Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/trivial
[deliverable/linux.git] / fs / namei.c
1 /*
2 * linux/fs/namei.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * Some corrections by tytso.
9 */
10
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12 * lookup logic.
13 */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15 */
16
17 #include <linux/init.h>
18 #include <linux/module.h>
19 #include <linux/slab.h>
20 #include <linux/fs.h>
21 #include <linux/namei.h>
22 #include <linux/pagemap.h>
23 #include <linux/fsnotify.h>
24 #include <linux/personality.h>
25 #include <linux/security.h>
26 #include <linux/ima.h>
27 #include <linux/syscalls.h>
28 #include <linux/mount.h>
29 #include <linux/audit.h>
30 #include <linux/capability.h>
31 #include <linux/file.h>
32 #include <linux/fcntl.h>
33 #include <linux/device_cgroup.h>
34 #include <linux/fs_struct.h>
35 #include <linux/posix_acl.h>
36 #include <asm/uaccess.h>
37
38 #include "internal.h"
39 #include "mount.h"
40
41 /* [Feb-1997 T. Schoebel-Theuer]
42 * Fundamental changes in the pathname lookup mechanisms (namei)
43 * were necessary because of omirr. The reason is that omirr needs
44 * to know the _real_ pathname, not the user-supplied one, in case
45 * of symlinks (and also when transname replacements occur).
46 *
47 * The new code replaces the old recursive symlink resolution with
48 * an iterative one (in case of non-nested symlink chains). It does
49 * this with calls to <fs>_follow_link().
50 * As a side effect, dir_namei(), _namei() and follow_link() are now
51 * replaced with a single function lookup_dentry() that can handle all
52 * the special cases of the former code.
53 *
54 * With the new dcache, the pathname is stored at each inode, at least as
55 * long as the refcount of the inode is positive. As a side effect, the
56 * size of the dcache depends on the inode cache and thus is dynamic.
57 *
58 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
59 * resolution to correspond with current state of the code.
60 *
61 * Note that the symlink resolution is not *completely* iterative.
62 * There is still a significant amount of tail- and mid- recursion in
63 * the algorithm. Also, note that <fs>_readlink() is not used in
64 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
65 * may return different results than <fs>_follow_link(). Many virtual
66 * filesystems (including /proc) exhibit this behavior.
67 */
68
69 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
70 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
71 * and the name already exists in form of a symlink, try to create the new
72 * name indicated by the symlink. The old code always complained that the
73 * name already exists, due to not following the symlink even if its target
74 * is nonexistent. The new semantics affects also mknod() and link() when
75 * the name is a symlink pointing to a non-existent name.
76 *
77 * I don't know which semantics is the right one, since I have no access
78 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
79 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
80 * "old" one. Personally, I think the new semantics is much more logical.
81 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
82 * file does succeed in both HP-UX and SunOs, but not in Solaris
83 * and in the old Linux semantics.
84 */
85
86 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
87 * semantics. See the comments in "open_namei" and "do_link" below.
88 *
89 * [10-Sep-98 Alan Modra] Another symlink change.
90 */
91
92 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
93 * inside the path - always follow.
94 * in the last component in creation/removal/renaming - never follow.
95 * if LOOKUP_FOLLOW passed - follow.
96 * if the pathname has trailing slashes - follow.
97 * otherwise - don't follow.
98 * (applied in that order).
99 *
100 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
101 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
102 * During the 2.4 we need to fix the userland stuff depending on it -
103 * hopefully we will be able to get rid of that wart in 2.5. So far only
104 * XEmacs seems to be relying on it...
105 */
106 /*
107 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
108 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
109 * any extra contention...
110 */
111
112 /* In order to reduce some races, while at the same time doing additional
113 * checking and hopefully speeding things up, we copy filenames to the
114 * kernel data space before using them..
115 *
116 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
117 * PATH_MAX includes the nul terminator --RR.
118 */
119 static int do_getname(const char __user *filename, char *page)
120 {
121 int retval;
122 unsigned long len = PATH_MAX;
123
124 if (!segment_eq(get_fs(), KERNEL_DS)) {
125 if ((unsigned long) filename >= TASK_SIZE)
126 return -EFAULT;
127 if (TASK_SIZE - (unsigned long) filename < PATH_MAX)
128 len = TASK_SIZE - (unsigned long) filename;
129 }
130
131 retval = strncpy_from_user(page, filename, len);
132 if (retval > 0) {
133 if (retval < len)
134 return 0;
135 return -ENAMETOOLONG;
136 } else if (!retval)
137 retval = -ENOENT;
138 return retval;
139 }
140
141 static char *getname_flags(const char __user *filename, int flags, int *empty)
142 {
143 char *result = __getname();
144 int retval;
145
146 if (!result)
147 return ERR_PTR(-ENOMEM);
148
149 retval = do_getname(filename, result);
150 if (retval < 0) {
151 if (retval == -ENOENT && empty)
152 *empty = 1;
153 if (retval != -ENOENT || !(flags & LOOKUP_EMPTY)) {
154 __putname(result);
155 return ERR_PTR(retval);
156 }
157 }
158 audit_getname(result);
159 return result;
160 }
161
162 char *getname(const char __user * filename)
163 {
164 return getname_flags(filename, 0, 0);
165 }
166
167 #ifdef CONFIG_AUDITSYSCALL
168 void putname(const char *name)
169 {
170 if (unlikely(!audit_dummy_context()))
171 audit_putname(name);
172 else
173 __putname(name);
174 }
175 EXPORT_SYMBOL(putname);
176 #endif
177
178 static int check_acl(struct inode *inode, int mask)
179 {
180 #ifdef CONFIG_FS_POSIX_ACL
181 struct posix_acl *acl;
182
183 if (mask & MAY_NOT_BLOCK) {
184 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
185 if (!acl)
186 return -EAGAIN;
187 /* no ->get_acl() calls in RCU mode... */
188 if (acl == ACL_NOT_CACHED)
189 return -ECHILD;
190 return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
191 }
192
193 acl = get_cached_acl(inode, ACL_TYPE_ACCESS);
194
195 /*
196 * A filesystem can force a ACL callback by just never filling the
197 * ACL cache. But normally you'd fill the cache either at inode
198 * instantiation time, or on the first ->get_acl call.
199 *
200 * If the filesystem doesn't have a get_acl() function at all, we'll
201 * just create the negative cache entry.
202 */
203 if (acl == ACL_NOT_CACHED) {
204 if (inode->i_op->get_acl) {
205 acl = inode->i_op->get_acl(inode, ACL_TYPE_ACCESS);
206 if (IS_ERR(acl))
207 return PTR_ERR(acl);
208 } else {
209 set_cached_acl(inode, ACL_TYPE_ACCESS, NULL);
210 return -EAGAIN;
211 }
212 }
213
214 if (acl) {
215 int error = posix_acl_permission(inode, acl, mask);
216 posix_acl_release(acl);
217 return error;
218 }
219 #endif
220
221 return -EAGAIN;
222 }
223
224 /*
225 * This does the basic permission checking
226 */
227 static int acl_permission_check(struct inode *inode, int mask)
228 {
229 unsigned int mode = inode->i_mode;
230
231 if (current_user_ns() != inode_userns(inode))
232 goto other_perms;
233
234 if (likely(current_fsuid() == inode->i_uid))
235 mode >>= 6;
236 else {
237 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
238 int error = check_acl(inode, mask);
239 if (error != -EAGAIN)
240 return error;
241 }
242
243 if (in_group_p(inode->i_gid))
244 mode >>= 3;
245 }
246
247 other_perms:
248 /*
249 * If the DACs are ok we don't need any capability check.
250 */
251 if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
252 return 0;
253 return -EACCES;
254 }
255
256 /**
257 * generic_permission - check for access rights on a Posix-like filesystem
258 * @inode: inode to check access rights for
259 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
260 *
261 * Used to check for read/write/execute permissions on a file.
262 * We use "fsuid" for this, letting us set arbitrary permissions
263 * for filesystem access without changing the "normal" uids which
264 * are used for other things.
265 *
266 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
267 * request cannot be satisfied (eg. requires blocking or too much complexity).
268 * It would then be called again in ref-walk mode.
269 */
270 int generic_permission(struct inode *inode, int mask)
271 {
272 int ret;
273
274 /*
275 * Do the basic permission checks.
276 */
277 ret = acl_permission_check(inode, mask);
278 if (ret != -EACCES)
279 return ret;
280
281 if (S_ISDIR(inode->i_mode)) {
282 /* DACs are overridable for directories */
283 if (ns_capable(inode_userns(inode), CAP_DAC_OVERRIDE))
284 return 0;
285 if (!(mask & MAY_WRITE))
286 if (ns_capable(inode_userns(inode), CAP_DAC_READ_SEARCH))
287 return 0;
288 return -EACCES;
289 }
290 /*
291 * Read/write DACs are always overridable.
292 * Executable DACs are overridable when there is
293 * at least one exec bit set.
294 */
295 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
296 if (ns_capable(inode_userns(inode), CAP_DAC_OVERRIDE))
297 return 0;
298
299 /*
300 * Searching includes executable on directories, else just read.
301 */
302 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
303 if (mask == MAY_READ)
304 if (ns_capable(inode_userns(inode), CAP_DAC_READ_SEARCH))
305 return 0;
306
307 return -EACCES;
308 }
309
310 /*
311 * We _really_ want to just do "generic_permission()" without
312 * even looking at the inode->i_op values. So we keep a cache
313 * flag in inode->i_opflags, that says "this has not special
314 * permission function, use the fast case".
315 */
316 static inline int do_inode_permission(struct inode *inode, int mask)
317 {
318 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
319 if (likely(inode->i_op->permission))
320 return inode->i_op->permission(inode, mask);
321
322 /* This gets set once for the inode lifetime */
323 spin_lock(&inode->i_lock);
324 inode->i_opflags |= IOP_FASTPERM;
325 spin_unlock(&inode->i_lock);
326 }
327 return generic_permission(inode, mask);
328 }
329
330 /**
331 * inode_permission - check for access rights to a given inode
332 * @inode: inode to check permission on
333 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
334 *
335 * Used to check for read/write/execute permissions on an inode.
336 * We use "fsuid" for this, letting us set arbitrary permissions
337 * for filesystem access without changing the "normal" uids which
338 * are used for other things.
339 *
340 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
341 */
342 int inode_permission(struct inode *inode, int mask)
343 {
344 int retval;
345
346 if (unlikely(mask & MAY_WRITE)) {
347 umode_t mode = inode->i_mode;
348
349 /*
350 * Nobody gets write access to a read-only fs.
351 */
352 if (IS_RDONLY(inode) &&
353 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
354 return -EROFS;
355
356 /*
357 * Nobody gets write access to an immutable file.
358 */
359 if (IS_IMMUTABLE(inode))
360 return -EACCES;
361 }
362
363 retval = do_inode_permission(inode, mask);
364 if (retval)
365 return retval;
366
367 retval = devcgroup_inode_permission(inode, mask);
368 if (retval)
369 return retval;
370
371 return security_inode_permission(inode, mask);
372 }
373
374 /**
375 * path_get - get a reference to a path
376 * @path: path to get the reference to
377 *
378 * Given a path increment the reference count to the dentry and the vfsmount.
379 */
380 void path_get(struct path *path)
381 {
382 mntget(path->mnt);
383 dget(path->dentry);
384 }
385 EXPORT_SYMBOL(path_get);
386
387 /**
388 * path_put - put a reference to a path
389 * @path: path to put the reference to
390 *
391 * Given a path decrement the reference count to the dentry and the vfsmount.
392 */
393 void path_put(struct path *path)
394 {
395 dput(path->dentry);
396 mntput(path->mnt);
397 }
398 EXPORT_SYMBOL(path_put);
399
400 /*
401 * Path walking has 2 modes, rcu-walk and ref-walk (see
402 * Documentation/filesystems/path-lookup.txt). In situations when we can't
403 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
404 * normal reference counts on dentries and vfsmounts to transition to rcu-walk
405 * mode. Refcounts are grabbed at the last known good point before rcu-walk
406 * got stuck, so ref-walk may continue from there. If this is not successful
407 * (eg. a seqcount has changed), then failure is returned and it's up to caller
408 * to restart the path walk from the beginning in ref-walk mode.
409 */
410
411 /**
412 * unlazy_walk - try to switch to ref-walk mode.
413 * @nd: nameidata pathwalk data
414 * @dentry: child of nd->path.dentry or NULL
415 * Returns: 0 on success, -ECHILD on failure
416 *
417 * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry
418 * for ref-walk mode. @dentry must be a path found by a do_lookup call on
419 * @nd or NULL. Must be called from rcu-walk context.
420 */
421 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry)
422 {
423 struct fs_struct *fs = current->fs;
424 struct dentry *parent = nd->path.dentry;
425 int want_root = 0;
426
427 BUG_ON(!(nd->flags & LOOKUP_RCU));
428 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
429 want_root = 1;
430 spin_lock(&fs->lock);
431 if (nd->root.mnt != fs->root.mnt ||
432 nd->root.dentry != fs->root.dentry)
433 goto err_root;
434 }
435 spin_lock(&parent->d_lock);
436 if (!dentry) {
437 if (!__d_rcu_to_refcount(parent, nd->seq))
438 goto err_parent;
439 BUG_ON(nd->inode != parent->d_inode);
440 } else {
441 if (dentry->d_parent != parent)
442 goto err_parent;
443 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
444 if (!__d_rcu_to_refcount(dentry, nd->seq))
445 goto err_child;
446 /*
447 * If the sequence check on the child dentry passed, then
448 * the child has not been removed from its parent. This
449 * means the parent dentry must be valid and able to take
450 * a reference at this point.
451 */
452 BUG_ON(!IS_ROOT(dentry) && dentry->d_parent != parent);
453 BUG_ON(!parent->d_count);
454 parent->d_count++;
455 spin_unlock(&dentry->d_lock);
456 }
457 spin_unlock(&parent->d_lock);
458 if (want_root) {
459 path_get(&nd->root);
460 spin_unlock(&fs->lock);
461 }
462 mntget(nd->path.mnt);
463
464 rcu_read_unlock();
465 br_read_unlock(vfsmount_lock);
466 nd->flags &= ~LOOKUP_RCU;
467 return 0;
468
469 err_child:
470 spin_unlock(&dentry->d_lock);
471 err_parent:
472 spin_unlock(&parent->d_lock);
473 err_root:
474 if (want_root)
475 spin_unlock(&fs->lock);
476 return -ECHILD;
477 }
478
479 /**
480 * release_open_intent - free up open intent resources
481 * @nd: pointer to nameidata
482 */
483 void release_open_intent(struct nameidata *nd)
484 {
485 struct file *file = nd->intent.open.file;
486
487 if (file && !IS_ERR(file)) {
488 if (file->f_path.dentry == NULL)
489 put_filp(file);
490 else
491 fput(file);
492 }
493 }
494
495 static inline int d_revalidate(struct dentry *dentry, struct nameidata *nd)
496 {
497 return dentry->d_op->d_revalidate(dentry, nd);
498 }
499
500 /**
501 * complete_walk - successful completion of path walk
502 * @nd: pointer nameidata
503 *
504 * If we had been in RCU mode, drop out of it and legitimize nd->path.
505 * Revalidate the final result, unless we'd already done that during
506 * the path walk or the filesystem doesn't ask for it. Return 0 on
507 * success, -error on failure. In case of failure caller does not
508 * need to drop nd->path.
509 */
510 static int complete_walk(struct nameidata *nd)
511 {
512 struct dentry *dentry = nd->path.dentry;
513 int status;
514
515 if (nd->flags & LOOKUP_RCU) {
516 nd->flags &= ~LOOKUP_RCU;
517 if (!(nd->flags & LOOKUP_ROOT))
518 nd->root.mnt = NULL;
519 spin_lock(&dentry->d_lock);
520 if (unlikely(!__d_rcu_to_refcount(dentry, nd->seq))) {
521 spin_unlock(&dentry->d_lock);
522 rcu_read_unlock();
523 br_read_unlock(vfsmount_lock);
524 return -ECHILD;
525 }
526 BUG_ON(nd->inode != dentry->d_inode);
527 spin_unlock(&dentry->d_lock);
528 mntget(nd->path.mnt);
529 rcu_read_unlock();
530 br_read_unlock(vfsmount_lock);
531 }
532
533 if (likely(!(nd->flags & LOOKUP_JUMPED)))
534 return 0;
535
536 if (likely(!(dentry->d_flags & DCACHE_OP_REVALIDATE)))
537 return 0;
538
539 if (likely(!(dentry->d_sb->s_type->fs_flags & FS_REVAL_DOT)))
540 return 0;
541
542 /* Note: we do not d_invalidate() */
543 status = d_revalidate(dentry, nd);
544 if (status > 0)
545 return 0;
546
547 if (!status)
548 status = -ESTALE;
549
550 path_put(&nd->path);
551 return status;
552 }
553
554 static __always_inline void set_root(struct nameidata *nd)
555 {
556 if (!nd->root.mnt)
557 get_fs_root(current->fs, &nd->root);
558 }
559
560 static int link_path_walk(const char *, struct nameidata *);
561
562 static __always_inline void set_root_rcu(struct nameidata *nd)
563 {
564 if (!nd->root.mnt) {
565 struct fs_struct *fs = current->fs;
566 unsigned seq;
567
568 do {
569 seq = read_seqcount_begin(&fs->seq);
570 nd->root = fs->root;
571 nd->seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
572 } while (read_seqcount_retry(&fs->seq, seq));
573 }
574 }
575
576 static __always_inline int __vfs_follow_link(struct nameidata *nd, const char *link)
577 {
578 int ret;
579
580 if (IS_ERR(link))
581 goto fail;
582
583 if (*link == '/') {
584 set_root(nd);
585 path_put(&nd->path);
586 nd->path = nd->root;
587 path_get(&nd->root);
588 nd->flags |= LOOKUP_JUMPED;
589 }
590 nd->inode = nd->path.dentry->d_inode;
591
592 ret = link_path_walk(link, nd);
593 return ret;
594 fail:
595 path_put(&nd->path);
596 return PTR_ERR(link);
597 }
598
599 static void path_put_conditional(struct path *path, struct nameidata *nd)
600 {
601 dput(path->dentry);
602 if (path->mnt != nd->path.mnt)
603 mntput(path->mnt);
604 }
605
606 static inline void path_to_nameidata(const struct path *path,
607 struct nameidata *nd)
608 {
609 if (!(nd->flags & LOOKUP_RCU)) {
610 dput(nd->path.dentry);
611 if (nd->path.mnt != path->mnt)
612 mntput(nd->path.mnt);
613 }
614 nd->path.mnt = path->mnt;
615 nd->path.dentry = path->dentry;
616 }
617
618 static inline void put_link(struct nameidata *nd, struct path *link, void *cookie)
619 {
620 struct inode *inode = link->dentry->d_inode;
621 if (!IS_ERR(cookie) && inode->i_op->put_link)
622 inode->i_op->put_link(link->dentry, nd, cookie);
623 path_put(link);
624 }
625
626 static __always_inline int
627 follow_link(struct path *link, struct nameidata *nd, void **p)
628 {
629 int error;
630 struct dentry *dentry = link->dentry;
631
632 BUG_ON(nd->flags & LOOKUP_RCU);
633
634 if (link->mnt == nd->path.mnt)
635 mntget(link->mnt);
636
637 if (unlikely(current->total_link_count >= 40)) {
638 *p = ERR_PTR(-ELOOP); /* no ->put_link(), please */
639 path_put(&nd->path);
640 return -ELOOP;
641 }
642 cond_resched();
643 current->total_link_count++;
644
645 touch_atime(link->mnt, dentry);
646 nd_set_link(nd, NULL);
647
648 error = security_inode_follow_link(link->dentry, nd);
649 if (error) {
650 *p = ERR_PTR(error); /* no ->put_link(), please */
651 path_put(&nd->path);
652 return error;
653 }
654
655 nd->last_type = LAST_BIND;
656 *p = dentry->d_inode->i_op->follow_link(dentry, nd);
657 error = PTR_ERR(*p);
658 if (!IS_ERR(*p)) {
659 char *s = nd_get_link(nd);
660 error = 0;
661 if (s)
662 error = __vfs_follow_link(nd, s);
663 else if (nd->last_type == LAST_BIND) {
664 nd->flags |= LOOKUP_JUMPED;
665 nd->inode = nd->path.dentry->d_inode;
666 if (nd->inode->i_op->follow_link) {
667 /* stepped on a _really_ weird one */
668 path_put(&nd->path);
669 error = -ELOOP;
670 }
671 }
672 }
673 return error;
674 }
675
676 static int follow_up_rcu(struct path *path)
677 {
678 struct mount *mnt = real_mount(path->mnt);
679 struct mount *parent;
680 struct dentry *mountpoint;
681
682 parent = mnt->mnt_parent;
683 if (&parent->mnt == path->mnt)
684 return 0;
685 mountpoint = mnt->mnt_mountpoint;
686 path->dentry = mountpoint;
687 path->mnt = &parent->mnt;
688 return 1;
689 }
690
691 int follow_up(struct path *path)
692 {
693 struct mount *mnt = real_mount(path->mnt);
694 struct mount *parent;
695 struct dentry *mountpoint;
696
697 br_read_lock(vfsmount_lock);
698 parent = mnt->mnt_parent;
699 if (&parent->mnt == path->mnt) {
700 br_read_unlock(vfsmount_lock);
701 return 0;
702 }
703 mntget(&parent->mnt);
704 mountpoint = dget(mnt->mnt_mountpoint);
705 br_read_unlock(vfsmount_lock);
706 dput(path->dentry);
707 path->dentry = mountpoint;
708 mntput(path->mnt);
709 path->mnt = &parent->mnt;
710 return 1;
711 }
712
713 /*
714 * Perform an automount
715 * - return -EISDIR to tell follow_managed() to stop and return the path we
716 * were called with.
717 */
718 static int follow_automount(struct path *path, unsigned flags,
719 bool *need_mntput)
720 {
721 struct vfsmount *mnt;
722 int err;
723
724 if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
725 return -EREMOTE;
726
727 /* We don't want to mount if someone's just doing a stat -
728 * unless they're stat'ing a directory and appended a '/' to
729 * the name.
730 *
731 * We do, however, want to mount if someone wants to open or
732 * create a file of any type under the mountpoint, wants to
733 * traverse through the mountpoint or wants to open the
734 * mounted directory. Also, autofs may mark negative dentries
735 * as being automount points. These will need the attentions
736 * of the daemon to instantiate them before they can be used.
737 */
738 if (!(flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
739 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
740 path->dentry->d_inode)
741 return -EISDIR;
742
743 current->total_link_count++;
744 if (current->total_link_count >= 40)
745 return -ELOOP;
746
747 mnt = path->dentry->d_op->d_automount(path);
748 if (IS_ERR(mnt)) {
749 /*
750 * The filesystem is allowed to return -EISDIR here to indicate
751 * it doesn't want to automount. For instance, autofs would do
752 * this so that its userspace daemon can mount on this dentry.
753 *
754 * However, we can only permit this if it's a terminal point in
755 * the path being looked up; if it wasn't then the remainder of
756 * the path is inaccessible and we should say so.
757 */
758 if (PTR_ERR(mnt) == -EISDIR && (flags & LOOKUP_PARENT))
759 return -EREMOTE;
760 return PTR_ERR(mnt);
761 }
762
763 if (!mnt) /* mount collision */
764 return 0;
765
766 if (!*need_mntput) {
767 /* lock_mount() may release path->mnt on error */
768 mntget(path->mnt);
769 *need_mntput = true;
770 }
771 err = finish_automount(mnt, path);
772
773 switch (err) {
774 case -EBUSY:
775 /* Someone else made a mount here whilst we were busy */
776 return 0;
777 case 0:
778 path_put(path);
779 path->mnt = mnt;
780 path->dentry = dget(mnt->mnt_root);
781 return 0;
782 default:
783 return err;
784 }
785
786 }
787
788 /*
789 * Handle a dentry that is managed in some way.
790 * - Flagged for transit management (autofs)
791 * - Flagged as mountpoint
792 * - Flagged as automount point
793 *
794 * This may only be called in refwalk mode.
795 *
796 * Serialization is taken care of in namespace.c
797 */
798 static int follow_managed(struct path *path, unsigned flags)
799 {
800 struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
801 unsigned managed;
802 bool need_mntput = false;
803 int ret = 0;
804
805 /* Given that we're not holding a lock here, we retain the value in a
806 * local variable for each dentry as we look at it so that we don't see
807 * the components of that value change under us */
808 while (managed = ACCESS_ONCE(path->dentry->d_flags),
809 managed &= DCACHE_MANAGED_DENTRY,
810 unlikely(managed != 0)) {
811 /* Allow the filesystem to manage the transit without i_mutex
812 * being held. */
813 if (managed & DCACHE_MANAGE_TRANSIT) {
814 BUG_ON(!path->dentry->d_op);
815 BUG_ON(!path->dentry->d_op->d_manage);
816 ret = path->dentry->d_op->d_manage(path->dentry, false);
817 if (ret < 0)
818 break;
819 }
820
821 /* Transit to a mounted filesystem. */
822 if (managed & DCACHE_MOUNTED) {
823 struct vfsmount *mounted = lookup_mnt(path);
824 if (mounted) {
825 dput(path->dentry);
826 if (need_mntput)
827 mntput(path->mnt);
828 path->mnt = mounted;
829 path->dentry = dget(mounted->mnt_root);
830 need_mntput = true;
831 continue;
832 }
833
834 /* Something is mounted on this dentry in another
835 * namespace and/or whatever was mounted there in this
836 * namespace got unmounted before we managed to get the
837 * vfsmount_lock */
838 }
839
840 /* Handle an automount point */
841 if (managed & DCACHE_NEED_AUTOMOUNT) {
842 ret = follow_automount(path, flags, &need_mntput);
843 if (ret < 0)
844 break;
845 continue;
846 }
847
848 /* We didn't change the current path point */
849 break;
850 }
851
852 if (need_mntput && path->mnt == mnt)
853 mntput(path->mnt);
854 if (ret == -EISDIR)
855 ret = 0;
856 return ret < 0 ? ret : need_mntput;
857 }
858
859 int follow_down_one(struct path *path)
860 {
861 struct vfsmount *mounted;
862
863 mounted = lookup_mnt(path);
864 if (mounted) {
865 dput(path->dentry);
866 mntput(path->mnt);
867 path->mnt = mounted;
868 path->dentry = dget(mounted->mnt_root);
869 return 1;
870 }
871 return 0;
872 }
873
874 static inline bool managed_dentry_might_block(struct dentry *dentry)
875 {
876 return (dentry->d_flags & DCACHE_MANAGE_TRANSIT &&
877 dentry->d_op->d_manage(dentry, true) < 0);
878 }
879
880 /*
881 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if
882 * we meet a managed dentry that would need blocking.
883 */
884 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
885 struct inode **inode)
886 {
887 for (;;) {
888 struct mount *mounted;
889 /*
890 * Don't forget we might have a non-mountpoint managed dentry
891 * that wants to block transit.
892 */
893 if (unlikely(managed_dentry_might_block(path->dentry)))
894 return false;
895
896 if (!d_mountpoint(path->dentry))
897 break;
898
899 mounted = __lookup_mnt(path->mnt, path->dentry, 1);
900 if (!mounted)
901 break;
902 path->mnt = &mounted->mnt;
903 path->dentry = mounted->mnt.mnt_root;
904 nd->flags |= LOOKUP_JUMPED;
905 nd->seq = read_seqcount_begin(&path->dentry->d_seq);
906 /*
907 * Update the inode too. We don't need to re-check the
908 * dentry sequence number here after this d_inode read,
909 * because a mount-point is always pinned.
910 */
911 *inode = path->dentry->d_inode;
912 }
913 return true;
914 }
915
916 static void follow_mount_rcu(struct nameidata *nd)
917 {
918 while (d_mountpoint(nd->path.dentry)) {
919 struct mount *mounted;
920 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry, 1);
921 if (!mounted)
922 break;
923 nd->path.mnt = &mounted->mnt;
924 nd->path.dentry = mounted->mnt.mnt_root;
925 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
926 }
927 }
928
929 static int follow_dotdot_rcu(struct nameidata *nd)
930 {
931 set_root_rcu(nd);
932
933 while (1) {
934 if (nd->path.dentry == nd->root.dentry &&
935 nd->path.mnt == nd->root.mnt) {
936 break;
937 }
938 if (nd->path.dentry != nd->path.mnt->mnt_root) {
939 struct dentry *old = nd->path.dentry;
940 struct dentry *parent = old->d_parent;
941 unsigned seq;
942
943 seq = read_seqcount_begin(&parent->d_seq);
944 if (read_seqcount_retry(&old->d_seq, nd->seq))
945 goto failed;
946 nd->path.dentry = parent;
947 nd->seq = seq;
948 break;
949 }
950 if (!follow_up_rcu(&nd->path))
951 break;
952 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
953 }
954 follow_mount_rcu(nd);
955 nd->inode = nd->path.dentry->d_inode;
956 return 0;
957
958 failed:
959 nd->flags &= ~LOOKUP_RCU;
960 if (!(nd->flags & LOOKUP_ROOT))
961 nd->root.mnt = NULL;
962 rcu_read_unlock();
963 br_read_unlock(vfsmount_lock);
964 return -ECHILD;
965 }
966
967 /*
968 * Follow down to the covering mount currently visible to userspace. At each
969 * point, the filesystem owning that dentry may be queried as to whether the
970 * caller is permitted to proceed or not.
971 */
972 int follow_down(struct path *path)
973 {
974 unsigned managed;
975 int ret;
976
977 while (managed = ACCESS_ONCE(path->dentry->d_flags),
978 unlikely(managed & DCACHE_MANAGED_DENTRY)) {
979 /* Allow the filesystem to manage the transit without i_mutex
980 * being held.
981 *
982 * We indicate to the filesystem if someone is trying to mount
983 * something here. This gives autofs the chance to deny anyone
984 * other than its daemon the right to mount on its
985 * superstructure.
986 *
987 * The filesystem may sleep at this point.
988 */
989 if (managed & DCACHE_MANAGE_TRANSIT) {
990 BUG_ON(!path->dentry->d_op);
991 BUG_ON(!path->dentry->d_op->d_manage);
992 ret = path->dentry->d_op->d_manage(
993 path->dentry, false);
994 if (ret < 0)
995 return ret == -EISDIR ? 0 : ret;
996 }
997
998 /* Transit to a mounted filesystem. */
999 if (managed & DCACHE_MOUNTED) {
1000 struct vfsmount *mounted = lookup_mnt(path);
1001 if (!mounted)
1002 break;
1003 dput(path->dentry);
1004 mntput(path->mnt);
1005 path->mnt = mounted;
1006 path->dentry = dget(mounted->mnt_root);
1007 continue;
1008 }
1009
1010 /* Don't handle automount points here */
1011 break;
1012 }
1013 return 0;
1014 }
1015
1016 /*
1017 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1018 */
1019 static void follow_mount(struct path *path)
1020 {
1021 while (d_mountpoint(path->dentry)) {
1022 struct vfsmount *mounted = lookup_mnt(path);
1023 if (!mounted)
1024 break;
1025 dput(path->dentry);
1026 mntput(path->mnt);
1027 path->mnt = mounted;
1028 path->dentry = dget(mounted->mnt_root);
1029 }
1030 }
1031
1032 static void follow_dotdot(struct nameidata *nd)
1033 {
1034 set_root(nd);
1035
1036 while(1) {
1037 struct dentry *old = nd->path.dentry;
1038
1039 if (nd->path.dentry == nd->root.dentry &&
1040 nd->path.mnt == nd->root.mnt) {
1041 break;
1042 }
1043 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1044 /* rare case of legitimate dget_parent()... */
1045 nd->path.dentry = dget_parent(nd->path.dentry);
1046 dput(old);
1047 break;
1048 }
1049 if (!follow_up(&nd->path))
1050 break;
1051 }
1052 follow_mount(&nd->path);
1053 nd->inode = nd->path.dentry->d_inode;
1054 }
1055
1056 /*
1057 * Allocate a dentry with name and parent, and perform a parent
1058 * directory ->lookup on it. Returns the new dentry, or ERR_PTR
1059 * on error. parent->d_inode->i_mutex must be held. d_lookup must
1060 * have verified that no child exists while under i_mutex.
1061 */
1062 static struct dentry *d_alloc_and_lookup(struct dentry *parent,
1063 struct qstr *name, struct nameidata *nd)
1064 {
1065 struct inode *inode = parent->d_inode;
1066 struct dentry *dentry;
1067 struct dentry *old;
1068
1069 /* Don't create child dentry for a dead directory. */
1070 if (unlikely(IS_DEADDIR(inode)))
1071 return ERR_PTR(-ENOENT);
1072
1073 dentry = d_alloc(parent, name);
1074 if (unlikely(!dentry))
1075 return ERR_PTR(-ENOMEM);
1076
1077 old = inode->i_op->lookup(inode, dentry, nd);
1078 if (unlikely(old)) {
1079 dput(dentry);
1080 dentry = old;
1081 }
1082 return dentry;
1083 }
1084
1085 /*
1086 * We already have a dentry, but require a lookup to be performed on the parent
1087 * directory to fill in d_inode. Returns the new dentry, or ERR_PTR on error.
1088 * parent->d_inode->i_mutex must be held. d_lookup must have verified that no
1089 * child exists while under i_mutex.
1090 */
1091 static struct dentry *d_inode_lookup(struct dentry *parent, struct dentry *dentry,
1092 struct nameidata *nd)
1093 {
1094 struct inode *inode = parent->d_inode;
1095 struct dentry *old;
1096
1097 /* Don't create child dentry for a dead directory. */
1098 if (unlikely(IS_DEADDIR(inode))) {
1099 dput(dentry);
1100 return ERR_PTR(-ENOENT);
1101 }
1102
1103 old = inode->i_op->lookup(inode, dentry, nd);
1104 if (unlikely(old)) {
1105 dput(dentry);
1106 dentry = old;
1107 }
1108 return dentry;
1109 }
1110
1111 /*
1112 * It's more convoluted than I'd like it to be, but... it's still fairly
1113 * small and for now I'd prefer to have fast path as straight as possible.
1114 * It _is_ time-critical.
1115 */
1116 static int do_lookup(struct nameidata *nd, struct qstr *name,
1117 struct path *path, struct inode **inode)
1118 {
1119 struct vfsmount *mnt = nd->path.mnt;
1120 struct dentry *dentry, *parent = nd->path.dentry;
1121 int need_reval = 1;
1122 int status = 1;
1123 int err;
1124
1125 /*
1126 * Rename seqlock is not required here because in the off chance
1127 * of a false negative due to a concurrent rename, we're going to
1128 * do the non-racy lookup, below.
1129 */
1130 if (nd->flags & LOOKUP_RCU) {
1131 unsigned seq;
1132 *inode = nd->inode;
1133 dentry = __d_lookup_rcu(parent, name, &seq, inode);
1134 if (!dentry)
1135 goto unlazy;
1136
1137 /* Memory barrier in read_seqcount_begin of child is enough */
1138 if (__read_seqcount_retry(&parent->d_seq, nd->seq))
1139 return -ECHILD;
1140 nd->seq = seq;
1141
1142 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) {
1143 status = d_revalidate(dentry, nd);
1144 if (unlikely(status <= 0)) {
1145 if (status != -ECHILD)
1146 need_reval = 0;
1147 goto unlazy;
1148 }
1149 }
1150 if (unlikely(d_need_lookup(dentry)))
1151 goto unlazy;
1152 path->mnt = mnt;
1153 path->dentry = dentry;
1154 if (unlikely(!__follow_mount_rcu(nd, path, inode)))
1155 goto unlazy;
1156 if (unlikely(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT))
1157 goto unlazy;
1158 return 0;
1159 unlazy:
1160 if (unlazy_walk(nd, dentry))
1161 return -ECHILD;
1162 } else {
1163 dentry = __d_lookup(parent, name);
1164 }
1165
1166 if (dentry && unlikely(d_need_lookup(dentry))) {
1167 dput(dentry);
1168 dentry = NULL;
1169 }
1170 retry:
1171 if (unlikely(!dentry)) {
1172 struct inode *dir = parent->d_inode;
1173 BUG_ON(nd->inode != dir);
1174
1175 mutex_lock(&dir->i_mutex);
1176 dentry = d_lookup(parent, name);
1177 if (likely(!dentry)) {
1178 dentry = d_alloc_and_lookup(parent, name, nd);
1179 if (IS_ERR(dentry)) {
1180 mutex_unlock(&dir->i_mutex);
1181 return PTR_ERR(dentry);
1182 }
1183 /* known good */
1184 need_reval = 0;
1185 status = 1;
1186 } else if (unlikely(d_need_lookup(dentry))) {
1187 dentry = d_inode_lookup(parent, dentry, nd);
1188 if (IS_ERR(dentry)) {
1189 mutex_unlock(&dir->i_mutex);
1190 return PTR_ERR(dentry);
1191 }
1192 /* known good */
1193 need_reval = 0;
1194 status = 1;
1195 }
1196 mutex_unlock(&dir->i_mutex);
1197 }
1198 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE) && need_reval)
1199 status = d_revalidate(dentry, nd);
1200 if (unlikely(status <= 0)) {
1201 if (status < 0) {
1202 dput(dentry);
1203 return status;
1204 }
1205 if (!d_invalidate(dentry)) {
1206 dput(dentry);
1207 dentry = NULL;
1208 need_reval = 1;
1209 goto retry;
1210 }
1211 }
1212
1213 path->mnt = mnt;
1214 path->dentry = dentry;
1215 err = follow_managed(path, nd->flags);
1216 if (unlikely(err < 0)) {
1217 path_put_conditional(path, nd);
1218 return err;
1219 }
1220 if (err)
1221 nd->flags |= LOOKUP_JUMPED;
1222 *inode = path->dentry->d_inode;
1223 return 0;
1224 }
1225
1226 static inline int may_lookup(struct nameidata *nd)
1227 {
1228 if (nd->flags & LOOKUP_RCU) {
1229 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1230 if (err != -ECHILD)
1231 return err;
1232 if (unlazy_walk(nd, NULL))
1233 return -ECHILD;
1234 }
1235 return inode_permission(nd->inode, MAY_EXEC);
1236 }
1237
1238 static inline int handle_dots(struct nameidata *nd, int type)
1239 {
1240 if (type == LAST_DOTDOT) {
1241 if (nd->flags & LOOKUP_RCU) {
1242 if (follow_dotdot_rcu(nd))
1243 return -ECHILD;
1244 } else
1245 follow_dotdot(nd);
1246 }
1247 return 0;
1248 }
1249
1250 static void terminate_walk(struct nameidata *nd)
1251 {
1252 if (!(nd->flags & LOOKUP_RCU)) {
1253 path_put(&nd->path);
1254 } else {
1255 nd->flags &= ~LOOKUP_RCU;
1256 if (!(nd->flags & LOOKUP_ROOT))
1257 nd->root.mnt = NULL;
1258 rcu_read_unlock();
1259 br_read_unlock(vfsmount_lock);
1260 }
1261 }
1262
1263 /*
1264 * Do we need to follow links? We _really_ want to be able
1265 * to do this check without having to look at inode->i_op,
1266 * so we keep a cache of "no, this doesn't need follow_link"
1267 * for the common case.
1268 */
1269 static inline int should_follow_link(struct inode *inode, int follow)
1270 {
1271 if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1272 if (likely(inode->i_op->follow_link))
1273 return follow;
1274
1275 /* This gets set once for the inode lifetime */
1276 spin_lock(&inode->i_lock);
1277 inode->i_opflags |= IOP_NOFOLLOW;
1278 spin_unlock(&inode->i_lock);
1279 }
1280 return 0;
1281 }
1282
1283 static inline int walk_component(struct nameidata *nd, struct path *path,
1284 struct qstr *name, int type, int follow)
1285 {
1286 struct inode *inode;
1287 int err;
1288 /*
1289 * "." and ".." are special - ".." especially so because it has
1290 * to be able to know about the current root directory and
1291 * parent relationships.
1292 */
1293 if (unlikely(type != LAST_NORM))
1294 return handle_dots(nd, type);
1295 err = do_lookup(nd, name, path, &inode);
1296 if (unlikely(err)) {
1297 terminate_walk(nd);
1298 return err;
1299 }
1300 if (!inode) {
1301 path_to_nameidata(path, nd);
1302 terminate_walk(nd);
1303 return -ENOENT;
1304 }
1305 if (should_follow_link(inode, follow)) {
1306 if (nd->flags & LOOKUP_RCU) {
1307 if (unlikely(unlazy_walk(nd, path->dentry))) {
1308 terminate_walk(nd);
1309 return -ECHILD;
1310 }
1311 }
1312 BUG_ON(inode != path->dentry->d_inode);
1313 return 1;
1314 }
1315 path_to_nameidata(path, nd);
1316 nd->inode = inode;
1317 return 0;
1318 }
1319
1320 /*
1321 * This limits recursive symlink follows to 8, while
1322 * limiting consecutive symlinks to 40.
1323 *
1324 * Without that kind of total limit, nasty chains of consecutive
1325 * symlinks can cause almost arbitrarily long lookups.
1326 */
1327 static inline int nested_symlink(struct path *path, struct nameidata *nd)
1328 {
1329 int res;
1330
1331 if (unlikely(current->link_count >= MAX_NESTED_LINKS)) {
1332 path_put_conditional(path, nd);
1333 path_put(&nd->path);
1334 return -ELOOP;
1335 }
1336 BUG_ON(nd->depth >= MAX_NESTED_LINKS);
1337
1338 nd->depth++;
1339 current->link_count++;
1340
1341 do {
1342 struct path link = *path;
1343 void *cookie;
1344
1345 res = follow_link(&link, nd, &cookie);
1346 if (!res)
1347 res = walk_component(nd, path, &nd->last,
1348 nd->last_type, LOOKUP_FOLLOW);
1349 put_link(nd, &link, cookie);
1350 } while (res > 0);
1351
1352 current->link_count--;
1353 nd->depth--;
1354 return res;
1355 }
1356
1357 /*
1358 * We really don't want to look at inode->i_op->lookup
1359 * when we don't have to. So we keep a cache bit in
1360 * the inode ->i_opflags field that says "yes, we can
1361 * do lookup on this inode".
1362 */
1363 static inline int can_lookup(struct inode *inode)
1364 {
1365 if (likely(inode->i_opflags & IOP_LOOKUP))
1366 return 1;
1367 if (likely(!inode->i_op->lookup))
1368 return 0;
1369
1370 /* We do this once for the lifetime of the inode */
1371 spin_lock(&inode->i_lock);
1372 inode->i_opflags |= IOP_LOOKUP;
1373 spin_unlock(&inode->i_lock);
1374 return 1;
1375 }
1376
1377 /*
1378 * We can do the critical dentry name comparison and hashing
1379 * operations one word at a time, but we are limited to:
1380 *
1381 * - Architectures with fast unaligned word accesses. We could
1382 * do a "get_unaligned()" if this helps and is sufficiently
1383 * fast.
1384 *
1385 * - Little-endian machines (so that we can generate the mask
1386 * of low bytes efficiently). Again, we *could* do a byte
1387 * swapping load on big-endian architectures if that is not
1388 * expensive enough to make the optimization worthless.
1389 *
1390 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1391 * do not trap on the (extremely unlikely) case of a page
1392 * crossing operation.
1393 *
1394 * - Furthermore, we need an efficient 64-bit compile for the
1395 * 64-bit case in order to generate the "number of bytes in
1396 * the final mask". Again, that could be replaced with a
1397 * efficient population count instruction or similar.
1398 */
1399 #ifdef CONFIG_DCACHE_WORD_ACCESS
1400
1401 #ifdef CONFIG_64BIT
1402
1403 /*
1404 * Jan Achrenius on G+: microoptimized version of
1405 * the simpler "(mask & ONEBYTES) * ONEBYTES >> 56"
1406 * that works for the bytemasks without having to
1407 * mask them first.
1408 */
1409 static inline long count_masked_bytes(unsigned long mask)
1410 {
1411 return mask*0x0001020304050608 >> 56;
1412 }
1413
1414 static inline unsigned int fold_hash(unsigned long hash)
1415 {
1416 hash += hash >> (8*sizeof(int));
1417 return hash;
1418 }
1419
1420 #else /* 32-bit case */
1421
1422 /* Carl Chatfield / Jan Achrenius G+ version for 32-bit */
1423 static inline long count_masked_bytes(long mask)
1424 {
1425 /* (000000 0000ff 00ffff ffffff) -> ( 1 1 2 3 ) */
1426 long a = (0x0ff0001+mask) >> 23;
1427 /* Fix the 1 for 00 case */
1428 return a & mask;
1429 }
1430
1431 #define fold_hash(x) (x)
1432
1433 #endif
1434
1435 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1436 {
1437 unsigned long a, mask;
1438 unsigned long hash = 0;
1439
1440 for (;;) {
1441 a = *(unsigned long *)name;
1442 hash *= 9;
1443 if (len < sizeof(unsigned long))
1444 break;
1445 hash += a;
1446 name += sizeof(unsigned long);
1447 len -= sizeof(unsigned long);
1448 if (!len)
1449 goto done;
1450 }
1451 mask = ~(~0ul << len*8);
1452 hash += mask & a;
1453 done:
1454 return fold_hash(hash);
1455 }
1456 EXPORT_SYMBOL(full_name_hash);
1457
1458 #define ONEBYTES 0x0101010101010101ul
1459 #define SLASHBYTES 0x2f2f2f2f2f2f2f2ful
1460 #define HIGHBITS 0x8080808080808080ul
1461
1462 /* Return the high bit set in the first byte that is a zero */
1463 static inline unsigned long has_zero(unsigned long a)
1464 {
1465 return ((a - ONEBYTES) & ~a) & HIGHBITS;
1466 }
1467
1468 /*
1469 * Calculate the length and hash of the path component, and
1470 * return the length of the component;
1471 */
1472 static inline unsigned long hash_name(const char *name, unsigned int *hashp)
1473 {
1474 unsigned long a, mask, hash, len;
1475
1476 hash = a = 0;
1477 len = -sizeof(unsigned long);
1478 do {
1479 hash = (hash + a) * 9;
1480 len += sizeof(unsigned long);
1481 a = *(unsigned long *)(name+len);
1482 /* Do we have any NUL or '/' bytes in this word? */
1483 mask = has_zero(a) | has_zero(a ^ SLASHBYTES);
1484 } while (!mask);
1485
1486 /* The mask *below* the first high bit set */
1487 mask = (mask - 1) & ~mask;
1488 mask >>= 7;
1489 hash += a & mask;
1490 *hashp = fold_hash(hash);
1491
1492 return len + count_masked_bytes(mask);
1493 }
1494
1495 #else
1496
1497 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1498 {
1499 unsigned long hash = init_name_hash();
1500 while (len--)
1501 hash = partial_name_hash(*name++, hash);
1502 return end_name_hash(hash);
1503 }
1504 EXPORT_SYMBOL(full_name_hash);
1505
1506 /*
1507 * We know there's a real path component here of at least
1508 * one character.
1509 */
1510 static inline unsigned long hash_name(const char *name, unsigned int *hashp)
1511 {
1512 unsigned long hash = init_name_hash();
1513 unsigned long len = 0, c;
1514
1515 c = (unsigned char)*name;
1516 do {
1517 len++;
1518 hash = partial_name_hash(c, hash);
1519 c = (unsigned char)name[len];
1520 } while (c && c != '/');
1521 *hashp = end_name_hash(hash);
1522 return len;
1523 }
1524
1525 #endif
1526
1527 /*
1528 * Name resolution.
1529 * This is the basic name resolution function, turning a pathname into
1530 * the final dentry. We expect 'base' to be positive and a directory.
1531 *
1532 * Returns 0 and nd will have valid dentry and mnt on success.
1533 * Returns error and drops reference to input namei data on failure.
1534 */
1535 static int link_path_walk(const char *name, struct nameidata *nd)
1536 {
1537 struct path next;
1538 int err;
1539
1540 while (*name=='/')
1541 name++;
1542 if (!*name)
1543 return 0;
1544
1545 /* At this point we know we have a real path component. */
1546 for(;;) {
1547 struct qstr this;
1548 long len;
1549 int type;
1550
1551 err = may_lookup(nd);
1552 if (err)
1553 break;
1554
1555 len = hash_name(name, &this.hash);
1556 this.name = name;
1557 this.len = len;
1558
1559 type = LAST_NORM;
1560 if (name[0] == '.') switch (len) {
1561 case 2:
1562 if (name[1] == '.') {
1563 type = LAST_DOTDOT;
1564 nd->flags |= LOOKUP_JUMPED;
1565 }
1566 break;
1567 case 1:
1568 type = LAST_DOT;
1569 }
1570 if (likely(type == LAST_NORM)) {
1571 struct dentry *parent = nd->path.dentry;
1572 nd->flags &= ~LOOKUP_JUMPED;
1573 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
1574 err = parent->d_op->d_hash(parent, nd->inode,
1575 &this);
1576 if (err < 0)
1577 break;
1578 }
1579 }
1580
1581 if (!name[len])
1582 goto last_component;
1583 /*
1584 * If it wasn't NUL, we know it was '/'. Skip that
1585 * slash, and continue until no more slashes.
1586 */
1587 do {
1588 len++;
1589 } while (unlikely(name[len] == '/'));
1590 if (!name[len])
1591 goto last_component;
1592 name += len;
1593
1594 err = walk_component(nd, &next, &this, type, LOOKUP_FOLLOW);
1595 if (err < 0)
1596 return err;
1597
1598 if (err) {
1599 err = nested_symlink(&next, nd);
1600 if (err)
1601 return err;
1602 }
1603 if (can_lookup(nd->inode))
1604 continue;
1605 err = -ENOTDIR;
1606 break;
1607 /* here ends the main loop */
1608
1609 last_component:
1610 nd->last = this;
1611 nd->last_type = type;
1612 return 0;
1613 }
1614 terminate_walk(nd);
1615 return err;
1616 }
1617
1618 static int path_init(int dfd, const char *name, unsigned int flags,
1619 struct nameidata *nd, struct file **fp)
1620 {
1621 int retval = 0;
1622 int fput_needed;
1623 struct file *file;
1624
1625 nd->last_type = LAST_ROOT; /* if there are only slashes... */
1626 nd->flags = flags | LOOKUP_JUMPED;
1627 nd->depth = 0;
1628 if (flags & LOOKUP_ROOT) {
1629 struct inode *inode = nd->root.dentry->d_inode;
1630 if (*name) {
1631 if (!inode->i_op->lookup)
1632 return -ENOTDIR;
1633 retval = inode_permission(inode, MAY_EXEC);
1634 if (retval)
1635 return retval;
1636 }
1637 nd->path = nd->root;
1638 nd->inode = inode;
1639 if (flags & LOOKUP_RCU) {
1640 br_read_lock(vfsmount_lock);
1641 rcu_read_lock();
1642 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1643 } else {
1644 path_get(&nd->path);
1645 }
1646 return 0;
1647 }
1648
1649 nd->root.mnt = NULL;
1650
1651 if (*name=='/') {
1652 if (flags & LOOKUP_RCU) {
1653 br_read_lock(vfsmount_lock);
1654 rcu_read_lock();
1655 set_root_rcu(nd);
1656 } else {
1657 set_root(nd);
1658 path_get(&nd->root);
1659 }
1660 nd->path = nd->root;
1661 } else if (dfd == AT_FDCWD) {
1662 if (flags & LOOKUP_RCU) {
1663 struct fs_struct *fs = current->fs;
1664 unsigned seq;
1665
1666 br_read_lock(vfsmount_lock);
1667 rcu_read_lock();
1668
1669 do {
1670 seq = read_seqcount_begin(&fs->seq);
1671 nd->path = fs->pwd;
1672 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1673 } while (read_seqcount_retry(&fs->seq, seq));
1674 } else {
1675 get_fs_pwd(current->fs, &nd->path);
1676 }
1677 } else {
1678 struct dentry *dentry;
1679
1680 file = fget_raw_light(dfd, &fput_needed);
1681 retval = -EBADF;
1682 if (!file)
1683 goto out_fail;
1684
1685 dentry = file->f_path.dentry;
1686
1687 if (*name) {
1688 retval = -ENOTDIR;
1689 if (!S_ISDIR(dentry->d_inode->i_mode))
1690 goto fput_fail;
1691
1692 retval = inode_permission(dentry->d_inode, MAY_EXEC);
1693 if (retval)
1694 goto fput_fail;
1695 }
1696
1697 nd->path = file->f_path;
1698 if (flags & LOOKUP_RCU) {
1699 if (fput_needed)
1700 *fp = file;
1701 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1702 br_read_lock(vfsmount_lock);
1703 rcu_read_lock();
1704 } else {
1705 path_get(&file->f_path);
1706 fput_light(file, fput_needed);
1707 }
1708 }
1709
1710 nd->inode = nd->path.dentry->d_inode;
1711 return 0;
1712
1713 fput_fail:
1714 fput_light(file, fput_needed);
1715 out_fail:
1716 return retval;
1717 }
1718
1719 static inline int lookup_last(struct nameidata *nd, struct path *path)
1720 {
1721 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
1722 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
1723
1724 nd->flags &= ~LOOKUP_PARENT;
1725 return walk_component(nd, path, &nd->last, nd->last_type,
1726 nd->flags & LOOKUP_FOLLOW);
1727 }
1728
1729 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
1730 static int path_lookupat(int dfd, const char *name,
1731 unsigned int flags, struct nameidata *nd)
1732 {
1733 struct file *base = NULL;
1734 struct path path;
1735 int err;
1736
1737 /*
1738 * Path walking is largely split up into 2 different synchronisation
1739 * schemes, rcu-walk and ref-walk (explained in
1740 * Documentation/filesystems/path-lookup.txt). These share much of the
1741 * path walk code, but some things particularly setup, cleanup, and
1742 * following mounts are sufficiently divergent that functions are
1743 * duplicated. Typically there is a function foo(), and its RCU
1744 * analogue, foo_rcu().
1745 *
1746 * -ECHILD is the error number of choice (just to avoid clashes) that
1747 * is returned if some aspect of an rcu-walk fails. Such an error must
1748 * be handled by restarting a traditional ref-walk (which will always
1749 * be able to complete).
1750 */
1751 err = path_init(dfd, name, flags | LOOKUP_PARENT, nd, &base);
1752
1753 if (unlikely(err))
1754 return err;
1755
1756 current->total_link_count = 0;
1757 err = link_path_walk(name, nd);
1758
1759 if (!err && !(flags & LOOKUP_PARENT)) {
1760 err = lookup_last(nd, &path);
1761 while (err > 0) {
1762 void *cookie;
1763 struct path link = path;
1764 nd->flags |= LOOKUP_PARENT;
1765 err = follow_link(&link, nd, &cookie);
1766 if (!err)
1767 err = lookup_last(nd, &path);
1768 put_link(nd, &link, cookie);
1769 }
1770 }
1771
1772 if (!err)
1773 err = complete_walk(nd);
1774
1775 if (!err && nd->flags & LOOKUP_DIRECTORY) {
1776 if (!nd->inode->i_op->lookup) {
1777 path_put(&nd->path);
1778 err = -ENOTDIR;
1779 }
1780 }
1781
1782 if (base)
1783 fput(base);
1784
1785 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
1786 path_put(&nd->root);
1787 nd->root.mnt = NULL;
1788 }
1789 return err;
1790 }
1791
1792 static int do_path_lookup(int dfd, const char *name,
1793 unsigned int flags, struct nameidata *nd)
1794 {
1795 int retval = path_lookupat(dfd, name, flags | LOOKUP_RCU, nd);
1796 if (unlikely(retval == -ECHILD))
1797 retval = path_lookupat(dfd, name, flags, nd);
1798 if (unlikely(retval == -ESTALE))
1799 retval = path_lookupat(dfd, name, flags | LOOKUP_REVAL, nd);
1800
1801 if (likely(!retval)) {
1802 if (unlikely(!audit_dummy_context())) {
1803 if (nd->path.dentry && nd->inode)
1804 audit_inode(name, nd->path.dentry);
1805 }
1806 }
1807 return retval;
1808 }
1809
1810 int kern_path_parent(const char *name, struct nameidata *nd)
1811 {
1812 return do_path_lookup(AT_FDCWD, name, LOOKUP_PARENT, nd);
1813 }
1814
1815 int kern_path(const char *name, unsigned int flags, struct path *path)
1816 {
1817 struct nameidata nd;
1818 int res = do_path_lookup(AT_FDCWD, name, flags, &nd);
1819 if (!res)
1820 *path = nd.path;
1821 return res;
1822 }
1823
1824 /**
1825 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
1826 * @dentry: pointer to dentry of the base directory
1827 * @mnt: pointer to vfs mount of the base directory
1828 * @name: pointer to file name
1829 * @flags: lookup flags
1830 * @path: pointer to struct path to fill
1831 */
1832 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
1833 const char *name, unsigned int flags,
1834 struct path *path)
1835 {
1836 struct nameidata nd;
1837 int err;
1838 nd.root.dentry = dentry;
1839 nd.root.mnt = mnt;
1840 BUG_ON(flags & LOOKUP_PARENT);
1841 /* the first argument of do_path_lookup() is ignored with LOOKUP_ROOT */
1842 err = do_path_lookup(AT_FDCWD, name, flags | LOOKUP_ROOT, &nd);
1843 if (!err)
1844 *path = nd.path;
1845 return err;
1846 }
1847
1848 static struct dentry *__lookup_hash(struct qstr *name,
1849 struct dentry *base, struct nameidata *nd)
1850 {
1851 struct inode *inode = base->d_inode;
1852 struct dentry *dentry;
1853 int err;
1854
1855 err = inode_permission(inode, MAY_EXEC);
1856 if (err)
1857 return ERR_PTR(err);
1858
1859 /*
1860 * Don't bother with __d_lookup: callers are for creat as
1861 * well as unlink, so a lot of the time it would cost
1862 * a double lookup.
1863 */
1864 dentry = d_lookup(base, name);
1865
1866 if (dentry && d_need_lookup(dentry)) {
1867 /*
1868 * __lookup_hash is called with the parent dir's i_mutex already
1869 * held, so we are good to go here.
1870 */
1871 dentry = d_inode_lookup(base, dentry, nd);
1872 if (IS_ERR(dentry))
1873 return dentry;
1874 }
1875
1876 if (dentry && (dentry->d_flags & DCACHE_OP_REVALIDATE)) {
1877 int status = d_revalidate(dentry, nd);
1878 if (unlikely(status <= 0)) {
1879 /*
1880 * The dentry failed validation.
1881 * If d_revalidate returned 0 attempt to invalidate
1882 * the dentry otherwise d_revalidate is asking us
1883 * to return a fail status.
1884 */
1885 if (status < 0) {
1886 dput(dentry);
1887 return ERR_PTR(status);
1888 } else if (!d_invalidate(dentry)) {
1889 dput(dentry);
1890 dentry = NULL;
1891 }
1892 }
1893 }
1894
1895 if (!dentry)
1896 dentry = d_alloc_and_lookup(base, name, nd);
1897
1898 return dentry;
1899 }
1900
1901 /*
1902 * Restricted form of lookup. Doesn't follow links, single-component only,
1903 * needs parent already locked. Doesn't follow mounts.
1904 * SMP-safe.
1905 */
1906 static struct dentry *lookup_hash(struct nameidata *nd)
1907 {
1908 return __lookup_hash(&nd->last, nd->path.dentry, nd);
1909 }
1910
1911 /**
1912 * lookup_one_len - filesystem helper to lookup single pathname component
1913 * @name: pathname component to lookup
1914 * @base: base directory to lookup from
1915 * @len: maximum length @len should be interpreted to
1916 *
1917 * Note that this routine is purely a helper for filesystem usage and should
1918 * not be called by generic code. Also note that by using this function the
1919 * nameidata argument is passed to the filesystem methods and a filesystem
1920 * using this helper needs to be prepared for that.
1921 */
1922 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
1923 {
1924 struct qstr this;
1925 unsigned int c;
1926
1927 WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex));
1928
1929 this.name = name;
1930 this.len = len;
1931 this.hash = full_name_hash(name, len);
1932 if (!len)
1933 return ERR_PTR(-EACCES);
1934
1935 while (len--) {
1936 c = *(const unsigned char *)name++;
1937 if (c == '/' || c == '\0')
1938 return ERR_PTR(-EACCES);
1939 }
1940 /*
1941 * See if the low-level filesystem might want
1942 * to use its own hash..
1943 */
1944 if (base->d_flags & DCACHE_OP_HASH) {
1945 int err = base->d_op->d_hash(base, base->d_inode, &this);
1946 if (err < 0)
1947 return ERR_PTR(err);
1948 }
1949
1950 return __lookup_hash(&this, base, NULL);
1951 }
1952
1953 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
1954 struct path *path, int *empty)
1955 {
1956 struct nameidata nd;
1957 char *tmp = getname_flags(name, flags, empty);
1958 int err = PTR_ERR(tmp);
1959 if (!IS_ERR(tmp)) {
1960
1961 BUG_ON(flags & LOOKUP_PARENT);
1962
1963 err = do_path_lookup(dfd, tmp, flags, &nd);
1964 putname(tmp);
1965 if (!err)
1966 *path = nd.path;
1967 }
1968 return err;
1969 }
1970
1971 int user_path_at(int dfd, const char __user *name, unsigned flags,
1972 struct path *path)
1973 {
1974 return user_path_at_empty(dfd, name, flags, path, 0);
1975 }
1976
1977 static int user_path_parent(int dfd, const char __user *path,
1978 struct nameidata *nd, char **name)
1979 {
1980 char *s = getname(path);
1981 int error;
1982
1983 if (IS_ERR(s))
1984 return PTR_ERR(s);
1985
1986 error = do_path_lookup(dfd, s, LOOKUP_PARENT, nd);
1987 if (error)
1988 putname(s);
1989 else
1990 *name = s;
1991
1992 return error;
1993 }
1994
1995 /*
1996 * It's inline, so penalty for filesystems that don't use sticky bit is
1997 * minimal.
1998 */
1999 static inline int check_sticky(struct inode *dir, struct inode *inode)
2000 {
2001 uid_t fsuid = current_fsuid();
2002
2003 if (!(dir->i_mode & S_ISVTX))
2004 return 0;
2005 if (current_user_ns() != inode_userns(inode))
2006 goto other_userns;
2007 if (inode->i_uid == fsuid)
2008 return 0;
2009 if (dir->i_uid == fsuid)
2010 return 0;
2011
2012 other_userns:
2013 return !ns_capable(inode_userns(inode), CAP_FOWNER);
2014 }
2015
2016 /*
2017 * Check whether we can remove a link victim from directory dir, check
2018 * whether the type of victim is right.
2019 * 1. We can't do it if dir is read-only (done in permission())
2020 * 2. We should have write and exec permissions on dir
2021 * 3. We can't remove anything from append-only dir
2022 * 4. We can't do anything with immutable dir (done in permission())
2023 * 5. If the sticky bit on dir is set we should either
2024 * a. be owner of dir, or
2025 * b. be owner of victim, or
2026 * c. have CAP_FOWNER capability
2027 * 6. If the victim is append-only or immutable we can't do antyhing with
2028 * links pointing to it.
2029 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2030 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2031 * 9. We can't remove a root or mountpoint.
2032 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
2033 * nfs_async_unlink().
2034 */
2035 static int may_delete(struct inode *dir,struct dentry *victim,int isdir)
2036 {
2037 int error;
2038
2039 if (!victim->d_inode)
2040 return -ENOENT;
2041
2042 BUG_ON(victim->d_parent->d_inode != dir);
2043 audit_inode_child(victim, dir);
2044
2045 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2046 if (error)
2047 return error;
2048 if (IS_APPEND(dir))
2049 return -EPERM;
2050 if (check_sticky(dir, victim->d_inode)||IS_APPEND(victim->d_inode)||
2051 IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode))
2052 return -EPERM;
2053 if (isdir) {
2054 if (!S_ISDIR(victim->d_inode->i_mode))
2055 return -ENOTDIR;
2056 if (IS_ROOT(victim))
2057 return -EBUSY;
2058 } else if (S_ISDIR(victim->d_inode->i_mode))
2059 return -EISDIR;
2060 if (IS_DEADDIR(dir))
2061 return -ENOENT;
2062 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2063 return -EBUSY;
2064 return 0;
2065 }
2066
2067 /* Check whether we can create an object with dentry child in directory
2068 * dir.
2069 * 1. We can't do it if child already exists (open has special treatment for
2070 * this case, but since we are inlined it's OK)
2071 * 2. We can't do it if dir is read-only (done in permission())
2072 * 3. We should have write and exec permissions on dir
2073 * 4. We can't do it if dir is immutable (done in permission())
2074 */
2075 static inline int may_create(struct inode *dir, struct dentry *child)
2076 {
2077 if (child->d_inode)
2078 return -EEXIST;
2079 if (IS_DEADDIR(dir))
2080 return -ENOENT;
2081 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2082 }
2083
2084 /*
2085 * p1 and p2 should be directories on the same fs.
2086 */
2087 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2088 {
2089 struct dentry *p;
2090
2091 if (p1 == p2) {
2092 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2093 return NULL;
2094 }
2095
2096 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2097
2098 p = d_ancestor(p2, p1);
2099 if (p) {
2100 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
2101 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
2102 return p;
2103 }
2104
2105 p = d_ancestor(p1, p2);
2106 if (p) {
2107 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2108 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2109 return p;
2110 }
2111
2112 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2113 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2114 return NULL;
2115 }
2116
2117 void unlock_rename(struct dentry *p1, struct dentry *p2)
2118 {
2119 mutex_unlock(&p1->d_inode->i_mutex);
2120 if (p1 != p2) {
2121 mutex_unlock(&p2->d_inode->i_mutex);
2122 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2123 }
2124 }
2125
2126 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2127 struct nameidata *nd)
2128 {
2129 int error = may_create(dir, dentry);
2130
2131 if (error)
2132 return error;
2133
2134 if (!dir->i_op->create)
2135 return -EACCES; /* shouldn't it be ENOSYS? */
2136 mode &= S_IALLUGO;
2137 mode |= S_IFREG;
2138 error = security_inode_create(dir, dentry, mode);
2139 if (error)
2140 return error;
2141 error = dir->i_op->create(dir, dentry, mode, nd);
2142 if (!error)
2143 fsnotify_create(dir, dentry);
2144 return error;
2145 }
2146
2147 static int may_open(struct path *path, int acc_mode, int flag)
2148 {
2149 struct dentry *dentry = path->dentry;
2150 struct inode *inode = dentry->d_inode;
2151 int error;
2152
2153 /* O_PATH? */
2154 if (!acc_mode)
2155 return 0;
2156
2157 if (!inode)
2158 return -ENOENT;
2159
2160 switch (inode->i_mode & S_IFMT) {
2161 case S_IFLNK:
2162 return -ELOOP;
2163 case S_IFDIR:
2164 if (acc_mode & MAY_WRITE)
2165 return -EISDIR;
2166 break;
2167 case S_IFBLK:
2168 case S_IFCHR:
2169 if (path->mnt->mnt_flags & MNT_NODEV)
2170 return -EACCES;
2171 /*FALLTHRU*/
2172 case S_IFIFO:
2173 case S_IFSOCK:
2174 flag &= ~O_TRUNC;
2175 break;
2176 }
2177
2178 error = inode_permission(inode, acc_mode);
2179 if (error)
2180 return error;
2181
2182 /*
2183 * An append-only file must be opened in append mode for writing.
2184 */
2185 if (IS_APPEND(inode)) {
2186 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2187 return -EPERM;
2188 if (flag & O_TRUNC)
2189 return -EPERM;
2190 }
2191
2192 /* O_NOATIME can only be set by the owner or superuser */
2193 if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2194 return -EPERM;
2195
2196 return 0;
2197 }
2198
2199 static int handle_truncate(struct file *filp)
2200 {
2201 struct path *path = &filp->f_path;
2202 struct inode *inode = path->dentry->d_inode;
2203 int error = get_write_access(inode);
2204 if (error)
2205 return error;
2206 /*
2207 * Refuse to truncate files with mandatory locks held on them.
2208 */
2209 error = locks_verify_locked(inode);
2210 if (!error)
2211 error = security_path_truncate(path);
2212 if (!error) {
2213 error = do_truncate(path->dentry, 0,
2214 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2215 filp);
2216 }
2217 put_write_access(inode);
2218 return error;
2219 }
2220
2221 static inline int open_to_namei_flags(int flag)
2222 {
2223 if ((flag & O_ACCMODE) == 3)
2224 flag--;
2225 return flag;
2226 }
2227
2228 /*
2229 * Handle the last step of open()
2230 */
2231 static struct file *do_last(struct nameidata *nd, struct path *path,
2232 const struct open_flags *op, const char *pathname)
2233 {
2234 struct dentry *dir = nd->path.dentry;
2235 struct dentry *dentry;
2236 int open_flag = op->open_flag;
2237 int will_truncate = open_flag & O_TRUNC;
2238 int want_write = 0;
2239 int acc_mode = op->acc_mode;
2240 struct file *filp;
2241 int error;
2242
2243 nd->flags &= ~LOOKUP_PARENT;
2244 nd->flags |= op->intent;
2245
2246 switch (nd->last_type) {
2247 case LAST_DOTDOT:
2248 case LAST_DOT:
2249 error = handle_dots(nd, nd->last_type);
2250 if (error)
2251 return ERR_PTR(error);
2252 /* fallthrough */
2253 case LAST_ROOT:
2254 error = complete_walk(nd);
2255 if (error)
2256 return ERR_PTR(error);
2257 audit_inode(pathname, nd->path.dentry);
2258 if (open_flag & O_CREAT) {
2259 error = -EISDIR;
2260 goto exit;
2261 }
2262 goto ok;
2263 case LAST_BIND:
2264 error = complete_walk(nd);
2265 if (error)
2266 return ERR_PTR(error);
2267 audit_inode(pathname, dir);
2268 goto ok;
2269 }
2270
2271 if (!(open_flag & O_CREAT)) {
2272 int symlink_ok = 0;
2273 if (nd->last.name[nd->last.len])
2274 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2275 if (open_flag & O_PATH && !(nd->flags & LOOKUP_FOLLOW))
2276 symlink_ok = 1;
2277 /* we _can_ be in RCU mode here */
2278 error = walk_component(nd, path, &nd->last, LAST_NORM,
2279 !symlink_ok);
2280 if (error < 0)
2281 return ERR_PTR(error);
2282 if (error) /* symlink */
2283 return NULL;
2284 /* sayonara */
2285 error = complete_walk(nd);
2286 if (error)
2287 return ERR_PTR(error);
2288
2289 error = -ENOTDIR;
2290 if (nd->flags & LOOKUP_DIRECTORY) {
2291 if (!nd->inode->i_op->lookup)
2292 goto exit;
2293 }
2294 audit_inode(pathname, nd->path.dentry);
2295 goto ok;
2296 }
2297
2298 /* create side of things */
2299 /*
2300 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED has been
2301 * cleared when we got to the last component we are about to look up
2302 */
2303 error = complete_walk(nd);
2304 if (error)
2305 return ERR_PTR(error);
2306
2307 audit_inode(pathname, dir);
2308 error = -EISDIR;
2309 /* trailing slashes? */
2310 if (nd->last.name[nd->last.len])
2311 goto exit;
2312
2313 mutex_lock(&dir->d_inode->i_mutex);
2314
2315 dentry = lookup_hash(nd);
2316 error = PTR_ERR(dentry);
2317 if (IS_ERR(dentry)) {
2318 mutex_unlock(&dir->d_inode->i_mutex);
2319 goto exit;
2320 }
2321
2322 path->dentry = dentry;
2323 path->mnt = nd->path.mnt;
2324
2325 /* Negative dentry, just create the file */
2326 if (!dentry->d_inode) {
2327 umode_t mode = op->mode;
2328 if (!IS_POSIXACL(dir->d_inode))
2329 mode &= ~current_umask();
2330 /*
2331 * This write is needed to ensure that a
2332 * rw->ro transition does not occur between
2333 * the time when the file is created and when
2334 * a permanent write count is taken through
2335 * the 'struct file' in nameidata_to_filp().
2336 */
2337 error = mnt_want_write(nd->path.mnt);
2338 if (error)
2339 goto exit_mutex_unlock;
2340 want_write = 1;
2341 /* Don't check for write permission, don't truncate */
2342 open_flag &= ~O_TRUNC;
2343 will_truncate = 0;
2344 acc_mode = MAY_OPEN;
2345 error = security_path_mknod(&nd->path, dentry, mode, 0);
2346 if (error)
2347 goto exit_mutex_unlock;
2348 error = vfs_create(dir->d_inode, dentry, mode, nd);
2349 if (error)
2350 goto exit_mutex_unlock;
2351 mutex_unlock(&dir->d_inode->i_mutex);
2352 dput(nd->path.dentry);
2353 nd->path.dentry = dentry;
2354 goto common;
2355 }
2356
2357 /*
2358 * It already exists.
2359 */
2360 mutex_unlock(&dir->d_inode->i_mutex);
2361 audit_inode(pathname, path->dentry);
2362
2363 error = -EEXIST;
2364 if (open_flag & O_EXCL)
2365 goto exit_dput;
2366
2367 error = follow_managed(path, nd->flags);
2368 if (error < 0)
2369 goto exit_dput;
2370
2371 if (error)
2372 nd->flags |= LOOKUP_JUMPED;
2373
2374 error = -ENOENT;
2375 if (!path->dentry->d_inode)
2376 goto exit_dput;
2377
2378 if (path->dentry->d_inode->i_op->follow_link)
2379 return NULL;
2380
2381 path_to_nameidata(path, nd);
2382 nd->inode = path->dentry->d_inode;
2383 /* Why this, you ask? _Now_ we might have grown LOOKUP_JUMPED... */
2384 error = complete_walk(nd);
2385 if (error)
2386 return ERR_PTR(error);
2387 error = -EISDIR;
2388 if (S_ISDIR(nd->inode->i_mode))
2389 goto exit;
2390 ok:
2391 if (!S_ISREG(nd->inode->i_mode))
2392 will_truncate = 0;
2393
2394 if (will_truncate) {
2395 error = mnt_want_write(nd->path.mnt);
2396 if (error)
2397 goto exit;
2398 want_write = 1;
2399 }
2400 common:
2401 error = may_open(&nd->path, acc_mode, open_flag);
2402 if (error)
2403 goto exit;
2404 filp = nameidata_to_filp(nd);
2405 if (!IS_ERR(filp)) {
2406 error = ima_file_check(filp, op->acc_mode);
2407 if (error) {
2408 fput(filp);
2409 filp = ERR_PTR(error);
2410 }
2411 }
2412 if (!IS_ERR(filp)) {
2413 if (will_truncate) {
2414 error = handle_truncate(filp);
2415 if (error) {
2416 fput(filp);
2417 filp = ERR_PTR(error);
2418 }
2419 }
2420 }
2421 out:
2422 if (want_write)
2423 mnt_drop_write(nd->path.mnt);
2424 path_put(&nd->path);
2425 return filp;
2426
2427 exit_mutex_unlock:
2428 mutex_unlock(&dir->d_inode->i_mutex);
2429 exit_dput:
2430 path_put_conditional(path, nd);
2431 exit:
2432 filp = ERR_PTR(error);
2433 goto out;
2434 }
2435
2436 static struct file *path_openat(int dfd, const char *pathname,
2437 struct nameidata *nd, const struct open_flags *op, int flags)
2438 {
2439 struct file *base = NULL;
2440 struct file *filp;
2441 struct path path;
2442 int error;
2443
2444 filp = get_empty_filp();
2445 if (!filp)
2446 return ERR_PTR(-ENFILE);
2447
2448 filp->f_flags = op->open_flag;
2449 nd->intent.open.file = filp;
2450 nd->intent.open.flags = open_to_namei_flags(op->open_flag);
2451 nd->intent.open.create_mode = op->mode;
2452
2453 error = path_init(dfd, pathname, flags | LOOKUP_PARENT, nd, &base);
2454 if (unlikely(error))
2455 goto out_filp;
2456
2457 current->total_link_count = 0;
2458 error = link_path_walk(pathname, nd);
2459 if (unlikely(error))
2460 goto out_filp;
2461
2462 filp = do_last(nd, &path, op, pathname);
2463 while (unlikely(!filp)) { /* trailing symlink */
2464 struct path link = path;
2465 void *cookie;
2466 if (!(nd->flags & LOOKUP_FOLLOW)) {
2467 path_put_conditional(&path, nd);
2468 path_put(&nd->path);
2469 filp = ERR_PTR(-ELOOP);
2470 break;
2471 }
2472 nd->flags |= LOOKUP_PARENT;
2473 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
2474 error = follow_link(&link, nd, &cookie);
2475 if (unlikely(error))
2476 filp = ERR_PTR(error);
2477 else
2478 filp = do_last(nd, &path, op, pathname);
2479 put_link(nd, &link, cookie);
2480 }
2481 out:
2482 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT))
2483 path_put(&nd->root);
2484 if (base)
2485 fput(base);
2486 release_open_intent(nd);
2487 return filp;
2488
2489 out_filp:
2490 filp = ERR_PTR(error);
2491 goto out;
2492 }
2493
2494 struct file *do_filp_open(int dfd, const char *pathname,
2495 const struct open_flags *op, int flags)
2496 {
2497 struct nameidata nd;
2498 struct file *filp;
2499
2500 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_RCU);
2501 if (unlikely(filp == ERR_PTR(-ECHILD)))
2502 filp = path_openat(dfd, pathname, &nd, op, flags);
2503 if (unlikely(filp == ERR_PTR(-ESTALE)))
2504 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_REVAL);
2505 return filp;
2506 }
2507
2508 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
2509 const char *name, const struct open_flags *op, int flags)
2510 {
2511 struct nameidata nd;
2512 struct file *file;
2513
2514 nd.root.mnt = mnt;
2515 nd.root.dentry = dentry;
2516
2517 flags |= LOOKUP_ROOT;
2518
2519 if (dentry->d_inode->i_op->follow_link && op->intent & LOOKUP_OPEN)
2520 return ERR_PTR(-ELOOP);
2521
2522 file = path_openat(-1, name, &nd, op, flags | LOOKUP_RCU);
2523 if (unlikely(file == ERR_PTR(-ECHILD)))
2524 file = path_openat(-1, name, &nd, op, flags);
2525 if (unlikely(file == ERR_PTR(-ESTALE)))
2526 file = path_openat(-1, name, &nd, op, flags | LOOKUP_REVAL);
2527 return file;
2528 }
2529
2530 struct dentry *kern_path_create(int dfd, const char *pathname, struct path *path, int is_dir)
2531 {
2532 struct dentry *dentry = ERR_PTR(-EEXIST);
2533 struct nameidata nd;
2534 int error = do_path_lookup(dfd, pathname, LOOKUP_PARENT, &nd);
2535 if (error)
2536 return ERR_PTR(error);
2537
2538 /*
2539 * Yucky last component or no last component at all?
2540 * (foo/., foo/.., /////)
2541 */
2542 if (nd.last_type != LAST_NORM)
2543 goto out;
2544 nd.flags &= ~LOOKUP_PARENT;
2545 nd.flags |= LOOKUP_CREATE | LOOKUP_EXCL;
2546 nd.intent.open.flags = O_EXCL;
2547
2548 /*
2549 * Do the final lookup.
2550 */
2551 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2552 dentry = lookup_hash(&nd);
2553 if (IS_ERR(dentry))
2554 goto fail;
2555
2556 if (dentry->d_inode)
2557 goto eexist;
2558 /*
2559 * Special case - lookup gave negative, but... we had foo/bar/
2560 * From the vfs_mknod() POV we just have a negative dentry -
2561 * all is fine. Let's be bastards - you had / on the end, you've
2562 * been asking for (non-existent) directory. -ENOENT for you.
2563 */
2564 if (unlikely(!is_dir && nd.last.name[nd.last.len])) {
2565 dput(dentry);
2566 dentry = ERR_PTR(-ENOENT);
2567 goto fail;
2568 }
2569 *path = nd.path;
2570 return dentry;
2571 eexist:
2572 dput(dentry);
2573 dentry = ERR_PTR(-EEXIST);
2574 fail:
2575 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2576 out:
2577 path_put(&nd.path);
2578 return dentry;
2579 }
2580 EXPORT_SYMBOL(kern_path_create);
2581
2582 struct dentry *user_path_create(int dfd, const char __user *pathname, struct path *path, int is_dir)
2583 {
2584 char *tmp = getname(pathname);
2585 struct dentry *res;
2586 if (IS_ERR(tmp))
2587 return ERR_CAST(tmp);
2588 res = kern_path_create(dfd, tmp, path, is_dir);
2589 putname(tmp);
2590 return res;
2591 }
2592 EXPORT_SYMBOL(user_path_create);
2593
2594 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2595 {
2596 int error = may_create(dir, dentry);
2597
2598 if (error)
2599 return error;
2600
2601 if ((S_ISCHR(mode) || S_ISBLK(mode)) &&
2602 !ns_capable(inode_userns(dir), CAP_MKNOD))
2603 return -EPERM;
2604
2605 if (!dir->i_op->mknod)
2606 return -EPERM;
2607
2608 error = devcgroup_inode_mknod(mode, dev);
2609 if (error)
2610 return error;
2611
2612 error = security_inode_mknod(dir, dentry, mode, dev);
2613 if (error)
2614 return error;
2615
2616 error = dir->i_op->mknod(dir, dentry, mode, dev);
2617 if (!error)
2618 fsnotify_create(dir, dentry);
2619 return error;
2620 }
2621
2622 static int may_mknod(umode_t mode)
2623 {
2624 switch (mode & S_IFMT) {
2625 case S_IFREG:
2626 case S_IFCHR:
2627 case S_IFBLK:
2628 case S_IFIFO:
2629 case S_IFSOCK:
2630 case 0: /* zero mode translates to S_IFREG */
2631 return 0;
2632 case S_IFDIR:
2633 return -EPERM;
2634 default:
2635 return -EINVAL;
2636 }
2637 }
2638
2639 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
2640 unsigned, dev)
2641 {
2642 struct dentry *dentry;
2643 struct path path;
2644 int error;
2645
2646 if (S_ISDIR(mode))
2647 return -EPERM;
2648
2649 dentry = user_path_create(dfd, filename, &path, 0);
2650 if (IS_ERR(dentry))
2651 return PTR_ERR(dentry);
2652
2653 if (!IS_POSIXACL(path.dentry->d_inode))
2654 mode &= ~current_umask();
2655 error = may_mknod(mode);
2656 if (error)
2657 goto out_dput;
2658 error = mnt_want_write(path.mnt);
2659 if (error)
2660 goto out_dput;
2661 error = security_path_mknod(&path, dentry, mode, dev);
2662 if (error)
2663 goto out_drop_write;
2664 switch (mode & S_IFMT) {
2665 case 0: case S_IFREG:
2666 error = vfs_create(path.dentry->d_inode,dentry,mode,NULL);
2667 break;
2668 case S_IFCHR: case S_IFBLK:
2669 error = vfs_mknod(path.dentry->d_inode,dentry,mode,
2670 new_decode_dev(dev));
2671 break;
2672 case S_IFIFO: case S_IFSOCK:
2673 error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
2674 break;
2675 }
2676 out_drop_write:
2677 mnt_drop_write(path.mnt);
2678 out_dput:
2679 dput(dentry);
2680 mutex_unlock(&path.dentry->d_inode->i_mutex);
2681 path_put(&path);
2682
2683 return error;
2684 }
2685
2686 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
2687 {
2688 return sys_mknodat(AT_FDCWD, filename, mode, dev);
2689 }
2690
2691 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2692 {
2693 int error = may_create(dir, dentry);
2694
2695 if (error)
2696 return error;
2697
2698 if (!dir->i_op->mkdir)
2699 return -EPERM;
2700
2701 mode &= (S_IRWXUGO|S_ISVTX);
2702 error = security_inode_mkdir(dir, dentry, mode);
2703 if (error)
2704 return error;
2705
2706 error = dir->i_op->mkdir(dir, dentry, mode);
2707 if (!error)
2708 fsnotify_mkdir(dir, dentry);
2709 return error;
2710 }
2711
2712 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
2713 {
2714 struct dentry *dentry;
2715 struct path path;
2716 int error;
2717
2718 dentry = user_path_create(dfd, pathname, &path, 1);
2719 if (IS_ERR(dentry))
2720 return PTR_ERR(dentry);
2721
2722 if (!IS_POSIXACL(path.dentry->d_inode))
2723 mode &= ~current_umask();
2724 error = mnt_want_write(path.mnt);
2725 if (error)
2726 goto out_dput;
2727 error = security_path_mkdir(&path, dentry, mode);
2728 if (error)
2729 goto out_drop_write;
2730 error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
2731 out_drop_write:
2732 mnt_drop_write(path.mnt);
2733 out_dput:
2734 dput(dentry);
2735 mutex_unlock(&path.dentry->d_inode->i_mutex);
2736 path_put(&path);
2737 return error;
2738 }
2739
2740 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
2741 {
2742 return sys_mkdirat(AT_FDCWD, pathname, mode);
2743 }
2744
2745 /*
2746 * The dentry_unhash() helper will try to drop the dentry early: we
2747 * should have a usage count of 2 if we're the only user of this
2748 * dentry, and if that is true (possibly after pruning the dcache),
2749 * then we drop the dentry now.
2750 *
2751 * A low-level filesystem can, if it choses, legally
2752 * do a
2753 *
2754 * if (!d_unhashed(dentry))
2755 * return -EBUSY;
2756 *
2757 * if it cannot handle the case of removing a directory
2758 * that is still in use by something else..
2759 */
2760 void dentry_unhash(struct dentry *dentry)
2761 {
2762 shrink_dcache_parent(dentry);
2763 spin_lock(&dentry->d_lock);
2764 if (dentry->d_count == 1)
2765 __d_drop(dentry);
2766 spin_unlock(&dentry->d_lock);
2767 }
2768
2769 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
2770 {
2771 int error = may_delete(dir, dentry, 1);
2772
2773 if (error)
2774 return error;
2775
2776 if (!dir->i_op->rmdir)
2777 return -EPERM;
2778
2779 dget(dentry);
2780 mutex_lock(&dentry->d_inode->i_mutex);
2781
2782 error = -EBUSY;
2783 if (d_mountpoint(dentry))
2784 goto out;
2785
2786 error = security_inode_rmdir(dir, dentry);
2787 if (error)
2788 goto out;
2789
2790 shrink_dcache_parent(dentry);
2791 error = dir->i_op->rmdir(dir, dentry);
2792 if (error)
2793 goto out;
2794
2795 dentry->d_inode->i_flags |= S_DEAD;
2796 dont_mount(dentry);
2797
2798 out:
2799 mutex_unlock(&dentry->d_inode->i_mutex);
2800 dput(dentry);
2801 if (!error)
2802 d_delete(dentry);
2803 return error;
2804 }
2805
2806 static long do_rmdir(int dfd, const char __user *pathname)
2807 {
2808 int error = 0;
2809 char * name;
2810 struct dentry *dentry;
2811 struct nameidata nd;
2812
2813 error = user_path_parent(dfd, pathname, &nd, &name);
2814 if (error)
2815 return error;
2816
2817 switch(nd.last_type) {
2818 case LAST_DOTDOT:
2819 error = -ENOTEMPTY;
2820 goto exit1;
2821 case LAST_DOT:
2822 error = -EINVAL;
2823 goto exit1;
2824 case LAST_ROOT:
2825 error = -EBUSY;
2826 goto exit1;
2827 }
2828
2829 nd.flags &= ~LOOKUP_PARENT;
2830
2831 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2832 dentry = lookup_hash(&nd);
2833 error = PTR_ERR(dentry);
2834 if (IS_ERR(dentry))
2835 goto exit2;
2836 if (!dentry->d_inode) {
2837 error = -ENOENT;
2838 goto exit3;
2839 }
2840 error = mnt_want_write(nd.path.mnt);
2841 if (error)
2842 goto exit3;
2843 error = security_path_rmdir(&nd.path, dentry);
2844 if (error)
2845 goto exit4;
2846 error = vfs_rmdir(nd.path.dentry->d_inode, dentry);
2847 exit4:
2848 mnt_drop_write(nd.path.mnt);
2849 exit3:
2850 dput(dentry);
2851 exit2:
2852 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2853 exit1:
2854 path_put(&nd.path);
2855 putname(name);
2856 return error;
2857 }
2858
2859 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
2860 {
2861 return do_rmdir(AT_FDCWD, pathname);
2862 }
2863
2864 int vfs_unlink(struct inode *dir, struct dentry *dentry)
2865 {
2866 int error = may_delete(dir, dentry, 0);
2867
2868 if (error)
2869 return error;
2870
2871 if (!dir->i_op->unlink)
2872 return -EPERM;
2873
2874 mutex_lock(&dentry->d_inode->i_mutex);
2875 if (d_mountpoint(dentry))
2876 error = -EBUSY;
2877 else {
2878 error = security_inode_unlink(dir, dentry);
2879 if (!error) {
2880 error = dir->i_op->unlink(dir, dentry);
2881 if (!error)
2882 dont_mount(dentry);
2883 }
2884 }
2885 mutex_unlock(&dentry->d_inode->i_mutex);
2886
2887 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
2888 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
2889 fsnotify_link_count(dentry->d_inode);
2890 d_delete(dentry);
2891 }
2892
2893 return error;
2894 }
2895
2896 /*
2897 * Make sure that the actual truncation of the file will occur outside its
2898 * directory's i_mutex. Truncate can take a long time if there is a lot of
2899 * writeout happening, and we don't want to prevent access to the directory
2900 * while waiting on the I/O.
2901 */
2902 static long do_unlinkat(int dfd, const char __user *pathname)
2903 {
2904 int error;
2905 char *name;
2906 struct dentry *dentry;
2907 struct nameidata nd;
2908 struct inode *inode = NULL;
2909
2910 error = user_path_parent(dfd, pathname, &nd, &name);
2911 if (error)
2912 return error;
2913
2914 error = -EISDIR;
2915 if (nd.last_type != LAST_NORM)
2916 goto exit1;
2917
2918 nd.flags &= ~LOOKUP_PARENT;
2919
2920 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2921 dentry = lookup_hash(&nd);
2922 error = PTR_ERR(dentry);
2923 if (!IS_ERR(dentry)) {
2924 /* Why not before? Because we want correct error value */
2925 if (nd.last.name[nd.last.len])
2926 goto slashes;
2927 inode = dentry->d_inode;
2928 if (!inode)
2929 goto slashes;
2930 ihold(inode);
2931 error = mnt_want_write(nd.path.mnt);
2932 if (error)
2933 goto exit2;
2934 error = security_path_unlink(&nd.path, dentry);
2935 if (error)
2936 goto exit3;
2937 error = vfs_unlink(nd.path.dentry->d_inode, dentry);
2938 exit3:
2939 mnt_drop_write(nd.path.mnt);
2940 exit2:
2941 dput(dentry);
2942 }
2943 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2944 if (inode)
2945 iput(inode); /* truncate the inode here */
2946 exit1:
2947 path_put(&nd.path);
2948 putname(name);
2949 return error;
2950
2951 slashes:
2952 error = !dentry->d_inode ? -ENOENT :
2953 S_ISDIR(dentry->d_inode->i_mode) ? -EISDIR : -ENOTDIR;
2954 goto exit2;
2955 }
2956
2957 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
2958 {
2959 if ((flag & ~AT_REMOVEDIR) != 0)
2960 return -EINVAL;
2961
2962 if (flag & AT_REMOVEDIR)
2963 return do_rmdir(dfd, pathname);
2964
2965 return do_unlinkat(dfd, pathname);
2966 }
2967
2968 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
2969 {
2970 return do_unlinkat(AT_FDCWD, pathname);
2971 }
2972
2973 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
2974 {
2975 int error = may_create(dir, dentry);
2976
2977 if (error)
2978 return error;
2979
2980 if (!dir->i_op->symlink)
2981 return -EPERM;
2982
2983 error = security_inode_symlink(dir, dentry, oldname);
2984 if (error)
2985 return error;
2986
2987 error = dir->i_op->symlink(dir, dentry, oldname);
2988 if (!error)
2989 fsnotify_create(dir, dentry);
2990 return error;
2991 }
2992
2993 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
2994 int, newdfd, const char __user *, newname)
2995 {
2996 int error;
2997 char *from;
2998 struct dentry *dentry;
2999 struct path path;
3000
3001 from = getname(oldname);
3002 if (IS_ERR(from))
3003 return PTR_ERR(from);
3004
3005 dentry = user_path_create(newdfd, newname, &path, 0);
3006 error = PTR_ERR(dentry);
3007 if (IS_ERR(dentry))
3008 goto out_putname;
3009
3010 error = mnt_want_write(path.mnt);
3011 if (error)
3012 goto out_dput;
3013 error = security_path_symlink(&path, dentry, from);
3014 if (error)
3015 goto out_drop_write;
3016 error = vfs_symlink(path.dentry->d_inode, dentry, from);
3017 out_drop_write:
3018 mnt_drop_write(path.mnt);
3019 out_dput:
3020 dput(dentry);
3021 mutex_unlock(&path.dentry->d_inode->i_mutex);
3022 path_put(&path);
3023 out_putname:
3024 putname(from);
3025 return error;
3026 }
3027
3028 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
3029 {
3030 return sys_symlinkat(oldname, AT_FDCWD, newname);
3031 }
3032
3033 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
3034 {
3035 struct inode *inode = old_dentry->d_inode;
3036 int error;
3037
3038 if (!inode)
3039 return -ENOENT;
3040
3041 error = may_create(dir, new_dentry);
3042 if (error)
3043 return error;
3044
3045 if (dir->i_sb != inode->i_sb)
3046 return -EXDEV;
3047
3048 /*
3049 * A link to an append-only or immutable file cannot be created.
3050 */
3051 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3052 return -EPERM;
3053 if (!dir->i_op->link)
3054 return -EPERM;
3055 if (S_ISDIR(inode->i_mode))
3056 return -EPERM;
3057
3058 error = security_inode_link(old_dentry, dir, new_dentry);
3059 if (error)
3060 return error;
3061
3062 mutex_lock(&inode->i_mutex);
3063 /* Make sure we don't allow creating hardlink to an unlinked file */
3064 if (inode->i_nlink == 0)
3065 error = -ENOENT;
3066 else
3067 error = dir->i_op->link(old_dentry, dir, new_dentry);
3068 mutex_unlock(&inode->i_mutex);
3069 if (!error)
3070 fsnotify_link(dir, inode, new_dentry);
3071 return error;
3072 }
3073
3074 /*
3075 * Hardlinks are often used in delicate situations. We avoid
3076 * security-related surprises by not following symlinks on the
3077 * newname. --KAB
3078 *
3079 * We don't follow them on the oldname either to be compatible
3080 * with linux 2.0, and to avoid hard-linking to directories
3081 * and other special files. --ADM
3082 */
3083 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
3084 int, newdfd, const char __user *, newname, int, flags)
3085 {
3086 struct dentry *new_dentry;
3087 struct path old_path, new_path;
3088 int how = 0;
3089 int error;
3090
3091 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
3092 return -EINVAL;
3093 /*
3094 * To use null names we require CAP_DAC_READ_SEARCH
3095 * This ensures that not everyone will be able to create
3096 * handlink using the passed filedescriptor.
3097 */
3098 if (flags & AT_EMPTY_PATH) {
3099 if (!capable(CAP_DAC_READ_SEARCH))
3100 return -ENOENT;
3101 how = LOOKUP_EMPTY;
3102 }
3103
3104 if (flags & AT_SYMLINK_FOLLOW)
3105 how |= LOOKUP_FOLLOW;
3106
3107 error = user_path_at(olddfd, oldname, how, &old_path);
3108 if (error)
3109 return error;
3110
3111 new_dentry = user_path_create(newdfd, newname, &new_path, 0);
3112 error = PTR_ERR(new_dentry);
3113 if (IS_ERR(new_dentry))
3114 goto out;
3115
3116 error = -EXDEV;
3117 if (old_path.mnt != new_path.mnt)
3118 goto out_dput;
3119 error = mnt_want_write(new_path.mnt);
3120 if (error)
3121 goto out_dput;
3122 error = security_path_link(old_path.dentry, &new_path, new_dentry);
3123 if (error)
3124 goto out_drop_write;
3125 error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry);
3126 out_drop_write:
3127 mnt_drop_write(new_path.mnt);
3128 out_dput:
3129 dput(new_dentry);
3130 mutex_unlock(&new_path.dentry->d_inode->i_mutex);
3131 path_put(&new_path);
3132 out:
3133 path_put(&old_path);
3134
3135 return error;
3136 }
3137
3138 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
3139 {
3140 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
3141 }
3142
3143 /*
3144 * The worst of all namespace operations - renaming directory. "Perverted"
3145 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
3146 * Problems:
3147 * a) we can get into loop creation. Check is done in is_subdir().
3148 * b) race potential - two innocent renames can create a loop together.
3149 * That's where 4.4 screws up. Current fix: serialization on
3150 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
3151 * story.
3152 * c) we have to lock _three_ objects - parents and victim (if it exists).
3153 * And that - after we got ->i_mutex on parents (until then we don't know
3154 * whether the target exists). Solution: try to be smart with locking
3155 * order for inodes. We rely on the fact that tree topology may change
3156 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
3157 * move will be locked. Thus we can rank directories by the tree
3158 * (ancestors first) and rank all non-directories after them.
3159 * That works since everybody except rename does "lock parent, lookup,
3160 * lock child" and rename is under ->s_vfs_rename_mutex.
3161 * HOWEVER, it relies on the assumption that any object with ->lookup()
3162 * has no more than 1 dentry. If "hybrid" objects will ever appear,
3163 * we'd better make sure that there's no link(2) for them.
3164 * d) conversion from fhandle to dentry may come in the wrong moment - when
3165 * we are removing the target. Solution: we will have to grab ->i_mutex
3166 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
3167 * ->i_mutex on parents, which works but leads to some truly excessive
3168 * locking].
3169 */
3170 static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry,
3171 struct inode *new_dir, struct dentry *new_dentry)
3172 {
3173 int error = 0;
3174 struct inode *target = new_dentry->d_inode;
3175
3176 /*
3177 * If we are going to change the parent - check write permissions,
3178 * we'll need to flip '..'.
3179 */
3180 if (new_dir != old_dir) {
3181 error = inode_permission(old_dentry->d_inode, MAY_WRITE);
3182 if (error)
3183 return error;
3184 }
3185
3186 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
3187 if (error)
3188 return error;
3189
3190 dget(new_dentry);
3191 if (target)
3192 mutex_lock(&target->i_mutex);
3193
3194 error = -EBUSY;
3195 if (d_mountpoint(old_dentry) || d_mountpoint(new_dentry))
3196 goto out;
3197
3198 if (target)
3199 shrink_dcache_parent(new_dentry);
3200 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
3201 if (error)
3202 goto out;
3203
3204 if (target) {
3205 target->i_flags |= S_DEAD;
3206 dont_mount(new_dentry);
3207 }
3208 out:
3209 if (target)
3210 mutex_unlock(&target->i_mutex);
3211 dput(new_dentry);
3212 if (!error)
3213 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
3214 d_move(old_dentry,new_dentry);
3215 return error;
3216 }
3217
3218 static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry,
3219 struct inode *new_dir, struct dentry *new_dentry)
3220 {
3221 struct inode *target = new_dentry->d_inode;
3222 int error;
3223
3224 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
3225 if (error)
3226 return error;
3227
3228 dget(new_dentry);
3229 if (target)
3230 mutex_lock(&target->i_mutex);
3231
3232 error = -EBUSY;
3233 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
3234 goto out;
3235
3236 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
3237 if (error)
3238 goto out;
3239
3240 if (target)
3241 dont_mount(new_dentry);
3242 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
3243 d_move(old_dentry, new_dentry);
3244 out:
3245 if (target)
3246 mutex_unlock(&target->i_mutex);
3247 dput(new_dentry);
3248 return error;
3249 }
3250
3251 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
3252 struct inode *new_dir, struct dentry *new_dentry)
3253 {
3254 int error;
3255 int is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
3256 const unsigned char *old_name;
3257
3258 if (old_dentry->d_inode == new_dentry->d_inode)
3259 return 0;
3260
3261 error = may_delete(old_dir, old_dentry, is_dir);
3262 if (error)
3263 return error;
3264
3265 if (!new_dentry->d_inode)
3266 error = may_create(new_dir, new_dentry);
3267 else
3268 error = may_delete(new_dir, new_dentry, is_dir);
3269 if (error)
3270 return error;
3271
3272 if (!old_dir->i_op->rename)
3273 return -EPERM;
3274
3275 old_name = fsnotify_oldname_init(old_dentry->d_name.name);
3276
3277 if (is_dir)
3278 error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry);
3279 else
3280 error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry);
3281 if (!error)
3282 fsnotify_move(old_dir, new_dir, old_name, is_dir,
3283 new_dentry->d_inode, old_dentry);
3284 fsnotify_oldname_free(old_name);
3285
3286 return error;
3287 }
3288
3289 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
3290 int, newdfd, const char __user *, newname)
3291 {
3292 struct dentry *old_dir, *new_dir;
3293 struct dentry *old_dentry, *new_dentry;
3294 struct dentry *trap;
3295 struct nameidata oldnd, newnd;
3296 char *from;
3297 char *to;
3298 int error;
3299
3300 error = user_path_parent(olddfd, oldname, &oldnd, &from);
3301 if (error)
3302 goto exit;
3303
3304 error = user_path_parent(newdfd, newname, &newnd, &to);
3305 if (error)
3306 goto exit1;
3307
3308 error = -EXDEV;
3309 if (oldnd.path.mnt != newnd.path.mnt)
3310 goto exit2;
3311
3312 old_dir = oldnd.path.dentry;
3313 error = -EBUSY;
3314 if (oldnd.last_type != LAST_NORM)
3315 goto exit2;
3316
3317 new_dir = newnd.path.dentry;
3318 if (newnd.last_type != LAST_NORM)
3319 goto exit2;
3320
3321 oldnd.flags &= ~LOOKUP_PARENT;
3322 newnd.flags &= ~LOOKUP_PARENT;
3323 newnd.flags |= LOOKUP_RENAME_TARGET;
3324
3325 trap = lock_rename(new_dir, old_dir);
3326
3327 old_dentry = lookup_hash(&oldnd);
3328 error = PTR_ERR(old_dentry);
3329 if (IS_ERR(old_dentry))
3330 goto exit3;
3331 /* source must exist */
3332 error = -ENOENT;
3333 if (!old_dentry->d_inode)
3334 goto exit4;
3335 /* unless the source is a directory trailing slashes give -ENOTDIR */
3336 if (!S_ISDIR(old_dentry->d_inode->i_mode)) {
3337 error = -ENOTDIR;
3338 if (oldnd.last.name[oldnd.last.len])
3339 goto exit4;
3340 if (newnd.last.name[newnd.last.len])
3341 goto exit4;
3342 }
3343 /* source should not be ancestor of target */
3344 error = -EINVAL;
3345 if (old_dentry == trap)
3346 goto exit4;
3347 new_dentry = lookup_hash(&newnd);
3348 error = PTR_ERR(new_dentry);
3349 if (IS_ERR(new_dentry))
3350 goto exit4;
3351 /* target should not be an ancestor of source */
3352 error = -ENOTEMPTY;
3353 if (new_dentry == trap)
3354 goto exit5;
3355
3356 error = mnt_want_write(oldnd.path.mnt);
3357 if (error)
3358 goto exit5;
3359 error = security_path_rename(&oldnd.path, old_dentry,
3360 &newnd.path, new_dentry);
3361 if (error)
3362 goto exit6;
3363 error = vfs_rename(old_dir->d_inode, old_dentry,
3364 new_dir->d_inode, new_dentry);
3365 exit6:
3366 mnt_drop_write(oldnd.path.mnt);
3367 exit5:
3368 dput(new_dentry);
3369 exit4:
3370 dput(old_dentry);
3371 exit3:
3372 unlock_rename(new_dir, old_dir);
3373 exit2:
3374 path_put(&newnd.path);
3375 putname(to);
3376 exit1:
3377 path_put(&oldnd.path);
3378 putname(from);
3379 exit:
3380 return error;
3381 }
3382
3383 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
3384 {
3385 return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname);
3386 }
3387
3388 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link)
3389 {
3390 int len;
3391
3392 len = PTR_ERR(link);
3393 if (IS_ERR(link))
3394 goto out;
3395
3396 len = strlen(link);
3397 if (len > (unsigned) buflen)
3398 len = buflen;
3399 if (copy_to_user(buffer, link, len))
3400 len = -EFAULT;
3401 out:
3402 return len;
3403 }
3404
3405 /*
3406 * A helper for ->readlink(). This should be used *ONLY* for symlinks that
3407 * have ->follow_link() touching nd only in nd_set_link(). Using (or not
3408 * using) it for any given inode is up to filesystem.
3409 */
3410 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
3411 {
3412 struct nameidata nd;
3413 void *cookie;
3414 int res;
3415
3416 nd.depth = 0;
3417 cookie = dentry->d_inode->i_op->follow_link(dentry, &nd);
3418 if (IS_ERR(cookie))
3419 return PTR_ERR(cookie);
3420
3421 res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd));
3422 if (dentry->d_inode->i_op->put_link)
3423 dentry->d_inode->i_op->put_link(dentry, &nd, cookie);
3424 return res;
3425 }
3426
3427 int vfs_follow_link(struct nameidata *nd, const char *link)
3428 {
3429 return __vfs_follow_link(nd, link);
3430 }
3431
3432 /* get the link contents into pagecache */
3433 static char *page_getlink(struct dentry * dentry, struct page **ppage)
3434 {
3435 char *kaddr;
3436 struct page *page;
3437 struct address_space *mapping = dentry->d_inode->i_mapping;
3438 page = read_mapping_page(mapping, 0, NULL);
3439 if (IS_ERR(page))
3440 return (char*)page;
3441 *ppage = page;
3442 kaddr = kmap(page);
3443 nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
3444 return kaddr;
3445 }
3446
3447 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
3448 {
3449 struct page *page = NULL;
3450 char *s = page_getlink(dentry, &page);
3451 int res = vfs_readlink(dentry,buffer,buflen,s);
3452 if (page) {
3453 kunmap(page);
3454 page_cache_release(page);
3455 }
3456 return res;
3457 }
3458
3459 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd)
3460 {
3461 struct page *page = NULL;
3462 nd_set_link(nd, page_getlink(dentry, &page));
3463 return page;
3464 }
3465
3466 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
3467 {
3468 struct page *page = cookie;
3469
3470 if (page) {
3471 kunmap(page);
3472 page_cache_release(page);
3473 }
3474 }
3475
3476 /*
3477 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
3478 */
3479 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
3480 {
3481 struct address_space *mapping = inode->i_mapping;
3482 struct page *page;
3483 void *fsdata;
3484 int err;
3485 char *kaddr;
3486 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
3487 if (nofs)
3488 flags |= AOP_FLAG_NOFS;
3489
3490 retry:
3491 err = pagecache_write_begin(NULL, mapping, 0, len-1,
3492 flags, &page, &fsdata);
3493 if (err)
3494 goto fail;
3495
3496 kaddr = kmap_atomic(page, KM_USER0);
3497 memcpy(kaddr, symname, len-1);
3498 kunmap_atomic(kaddr, KM_USER0);
3499
3500 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
3501 page, fsdata);
3502 if (err < 0)
3503 goto fail;
3504 if (err < len-1)
3505 goto retry;
3506
3507 mark_inode_dirty(inode);
3508 return 0;
3509 fail:
3510 return err;
3511 }
3512
3513 int page_symlink(struct inode *inode, const char *symname, int len)
3514 {
3515 return __page_symlink(inode, symname, len,
3516 !(mapping_gfp_mask(inode->i_mapping) & __GFP_FS));
3517 }
3518
3519 const struct inode_operations page_symlink_inode_operations = {
3520 .readlink = generic_readlink,
3521 .follow_link = page_follow_link_light,
3522 .put_link = page_put_link,
3523 };
3524
3525 EXPORT_SYMBOL(user_path_at);
3526 EXPORT_SYMBOL(follow_down_one);
3527 EXPORT_SYMBOL(follow_down);
3528 EXPORT_SYMBOL(follow_up);
3529 EXPORT_SYMBOL(get_write_access); /* binfmt_aout */
3530 EXPORT_SYMBOL(getname);
3531 EXPORT_SYMBOL(lock_rename);
3532 EXPORT_SYMBOL(lookup_one_len);
3533 EXPORT_SYMBOL(page_follow_link_light);
3534 EXPORT_SYMBOL(page_put_link);
3535 EXPORT_SYMBOL(page_readlink);
3536 EXPORT_SYMBOL(__page_symlink);
3537 EXPORT_SYMBOL(page_symlink);
3538 EXPORT_SYMBOL(page_symlink_inode_operations);
3539 EXPORT_SYMBOL(kern_path);
3540 EXPORT_SYMBOL(vfs_path_lookup);
3541 EXPORT_SYMBOL(inode_permission);
3542 EXPORT_SYMBOL(unlock_rename);
3543 EXPORT_SYMBOL(vfs_create);
3544 EXPORT_SYMBOL(vfs_follow_link);
3545 EXPORT_SYMBOL(vfs_link);
3546 EXPORT_SYMBOL(vfs_mkdir);
3547 EXPORT_SYMBOL(vfs_mknod);
3548 EXPORT_SYMBOL(generic_permission);
3549 EXPORT_SYMBOL(vfs_readlink);
3550 EXPORT_SYMBOL(vfs_rename);
3551 EXPORT_SYMBOL(vfs_rmdir);
3552 EXPORT_SYMBOL(vfs_symlink);
3553 EXPORT_SYMBOL(vfs_unlink);
3554 EXPORT_SYMBOL(dentry_unhash);
3555 EXPORT_SYMBOL(generic_readlink);
This page took 0.156378 seconds and 6 git commands to generate.