Merge branch 'for-4.7-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/tj...
[deliverable/linux.git] / fs / namei.c
1 /*
2 * linux/fs/namei.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * Some corrections by tytso.
9 */
10
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12 * lookup logic.
13 */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15 */
16
17 #include <linux/init.h>
18 #include <linux/export.h>
19 #include <linux/kernel.h>
20 #include <linux/slab.h>
21 #include <linux/fs.h>
22 #include <linux/namei.h>
23 #include <linux/pagemap.h>
24 #include <linux/fsnotify.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/ima.h>
28 #include <linux/syscalls.h>
29 #include <linux/mount.h>
30 #include <linux/audit.h>
31 #include <linux/capability.h>
32 #include <linux/file.h>
33 #include <linux/fcntl.h>
34 #include <linux/device_cgroup.h>
35 #include <linux/fs_struct.h>
36 #include <linux/posix_acl.h>
37 #include <linux/hash.h>
38 #include <linux/bitops.h>
39 #include <asm/uaccess.h>
40
41 #include "internal.h"
42 #include "mount.h"
43
44 /* [Feb-1997 T. Schoebel-Theuer]
45 * Fundamental changes in the pathname lookup mechanisms (namei)
46 * were necessary because of omirr. The reason is that omirr needs
47 * to know the _real_ pathname, not the user-supplied one, in case
48 * of symlinks (and also when transname replacements occur).
49 *
50 * The new code replaces the old recursive symlink resolution with
51 * an iterative one (in case of non-nested symlink chains). It does
52 * this with calls to <fs>_follow_link().
53 * As a side effect, dir_namei(), _namei() and follow_link() are now
54 * replaced with a single function lookup_dentry() that can handle all
55 * the special cases of the former code.
56 *
57 * With the new dcache, the pathname is stored at each inode, at least as
58 * long as the refcount of the inode is positive. As a side effect, the
59 * size of the dcache depends on the inode cache and thus is dynamic.
60 *
61 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
62 * resolution to correspond with current state of the code.
63 *
64 * Note that the symlink resolution is not *completely* iterative.
65 * There is still a significant amount of tail- and mid- recursion in
66 * the algorithm. Also, note that <fs>_readlink() is not used in
67 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
68 * may return different results than <fs>_follow_link(). Many virtual
69 * filesystems (including /proc) exhibit this behavior.
70 */
71
72 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
73 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
74 * and the name already exists in form of a symlink, try to create the new
75 * name indicated by the symlink. The old code always complained that the
76 * name already exists, due to not following the symlink even if its target
77 * is nonexistent. The new semantics affects also mknod() and link() when
78 * the name is a symlink pointing to a non-existent name.
79 *
80 * I don't know which semantics is the right one, since I have no access
81 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
82 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
83 * "old" one. Personally, I think the new semantics is much more logical.
84 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
85 * file does succeed in both HP-UX and SunOs, but not in Solaris
86 * and in the old Linux semantics.
87 */
88
89 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
90 * semantics. See the comments in "open_namei" and "do_link" below.
91 *
92 * [10-Sep-98 Alan Modra] Another symlink change.
93 */
94
95 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
96 * inside the path - always follow.
97 * in the last component in creation/removal/renaming - never follow.
98 * if LOOKUP_FOLLOW passed - follow.
99 * if the pathname has trailing slashes - follow.
100 * otherwise - don't follow.
101 * (applied in that order).
102 *
103 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
104 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
105 * During the 2.4 we need to fix the userland stuff depending on it -
106 * hopefully we will be able to get rid of that wart in 2.5. So far only
107 * XEmacs seems to be relying on it...
108 */
109 /*
110 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
111 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
112 * any extra contention...
113 */
114
115 /* In order to reduce some races, while at the same time doing additional
116 * checking and hopefully speeding things up, we copy filenames to the
117 * kernel data space before using them..
118 *
119 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
120 * PATH_MAX includes the nul terminator --RR.
121 */
122
123 #define EMBEDDED_NAME_MAX (PATH_MAX - offsetof(struct filename, iname))
124
125 struct filename *
126 getname_flags(const char __user *filename, int flags, int *empty)
127 {
128 struct filename *result;
129 char *kname;
130 int len;
131
132 result = audit_reusename(filename);
133 if (result)
134 return result;
135
136 result = __getname();
137 if (unlikely(!result))
138 return ERR_PTR(-ENOMEM);
139
140 /*
141 * First, try to embed the struct filename inside the names_cache
142 * allocation
143 */
144 kname = (char *)result->iname;
145 result->name = kname;
146
147 len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX);
148 if (unlikely(len < 0)) {
149 __putname(result);
150 return ERR_PTR(len);
151 }
152
153 /*
154 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
155 * separate struct filename so we can dedicate the entire
156 * names_cache allocation for the pathname, and re-do the copy from
157 * userland.
158 */
159 if (unlikely(len == EMBEDDED_NAME_MAX)) {
160 const size_t size = offsetof(struct filename, iname[1]);
161 kname = (char *)result;
162
163 /*
164 * size is chosen that way we to guarantee that
165 * result->iname[0] is within the same object and that
166 * kname can't be equal to result->iname, no matter what.
167 */
168 result = kzalloc(size, GFP_KERNEL);
169 if (unlikely(!result)) {
170 __putname(kname);
171 return ERR_PTR(-ENOMEM);
172 }
173 result->name = kname;
174 len = strncpy_from_user(kname, filename, PATH_MAX);
175 if (unlikely(len < 0)) {
176 __putname(kname);
177 kfree(result);
178 return ERR_PTR(len);
179 }
180 if (unlikely(len == PATH_MAX)) {
181 __putname(kname);
182 kfree(result);
183 return ERR_PTR(-ENAMETOOLONG);
184 }
185 }
186
187 result->refcnt = 1;
188 /* The empty path is special. */
189 if (unlikely(!len)) {
190 if (empty)
191 *empty = 1;
192 if (!(flags & LOOKUP_EMPTY)) {
193 putname(result);
194 return ERR_PTR(-ENOENT);
195 }
196 }
197
198 result->uptr = filename;
199 result->aname = NULL;
200 audit_getname(result);
201 return result;
202 }
203
204 struct filename *
205 getname(const char __user * filename)
206 {
207 return getname_flags(filename, 0, NULL);
208 }
209
210 struct filename *
211 getname_kernel(const char * filename)
212 {
213 struct filename *result;
214 int len = strlen(filename) + 1;
215
216 result = __getname();
217 if (unlikely(!result))
218 return ERR_PTR(-ENOMEM);
219
220 if (len <= EMBEDDED_NAME_MAX) {
221 result->name = (char *)result->iname;
222 } else if (len <= PATH_MAX) {
223 struct filename *tmp;
224
225 tmp = kmalloc(sizeof(*tmp), GFP_KERNEL);
226 if (unlikely(!tmp)) {
227 __putname(result);
228 return ERR_PTR(-ENOMEM);
229 }
230 tmp->name = (char *)result;
231 result = tmp;
232 } else {
233 __putname(result);
234 return ERR_PTR(-ENAMETOOLONG);
235 }
236 memcpy((char *)result->name, filename, len);
237 result->uptr = NULL;
238 result->aname = NULL;
239 result->refcnt = 1;
240 audit_getname(result);
241
242 return result;
243 }
244
245 void putname(struct filename *name)
246 {
247 BUG_ON(name->refcnt <= 0);
248
249 if (--name->refcnt > 0)
250 return;
251
252 if (name->name != name->iname) {
253 __putname(name->name);
254 kfree(name);
255 } else
256 __putname(name);
257 }
258
259 static int check_acl(struct inode *inode, int mask)
260 {
261 #ifdef CONFIG_FS_POSIX_ACL
262 struct posix_acl *acl;
263
264 if (mask & MAY_NOT_BLOCK) {
265 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
266 if (!acl)
267 return -EAGAIN;
268 /* no ->get_acl() calls in RCU mode... */
269 if (is_uncached_acl(acl))
270 return -ECHILD;
271 return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
272 }
273
274 acl = get_acl(inode, ACL_TYPE_ACCESS);
275 if (IS_ERR(acl))
276 return PTR_ERR(acl);
277 if (acl) {
278 int error = posix_acl_permission(inode, acl, mask);
279 posix_acl_release(acl);
280 return error;
281 }
282 #endif
283
284 return -EAGAIN;
285 }
286
287 /*
288 * This does the basic permission checking
289 */
290 static int acl_permission_check(struct inode *inode, int mask)
291 {
292 unsigned int mode = inode->i_mode;
293
294 if (likely(uid_eq(current_fsuid(), inode->i_uid)))
295 mode >>= 6;
296 else {
297 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
298 int error = check_acl(inode, mask);
299 if (error != -EAGAIN)
300 return error;
301 }
302
303 if (in_group_p(inode->i_gid))
304 mode >>= 3;
305 }
306
307 /*
308 * If the DACs are ok we don't need any capability check.
309 */
310 if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
311 return 0;
312 return -EACCES;
313 }
314
315 /**
316 * generic_permission - check for access rights on a Posix-like filesystem
317 * @inode: inode to check access rights for
318 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
319 *
320 * Used to check for read/write/execute permissions on a file.
321 * We use "fsuid" for this, letting us set arbitrary permissions
322 * for filesystem access without changing the "normal" uids which
323 * are used for other things.
324 *
325 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
326 * request cannot be satisfied (eg. requires blocking or too much complexity).
327 * It would then be called again in ref-walk mode.
328 */
329 int generic_permission(struct inode *inode, int mask)
330 {
331 int ret;
332
333 /*
334 * Do the basic permission checks.
335 */
336 ret = acl_permission_check(inode, mask);
337 if (ret != -EACCES)
338 return ret;
339
340 if (S_ISDIR(inode->i_mode)) {
341 /* DACs are overridable for directories */
342 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
343 return 0;
344 if (!(mask & MAY_WRITE))
345 if (capable_wrt_inode_uidgid(inode,
346 CAP_DAC_READ_SEARCH))
347 return 0;
348 return -EACCES;
349 }
350 /*
351 * Read/write DACs are always overridable.
352 * Executable DACs are overridable when there is
353 * at least one exec bit set.
354 */
355 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
356 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
357 return 0;
358
359 /*
360 * Searching includes executable on directories, else just read.
361 */
362 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
363 if (mask == MAY_READ)
364 if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH))
365 return 0;
366
367 return -EACCES;
368 }
369 EXPORT_SYMBOL(generic_permission);
370
371 /*
372 * We _really_ want to just do "generic_permission()" without
373 * even looking at the inode->i_op values. So we keep a cache
374 * flag in inode->i_opflags, that says "this has not special
375 * permission function, use the fast case".
376 */
377 static inline int do_inode_permission(struct inode *inode, int mask)
378 {
379 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
380 if (likely(inode->i_op->permission))
381 return inode->i_op->permission(inode, mask);
382
383 /* This gets set once for the inode lifetime */
384 spin_lock(&inode->i_lock);
385 inode->i_opflags |= IOP_FASTPERM;
386 spin_unlock(&inode->i_lock);
387 }
388 return generic_permission(inode, mask);
389 }
390
391 /**
392 * __inode_permission - Check for access rights to a given inode
393 * @inode: Inode to check permission on
394 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
395 *
396 * Check for read/write/execute permissions on an inode.
397 *
398 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
399 *
400 * This does not check for a read-only file system. You probably want
401 * inode_permission().
402 */
403 int __inode_permission(struct inode *inode, int mask)
404 {
405 int retval;
406
407 if (unlikely(mask & MAY_WRITE)) {
408 /*
409 * Nobody gets write access to an immutable file.
410 */
411 if (IS_IMMUTABLE(inode))
412 return -EACCES;
413 }
414
415 retval = do_inode_permission(inode, mask);
416 if (retval)
417 return retval;
418
419 retval = devcgroup_inode_permission(inode, mask);
420 if (retval)
421 return retval;
422
423 return security_inode_permission(inode, mask);
424 }
425 EXPORT_SYMBOL(__inode_permission);
426
427 /**
428 * sb_permission - Check superblock-level permissions
429 * @sb: Superblock of inode to check permission on
430 * @inode: Inode to check permission on
431 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
432 *
433 * Separate out file-system wide checks from inode-specific permission checks.
434 */
435 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
436 {
437 if (unlikely(mask & MAY_WRITE)) {
438 umode_t mode = inode->i_mode;
439
440 /* Nobody gets write access to a read-only fs. */
441 if ((sb->s_flags & MS_RDONLY) &&
442 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
443 return -EROFS;
444 }
445 return 0;
446 }
447
448 /**
449 * inode_permission - Check for access rights to a given inode
450 * @inode: Inode to check permission on
451 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
452 *
453 * Check for read/write/execute permissions on an inode. We use fs[ug]id for
454 * this, letting us set arbitrary permissions for filesystem access without
455 * changing the "normal" UIDs which are used for other things.
456 *
457 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
458 */
459 int inode_permission(struct inode *inode, int mask)
460 {
461 int retval;
462
463 retval = sb_permission(inode->i_sb, inode, mask);
464 if (retval)
465 return retval;
466 return __inode_permission(inode, mask);
467 }
468 EXPORT_SYMBOL(inode_permission);
469
470 /**
471 * path_get - get a reference to a path
472 * @path: path to get the reference to
473 *
474 * Given a path increment the reference count to the dentry and the vfsmount.
475 */
476 void path_get(const struct path *path)
477 {
478 mntget(path->mnt);
479 dget(path->dentry);
480 }
481 EXPORT_SYMBOL(path_get);
482
483 /**
484 * path_put - put a reference to a path
485 * @path: path to put the reference to
486 *
487 * Given a path decrement the reference count to the dentry and the vfsmount.
488 */
489 void path_put(const struct path *path)
490 {
491 dput(path->dentry);
492 mntput(path->mnt);
493 }
494 EXPORT_SYMBOL(path_put);
495
496 #define EMBEDDED_LEVELS 2
497 struct nameidata {
498 struct path path;
499 struct qstr last;
500 struct path root;
501 struct inode *inode; /* path.dentry.d_inode */
502 unsigned int flags;
503 unsigned seq, m_seq;
504 int last_type;
505 unsigned depth;
506 int total_link_count;
507 struct saved {
508 struct path link;
509 struct delayed_call done;
510 const char *name;
511 unsigned seq;
512 } *stack, internal[EMBEDDED_LEVELS];
513 struct filename *name;
514 struct nameidata *saved;
515 struct inode *link_inode;
516 unsigned root_seq;
517 int dfd;
518 };
519
520 static void set_nameidata(struct nameidata *p, int dfd, struct filename *name)
521 {
522 struct nameidata *old = current->nameidata;
523 p->stack = p->internal;
524 p->dfd = dfd;
525 p->name = name;
526 p->total_link_count = old ? old->total_link_count : 0;
527 p->saved = old;
528 current->nameidata = p;
529 }
530
531 static void restore_nameidata(void)
532 {
533 struct nameidata *now = current->nameidata, *old = now->saved;
534
535 current->nameidata = old;
536 if (old)
537 old->total_link_count = now->total_link_count;
538 if (now->stack != now->internal)
539 kfree(now->stack);
540 }
541
542 static int __nd_alloc_stack(struct nameidata *nd)
543 {
544 struct saved *p;
545
546 if (nd->flags & LOOKUP_RCU) {
547 p= kmalloc(MAXSYMLINKS * sizeof(struct saved),
548 GFP_ATOMIC);
549 if (unlikely(!p))
550 return -ECHILD;
551 } else {
552 p= kmalloc(MAXSYMLINKS * sizeof(struct saved),
553 GFP_KERNEL);
554 if (unlikely(!p))
555 return -ENOMEM;
556 }
557 memcpy(p, nd->internal, sizeof(nd->internal));
558 nd->stack = p;
559 return 0;
560 }
561
562 /**
563 * path_connected - Verify that a path->dentry is below path->mnt.mnt_root
564 * @path: nameidate to verify
565 *
566 * Rename can sometimes move a file or directory outside of a bind
567 * mount, path_connected allows those cases to be detected.
568 */
569 static bool path_connected(const struct path *path)
570 {
571 struct vfsmount *mnt = path->mnt;
572
573 /* Only bind mounts can have disconnected paths */
574 if (mnt->mnt_root == mnt->mnt_sb->s_root)
575 return true;
576
577 return is_subdir(path->dentry, mnt->mnt_root);
578 }
579
580 static inline int nd_alloc_stack(struct nameidata *nd)
581 {
582 if (likely(nd->depth != EMBEDDED_LEVELS))
583 return 0;
584 if (likely(nd->stack != nd->internal))
585 return 0;
586 return __nd_alloc_stack(nd);
587 }
588
589 static void drop_links(struct nameidata *nd)
590 {
591 int i = nd->depth;
592 while (i--) {
593 struct saved *last = nd->stack + i;
594 do_delayed_call(&last->done);
595 clear_delayed_call(&last->done);
596 }
597 }
598
599 static void terminate_walk(struct nameidata *nd)
600 {
601 drop_links(nd);
602 if (!(nd->flags & LOOKUP_RCU)) {
603 int i;
604 path_put(&nd->path);
605 for (i = 0; i < nd->depth; i++)
606 path_put(&nd->stack[i].link);
607 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
608 path_put(&nd->root);
609 nd->root.mnt = NULL;
610 }
611 } else {
612 nd->flags &= ~LOOKUP_RCU;
613 if (!(nd->flags & LOOKUP_ROOT))
614 nd->root.mnt = NULL;
615 rcu_read_unlock();
616 }
617 nd->depth = 0;
618 }
619
620 /* path_put is needed afterwards regardless of success or failure */
621 static bool legitimize_path(struct nameidata *nd,
622 struct path *path, unsigned seq)
623 {
624 int res = __legitimize_mnt(path->mnt, nd->m_seq);
625 if (unlikely(res)) {
626 if (res > 0)
627 path->mnt = NULL;
628 path->dentry = NULL;
629 return false;
630 }
631 if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) {
632 path->dentry = NULL;
633 return false;
634 }
635 return !read_seqcount_retry(&path->dentry->d_seq, seq);
636 }
637
638 static bool legitimize_links(struct nameidata *nd)
639 {
640 int i;
641 for (i = 0; i < nd->depth; i++) {
642 struct saved *last = nd->stack + i;
643 if (unlikely(!legitimize_path(nd, &last->link, last->seq))) {
644 drop_links(nd);
645 nd->depth = i + 1;
646 return false;
647 }
648 }
649 return true;
650 }
651
652 /*
653 * Path walking has 2 modes, rcu-walk and ref-walk (see
654 * Documentation/filesystems/path-lookup.txt). In situations when we can't
655 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
656 * normal reference counts on dentries and vfsmounts to transition to ref-walk
657 * mode. Refcounts are grabbed at the last known good point before rcu-walk
658 * got stuck, so ref-walk may continue from there. If this is not successful
659 * (eg. a seqcount has changed), then failure is returned and it's up to caller
660 * to restart the path walk from the beginning in ref-walk mode.
661 */
662
663 /**
664 * unlazy_walk - try to switch to ref-walk mode.
665 * @nd: nameidata pathwalk data
666 * @dentry: child of nd->path.dentry or NULL
667 * @seq: seq number to check dentry against
668 * Returns: 0 on success, -ECHILD on failure
669 *
670 * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry
671 * for ref-walk mode. @dentry must be a path found by a do_lookup call on
672 * @nd or NULL. Must be called from rcu-walk context.
673 * Nothing should touch nameidata between unlazy_walk() failure and
674 * terminate_walk().
675 */
676 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry, unsigned seq)
677 {
678 struct dentry *parent = nd->path.dentry;
679
680 BUG_ON(!(nd->flags & LOOKUP_RCU));
681
682 nd->flags &= ~LOOKUP_RCU;
683 if (unlikely(!legitimize_links(nd)))
684 goto out2;
685 if (unlikely(!legitimize_mnt(nd->path.mnt, nd->m_seq)))
686 goto out2;
687 if (unlikely(!lockref_get_not_dead(&parent->d_lockref)))
688 goto out1;
689
690 /*
691 * For a negative lookup, the lookup sequence point is the parents
692 * sequence point, and it only needs to revalidate the parent dentry.
693 *
694 * For a positive lookup, we need to move both the parent and the
695 * dentry from the RCU domain to be properly refcounted. And the
696 * sequence number in the dentry validates *both* dentry counters,
697 * since we checked the sequence number of the parent after we got
698 * the child sequence number. So we know the parent must still
699 * be valid if the child sequence number is still valid.
700 */
701 if (!dentry) {
702 if (read_seqcount_retry(&parent->d_seq, nd->seq))
703 goto out;
704 BUG_ON(nd->inode != parent->d_inode);
705 } else {
706 if (!lockref_get_not_dead(&dentry->d_lockref))
707 goto out;
708 if (read_seqcount_retry(&dentry->d_seq, seq))
709 goto drop_dentry;
710 }
711
712 /*
713 * Sequence counts matched. Now make sure that the root is
714 * still valid and get it if required.
715 */
716 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
717 if (unlikely(!legitimize_path(nd, &nd->root, nd->root_seq))) {
718 rcu_read_unlock();
719 dput(dentry);
720 return -ECHILD;
721 }
722 }
723
724 rcu_read_unlock();
725 return 0;
726
727 drop_dentry:
728 rcu_read_unlock();
729 dput(dentry);
730 goto drop_root_mnt;
731 out2:
732 nd->path.mnt = NULL;
733 out1:
734 nd->path.dentry = NULL;
735 out:
736 rcu_read_unlock();
737 drop_root_mnt:
738 if (!(nd->flags & LOOKUP_ROOT))
739 nd->root.mnt = NULL;
740 return -ECHILD;
741 }
742
743 static int unlazy_link(struct nameidata *nd, struct path *link, unsigned seq)
744 {
745 if (unlikely(!legitimize_path(nd, link, seq))) {
746 drop_links(nd);
747 nd->depth = 0;
748 nd->flags &= ~LOOKUP_RCU;
749 nd->path.mnt = NULL;
750 nd->path.dentry = NULL;
751 if (!(nd->flags & LOOKUP_ROOT))
752 nd->root.mnt = NULL;
753 rcu_read_unlock();
754 } else if (likely(unlazy_walk(nd, NULL, 0)) == 0) {
755 return 0;
756 }
757 path_put(link);
758 return -ECHILD;
759 }
760
761 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
762 {
763 return dentry->d_op->d_revalidate(dentry, flags);
764 }
765
766 /**
767 * complete_walk - successful completion of path walk
768 * @nd: pointer nameidata
769 *
770 * If we had been in RCU mode, drop out of it and legitimize nd->path.
771 * Revalidate the final result, unless we'd already done that during
772 * the path walk or the filesystem doesn't ask for it. Return 0 on
773 * success, -error on failure. In case of failure caller does not
774 * need to drop nd->path.
775 */
776 static int complete_walk(struct nameidata *nd)
777 {
778 struct dentry *dentry = nd->path.dentry;
779 int status;
780
781 if (nd->flags & LOOKUP_RCU) {
782 if (!(nd->flags & LOOKUP_ROOT))
783 nd->root.mnt = NULL;
784 if (unlikely(unlazy_walk(nd, NULL, 0)))
785 return -ECHILD;
786 }
787
788 if (likely(!(nd->flags & LOOKUP_JUMPED)))
789 return 0;
790
791 if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
792 return 0;
793
794 status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
795 if (status > 0)
796 return 0;
797
798 if (!status)
799 status = -ESTALE;
800
801 return status;
802 }
803
804 static void set_root(struct nameidata *nd)
805 {
806 struct fs_struct *fs = current->fs;
807
808 if (nd->flags & LOOKUP_RCU) {
809 unsigned seq;
810
811 do {
812 seq = read_seqcount_begin(&fs->seq);
813 nd->root = fs->root;
814 nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
815 } while (read_seqcount_retry(&fs->seq, seq));
816 } else {
817 get_fs_root(fs, &nd->root);
818 }
819 }
820
821 static void path_put_conditional(struct path *path, struct nameidata *nd)
822 {
823 dput(path->dentry);
824 if (path->mnt != nd->path.mnt)
825 mntput(path->mnt);
826 }
827
828 static inline void path_to_nameidata(const struct path *path,
829 struct nameidata *nd)
830 {
831 if (!(nd->flags & LOOKUP_RCU)) {
832 dput(nd->path.dentry);
833 if (nd->path.mnt != path->mnt)
834 mntput(nd->path.mnt);
835 }
836 nd->path.mnt = path->mnt;
837 nd->path.dentry = path->dentry;
838 }
839
840 static int nd_jump_root(struct nameidata *nd)
841 {
842 if (nd->flags & LOOKUP_RCU) {
843 struct dentry *d;
844 nd->path = nd->root;
845 d = nd->path.dentry;
846 nd->inode = d->d_inode;
847 nd->seq = nd->root_seq;
848 if (unlikely(read_seqcount_retry(&d->d_seq, nd->seq)))
849 return -ECHILD;
850 } else {
851 path_put(&nd->path);
852 nd->path = nd->root;
853 path_get(&nd->path);
854 nd->inode = nd->path.dentry->d_inode;
855 }
856 nd->flags |= LOOKUP_JUMPED;
857 return 0;
858 }
859
860 /*
861 * Helper to directly jump to a known parsed path from ->get_link,
862 * caller must have taken a reference to path beforehand.
863 */
864 void nd_jump_link(struct path *path)
865 {
866 struct nameidata *nd = current->nameidata;
867 path_put(&nd->path);
868
869 nd->path = *path;
870 nd->inode = nd->path.dentry->d_inode;
871 nd->flags |= LOOKUP_JUMPED;
872 }
873
874 static inline void put_link(struct nameidata *nd)
875 {
876 struct saved *last = nd->stack + --nd->depth;
877 do_delayed_call(&last->done);
878 if (!(nd->flags & LOOKUP_RCU))
879 path_put(&last->link);
880 }
881
882 int sysctl_protected_symlinks __read_mostly = 0;
883 int sysctl_protected_hardlinks __read_mostly = 0;
884
885 /**
886 * may_follow_link - Check symlink following for unsafe situations
887 * @nd: nameidata pathwalk data
888 *
889 * In the case of the sysctl_protected_symlinks sysctl being enabled,
890 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
891 * in a sticky world-writable directory. This is to protect privileged
892 * processes from failing races against path names that may change out
893 * from under them by way of other users creating malicious symlinks.
894 * It will permit symlinks to be followed only when outside a sticky
895 * world-writable directory, or when the uid of the symlink and follower
896 * match, or when the directory owner matches the symlink's owner.
897 *
898 * Returns 0 if following the symlink is allowed, -ve on error.
899 */
900 static inline int may_follow_link(struct nameidata *nd)
901 {
902 const struct inode *inode;
903 const struct inode *parent;
904
905 if (!sysctl_protected_symlinks)
906 return 0;
907
908 /* Allowed if owner and follower match. */
909 inode = nd->link_inode;
910 if (uid_eq(current_cred()->fsuid, inode->i_uid))
911 return 0;
912
913 /* Allowed if parent directory not sticky and world-writable. */
914 parent = nd->inode;
915 if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
916 return 0;
917
918 /* Allowed if parent directory and link owner match. */
919 if (uid_eq(parent->i_uid, inode->i_uid))
920 return 0;
921
922 if (nd->flags & LOOKUP_RCU)
923 return -ECHILD;
924
925 audit_log_link_denied("follow_link", &nd->stack[0].link);
926 return -EACCES;
927 }
928
929 /**
930 * safe_hardlink_source - Check for safe hardlink conditions
931 * @inode: the source inode to hardlink from
932 *
933 * Return false if at least one of the following conditions:
934 * - inode is not a regular file
935 * - inode is setuid
936 * - inode is setgid and group-exec
937 * - access failure for read and write
938 *
939 * Otherwise returns true.
940 */
941 static bool safe_hardlink_source(struct inode *inode)
942 {
943 umode_t mode = inode->i_mode;
944
945 /* Special files should not get pinned to the filesystem. */
946 if (!S_ISREG(mode))
947 return false;
948
949 /* Setuid files should not get pinned to the filesystem. */
950 if (mode & S_ISUID)
951 return false;
952
953 /* Executable setgid files should not get pinned to the filesystem. */
954 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
955 return false;
956
957 /* Hardlinking to unreadable or unwritable sources is dangerous. */
958 if (inode_permission(inode, MAY_READ | MAY_WRITE))
959 return false;
960
961 return true;
962 }
963
964 /**
965 * may_linkat - Check permissions for creating a hardlink
966 * @link: the source to hardlink from
967 *
968 * Block hardlink when all of:
969 * - sysctl_protected_hardlinks enabled
970 * - fsuid does not match inode
971 * - hardlink source is unsafe (see safe_hardlink_source() above)
972 * - not CAP_FOWNER in a namespace with the inode owner uid mapped
973 *
974 * Returns 0 if successful, -ve on error.
975 */
976 static int may_linkat(struct path *link)
977 {
978 struct inode *inode;
979
980 if (!sysctl_protected_hardlinks)
981 return 0;
982
983 inode = link->dentry->d_inode;
984
985 /* Source inode owner (or CAP_FOWNER) can hardlink all they like,
986 * otherwise, it must be a safe source.
987 */
988 if (inode_owner_or_capable(inode) || safe_hardlink_source(inode))
989 return 0;
990
991 audit_log_link_denied("linkat", link);
992 return -EPERM;
993 }
994
995 static __always_inline
996 const char *get_link(struct nameidata *nd)
997 {
998 struct saved *last = nd->stack + nd->depth - 1;
999 struct dentry *dentry = last->link.dentry;
1000 struct inode *inode = nd->link_inode;
1001 int error;
1002 const char *res;
1003
1004 if (!(nd->flags & LOOKUP_RCU)) {
1005 touch_atime(&last->link);
1006 cond_resched();
1007 } else if (atime_needs_update(&last->link, inode)) {
1008 if (unlikely(unlazy_walk(nd, NULL, 0)))
1009 return ERR_PTR(-ECHILD);
1010 touch_atime(&last->link);
1011 }
1012
1013 error = security_inode_follow_link(dentry, inode,
1014 nd->flags & LOOKUP_RCU);
1015 if (unlikely(error))
1016 return ERR_PTR(error);
1017
1018 nd->last_type = LAST_BIND;
1019 res = inode->i_link;
1020 if (!res) {
1021 const char * (*get)(struct dentry *, struct inode *,
1022 struct delayed_call *);
1023 get = inode->i_op->get_link;
1024 if (nd->flags & LOOKUP_RCU) {
1025 res = get(NULL, inode, &last->done);
1026 if (res == ERR_PTR(-ECHILD)) {
1027 if (unlikely(unlazy_walk(nd, NULL, 0)))
1028 return ERR_PTR(-ECHILD);
1029 res = get(dentry, inode, &last->done);
1030 }
1031 } else {
1032 res = get(dentry, inode, &last->done);
1033 }
1034 if (IS_ERR_OR_NULL(res))
1035 return res;
1036 }
1037 if (*res == '/') {
1038 if (!nd->root.mnt)
1039 set_root(nd);
1040 if (unlikely(nd_jump_root(nd)))
1041 return ERR_PTR(-ECHILD);
1042 while (unlikely(*++res == '/'))
1043 ;
1044 }
1045 if (!*res)
1046 res = NULL;
1047 return res;
1048 }
1049
1050 /*
1051 * follow_up - Find the mountpoint of path's vfsmount
1052 *
1053 * Given a path, find the mountpoint of its source file system.
1054 * Replace @path with the path of the mountpoint in the parent mount.
1055 * Up is towards /.
1056 *
1057 * Return 1 if we went up a level and 0 if we were already at the
1058 * root.
1059 */
1060 int follow_up(struct path *path)
1061 {
1062 struct mount *mnt = real_mount(path->mnt);
1063 struct mount *parent;
1064 struct dentry *mountpoint;
1065
1066 read_seqlock_excl(&mount_lock);
1067 parent = mnt->mnt_parent;
1068 if (parent == mnt) {
1069 read_sequnlock_excl(&mount_lock);
1070 return 0;
1071 }
1072 mntget(&parent->mnt);
1073 mountpoint = dget(mnt->mnt_mountpoint);
1074 read_sequnlock_excl(&mount_lock);
1075 dput(path->dentry);
1076 path->dentry = mountpoint;
1077 mntput(path->mnt);
1078 path->mnt = &parent->mnt;
1079 return 1;
1080 }
1081 EXPORT_SYMBOL(follow_up);
1082
1083 /*
1084 * Perform an automount
1085 * - return -EISDIR to tell follow_managed() to stop and return the path we
1086 * were called with.
1087 */
1088 static int follow_automount(struct path *path, struct nameidata *nd,
1089 bool *need_mntput)
1090 {
1091 struct vfsmount *mnt;
1092 int err;
1093
1094 if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
1095 return -EREMOTE;
1096
1097 /* We don't want to mount if someone's just doing a stat -
1098 * unless they're stat'ing a directory and appended a '/' to
1099 * the name.
1100 *
1101 * We do, however, want to mount if someone wants to open or
1102 * create a file of any type under the mountpoint, wants to
1103 * traverse through the mountpoint or wants to open the
1104 * mounted directory. Also, autofs may mark negative dentries
1105 * as being automount points. These will need the attentions
1106 * of the daemon to instantiate them before they can be used.
1107 */
1108 if (!(nd->flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
1109 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
1110 path->dentry->d_inode)
1111 return -EISDIR;
1112
1113 nd->total_link_count++;
1114 if (nd->total_link_count >= 40)
1115 return -ELOOP;
1116
1117 mnt = path->dentry->d_op->d_automount(path);
1118 if (IS_ERR(mnt)) {
1119 /*
1120 * The filesystem is allowed to return -EISDIR here to indicate
1121 * it doesn't want to automount. For instance, autofs would do
1122 * this so that its userspace daemon can mount on this dentry.
1123 *
1124 * However, we can only permit this if it's a terminal point in
1125 * the path being looked up; if it wasn't then the remainder of
1126 * the path is inaccessible and we should say so.
1127 */
1128 if (PTR_ERR(mnt) == -EISDIR && (nd->flags & LOOKUP_PARENT))
1129 return -EREMOTE;
1130 return PTR_ERR(mnt);
1131 }
1132
1133 if (!mnt) /* mount collision */
1134 return 0;
1135
1136 if (!*need_mntput) {
1137 /* lock_mount() may release path->mnt on error */
1138 mntget(path->mnt);
1139 *need_mntput = true;
1140 }
1141 err = finish_automount(mnt, path);
1142
1143 switch (err) {
1144 case -EBUSY:
1145 /* Someone else made a mount here whilst we were busy */
1146 return 0;
1147 case 0:
1148 path_put(path);
1149 path->mnt = mnt;
1150 path->dentry = dget(mnt->mnt_root);
1151 return 0;
1152 default:
1153 return err;
1154 }
1155
1156 }
1157
1158 /*
1159 * Handle a dentry that is managed in some way.
1160 * - Flagged for transit management (autofs)
1161 * - Flagged as mountpoint
1162 * - Flagged as automount point
1163 *
1164 * This may only be called in refwalk mode.
1165 *
1166 * Serialization is taken care of in namespace.c
1167 */
1168 static int follow_managed(struct path *path, struct nameidata *nd)
1169 {
1170 struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
1171 unsigned managed;
1172 bool need_mntput = false;
1173 int ret = 0;
1174
1175 /* Given that we're not holding a lock here, we retain the value in a
1176 * local variable for each dentry as we look at it so that we don't see
1177 * the components of that value change under us */
1178 while (managed = ACCESS_ONCE(path->dentry->d_flags),
1179 managed &= DCACHE_MANAGED_DENTRY,
1180 unlikely(managed != 0)) {
1181 /* Allow the filesystem to manage the transit without i_mutex
1182 * being held. */
1183 if (managed & DCACHE_MANAGE_TRANSIT) {
1184 BUG_ON(!path->dentry->d_op);
1185 BUG_ON(!path->dentry->d_op->d_manage);
1186 ret = path->dentry->d_op->d_manage(path->dentry, false);
1187 if (ret < 0)
1188 break;
1189 }
1190
1191 /* Transit to a mounted filesystem. */
1192 if (managed & DCACHE_MOUNTED) {
1193 struct vfsmount *mounted = lookup_mnt(path);
1194 if (mounted) {
1195 dput(path->dentry);
1196 if (need_mntput)
1197 mntput(path->mnt);
1198 path->mnt = mounted;
1199 path->dentry = dget(mounted->mnt_root);
1200 need_mntput = true;
1201 continue;
1202 }
1203
1204 /* Something is mounted on this dentry in another
1205 * namespace and/or whatever was mounted there in this
1206 * namespace got unmounted before lookup_mnt() could
1207 * get it */
1208 }
1209
1210 /* Handle an automount point */
1211 if (managed & DCACHE_NEED_AUTOMOUNT) {
1212 ret = follow_automount(path, nd, &need_mntput);
1213 if (ret < 0)
1214 break;
1215 continue;
1216 }
1217
1218 /* We didn't change the current path point */
1219 break;
1220 }
1221
1222 if (need_mntput && path->mnt == mnt)
1223 mntput(path->mnt);
1224 if (ret == -EISDIR || !ret)
1225 ret = 1;
1226 if (need_mntput)
1227 nd->flags |= LOOKUP_JUMPED;
1228 if (unlikely(ret < 0))
1229 path_put_conditional(path, nd);
1230 return ret;
1231 }
1232
1233 int follow_down_one(struct path *path)
1234 {
1235 struct vfsmount *mounted;
1236
1237 mounted = lookup_mnt(path);
1238 if (mounted) {
1239 dput(path->dentry);
1240 mntput(path->mnt);
1241 path->mnt = mounted;
1242 path->dentry = dget(mounted->mnt_root);
1243 return 1;
1244 }
1245 return 0;
1246 }
1247 EXPORT_SYMBOL(follow_down_one);
1248
1249 static inline int managed_dentry_rcu(struct dentry *dentry)
1250 {
1251 return (dentry->d_flags & DCACHE_MANAGE_TRANSIT) ?
1252 dentry->d_op->d_manage(dentry, true) : 0;
1253 }
1254
1255 /*
1256 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if
1257 * we meet a managed dentry that would need blocking.
1258 */
1259 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1260 struct inode **inode, unsigned *seqp)
1261 {
1262 for (;;) {
1263 struct mount *mounted;
1264 /*
1265 * Don't forget we might have a non-mountpoint managed dentry
1266 * that wants to block transit.
1267 */
1268 switch (managed_dentry_rcu(path->dentry)) {
1269 case -ECHILD:
1270 default:
1271 return false;
1272 case -EISDIR:
1273 return true;
1274 case 0:
1275 break;
1276 }
1277
1278 if (!d_mountpoint(path->dentry))
1279 return !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1280
1281 mounted = __lookup_mnt(path->mnt, path->dentry);
1282 if (!mounted)
1283 break;
1284 path->mnt = &mounted->mnt;
1285 path->dentry = mounted->mnt.mnt_root;
1286 nd->flags |= LOOKUP_JUMPED;
1287 *seqp = read_seqcount_begin(&path->dentry->d_seq);
1288 /*
1289 * Update the inode too. We don't need to re-check the
1290 * dentry sequence number here after this d_inode read,
1291 * because a mount-point is always pinned.
1292 */
1293 *inode = path->dentry->d_inode;
1294 }
1295 return !read_seqretry(&mount_lock, nd->m_seq) &&
1296 !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1297 }
1298
1299 static int follow_dotdot_rcu(struct nameidata *nd)
1300 {
1301 struct inode *inode = nd->inode;
1302
1303 while (1) {
1304 if (path_equal(&nd->path, &nd->root))
1305 break;
1306 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1307 struct dentry *old = nd->path.dentry;
1308 struct dentry *parent = old->d_parent;
1309 unsigned seq;
1310
1311 inode = parent->d_inode;
1312 seq = read_seqcount_begin(&parent->d_seq);
1313 if (unlikely(read_seqcount_retry(&old->d_seq, nd->seq)))
1314 return -ECHILD;
1315 nd->path.dentry = parent;
1316 nd->seq = seq;
1317 if (unlikely(!path_connected(&nd->path)))
1318 return -ENOENT;
1319 break;
1320 } else {
1321 struct mount *mnt = real_mount(nd->path.mnt);
1322 struct mount *mparent = mnt->mnt_parent;
1323 struct dentry *mountpoint = mnt->mnt_mountpoint;
1324 struct inode *inode2 = mountpoint->d_inode;
1325 unsigned seq = read_seqcount_begin(&mountpoint->d_seq);
1326 if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1327 return -ECHILD;
1328 if (&mparent->mnt == nd->path.mnt)
1329 break;
1330 /* we know that mountpoint was pinned */
1331 nd->path.dentry = mountpoint;
1332 nd->path.mnt = &mparent->mnt;
1333 inode = inode2;
1334 nd->seq = seq;
1335 }
1336 }
1337 while (unlikely(d_mountpoint(nd->path.dentry))) {
1338 struct mount *mounted;
1339 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry);
1340 if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1341 return -ECHILD;
1342 if (!mounted)
1343 break;
1344 nd->path.mnt = &mounted->mnt;
1345 nd->path.dentry = mounted->mnt.mnt_root;
1346 inode = nd->path.dentry->d_inode;
1347 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1348 }
1349 nd->inode = inode;
1350 return 0;
1351 }
1352
1353 /*
1354 * Follow down to the covering mount currently visible to userspace. At each
1355 * point, the filesystem owning that dentry may be queried as to whether the
1356 * caller is permitted to proceed or not.
1357 */
1358 int follow_down(struct path *path)
1359 {
1360 unsigned managed;
1361 int ret;
1362
1363 while (managed = ACCESS_ONCE(path->dentry->d_flags),
1364 unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1365 /* Allow the filesystem to manage the transit without i_mutex
1366 * being held.
1367 *
1368 * We indicate to the filesystem if someone is trying to mount
1369 * something here. This gives autofs the chance to deny anyone
1370 * other than its daemon the right to mount on its
1371 * superstructure.
1372 *
1373 * The filesystem may sleep at this point.
1374 */
1375 if (managed & DCACHE_MANAGE_TRANSIT) {
1376 BUG_ON(!path->dentry->d_op);
1377 BUG_ON(!path->dentry->d_op->d_manage);
1378 ret = path->dentry->d_op->d_manage(
1379 path->dentry, false);
1380 if (ret < 0)
1381 return ret == -EISDIR ? 0 : ret;
1382 }
1383
1384 /* Transit to a mounted filesystem. */
1385 if (managed & DCACHE_MOUNTED) {
1386 struct vfsmount *mounted = lookup_mnt(path);
1387 if (!mounted)
1388 break;
1389 dput(path->dentry);
1390 mntput(path->mnt);
1391 path->mnt = mounted;
1392 path->dentry = dget(mounted->mnt_root);
1393 continue;
1394 }
1395
1396 /* Don't handle automount points here */
1397 break;
1398 }
1399 return 0;
1400 }
1401 EXPORT_SYMBOL(follow_down);
1402
1403 /*
1404 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1405 */
1406 static void follow_mount(struct path *path)
1407 {
1408 while (d_mountpoint(path->dentry)) {
1409 struct vfsmount *mounted = lookup_mnt(path);
1410 if (!mounted)
1411 break;
1412 dput(path->dentry);
1413 mntput(path->mnt);
1414 path->mnt = mounted;
1415 path->dentry = dget(mounted->mnt_root);
1416 }
1417 }
1418
1419 static int path_parent_directory(struct path *path)
1420 {
1421 struct dentry *old = path->dentry;
1422 /* rare case of legitimate dget_parent()... */
1423 path->dentry = dget_parent(path->dentry);
1424 dput(old);
1425 if (unlikely(!path_connected(path)))
1426 return -ENOENT;
1427 return 0;
1428 }
1429
1430 static int follow_dotdot(struct nameidata *nd)
1431 {
1432 while(1) {
1433 if (nd->path.dentry == nd->root.dentry &&
1434 nd->path.mnt == nd->root.mnt) {
1435 break;
1436 }
1437 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1438 int ret = path_parent_directory(&nd->path);
1439 if (ret)
1440 return ret;
1441 break;
1442 }
1443 if (!follow_up(&nd->path))
1444 break;
1445 }
1446 follow_mount(&nd->path);
1447 nd->inode = nd->path.dentry->d_inode;
1448 return 0;
1449 }
1450
1451 /*
1452 * This looks up the name in dcache and possibly revalidates the found dentry.
1453 * NULL is returned if the dentry does not exist in the cache.
1454 */
1455 static struct dentry *lookup_dcache(const struct qstr *name,
1456 struct dentry *dir,
1457 unsigned int flags)
1458 {
1459 struct dentry *dentry;
1460 int error;
1461
1462 dentry = d_lookup(dir, name);
1463 if (dentry) {
1464 if (dentry->d_flags & DCACHE_OP_REVALIDATE) {
1465 error = d_revalidate(dentry, flags);
1466 if (unlikely(error <= 0)) {
1467 if (!error)
1468 d_invalidate(dentry);
1469 dput(dentry);
1470 return ERR_PTR(error);
1471 }
1472 }
1473 }
1474 return dentry;
1475 }
1476
1477 /*
1478 * Call i_op->lookup on the dentry. The dentry must be negative and
1479 * unhashed.
1480 *
1481 * dir->d_inode->i_mutex must be held
1482 */
1483 static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry,
1484 unsigned int flags)
1485 {
1486 struct dentry *old;
1487
1488 /* Don't create child dentry for a dead directory. */
1489 if (unlikely(IS_DEADDIR(dir))) {
1490 dput(dentry);
1491 return ERR_PTR(-ENOENT);
1492 }
1493
1494 old = dir->i_op->lookup(dir, dentry, flags);
1495 if (unlikely(old)) {
1496 dput(dentry);
1497 dentry = old;
1498 }
1499 return dentry;
1500 }
1501
1502 static struct dentry *__lookup_hash(const struct qstr *name,
1503 struct dentry *base, unsigned int flags)
1504 {
1505 struct dentry *dentry = lookup_dcache(name, base, flags);
1506
1507 if (dentry)
1508 return dentry;
1509
1510 dentry = d_alloc(base, name);
1511 if (unlikely(!dentry))
1512 return ERR_PTR(-ENOMEM);
1513
1514 return lookup_real(base->d_inode, dentry, flags);
1515 }
1516
1517 static int lookup_fast(struct nameidata *nd,
1518 struct path *path, struct inode **inode,
1519 unsigned *seqp)
1520 {
1521 struct vfsmount *mnt = nd->path.mnt;
1522 struct dentry *dentry, *parent = nd->path.dentry;
1523 int status = 1;
1524 int err;
1525
1526 /*
1527 * Rename seqlock is not required here because in the off chance
1528 * of a false negative due to a concurrent rename, the caller is
1529 * going to fall back to non-racy lookup.
1530 */
1531 if (nd->flags & LOOKUP_RCU) {
1532 unsigned seq;
1533 bool negative;
1534 dentry = __d_lookup_rcu(parent, &nd->last, &seq);
1535 if (unlikely(!dentry)) {
1536 if (unlazy_walk(nd, NULL, 0))
1537 return -ECHILD;
1538 return 0;
1539 }
1540
1541 /*
1542 * This sequence count validates that the inode matches
1543 * the dentry name information from lookup.
1544 */
1545 *inode = d_backing_inode(dentry);
1546 negative = d_is_negative(dentry);
1547 if (unlikely(read_seqcount_retry(&dentry->d_seq, seq)))
1548 return -ECHILD;
1549
1550 /*
1551 * This sequence count validates that the parent had no
1552 * changes while we did the lookup of the dentry above.
1553 *
1554 * The memory barrier in read_seqcount_begin of child is
1555 * enough, we can use __read_seqcount_retry here.
1556 */
1557 if (unlikely(__read_seqcount_retry(&parent->d_seq, nd->seq)))
1558 return -ECHILD;
1559
1560 *seqp = seq;
1561 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE))
1562 status = d_revalidate(dentry, nd->flags);
1563 if (unlikely(status <= 0)) {
1564 if (unlazy_walk(nd, dentry, seq))
1565 return -ECHILD;
1566 if (status == -ECHILD)
1567 status = d_revalidate(dentry, nd->flags);
1568 } else {
1569 /*
1570 * Note: do negative dentry check after revalidation in
1571 * case that drops it.
1572 */
1573 if (unlikely(negative))
1574 return -ENOENT;
1575 path->mnt = mnt;
1576 path->dentry = dentry;
1577 if (likely(__follow_mount_rcu(nd, path, inode, seqp)))
1578 return 1;
1579 if (unlazy_walk(nd, dentry, seq))
1580 return -ECHILD;
1581 }
1582 } else {
1583 dentry = __d_lookup(parent, &nd->last);
1584 if (unlikely(!dentry))
1585 return 0;
1586 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE))
1587 status = d_revalidate(dentry, nd->flags);
1588 }
1589 if (unlikely(status <= 0)) {
1590 if (!status)
1591 d_invalidate(dentry);
1592 dput(dentry);
1593 return status;
1594 }
1595 if (unlikely(d_is_negative(dentry))) {
1596 dput(dentry);
1597 return -ENOENT;
1598 }
1599
1600 path->mnt = mnt;
1601 path->dentry = dentry;
1602 err = follow_managed(path, nd);
1603 if (likely(err > 0))
1604 *inode = d_backing_inode(path->dentry);
1605 return err;
1606 }
1607
1608 /* Fast lookup failed, do it the slow way */
1609 static struct dentry *lookup_slow(const struct qstr *name,
1610 struct dentry *dir,
1611 unsigned int flags)
1612 {
1613 struct dentry *dentry = ERR_PTR(-ENOENT), *old;
1614 struct inode *inode = dir->d_inode;
1615 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1616
1617 inode_lock_shared(inode);
1618 /* Don't go there if it's already dead */
1619 if (unlikely(IS_DEADDIR(inode)))
1620 goto out;
1621 again:
1622 dentry = d_alloc_parallel(dir, name, &wq);
1623 if (IS_ERR(dentry))
1624 goto out;
1625 if (unlikely(!d_in_lookup(dentry))) {
1626 if ((dentry->d_flags & DCACHE_OP_REVALIDATE) &&
1627 !(flags & LOOKUP_NO_REVAL)) {
1628 int error = d_revalidate(dentry, flags);
1629 if (unlikely(error <= 0)) {
1630 if (!error) {
1631 d_invalidate(dentry);
1632 dput(dentry);
1633 goto again;
1634 }
1635 dput(dentry);
1636 dentry = ERR_PTR(error);
1637 }
1638 }
1639 } else {
1640 old = inode->i_op->lookup(inode, dentry, flags);
1641 d_lookup_done(dentry);
1642 if (unlikely(old)) {
1643 dput(dentry);
1644 dentry = old;
1645 }
1646 }
1647 out:
1648 inode_unlock_shared(inode);
1649 return dentry;
1650 }
1651
1652 static inline int may_lookup(struct nameidata *nd)
1653 {
1654 if (nd->flags & LOOKUP_RCU) {
1655 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1656 if (err != -ECHILD)
1657 return err;
1658 if (unlazy_walk(nd, NULL, 0))
1659 return -ECHILD;
1660 }
1661 return inode_permission(nd->inode, MAY_EXEC);
1662 }
1663
1664 static inline int handle_dots(struct nameidata *nd, int type)
1665 {
1666 if (type == LAST_DOTDOT) {
1667 if (!nd->root.mnt)
1668 set_root(nd);
1669 if (nd->flags & LOOKUP_RCU) {
1670 return follow_dotdot_rcu(nd);
1671 } else
1672 return follow_dotdot(nd);
1673 }
1674 return 0;
1675 }
1676
1677 static int pick_link(struct nameidata *nd, struct path *link,
1678 struct inode *inode, unsigned seq)
1679 {
1680 int error;
1681 struct saved *last;
1682 if (unlikely(nd->total_link_count++ >= MAXSYMLINKS)) {
1683 path_to_nameidata(link, nd);
1684 return -ELOOP;
1685 }
1686 if (!(nd->flags & LOOKUP_RCU)) {
1687 if (link->mnt == nd->path.mnt)
1688 mntget(link->mnt);
1689 }
1690 error = nd_alloc_stack(nd);
1691 if (unlikely(error)) {
1692 if (error == -ECHILD) {
1693 if (unlikely(unlazy_link(nd, link, seq)))
1694 return -ECHILD;
1695 error = nd_alloc_stack(nd);
1696 }
1697 if (error) {
1698 path_put(link);
1699 return error;
1700 }
1701 }
1702
1703 last = nd->stack + nd->depth++;
1704 last->link = *link;
1705 clear_delayed_call(&last->done);
1706 nd->link_inode = inode;
1707 last->seq = seq;
1708 return 1;
1709 }
1710
1711 /*
1712 * Do we need to follow links? We _really_ want to be able
1713 * to do this check without having to look at inode->i_op,
1714 * so we keep a cache of "no, this doesn't need follow_link"
1715 * for the common case.
1716 */
1717 static inline int should_follow_link(struct nameidata *nd, struct path *link,
1718 int follow,
1719 struct inode *inode, unsigned seq)
1720 {
1721 if (likely(!d_is_symlink(link->dentry)))
1722 return 0;
1723 if (!follow)
1724 return 0;
1725 /* make sure that d_is_symlink above matches inode */
1726 if (nd->flags & LOOKUP_RCU) {
1727 if (read_seqcount_retry(&link->dentry->d_seq, seq))
1728 return -ECHILD;
1729 }
1730 return pick_link(nd, link, inode, seq);
1731 }
1732
1733 enum {WALK_GET = 1, WALK_PUT = 2};
1734
1735 static int walk_component(struct nameidata *nd, int flags)
1736 {
1737 struct path path;
1738 struct inode *inode;
1739 unsigned seq;
1740 int err;
1741 /*
1742 * "." and ".." are special - ".." especially so because it has
1743 * to be able to know about the current root directory and
1744 * parent relationships.
1745 */
1746 if (unlikely(nd->last_type != LAST_NORM)) {
1747 err = handle_dots(nd, nd->last_type);
1748 if (flags & WALK_PUT)
1749 put_link(nd);
1750 return err;
1751 }
1752 err = lookup_fast(nd, &path, &inode, &seq);
1753 if (unlikely(err <= 0)) {
1754 if (err < 0)
1755 return err;
1756 path.dentry = lookup_slow(&nd->last, nd->path.dentry,
1757 nd->flags);
1758 if (IS_ERR(path.dentry))
1759 return PTR_ERR(path.dentry);
1760
1761 path.mnt = nd->path.mnt;
1762 err = follow_managed(&path, nd);
1763 if (unlikely(err < 0))
1764 return err;
1765
1766 if (unlikely(d_is_negative(path.dentry))) {
1767 path_to_nameidata(&path, nd);
1768 return -ENOENT;
1769 }
1770
1771 seq = 0; /* we are already out of RCU mode */
1772 inode = d_backing_inode(path.dentry);
1773 }
1774
1775 if (flags & WALK_PUT)
1776 put_link(nd);
1777 err = should_follow_link(nd, &path, flags & WALK_GET, inode, seq);
1778 if (unlikely(err))
1779 return err;
1780 path_to_nameidata(&path, nd);
1781 nd->inode = inode;
1782 nd->seq = seq;
1783 return 0;
1784 }
1785
1786 /*
1787 * We can do the critical dentry name comparison and hashing
1788 * operations one word at a time, but we are limited to:
1789 *
1790 * - Architectures with fast unaligned word accesses. We could
1791 * do a "get_unaligned()" if this helps and is sufficiently
1792 * fast.
1793 *
1794 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1795 * do not trap on the (extremely unlikely) case of a page
1796 * crossing operation.
1797 *
1798 * - Furthermore, we need an efficient 64-bit compile for the
1799 * 64-bit case in order to generate the "number of bytes in
1800 * the final mask". Again, that could be replaced with a
1801 * efficient population count instruction or similar.
1802 */
1803 #ifdef CONFIG_DCACHE_WORD_ACCESS
1804
1805 #include <asm/word-at-a-time.h>
1806
1807 #ifdef HASH_MIX
1808
1809 /* Architecture provides HASH_MIX and fold_hash() in <asm/hash.h> */
1810
1811 #elif defined(CONFIG_64BIT)
1812 /*
1813 * Register pressure in the mixing function is an issue, particularly
1814 * on 32-bit x86, but almost any function requires one state value and
1815 * one temporary. Instead, use a function designed for two state values
1816 * and no temporaries.
1817 *
1818 * This function cannot create a collision in only two iterations, so
1819 * we have two iterations to achieve avalanche. In those two iterations,
1820 * we have six layers of mixing, which is enough to spread one bit's
1821 * influence out to 2^6 = 64 state bits.
1822 *
1823 * Rotate constants are scored by considering either 64 one-bit input
1824 * deltas or 64*63/2 = 2016 two-bit input deltas, and finding the
1825 * probability of that delta causing a change to each of the 128 output
1826 * bits, using a sample of random initial states.
1827 *
1828 * The Shannon entropy of the computed probabilities is then summed
1829 * to produce a score. Ideally, any input change has a 50% chance of
1830 * toggling any given output bit.
1831 *
1832 * Mixing scores (in bits) for (12,45):
1833 * Input delta: 1-bit 2-bit
1834 * 1 round: 713.3 42542.6
1835 * 2 rounds: 2753.7 140389.8
1836 * 3 rounds: 5954.1 233458.2
1837 * 4 rounds: 7862.6 256672.2
1838 * Perfect: 8192 258048
1839 * (64*128) (64*63/2 * 128)
1840 */
1841 #define HASH_MIX(x, y, a) \
1842 ( x ^= (a), \
1843 y ^= x, x = rol64(x,12),\
1844 x += y, y = rol64(y,45),\
1845 y *= 9 )
1846
1847 /*
1848 * Fold two longs into one 32-bit hash value. This must be fast, but
1849 * latency isn't quite as critical, as there is a fair bit of additional
1850 * work done before the hash value is used.
1851 */
1852 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
1853 {
1854 y ^= x * GOLDEN_RATIO_64;
1855 y *= GOLDEN_RATIO_64;
1856 return y >> 32;
1857 }
1858
1859 #else /* 32-bit case */
1860
1861 /*
1862 * Mixing scores (in bits) for (7,20):
1863 * Input delta: 1-bit 2-bit
1864 * 1 round: 330.3 9201.6
1865 * 2 rounds: 1246.4 25475.4
1866 * 3 rounds: 1907.1 31295.1
1867 * 4 rounds: 2042.3 31718.6
1868 * Perfect: 2048 31744
1869 * (32*64) (32*31/2 * 64)
1870 */
1871 #define HASH_MIX(x, y, a) \
1872 ( x ^= (a), \
1873 y ^= x, x = rol32(x, 7),\
1874 x += y, y = rol32(y,20),\
1875 y *= 9 )
1876
1877 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
1878 {
1879 /* Use arch-optimized multiply if one exists */
1880 return __hash_32(y ^ __hash_32(x));
1881 }
1882
1883 #endif
1884
1885 /*
1886 * Return the hash of a string of known length. This is carfully
1887 * designed to match hash_name(), which is the more critical function.
1888 * In particular, we must end by hashing a final word containing 0..7
1889 * payload bytes, to match the way that hash_name() iterates until it
1890 * finds the delimiter after the name.
1891 */
1892 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
1893 {
1894 unsigned long a, x = 0, y = (unsigned long)salt;
1895
1896 for (;;) {
1897 if (!len)
1898 goto done;
1899 a = load_unaligned_zeropad(name);
1900 if (len < sizeof(unsigned long))
1901 break;
1902 HASH_MIX(x, y, a);
1903 name += sizeof(unsigned long);
1904 len -= sizeof(unsigned long);
1905 }
1906 x ^= a & bytemask_from_count(len);
1907 done:
1908 return fold_hash(x, y);
1909 }
1910 EXPORT_SYMBOL(full_name_hash);
1911
1912 /* Return the "hash_len" (hash and length) of a null-terminated string */
1913 u64 hashlen_string(const void *salt, const char *name)
1914 {
1915 unsigned long a = 0, x = 0, y = (unsigned long)salt;
1916 unsigned long adata, mask, len;
1917 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1918
1919 len = 0;
1920 goto inside;
1921
1922 do {
1923 HASH_MIX(x, y, a);
1924 len += sizeof(unsigned long);
1925 inside:
1926 a = load_unaligned_zeropad(name+len);
1927 } while (!has_zero(a, &adata, &constants));
1928
1929 adata = prep_zero_mask(a, adata, &constants);
1930 mask = create_zero_mask(adata);
1931 x ^= a & zero_bytemask(mask);
1932
1933 return hashlen_create(fold_hash(x, y), len + find_zero(mask));
1934 }
1935 EXPORT_SYMBOL(hashlen_string);
1936
1937 /*
1938 * Calculate the length and hash of the path component, and
1939 * return the "hash_len" as the result.
1940 */
1941 static inline u64 hash_name(const void *salt, const char *name)
1942 {
1943 unsigned long a = 0, b, x = 0, y = (unsigned long)salt;
1944 unsigned long adata, bdata, mask, len;
1945 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1946
1947 len = 0;
1948 goto inside;
1949
1950 do {
1951 HASH_MIX(x, y, a);
1952 len += sizeof(unsigned long);
1953 inside:
1954 a = load_unaligned_zeropad(name+len);
1955 b = a ^ REPEAT_BYTE('/');
1956 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
1957
1958 adata = prep_zero_mask(a, adata, &constants);
1959 bdata = prep_zero_mask(b, bdata, &constants);
1960 mask = create_zero_mask(adata | bdata);
1961 x ^= a & zero_bytemask(mask);
1962
1963 return hashlen_create(fold_hash(x, y), len + find_zero(mask));
1964 }
1965
1966 #else /* !CONFIG_DCACHE_WORD_ACCESS: Slow, byte-at-a-time version */
1967
1968 /* Return the hash of a string of known length */
1969 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
1970 {
1971 unsigned long hash = init_name_hash(salt);
1972 while (len--)
1973 hash = partial_name_hash((unsigned char)*name++, hash);
1974 return end_name_hash(hash);
1975 }
1976 EXPORT_SYMBOL(full_name_hash);
1977
1978 /* Return the "hash_len" (hash and length) of a null-terminated string */
1979 u64 hashlen_string(const void *salt, const char *name)
1980 {
1981 unsigned long hash = init_name_hash(salt);
1982 unsigned long len = 0, c;
1983
1984 c = (unsigned char)*name;
1985 while (c) {
1986 len++;
1987 hash = partial_name_hash(c, hash);
1988 c = (unsigned char)name[len];
1989 }
1990 return hashlen_create(end_name_hash(hash), len);
1991 }
1992 EXPORT_SYMBOL(hashlen_string);
1993
1994 /*
1995 * We know there's a real path component here of at least
1996 * one character.
1997 */
1998 static inline u64 hash_name(const void *salt, const char *name)
1999 {
2000 unsigned long hash = init_name_hash(salt);
2001 unsigned long len = 0, c;
2002
2003 c = (unsigned char)*name;
2004 do {
2005 len++;
2006 hash = partial_name_hash(c, hash);
2007 c = (unsigned char)name[len];
2008 } while (c && c != '/');
2009 return hashlen_create(end_name_hash(hash), len);
2010 }
2011
2012 #endif
2013
2014 /*
2015 * Name resolution.
2016 * This is the basic name resolution function, turning a pathname into
2017 * the final dentry. We expect 'base' to be positive and a directory.
2018 *
2019 * Returns 0 and nd will have valid dentry and mnt on success.
2020 * Returns error and drops reference to input namei data on failure.
2021 */
2022 static int link_path_walk(const char *name, struct nameidata *nd)
2023 {
2024 int err;
2025
2026 while (*name=='/')
2027 name++;
2028 if (!*name)
2029 return 0;
2030
2031 /* At this point we know we have a real path component. */
2032 for(;;) {
2033 u64 hash_len;
2034 int type;
2035
2036 err = may_lookup(nd);
2037 if (err)
2038 return err;
2039
2040 hash_len = hash_name(nd->path.dentry, name);
2041
2042 type = LAST_NORM;
2043 if (name[0] == '.') switch (hashlen_len(hash_len)) {
2044 case 2:
2045 if (name[1] == '.') {
2046 type = LAST_DOTDOT;
2047 nd->flags |= LOOKUP_JUMPED;
2048 }
2049 break;
2050 case 1:
2051 type = LAST_DOT;
2052 }
2053 if (likely(type == LAST_NORM)) {
2054 struct dentry *parent = nd->path.dentry;
2055 nd->flags &= ~LOOKUP_JUMPED;
2056 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
2057 struct qstr this = { { .hash_len = hash_len }, .name = name };
2058 err = parent->d_op->d_hash(parent, &this);
2059 if (err < 0)
2060 return err;
2061 hash_len = this.hash_len;
2062 name = this.name;
2063 }
2064 }
2065
2066 nd->last.hash_len = hash_len;
2067 nd->last.name = name;
2068 nd->last_type = type;
2069
2070 name += hashlen_len(hash_len);
2071 if (!*name)
2072 goto OK;
2073 /*
2074 * If it wasn't NUL, we know it was '/'. Skip that
2075 * slash, and continue until no more slashes.
2076 */
2077 do {
2078 name++;
2079 } while (unlikely(*name == '/'));
2080 if (unlikely(!*name)) {
2081 OK:
2082 /* pathname body, done */
2083 if (!nd->depth)
2084 return 0;
2085 name = nd->stack[nd->depth - 1].name;
2086 /* trailing symlink, done */
2087 if (!name)
2088 return 0;
2089 /* last component of nested symlink */
2090 err = walk_component(nd, WALK_GET | WALK_PUT);
2091 } else {
2092 err = walk_component(nd, WALK_GET);
2093 }
2094 if (err < 0)
2095 return err;
2096
2097 if (err) {
2098 const char *s = get_link(nd);
2099
2100 if (IS_ERR(s))
2101 return PTR_ERR(s);
2102 err = 0;
2103 if (unlikely(!s)) {
2104 /* jumped */
2105 put_link(nd);
2106 } else {
2107 nd->stack[nd->depth - 1].name = name;
2108 name = s;
2109 continue;
2110 }
2111 }
2112 if (unlikely(!d_can_lookup(nd->path.dentry))) {
2113 if (nd->flags & LOOKUP_RCU) {
2114 if (unlazy_walk(nd, NULL, 0))
2115 return -ECHILD;
2116 }
2117 return -ENOTDIR;
2118 }
2119 }
2120 }
2121
2122 static const char *path_init(struct nameidata *nd, unsigned flags)
2123 {
2124 int retval = 0;
2125 const char *s = nd->name->name;
2126
2127 nd->last_type = LAST_ROOT; /* if there are only slashes... */
2128 nd->flags = flags | LOOKUP_JUMPED | LOOKUP_PARENT;
2129 nd->depth = 0;
2130 if (flags & LOOKUP_ROOT) {
2131 struct dentry *root = nd->root.dentry;
2132 struct inode *inode = root->d_inode;
2133 if (*s) {
2134 if (!d_can_lookup(root))
2135 return ERR_PTR(-ENOTDIR);
2136 retval = inode_permission(inode, MAY_EXEC);
2137 if (retval)
2138 return ERR_PTR(retval);
2139 }
2140 nd->path = nd->root;
2141 nd->inode = inode;
2142 if (flags & LOOKUP_RCU) {
2143 rcu_read_lock();
2144 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2145 nd->root_seq = nd->seq;
2146 nd->m_seq = read_seqbegin(&mount_lock);
2147 } else {
2148 path_get(&nd->path);
2149 }
2150 return s;
2151 }
2152
2153 nd->root.mnt = NULL;
2154 nd->path.mnt = NULL;
2155 nd->path.dentry = NULL;
2156
2157 nd->m_seq = read_seqbegin(&mount_lock);
2158 if (*s == '/') {
2159 if (flags & LOOKUP_RCU)
2160 rcu_read_lock();
2161 set_root(nd);
2162 if (likely(!nd_jump_root(nd)))
2163 return s;
2164 nd->root.mnt = NULL;
2165 rcu_read_unlock();
2166 return ERR_PTR(-ECHILD);
2167 } else if (nd->dfd == AT_FDCWD) {
2168 if (flags & LOOKUP_RCU) {
2169 struct fs_struct *fs = current->fs;
2170 unsigned seq;
2171
2172 rcu_read_lock();
2173
2174 do {
2175 seq = read_seqcount_begin(&fs->seq);
2176 nd->path = fs->pwd;
2177 nd->inode = nd->path.dentry->d_inode;
2178 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2179 } while (read_seqcount_retry(&fs->seq, seq));
2180 } else {
2181 get_fs_pwd(current->fs, &nd->path);
2182 nd->inode = nd->path.dentry->d_inode;
2183 }
2184 return s;
2185 } else {
2186 /* Caller must check execute permissions on the starting path component */
2187 struct fd f = fdget_raw(nd->dfd);
2188 struct dentry *dentry;
2189
2190 if (!f.file)
2191 return ERR_PTR(-EBADF);
2192
2193 dentry = f.file->f_path.dentry;
2194
2195 if (*s) {
2196 if (!d_can_lookup(dentry)) {
2197 fdput(f);
2198 return ERR_PTR(-ENOTDIR);
2199 }
2200 }
2201
2202 nd->path = f.file->f_path;
2203 if (flags & LOOKUP_RCU) {
2204 rcu_read_lock();
2205 nd->inode = nd->path.dentry->d_inode;
2206 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2207 } else {
2208 path_get(&nd->path);
2209 nd->inode = nd->path.dentry->d_inode;
2210 }
2211 fdput(f);
2212 return s;
2213 }
2214 }
2215
2216 static const char *trailing_symlink(struct nameidata *nd)
2217 {
2218 const char *s;
2219 int error = may_follow_link(nd);
2220 if (unlikely(error))
2221 return ERR_PTR(error);
2222 nd->flags |= LOOKUP_PARENT;
2223 nd->stack[0].name = NULL;
2224 s = get_link(nd);
2225 return s ? s : "";
2226 }
2227
2228 static inline int lookup_last(struct nameidata *nd)
2229 {
2230 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
2231 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2232
2233 nd->flags &= ~LOOKUP_PARENT;
2234 return walk_component(nd,
2235 nd->flags & LOOKUP_FOLLOW
2236 ? nd->depth
2237 ? WALK_PUT | WALK_GET
2238 : WALK_GET
2239 : 0);
2240 }
2241
2242 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2243 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path)
2244 {
2245 const char *s = path_init(nd, flags);
2246 int err;
2247
2248 if (IS_ERR(s))
2249 return PTR_ERR(s);
2250 while (!(err = link_path_walk(s, nd))
2251 && ((err = lookup_last(nd)) > 0)) {
2252 s = trailing_symlink(nd);
2253 if (IS_ERR(s)) {
2254 err = PTR_ERR(s);
2255 break;
2256 }
2257 }
2258 if (!err)
2259 err = complete_walk(nd);
2260
2261 if (!err && nd->flags & LOOKUP_DIRECTORY)
2262 if (!d_can_lookup(nd->path.dentry))
2263 err = -ENOTDIR;
2264 if (!err) {
2265 *path = nd->path;
2266 nd->path.mnt = NULL;
2267 nd->path.dentry = NULL;
2268 }
2269 terminate_walk(nd);
2270 return err;
2271 }
2272
2273 static int filename_lookup(int dfd, struct filename *name, unsigned flags,
2274 struct path *path, struct path *root)
2275 {
2276 int retval;
2277 struct nameidata nd;
2278 if (IS_ERR(name))
2279 return PTR_ERR(name);
2280 if (unlikely(root)) {
2281 nd.root = *root;
2282 flags |= LOOKUP_ROOT;
2283 }
2284 set_nameidata(&nd, dfd, name);
2285 retval = path_lookupat(&nd, flags | LOOKUP_RCU, path);
2286 if (unlikely(retval == -ECHILD))
2287 retval = path_lookupat(&nd, flags, path);
2288 if (unlikely(retval == -ESTALE))
2289 retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path);
2290
2291 if (likely(!retval))
2292 audit_inode(name, path->dentry, flags & LOOKUP_PARENT);
2293 restore_nameidata();
2294 putname(name);
2295 return retval;
2296 }
2297
2298 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2299 static int path_parentat(struct nameidata *nd, unsigned flags,
2300 struct path *parent)
2301 {
2302 const char *s = path_init(nd, flags);
2303 int err;
2304 if (IS_ERR(s))
2305 return PTR_ERR(s);
2306 err = link_path_walk(s, nd);
2307 if (!err)
2308 err = complete_walk(nd);
2309 if (!err) {
2310 *parent = nd->path;
2311 nd->path.mnt = NULL;
2312 nd->path.dentry = NULL;
2313 }
2314 terminate_walk(nd);
2315 return err;
2316 }
2317
2318 static struct filename *filename_parentat(int dfd, struct filename *name,
2319 unsigned int flags, struct path *parent,
2320 struct qstr *last, int *type)
2321 {
2322 int retval;
2323 struct nameidata nd;
2324
2325 if (IS_ERR(name))
2326 return name;
2327 set_nameidata(&nd, dfd, name);
2328 retval = path_parentat(&nd, flags | LOOKUP_RCU, parent);
2329 if (unlikely(retval == -ECHILD))
2330 retval = path_parentat(&nd, flags, parent);
2331 if (unlikely(retval == -ESTALE))
2332 retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent);
2333 if (likely(!retval)) {
2334 *last = nd.last;
2335 *type = nd.last_type;
2336 audit_inode(name, parent->dentry, LOOKUP_PARENT);
2337 } else {
2338 putname(name);
2339 name = ERR_PTR(retval);
2340 }
2341 restore_nameidata();
2342 return name;
2343 }
2344
2345 /* does lookup, returns the object with parent locked */
2346 struct dentry *kern_path_locked(const char *name, struct path *path)
2347 {
2348 struct filename *filename;
2349 struct dentry *d;
2350 struct qstr last;
2351 int type;
2352
2353 filename = filename_parentat(AT_FDCWD, getname_kernel(name), 0, path,
2354 &last, &type);
2355 if (IS_ERR(filename))
2356 return ERR_CAST(filename);
2357 if (unlikely(type != LAST_NORM)) {
2358 path_put(path);
2359 putname(filename);
2360 return ERR_PTR(-EINVAL);
2361 }
2362 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
2363 d = __lookup_hash(&last, path->dentry, 0);
2364 if (IS_ERR(d)) {
2365 inode_unlock(path->dentry->d_inode);
2366 path_put(path);
2367 }
2368 putname(filename);
2369 return d;
2370 }
2371
2372 int kern_path(const char *name, unsigned int flags, struct path *path)
2373 {
2374 return filename_lookup(AT_FDCWD, getname_kernel(name),
2375 flags, path, NULL);
2376 }
2377 EXPORT_SYMBOL(kern_path);
2378
2379 /**
2380 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2381 * @dentry: pointer to dentry of the base directory
2382 * @mnt: pointer to vfs mount of the base directory
2383 * @name: pointer to file name
2384 * @flags: lookup flags
2385 * @path: pointer to struct path to fill
2386 */
2387 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2388 const char *name, unsigned int flags,
2389 struct path *path)
2390 {
2391 struct path root = {.mnt = mnt, .dentry = dentry};
2392 /* the first argument of filename_lookup() is ignored with root */
2393 return filename_lookup(AT_FDCWD, getname_kernel(name),
2394 flags , path, &root);
2395 }
2396 EXPORT_SYMBOL(vfs_path_lookup);
2397
2398 /**
2399 * lookup_one_len - filesystem helper to lookup single pathname component
2400 * @name: pathname component to lookup
2401 * @base: base directory to lookup from
2402 * @len: maximum length @len should be interpreted to
2403 *
2404 * Note that this routine is purely a helper for filesystem usage and should
2405 * not be called by generic code.
2406 *
2407 * The caller must hold base->i_mutex.
2408 */
2409 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2410 {
2411 struct qstr this;
2412 unsigned int c;
2413 int err;
2414
2415 WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2416
2417 this.name = name;
2418 this.len = len;
2419 this.hash = full_name_hash(base, name, len);
2420 if (!len)
2421 return ERR_PTR(-EACCES);
2422
2423 if (unlikely(name[0] == '.')) {
2424 if (len < 2 || (len == 2 && name[1] == '.'))
2425 return ERR_PTR(-EACCES);
2426 }
2427
2428 while (len--) {
2429 c = *(const unsigned char *)name++;
2430 if (c == '/' || c == '\0')
2431 return ERR_PTR(-EACCES);
2432 }
2433 /*
2434 * See if the low-level filesystem might want
2435 * to use its own hash..
2436 */
2437 if (base->d_flags & DCACHE_OP_HASH) {
2438 int err = base->d_op->d_hash(base, &this);
2439 if (err < 0)
2440 return ERR_PTR(err);
2441 }
2442
2443 err = inode_permission(base->d_inode, MAY_EXEC);
2444 if (err)
2445 return ERR_PTR(err);
2446
2447 return __lookup_hash(&this, base, 0);
2448 }
2449 EXPORT_SYMBOL(lookup_one_len);
2450
2451 /**
2452 * lookup_one_len_unlocked - filesystem helper to lookup single pathname component
2453 * @name: pathname component to lookup
2454 * @base: base directory to lookup from
2455 * @len: maximum length @len should be interpreted to
2456 *
2457 * Note that this routine is purely a helper for filesystem usage and should
2458 * not be called by generic code.
2459 *
2460 * Unlike lookup_one_len, it should be called without the parent
2461 * i_mutex held, and will take the i_mutex itself if necessary.
2462 */
2463 struct dentry *lookup_one_len_unlocked(const char *name,
2464 struct dentry *base, int len)
2465 {
2466 struct qstr this;
2467 unsigned int c;
2468 int err;
2469 struct dentry *ret;
2470
2471 this.name = name;
2472 this.len = len;
2473 this.hash = full_name_hash(base, name, len);
2474 if (!len)
2475 return ERR_PTR(-EACCES);
2476
2477 if (unlikely(name[0] == '.')) {
2478 if (len < 2 || (len == 2 && name[1] == '.'))
2479 return ERR_PTR(-EACCES);
2480 }
2481
2482 while (len--) {
2483 c = *(const unsigned char *)name++;
2484 if (c == '/' || c == '\0')
2485 return ERR_PTR(-EACCES);
2486 }
2487 /*
2488 * See if the low-level filesystem might want
2489 * to use its own hash..
2490 */
2491 if (base->d_flags & DCACHE_OP_HASH) {
2492 int err = base->d_op->d_hash(base, &this);
2493 if (err < 0)
2494 return ERR_PTR(err);
2495 }
2496
2497 err = inode_permission(base->d_inode, MAY_EXEC);
2498 if (err)
2499 return ERR_PTR(err);
2500
2501 ret = lookup_dcache(&this, base, 0);
2502 if (!ret)
2503 ret = lookup_slow(&this, base, 0);
2504 return ret;
2505 }
2506 EXPORT_SYMBOL(lookup_one_len_unlocked);
2507
2508 #ifdef CONFIG_UNIX98_PTYS
2509 int path_pts(struct path *path)
2510 {
2511 /* Find something mounted on "pts" in the same directory as
2512 * the input path.
2513 */
2514 struct dentry *child, *parent;
2515 struct qstr this;
2516 int ret;
2517
2518 ret = path_parent_directory(path);
2519 if (ret)
2520 return ret;
2521
2522 parent = path->dentry;
2523 this.name = "pts";
2524 this.len = 3;
2525 child = d_hash_and_lookup(parent, &this);
2526 if (!child)
2527 return -ENOENT;
2528
2529 path->dentry = child;
2530 dput(parent);
2531 follow_mount(path);
2532 return 0;
2533 }
2534 #endif
2535
2536 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2537 struct path *path, int *empty)
2538 {
2539 return filename_lookup(dfd, getname_flags(name, flags, empty),
2540 flags, path, NULL);
2541 }
2542 EXPORT_SYMBOL(user_path_at_empty);
2543
2544 /*
2545 * NB: most callers don't do anything directly with the reference to the
2546 * to struct filename, but the nd->last pointer points into the name string
2547 * allocated by getname. So we must hold the reference to it until all
2548 * path-walking is complete.
2549 */
2550 static inline struct filename *
2551 user_path_parent(int dfd, const char __user *path,
2552 struct path *parent,
2553 struct qstr *last,
2554 int *type,
2555 unsigned int flags)
2556 {
2557 /* only LOOKUP_REVAL is allowed in extra flags */
2558 return filename_parentat(dfd, getname(path), flags & LOOKUP_REVAL,
2559 parent, last, type);
2560 }
2561
2562 /**
2563 * mountpoint_last - look up last component for umount
2564 * @nd: pathwalk nameidata - currently pointing at parent directory of "last"
2565 * @path: pointer to container for result
2566 *
2567 * This is a special lookup_last function just for umount. In this case, we
2568 * need to resolve the path without doing any revalidation.
2569 *
2570 * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since
2571 * mountpoints are always pinned in the dcache, their ancestors are too. Thus,
2572 * in almost all cases, this lookup will be served out of the dcache. The only
2573 * cases where it won't are if nd->last refers to a symlink or the path is
2574 * bogus and it doesn't exist.
2575 *
2576 * Returns:
2577 * -error: if there was an error during lookup. This includes -ENOENT if the
2578 * lookup found a negative dentry. The nd->path reference will also be
2579 * put in this case.
2580 *
2581 * 0: if we successfully resolved nd->path and found it to not to be a
2582 * symlink that needs to be followed. "path" will also be populated.
2583 * The nd->path reference will also be put.
2584 *
2585 * 1: if we successfully resolved nd->last and found it to be a symlink
2586 * that needs to be followed. "path" will be populated with the path
2587 * to the link, and nd->path will *not* be put.
2588 */
2589 static int
2590 mountpoint_last(struct nameidata *nd, struct path *path)
2591 {
2592 int error = 0;
2593 struct dentry *dentry;
2594 struct dentry *dir = nd->path.dentry;
2595
2596 /* If we're in rcuwalk, drop out of it to handle last component */
2597 if (nd->flags & LOOKUP_RCU) {
2598 if (unlazy_walk(nd, NULL, 0))
2599 return -ECHILD;
2600 }
2601
2602 nd->flags &= ~LOOKUP_PARENT;
2603
2604 if (unlikely(nd->last_type != LAST_NORM)) {
2605 error = handle_dots(nd, nd->last_type);
2606 if (error)
2607 return error;
2608 dentry = dget(nd->path.dentry);
2609 } else {
2610 dentry = d_lookup(dir, &nd->last);
2611 if (!dentry) {
2612 /*
2613 * No cached dentry. Mounted dentries are pinned in the
2614 * cache, so that means that this dentry is probably
2615 * a symlink or the path doesn't actually point
2616 * to a mounted dentry.
2617 */
2618 dentry = lookup_slow(&nd->last, dir,
2619 nd->flags | LOOKUP_NO_REVAL);
2620 if (IS_ERR(dentry))
2621 return PTR_ERR(dentry);
2622 }
2623 }
2624 if (d_is_negative(dentry)) {
2625 dput(dentry);
2626 return -ENOENT;
2627 }
2628 if (nd->depth)
2629 put_link(nd);
2630 path->dentry = dentry;
2631 path->mnt = nd->path.mnt;
2632 error = should_follow_link(nd, path, nd->flags & LOOKUP_FOLLOW,
2633 d_backing_inode(dentry), 0);
2634 if (unlikely(error))
2635 return error;
2636 mntget(path->mnt);
2637 follow_mount(path);
2638 return 0;
2639 }
2640
2641 /**
2642 * path_mountpoint - look up a path to be umounted
2643 * @nd: lookup context
2644 * @flags: lookup flags
2645 * @path: pointer to container for result
2646 *
2647 * Look up the given name, but don't attempt to revalidate the last component.
2648 * Returns 0 and "path" will be valid on success; Returns error otherwise.
2649 */
2650 static int
2651 path_mountpoint(struct nameidata *nd, unsigned flags, struct path *path)
2652 {
2653 const char *s = path_init(nd, flags);
2654 int err;
2655 if (IS_ERR(s))
2656 return PTR_ERR(s);
2657 while (!(err = link_path_walk(s, nd)) &&
2658 (err = mountpoint_last(nd, path)) > 0) {
2659 s = trailing_symlink(nd);
2660 if (IS_ERR(s)) {
2661 err = PTR_ERR(s);
2662 break;
2663 }
2664 }
2665 terminate_walk(nd);
2666 return err;
2667 }
2668
2669 static int
2670 filename_mountpoint(int dfd, struct filename *name, struct path *path,
2671 unsigned int flags)
2672 {
2673 struct nameidata nd;
2674 int error;
2675 if (IS_ERR(name))
2676 return PTR_ERR(name);
2677 set_nameidata(&nd, dfd, name);
2678 error = path_mountpoint(&nd, flags | LOOKUP_RCU, path);
2679 if (unlikely(error == -ECHILD))
2680 error = path_mountpoint(&nd, flags, path);
2681 if (unlikely(error == -ESTALE))
2682 error = path_mountpoint(&nd, flags | LOOKUP_REVAL, path);
2683 if (likely(!error))
2684 audit_inode(name, path->dentry, 0);
2685 restore_nameidata();
2686 putname(name);
2687 return error;
2688 }
2689
2690 /**
2691 * user_path_mountpoint_at - lookup a path from userland in order to umount it
2692 * @dfd: directory file descriptor
2693 * @name: pathname from userland
2694 * @flags: lookup flags
2695 * @path: pointer to container to hold result
2696 *
2697 * A umount is a special case for path walking. We're not actually interested
2698 * in the inode in this situation, and ESTALE errors can be a problem. We
2699 * simply want track down the dentry and vfsmount attached at the mountpoint
2700 * and avoid revalidating the last component.
2701 *
2702 * Returns 0 and populates "path" on success.
2703 */
2704 int
2705 user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags,
2706 struct path *path)
2707 {
2708 return filename_mountpoint(dfd, getname(name), path, flags);
2709 }
2710
2711 int
2712 kern_path_mountpoint(int dfd, const char *name, struct path *path,
2713 unsigned int flags)
2714 {
2715 return filename_mountpoint(dfd, getname_kernel(name), path, flags);
2716 }
2717 EXPORT_SYMBOL(kern_path_mountpoint);
2718
2719 int __check_sticky(struct inode *dir, struct inode *inode)
2720 {
2721 kuid_t fsuid = current_fsuid();
2722
2723 if (uid_eq(inode->i_uid, fsuid))
2724 return 0;
2725 if (uid_eq(dir->i_uid, fsuid))
2726 return 0;
2727 return !capable_wrt_inode_uidgid(inode, CAP_FOWNER);
2728 }
2729 EXPORT_SYMBOL(__check_sticky);
2730
2731 /*
2732 * Check whether we can remove a link victim from directory dir, check
2733 * whether the type of victim is right.
2734 * 1. We can't do it if dir is read-only (done in permission())
2735 * 2. We should have write and exec permissions on dir
2736 * 3. We can't remove anything from append-only dir
2737 * 4. We can't do anything with immutable dir (done in permission())
2738 * 5. If the sticky bit on dir is set we should either
2739 * a. be owner of dir, or
2740 * b. be owner of victim, or
2741 * c. have CAP_FOWNER capability
2742 * 6. If the victim is append-only or immutable we can't do antyhing with
2743 * links pointing to it.
2744 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2745 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2746 * 9. We can't remove a root or mountpoint.
2747 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
2748 * nfs_async_unlink().
2749 */
2750 static int may_delete(struct inode *dir, struct dentry *victim, bool isdir)
2751 {
2752 struct inode *inode = d_backing_inode(victim);
2753 int error;
2754
2755 if (d_is_negative(victim))
2756 return -ENOENT;
2757 BUG_ON(!inode);
2758
2759 BUG_ON(victim->d_parent->d_inode != dir);
2760 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2761
2762 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2763 if (error)
2764 return error;
2765 if (IS_APPEND(dir))
2766 return -EPERM;
2767
2768 if (check_sticky(dir, inode) || IS_APPEND(inode) ||
2769 IS_IMMUTABLE(inode) || IS_SWAPFILE(inode))
2770 return -EPERM;
2771 if (isdir) {
2772 if (!d_is_dir(victim))
2773 return -ENOTDIR;
2774 if (IS_ROOT(victim))
2775 return -EBUSY;
2776 } else if (d_is_dir(victim))
2777 return -EISDIR;
2778 if (IS_DEADDIR(dir))
2779 return -ENOENT;
2780 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2781 return -EBUSY;
2782 return 0;
2783 }
2784
2785 /* Check whether we can create an object with dentry child in directory
2786 * dir.
2787 * 1. We can't do it if child already exists (open has special treatment for
2788 * this case, but since we are inlined it's OK)
2789 * 2. We can't do it if dir is read-only (done in permission())
2790 * 3. We should have write and exec permissions on dir
2791 * 4. We can't do it if dir is immutable (done in permission())
2792 */
2793 static inline int may_create(struct inode *dir, struct dentry *child)
2794 {
2795 audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
2796 if (child->d_inode)
2797 return -EEXIST;
2798 if (IS_DEADDIR(dir))
2799 return -ENOENT;
2800 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2801 }
2802
2803 /*
2804 * p1 and p2 should be directories on the same fs.
2805 */
2806 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2807 {
2808 struct dentry *p;
2809
2810 if (p1 == p2) {
2811 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2812 return NULL;
2813 }
2814
2815 mutex_lock(&p1->d_sb->s_vfs_rename_mutex);
2816
2817 p = d_ancestor(p2, p1);
2818 if (p) {
2819 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
2820 inode_lock_nested(p1->d_inode, I_MUTEX_CHILD);
2821 return p;
2822 }
2823
2824 p = d_ancestor(p1, p2);
2825 if (p) {
2826 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2827 inode_lock_nested(p2->d_inode, I_MUTEX_CHILD);
2828 return p;
2829 }
2830
2831 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2832 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2);
2833 return NULL;
2834 }
2835 EXPORT_SYMBOL(lock_rename);
2836
2837 void unlock_rename(struct dentry *p1, struct dentry *p2)
2838 {
2839 inode_unlock(p1->d_inode);
2840 if (p1 != p2) {
2841 inode_unlock(p2->d_inode);
2842 mutex_unlock(&p1->d_sb->s_vfs_rename_mutex);
2843 }
2844 }
2845 EXPORT_SYMBOL(unlock_rename);
2846
2847 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2848 bool want_excl)
2849 {
2850 int error = may_create(dir, dentry);
2851 if (error)
2852 return error;
2853
2854 if (!dir->i_op->create)
2855 return -EACCES; /* shouldn't it be ENOSYS? */
2856 mode &= S_IALLUGO;
2857 mode |= S_IFREG;
2858 error = security_inode_create(dir, dentry, mode);
2859 if (error)
2860 return error;
2861 error = dir->i_op->create(dir, dentry, mode, want_excl);
2862 if (!error)
2863 fsnotify_create(dir, dentry);
2864 return error;
2865 }
2866 EXPORT_SYMBOL(vfs_create);
2867
2868 static int may_open(struct path *path, int acc_mode, int flag)
2869 {
2870 struct dentry *dentry = path->dentry;
2871 struct inode *inode = dentry->d_inode;
2872 int error;
2873
2874 if (!inode)
2875 return -ENOENT;
2876
2877 switch (inode->i_mode & S_IFMT) {
2878 case S_IFLNK:
2879 return -ELOOP;
2880 case S_IFDIR:
2881 if (acc_mode & MAY_WRITE)
2882 return -EISDIR;
2883 break;
2884 case S_IFBLK:
2885 case S_IFCHR:
2886 if (path->mnt->mnt_flags & MNT_NODEV)
2887 return -EACCES;
2888 /*FALLTHRU*/
2889 case S_IFIFO:
2890 case S_IFSOCK:
2891 flag &= ~O_TRUNC;
2892 break;
2893 }
2894
2895 error = inode_permission(inode, MAY_OPEN | acc_mode);
2896 if (error)
2897 return error;
2898
2899 /*
2900 * An append-only file must be opened in append mode for writing.
2901 */
2902 if (IS_APPEND(inode)) {
2903 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2904 return -EPERM;
2905 if (flag & O_TRUNC)
2906 return -EPERM;
2907 }
2908
2909 /* O_NOATIME can only be set by the owner or superuser */
2910 if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2911 return -EPERM;
2912
2913 return 0;
2914 }
2915
2916 static int handle_truncate(struct file *filp)
2917 {
2918 struct path *path = &filp->f_path;
2919 struct inode *inode = path->dentry->d_inode;
2920 int error = get_write_access(inode);
2921 if (error)
2922 return error;
2923 /*
2924 * Refuse to truncate files with mandatory locks held on them.
2925 */
2926 error = locks_verify_locked(filp);
2927 if (!error)
2928 error = security_path_truncate(path);
2929 if (!error) {
2930 error = do_truncate(path->dentry, 0,
2931 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2932 filp);
2933 }
2934 put_write_access(inode);
2935 return error;
2936 }
2937
2938 static inline int open_to_namei_flags(int flag)
2939 {
2940 if ((flag & O_ACCMODE) == 3)
2941 flag--;
2942 return flag;
2943 }
2944
2945 static int may_o_create(const struct path *dir, struct dentry *dentry, umode_t mode)
2946 {
2947 int error = security_path_mknod(dir, dentry, mode, 0);
2948 if (error)
2949 return error;
2950
2951 error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
2952 if (error)
2953 return error;
2954
2955 return security_inode_create(dir->dentry->d_inode, dentry, mode);
2956 }
2957
2958 /*
2959 * Attempt to atomically look up, create and open a file from a negative
2960 * dentry.
2961 *
2962 * Returns 0 if successful. The file will have been created and attached to
2963 * @file by the filesystem calling finish_open().
2964 *
2965 * Returns 1 if the file was looked up only or didn't need creating. The
2966 * caller will need to perform the open themselves. @path will have been
2967 * updated to point to the new dentry. This may be negative.
2968 *
2969 * Returns an error code otherwise.
2970 */
2971 static int atomic_open(struct nameidata *nd, struct dentry *dentry,
2972 struct path *path, struct file *file,
2973 const struct open_flags *op,
2974 int open_flag, umode_t mode,
2975 int *opened)
2976 {
2977 struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
2978 struct inode *dir = nd->path.dentry->d_inode;
2979 int error;
2980
2981 if (!(~open_flag & (O_EXCL | O_CREAT))) /* both O_EXCL and O_CREAT */
2982 open_flag &= ~O_TRUNC;
2983
2984 if (nd->flags & LOOKUP_DIRECTORY)
2985 open_flag |= O_DIRECTORY;
2986
2987 file->f_path.dentry = DENTRY_NOT_SET;
2988 file->f_path.mnt = nd->path.mnt;
2989 error = dir->i_op->atomic_open(dir, dentry, file,
2990 open_to_namei_flags(open_flag),
2991 mode, opened);
2992 d_lookup_done(dentry);
2993 if (!error) {
2994 /*
2995 * We didn't have the inode before the open, so check open
2996 * permission here.
2997 */
2998 int acc_mode = op->acc_mode;
2999 if (*opened & FILE_CREATED) {
3000 WARN_ON(!(open_flag & O_CREAT));
3001 fsnotify_create(dir, dentry);
3002 acc_mode = 0;
3003 }
3004 error = may_open(&file->f_path, acc_mode, open_flag);
3005 if (WARN_ON(error > 0))
3006 error = -EINVAL;
3007 } else if (error > 0) {
3008 if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
3009 error = -EIO;
3010 } else {
3011 if (file->f_path.dentry) {
3012 dput(dentry);
3013 dentry = file->f_path.dentry;
3014 }
3015 if (*opened & FILE_CREATED)
3016 fsnotify_create(dir, dentry);
3017 if (unlikely(d_is_negative(dentry))) {
3018 error = -ENOENT;
3019 } else {
3020 path->dentry = dentry;
3021 path->mnt = nd->path.mnt;
3022 return 1;
3023 }
3024 }
3025 }
3026 dput(dentry);
3027 return error;
3028 }
3029
3030 /*
3031 * Look up and maybe create and open the last component.
3032 *
3033 * Must be called with i_mutex held on parent.
3034 *
3035 * Returns 0 if the file was successfully atomically created (if necessary) and
3036 * opened. In this case the file will be returned attached to @file.
3037 *
3038 * Returns 1 if the file was not completely opened at this time, though lookups
3039 * and creations will have been performed and the dentry returned in @path will
3040 * be positive upon return if O_CREAT was specified. If O_CREAT wasn't
3041 * specified then a negative dentry may be returned.
3042 *
3043 * An error code is returned otherwise.
3044 *
3045 * FILE_CREATE will be set in @*opened if the dentry was created and will be
3046 * cleared otherwise prior to returning.
3047 */
3048 static int lookup_open(struct nameidata *nd, struct path *path,
3049 struct file *file,
3050 const struct open_flags *op,
3051 bool got_write, int *opened)
3052 {
3053 struct dentry *dir = nd->path.dentry;
3054 struct inode *dir_inode = dir->d_inode;
3055 int open_flag = op->open_flag;
3056 struct dentry *dentry;
3057 int error, create_error = 0;
3058 umode_t mode = op->mode;
3059 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
3060
3061 if (unlikely(IS_DEADDIR(dir_inode)))
3062 return -ENOENT;
3063
3064 *opened &= ~FILE_CREATED;
3065 dentry = d_lookup(dir, &nd->last);
3066 for (;;) {
3067 if (!dentry) {
3068 dentry = d_alloc_parallel(dir, &nd->last, &wq);
3069 if (IS_ERR(dentry))
3070 return PTR_ERR(dentry);
3071 }
3072 if (d_in_lookup(dentry))
3073 break;
3074
3075 if (!(dentry->d_flags & DCACHE_OP_REVALIDATE))
3076 break;
3077
3078 error = d_revalidate(dentry, nd->flags);
3079 if (likely(error > 0))
3080 break;
3081 if (error)
3082 goto out_dput;
3083 d_invalidate(dentry);
3084 dput(dentry);
3085 dentry = NULL;
3086 }
3087 if (dentry->d_inode) {
3088 /* Cached positive dentry: will open in f_op->open */
3089 goto out_no_open;
3090 }
3091
3092 /*
3093 * Checking write permission is tricky, bacuse we don't know if we are
3094 * going to actually need it: O_CREAT opens should work as long as the
3095 * file exists. But checking existence breaks atomicity. The trick is
3096 * to check access and if not granted clear O_CREAT from the flags.
3097 *
3098 * Another problem is returing the "right" error value (e.g. for an
3099 * O_EXCL open we want to return EEXIST not EROFS).
3100 */
3101 if (open_flag & O_CREAT) {
3102 if (!IS_POSIXACL(dir->d_inode))
3103 mode &= ~current_umask();
3104 if (unlikely(!got_write)) {
3105 create_error = -EROFS;
3106 open_flag &= ~O_CREAT;
3107 if (open_flag & (O_EXCL | O_TRUNC))
3108 goto no_open;
3109 /* No side effects, safe to clear O_CREAT */
3110 } else {
3111 create_error = may_o_create(&nd->path, dentry, mode);
3112 if (create_error) {
3113 open_flag &= ~O_CREAT;
3114 if (open_flag & O_EXCL)
3115 goto no_open;
3116 }
3117 }
3118 } else if ((open_flag & (O_TRUNC|O_WRONLY|O_RDWR)) &&
3119 unlikely(!got_write)) {
3120 /*
3121 * No O_CREATE -> atomicity not a requirement -> fall
3122 * back to lookup + open
3123 */
3124 goto no_open;
3125 }
3126
3127 if (dir_inode->i_op->atomic_open) {
3128 error = atomic_open(nd, dentry, path, file, op, open_flag,
3129 mode, opened);
3130 if (unlikely(error == -ENOENT) && create_error)
3131 error = create_error;
3132 return error;
3133 }
3134
3135 no_open:
3136 if (d_in_lookup(dentry)) {
3137 struct dentry *res = dir_inode->i_op->lookup(dir_inode, dentry,
3138 nd->flags);
3139 d_lookup_done(dentry);
3140 if (unlikely(res)) {
3141 if (IS_ERR(res)) {
3142 error = PTR_ERR(res);
3143 goto out_dput;
3144 }
3145 dput(dentry);
3146 dentry = res;
3147 }
3148 }
3149
3150 /* Negative dentry, just create the file */
3151 if (!dentry->d_inode && (open_flag & O_CREAT)) {
3152 *opened |= FILE_CREATED;
3153 audit_inode_child(dir_inode, dentry, AUDIT_TYPE_CHILD_CREATE);
3154 if (!dir_inode->i_op->create) {
3155 error = -EACCES;
3156 goto out_dput;
3157 }
3158 error = dir_inode->i_op->create(dir_inode, dentry, mode,
3159 open_flag & O_EXCL);
3160 if (error)
3161 goto out_dput;
3162 fsnotify_create(dir_inode, dentry);
3163 }
3164 if (unlikely(create_error) && !dentry->d_inode) {
3165 error = create_error;
3166 goto out_dput;
3167 }
3168 out_no_open:
3169 path->dentry = dentry;
3170 path->mnt = nd->path.mnt;
3171 return 1;
3172
3173 out_dput:
3174 dput(dentry);
3175 return error;
3176 }
3177
3178 /*
3179 * Handle the last step of open()
3180 */
3181 static int do_last(struct nameidata *nd,
3182 struct file *file, const struct open_flags *op,
3183 int *opened)
3184 {
3185 struct dentry *dir = nd->path.dentry;
3186 int open_flag = op->open_flag;
3187 bool will_truncate = (open_flag & O_TRUNC) != 0;
3188 bool got_write = false;
3189 int acc_mode = op->acc_mode;
3190 unsigned seq;
3191 struct inode *inode;
3192 struct path path;
3193 int error;
3194
3195 nd->flags &= ~LOOKUP_PARENT;
3196 nd->flags |= op->intent;
3197
3198 if (nd->last_type != LAST_NORM) {
3199 error = handle_dots(nd, nd->last_type);
3200 if (unlikely(error))
3201 return error;
3202 goto finish_open;
3203 }
3204
3205 if (!(open_flag & O_CREAT)) {
3206 if (nd->last.name[nd->last.len])
3207 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
3208 /* we _can_ be in RCU mode here */
3209 error = lookup_fast(nd, &path, &inode, &seq);
3210 if (likely(error > 0))
3211 goto finish_lookup;
3212
3213 if (error < 0)
3214 return error;
3215
3216 BUG_ON(nd->inode != dir->d_inode);
3217 BUG_ON(nd->flags & LOOKUP_RCU);
3218 } else {
3219 /* create side of things */
3220 /*
3221 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED
3222 * has been cleared when we got to the last component we are
3223 * about to look up
3224 */
3225 error = complete_walk(nd);
3226 if (error)
3227 return error;
3228
3229 audit_inode(nd->name, dir, LOOKUP_PARENT);
3230 /* trailing slashes? */
3231 if (unlikely(nd->last.name[nd->last.len]))
3232 return -EISDIR;
3233 }
3234
3235 if (open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
3236 error = mnt_want_write(nd->path.mnt);
3237 if (!error)
3238 got_write = true;
3239 /*
3240 * do _not_ fail yet - we might not need that or fail with
3241 * a different error; let lookup_open() decide; we'll be
3242 * dropping this one anyway.
3243 */
3244 }
3245 if (open_flag & O_CREAT)
3246 inode_lock(dir->d_inode);
3247 else
3248 inode_lock_shared(dir->d_inode);
3249 error = lookup_open(nd, &path, file, op, got_write, opened);
3250 if (open_flag & O_CREAT)
3251 inode_unlock(dir->d_inode);
3252 else
3253 inode_unlock_shared(dir->d_inode);
3254
3255 if (error <= 0) {
3256 if (error)
3257 goto out;
3258
3259 if ((*opened & FILE_CREATED) ||
3260 !S_ISREG(file_inode(file)->i_mode))
3261 will_truncate = false;
3262
3263 audit_inode(nd->name, file->f_path.dentry, 0);
3264 goto opened;
3265 }
3266
3267 if (*opened & FILE_CREATED) {
3268 /* Don't check for write permission, don't truncate */
3269 open_flag &= ~O_TRUNC;
3270 will_truncate = false;
3271 acc_mode = 0;
3272 path_to_nameidata(&path, nd);
3273 goto finish_open_created;
3274 }
3275
3276 /*
3277 * If atomic_open() acquired write access it is dropped now due to
3278 * possible mount and symlink following (this might be optimized away if
3279 * necessary...)
3280 */
3281 if (got_write) {
3282 mnt_drop_write(nd->path.mnt);
3283 got_write = false;
3284 }
3285
3286 error = follow_managed(&path, nd);
3287 if (unlikely(error < 0))
3288 return error;
3289
3290 if (unlikely(d_is_negative(path.dentry))) {
3291 path_to_nameidata(&path, nd);
3292 return -ENOENT;
3293 }
3294
3295 /*
3296 * create/update audit record if it already exists.
3297 */
3298 audit_inode(nd->name, path.dentry, 0);
3299
3300 if (unlikely((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))) {
3301 path_to_nameidata(&path, nd);
3302 return -EEXIST;
3303 }
3304
3305 seq = 0; /* out of RCU mode, so the value doesn't matter */
3306 inode = d_backing_inode(path.dentry);
3307 finish_lookup:
3308 if (nd->depth)
3309 put_link(nd);
3310 error = should_follow_link(nd, &path, nd->flags & LOOKUP_FOLLOW,
3311 inode, seq);
3312 if (unlikely(error))
3313 return error;
3314
3315 path_to_nameidata(&path, nd);
3316 nd->inode = inode;
3317 nd->seq = seq;
3318 /* Why this, you ask? _Now_ we might have grown LOOKUP_JUMPED... */
3319 finish_open:
3320 error = complete_walk(nd);
3321 if (error)
3322 return error;
3323 audit_inode(nd->name, nd->path.dentry, 0);
3324 error = -EISDIR;
3325 if ((open_flag & O_CREAT) && d_is_dir(nd->path.dentry))
3326 goto out;
3327 error = -ENOTDIR;
3328 if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3329 goto out;
3330 if (!d_is_reg(nd->path.dentry))
3331 will_truncate = false;
3332
3333 if (will_truncate) {
3334 error = mnt_want_write(nd->path.mnt);
3335 if (error)
3336 goto out;
3337 got_write = true;
3338 }
3339 finish_open_created:
3340 error = may_open(&nd->path, acc_mode, open_flag);
3341 if (error)
3342 goto out;
3343 BUG_ON(*opened & FILE_OPENED); /* once it's opened, it's opened */
3344 error = vfs_open(&nd->path, file, current_cred());
3345 if (error)
3346 goto out;
3347 *opened |= FILE_OPENED;
3348 opened:
3349 error = open_check_o_direct(file);
3350 if (!error)
3351 error = ima_file_check(file, op->acc_mode, *opened);
3352 if (!error && will_truncate)
3353 error = handle_truncate(file);
3354 out:
3355 if (unlikely(error) && (*opened & FILE_OPENED))
3356 fput(file);
3357 if (unlikely(error > 0)) {
3358 WARN_ON(1);
3359 error = -EINVAL;
3360 }
3361 if (got_write)
3362 mnt_drop_write(nd->path.mnt);
3363 return error;
3364 }
3365
3366 static int do_tmpfile(struct nameidata *nd, unsigned flags,
3367 const struct open_flags *op,
3368 struct file *file, int *opened)
3369 {
3370 static const struct qstr name = QSTR_INIT("/", 1);
3371 struct dentry *child;
3372 struct inode *dir;
3373 struct path path;
3374 int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path);
3375 if (unlikely(error))
3376 return error;
3377 error = mnt_want_write(path.mnt);
3378 if (unlikely(error))
3379 goto out;
3380 dir = path.dentry->d_inode;
3381 /* we want directory to be writable */
3382 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
3383 if (error)
3384 goto out2;
3385 if (!dir->i_op->tmpfile) {
3386 error = -EOPNOTSUPP;
3387 goto out2;
3388 }
3389 child = d_alloc(path.dentry, &name);
3390 if (unlikely(!child)) {
3391 error = -ENOMEM;
3392 goto out2;
3393 }
3394 dput(path.dentry);
3395 path.dentry = child;
3396 error = dir->i_op->tmpfile(dir, child, op->mode);
3397 if (error)
3398 goto out2;
3399 audit_inode(nd->name, child, 0);
3400 /* Don't check for other permissions, the inode was just created */
3401 error = may_open(&path, 0, op->open_flag);
3402 if (error)
3403 goto out2;
3404 file->f_path.mnt = path.mnt;
3405 error = finish_open(file, child, NULL, opened);
3406 if (error)
3407 goto out2;
3408 error = open_check_o_direct(file);
3409 if (error) {
3410 fput(file);
3411 } else if (!(op->open_flag & O_EXCL)) {
3412 struct inode *inode = file_inode(file);
3413 spin_lock(&inode->i_lock);
3414 inode->i_state |= I_LINKABLE;
3415 spin_unlock(&inode->i_lock);
3416 }
3417 out2:
3418 mnt_drop_write(path.mnt);
3419 out:
3420 path_put(&path);
3421 return error;
3422 }
3423
3424 static int do_o_path(struct nameidata *nd, unsigned flags, struct file *file)
3425 {
3426 struct path path;
3427 int error = path_lookupat(nd, flags, &path);
3428 if (!error) {
3429 audit_inode(nd->name, path.dentry, 0);
3430 error = vfs_open(&path, file, current_cred());
3431 path_put(&path);
3432 }
3433 return error;
3434 }
3435
3436 static struct file *path_openat(struct nameidata *nd,
3437 const struct open_flags *op, unsigned flags)
3438 {
3439 const char *s;
3440 struct file *file;
3441 int opened = 0;
3442 int error;
3443
3444 file = get_empty_filp();
3445 if (IS_ERR(file))
3446 return file;
3447
3448 file->f_flags = op->open_flag;
3449
3450 if (unlikely(file->f_flags & __O_TMPFILE)) {
3451 error = do_tmpfile(nd, flags, op, file, &opened);
3452 goto out2;
3453 }
3454
3455 if (unlikely(file->f_flags & O_PATH)) {
3456 error = do_o_path(nd, flags, file);
3457 if (!error)
3458 opened |= FILE_OPENED;
3459 goto out2;
3460 }
3461
3462 s = path_init(nd, flags);
3463 if (IS_ERR(s)) {
3464 put_filp(file);
3465 return ERR_CAST(s);
3466 }
3467 while (!(error = link_path_walk(s, nd)) &&
3468 (error = do_last(nd, file, op, &opened)) > 0) {
3469 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3470 s = trailing_symlink(nd);
3471 if (IS_ERR(s)) {
3472 error = PTR_ERR(s);
3473 break;
3474 }
3475 }
3476 terminate_walk(nd);
3477 out2:
3478 if (!(opened & FILE_OPENED)) {
3479 BUG_ON(!error);
3480 put_filp(file);
3481 }
3482 if (unlikely(error)) {
3483 if (error == -EOPENSTALE) {
3484 if (flags & LOOKUP_RCU)
3485 error = -ECHILD;
3486 else
3487 error = -ESTALE;
3488 }
3489 file = ERR_PTR(error);
3490 }
3491 return file;
3492 }
3493
3494 struct file *do_filp_open(int dfd, struct filename *pathname,
3495 const struct open_flags *op)
3496 {
3497 struct nameidata nd;
3498 int flags = op->lookup_flags;
3499 struct file *filp;
3500
3501 set_nameidata(&nd, dfd, pathname);
3502 filp = path_openat(&nd, op, flags | LOOKUP_RCU);
3503 if (unlikely(filp == ERR_PTR(-ECHILD)))
3504 filp = path_openat(&nd, op, flags);
3505 if (unlikely(filp == ERR_PTR(-ESTALE)))
3506 filp = path_openat(&nd, op, flags | LOOKUP_REVAL);
3507 restore_nameidata();
3508 return filp;
3509 }
3510
3511 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
3512 const char *name, const struct open_flags *op)
3513 {
3514 struct nameidata nd;
3515 struct file *file;
3516 struct filename *filename;
3517 int flags = op->lookup_flags | LOOKUP_ROOT;
3518
3519 nd.root.mnt = mnt;
3520 nd.root.dentry = dentry;
3521
3522 if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN)
3523 return ERR_PTR(-ELOOP);
3524
3525 filename = getname_kernel(name);
3526 if (IS_ERR(filename))
3527 return ERR_CAST(filename);
3528
3529 set_nameidata(&nd, -1, filename);
3530 file = path_openat(&nd, op, flags | LOOKUP_RCU);
3531 if (unlikely(file == ERR_PTR(-ECHILD)))
3532 file = path_openat(&nd, op, flags);
3533 if (unlikely(file == ERR_PTR(-ESTALE)))
3534 file = path_openat(&nd, op, flags | LOOKUP_REVAL);
3535 restore_nameidata();
3536 putname(filename);
3537 return file;
3538 }
3539
3540 static struct dentry *filename_create(int dfd, struct filename *name,
3541 struct path *path, unsigned int lookup_flags)
3542 {
3543 struct dentry *dentry = ERR_PTR(-EEXIST);
3544 struct qstr last;
3545 int type;
3546 int err2;
3547 int error;
3548 bool is_dir = (lookup_flags & LOOKUP_DIRECTORY);
3549
3550 /*
3551 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
3552 * other flags passed in are ignored!
3553 */
3554 lookup_flags &= LOOKUP_REVAL;
3555
3556 name = filename_parentat(dfd, name, lookup_flags, path, &last, &type);
3557 if (IS_ERR(name))
3558 return ERR_CAST(name);
3559
3560 /*
3561 * Yucky last component or no last component at all?
3562 * (foo/., foo/.., /////)
3563 */
3564 if (unlikely(type != LAST_NORM))
3565 goto out;
3566
3567 /* don't fail immediately if it's r/o, at least try to report other errors */
3568 err2 = mnt_want_write(path->mnt);
3569 /*
3570 * Do the final lookup.
3571 */
3572 lookup_flags |= LOOKUP_CREATE | LOOKUP_EXCL;
3573 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
3574 dentry = __lookup_hash(&last, path->dentry, lookup_flags);
3575 if (IS_ERR(dentry))
3576 goto unlock;
3577
3578 error = -EEXIST;
3579 if (d_is_positive(dentry))
3580 goto fail;
3581
3582 /*
3583 * Special case - lookup gave negative, but... we had foo/bar/
3584 * From the vfs_mknod() POV we just have a negative dentry -
3585 * all is fine. Let's be bastards - you had / on the end, you've
3586 * been asking for (non-existent) directory. -ENOENT for you.
3587 */
3588 if (unlikely(!is_dir && last.name[last.len])) {
3589 error = -ENOENT;
3590 goto fail;
3591 }
3592 if (unlikely(err2)) {
3593 error = err2;
3594 goto fail;
3595 }
3596 putname(name);
3597 return dentry;
3598 fail:
3599 dput(dentry);
3600 dentry = ERR_PTR(error);
3601 unlock:
3602 inode_unlock(path->dentry->d_inode);
3603 if (!err2)
3604 mnt_drop_write(path->mnt);
3605 out:
3606 path_put(path);
3607 putname(name);
3608 return dentry;
3609 }
3610
3611 struct dentry *kern_path_create(int dfd, const char *pathname,
3612 struct path *path, unsigned int lookup_flags)
3613 {
3614 return filename_create(dfd, getname_kernel(pathname),
3615 path, lookup_flags);
3616 }
3617 EXPORT_SYMBOL(kern_path_create);
3618
3619 void done_path_create(struct path *path, struct dentry *dentry)
3620 {
3621 dput(dentry);
3622 inode_unlock(path->dentry->d_inode);
3623 mnt_drop_write(path->mnt);
3624 path_put(path);
3625 }
3626 EXPORT_SYMBOL(done_path_create);
3627
3628 inline struct dentry *user_path_create(int dfd, const char __user *pathname,
3629 struct path *path, unsigned int lookup_flags)
3630 {
3631 return filename_create(dfd, getname(pathname), path, lookup_flags);
3632 }
3633 EXPORT_SYMBOL(user_path_create);
3634
3635 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3636 {
3637 int error = may_create(dir, dentry);
3638
3639 if (error)
3640 return error;
3641
3642 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
3643 return -EPERM;
3644
3645 if (!dir->i_op->mknod)
3646 return -EPERM;
3647
3648 error = devcgroup_inode_mknod(mode, dev);
3649 if (error)
3650 return error;
3651
3652 error = security_inode_mknod(dir, dentry, mode, dev);
3653 if (error)
3654 return error;
3655
3656 error = dir->i_op->mknod(dir, dentry, mode, dev);
3657 if (!error)
3658 fsnotify_create(dir, dentry);
3659 return error;
3660 }
3661 EXPORT_SYMBOL(vfs_mknod);
3662
3663 static int may_mknod(umode_t mode)
3664 {
3665 switch (mode & S_IFMT) {
3666 case S_IFREG:
3667 case S_IFCHR:
3668 case S_IFBLK:
3669 case S_IFIFO:
3670 case S_IFSOCK:
3671 case 0: /* zero mode translates to S_IFREG */
3672 return 0;
3673 case S_IFDIR:
3674 return -EPERM;
3675 default:
3676 return -EINVAL;
3677 }
3678 }
3679
3680 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3681 unsigned, dev)
3682 {
3683 struct dentry *dentry;
3684 struct path path;
3685 int error;
3686 unsigned int lookup_flags = 0;
3687
3688 error = may_mknod(mode);
3689 if (error)
3690 return error;
3691 retry:
3692 dentry = user_path_create(dfd, filename, &path, lookup_flags);
3693 if (IS_ERR(dentry))
3694 return PTR_ERR(dentry);
3695
3696 if (!IS_POSIXACL(path.dentry->d_inode))
3697 mode &= ~current_umask();
3698 error = security_path_mknod(&path, dentry, mode, dev);
3699 if (error)
3700 goto out;
3701 switch (mode & S_IFMT) {
3702 case 0: case S_IFREG:
3703 error = vfs_create(path.dentry->d_inode,dentry,mode,true);
3704 if (!error)
3705 ima_post_path_mknod(dentry);
3706 break;
3707 case S_IFCHR: case S_IFBLK:
3708 error = vfs_mknod(path.dentry->d_inode,dentry,mode,
3709 new_decode_dev(dev));
3710 break;
3711 case S_IFIFO: case S_IFSOCK:
3712 error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
3713 break;
3714 }
3715 out:
3716 done_path_create(&path, dentry);
3717 if (retry_estale(error, lookup_flags)) {
3718 lookup_flags |= LOOKUP_REVAL;
3719 goto retry;
3720 }
3721 return error;
3722 }
3723
3724 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3725 {
3726 return sys_mknodat(AT_FDCWD, filename, mode, dev);
3727 }
3728
3729 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3730 {
3731 int error = may_create(dir, dentry);
3732 unsigned max_links = dir->i_sb->s_max_links;
3733
3734 if (error)
3735 return error;
3736
3737 if (!dir->i_op->mkdir)
3738 return -EPERM;
3739
3740 mode &= (S_IRWXUGO|S_ISVTX);
3741 error = security_inode_mkdir(dir, dentry, mode);
3742 if (error)
3743 return error;
3744
3745 if (max_links && dir->i_nlink >= max_links)
3746 return -EMLINK;
3747
3748 error = dir->i_op->mkdir(dir, dentry, mode);
3749 if (!error)
3750 fsnotify_mkdir(dir, dentry);
3751 return error;
3752 }
3753 EXPORT_SYMBOL(vfs_mkdir);
3754
3755 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3756 {
3757 struct dentry *dentry;
3758 struct path path;
3759 int error;
3760 unsigned int lookup_flags = LOOKUP_DIRECTORY;
3761
3762 retry:
3763 dentry = user_path_create(dfd, pathname, &path, lookup_flags);
3764 if (IS_ERR(dentry))
3765 return PTR_ERR(dentry);
3766
3767 if (!IS_POSIXACL(path.dentry->d_inode))
3768 mode &= ~current_umask();
3769 error = security_path_mkdir(&path, dentry, mode);
3770 if (!error)
3771 error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
3772 done_path_create(&path, dentry);
3773 if (retry_estale(error, lookup_flags)) {
3774 lookup_flags |= LOOKUP_REVAL;
3775 goto retry;
3776 }
3777 return error;
3778 }
3779
3780 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3781 {
3782 return sys_mkdirat(AT_FDCWD, pathname, mode);
3783 }
3784
3785 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
3786 {
3787 int error = may_delete(dir, dentry, 1);
3788
3789 if (error)
3790 return error;
3791
3792 if (!dir->i_op->rmdir)
3793 return -EPERM;
3794
3795 dget(dentry);
3796 inode_lock(dentry->d_inode);
3797
3798 error = -EBUSY;
3799 if (is_local_mountpoint(dentry))
3800 goto out;
3801
3802 error = security_inode_rmdir(dir, dentry);
3803 if (error)
3804 goto out;
3805
3806 shrink_dcache_parent(dentry);
3807 error = dir->i_op->rmdir(dir, dentry);
3808 if (error)
3809 goto out;
3810
3811 dentry->d_inode->i_flags |= S_DEAD;
3812 dont_mount(dentry);
3813 detach_mounts(dentry);
3814
3815 out:
3816 inode_unlock(dentry->d_inode);
3817 dput(dentry);
3818 if (!error)
3819 d_delete(dentry);
3820 return error;
3821 }
3822 EXPORT_SYMBOL(vfs_rmdir);
3823
3824 static long do_rmdir(int dfd, const char __user *pathname)
3825 {
3826 int error = 0;
3827 struct filename *name;
3828 struct dentry *dentry;
3829 struct path path;
3830 struct qstr last;
3831 int type;
3832 unsigned int lookup_flags = 0;
3833 retry:
3834 name = user_path_parent(dfd, pathname,
3835 &path, &last, &type, lookup_flags);
3836 if (IS_ERR(name))
3837 return PTR_ERR(name);
3838
3839 switch (type) {
3840 case LAST_DOTDOT:
3841 error = -ENOTEMPTY;
3842 goto exit1;
3843 case LAST_DOT:
3844 error = -EINVAL;
3845 goto exit1;
3846 case LAST_ROOT:
3847 error = -EBUSY;
3848 goto exit1;
3849 }
3850
3851 error = mnt_want_write(path.mnt);
3852 if (error)
3853 goto exit1;
3854
3855 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
3856 dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3857 error = PTR_ERR(dentry);
3858 if (IS_ERR(dentry))
3859 goto exit2;
3860 if (!dentry->d_inode) {
3861 error = -ENOENT;
3862 goto exit3;
3863 }
3864 error = security_path_rmdir(&path, dentry);
3865 if (error)
3866 goto exit3;
3867 error = vfs_rmdir(path.dentry->d_inode, dentry);
3868 exit3:
3869 dput(dentry);
3870 exit2:
3871 inode_unlock(path.dentry->d_inode);
3872 mnt_drop_write(path.mnt);
3873 exit1:
3874 path_put(&path);
3875 putname(name);
3876 if (retry_estale(error, lookup_flags)) {
3877 lookup_flags |= LOOKUP_REVAL;
3878 goto retry;
3879 }
3880 return error;
3881 }
3882
3883 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3884 {
3885 return do_rmdir(AT_FDCWD, pathname);
3886 }
3887
3888 /**
3889 * vfs_unlink - unlink a filesystem object
3890 * @dir: parent directory
3891 * @dentry: victim
3892 * @delegated_inode: returns victim inode, if the inode is delegated.
3893 *
3894 * The caller must hold dir->i_mutex.
3895 *
3896 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
3897 * return a reference to the inode in delegated_inode. The caller
3898 * should then break the delegation on that inode and retry. Because
3899 * breaking a delegation may take a long time, the caller should drop
3900 * dir->i_mutex before doing so.
3901 *
3902 * Alternatively, a caller may pass NULL for delegated_inode. This may
3903 * be appropriate for callers that expect the underlying filesystem not
3904 * to be NFS exported.
3905 */
3906 int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode)
3907 {
3908 struct inode *target = dentry->d_inode;
3909 int error = may_delete(dir, dentry, 0);
3910
3911 if (error)
3912 return error;
3913
3914 if (!dir->i_op->unlink)
3915 return -EPERM;
3916
3917 inode_lock(target);
3918 if (is_local_mountpoint(dentry))
3919 error = -EBUSY;
3920 else {
3921 error = security_inode_unlink(dir, dentry);
3922 if (!error) {
3923 error = try_break_deleg(target, delegated_inode);
3924 if (error)
3925 goto out;
3926 error = dir->i_op->unlink(dir, dentry);
3927 if (!error) {
3928 dont_mount(dentry);
3929 detach_mounts(dentry);
3930 }
3931 }
3932 }
3933 out:
3934 inode_unlock(target);
3935
3936 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
3937 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
3938 fsnotify_link_count(target);
3939 d_delete(dentry);
3940 }
3941
3942 return error;
3943 }
3944 EXPORT_SYMBOL(vfs_unlink);
3945
3946 /*
3947 * Make sure that the actual truncation of the file will occur outside its
3948 * directory's i_mutex. Truncate can take a long time if there is a lot of
3949 * writeout happening, and we don't want to prevent access to the directory
3950 * while waiting on the I/O.
3951 */
3952 static long do_unlinkat(int dfd, const char __user *pathname)
3953 {
3954 int error;
3955 struct filename *name;
3956 struct dentry *dentry;
3957 struct path path;
3958 struct qstr last;
3959 int type;
3960 struct inode *inode = NULL;
3961 struct inode *delegated_inode = NULL;
3962 unsigned int lookup_flags = 0;
3963 retry:
3964 name = user_path_parent(dfd, pathname,
3965 &path, &last, &type, lookup_flags);
3966 if (IS_ERR(name))
3967 return PTR_ERR(name);
3968
3969 error = -EISDIR;
3970 if (type != LAST_NORM)
3971 goto exit1;
3972
3973 error = mnt_want_write(path.mnt);
3974 if (error)
3975 goto exit1;
3976 retry_deleg:
3977 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
3978 dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3979 error = PTR_ERR(dentry);
3980 if (!IS_ERR(dentry)) {
3981 /* Why not before? Because we want correct error value */
3982 if (last.name[last.len])
3983 goto slashes;
3984 inode = dentry->d_inode;
3985 if (d_is_negative(dentry))
3986 goto slashes;
3987 ihold(inode);
3988 error = security_path_unlink(&path, dentry);
3989 if (error)
3990 goto exit2;
3991 error = vfs_unlink(path.dentry->d_inode, dentry, &delegated_inode);
3992 exit2:
3993 dput(dentry);
3994 }
3995 inode_unlock(path.dentry->d_inode);
3996 if (inode)
3997 iput(inode); /* truncate the inode here */
3998 inode = NULL;
3999 if (delegated_inode) {
4000 error = break_deleg_wait(&delegated_inode);
4001 if (!error)
4002 goto retry_deleg;
4003 }
4004 mnt_drop_write(path.mnt);
4005 exit1:
4006 path_put(&path);
4007 putname(name);
4008 if (retry_estale(error, lookup_flags)) {
4009 lookup_flags |= LOOKUP_REVAL;
4010 inode = NULL;
4011 goto retry;
4012 }
4013 return error;
4014
4015 slashes:
4016 if (d_is_negative(dentry))
4017 error = -ENOENT;
4018 else if (d_is_dir(dentry))
4019 error = -EISDIR;
4020 else
4021 error = -ENOTDIR;
4022 goto exit2;
4023 }
4024
4025 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
4026 {
4027 if ((flag & ~AT_REMOVEDIR) != 0)
4028 return -EINVAL;
4029
4030 if (flag & AT_REMOVEDIR)
4031 return do_rmdir(dfd, pathname);
4032
4033 return do_unlinkat(dfd, pathname);
4034 }
4035
4036 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
4037 {
4038 return do_unlinkat(AT_FDCWD, pathname);
4039 }
4040
4041 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
4042 {
4043 int error = may_create(dir, dentry);
4044
4045 if (error)
4046 return error;
4047
4048 if (!dir->i_op->symlink)
4049 return -EPERM;
4050
4051 error = security_inode_symlink(dir, dentry, oldname);
4052 if (error)
4053 return error;
4054
4055 error = dir->i_op->symlink(dir, dentry, oldname);
4056 if (!error)
4057 fsnotify_create(dir, dentry);
4058 return error;
4059 }
4060 EXPORT_SYMBOL(vfs_symlink);
4061
4062 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
4063 int, newdfd, const char __user *, newname)
4064 {
4065 int error;
4066 struct filename *from;
4067 struct dentry *dentry;
4068 struct path path;
4069 unsigned int lookup_flags = 0;
4070
4071 from = getname(oldname);
4072 if (IS_ERR(from))
4073 return PTR_ERR(from);
4074 retry:
4075 dentry = user_path_create(newdfd, newname, &path, lookup_flags);
4076 error = PTR_ERR(dentry);
4077 if (IS_ERR(dentry))
4078 goto out_putname;
4079
4080 error = security_path_symlink(&path, dentry, from->name);
4081 if (!error)
4082 error = vfs_symlink(path.dentry->d_inode, dentry, from->name);
4083 done_path_create(&path, dentry);
4084 if (retry_estale(error, lookup_flags)) {
4085 lookup_flags |= LOOKUP_REVAL;
4086 goto retry;
4087 }
4088 out_putname:
4089 putname(from);
4090 return error;
4091 }
4092
4093 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
4094 {
4095 return sys_symlinkat(oldname, AT_FDCWD, newname);
4096 }
4097
4098 /**
4099 * vfs_link - create a new link
4100 * @old_dentry: object to be linked
4101 * @dir: new parent
4102 * @new_dentry: where to create the new link
4103 * @delegated_inode: returns inode needing a delegation break
4104 *
4105 * The caller must hold dir->i_mutex
4106 *
4107 * If vfs_link discovers a delegation on the to-be-linked file in need
4108 * of breaking, it will return -EWOULDBLOCK and return a reference to the
4109 * inode in delegated_inode. The caller should then break the delegation
4110 * and retry. Because breaking a delegation may take a long time, the
4111 * caller should drop the i_mutex before doing so.
4112 *
4113 * Alternatively, a caller may pass NULL for delegated_inode. This may
4114 * be appropriate for callers that expect the underlying filesystem not
4115 * to be NFS exported.
4116 */
4117 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode)
4118 {
4119 struct inode *inode = old_dentry->d_inode;
4120 unsigned max_links = dir->i_sb->s_max_links;
4121 int error;
4122
4123 if (!inode)
4124 return -ENOENT;
4125
4126 error = may_create(dir, new_dentry);
4127 if (error)
4128 return error;
4129
4130 if (dir->i_sb != inode->i_sb)
4131 return -EXDEV;
4132
4133 /*
4134 * A link to an append-only or immutable file cannot be created.
4135 */
4136 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4137 return -EPERM;
4138 if (!dir->i_op->link)
4139 return -EPERM;
4140 if (S_ISDIR(inode->i_mode))
4141 return -EPERM;
4142
4143 error = security_inode_link(old_dentry, dir, new_dentry);
4144 if (error)
4145 return error;
4146
4147 inode_lock(inode);
4148 /* Make sure we don't allow creating hardlink to an unlinked file */
4149 if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
4150 error = -ENOENT;
4151 else if (max_links && inode->i_nlink >= max_links)
4152 error = -EMLINK;
4153 else {
4154 error = try_break_deleg(inode, delegated_inode);
4155 if (!error)
4156 error = dir->i_op->link(old_dentry, dir, new_dentry);
4157 }
4158
4159 if (!error && (inode->i_state & I_LINKABLE)) {
4160 spin_lock(&inode->i_lock);
4161 inode->i_state &= ~I_LINKABLE;
4162 spin_unlock(&inode->i_lock);
4163 }
4164 inode_unlock(inode);
4165 if (!error)
4166 fsnotify_link(dir, inode, new_dentry);
4167 return error;
4168 }
4169 EXPORT_SYMBOL(vfs_link);
4170
4171 /*
4172 * Hardlinks are often used in delicate situations. We avoid
4173 * security-related surprises by not following symlinks on the
4174 * newname. --KAB
4175 *
4176 * We don't follow them on the oldname either to be compatible
4177 * with linux 2.0, and to avoid hard-linking to directories
4178 * and other special files. --ADM
4179 */
4180 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
4181 int, newdfd, const char __user *, newname, int, flags)
4182 {
4183 struct dentry *new_dentry;
4184 struct path old_path, new_path;
4185 struct inode *delegated_inode = NULL;
4186 int how = 0;
4187 int error;
4188
4189 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
4190 return -EINVAL;
4191 /*
4192 * To use null names we require CAP_DAC_READ_SEARCH
4193 * This ensures that not everyone will be able to create
4194 * handlink using the passed filedescriptor.
4195 */
4196 if (flags & AT_EMPTY_PATH) {
4197 if (!capable(CAP_DAC_READ_SEARCH))
4198 return -ENOENT;
4199 how = LOOKUP_EMPTY;
4200 }
4201
4202 if (flags & AT_SYMLINK_FOLLOW)
4203 how |= LOOKUP_FOLLOW;
4204 retry:
4205 error = user_path_at(olddfd, oldname, how, &old_path);
4206 if (error)
4207 return error;
4208
4209 new_dentry = user_path_create(newdfd, newname, &new_path,
4210 (how & LOOKUP_REVAL));
4211 error = PTR_ERR(new_dentry);
4212 if (IS_ERR(new_dentry))
4213 goto out;
4214
4215 error = -EXDEV;
4216 if (old_path.mnt != new_path.mnt)
4217 goto out_dput;
4218 error = may_linkat(&old_path);
4219 if (unlikely(error))
4220 goto out_dput;
4221 error = security_path_link(old_path.dentry, &new_path, new_dentry);
4222 if (error)
4223 goto out_dput;
4224 error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode);
4225 out_dput:
4226 done_path_create(&new_path, new_dentry);
4227 if (delegated_inode) {
4228 error = break_deleg_wait(&delegated_inode);
4229 if (!error) {
4230 path_put(&old_path);
4231 goto retry;
4232 }
4233 }
4234 if (retry_estale(error, how)) {
4235 path_put(&old_path);
4236 how |= LOOKUP_REVAL;
4237 goto retry;
4238 }
4239 out:
4240 path_put(&old_path);
4241
4242 return error;
4243 }
4244
4245 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4246 {
4247 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4248 }
4249
4250 /**
4251 * vfs_rename - rename a filesystem object
4252 * @old_dir: parent of source
4253 * @old_dentry: source
4254 * @new_dir: parent of destination
4255 * @new_dentry: destination
4256 * @delegated_inode: returns an inode needing a delegation break
4257 * @flags: rename flags
4258 *
4259 * The caller must hold multiple mutexes--see lock_rename()).
4260 *
4261 * If vfs_rename discovers a delegation in need of breaking at either
4262 * the source or destination, it will return -EWOULDBLOCK and return a
4263 * reference to the inode in delegated_inode. The caller should then
4264 * break the delegation and retry. Because breaking a delegation may
4265 * take a long time, the caller should drop all locks before doing
4266 * so.
4267 *
4268 * Alternatively, a caller may pass NULL for delegated_inode. This may
4269 * be appropriate for callers that expect the underlying filesystem not
4270 * to be NFS exported.
4271 *
4272 * The worst of all namespace operations - renaming directory. "Perverted"
4273 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4274 * Problems:
4275 * a) we can get into loop creation.
4276 * b) race potential - two innocent renames can create a loop together.
4277 * That's where 4.4 screws up. Current fix: serialization on
4278 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4279 * story.
4280 * c) we have to lock _four_ objects - parents and victim (if it exists),
4281 * and source (if it is not a directory).
4282 * And that - after we got ->i_mutex on parents (until then we don't know
4283 * whether the target exists). Solution: try to be smart with locking
4284 * order for inodes. We rely on the fact that tree topology may change
4285 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
4286 * move will be locked. Thus we can rank directories by the tree
4287 * (ancestors first) and rank all non-directories after them.
4288 * That works since everybody except rename does "lock parent, lookup,
4289 * lock child" and rename is under ->s_vfs_rename_mutex.
4290 * HOWEVER, it relies on the assumption that any object with ->lookup()
4291 * has no more than 1 dentry. If "hybrid" objects will ever appear,
4292 * we'd better make sure that there's no link(2) for them.
4293 * d) conversion from fhandle to dentry may come in the wrong moment - when
4294 * we are removing the target. Solution: we will have to grab ->i_mutex
4295 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4296 * ->i_mutex on parents, which works but leads to some truly excessive
4297 * locking].
4298 */
4299 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4300 struct inode *new_dir, struct dentry *new_dentry,
4301 struct inode **delegated_inode, unsigned int flags)
4302 {
4303 int error;
4304 bool is_dir = d_is_dir(old_dentry);
4305 const unsigned char *old_name;
4306 struct inode *source = old_dentry->d_inode;
4307 struct inode *target = new_dentry->d_inode;
4308 bool new_is_dir = false;
4309 unsigned max_links = new_dir->i_sb->s_max_links;
4310
4311 /*
4312 * Check source == target.
4313 * On overlayfs need to look at underlying inodes.
4314 */
4315 if (d_real_inode(old_dentry) == d_real_inode(new_dentry))
4316 return 0;
4317
4318 error = may_delete(old_dir, old_dentry, is_dir);
4319 if (error)
4320 return error;
4321
4322 if (!target) {
4323 error = may_create(new_dir, new_dentry);
4324 } else {
4325 new_is_dir = d_is_dir(new_dentry);
4326
4327 if (!(flags & RENAME_EXCHANGE))
4328 error = may_delete(new_dir, new_dentry, is_dir);
4329 else
4330 error = may_delete(new_dir, new_dentry, new_is_dir);
4331 }
4332 if (error)
4333 return error;
4334
4335 if (!old_dir->i_op->rename && !old_dir->i_op->rename2)
4336 return -EPERM;
4337
4338 if (flags && !old_dir->i_op->rename2)
4339 return -EINVAL;
4340
4341 /*
4342 * If we are going to change the parent - check write permissions,
4343 * we'll need to flip '..'.
4344 */
4345 if (new_dir != old_dir) {
4346 if (is_dir) {
4347 error = inode_permission(source, MAY_WRITE);
4348 if (error)
4349 return error;
4350 }
4351 if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4352 error = inode_permission(target, MAY_WRITE);
4353 if (error)
4354 return error;
4355 }
4356 }
4357
4358 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4359 flags);
4360 if (error)
4361 return error;
4362
4363 old_name = fsnotify_oldname_init(old_dentry->d_name.name);
4364 dget(new_dentry);
4365 if (!is_dir || (flags & RENAME_EXCHANGE))
4366 lock_two_nondirectories(source, target);
4367 else if (target)
4368 inode_lock(target);
4369
4370 error = -EBUSY;
4371 if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
4372 goto out;
4373
4374 if (max_links && new_dir != old_dir) {
4375 error = -EMLINK;
4376 if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4377 goto out;
4378 if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
4379 old_dir->i_nlink >= max_links)
4380 goto out;
4381 }
4382 if (is_dir && !(flags & RENAME_EXCHANGE) && target)
4383 shrink_dcache_parent(new_dentry);
4384 if (!is_dir) {
4385 error = try_break_deleg(source, delegated_inode);
4386 if (error)
4387 goto out;
4388 }
4389 if (target && !new_is_dir) {
4390 error = try_break_deleg(target, delegated_inode);
4391 if (error)
4392 goto out;
4393 }
4394 if (!old_dir->i_op->rename2) {
4395 error = old_dir->i_op->rename(old_dir, old_dentry,
4396 new_dir, new_dentry);
4397 } else {
4398 WARN_ON(old_dir->i_op->rename != NULL);
4399 error = old_dir->i_op->rename2(old_dir, old_dentry,
4400 new_dir, new_dentry, flags);
4401 }
4402 if (error)
4403 goto out;
4404
4405 if (!(flags & RENAME_EXCHANGE) && target) {
4406 if (is_dir)
4407 target->i_flags |= S_DEAD;
4408 dont_mount(new_dentry);
4409 detach_mounts(new_dentry);
4410 }
4411 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
4412 if (!(flags & RENAME_EXCHANGE))
4413 d_move(old_dentry, new_dentry);
4414 else
4415 d_exchange(old_dentry, new_dentry);
4416 }
4417 out:
4418 if (!is_dir || (flags & RENAME_EXCHANGE))
4419 unlock_two_nondirectories(source, target);
4420 else if (target)
4421 inode_unlock(target);
4422 dput(new_dentry);
4423 if (!error) {
4424 fsnotify_move(old_dir, new_dir, old_name, is_dir,
4425 !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
4426 if (flags & RENAME_EXCHANGE) {
4427 fsnotify_move(new_dir, old_dir, old_dentry->d_name.name,
4428 new_is_dir, NULL, new_dentry);
4429 }
4430 }
4431 fsnotify_oldname_free(old_name);
4432
4433 return error;
4434 }
4435 EXPORT_SYMBOL(vfs_rename);
4436
4437 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
4438 int, newdfd, const char __user *, newname, unsigned int, flags)
4439 {
4440 struct dentry *old_dentry, *new_dentry;
4441 struct dentry *trap;
4442 struct path old_path, new_path;
4443 struct qstr old_last, new_last;
4444 int old_type, new_type;
4445 struct inode *delegated_inode = NULL;
4446 struct filename *from;
4447 struct filename *to;
4448 unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET;
4449 bool should_retry = false;
4450 int error;
4451
4452 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4453 return -EINVAL;
4454
4455 if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
4456 (flags & RENAME_EXCHANGE))
4457 return -EINVAL;
4458
4459 if ((flags & RENAME_WHITEOUT) && !capable(CAP_MKNOD))
4460 return -EPERM;
4461
4462 if (flags & RENAME_EXCHANGE)
4463 target_flags = 0;
4464
4465 retry:
4466 from = user_path_parent(olddfd, oldname,
4467 &old_path, &old_last, &old_type, lookup_flags);
4468 if (IS_ERR(from)) {
4469 error = PTR_ERR(from);
4470 goto exit;
4471 }
4472
4473 to = user_path_parent(newdfd, newname,
4474 &new_path, &new_last, &new_type, lookup_flags);
4475 if (IS_ERR(to)) {
4476 error = PTR_ERR(to);
4477 goto exit1;
4478 }
4479
4480 error = -EXDEV;
4481 if (old_path.mnt != new_path.mnt)
4482 goto exit2;
4483
4484 error = -EBUSY;
4485 if (old_type != LAST_NORM)
4486 goto exit2;
4487
4488 if (flags & RENAME_NOREPLACE)
4489 error = -EEXIST;
4490 if (new_type != LAST_NORM)
4491 goto exit2;
4492
4493 error = mnt_want_write(old_path.mnt);
4494 if (error)
4495 goto exit2;
4496
4497 retry_deleg:
4498 trap = lock_rename(new_path.dentry, old_path.dentry);
4499
4500 old_dentry = __lookup_hash(&old_last, old_path.dentry, lookup_flags);
4501 error = PTR_ERR(old_dentry);
4502 if (IS_ERR(old_dentry))
4503 goto exit3;
4504 /* source must exist */
4505 error = -ENOENT;
4506 if (d_is_negative(old_dentry))
4507 goto exit4;
4508 new_dentry = __lookup_hash(&new_last, new_path.dentry, lookup_flags | target_flags);
4509 error = PTR_ERR(new_dentry);
4510 if (IS_ERR(new_dentry))
4511 goto exit4;
4512 error = -EEXIST;
4513 if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
4514 goto exit5;
4515 if (flags & RENAME_EXCHANGE) {
4516 error = -ENOENT;
4517 if (d_is_negative(new_dentry))
4518 goto exit5;
4519
4520 if (!d_is_dir(new_dentry)) {
4521 error = -ENOTDIR;
4522 if (new_last.name[new_last.len])
4523 goto exit5;
4524 }
4525 }
4526 /* unless the source is a directory trailing slashes give -ENOTDIR */
4527 if (!d_is_dir(old_dentry)) {
4528 error = -ENOTDIR;
4529 if (old_last.name[old_last.len])
4530 goto exit5;
4531 if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len])
4532 goto exit5;
4533 }
4534 /* source should not be ancestor of target */
4535 error = -EINVAL;
4536 if (old_dentry == trap)
4537 goto exit5;
4538 /* target should not be an ancestor of source */
4539 if (!(flags & RENAME_EXCHANGE))
4540 error = -ENOTEMPTY;
4541 if (new_dentry == trap)
4542 goto exit5;
4543
4544 error = security_path_rename(&old_path, old_dentry,
4545 &new_path, new_dentry, flags);
4546 if (error)
4547 goto exit5;
4548 error = vfs_rename(old_path.dentry->d_inode, old_dentry,
4549 new_path.dentry->d_inode, new_dentry,
4550 &delegated_inode, flags);
4551 exit5:
4552 dput(new_dentry);
4553 exit4:
4554 dput(old_dentry);
4555 exit3:
4556 unlock_rename(new_path.dentry, old_path.dentry);
4557 if (delegated_inode) {
4558 error = break_deleg_wait(&delegated_inode);
4559 if (!error)
4560 goto retry_deleg;
4561 }
4562 mnt_drop_write(old_path.mnt);
4563 exit2:
4564 if (retry_estale(error, lookup_flags))
4565 should_retry = true;
4566 path_put(&new_path);
4567 putname(to);
4568 exit1:
4569 path_put(&old_path);
4570 putname(from);
4571 if (should_retry) {
4572 should_retry = false;
4573 lookup_flags |= LOOKUP_REVAL;
4574 goto retry;
4575 }
4576 exit:
4577 return error;
4578 }
4579
4580 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
4581 int, newdfd, const char __user *, newname)
4582 {
4583 return sys_renameat2(olddfd, oldname, newdfd, newname, 0);
4584 }
4585
4586 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4587 {
4588 return sys_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4589 }
4590
4591 int vfs_whiteout(struct inode *dir, struct dentry *dentry)
4592 {
4593 int error = may_create(dir, dentry);
4594 if (error)
4595 return error;
4596
4597 if (!dir->i_op->mknod)
4598 return -EPERM;
4599
4600 return dir->i_op->mknod(dir, dentry,
4601 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
4602 }
4603 EXPORT_SYMBOL(vfs_whiteout);
4604
4605 int readlink_copy(char __user *buffer, int buflen, const char *link)
4606 {
4607 int len = PTR_ERR(link);
4608 if (IS_ERR(link))
4609 goto out;
4610
4611 len = strlen(link);
4612 if (len > (unsigned) buflen)
4613 len = buflen;
4614 if (copy_to_user(buffer, link, len))
4615 len = -EFAULT;
4616 out:
4617 return len;
4618 }
4619
4620 /*
4621 * A helper for ->readlink(). This should be used *ONLY* for symlinks that
4622 * have ->get_link() not calling nd_jump_link(). Using (or not using) it
4623 * for any given inode is up to filesystem.
4624 */
4625 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4626 {
4627 DEFINE_DELAYED_CALL(done);
4628 struct inode *inode = d_inode(dentry);
4629 const char *link = inode->i_link;
4630 int res;
4631
4632 if (!link) {
4633 link = inode->i_op->get_link(dentry, inode, &done);
4634 if (IS_ERR(link))
4635 return PTR_ERR(link);
4636 }
4637 res = readlink_copy(buffer, buflen, link);
4638 do_delayed_call(&done);
4639 return res;
4640 }
4641 EXPORT_SYMBOL(generic_readlink);
4642
4643 /* get the link contents into pagecache */
4644 const char *page_get_link(struct dentry *dentry, struct inode *inode,
4645 struct delayed_call *callback)
4646 {
4647 char *kaddr;
4648 struct page *page;
4649 struct address_space *mapping = inode->i_mapping;
4650
4651 if (!dentry) {
4652 page = find_get_page(mapping, 0);
4653 if (!page)
4654 return ERR_PTR(-ECHILD);
4655 if (!PageUptodate(page)) {
4656 put_page(page);
4657 return ERR_PTR(-ECHILD);
4658 }
4659 } else {
4660 page = read_mapping_page(mapping, 0, NULL);
4661 if (IS_ERR(page))
4662 return (char*)page;
4663 }
4664 set_delayed_call(callback, page_put_link, page);
4665 BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM);
4666 kaddr = page_address(page);
4667 nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1);
4668 return kaddr;
4669 }
4670
4671 EXPORT_SYMBOL(page_get_link);
4672
4673 void page_put_link(void *arg)
4674 {
4675 put_page(arg);
4676 }
4677 EXPORT_SYMBOL(page_put_link);
4678
4679 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4680 {
4681 DEFINE_DELAYED_CALL(done);
4682 int res = readlink_copy(buffer, buflen,
4683 page_get_link(dentry, d_inode(dentry),
4684 &done));
4685 do_delayed_call(&done);
4686 return res;
4687 }
4688 EXPORT_SYMBOL(page_readlink);
4689
4690 /*
4691 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
4692 */
4693 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
4694 {
4695 struct address_space *mapping = inode->i_mapping;
4696 struct page *page;
4697 void *fsdata;
4698 int err;
4699 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
4700 if (nofs)
4701 flags |= AOP_FLAG_NOFS;
4702
4703 retry:
4704 err = pagecache_write_begin(NULL, mapping, 0, len-1,
4705 flags, &page, &fsdata);
4706 if (err)
4707 goto fail;
4708
4709 memcpy(page_address(page), symname, len-1);
4710
4711 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
4712 page, fsdata);
4713 if (err < 0)
4714 goto fail;
4715 if (err < len-1)
4716 goto retry;
4717
4718 mark_inode_dirty(inode);
4719 return 0;
4720 fail:
4721 return err;
4722 }
4723 EXPORT_SYMBOL(__page_symlink);
4724
4725 int page_symlink(struct inode *inode, const char *symname, int len)
4726 {
4727 return __page_symlink(inode, symname, len,
4728 !mapping_gfp_constraint(inode->i_mapping, __GFP_FS));
4729 }
4730 EXPORT_SYMBOL(page_symlink);
4731
4732 const struct inode_operations page_symlink_inode_operations = {
4733 .readlink = generic_readlink,
4734 .get_link = page_get_link,
4735 };
4736 EXPORT_SYMBOL(page_symlink_inode_operations);
This page took 0.18077 seconds and 6 git commands to generate.