Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/geert/linux...
[deliverable/linux.git] / fs / namei.c
1 /*
2 * linux/fs/namei.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * Some corrections by tytso.
9 */
10
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12 * lookup logic.
13 */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15 */
16
17 #include <linux/init.h>
18 #include <linux/module.h>
19 #include <linux/slab.h>
20 #include <linux/fs.h>
21 #include <linux/namei.h>
22 #include <linux/quotaops.h>
23 #include <linux/pagemap.h>
24 #include <linux/fsnotify.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/ima.h>
28 #include <linux/syscalls.h>
29 #include <linux/mount.h>
30 #include <linux/audit.h>
31 #include <linux/capability.h>
32 #include <linux/file.h>
33 #include <linux/fcntl.h>
34 #include <linux/device_cgroup.h>
35 #include <asm/uaccess.h>
36
37 #define ACC_MODE(x) ("\000\004\002\006"[(x)&O_ACCMODE])
38
39 /* [Feb-1997 T. Schoebel-Theuer]
40 * Fundamental changes in the pathname lookup mechanisms (namei)
41 * were necessary because of omirr. The reason is that omirr needs
42 * to know the _real_ pathname, not the user-supplied one, in case
43 * of symlinks (and also when transname replacements occur).
44 *
45 * The new code replaces the old recursive symlink resolution with
46 * an iterative one (in case of non-nested symlink chains). It does
47 * this with calls to <fs>_follow_link().
48 * As a side effect, dir_namei(), _namei() and follow_link() are now
49 * replaced with a single function lookup_dentry() that can handle all
50 * the special cases of the former code.
51 *
52 * With the new dcache, the pathname is stored at each inode, at least as
53 * long as the refcount of the inode is positive. As a side effect, the
54 * size of the dcache depends on the inode cache and thus is dynamic.
55 *
56 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
57 * resolution to correspond with current state of the code.
58 *
59 * Note that the symlink resolution is not *completely* iterative.
60 * There is still a significant amount of tail- and mid- recursion in
61 * the algorithm. Also, note that <fs>_readlink() is not used in
62 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
63 * may return different results than <fs>_follow_link(). Many virtual
64 * filesystems (including /proc) exhibit this behavior.
65 */
66
67 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
68 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
69 * and the name already exists in form of a symlink, try to create the new
70 * name indicated by the symlink. The old code always complained that the
71 * name already exists, due to not following the symlink even if its target
72 * is nonexistent. The new semantics affects also mknod() and link() when
73 * the name is a symlink pointing to a non-existant name.
74 *
75 * I don't know which semantics is the right one, since I have no access
76 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
77 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
78 * "old" one. Personally, I think the new semantics is much more logical.
79 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
80 * file does succeed in both HP-UX and SunOs, but not in Solaris
81 * and in the old Linux semantics.
82 */
83
84 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
85 * semantics. See the comments in "open_namei" and "do_link" below.
86 *
87 * [10-Sep-98 Alan Modra] Another symlink change.
88 */
89
90 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
91 * inside the path - always follow.
92 * in the last component in creation/removal/renaming - never follow.
93 * if LOOKUP_FOLLOW passed - follow.
94 * if the pathname has trailing slashes - follow.
95 * otherwise - don't follow.
96 * (applied in that order).
97 *
98 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
99 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
100 * During the 2.4 we need to fix the userland stuff depending on it -
101 * hopefully we will be able to get rid of that wart in 2.5. So far only
102 * XEmacs seems to be relying on it...
103 */
104 /*
105 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
106 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
107 * any extra contention...
108 */
109
110 static int __link_path_walk(const char *name, struct nameidata *nd);
111
112 /* In order to reduce some races, while at the same time doing additional
113 * checking and hopefully speeding things up, we copy filenames to the
114 * kernel data space before using them..
115 *
116 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
117 * PATH_MAX includes the nul terminator --RR.
118 */
119 static int do_getname(const char __user *filename, char *page)
120 {
121 int retval;
122 unsigned long len = PATH_MAX;
123
124 if (!segment_eq(get_fs(), KERNEL_DS)) {
125 if ((unsigned long) filename >= TASK_SIZE)
126 return -EFAULT;
127 if (TASK_SIZE - (unsigned long) filename < PATH_MAX)
128 len = TASK_SIZE - (unsigned long) filename;
129 }
130
131 retval = strncpy_from_user(page, filename, len);
132 if (retval > 0) {
133 if (retval < len)
134 return 0;
135 return -ENAMETOOLONG;
136 } else if (!retval)
137 retval = -ENOENT;
138 return retval;
139 }
140
141 char * getname(const char __user * filename)
142 {
143 char *tmp, *result;
144
145 result = ERR_PTR(-ENOMEM);
146 tmp = __getname();
147 if (tmp) {
148 int retval = do_getname(filename, tmp);
149
150 result = tmp;
151 if (retval < 0) {
152 __putname(tmp);
153 result = ERR_PTR(retval);
154 }
155 }
156 audit_getname(result);
157 return result;
158 }
159
160 #ifdef CONFIG_AUDITSYSCALL
161 void putname(const char *name)
162 {
163 if (unlikely(!audit_dummy_context()))
164 audit_putname(name);
165 else
166 __putname(name);
167 }
168 EXPORT_SYMBOL(putname);
169 #endif
170
171
172 /**
173 * generic_permission - check for access rights on a Posix-like filesystem
174 * @inode: inode to check access rights for
175 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
176 * @check_acl: optional callback to check for Posix ACLs
177 *
178 * Used to check for read/write/execute permissions on a file.
179 * We use "fsuid" for this, letting us set arbitrary permissions
180 * for filesystem access without changing the "normal" uids which
181 * are used for other things..
182 */
183 int generic_permission(struct inode *inode, int mask,
184 int (*check_acl)(struct inode *inode, int mask))
185 {
186 umode_t mode = inode->i_mode;
187
188 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
189
190 if (current_fsuid() == inode->i_uid)
191 mode >>= 6;
192 else {
193 if (IS_POSIXACL(inode) && (mode & S_IRWXG) && check_acl) {
194 int error = check_acl(inode, mask);
195 if (error == -EACCES)
196 goto check_capabilities;
197 else if (error != -EAGAIN)
198 return error;
199 }
200
201 if (in_group_p(inode->i_gid))
202 mode >>= 3;
203 }
204
205 /*
206 * If the DACs are ok we don't need any capability check.
207 */
208 if ((mask & ~mode) == 0)
209 return 0;
210
211 check_capabilities:
212 /*
213 * Read/write DACs are always overridable.
214 * Executable DACs are overridable if at least one exec bit is set.
215 */
216 if (!(mask & MAY_EXEC) || execute_ok(inode))
217 if (capable(CAP_DAC_OVERRIDE))
218 return 0;
219
220 /*
221 * Searching includes executable on directories, else just read.
222 */
223 if (mask == MAY_READ || (S_ISDIR(inode->i_mode) && !(mask & MAY_WRITE)))
224 if (capable(CAP_DAC_READ_SEARCH))
225 return 0;
226
227 return -EACCES;
228 }
229
230 /**
231 * inode_permission - check for access rights to a given inode
232 * @inode: inode to check permission on
233 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
234 *
235 * Used to check for read/write/execute permissions on an inode.
236 * We use "fsuid" for this, letting us set arbitrary permissions
237 * for filesystem access without changing the "normal" uids which
238 * are used for other things.
239 */
240 int inode_permission(struct inode *inode, int mask)
241 {
242 int retval;
243
244 if (mask & MAY_WRITE) {
245 umode_t mode = inode->i_mode;
246
247 /*
248 * Nobody gets write access to a read-only fs.
249 */
250 if (IS_RDONLY(inode) &&
251 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
252 return -EROFS;
253
254 /*
255 * Nobody gets write access to an immutable file.
256 */
257 if (IS_IMMUTABLE(inode))
258 return -EACCES;
259 }
260
261 if (inode->i_op->permission)
262 retval = inode->i_op->permission(inode, mask);
263 else
264 retval = generic_permission(inode, mask, NULL);
265
266 if (retval)
267 return retval;
268
269 retval = devcgroup_inode_permission(inode, mask);
270 if (retval)
271 return retval;
272
273 return security_inode_permission(inode,
274 mask & (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND));
275 }
276
277 /**
278 * file_permission - check for additional access rights to a given file
279 * @file: file to check access rights for
280 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
281 *
282 * Used to check for read/write/execute permissions on an already opened
283 * file.
284 *
285 * Note:
286 * Do not use this function in new code. All access checks should
287 * be done using inode_permission().
288 */
289 int file_permission(struct file *file, int mask)
290 {
291 return inode_permission(file->f_path.dentry->d_inode, mask);
292 }
293
294 /*
295 * get_write_access() gets write permission for a file.
296 * put_write_access() releases this write permission.
297 * This is used for regular files.
298 * We cannot support write (and maybe mmap read-write shared) accesses and
299 * MAP_DENYWRITE mmappings simultaneously. The i_writecount field of an inode
300 * can have the following values:
301 * 0: no writers, no VM_DENYWRITE mappings
302 * < 0: (-i_writecount) vm_area_structs with VM_DENYWRITE set exist
303 * > 0: (i_writecount) users are writing to the file.
304 *
305 * Normally we operate on that counter with atomic_{inc,dec} and it's safe
306 * except for the cases where we don't hold i_writecount yet. Then we need to
307 * use {get,deny}_write_access() - these functions check the sign and refuse
308 * to do the change if sign is wrong. Exclusion between them is provided by
309 * the inode->i_lock spinlock.
310 */
311
312 int get_write_access(struct inode * inode)
313 {
314 spin_lock(&inode->i_lock);
315 if (atomic_read(&inode->i_writecount) < 0) {
316 spin_unlock(&inode->i_lock);
317 return -ETXTBSY;
318 }
319 atomic_inc(&inode->i_writecount);
320 spin_unlock(&inode->i_lock);
321
322 return 0;
323 }
324
325 int deny_write_access(struct file * file)
326 {
327 struct inode *inode = file->f_path.dentry->d_inode;
328
329 spin_lock(&inode->i_lock);
330 if (atomic_read(&inode->i_writecount) > 0) {
331 spin_unlock(&inode->i_lock);
332 return -ETXTBSY;
333 }
334 atomic_dec(&inode->i_writecount);
335 spin_unlock(&inode->i_lock);
336
337 return 0;
338 }
339
340 /**
341 * path_get - get a reference to a path
342 * @path: path to get the reference to
343 *
344 * Given a path increment the reference count to the dentry and the vfsmount.
345 */
346 void path_get(struct path *path)
347 {
348 mntget(path->mnt);
349 dget(path->dentry);
350 }
351 EXPORT_SYMBOL(path_get);
352
353 /**
354 * path_put - put a reference to a path
355 * @path: path to put the reference to
356 *
357 * Given a path decrement the reference count to the dentry and the vfsmount.
358 */
359 void path_put(struct path *path)
360 {
361 dput(path->dentry);
362 mntput(path->mnt);
363 }
364 EXPORT_SYMBOL(path_put);
365
366 /**
367 * release_open_intent - free up open intent resources
368 * @nd: pointer to nameidata
369 */
370 void release_open_intent(struct nameidata *nd)
371 {
372 if (nd->intent.open.file->f_path.dentry == NULL)
373 put_filp(nd->intent.open.file);
374 else
375 fput(nd->intent.open.file);
376 }
377
378 static inline struct dentry *
379 do_revalidate(struct dentry *dentry, struct nameidata *nd)
380 {
381 int status = dentry->d_op->d_revalidate(dentry, nd);
382 if (unlikely(status <= 0)) {
383 /*
384 * The dentry failed validation.
385 * If d_revalidate returned 0 attempt to invalidate
386 * the dentry otherwise d_revalidate is asking us
387 * to return a fail status.
388 */
389 if (!status) {
390 if (!d_invalidate(dentry)) {
391 dput(dentry);
392 dentry = NULL;
393 }
394 } else {
395 dput(dentry);
396 dentry = ERR_PTR(status);
397 }
398 }
399 return dentry;
400 }
401
402 /*
403 * Internal lookup() using the new generic dcache.
404 * SMP-safe
405 */
406 static struct dentry * cached_lookup(struct dentry * parent, struct qstr * name, struct nameidata *nd)
407 {
408 struct dentry * dentry = __d_lookup(parent, name);
409
410 /* lockess __d_lookup may fail due to concurrent d_move()
411 * in some unrelated directory, so try with d_lookup
412 */
413 if (!dentry)
414 dentry = d_lookup(parent, name);
415
416 if (dentry && dentry->d_op && dentry->d_op->d_revalidate)
417 dentry = do_revalidate(dentry, nd);
418
419 return dentry;
420 }
421
422 /*
423 * Short-cut version of permission(), for calling by
424 * path_walk(), when dcache lock is held. Combines parts
425 * of permission() and generic_permission(), and tests ONLY for
426 * MAY_EXEC permission.
427 *
428 * If appropriate, check DAC only. If not appropriate, or
429 * short-cut DAC fails, then call permission() to do more
430 * complete permission check.
431 */
432 static int exec_permission_lite(struct inode *inode)
433 {
434 umode_t mode = inode->i_mode;
435
436 if (inode->i_op->permission)
437 return -EAGAIN;
438
439 if (current_fsuid() == inode->i_uid)
440 mode >>= 6;
441 else if (in_group_p(inode->i_gid))
442 mode >>= 3;
443
444 if (mode & MAY_EXEC)
445 goto ok;
446
447 if ((inode->i_mode & S_IXUGO) && capable(CAP_DAC_OVERRIDE))
448 goto ok;
449
450 if (S_ISDIR(inode->i_mode) && capable(CAP_DAC_OVERRIDE))
451 goto ok;
452
453 if (S_ISDIR(inode->i_mode) && capable(CAP_DAC_READ_SEARCH))
454 goto ok;
455
456 return -EACCES;
457 ok:
458 return security_inode_permission(inode, MAY_EXEC);
459 }
460
461 /*
462 * This is called when everything else fails, and we actually have
463 * to go to the low-level filesystem to find out what we should do..
464 *
465 * We get the directory semaphore, and after getting that we also
466 * make sure that nobody added the entry to the dcache in the meantime..
467 * SMP-safe
468 */
469 static struct dentry * real_lookup(struct dentry * parent, struct qstr * name, struct nameidata *nd)
470 {
471 struct dentry * result;
472 struct inode *dir = parent->d_inode;
473
474 mutex_lock(&dir->i_mutex);
475 /*
476 * First re-do the cached lookup just in case it was created
477 * while we waited for the directory semaphore..
478 *
479 * FIXME! This could use version numbering or similar to
480 * avoid unnecessary cache lookups.
481 *
482 * The "dcache_lock" is purely to protect the RCU list walker
483 * from concurrent renames at this point (we mustn't get false
484 * negatives from the RCU list walk here, unlike the optimistic
485 * fast walk).
486 *
487 * so doing d_lookup() (with seqlock), instead of lockfree __d_lookup
488 */
489 result = d_lookup(parent, name);
490 if (!result) {
491 struct dentry *dentry;
492
493 /* Don't create child dentry for a dead directory. */
494 result = ERR_PTR(-ENOENT);
495 if (IS_DEADDIR(dir))
496 goto out_unlock;
497
498 dentry = d_alloc(parent, name);
499 result = ERR_PTR(-ENOMEM);
500 if (dentry) {
501 result = dir->i_op->lookup(dir, dentry, nd);
502 if (result)
503 dput(dentry);
504 else
505 result = dentry;
506 }
507 out_unlock:
508 mutex_unlock(&dir->i_mutex);
509 return result;
510 }
511
512 /*
513 * Uhhuh! Nasty case: the cache was re-populated while
514 * we waited on the semaphore. Need to revalidate.
515 */
516 mutex_unlock(&dir->i_mutex);
517 if (result->d_op && result->d_op->d_revalidate) {
518 result = do_revalidate(result, nd);
519 if (!result)
520 result = ERR_PTR(-ENOENT);
521 }
522 return result;
523 }
524
525 /*
526 * Wrapper to retry pathname resolution whenever the underlying
527 * file system returns an ESTALE.
528 *
529 * Retry the whole path once, forcing real lookup requests
530 * instead of relying on the dcache.
531 */
532 static __always_inline int link_path_walk(const char *name, struct nameidata *nd)
533 {
534 struct path save = nd->path;
535 int result;
536
537 /* make sure the stuff we saved doesn't go away */
538 path_get(&save);
539
540 result = __link_path_walk(name, nd);
541 if (result == -ESTALE) {
542 /* nd->path had been dropped */
543 nd->path = save;
544 path_get(&nd->path);
545 nd->flags |= LOOKUP_REVAL;
546 result = __link_path_walk(name, nd);
547 }
548
549 path_put(&save);
550
551 return result;
552 }
553
554 static __always_inline int __vfs_follow_link(struct nameidata *nd, const char *link)
555 {
556 int res = 0;
557 char *name;
558 if (IS_ERR(link))
559 goto fail;
560
561 if (*link == '/') {
562 struct fs_struct *fs = current->fs;
563
564 path_put(&nd->path);
565
566 read_lock(&fs->lock);
567 nd->path = fs->root;
568 path_get(&fs->root);
569 read_unlock(&fs->lock);
570 }
571
572 res = link_path_walk(link, nd);
573 if (nd->depth || res || nd->last_type!=LAST_NORM)
574 return res;
575 /*
576 * If it is an iterative symlinks resolution in open_namei() we
577 * have to copy the last component. And all that crap because of
578 * bloody create() on broken symlinks. Furrfu...
579 */
580 name = __getname();
581 if (unlikely(!name)) {
582 path_put(&nd->path);
583 return -ENOMEM;
584 }
585 strcpy(name, nd->last.name);
586 nd->last.name = name;
587 return 0;
588 fail:
589 path_put(&nd->path);
590 return PTR_ERR(link);
591 }
592
593 static void path_put_conditional(struct path *path, struct nameidata *nd)
594 {
595 dput(path->dentry);
596 if (path->mnt != nd->path.mnt)
597 mntput(path->mnt);
598 }
599
600 static inline void path_to_nameidata(struct path *path, struct nameidata *nd)
601 {
602 dput(nd->path.dentry);
603 if (nd->path.mnt != path->mnt)
604 mntput(nd->path.mnt);
605 nd->path.mnt = path->mnt;
606 nd->path.dentry = path->dentry;
607 }
608
609 static __always_inline int __do_follow_link(struct path *path, struct nameidata *nd)
610 {
611 int error;
612 void *cookie;
613 struct dentry *dentry = path->dentry;
614
615 touch_atime(path->mnt, dentry);
616 nd_set_link(nd, NULL);
617
618 if (path->mnt != nd->path.mnt) {
619 path_to_nameidata(path, nd);
620 dget(dentry);
621 }
622 mntget(path->mnt);
623 cookie = dentry->d_inode->i_op->follow_link(dentry, nd);
624 error = PTR_ERR(cookie);
625 if (!IS_ERR(cookie)) {
626 char *s = nd_get_link(nd);
627 error = 0;
628 if (s)
629 error = __vfs_follow_link(nd, s);
630 if (dentry->d_inode->i_op->put_link)
631 dentry->d_inode->i_op->put_link(dentry, nd, cookie);
632 }
633 path_put(path);
634
635 return error;
636 }
637
638 /*
639 * This limits recursive symlink follows to 8, while
640 * limiting consecutive symlinks to 40.
641 *
642 * Without that kind of total limit, nasty chains of consecutive
643 * symlinks can cause almost arbitrarily long lookups.
644 */
645 static inline int do_follow_link(struct path *path, struct nameidata *nd)
646 {
647 int err = -ELOOP;
648 if (current->link_count >= MAX_NESTED_LINKS)
649 goto loop;
650 if (current->total_link_count >= 40)
651 goto loop;
652 BUG_ON(nd->depth >= MAX_NESTED_LINKS);
653 cond_resched();
654 err = security_inode_follow_link(path->dentry, nd);
655 if (err)
656 goto loop;
657 current->link_count++;
658 current->total_link_count++;
659 nd->depth++;
660 err = __do_follow_link(path, nd);
661 current->link_count--;
662 nd->depth--;
663 return err;
664 loop:
665 path_put_conditional(path, nd);
666 path_put(&nd->path);
667 return err;
668 }
669
670 int follow_up(struct vfsmount **mnt, struct dentry **dentry)
671 {
672 struct vfsmount *parent;
673 struct dentry *mountpoint;
674 spin_lock(&vfsmount_lock);
675 parent=(*mnt)->mnt_parent;
676 if (parent == *mnt) {
677 spin_unlock(&vfsmount_lock);
678 return 0;
679 }
680 mntget(parent);
681 mountpoint=dget((*mnt)->mnt_mountpoint);
682 spin_unlock(&vfsmount_lock);
683 dput(*dentry);
684 *dentry = mountpoint;
685 mntput(*mnt);
686 *mnt = parent;
687 return 1;
688 }
689
690 /* no need for dcache_lock, as serialization is taken care in
691 * namespace.c
692 */
693 static int __follow_mount(struct path *path)
694 {
695 int res = 0;
696 while (d_mountpoint(path->dentry)) {
697 struct vfsmount *mounted = lookup_mnt(path->mnt, path->dentry);
698 if (!mounted)
699 break;
700 dput(path->dentry);
701 if (res)
702 mntput(path->mnt);
703 path->mnt = mounted;
704 path->dentry = dget(mounted->mnt_root);
705 res = 1;
706 }
707 return res;
708 }
709
710 static void follow_mount(struct vfsmount **mnt, struct dentry **dentry)
711 {
712 while (d_mountpoint(*dentry)) {
713 struct vfsmount *mounted = lookup_mnt(*mnt, *dentry);
714 if (!mounted)
715 break;
716 dput(*dentry);
717 mntput(*mnt);
718 *mnt = mounted;
719 *dentry = dget(mounted->mnt_root);
720 }
721 }
722
723 /* no need for dcache_lock, as serialization is taken care in
724 * namespace.c
725 */
726 int follow_down(struct vfsmount **mnt, struct dentry **dentry)
727 {
728 struct vfsmount *mounted;
729
730 mounted = lookup_mnt(*mnt, *dentry);
731 if (mounted) {
732 dput(*dentry);
733 mntput(*mnt);
734 *mnt = mounted;
735 *dentry = dget(mounted->mnt_root);
736 return 1;
737 }
738 return 0;
739 }
740
741 static __always_inline void follow_dotdot(struct nameidata *nd)
742 {
743 struct fs_struct *fs = current->fs;
744
745 while(1) {
746 struct vfsmount *parent;
747 struct dentry *old = nd->path.dentry;
748
749 read_lock(&fs->lock);
750 if (nd->path.dentry == fs->root.dentry &&
751 nd->path.mnt == fs->root.mnt) {
752 read_unlock(&fs->lock);
753 break;
754 }
755 read_unlock(&fs->lock);
756 spin_lock(&dcache_lock);
757 if (nd->path.dentry != nd->path.mnt->mnt_root) {
758 nd->path.dentry = dget(nd->path.dentry->d_parent);
759 spin_unlock(&dcache_lock);
760 dput(old);
761 break;
762 }
763 spin_unlock(&dcache_lock);
764 spin_lock(&vfsmount_lock);
765 parent = nd->path.mnt->mnt_parent;
766 if (parent == nd->path.mnt) {
767 spin_unlock(&vfsmount_lock);
768 break;
769 }
770 mntget(parent);
771 nd->path.dentry = dget(nd->path.mnt->mnt_mountpoint);
772 spin_unlock(&vfsmount_lock);
773 dput(old);
774 mntput(nd->path.mnt);
775 nd->path.mnt = parent;
776 }
777 follow_mount(&nd->path.mnt, &nd->path.dentry);
778 }
779
780 /*
781 * It's more convoluted than I'd like it to be, but... it's still fairly
782 * small and for now I'd prefer to have fast path as straight as possible.
783 * It _is_ time-critical.
784 */
785 static int do_lookup(struct nameidata *nd, struct qstr *name,
786 struct path *path)
787 {
788 struct vfsmount *mnt = nd->path.mnt;
789 struct dentry *dentry = __d_lookup(nd->path.dentry, name);
790
791 if (!dentry)
792 goto need_lookup;
793 if (dentry->d_op && dentry->d_op->d_revalidate)
794 goto need_revalidate;
795 done:
796 path->mnt = mnt;
797 path->dentry = dentry;
798 __follow_mount(path);
799 return 0;
800
801 need_lookup:
802 dentry = real_lookup(nd->path.dentry, name, nd);
803 if (IS_ERR(dentry))
804 goto fail;
805 goto done;
806
807 need_revalidate:
808 dentry = do_revalidate(dentry, nd);
809 if (!dentry)
810 goto need_lookup;
811 if (IS_ERR(dentry))
812 goto fail;
813 goto done;
814
815 fail:
816 return PTR_ERR(dentry);
817 }
818
819 /*
820 * Name resolution.
821 * This is the basic name resolution function, turning a pathname into
822 * the final dentry. We expect 'base' to be positive and a directory.
823 *
824 * Returns 0 and nd will have valid dentry and mnt on success.
825 * Returns error and drops reference to input namei data on failure.
826 */
827 static int __link_path_walk(const char *name, struct nameidata *nd)
828 {
829 struct path next;
830 struct inode *inode;
831 int err;
832 unsigned int lookup_flags = nd->flags;
833
834 while (*name=='/')
835 name++;
836 if (!*name)
837 goto return_reval;
838
839 inode = nd->path.dentry->d_inode;
840 if (nd->depth)
841 lookup_flags = LOOKUP_FOLLOW | (nd->flags & LOOKUP_CONTINUE);
842
843 /* At this point we know we have a real path component. */
844 for(;;) {
845 unsigned long hash;
846 struct qstr this;
847 unsigned int c;
848
849 nd->flags |= LOOKUP_CONTINUE;
850 err = exec_permission_lite(inode);
851 if (err == -EAGAIN)
852 err = inode_permission(nd->path.dentry->d_inode,
853 MAY_EXEC);
854 if (!err)
855 err = ima_path_check(&nd->path, MAY_EXEC);
856 if (err)
857 break;
858
859 this.name = name;
860 c = *(const unsigned char *)name;
861
862 hash = init_name_hash();
863 do {
864 name++;
865 hash = partial_name_hash(c, hash);
866 c = *(const unsigned char *)name;
867 } while (c && (c != '/'));
868 this.len = name - (const char *) this.name;
869 this.hash = end_name_hash(hash);
870
871 /* remove trailing slashes? */
872 if (!c)
873 goto last_component;
874 while (*++name == '/');
875 if (!*name)
876 goto last_with_slashes;
877
878 /*
879 * "." and ".." are special - ".." especially so because it has
880 * to be able to know about the current root directory and
881 * parent relationships.
882 */
883 if (this.name[0] == '.') switch (this.len) {
884 default:
885 break;
886 case 2:
887 if (this.name[1] != '.')
888 break;
889 follow_dotdot(nd);
890 inode = nd->path.dentry->d_inode;
891 /* fallthrough */
892 case 1:
893 continue;
894 }
895 /*
896 * See if the low-level filesystem might want
897 * to use its own hash..
898 */
899 if (nd->path.dentry->d_op && nd->path.dentry->d_op->d_hash) {
900 err = nd->path.dentry->d_op->d_hash(nd->path.dentry,
901 &this);
902 if (err < 0)
903 break;
904 }
905 /* This does the actual lookups.. */
906 err = do_lookup(nd, &this, &next);
907 if (err)
908 break;
909
910 err = -ENOENT;
911 inode = next.dentry->d_inode;
912 if (!inode)
913 goto out_dput;
914
915 if (inode->i_op->follow_link) {
916 err = do_follow_link(&next, nd);
917 if (err)
918 goto return_err;
919 err = -ENOENT;
920 inode = nd->path.dentry->d_inode;
921 if (!inode)
922 break;
923 } else
924 path_to_nameidata(&next, nd);
925 err = -ENOTDIR;
926 if (!inode->i_op->lookup)
927 break;
928 continue;
929 /* here ends the main loop */
930
931 last_with_slashes:
932 lookup_flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
933 last_component:
934 /* Clear LOOKUP_CONTINUE iff it was previously unset */
935 nd->flags &= lookup_flags | ~LOOKUP_CONTINUE;
936 if (lookup_flags & LOOKUP_PARENT)
937 goto lookup_parent;
938 if (this.name[0] == '.') switch (this.len) {
939 default:
940 break;
941 case 2:
942 if (this.name[1] != '.')
943 break;
944 follow_dotdot(nd);
945 inode = nd->path.dentry->d_inode;
946 /* fallthrough */
947 case 1:
948 goto return_reval;
949 }
950 if (nd->path.dentry->d_op && nd->path.dentry->d_op->d_hash) {
951 err = nd->path.dentry->d_op->d_hash(nd->path.dentry,
952 &this);
953 if (err < 0)
954 break;
955 }
956 err = do_lookup(nd, &this, &next);
957 if (err)
958 break;
959 inode = next.dentry->d_inode;
960 if ((lookup_flags & LOOKUP_FOLLOW)
961 && inode && inode->i_op->follow_link) {
962 err = do_follow_link(&next, nd);
963 if (err)
964 goto return_err;
965 inode = nd->path.dentry->d_inode;
966 } else
967 path_to_nameidata(&next, nd);
968 err = -ENOENT;
969 if (!inode)
970 break;
971 if (lookup_flags & LOOKUP_DIRECTORY) {
972 err = -ENOTDIR;
973 if (!inode->i_op->lookup)
974 break;
975 }
976 goto return_base;
977 lookup_parent:
978 nd->last = this;
979 nd->last_type = LAST_NORM;
980 if (this.name[0] != '.')
981 goto return_base;
982 if (this.len == 1)
983 nd->last_type = LAST_DOT;
984 else if (this.len == 2 && this.name[1] == '.')
985 nd->last_type = LAST_DOTDOT;
986 else
987 goto return_base;
988 return_reval:
989 /*
990 * We bypassed the ordinary revalidation routines.
991 * We may need to check the cached dentry for staleness.
992 */
993 if (nd->path.dentry && nd->path.dentry->d_sb &&
994 (nd->path.dentry->d_sb->s_type->fs_flags & FS_REVAL_DOT)) {
995 err = -ESTALE;
996 /* Note: we do not d_invalidate() */
997 if (!nd->path.dentry->d_op->d_revalidate(
998 nd->path.dentry, nd))
999 break;
1000 }
1001 return_base:
1002 return 0;
1003 out_dput:
1004 path_put_conditional(&next, nd);
1005 break;
1006 }
1007 path_put(&nd->path);
1008 return_err:
1009 return err;
1010 }
1011
1012 static int path_walk(const char *name, struct nameidata *nd)
1013 {
1014 current->total_link_count = 0;
1015 return link_path_walk(name, nd);
1016 }
1017
1018 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
1019 static int do_path_lookup(int dfd, const char *name,
1020 unsigned int flags, struct nameidata *nd)
1021 {
1022 int retval = 0;
1023 int fput_needed;
1024 struct file *file;
1025 struct fs_struct *fs = current->fs;
1026
1027 nd->last_type = LAST_ROOT; /* if there are only slashes... */
1028 nd->flags = flags;
1029 nd->depth = 0;
1030
1031 if (*name=='/') {
1032 read_lock(&fs->lock);
1033 nd->path = fs->root;
1034 path_get(&fs->root);
1035 read_unlock(&fs->lock);
1036 } else if (dfd == AT_FDCWD) {
1037 read_lock(&fs->lock);
1038 nd->path = fs->pwd;
1039 path_get(&fs->pwd);
1040 read_unlock(&fs->lock);
1041 } else {
1042 struct dentry *dentry;
1043
1044 file = fget_light(dfd, &fput_needed);
1045 retval = -EBADF;
1046 if (!file)
1047 goto out_fail;
1048
1049 dentry = file->f_path.dentry;
1050
1051 retval = -ENOTDIR;
1052 if (!S_ISDIR(dentry->d_inode->i_mode))
1053 goto fput_fail;
1054
1055 retval = file_permission(file, MAY_EXEC);
1056 if (retval)
1057 goto fput_fail;
1058
1059 nd->path = file->f_path;
1060 path_get(&file->f_path);
1061
1062 fput_light(file, fput_needed);
1063 }
1064
1065 retval = path_walk(name, nd);
1066 if (unlikely(!retval && !audit_dummy_context() && nd->path.dentry &&
1067 nd->path.dentry->d_inode))
1068 audit_inode(name, nd->path.dentry);
1069 out_fail:
1070 return retval;
1071
1072 fput_fail:
1073 fput_light(file, fput_needed);
1074 goto out_fail;
1075 }
1076
1077 int path_lookup(const char *name, unsigned int flags,
1078 struct nameidata *nd)
1079 {
1080 return do_path_lookup(AT_FDCWD, name, flags, nd);
1081 }
1082
1083 int kern_path(const char *name, unsigned int flags, struct path *path)
1084 {
1085 struct nameidata nd;
1086 int res = do_path_lookup(AT_FDCWD, name, flags, &nd);
1087 if (!res)
1088 *path = nd.path;
1089 return res;
1090 }
1091
1092 /**
1093 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
1094 * @dentry: pointer to dentry of the base directory
1095 * @mnt: pointer to vfs mount of the base directory
1096 * @name: pointer to file name
1097 * @flags: lookup flags
1098 * @nd: pointer to nameidata
1099 */
1100 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
1101 const char *name, unsigned int flags,
1102 struct nameidata *nd)
1103 {
1104 int retval;
1105
1106 /* same as do_path_lookup */
1107 nd->last_type = LAST_ROOT;
1108 nd->flags = flags;
1109 nd->depth = 0;
1110
1111 nd->path.dentry = dentry;
1112 nd->path.mnt = mnt;
1113 path_get(&nd->path);
1114
1115 retval = path_walk(name, nd);
1116 if (unlikely(!retval && !audit_dummy_context() && nd->path.dentry &&
1117 nd->path.dentry->d_inode))
1118 audit_inode(name, nd->path.dentry);
1119
1120 return retval;
1121
1122 }
1123
1124 /**
1125 * path_lookup_open - lookup a file path with open intent
1126 * @dfd: the directory to use as base, or AT_FDCWD
1127 * @name: pointer to file name
1128 * @lookup_flags: lookup intent flags
1129 * @nd: pointer to nameidata
1130 * @open_flags: open intent flags
1131 */
1132 int path_lookup_open(int dfd, const char *name, unsigned int lookup_flags,
1133 struct nameidata *nd, int open_flags)
1134 {
1135 struct file *filp = get_empty_filp();
1136 int err;
1137
1138 if (filp == NULL)
1139 return -ENFILE;
1140 nd->intent.open.file = filp;
1141 nd->intent.open.flags = open_flags;
1142 nd->intent.open.create_mode = 0;
1143 err = do_path_lookup(dfd, name, lookup_flags|LOOKUP_OPEN, nd);
1144 if (IS_ERR(nd->intent.open.file)) {
1145 if (err == 0) {
1146 err = PTR_ERR(nd->intent.open.file);
1147 path_put(&nd->path);
1148 }
1149 } else if (err != 0)
1150 release_open_intent(nd);
1151 return err;
1152 }
1153
1154 static struct dentry *__lookup_hash(struct qstr *name,
1155 struct dentry *base, struct nameidata *nd)
1156 {
1157 struct dentry *dentry;
1158 struct inode *inode;
1159 int err;
1160
1161 inode = base->d_inode;
1162
1163 /*
1164 * See if the low-level filesystem might want
1165 * to use its own hash..
1166 */
1167 if (base->d_op && base->d_op->d_hash) {
1168 err = base->d_op->d_hash(base, name);
1169 dentry = ERR_PTR(err);
1170 if (err < 0)
1171 goto out;
1172 }
1173
1174 dentry = cached_lookup(base, name, nd);
1175 if (!dentry) {
1176 struct dentry *new;
1177
1178 /* Don't create child dentry for a dead directory. */
1179 dentry = ERR_PTR(-ENOENT);
1180 if (IS_DEADDIR(inode))
1181 goto out;
1182
1183 new = d_alloc(base, name);
1184 dentry = ERR_PTR(-ENOMEM);
1185 if (!new)
1186 goto out;
1187 dentry = inode->i_op->lookup(inode, new, nd);
1188 if (!dentry)
1189 dentry = new;
1190 else
1191 dput(new);
1192 }
1193 out:
1194 return dentry;
1195 }
1196
1197 /*
1198 * Restricted form of lookup. Doesn't follow links, single-component only,
1199 * needs parent already locked. Doesn't follow mounts.
1200 * SMP-safe.
1201 */
1202 static struct dentry *lookup_hash(struct nameidata *nd)
1203 {
1204 int err;
1205
1206 err = inode_permission(nd->path.dentry->d_inode, MAY_EXEC);
1207 if (err)
1208 return ERR_PTR(err);
1209 return __lookup_hash(&nd->last, nd->path.dentry, nd);
1210 }
1211
1212 static int __lookup_one_len(const char *name, struct qstr *this,
1213 struct dentry *base, int len)
1214 {
1215 unsigned long hash;
1216 unsigned int c;
1217
1218 this->name = name;
1219 this->len = len;
1220 if (!len)
1221 return -EACCES;
1222
1223 hash = init_name_hash();
1224 while (len--) {
1225 c = *(const unsigned char *)name++;
1226 if (c == '/' || c == '\0')
1227 return -EACCES;
1228 hash = partial_name_hash(c, hash);
1229 }
1230 this->hash = end_name_hash(hash);
1231 return 0;
1232 }
1233
1234 /**
1235 * lookup_one_len - filesystem helper to lookup single pathname component
1236 * @name: pathname component to lookup
1237 * @base: base directory to lookup from
1238 * @len: maximum length @len should be interpreted to
1239 *
1240 * Note that this routine is purely a helper for filesystem usage and should
1241 * not be called by generic code. Also note that by using this function the
1242 * nameidata argument is passed to the filesystem methods and a filesystem
1243 * using this helper needs to be prepared for that.
1244 */
1245 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
1246 {
1247 int err;
1248 struct qstr this;
1249
1250 err = __lookup_one_len(name, &this, base, len);
1251 if (err)
1252 return ERR_PTR(err);
1253
1254 err = inode_permission(base->d_inode, MAY_EXEC);
1255 if (err)
1256 return ERR_PTR(err);
1257 return __lookup_hash(&this, base, NULL);
1258 }
1259
1260 /**
1261 * lookup_one_noperm - bad hack for sysfs
1262 * @name: pathname component to lookup
1263 * @base: base directory to lookup from
1264 *
1265 * This is a variant of lookup_one_len that doesn't perform any permission
1266 * checks. It's a horrible hack to work around the braindead sysfs
1267 * architecture and should not be used anywhere else.
1268 *
1269 * DON'T USE THIS FUNCTION EVER, thanks.
1270 */
1271 struct dentry *lookup_one_noperm(const char *name, struct dentry *base)
1272 {
1273 int err;
1274 struct qstr this;
1275
1276 err = __lookup_one_len(name, &this, base, strlen(name));
1277 if (err)
1278 return ERR_PTR(err);
1279 return __lookup_hash(&this, base, NULL);
1280 }
1281
1282 int user_path_at(int dfd, const char __user *name, unsigned flags,
1283 struct path *path)
1284 {
1285 struct nameidata nd;
1286 char *tmp = getname(name);
1287 int err = PTR_ERR(tmp);
1288 if (!IS_ERR(tmp)) {
1289
1290 BUG_ON(flags & LOOKUP_PARENT);
1291
1292 err = do_path_lookup(dfd, tmp, flags, &nd);
1293 putname(tmp);
1294 if (!err)
1295 *path = nd.path;
1296 }
1297 return err;
1298 }
1299
1300 static int user_path_parent(int dfd, const char __user *path,
1301 struct nameidata *nd, char **name)
1302 {
1303 char *s = getname(path);
1304 int error;
1305
1306 if (IS_ERR(s))
1307 return PTR_ERR(s);
1308
1309 error = do_path_lookup(dfd, s, LOOKUP_PARENT, nd);
1310 if (error)
1311 putname(s);
1312 else
1313 *name = s;
1314
1315 return error;
1316 }
1317
1318 /*
1319 * It's inline, so penalty for filesystems that don't use sticky bit is
1320 * minimal.
1321 */
1322 static inline int check_sticky(struct inode *dir, struct inode *inode)
1323 {
1324 uid_t fsuid = current_fsuid();
1325
1326 if (!(dir->i_mode & S_ISVTX))
1327 return 0;
1328 if (inode->i_uid == fsuid)
1329 return 0;
1330 if (dir->i_uid == fsuid)
1331 return 0;
1332 return !capable(CAP_FOWNER);
1333 }
1334
1335 /*
1336 * Check whether we can remove a link victim from directory dir, check
1337 * whether the type of victim is right.
1338 * 1. We can't do it if dir is read-only (done in permission())
1339 * 2. We should have write and exec permissions on dir
1340 * 3. We can't remove anything from append-only dir
1341 * 4. We can't do anything with immutable dir (done in permission())
1342 * 5. If the sticky bit on dir is set we should either
1343 * a. be owner of dir, or
1344 * b. be owner of victim, or
1345 * c. have CAP_FOWNER capability
1346 * 6. If the victim is append-only or immutable we can't do antyhing with
1347 * links pointing to it.
1348 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
1349 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
1350 * 9. We can't remove a root or mountpoint.
1351 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
1352 * nfs_async_unlink().
1353 */
1354 static int may_delete(struct inode *dir,struct dentry *victim,int isdir)
1355 {
1356 int error;
1357
1358 if (!victim->d_inode)
1359 return -ENOENT;
1360
1361 BUG_ON(victim->d_parent->d_inode != dir);
1362 audit_inode_child(victim->d_name.name, victim, dir);
1363
1364 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
1365 if (error)
1366 return error;
1367 if (IS_APPEND(dir))
1368 return -EPERM;
1369 if (check_sticky(dir, victim->d_inode)||IS_APPEND(victim->d_inode)||
1370 IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode))
1371 return -EPERM;
1372 if (isdir) {
1373 if (!S_ISDIR(victim->d_inode->i_mode))
1374 return -ENOTDIR;
1375 if (IS_ROOT(victim))
1376 return -EBUSY;
1377 } else if (S_ISDIR(victim->d_inode->i_mode))
1378 return -EISDIR;
1379 if (IS_DEADDIR(dir))
1380 return -ENOENT;
1381 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
1382 return -EBUSY;
1383 return 0;
1384 }
1385
1386 /* Check whether we can create an object with dentry child in directory
1387 * dir.
1388 * 1. We can't do it if child already exists (open has special treatment for
1389 * this case, but since we are inlined it's OK)
1390 * 2. We can't do it if dir is read-only (done in permission())
1391 * 3. We should have write and exec permissions on dir
1392 * 4. We can't do it if dir is immutable (done in permission())
1393 */
1394 static inline int may_create(struct inode *dir, struct dentry *child)
1395 {
1396 if (child->d_inode)
1397 return -EEXIST;
1398 if (IS_DEADDIR(dir))
1399 return -ENOENT;
1400 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
1401 }
1402
1403 /*
1404 * O_DIRECTORY translates into forcing a directory lookup.
1405 */
1406 static inline int lookup_flags(unsigned int f)
1407 {
1408 unsigned long retval = LOOKUP_FOLLOW;
1409
1410 if (f & O_NOFOLLOW)
1411 retval &= ~LOOKUP_FOLLOW;
1412
1413 if (f & O_DIRECTORY)
1414 retval |= LOOKUP_DIRECTORY;
1415
1416 return retval;
1417 }
1418
1419 /*
1420 * p1 and p2 should be directories on the same fs.
1421 */
1422 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
1423 {
1424 struct dentry *p;
1425
1426 if (p1 == p2) {
1427 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1428 return NULL;
1429 }
1430
1431 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
1432
1433 p = d_ancestor(p2, p1);
1434 if (p) {
1435 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
1436 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
1437 return p;
1438 }
1439
1440 p = d_ancestor(p1, p2);
1441 if (p) {
1442 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1443 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
1444 return p;
1445 }
1446
1447 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1448 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
1449 return NULL;
1450 }
1451
1452 void unlock_rename(struct dentry *p1, struct dentry *p2)
1453 {
1454 mutex_unlock(&p1->d_inode->i_mutex);
1455 if (p1 != p2) {
1456 mutex_unlock(&p2->d_inode->i_mutex);
1457 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
1458 }
1459 }
1460
1461 int vfs_create(struct inode *dir, struct dentry *dentry, int mode,
1462 struct nameidata *nd)
1463 {
1464 int error = may_create(dir, dentry);
1465
1466 if (error)
1467 return error;
1468
1469 if (!dir->i_op->create)
1470 return -EACCES; /* shouldn't it be ENOSYS? */
1471 mode &= S_IALLUGO;
1472 mode |= S_IFREG;
1473 error = security_inode_create(dir, dentry, mode);
1474 if (error)
1475 return error;
1476 DQUOT_INIT(dir);
1477 error = dir->i_op->create(dir, dentry, mode, nd);
1478 if (!error)
1479 fsnotify_create(dir, dentry);
1480 return error;
1481 }
1482
1483 int may_open(struct path *path, int acc_mode, int flag)
1484 {
1485 struct dentry *dentry = path->dentry;
1486 struct inode *inode = dentry->d_inode;
1487 int error;
1488
1489 if (!inode)
1490 return -ENOENT;
1491
1492 if (S_ISLNK(inode->i_mode))
1493 return -ELOOP;
1494
1495 if (S_ISDIR(inode->i_mode) && (acc_mode & MAY_WRITE))
1496 return -EISDIR;
1497
1498 /*
1499 * FIFO's, sockets and device files are special: they don't
1500 * actually live on the filesystem itself, and as such you
1501 * can write to them even if the filesystem is read-only.
1502 */
1503 if (S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
1504 flag &= ~O_TRUNC;
1505 } else if (S_ISBLK(inode->i_mode) || S_ISCHR(inode->i_mode)) {
1506 if (path->mnt->mnt_flags & MNT_NODEV)
1507 return -EACCES;
1508
1509 flag &= ~O_TRUNC;
1510 }
1511
1512 error = inode_permission(inode, acc_mode);
1513 if (error)
1514 return error;
1515
1516 error = ima_path_check(path,
1517 acc_mode & (MAY_READ | MAY_WRITE | MAY_EXEC));
1518 if (error)
1519 return error;
1520 /*
1521 * An append-only file must be opened in append mode for writing.
1522 */
1523 if (IS_APPEND(inode)) {
1524 if ((flag & FMODE_WRITE) && !(flag & O_APPEND))
1525 return -EPERM;
1526 if (flag & O_TRUNC)
1527 return -EPERM;
1528 }
1529
1530 /* O_NOATIME can only be set by the owner or superuser */
1531 if (flag & O_NOATIME)
1532 if (!is_owner_or_cap(inode))
1533 return -EPERM;
1534
1535 /*
1536 * Ensure there are no outstanding leases on the file.
1537 */
1538 error = break_lease(inode, flag);
1539 if (error)
1540 return error;
1541
1542 if (flag & O_TRUNC) {
1543 error = get_write_access(inode);
1544 if (error)
1545 return error;
1546
1547 /*
1548 * Refuse to truncate files with mandatory locks held on them.
1549 */
1550 error = locks_verify_locked(inode);
1551 if (!error)
1552 error = security_path_truncate(path, 0,
1553 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN);
1554 if (!error) {
1555 DQUOT_INIT(inode);
1556
1557 error = do_truncate(dentry, 0,
1558 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
1559 NULL);
1560 }
1561 put_write_access(inode);
1562 if (error)
1563 return error;
1564 } else
1565 if (flag & FMODE_WRITE)
1566 DQUOT_INIT(inode);
1567
1568 return 0;
1569 }
1570
1571 /*
1572 * Be careful about ever adding any more callers of this
1573 * function. Its flags must be in the namei format, not
1574 * what get passed to sys_open().
1575 */
1576 static int __open_namei_create(struct nameidata *nd, struct path *path,
1577 int flag, int mode)
1578 {
1579 int error;
1580 struct dentry *dir = nd->path.dentry;
1581
1582 if (!IS_POSIXACL(dir->d_inode))
1583 mode &= ~current->fs->umask;
1584 error = security_path_mknod(&nd->path, path->dentry, mode, 0);
1585 if (error)
1586 goto out_unlock;
1587 error = vfs_create(dir->d_inode, path->dentry, mode, nd);
1588 out_unlock:
1589 mutex_unlock(&dir->d_inode->i_mutex);
1590 dput(nd->path.dentry);
1591 nd->path.dentry = path->dentry;
1592 if (error)
1593 return error;
1594 /* Don't check for write permission, don't truncate */
1595 return may_open(&nd->path, 0, flag & ~O_TRUNC);
1596 }
1597
1598 /*
1599 * Note that while the flag value (low two bits) for sys_open means:
1600 * 00 - read-only
1601 * 01 - write-only
1602 * 10 - read-write
1603 * 11 - special
1604 * it is changed into
1605 * 00 - no permissions needed
1606 * 01 - read-permission
1607 * 10 - write-permission
1608 * 11 - read-write
1609 * for the internal routines (ie open_namei()/follow_link() etc)
1610 * This is more logical, and also allows the 00 "no perm needed"
1611 * to be used for symlinks (where the permissions are checked
1612 * later).
1613 *
1614 */
1615 static inline int open_to_namei_flags(int flag)
1616 {
1617 if ((flag+1) & O_ACCMODE)
1618 flag++;
1619 return flag;
1620 }
1621
1622 static int open_will_write_to_fs(int flag, struct inode *inode)
1623 {
1624 /*
1625 * We'll never write to the fs underlying
1626 * a device file.
1627 */
1628 if (special_file(inode->i_mode))
1629 return 0;
1630 return (flag & O_TRUNC);
1631 }
1632
1633 /*
1634 * Note that the low bits of the passed in "open_flag"
1635 * are not the same as in the local variable "flag". See
1636 * open_to_namei_flags() for more details.
1637 */
1638 struct file *do_filp_open(int dfd, const char *pathname,
1639 int open_flag, int mode)
1640 {
1641 struct file *filp;
1642 struct nameidata nd;
1643 int acc_mode, error;
1644 struct path path;
1645 struct dentry *dir;
1646 int count = 0;
1647 int will_write;
1648 int flag = open_to_namei_flags(open_flag);
1649
1650 acc_mode = MAY_OPEN | ACC_MODE(flag);
1651
1652 /* O_TRUNC implies we need access checks for write permissions */
1653 if (flag & O_TRUNC)
1654 acc_mode |= MAY_WRITE;
1655
1656 /* Allow the LSM permission hook to distinguish append
1657 access from general write access. */
1658 if (flag & O_APPEND)
1659 acc_mode |= MAY_APPEND;
1660
1661 /*
1662 * The simplest case - just a plain lookup.
1663 */
1664 if (!(flag & O_CREAT)) {
1665 error = path_lookup_open(dfd, pathname, lookup_flags(flag),
1666 &nd, flag);
1667 if (error)
1668 return ERR_PTR(error);
1669 goto ok;
1670 }
1671
1672 /*
1673 * Create - we need to know the parent.
1674 */
1675 error = do_path_lookup(dfd, pathname, LOOKUP_PARENT, &nd);
1676 if (error)
1677 return ERR_PTR(error);
1678
1679 /*
1680 * We have the parent and last component. First of all, check
1681 * that we are not asked to creat(2) an obvious directory - that
1682 * will not do.
1683 */
1684 error = -EISDIR;
1685 if (nd.last_type != LAST_NORM || nd.last.name[nd.last.len])
1686 goto exit_parent;
1687
1688 error = -ENFILE;
1689 filp = get_empty_filp();
1690 if (filp == NULL)
1691 goto exit_parent;
1692 nd.intent.open.file = filp;
1693 nd.intent.open.flags = flag;
1694 nd.intent.open.create_mode = mode;
1695 dir = nd.path.dentry;
1696 nd.flags &= ~LOOKUP_PARENT;
1697 nd.flags |= LOOKUP_CREATE | LOOKUP_OPEN;
1698 if (flag & O_EXCL)
1699 nd.flags |= LOOKUP_EXCL;
1700 mutex_lock(&dir->d_inode->i_mutex);
1701 path.dentry = lookup_hash(&nd);
1702 path.mnt = nd.path.mnt;
1703
1704 do_last:
1705 error = PTR_ERR(path.dentry);
1706 if (IS_ERR(path.dentry)) {
1707 mutex_unlock(&dir->d_inode->i_mutex);
1708 goto exit;
1709 }
1710
1711 if (IS_ERR(nd.intent.open.file)) {
1712 error = PTR_ERR(nd.intent.open.file);
1713 goto exit_mutex_unlock;
1714 }
1715
1716 /* Negative dentry, just create the file */
1717 if (!path.dentry->d_inode) {
1718 /*
1719 * This write is needed to ensure that a
1720 * ro->rw transition does not occur between
1721 * the time when the file is created and when
1722 * a permanent write count is taken through
1723 * the 'struct file' in nameidata_to_filp().
1724 */
1725 error = mnt_want_write(nd.path.mnt);
1726 if (error)
1727 goto exit_mutex_unlock;
1728 error = __open_namei_create(&nd, &path, flag, mode);
1729 if (error) {
1730 mnt_drop_write(nd.path.mnt);
1731 goto exit;
1732 }
1733 filp = nameidata_to_filp(&nd, open_flag);
1734 mnt_drop_write(nd.path.mnt);
1735 return filp;
1736 }
1737
1738 /*
1739 * It already exists.
1740 */
1741 mutex_unlock(&dir->d_inode->i_mutex);
1742 audit_inode(pathname, path.dentry);
1743
1744 error = -EEXIST;
1745 if (flag & O_EXCL)
1746 goto exit_dput;
1747
1748 if (__follow_mount(&path)) {
1749 error = -ELOOP;
1750 if (flag & O_NOFOLLOW)
1751 goto exit_dput;
1752 }
1753
1754 error = -ENOENT;
1755 if (!path.dentry->d_inode)
1756 goto exit_dput;
1757 if (path.dentry->d_inode->i_op->follow_link)
1758 goto do_link;
1759
1760 path_to_nameidata(&path, &nd);
1761 error = -EISDIR;
1762 if (path.dentry->d_inode && S_ISDIR(path.dentry->d_inode->i_mode))
1763 goto exit;
1764 ok:
1765 /*
1766 * Consider:
1767 * 1. may_open() truncates a file
1768 * 2. a rw->ro mount transition occurs
1769 * 3. nameidata_to_filp() fails due to
1770 * the ro mount.
1771 * That would be inconsistent, and should
1772 * be avoided. Taking this mnt write here
1773 * ensures that (2) can not occur.
1774 */
1775 will_write = open_will_write_to_fs(flag, nd.path.dentry->d_inode);
1776 if (will_write) {
1777 error = mnt_want_write(nd.path.mnt);
1778 if (error)
1779 goto exit;
1780 }
1781 error = may_open(&nd.path, acc_mode, flag);
1782 if (error) {
1783 if (will_write)
1784 mnt_drop_write(nd.path.mnt);
1785 goto exit;
1786 }
1787 filp = nameidata_to_filp(&nd, open_flag);
1788 /*
1789 * It is now safe to drop the mnt write
1790 * because the filp has had a write taken
1791 * on its behalf.
1792 */
1793 if (will_write)
1794 mnt_drop_write(nd.path.mnt);
1795 return filp;
1796
1797 exit_mutex_unlock:
1798 mutex_unlock(&dir->d_inode->i_mutex);
1799 exit_dput:
1800 path_put_conditional(&path, &nd);
1801 exit:
1802 if (!IS_ERR(nd.intent.open.file))
1803 release_open_intent(&nd);
1804 exit_parent:
1805 path_put(&nd.path);
1806 return ERR_PTR(error);
1807
1808 do_link:
1809 error = -ELOOP;
1810 if (flag & O_NOFOLLOW)
1811 goto exit_dput;
1812 /*
1813 * This is subtle. Instead of calling do_follow_link() we do the
1814 * thing by hands. The reason is that this way we have zero link_count
1815 * and path_walk() (called from ->follow_link) honoring LOOKUP_PARENT.
1816 * After that we have the parent and last component, i.e.
1817 * we are in the same situation as after the first path_walk().
1818 * Well, almost - if the last component is normal we get its copy
1819 * stored in nd->last.name and we will have to putname() it when we
1820 * are done. Procfs-like symlinks just set LAST_BIND.
1821 */
1822 nd.flags |= LOOKUP_PARENT;
1823 error = security_inode_follow_link(path.dentry, &nd);
1824 if (error)
1825 goto exit_dput;
1826 error = __do_follow_link(&path, &nd);
1827 if (error) {
1828 /* Does someone understand code flow here? Or it is only
1829 * me so stupid? Anathema to whoever designed this non-sense
1830 * with "intent.open".
1831 */
1832 release_open_intent(&nd);
1833 return ERR_PTR(error);
1834 }
1835 nd.flags &= ~LOOKUP_PARENT;
1836 if (nd.last_type == LAST_BIND)
1837 goto ok;
1838 error = -EISDIR;
1839 if (nd.last_type != LAST_NORM)
1840 goto exit;
1841 if (nd.last.name[nd.last.len]) {
1842 __putname(nd.last.name);
1843 goto exit;
1844 }
1845 error = -ELOOP;
1846 if (count++==32) {
1847 __putname(nd.last.name);
1848 goto exit;
1849 }
1850 dir = nd.path.dentry;
1851 mutex_lock(&dir->d_inode->i_mutex);
1852 path.dentry = lookup_hash(&nd);
1853 path.mnt = nd.path.mnt;
1854 __putname(nd.last.name);
1855 goto do_last;
1856 }
1857
1858 /**
1859 * filp_open - open file and return file pointer
1860 *
1861 * @filename: path to open
1862 * @flags: open flags as per the open(2) second argument
1863 * @mode: mode for the new file if O_CREAT is set, else ignored
1864 *
1865 * This is the helper to open a file from kernelspace if you really
1866 * have to. But in generally you should not do this, so please move
1867 * along, nothing to see here..
1868 */
1869 struct file *filp_open(const char *filename, int flags, int mode)
1870 {
1871 return do_filp_open(AT_FDCWD, filename, flags, mode);
1872 }
1873 EXPORT_SYMBOL(filp_open);
1874
1875 /**
1876 * lookup_create - lookup a dentry, creating it if it doesn't exist
1877 * @nd: nameidata info
1878 * @is_dir: directory flag
1879 *
1880 * Simple function to lookup and return a dentry and create it
1881 * if it doesn't exist. Is SMP-safe.
1882 *
1883 * Returns with nd->path.dentry->d_inode->i_mutex locked.
1884 */
1885 struct dentry *lookup_create(struct nameidata *nd, int is_dir)
1886 {
1887 struct dentry *dentry = ERR_PTR(-EEXIST);
1888
1889 mutex_lock_nested(&nd->path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
1890 /*
1891 * Yucky last component or no last component at all?
1892 * (foo/., foo/.., /////)
1893 */
1894 if (nd->last_type != LAST_NORM)
1895 goto fail;
1896 nd->flags &= ~LOOKUP_PARENT;
1897 nd->flags |= LOOKUP_CREATE | LOOKUP_EXCL;
1898 nd->intent.open.flags = O_EXCL;
1899
1900 /*
1901 * Do the final lookup.
1902 */
1903 dentry = lookup_hash(nd);
1904 if (IS_ERR(dentry))
1905 goto fail;
1906
1907 if (dentry->d_inode)
1908 goto eexist;
1909 /*
1910 * Special case - lookup gave negative, but... we had foo/bar/
1911 * From the vfs_mknod() POV we just have a negative dentry -
1912 * all is fine. Let's be bastards - you had / on the end, you've
1913 * been asking for (non-existent) directory. -ENOENT for you.
1914 */
1915 if (unlikely(!is_dir && nd->last.name[nd->last.len])) {
1916 dput(dentry);
1917 dentry = ERR_PTR(-ENOENT);
1918 }
1919 return dentry;
1920 eexist:
1921 dput(dentry);
1922 dentry = ERR_PTR(-EEXIST);
1923 fail:
1924 return dentry;
1925 }
1926 EXPORT_SYMBOL_GPL(lookup_create);
1927
1928 int vfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
1929 {
1930 int error = may_create(dir, dentry);
1931
1932 if (error)
1933 return error;
1934
1935 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
1936 return -EPERM;
1937
1938 if (!dir->i_op->mknod)
1939 return -EPERM;
1940
1941 error = devcgroup_inode_mknod(mode, dev);
1942 if (error)
1943 return error;
1944
1945 error = security_inode_mknod(dir, dentry, mode, dev);
1946 if (error)
1947 return error;
1948
1949 DQUOT_INIT(dir);
1950 error = dir->i_op->mknod(dir, dentry, mode, dev);
1951 if (!error)
1952 fsnotify_create(dir, dentry);
1953 return error;
1954 }
1955
1956 static int may_mknod(mode_t mode)
1957 {
1958 switch (mode & S_IFMT) {
1959 case S_IFREG:
1960 case S_IFCHR:
1961 case S_IFBLK:
1962 case S_IFIFO:
1963 case S_IFSOCK:
1964 case 0: /* zero mode translates to S_IFREG */
1965 return 0;
1966 case S_IFDIR:
1967 return -EPERM;
1968 default:
1969 return -EINVAL;
1970 }
1971 }
1972
1973 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, int, mode,
1974 unsigned, dev)
1975 {
1976 int error;
1977 char *tmp;
1978 struct dentry *dentry;
1979 struct nameidata nd;
1980
1981 if (S_ISDIR(mode))
1982 return -EPERM;
1983
1984 error = user_path_parent(dfd, filename, &nd, &tmp);
1985 if (error)
1986 return error;
1987
1988 dentry = lookup_create(&nd, 0);
1989 if (IS_ERR(dentry)) {
1990 error = PTR_ERR(dentry);
1991 goto out_unlock;
1992 }
1993 if (!IS_POSIXACL(nd.path.dentry->d_inode))
1994 mode &= ~current->fs->umask;
1995 error = may_mknod(mode);
1996 if (error)
1997 goto out_dput;
1998 error = mnt_want_write(nd.path.mnt);
1999 if (error)
2000 goto out_dput;
2001 error = security_path_mknod(&nd.path, dentry, mode, dev);
2002 if (error)
2003 goto out_drop_write;
2004 switch (mode & S_IFMT) {
2005 case 0: case S_IFREG:
2006 error = vfs_create(nd.path.dentry->d_inode,dentry,mode,&nd);
2007 break;
2008 case S_IFCHR: case S_IFBLK:
2009 error = vfs_mknod(nd.path.dentry->d_inode,dentry,mode,
2010 new_decode_dev(dev));
2011 break;
2012 case S_IFIFO: case S_IFSOCK:
2013 error = vfs_mknod(nd.path.dentry->d_inode,dentry,mode,0);
2014 break;
2015 }
2016 out_drop_write:
2017 mnt_drop_write(nd.path.mnt);
2018 out_dput:
2019 dput(dentry);
2020 out_unlock:
2021 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2022 path_put(&nd.path);
2023 putname(tmp);
2024
2025 return error;
2026 }
2027
2028 SYSCALL_DEFINE3(mknod, const char __user *, filename, int, mode, unsigned, dev)
2029 {
2030 return sys_mknodat(AT_FDCWD, filename, mode, dev);
2031 }
2032
2033 int vfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
2034 {
2035 int error = may_create(dir, dentry);
2036
2037 if (error)
2038 return error;
2039
2040 if (!dir->i_op->mkdir)
2041 return -EPERM;
2042
2043 mode &= (S_IRWXUGO|S_ISVTX);
2044 error = security_inode_mkdir(dir, dentry, mode);
2045 if (error)
2046 return error;
2047
2048 DQUOT_INIT(dir);
2049 error = dir->i_op->mkdir(dir, dentry, mode);
2050 if (!error)
2051 fsnotify_mkdir(dir, dentry);
2052 return error;
2053 }
2054
2055 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, int, mode)
2056 {
2057 int error = 0;
2058 char * tmp;
2059 struct dentry *dentry;
2060 struct nameidata nd;
2061
2062 error = user_path_parent(dfd, pathname, &nd, &tmp);
2063 if (error)
2064 goto out_err;
2065
2066 dentry = lookup_create(&nd, 1);
2067 error = PTR_ERR(dentry);
2068 if (IS_ERR(dentry))
2069 goto out_unlock;
2070
2071 if (!IS_POSIXACL(nd.path.dentry->d_inode))
2072 mode &= ~current->fs->umask;
2073 error = mnt_want_write(nd.path.mnt);
2074 if (error)
2075 goto out_dput;
2076 error = security_path_mkdir(&nd.path, dentry, mode);
2077 if (error)
2078 goto out_drop_write;
2079 error = vfs_mkdir(nd.path.dentry->d_inode, dentry, mode);
2080 out_drop_write:
2081 mnt_drop_write(nd.path.mnt);
2082 out_dput:
2083 dput(dentry);
2084 out_unlock:
2085 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2086 path_put(&nd.path);
2087 putname(tmp);
2088 out_err:
2089 return error;
2090 }
2091
2092 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, int, mode)
2093 {
2094 return sys_mkdirat(AT_FDCWD, pathname, mode);
2095 }
2096
2097 /*
2098 * We try to drop the dentry early: we should have
2099 * a usage count of 2 if we're the only user of this
2100 * dentry, and if that is true (possibly after pruning
2101 * the dcache), then we drop the dentry now.
2102 *
2103 * A low-level filesystem can, if it choses, legally
2104 * do a
2105 *
2106 * if (!d_unhashed(dentry))
2107 * return -EBUSY;
2108 *
2109 * if it cannot handle the case of removing a directory
2110 * that is still in use by something else..
2111 */
2112 void dentry_unhash(struct dentry *dentry)
2113 {
2114 dget(dentry);
2115 shrink_dcache_parent(dentry);
2116 spin_lock(&dcache_lock);
2117 spin_lock(&dentry->d_lock);
2118 if (atomic_read(&dentry->d_count) == 2)
2119 __d_drop(dentry);
2120 spin_unlock(&dentry->d_lock);
2121 spin_unlock(&dcache_lock);
2122 }
2123
2124 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
2125 {
2126 int error = may_delete(dir, dentry, 1);
2127
2128 if (error)
2129 return error;
2130
2131 if (!dir->i_op->rmdir)
2132 return -EPERM;
2133
2134 DQUOT_INIT(dir);
2135
2136 mutex_lock(&dentry->d_inode->i_mutex);
2137 dentry_unhash(dentry);
2138 if (d_mountpoint(dentry))
2139 error = -EBUSY;
2140 else {
2141 error = security_inode_rmdir(dir, dentry);
2142 if (!error) {
2143 error = dir->i_op->rmdir(dir, dentry);
2144 if (!error)
2145 dentry->d_inode->i_flags |= S_DEAD;
2146 }
2147 }
2148 mutex_unlock(&dentry->d_inode->i_mutex);
2149 if (!error) {
2150 d_delete(dentry);
2151 }
2152 dput(dentry);
2153
2154 return error;
2155 }
2156
2157 static long do_rmdir(int dfd, const char __user *pathname)
2158 {
2159 int error = 0;
2160 char * name;
2161 struct dentry *dentry;
2162 struct nameidata nd;
2163
2164 error = user_path_parent(dfd, pathname, &nd, &name);
2165 if (error)
2166 return error;
2167
2168 switch(nd.last_type) {
2169 case LAST_DOTDOT:
2170 error = -ENOTEMPTY;
2171 goto exit1;
2172 case LAST_DOT:
2173 error = -EINVAL;
2174 goto exit1;
2175 case LAST_ROOT:
2176 error = -EBUSY;
2177 goto exit1;
2178 }
2179
2180 nd.flags &= ~LOOKUP_PARENT;
2181
2182 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2183 dentry = lookup_hash(&nd);
2184 error = PTR_ERR(dentry);
2185 if (IS_ERR(dentry))
2186 goto exit2;
2187 error = mnt_want_write(nd.path.mnt);
2188 if (error)
2189 goto exit3;
2190 error = security_path_rmdir(&nd.path, dentry);
2191 if (error)
2192 goto exit4;
2193 error = vfs_rmdir(nd.path.dentry->d_inode, dentry);
2194 exit4:
2195 mnt_drop_write(nd.path.mnt);
2196 exit3:
2197 dput(dentry);
2198 exit2:
2199 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2200 exit1:
2201 path_put(&nd.path);
2202 putname(name);
2203 return error;
2204 }
2205
2206 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
2207 {
2208 return do_rmdir(AT_FDCWD, pathname);
2209 }
2210
2211 int vfs_unlink(struct inode *dir, struct dentry *dentry)
2212 {
2213 int error = may_delete(dir, dentry, 0);
2214
2215 if (error)
2216 return error;
2217
2218 if (!dir->i_op->unlink)
2219 return -EPERM;
2220
2221 DQUOT_INIT(dir);
2222
2223 mutex_lock(&dentry->d_inode->i_mutex);
2224 if (d_mountpoint(dentry))
2225 error = -EBUSY;
2226 else {
2227 error = security_inode_unlink(dir, dentry);
2228 if (!error)
2229 error = dir->i_op->unlink(dir, dentry);
2230 }
2231 mutex_unlock(&dentry->d_inode->i_mutex);
2232
2233 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
2234 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
2235 fsnotify_link_count(dentry->d_inode);
2236 d_delete(dentry);
2237 }
2238
2239 return error;
2240 }
2241
2242 /*
2243 * Make sure that the actual truncation of the file will occur outside its
2244 * directory's i_mutex. Truncate can take a long time if there is a lot of
2245 * writeout happening, and we don't want to prevent access to the directory
2246 * while waiting on the I/O.
2247 */
2248 static long do_unlinkat(int dfd, const char __user *pathname)
2249 {
2250 int error;
2251 char *name;
2252 struct dentry *dentry;
2253 struct nameidata nd;
2254 struct inode *inode = NULL;
2255
2256 error = user_path_parent(dfd, pathname, &nd, &name);
2257 if (error)
2258 return error;
2259
2260 error = -EISDIR;
2261 if (nd.last_type != LAST_NORM)
2262 goto exit1;
2263
2264 nd.flags &= ~LOOKUP_PARENT;
2265
2266 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2267 dentry = lookup_hash(&nd);
2268 error = PTR_ERR(dentry);
2269 if (!IS_ERR(dentry)) {
2270 /* Why not before? Because we want correct error value */
2271 if (nd.last.name[nd.last.len])
2272 goto slashes;
2273 inode = dentry->d_inode;
2274 if (inode)
2275 atomic_inc(&inode->i_count);
2276 error = mnt_want_write(nd.path.mnt);
2277 if (error)
2278 goto exit2;
2279 error = security_path_unlink(&nd.path, dentry);
2280 if (error)
2281 goto exit3;
2282 error = vfs_unlink(nd.path.dentry->d_inode, dentry);
2283 exit3:
2284 mnt_drop_write(nd.path.mnt);
2285 exit2:
2286 dput(dentry);
2287 }
2288 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2289 if (inode)
2290 iput(inode); /* truncate the inode here */
2291 exit1:
2292 path_put(&nd.path);
2293 putname(name);
2294 return error;
2295
2296 slashes:
2297 error = !dentry->d_inode ? -ENOENT :
2298 S_ISDIR(dentry->d_inode->i_mode) ? -EISDIR : -ENOTDIR;
2299 goto exit2;
2300 }
2301
2302 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
2303 {
2304 if ((flag & ~AT_REMOVEDIR) != 0)
2305 return -EINVAL;
2306
2307 if (flag & AT_REMOVEDIR)
2308 return do_rmdir(dfd, pathname);
2309
2310 return do_unlinkat(dfd, pathname);
2311 }
2312
2313 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
2314 {
2315 return do_unlinkat(AT_FDCWD, pathname);
2316 }
2317
2318 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
2319 {
2320 int error = may_create(dir, dentry);
2321
2322 if (error)
2323 return error;
2324
2325 if (!dir->i_op->symlink)
2326 return -EPERM;
2327
2328 error = security_inode_symlink(dir, dentry, oldname);
2329 if (error)
2330 return error;
2331
2332 DQUOT_INIT(dir);
2333 error = dir->i_op->symlink(dir, dentry, oldname);
2334 if (!error)
2335 fsnotify_create(dir, dentry);
2336 return error;
2337 }
2338
2339 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
2340 int, newdfd, const char __user *, newname)
2341 {
2342 int error;
2343 char *from;
2344 char *to;
2345 struct dentry *dentry;
2346 struct nameidata nd;
2347
2348 from = getname(oldname);
2349 if (IS_ERR(from))
2350 return PTR_ERR(from);
2351
2352 error = user_path_parent(newdfd, newname, &nd, &to);
2353 if (error)
2354 goto out_putname;
2355
2356 dentry = lookup_create(&nd, 0);
2357 error = PTR_ERR(dentry);
2358 if (IS_ERR(dentry))
2359 goto out_unlock;
2360
2361 error = mnt_want_write(nd.path.mnt);
2362 if (error)
2363 goto out_dput;
2364 error = security_path_symlink(&nd.path, dentry, from);
2365 if (error)
2366 goto out_drop_write;
2367 error = vfs_symlink(nd.path.dentry->d_inode, dentry, from);
2368 out_drop_write:
2369 mnt_drop_write(nd.path.mnt);
2370 out_dput:
2371 dput(dentry);
2372 out_unlock:
2373 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2374 path_put(&nd.path);
2375 putname(to);
2376 out_putname:
2377 putname(from);
2378 return error;
2379 }
2380
2381 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
2382 {
2383 return sys_symlinkat(oldname, AT_FDCWD, newname);
2384 }
2385
2386 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2387 {
2388 struct inode *inode = old_dentry->d_inode;
2389 int error;
2390
2391 if (!inode)
2392 return -ENOENT;
2393
2394 error = may_create(dir, new_dentry);
2395 if (error)
2396 return error;
2397
2398 if (dir->i_sb != inode->i_sb)
2399 return -EXDEV;
2400
2401 /*
2402 * A link to an append-only or immutable file cannot be created.
2403 */
2404 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
2405 return -EPERM;
2406 if (!dir->i_op->link)
2407 return -EPERM;
2408 if (S_ISDIR(inode->i_mode))
2409 return -EPERM;
2410
2411 error = security_inode_link(old_dentry, dir, new_dentry);
2412 if (error)
2413 return error;
2414
2415 mutex_lock(&inode->i_mutex);
2416 DQUOT_INIT(dir);
2417 error = dir->i_op->link(old_dentry, dir, new_dentry);
2418 mutex_unlock(&inode->i_mutex);
2419 if (!error)
2420 fsnotify_link(dir, inode, new_dentry);
2421 return error;
2422 }
2423
2424 /*
2425 * Hardlinks are often used in delicate situations. We avoid
2426 * security-related surprises by not following symlinks on the
2427 * newname. --KAB
2428 *
2429 * We don't follow them on the oldname either to be compatible
2430 * with linux 2.0, and to avoid hard-linking to directories
2431 * and other special files. --ADM
2432 */
2433 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
2434 int, newdfd, const char __user *, newname, int, flags)
2435 {
2436 struct dentry *new_dentry;
2437 struct nameidata nd;
2438 struct path old_path;
2439 int error;
2440 char *to;
2441
2442 if ((flags & ~AT_SYMLINK_FOLLOW) != 0)
2443 return -EINVAL;
2444
2445 error = user_path_at(olddfd, oldname,
2446 flags & AT_SYMLINK_FOLLOW ? LOOKUP_FOLLOW : 0,
2447 &old_path);
2448 if (error)
2449 return error;
2450
2451 error = user_path_parent(newdfd, newname, &nd, &to);
2452 if (error)
2453 goto out;
2454 error = -EXDEV;
2455 if (old_path.mnt != nd.path.mnt)
2456 goto out_release;
2457 new_dentry = lookup_create(&nd, 0);
2458 error = PTR_ERR(new_dentry);
2459 if (IS_ERR(new_dentry))
2460 goto out_unlock;
2461 error = mnt_want_write(nd.path.mnt);
2462 if (error)
2463 goto out_dput;
2464 error = security_path_link(old_path.dentry, &nd.path, new_dentry);
2465 if (error)
2466 goto out_drop_write;
2467 error = vfs_link(old_path.dentry, nd.path.dentry->d_inode, new_dentry);
2468 out_drop_write:
2469 mnt_drop_write(nd.path.mnt);
2470 out_dput:
2471 dput(new_dentry);
2472 out_unlock:
2473 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2474 out_release:
2475 path_put(&nd.path);
2476 putname(to);
2477 out:
2478 path_put(&old_path);
2479
2480 return error;
2481 }
2482
2483 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
2484 {
2485 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
2486 }
2487
2488 /*
2489 * The worst of all namespace operations - renaming directory. "Perverted"
2490 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
2491 * Problems:
2492 * a) we can get into loop creation. Check is done in is_subdir().
2493 * b) race potential - two innocent renames can create a loop together.
2494 * That's where 4.4 screws up. Current fix: serialization on
2495 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
2496 * story.
2497 * c) we have to lock _three_ objects - parents and victim (if it exists).
2498 * And that - after we got ->i_mutex on parents (until then we don't know
2499 * whether the target exists). Solution: try to be smart with locking
2500 * order for inodes. We rely on the fact that tree topology may change
2501 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
2502 * move will be locked. Thus we can rank directories by the tree
2503 * (ancestors first) and rank all non-directories after them.
2504 * That works since everybody except rename does "lock parent, lookup,
2505 * lock child" and rename is under ->s_vfs_rename_mutex.
2506 * HOWEVER, it relies on the assumption that any object with ->lookup()
2507 * has no more than 1 dentry. If "hybrid" objects will ever appear,
2508 * we'd better make sure that there's no link(2) for them.
2509 * d) some filesystems don't support opened-but-unlinked directories,
2510 * either because of layout or because they are not ready to deal with
2511 * all cases correctly. The latter will be fixed (taking this sort of
2512 * stuff into VFS), but the former is not going away. Solution: the same
2513 * trick as in rmdir().
2514 * e) conversion from fhandle to dentry may come in the wrong moment - when
2515 * we are removing the target. Solution: we will have to grab ->i_mutex
2516 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
2517 * ->i_mutex on parents, which works but leads to some truely excessive
2518 * locking].
2519 */
2520 static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry,
2521 struct inode *new_dir, struct dentry *new_dentry)
2522 {
2523 int error = 0;
2524 struct inode *target;
2525
2526 /*
2527 * If we are going to change the parent - check write permissions,
2528 * we'll need to flip '..'.
2529 */
2530 if (new_dir != old_dir) {
2531 error = inode_permission(old_dentry->d_inode, MAY_WRITE);
2532 if (error)
2533 return error;
2534 }
2535
2536 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
2537 if (error)
2538 return error;
2539
2540 target = new_dentry->d_inode;
2541 if (target) {
2542 mutex_lock(&target->i_mutex);
2543 dentry_unhash(new_dentry);
2544 }
2545 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
2546 error = -EBUSY;
2547 else
2548 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
2549 if (target) {
2550 if (!error)
2551 target->i_flags |= S_DEAD;
2552 mutex_unlock(&target->i_mutex);
2553 if (d_unhashed(new_dentry))
2554 d_rehash(new_dentry);
2555 dput(new_dentry);
2556 }
2557 if (!error)
2558 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
2559 d_move(old_dentry,new_dentry);
2560 return error;
2561 }
2562
2563 static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry,
2564 struct inode *new_dir, struct dentry *new_dentry)
2565 {
2566 struct inode *target;
2567 int error;
2568
2569 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
2570 if (error)
2571 return error;
2572
2573 dget(new_dentry);
2574 target = new_dentry->d_inode;
2575 if (target)
2576 mutex_lock(&target->i_mutex);
2577 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
2578 error = -EBUSY;
2579 else
2580 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
2581 if (!error) {
2582 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
2583 d_move(old_dentry, new_dentry);
2584 }
2585 if (target)
2586 mutex_unlock(&target->i_mutex);
2587 dput(new_dentry);
2588 return error;
2589 }
2590
2591 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
2592 struct inode *new_dir, struct dentry *new_dentry)
2593 {
2594 int error;
2595 int is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
2596 const char *old_name;
2597
2598 if (old_dentry->d_inode == new_dentry->d_inode)
2599 return 0;
2600
2601 error = may_delete(old_dir, old_dentry, is_dir);
2602 if (error)
2603 return error;
2604
2605 if (!new_dentry->d_inode)
2606 error = may_create(new_dir, new_dentry);
2607 else
2608 error = may_delete(new_dir, new_dentry, is_dir);
2609 if (error)
2610 return error;
2611
2612 if (!old_dir->i_op->rename)
2613 return -EPERM;
2614
2615 DQUOT_INIT(old_dir);
2616 DQUOT_INIT(new_dir);
2617
2618 old_name = fsnotify_oldname_init(old_dentry->d_name.name);
2619
2620 if (is_dir)
2621 error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry);
2622 else
2623 error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry);
2624 if (!error) {
2625 const char *new_name = old_dentry->d_name.name;
2626 fsnotify_move(old_dir, new_dir, old_name, new_name, is_dir,
2627 new_dentry->d_inode, old_dentry);
2628 }
2629 fsnotify_oldname_free(old_name);
2630
2631 return error;
2632 }
2633
2634 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
2635 int, newdfd, const char __user *, newname)
2636 {
2637 struct dentry *old_dir, *new_dir;
2638 struct dentry *old_dentry, *new_dentry;
2639 struct dentry *trap;
2640 struct nameidata oldnd, newnd;
2641 char *from;
2642 char *to;
2643 int error;
2644
2645 error = user_path_parent(olddfd, oldname, &oldnd, &from);
2646 if (error)
2647 goto exit;
2648
2649 error = user_path_parent(newdfd, newname, &newnd, &to);
2650 if (error)
2651 goto exit1;
2652
2653 error = -EXDEV;
2654 if (oldnd.path.mnt != newnd.path.mnt)
2655 goto exit2;
2656
2657 old_dir = oldnd.path.dentry;
2658 error = -EBUSY;
2659 if (oldnd.last_type != LAST_NORM)
2660 goto exit2;
2661
2662 new_dir = newnd.path.dentry;
2663 if (newnd.last_type != LAST_NORM)
2664 goto exit2;
2665
2666 oldnd.flags &= ~LOOKUP_PARENT;
2667 newnd.flags &= ~LOOKUP_PARENT;
2668 newnd.flags |= LOOKUP_RENAME_TARGET;
2669
2670 trap = lock_rename(new_dir, old_dir);
2671
2672 old_dentry = lookup_hash(&oldnd);
2673 error = PTR_ERR(old_dentry);
2674 if (IS_ERR(old_dentry))
2675 goto exit3;
2676 /* source must exist */
2677 error = -ENOENT;
2678 if (!old_dentry->d_inode)
2679 goto exit4;
2680 /* unless the source is a directory trailing slashes give -ENOTDIR */
2681 if (!S_ISDIR(old_dentry->d_inode->i_mode)) {
2682 error = -ENOTDIR;
2683 if (oldnd.last.name[oldnd.last.len])
2684 goto exit4;
2685 if (newnd.last.name[newnd.last.len])
2686 goto exit4;
2687 }
2688 /* source should not be ancestor of target */
2689 error = -EINVAL;
2690 if (old_dentry == trap)
2691 goto exit4;
2692 new_dentry = lookup_hash(&newnd);
2693 error = PTR_ERR(new_dentry);
2694 if (IS_ERR(new_dentry))
2695 goto exit4;
2696 /* target should not be an ancestor of source */
2697 error = -ENOTEMPTY;
2698 if (new_dentry == trap)
2699 goto exit5;
2700
2701 error = mnt_want_write(oldnd.path.mnt);
2702 if (error)
2703 goto exit5;
2704 error = security_path_rename(&oldnd.path, old_dentry,
2705 &newnd.path, new_dentry);
2706 if (error)
2707 goto exit6;
2708 error = vfs_rename(old_dir->d_inode, old_dentry,
2709 new_dir->d_inode, new_dentry);
2710 exit6:
2711 mnt_drop_write(oldnd.path.mnt);
2712 exit5:
2713 dput(new_dentry);
2714 exit4:
2715 dput(old_dentry);
2716 exit3:
2717 unlock_rename(new_dir, old_dir);
2718 exit2:
2719 path_put(&newnd.path);
2720 putname(to);
2721 exit1:
2722 path_put(&oldnd.path);
2723 putname(from);
2724 exit:
2725 return error;
2726 }
2727
2728 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
2729 {
2730 return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname);
2731 }
2732
2733 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link)
2734 {
2735 int len;
2736
2737 len = PTR_ERR(link);
2738 if (IS_ERR(link))
2739 goto out;
2740
2741 len = strlen(link);
2742 if (len > (unsigned) buflen)
2743 len = buflen;
2744 if (copy_to_user(buffer, link, len))
2745 len = -EFAULT;
2746 out:
2747 return len;
2748 }
2749
2750 /*
2751 * A helper for ->readlink(). This should be used *ONLY* for symlinks that
2752 * have ->follow_link() touching nd only in nd_set_link(). Using (or not
2753 * using) it for any given inode is up to filesystem.
2754 */
2755 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
2756 {
2757 struct nameidata nd;
2758 void *cookie;
2759 int res;
2760
2761 nd.depth = 0;
2762 cookie = dentry->d_inode->i_op->follow_link(dentry, &nd);
2763 if (IS_ERR(cookie))
2764 return PTR_ERR(cookie);
2765
2766 res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd));
2767 if (dentry->d_inode->i_op->put_link)
2768 dentry->d_inode->i_op->put_link(dentry, &nd, cookie);
2769 return res;
2770 }
2771
2772 int vfs_follow_link(struct nameidata *nd, const char *link)
2773 {
2774 return __vfs_follow_link(nd, link);
2775 }
2776
2777 /* get the link contents into pagecache */
2778 static char *page_getlink(struct dentry * dentry, struct page **ppage)
2779 {
2780 char *kaddr;
2781 struct page *page;
2782 struct address_space *mapping = dentry->d_inode->i_mapping;
2783 page = read_mapping_page(mapping, 0, NULL);
2784 if (IS_ERR(page))
2785 return (char*)page;
2786 *ppage = page;
2787 kaddr = kmap(page);
2788 nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
2789 return kaddr;
2790 }
2791
2792 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
2793 {
2794 struct page *page = NULL;
2795 char *s = page_getlink(dentry, &page);
2796 int res = vfs_readlink(dentry,buffer,buflen,s);
2797 if (page) {
2798 kunmap(page);
2799 page_cache_release(page);
2800 }
2801 return res;
2802 }
2803
2804 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd)
2805 {
2806 struct page *page = NULL;
2807 nd_set_link(nd, page_getlink(dentry, &page));
2808 return page;
2809 }
2810
2811 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
2812 {
2813 struct page *page = cookie;
2814
2815 if (page) {
2816 kunmap(page);
2817 page_cache_release(page);
2818 }
2819 }
2820
2821 /*
2822 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
2823 */
2824 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
2825 {
2826 struct address_space *mapping = inode->i_mapping;
2827 struct page *page;
2828 void *fsdata;
2829 int err;
2830 char *kaddr;
2831 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
2832 if (nofs)
2833 flags |= AOP_FLAG_NOFS;
2834
2835 retry:
2836 err = pagecache_write_begin(NULL, mapping, 0, len-1,
2837 flags, &page, &fsdata);
2838 if (err)
2839 goto fail;
2840
2841 kaddr = kmap_atomic(page, KM_USER0);
2842 memcpy(kaddr, symname, len-1);
2843 kunmap_atomic(kaddr, KM_USER0);
2844
2845 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
2846 page, fsdata);
2847 if (err < 0)
2848 goto fail;
2849 if (err < len-1)
2850 goto retry;
2851
2852 mark_inode_dirty(inode);
2853 return 0;
2854 fail:
2855 return err;
2856 }
2857
2858 int page_symlink(struct inode *inode, const char *symname, int len)
2859 {
2860 return __page_symlink(inode, symname, len,
2861 !(mapping_gfp_mask(inode->i_mapping) & __GFP_FS));
2862 }
2863
2864 const struct inode_operations page_symlink_inode_operations = {
2865 .readlink = generic_readlink,
2866 .follow_link = page_follow_link_light,
2867 .put_link = page_put_link,
2868 };
2869
2870 EXPORT_SYMBOL(user_path_at);
2871 EXPORT_SYMBOL(follow_down);
2872 EXPORT_SYMBOL(follow_up);
2873 EXPORT_SYMBOL(get_write_access); /* binfmt_aout */
2874 EXPORT_SYMBOL(getname);
2875 EXPORT_SYMBOL(lock_rename);
2876 EXPORT_SYMBOL(lookup_one_len);
2877 EXPORT_SYMBOL(page_follow_link_light);
2878 EXPORT_SYMBOL(page_put_link);
2879 EXPORT_SYMBOL(page_readlink);
2880 EXPORT_SYMBOL(__page_symlink);
2881 EXPORT_SYMBOL(page_symlink);
2882 EXPORT_SYMBOL(page_symlink_inode_operations);
2883 EXPORT_SYMBOL(path_lookup);
2884 EXPORT_SYMBOL(kern_path);
2885 EXPORT_SYMBOL(vfs_path_lookup);
2886 EXPORT_SYMBOL(inode_permission);
2887 EXPORT_SYMBOL(file_permission);
2888 EXPORT_SYMBOL(unlock_rename);
2889 EXPORT_SYMBOL(vfs_create);
2890 EXPORT_SYMBOL(vfs_follow_link);
2891 EXPORT_SYMBOL(vfs_link);
2892 EXPORT_SYMBOL(vfs_mkdir);
2893 EXPORT_SYMBOL(vfs_mknod);
2894 EXPORT_SYMBOL(generic_permission);
2895 EXPORT_SYMBOL(vfs_readlink);
2896 EXPORT_SYMBOL(vfs_rename);
2897 EXPORT_SYMBOL(vfs_rmdir);
2898 EXPORT_SYMBOL(vfs_symlink);
2899 EXPORT_SYMBOL(vfs_unlink);
2900 EXPORT_SYMBOL(dentry_unhash);
2901 EXPORT_SYMBOL(generic_readlink);
2902
2903 /* to be mentioned only in INIT_TASK */
2904 struct fs_struct init_fs = {
2905 .count = ATOMIC_INIT(1),
2906 .lock = __RW_LOCK_UNLOCKED(init_fs.lock),
2907 .umask = 0022,
2908 };
This page took 0.088631 seconds and 6 git commands to generate.