
2763
2764 return error;
2765 }
2766
2767 /*
2768 * Make sure that the actual truncation of the file will occur outside its
2769 * directory's i_mutex. Truncate can take a long time if there is a lot of
2770 * writeout happening, and we don't want to prevent access to the directory
2771 * while waiting on the I/O.
2772 */
2773 static long do_unlinkat(int dfd, const char __user *pathname)
2774 {
2775 int error;
2776 char *name;
2777 struct dentry *dentry;
2778 struct nameidata nd;
2779 struct inode *inode = NULL;
2780
2781 error = user_path_parent(dfd, pathname, &nd, &name);
2782 if (error)
2783 return error;
2784
2785 error = -EISDIR;
2786 if (nd.last_type != LAST_NORM)
2787 goto exit1;
2788
2789 nd.flags &= ~LOOKUP_PARENT;
2790
2791 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2792 dentry = lookup_hash(&nd);
2793 error = PTR_ERR(dentry);
2794 if (!IS_ERR(dentry)) {
2795 /* Why not before? Because we want correct error value */
2796 if (nd.last.name[nd.last.len])
2797 goto slashes;
2798 inode = dentry->d_inode;
2799 if (inode)
2800 ihold(inode);
2801 error = mnt_want_write(nd.path.mnt);
2802 if (error)
2803 goto exit2;
2804 error = security_path_unlink(&nd.path, dentry);
2805 if (error)
2806 goto exit3;
2807 error = vfs_unlink(nd.path.dentry->d_inode, dentry);
2808 exit3:
2809 mnt_drop_write(nd.path.mnt);
2810 exit2:
2811 dput(dentry);
2812 }
2813 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2814 if (inode)
2815 iput(inode); /* truncate the inode here */
2816 exit1:
2817 path_put(&nd.path);
2818 putname(name);
2819 return error;
2820
2821 slashes:
2822 error = !dentry->d_inode ? -ENOENT :
2823 S_ISDIR(dentry->d_inode->i_mode) ? -EISDIR : -ENOTDIR;
2824 goto exit2;
2825 }
2826
2827 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
2828 {
2829 if ((flag & ~AT_REMOVEDIR) != 0)
2830 return -EINVAL;
2831
2832 if (flag & AT_REMOVEDIR)
2833 return do_rmdir(dfd, pathname);
2834
2835 return do_unlinkat(dfd, pathname);
2836 }
2837
2838 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
2839 {
2840 return do_unlinkat(AT_FDCWD, pathname);
2841 }
2842
2843 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
2844 {
2845 int error = may_create(dir, dentry);
2846
2847 if (error)
2848 return error;
2849
2850 if (!dir->i_op->symlink)
2851 return -EPERM;
2852
2853 error = security_inode_symlink(dir, dentry, oldname);
2854 if (error)
2855 return error;
2856
2857 error = dir->i_op->symlink(dir, dentry, oldname);
2858 if (!error)
2859 fsnotify_create(dir, dentry);
2860 return error;
2861 }
2862
2863 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
2864 int, newdfd, const char __user *, newname)
2865 {
2866 int error;
2867 char *from;
2868 char *to;
2869 struct dentry *dentry;
2870 struct nameidata nd;
2871
2872 from = getname(oldname);
2873 if (IS_ERR(from))
2874 return PTR_ERR(from);
2875
2876 error = user_path_parent(newdfd, newname, &nd, &to);
2877 if (error)
2878 goto out_putname;
2879
2880 dentry = lookup_create(&nd, 0);
2881 error = PTR_ERR(dentry);
2882 if (IS_ERR(dentry))
2883 goto out_unlock;
2884
2885 error = mnt_want_write(nd.path.mnt);
2886 if (error)
2887 goto out_dput;
2888 error = security_path_symlink(&nd.path, dentry, from);
2889 if (error)
2890 goto out_drop_write;
2891 error = vfs_symlink(nd.path.dentry->d_inode, dentry, from);
2892 out_drop_write:
2893 mnt_drop_write(nd.path.mnt);
2894 out_dput:
2895 dput(dentry);
2896 out_unlock:
2897 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2898 path_put(&nd.path);
2899 putname(to);
2900 out_putname:
2901 putname(from);
2902 return error;
2903 }
2904
2905 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
2906 {
2907 return sys_symlinkat(oldname, AT_FDCWD, newname);
2908 }
2909
2910 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2911 {
2912 struct inode *inode = old_dentry->d_inode;
2913 int error;
2914
2915 if (!inode)
2916 return -ENOENT;
2917
2918 error = may_create(dir, new_dentry);
2919 if (error)
2920 return error;
2921
2922 if (dir->i_sb != inode->i_sb)
2923 return -EXDEV;
2924
2925 /*
2926 * A link to an append-only or immutable file cannot be created.
2927 */
2928 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
2929 return -EPERM;
2930 if (!dir->i_op->link)
2931 return -EPERM;
2932 if (S_ISDIR(inode->i_mode))
2933 return -EPERM;
2934
2935 error = security_inode_link(old_dentry, dir, new_dentry);
2936 if (error)
2937 return error;
2938
2939 mutex_lock(&inode->i_mutex);
2940 error = dir->i_op->link(old_dentry, dir, new_dentry);
2941 mutex_unlock(&inode->i_mutex);
2942 if (!error)
2943 fsnotify_link(dir, inode, new_dentry);
2944 return error;
2945 }
2946
2947 /*
2948 * Hardlinks are often used in delicate situations. We avoid
2949 * security-related surprises by not following symlinks on the
2950 * newname. --KAB
2951 *
2952 * We don't follow them on the oldname either to be compatible
2953 * with linux 2.0, and to avoid hard-linking to directories
2954 * and other special files. --ADM
2955 */
2956 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
2957 int, newdfd, const char __user *, newname, int, flags)
2958 {
2959 struct dentry *new_dentry;
2960 struct nameidata nd;
2961 struct path old_path;
2962 int error;
2963 char *to;
2964
2965 if ((flags & ~AT_SYMLINK_FOLLOW) != 0)
2966 return -EINVAL;
2967
2968 error = user_path_at(olddfd, oldname,
2969 flags & AT_SYMLINK_FOLLOW ? LOOKUP_FOLLOW : 0,
2970 &old_path);
2971 if (error)
2972 return error;
2973
2974 error = user_path_parent(newdfd, newname, &nd, &to);
2975 if (error)
2976 goto out;
2977 error = -EXDEV;
2978 if (old_path.mnt != nd.path.mnt)
2979 goto out_release;
2980 new_dentry = lookup_create(&nd, 0);
2981 error = PTR_ERR(new_dentry);
2982 if (IS_ERR(new_dentry))
2983 goto out_unlock;
2984 error = mnt_want_write(nd.path.mnt);
2985 if (error)
2986 goto out_dput;
2987 error = security_path_link(old_path.dentry, &nd.path, new_dentry);
2988 if (error)
2989 goto out_drop_write;
2990 error = vfs_link(old_path.dentry, nd.path.dentry->d_inode, new_dentry);
2991 out_drop_write:
2992 mnt_drop_write(nd.path.mnt);
2993 out_dput:
2994 dput(new_dentry);
2995 out_unlock:
2996 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2997 out_release:
2998 path_put(&nd.path);
2999 putname(to);
3000 out:
3001 path_put(&old_path);
3002
3003 return error;
3004 }
3005
3006 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
3007 {
3008 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
3009 }
3010
3011 /*
3012 * The worst of all namespace operations - renaming directory. "Perverted"
3013 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
3014 * Problems:
3015 * a) we can get into loop creation. Check is done in is_subdir().
3016 * b) race potential - two innocent renames can create a loop together.
3017 * That's where 4.4 screws up. Current fix: serialization on
3018 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
3019 * story.
3020 * c) we have to lock _three_ objects - parents and victim (if it exists).
3021 * And that - after we got ->i_mutex on parents (until then we don't know
3022 * whether the target exists). Solution: try to be smart with locking
3023 * order for inodes. We rely on the fact that tree topology may change
3024 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
3025 * move will be locked. Thus we can rank directories by the tree
3026 * (ancestors first) and rank all non-directories after them.
3027 * That works since everybody except rename does "lock parent, lookup,
3028 * lock child" and rename is under ->s_vfs_rename_mutex.
3029 * HOWEVER, it relies on the assumption that any object with ->lookup()
3030 * has no more than 1 dentry. If "hybrid" objects will ever appear,
3031 * we'd better make sure that there's no link(2) for them.
3032 * d) some filesystems don't support opened-but-unlinked directories,
3033 * either because of layout or because they are not ready to deal with
3034 * all cases correctly. The latter will be fixed (taking this sort of
3035 * stuff into VFS), but the former is not going away. Solution: the same
3036 * trick as in rmdir().
3037 * e) conversion from fhandle to dentry may come in the wrong moment - when
3038 * we are removing the target. Solution: we will have to grab ->i_mutex
3039 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
3040 * ->i_mutex on parents, which works but leads to some truly excessive
3041 * locking].
3042 */
3043 static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry,
3044 struct inode *new_dir, struct dentry *new_dentry)
3045 {
3046 int error = 0;
3047 struct inode *target;
3048
3049 /*
3050 * If we are going to change the parent - check write permissions,
3051 * we'll need to flip '..'.
3052 */
3053 if (new_dir != old_dir) {
3054 error = inode_permission(old_dentry->d_inode, MAY_WRITE);
3055 if (error)
3056 return error;
3057 }
3058
3059 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
3060 if (error)
3061 return error;
3062
3063 target = new_dentry->d_inode;
3064 if (target)
3065 mutex_lock(&target->i_mutex);
3066 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
3067 error = -EBUSY;
3068 else {
3069 if (target)
3070 dentry_unhash(new_dentry);
3071 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
3072 }
3073 if (target) {
3074 if (!error) {
3075 target->i_flags |= S_DEAD;
3076 dont_mount(new_dentry);
3077 }
3078 mutex_unlock(&target->i_mutex);
3079 if (d_unhashed(new_dentry))
3080 d_rehash(new_dentry);
3081 dput(new_dentry);
3082 }
3083 if (!error)
3084 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
3085 d_move(old_dentry,new_dentry);
3086 return error;
3087 }
3088
3089 static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry,
3090 struct inode *new_dir, struct dentry *new_dentry)
3091 {
3092 struct inode *target;
3093 int error;
3094
3095 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
3096 if (error)
3097 return error;
3098
3099 dget(new_dentry);
3100 target = new_dentry->d_inode;
3101 if (target)
3102 mutex_lock(&target->i_mutex);
3103 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
3104 error = -EBUSY;
3105 else
3106 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
3107 if (!error) {
3108 if (target)
3109 dont_mount(new_dentry);
3110 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
3111 d_move(old_dentry, new_dentry);
3112 }
3113 if (target)
3114 mutex_unlock(&target->i_mutex);
3115 dput(new_dentry);
3116 return error;
3117 }
3118
3119 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
3120 struct inode *new_dir, struct dentry *new_dentry)
3121 {
3122 int error;
3123 int is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
3124 const unsigned char *old_name;
3125
3126 if (old_dentry->d_inode == new_dentry->d_inode)
3127 return 0;
3128
3129 error = may_delete(old_dir, old_dentry, is_dir);
3130 if (error)
3131 return error;
3132
3133 if (!new_dentry->d_inode)
3134 error = may_create(new_dir, new_dentry);
3135 else
3136 error = may_delete(new_dir, new_dentry, is_dir);
3137 if (error)
3138 return error;
3139
3140 if (!old_dir->i_op->rename)
3141 return -EPERM;
3142
3143 old_name = fsnotify_oldname_init(old_dentry->d_name.name);
3144
3145 if (is_dir)
3146 error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry);
3147 else
3148 error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry);
3149 if (!error)
3150 fsnotify_move(old_dir, new_dir, old_name, is_dir,
3151 new_dentry->d_inode, old_dentry);
3152 fsnotify_oldname_free(old_name);
3153
3154 return error;
3155 }
3156
3157 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
3158 int, newdfd, const char __user *, newname)
3159 {
3160 struct dentry *old_dir, *new_dir;
3161 struct dentry *old_dentry, *new_dentry;
3162 struct dentry *trap;
3163 struct nameidata oldnd, newnd;
3164 char *from;
3165 char *to;
3166 int error;
3167
3168 error = user_path_parent(olddfd, oldname, &oldnd, &from);
3169 if (error)
3170 goto exit;
3171
3172 error = user_path_parent(newdfd, newname, &newnd, &to);
3173 if (error)
3174 goto exit1;
3175
3176 error = -EXDEV;
3177 if (oldnd.path.mnt != newnd.path.mnt)
3178 goto exit2;
3179
3180 old_dir = oldnd.path.dentry;
3181 error = -EBUSY;
3182 if (oldnd.last_type != LAST_NORM)
3183 goto exit2;
3184
3185 new_dir = newnd.path.dentry;
3186 if (newnd.last_type != LAST_NORM)
3187 goto exit2;
3188
3189 oldnd.flags &= ~LOOKUP_PARENT;
3190 newnd.flags &= ~LOOKUP_PARENT;
3191 newnd.flags |= LOOKUP_RENAME_TARGET;
3192
3193 trap = lock_rename(new_dir, old_dir);
3194
3195 old_dentry = lookup_hash(&oldnd);
3196 error = PTR_ERR(old_dentry);
3197 if (IS_ERR(old_dentry))
3198 goto exit3;
3199 /* source must exist */
3200 error = -ENOENT;
3201 if (!old_dentry->d_inode)
3202 goto exit4;
3203 /* unless the source is a directory trailing slashes give -ENOTDIR */
3204 if (!S_ISDIR(old_dentry->d_inode->i_mode)) {
3205 error = -ENOTDIR;
3206 if (oldnd.last.name[oldnd.last.len])
3207 goto exit4;
3208 if (newnd.last.name[newnd.last.len])
3209 goto exit4;
3210 }
3211 /* source should not be ancestor of target */
3212 error = -EINVAL;
3213 if (old_dentry == trap)
3214 goto exit4;
3215 new_dentry = lookup_hash(&newnd);
3216 error = PTR_ERR(new_dentry);
3217 if (IS_ERR(new_dentry))
3218 goto exit4;
3219 /* target should not be an ancestor of source */
3220 error = -ENOTEMPTY;
3221 if (new_dentry == trap)
3222 goto exit5;
3223
3224 error = mnt_want_write(oldnd.path.mnt);
3225 if (error)
3226 goto exit5;
3227 error = security_path_rename(&oldnd.path, old_dentry,
3228 &newnd.path, new_dentry);
3229 if (error)
3230 goto exit6;
3231 error = vfs_rename(old_dir->d_inode, old_dentry,
3232 new_dir->d_inode, new_dentry);
3233 exit6:
3234 mnt_drop_write(oldnd.path.mnt);
3235 exit5:
3236 dput(new_dentry);
3237 exit4:
3238 dput(old_dentry);
3239 exit3:
3240 unlock_rename(new_dir, old_dir);
3241 exit2:
3242 path_put(&newnd.path);
3243 putname(to);
3244 exit1:
3245 path_put(&oldnd.path);
3246 putname(from);
3247 exit:
3248 return error;
3249 }
3250
3251 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
3252 {
3253 return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname);
3254 }
3255
3256 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link)
3257 {
3258 int len;
3259
3260 len = PTR_ERR(link);
3261 if (IS_ERR(link))
3262 goto out;
3263
3264 len = strlen(link);
3265 if (len > (unsigned) buflen)
3266 len = buflen;
3267 if (copy_to_user(buffer, link, len))
3268 len = -EFAULT;
3269 out:
3270 return len;
3271 }
3272
3273 /*
3274 * A helper for ->readlink(). This should be used *ONLY* for symlinks that
3275 * have ->follow_link() touching nd only in nd_set_link(). Using (or not
3276 * using) it for any given inode is up to filesystem.
3277 */
3278 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
3279 {
3280 struct nameidata nd;
3281 void *cookie;
3282 int res;
3283
3284 nd.depth = 0;
3285 cookie = dentry->d_inode->i_op->follow_link(dentry, &nd);
3286 if (IS_ERR(cookie))
3287 return PTR_ERR(cookie);
3288
3289 res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd));
3290 if (dentry->d_inode->i_op->put_link)
3291 dentry->d_inode->i_op->put_link(dentry, &nd, cookie);
3292 return res;
3293 }
3294
3295 int vfs_follow_link(struct nameidata *nd, const char *link)
3296 {
3297 return __vfs_follow_link(nd, link);
3298 }
3299
3300 /* get the link contents into pagecache */
3301 static char *page_getlink(struct dentry * dentry, struct page **ppage)
3302 {
3303 char *kaddr;
3304 struct page *page;
3305 struct address_space *mapping = dentry->d_inode->i_mapping;
3306 page = read_mapping_page(mapping, 0, NULL);
3307 if (IS_ERR(page))
3308 return (char*)page;
3309 *ppage = page;
3310 kaddr = kmap(page);
3311 nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
3312 return kaddr;
3313 }
3314
3315 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
3316 {
3317 struct page *page = NULL;
3318 char *s = page_getlink(dentry, &page);
3319 int res = vfs_readlink(dentry,buffer,buflen,s);
3320 if (page) {
3321 kunmap(page);
3322 page_cache_release(page);
3323 }
3324 return res;
3325 }
3326
3327 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd)
3328 {
3329 struct page *page = NULL;
3330 nd_set_link(nd, page_getlink(dentry, &page));
3331 return page;
3332 }
3333
3334 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
3335 {
3336 struct page *page = cookie;
3337
3338 if (page) {
3339 kunmap(page);
3340 page_cache_release(page);
3341 }
3342 }
3343
3344 /*
3345 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
3346 */
3347 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
3348 {
3349 struct address_space *mapping = inode->i_mapping;
3350 struct page *page;
3351 void *fsdata;
3352 int err;
3353 char *kaddr;
3354 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
3355 if (nofs)
3356 flags |= AOP_FLAG_NOFS;
3357
3358 retry:
3359 err = pagecache_write_begin(NULL, mapping, 0, len-1,
3360 flags, &page, &fsdata);
3361 if (err)
3362 goto fail;
3363
3364 kaddr = kmap_atomic(page, KM_USER0);
3365 memcpy(kaddr, symname, len-1);
3366 kunmap_atomic(kaddr, KM_USER0);
3367
3368 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
3369 page, fsdata);
3370 if (err < 0)
3371 goto fail;
3372 if (err < len-1)
3373 goto retry;
3374
3375 mark_inode_dirty(inode);
3376 return 0;
3377 fail:
3378 return err;
3379 }
3380
3381 int page_symlink(struct inode *inode, const char *symname, int len)
3382 {
3383 return __page_symlink(inode, symname, len,
3384 !(mapping_gfp_mask(inode->i_mapping) & __GFP_FS));
3385 }
3386
3387 const struct inode_operations page_symlink_inode_operations = {
3388 .readlink = generic_readlink,
3389 .follow_link = page_follow_link_light,
3390 .put_link = page_put_link,
3391 };
3392
3393 EXPORT_SYMBOL(user_path_at);
3394 EXPORT_SYMBOL(follow_down_one);
3395 EXPORT_SYMBOL(follow_down);
3396 EXPORT_SYMBOL(follow_up);
3397 EXPORT_SYMBOL(get_write_access); /* binfmt_aout */
3398 EXPORT_SYMBOL(getname);
3399 EXPORT_SYMBOL(lock_rename);
3400 EXPORT_SYMBOL(lookup_one_len);
3401 EXPORT_SYMBOL(page_follow_link_light);
3402 EXPORT_SYMBOL(page_put_link);
3403 EXPORT_SYMBOL(page_readlink);
3404 EXPORT_SYMBOL(__page_symlink);
3405 EXPORT_SYMBOL(page_symlink);
3406 EXPORT_SYMBOL(page_symlink_inode_operations);
3407 EXPORT_SYMBOL(kern_path_parent);
3408 EXPORT_SYMBOL(kern_path);
3409 EXPORT_SYMBOL(vfs_path_lookup);
3410 EXPORT_SYMBOL(inode_permission);
3411 EXPORT_SYMBOL(file_permission);
3412 EXPORT_SYMBOL(unlock_rename);
3413 EXPORT_SYMBOL(vfs_create);
3414 EXPORT_SYMBOL(vfs_follow_link);
3415 EXPORT_SYMBOL(vfs_link);
3416 EXPORT_SYMBOL(vfs_mkdir);
3417 EXPORT_SYMBOL(vfs_mknod);
3418 EXPORT_SYMBOL(generic_permission);
3419 EXPORT_SYMBOL(vfs_readlink);
3420 EXPORT_SYMBOL(vfs_rename);
3421 EXPORT_SYMBOL(vfs_rmdir);
3422 EXPORT_SYMBOL(vfs_symlink);
3423 EXPORT_SYMBOL(vfs_unlink);
3424 EXPORT_SYMBOL(dentry_unhash);
3425 EXPORT_SYMBOL(generic_readlink);
This page took 0.297786 seconds and 6 git commands to generate.