namei: lift (open-coded) terminate_walk() in follow_dotdot_rcu() into callers
[deliverable/linux.git] / fs / namei.c
1 /*
2 * linux/fs/namei.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * Some corrections by tytso.
9 */
10
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12 * lookup logic.
13 */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15 */
16
17 #include <linux/init.h>
18 #include <linux/export.h>
19 #include <linux/kernel.h>
20 #include <linux/slab.h>
21 #include <linux/fs.h>
22 #include <linux/namei.h>
23 #include <linux/pagemap.h>
24 #include <linux/fsnotify.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/ima.h>
28 #include <linux/syscalls.h>
29 #include <linux/mount.h>
30 #include <linux/audit.h>
31 #include <linux/capability.h>
32 #include <linux/file.h>
33 #include <linux/fcntl.h>
34 #include <linux/device_cgroup.h>
35 #include <linux/fs_struct.h>
36 #include <linux/posix_acl.h>
37 #include <linux/hash.h>
38 #include <asm/uaccess.h>
39
40 #include "internal.h"
41 #include "mount.h"
42
43 /* [Feb-1997 T. Schoebel-Theuer]
44 * Fundamental changes in the pathname lookup mechanisms (namei)
45 * were necessary because of omirr. The reason is that omirr needs
46 * to know the _real_ pathname, not the user-supplied one, in case
47 * of symlinks (and also when transname replacements occur).
48 *
49 * The new code replaces the old recursive symlink resolution with
50 * an iterative one (in case of non-nested symlink chains). It does
51 * this with calls to <fs>_follow_link().
52 * As a side effect, dir_namei(), _namei() and follow_link() are now
53 * replaced with a single function lookup_dentry() that can handle all
54 * the special cases of the former code.
55 *
56 * With the new dcache, the pathname is stored at each inode, at least as
57 * long as the refcount of the inode is positive. As a side effect, the
58 * size of the dcache depends on the inode cache and thus is dynamic.
59 *
60 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
61 * resolution to correspond with current state of the code.
62 *
63 * Note that the symlink resolution is not *completely* iterative.
64 * There is still a significant amount of tail- and mid- recursion in
65 * the algorithm. Also, note that <fs>_readlink() is not used in
66 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
67 * may return different results than <fs>_follow_link(). Many virtual
68 * filesystems (including /proc) exhibit this behavior.
69 */
70
71 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
72 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
73 * and the name already exists in form of a symlink, try to create the new
74 * name indicated by the symlink. The old code always complained that the
75 * name already exists, due to not following the symlink even if its target
76 * is nonexistent. The new semantics affects also mknod() and link() when
77 * the name is a symlink pointing to a non-existent name.
78 *
79 * I don't know which semantics is the right one, since I have no access
80 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
81 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
82 * "old" one. Personally, I think the new semantics is much more logical.
83 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
84 * file does succeed in both HP-UX and SunOs, but not in Solaris
85 * and in the old Linux semantics.
86 */
87
88 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
89 * semantics. See the comments in "open_namei" and "do_link" below.
90 *
91 * [10-Sep-98 Alan Modra] Another symlink change.
92 */
93
94 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
95 * inside the path - always follow.
96 * in the last component in creation/removal/renaming - never follow.
97 * if LOOKUP_FOLLOW passed - follow.
98 * if the pathname has trailing slashes - follow.
99 * otherwise - don't follow.
100 * (applied in that order).
101 *
102 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
103 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
104 * During the 2.4 we need to fix the userland stuff depending on it -
105 * hopefully we will be able to get rid of that wart in 2.5. So far only
106 * XEmacs seems to be relying on it...
107 */
108 /*
109 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
110 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
111 * any extra contention...
112 */
113
114 /* In order to reduce some races, while at the same time doing additional
115 * checking and hopefully speeding things up, we copy filenames to the
116 * kernel data space before using them..
117 *
118 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
119 * PATH_MAX includes the nul terminator --RR.
120 */
121
122 #define EMBEDDED_NAME_MAX (PATH_MAX - offsetof(struct filename, iname))
123
124 struct filename *
125 getname_flags(const char __user *filename, int flags, int *empty)
126 {
127 struct filename *result;
128 char *kname;
129 int len;
130
131 result = audit_reusename(filename);
132 if (result)
133 return result;
134
135 result = __getname();
136 if (unlikely(!result))
137 return ERR_PTR(-ENOMEM);
138
139 /*
140 * First, try to embed the struct filename inside the names_cache
141 * allocation
142 */
143 kname = (char *)result->iname;
144 result->name = kname;
145
146 len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX);
147 if (unlikely(len < 0)) {
148 __putname(result);
149 return ERR_PTR(len);
150 }
151
152 /*
153 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
154 * separate struct filename so we can dedicate the entire
155 * names_cache allocation for the pathname, and re-do the copy from
156 * userland.
157 */
158 if (unlikely(len == EMBEDDED_NAME_MAX)) {
159 const size_t size = offsetof(struct filename, iname[1]);
160 kname = (char *)result;
161
162 /*
163 * size is chosen that way we to guarantee that
164 * result->iname[0] is within the same object and that
165 * kname can't be equal to result->iname, no matter what.
166 */
167 result = kzalloc(size, GFP_KERNEL);
168 if (unlikely(!result)) {
169 __putname(kname);
170 return ERR_PTR(-ENOMEM);
171 }
172 result->name = kname;
173 len = strncpy_from_user(kname, filename, PATH_MAX);
174 if (unlikely(len < 0)) {
175 __putname(kname);
176 kfree(result);
177 return ERR_PTR(len);
178 }
179 if (unlikely(len == PATH_MAX)) {
180 __putname(kname);
181 kfree(result);
182 return ERR_PTR(-ENAMETOOLONG);
183 }
184 }
185
186 result->refcnt = 1;
187 /* The empty path is special. */
188 if (unlikely(!len)) {
189 if (empty)
190 *empty = 1;
191 if (!(flags & LOOKUP_EMPTY)) {
192 putname(result);
193 return ERR_PTR(-ENOENT);
194 }
195 }
196
197 result->uptr = filename;
198 result->aname = NULL;
199 audit_getname(result);
200 return result;
201 }
202
203 struct filename *
204 getname(const char __user * filename)
205 {
206 return getname_flags(filename, 0, NULL);
207 }
208
209 struct filename *
210 getname_kernel(const char * filename)
211 {
212 struct filename *result;
213 int len = strlen(filename) + 1;
214
215 result = __getname();
216 if (unlikely(!result))
217 return ERR_PTR(-ENOMEM);
218
219 if (len <= EMBEDDED_NAME_MAX) {
220 result->name = (char *)result->iname;
221 } else if (len <= PATH_MAX) {
222 struct filename *tmp;
223
224 tmp = kmalloc(sizeof(*tmp), GFP_KERNEL);
225 if (unlikely(!tmp)) {
226 __putname(result);
227 return ERR_PTR(-ENOMEM);
228 }
229 tmp->name = (char *)result;
230 result = tmp;
231 } else {
232 __putname(result);
233 return ERR_PTR(-ENAMETOOLONG);
234 }
235 memcpy((char *)result->name, filename, len);
236 result->uptr = NULL;
237 result->aname = NULL;
238 result->refcnt = 1;
239 audit_getname(result);
240
241 return result;
242 }
243
244 void putname(struct filename *name)
245 {
246 BUG_ON(name->refcnt <= 0);
247
248 if (--name->refcnt > 0)
249 return;
250
251 if (name->name != name->iname) {
252 __putname(name->name);
253 kfree(name);
254 } else
255 __putname(name);
256 }
257
258 static int check_acl(struct inode *inode, int mask)
259 {
260 #ifdef CONFIG_FS_POSIX_ACL
261 struct posix_acl *acl;
262
263 if (mask & MAY_NOT_BLOCK) {
264 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
265 if (!acl)
266 return -EAGAIN;
267 /* no ->get_acl() calls in RCU mode... */
268 if (acl == ACL_NOT_CACHED)
269 return -ECHILD;
270 return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
271 }
272
273 acl = get_acl(inode, ACL_TYPE_ACCESS);
274 if (IS_ERR(acl))
275 return PTR_ERR(acl);
276 if (acl) {
277 int error = posix_acl_permission(inode, acl, mask);
278 posix_acl_release(acl);
279 return error;
280 }
281 #endif
282
283 return -EAGAIN;
284 }
285
286 /*
287 * This does the basic permission checking
288 */
289 static int acl_permission_check(struct inode *inode, int mask)
290 {
291 unsigned int mode = inode->i_mode;
292
293 if (likely(uid_eq(current_fsuid(), inode->i_uid)))
294 mode >>= 6;
295 else {
296 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
297 int error = check_acl(inode, mask);
298 if (error != -EAGAIN)
299 return error;
300 }
301
302 if (in_group_p(inode->i_gid))
303 mode >>= 3;
304 }
305
306 /*
307 * If the DACs are ok we don't need any capability check.
308 */
309 if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
310 return 0;
311 return -EACCES;
312 }
313
314 /**
315 * generic_permission - check for access rights on a Posix-like filesystem
316 * @inode: inode to check access rights for
317 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
318 *
319 * Used to check for read/write/execute permissions on a file.
320 * We use "fsuid" for this, letting us set arbitrary permissions
321 * for filesystem access without changing the "normal" uids which
322 * are used for other things.
323 *
324 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
325 * request cannot be satisfied (eg. requires blocking or too much complexity).
326 * It would then be called again in ref-walk mode.
327 */
328 int generic_permission(struct inode *inode, int mask)
329 {
330 int ret;
331
332 /*
333 * Do the basic permission checks.
334 */
335 ret = acl_permission_check(inode, mask);
336 if (ret != -EACCES)
337 return ret;
338
339 if (S_ISDIR(inode->i_mode)) {
340 /* DACs are overridable for directories */
341 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
342 return 0;
343 if (!(mask & MAY_WRITE))
344 if (capable_wrt_inode_uidgid(inode,
345 CAP_DAC_READ_SEARCH))
346 return 0;
347 return -EACCES;
348 }
349 /*
350 * Read/write DACs are always overridable.
351 * Executable DACs are overridable when there is
352 * at least one exec bit set.
353 */
354 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
355 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
356 return 0;
357
358 /*
359 * Searching includes executable on directories, else just read.
360 */
361 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
362 if (mask == MAY_READ)
363 if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH))
364 return 0;
365
366 return -EACCES;
367 }
368 EXPORT_SYMBOL(generic_permission);
369
370 /*
371 * We _really_ want to just do "generic_permission()" without
372 * even looking at the inode->i_op values. So we keep a cache
373 * flag in inode->i_opflags, that says "this has not special
374 * permission function, use the fast case".
375 */
376 static inline int do_inode_permission(struct inode *inode, int mask)
377 {
378 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
379 if (likely(inode->i_op->permission))
380 return inode->i_op->permission(inode, mask);
381
382 /* This gets set once for the inode lifetime */
383 spin_lock(&inode->i_lock);
384 inode->i_opflags |= IOP_FASTPERM;
385 spin_unlock(&inode->i_lock);
386 }
387 return generic_permission(inode, mask);
388 }
389
390 /**
391 * __inode_permission - Check for access rights to a given inode
392 * @inode: Inode to check permission on
393 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
394 *
395 * Check for read/write/execute permissions on an inode.
396 *
397 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
398 *
399 * This does not check for a read-only file system. You probably want
400 * inode_permission().
401 */
402 int __inode_permission(struct inode *inode, int mask)
403 {
404 int retval;
405
406 if (unlikely(mask & MAY_WRITE)) {
407 /*
408 * Nobody gets write access to an immutable file.
409 */
410 if (IS_IMMUTABLE(inode))
411 return -EACCES;
412 }
413
414 retval = do_inode_permission(inode, mask);
415 if (retval)
416 return retval;
417
418 retval = devcgroup_inode_permission(inode, mask);
419 if (retval)
420 return retval;
421
422 return security_inode_permission(inode, mask);
423 }
424 EXPORT_SYMBOL(__inode_permission);
425
426 /**
427 * sb_permission - Check superblock-level permissions
428 * @sb: Superblock of inode to check permission on
429 * @inode: Inode to check permission on
430 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
431 *
432 * Separate out file-system wide checks from inode-specific permission checks.
433 */
434 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
435 {
436 if (unlikely(mask & MAY_WRITE)) {
437 umode_t mode = inode->i_mode;
438
439 /* Nobody gets write access to a read-only fs. */
440 if ((sb->s_flags & MS_RDONLY) &&
441 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
442 return -EROFS;
443 }
444 return 0;
445 }
446
447 /**
448 * inode_permission - Check for access rights to a given inode
449 * @inode: Inode to check permission on
450 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
451 *
452 * Check for read/write/execute permissions on an inode. We use fs[ug]id for
453 * this, letting us set arbitrary permissions for filesystem access without
454 * changing the "normal" UIDs which are used for other things.
455 *
456 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
457 */
458 int inode_permission(struct inode *inode, int mask)
459 {
460 int retval;
461
462 retval = sb_permission(inode->i_sb, inode, mask);
463 if (retval)
464 return retval;
465 return __inode_permission(inode, mask);
466 }
467 EXPORT_SYMBOL(inode_permission);
468
469 /**
470 * path_get - get a reference to a path
471 * @path: path to get the reference to
472 *
473 * Given a path increment the reference count to the dentry and the vfsmount.
474 */
475 void path_get(const struct path *path)
476 {
477 mntget(path->mnt);
478 dget(path->dentry);
479 }
480 EXPORT_SYMBOL(path_get);
481
482 /**
483 * path_put - put a reference to a path
484 * @path: path to put the reference to
485 *
486 * Given a path decrement the reference count to the dentry and the vfsmount.
487 */
488 void path_put(const struct path *path)
489 {
490 dput(path->dentry);
491 mntput(path->mnt);
492 }
493 EXPORT_SYMBOL(path_put);
494
495 #define EMBEDDED_LEVELS 2
496 struct nameidata {
497 struct path path;
498 union {
499 struct qstr last;
500 struct path link;
501 };
502 struct path root;
503 struct inode *inode; /* path.dentry.d_inode */
504 unsigned int flags;
505 unsigned seq, m_seq;
506 int last_type;
507 unsigned depth;
508 struct file *base;
509 struct saved {
510 struct path link;
511 void *cookie;
512 const char *name;
513 } *stack, internal[EMBEDDED_LEVELS];
514 };
515
516 static void set_nameidata(struct nameidata *nd)
517 {
518 nd->stack = nd->internal;
519 }
520
521 static void restore_nameidata(struct nameidata *nd)
522 {
523 if (nd->stack != nd->internal) {
524 kfree(nd->stack);
525 nd->stack = nd->internal;
526 }
527 }
528
529 static int __nd_alloc_stack(struct nameidata *nd)
530 {
531 struct saved *p = kmalloc(MAXSYMLINKS * sizeof(struct saved),
532 GFP_KERNEL);
533 if (unlikely(!p))
534 return -ENOMEM;
535 memcpy(p, nd->internal, sizeof(nd->internal));
536 nd->stack = p;
537 return 0;
538 }
539
540 static inline int nd_alloc_stack(struct nameidata *nd)
541 {
542 if (likely(nd->depth != EMBEDDED_LEVELS))
543 return 0;
544 if (likely(nd->stack != nd->internal))
545 return 0;
546 return __nd_alloc_stack(nd);
547 }
548
549 /*
550 * Path walking has 2 modes, rcu-walk and ref-walk (see
551 * Documentation/filesystems/path-lookup.txt). In situations when we can't
552 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
553 * normal reference counts on dentries and vfsmounts to transition to rcu-walk
554 * mode. Refcounts are grabbed at the last known good point before rcu-walk
555 * got stuck, so ref-walk may continue from there. If this is not successful
556 * (eg. a seqcount has changed), then failure is returned and it's up to caller
557 * to restart the path walk from the beginning in ref-walk mode.
558 */
559
560 /**
561 * unlazy_walk - try to switch to ref-walk mode.
562 * @nd: nameidata pathwalk data
563 * @dentry: child of nd->path.dentry or NULL
564 * Returns: 0 on success, -ECHILD on failure
565 *
566 * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry
567 * for ref-walk mode. @dentry must be a path found by a do_lookup call on
568 * @nd or NULL. Must be called from rcu-walk context.
569 */
570 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry)
571 {
572 struct fs_struct *fs = current->fs;
573 struct dentry *parent = nd->path.dentry;
574
575 BUG_ON(!(nd->flags & LOOKUP_RCU));
576
577 /*
578 * After legitimizing the bastards, terminate_walk()
579 * will do the right thing for non-RCU mode, and all our
580 * subsequent exit cases should rcu_read_unlock()
581 * before returning. Do vfsmount first; if dentry
582 * can't be legitimized, just set nd->path.dentry to NULL
583 * and rely on dput(NULL) being a no-op.
584 */
585 if (!legitimize_mnt(nd->path.mnt, nd->m_seq))
586 return -ECHILD;
587 nd->flags &= ~LOOKUP_RCU;
588
589 if (!lockref_get_not_dead(&parent->d_lockref)) {
590 nd->path.dentry = NULL;
591 goto out;
592 }
593
594 /*
595 * For a negative lookup, the lookup sequence point is the parents
596 * sequence point, and it only needs to revalidate the parent dentry.
597 *
598 * For a positive lookup, we need to move both the parent and the
599 * dentry from the RCU domain to be properly refcounted. And the
600 * sequence number in the dentry validates *both* dentry counters,
601 * since we checked the sequence number of the parent after we got
602 * the child sequence number. So we know the parent must still
603 * be valid if the child sequence number is still valid.
604 */
605 if (!dentry) {
606 if (read_seqcount_retry(&parent->d_seq, nd->seq))
607 goto out;
608 BUG_ON(nd->inode != parent->d_inode);
609 } else {
610 if (!lockref_get_not_dead(&dentry->d_lockref))
611 goto out;
612 if (read_seqcount_retry(&dentry->d_seq, nd->seq))
613 goto drop_dentry;
614 }
615
616 /*
617 * Sequence counts matched. Now make sure that the root is
618 * still valid and get it if required.
619 */
620 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
621 spin_lock(&fs->lock);
622 if (nd->root.mnt != fs->root.mnt || nd->root.dentry != fs->root.dentry)
623 goto unlock_and_drop_dentry;
624 path_get(&nd->root);
625 spin_unlock(&fs->lock);
626 }
627
628 rcu_read_unlock();
629 return 0;
630
631 unlock_and_drop_dentry:
632 spin_unlock(&fs->lock);
633 drop_dentry:
634 rcu_read_unlock();
635 dput(dentry);
636 goto drop_root_mnt;
637 out:
638 rcu_read_unlock();
639 drop_root_mnt:
640 if (!(nd->flags & LOOKUP_ROOT))
641 nd->root.mnt = NULL;
642 return -ECHILD;
643 }
644
645 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
646 {
647 return dentry->d_op->d_revalidate(dentry, flags);
648 }
649
650 /**
651 * complete_walk - successful completion of path walk
652 * @nd: pointer nameidata
653 *
654 * If we had been in RCU mode, drop out of it and legitimize nd->path.
655 * Revalidate the final result, unless we'd already done that during
656 * the path walk or the filesystem doesn't ask for it. Return 0 on
657 * success, -error on failure. In case of failure caller does not
658 * need to drop nd->path.
659 */
660 static int complete_walk(struct nameidata *nd)
661 {
662 struct dentry *dentry = nd->path.dentry;
663 int status;
664
665 if (nd->flags & LOOKUP_RCU) {
666 nd->flags &= ~LOOKUP_RCU;
667 if (!(nd->flags & LOOKUP_ROOT))
668 nd->root.mnt = NULL;
669
670 if (!legitimize_mnt(nd->path.mnt, nd->m_seq)) {
671 rcu_read_unlock();
672 return -ECHILD;
673 }
674 if (unlikely(!lockref_get_not_dead(&dentry->d_lockref))) {
675 rcu_read_unlock();
676 mntput(nd->path.mnt);
677 return -ECHILD;
678 }
679 if (read_seqcount_retry(&dentry->d_seq, nd->seq)) {
680 rcu_read_unlock();
681 dput(dentry);
682 mntput(nd->path.mnt);
683 return -ECHILD;
684 }
685 rcu_read_unlock();
686 }
687
688 if (likely(!(nd->flags & LOOKUP_JUMPED)))
689 return 0;
690
691 if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
692 return 0;
693
694 status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
695 if (status > 0)
696 return 0;
697
698 if (!status)
699 status = -ESTALE;
700
701 path_put(&nd->path);
702 return status;
703 }
704
705 static __always_inline void set_root(struct nameidata *nd)
706 {
707 get_fs_root(current->fs, &nd->root);
708 }
709
710 static __always_inline unsigned set_root_rcu(struct nameidata *nd)
711 {
712 struct fs_struct *fs = current->fs;
713 unsigned seq, res;
714
715 do {
716 seq = read_seqcount_begin(&fs->seq);
717 nd->root = fs->root;
718 res = __read_seqcount_begin(&nd->root.dentry->d_seq);
719 } while (read_seqcount_retry(&fs->seq, seq));
720 return res;
721 }
722
723 static void path_put_conditional(struct path *path, struct nameidata *nd)
724 {
725 dput(path->dentry);
726 if (path->mnt != nd->path.mnt)
727 mntput(path->mnt);
728 }
729
730 static inline void path_to_nameidata(const struct path *path,
731 struct nameidata *nd)
732 {
733 if (!(nd->flags & LOOKUP_RCU)) {
734 dput(nd->path.dentry);
735 if (nd->path.mnt != path->mnt)
736 mntput(nd->path.mnt);
737 }
738 nd->path.mnt = path->mnt;
739 nd->path.dentry = path->dentry;
740 }
741
742 /*
743 * Helper to directly jump to a known parsed path from ->follow_link,
744 * caller must have taken a reference to path beforehand.
745 */
746 void nd_jump_link(struct nameidata *nd, struct path *path)
747 {
748 path_put(&nd->path);
749
750 nd->path = *path;
751 nd->inode = nd->path.dentry->d_inode;
752 nd->flags |= LOOKUP_JUMPED;
753 }
754
755 static inline void put_link(struct nameidata *nd)
756 {
757 struct saved *last = nd->stack + --nd->depth;
758 struct inode *inode = last->link.dentry->d_inode;
759 if (last->cookie && inode->i_op->put_link)
760 inode->i_op->put_link(last->link.dentry, last->cookie);
761 path_put(&last->link);
762 }
763
764 int sysctl_protected_symlinks __read_mostly = 0;
765 int sysctl_protected_hardlinks __read_mostly = 0;
766
767 /**
768 * may_follow_link - Check symlink following for unsafe situations
769 * @link: The path of the symlink
770 * @nd: nameidata pathwalk data
771 *
772 * In the case of the sysctl_protected_symlinks sysctl being enabled,
773 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
774 * in a sticky world-writable directory. This is to protect privileged
775 * processes from failing races against path names that may change out
776 * from under them by way of other users creating malicious symlinks.
777 * It will permit symlinks to be followed only when outside a sticky
778 * world-writable directory, or when the uid of the symlink and follower
779 * match, or when the directory owner matches the symlink's owner.
780 *
781 * Returns 0 if following the symlink is allowed, -ve on error.
782 */
783 static inline int may_follow_link(struct path *link, struct nameidata *nd)
784 {
785 const struct inode *inode;
786 const struct inode *parent;
787
788 if (!sysctl_protected_symlinks)
789 return 0;
790
791 /* Allowed if owner and follower match. */
792 inode = link->dentry->d_inode;
793 if (uid_eq(current_cred()->fsuid, inode->i_uid))
794 return 0;
795
796 /* Allowed if parent directory not sticky and world-writable. */
797 parent = nd->path.dentry->d_inode;
798 if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
799 return 0;
800
801 /* Allowed if parent directory and link owner match. */
802 if (uid_eq(parent->i_uid, inode->i_uid))
803 return 0;
804
805 audit_log_link_denied("follow_link", link);
806 path_put_conditional(link, nd);
807 path_put(&nd->path);
808 return -EACCES;
809 }
810
811 /**
812 * safe_hardlink_source - Check for safe hardlink conditions
813 * @inode: the source inode to hardlink from
814 *
815 * Return false if at least one of the following conditions:
816 * - inode is not a regular file
817 * - inode is setuid
818 * - inode is setgid and group-exec
819 * - access failure for read and write
820 *
821 * Otherwise returns true.
822 */
823 static bool safe_hardlink_source(struct inode *inode)
824 {
825 umode_t mode = inode->i_mode;
826
827 /* Special files should not get pinned to the filesystem. */
828 if (!S_ISREG(mode))
829 return false;
830
831 /* Setuid files should not get pinned to the filesystem. */
832 if (mode & S_ISUID)
833 return false;
834
835 /* Executable setgid files should not get pinned to the filesystem. */
836 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
837 return false;
838
839 /* Hardlinking to unreadable or unwritable sources is dangerous. */
840 if (inode_permission(inode, MAY_READ | MAY_WRITE))
841 return false;
842
843 return true;
844 }
845
846 /**
847 * may_linkat - Check permissions for creating a hardlink
848 * @link: the source to hardlink from
849 *
850 * Block hardlink when all of:
851 * - sysctl_protected_hardlinks enabled
852 * - fsuid does not match inode
853 * - hardlink source is unsafe (see safe_hardlink_source() above)
854 * - not CAP_FOWNER
855 *
856 * Returns 0 if successful, -ve on error.
857 */
858 static int may_linkat(struct path *link)
859 {
860 const struct cred *cred;
861 struct inode *inode;
862
863 if (!sysctl_protected_hardlinks)
864 return 0;
865
866 cred = current_cred();
867 inode = link->dentry->d_inode;
868
869 /* Source inode owner (or CAP_FOWNER) can hardlink all they like,
870 * otherwise, it must be a safe source.
871 */
872 if (uid_eq(cred->fsuid, inode->i_uid) || safe_hardlink_source(inode) ||
873 capable(CAP_FOWNER))
874 return 0;
875
876 audit_log_link_denied("linkat", link);
877 return -EPERM;
878 }
879
880 static __always_inline
881 const char *get_link(struct nameidata *nd)
882 {
883 struct saved *last = nd->stack + nd->depth;
884 struct dentry *dentry = nd->link.dentry;
885 struct inode *inode = dentry->d_inode;
886 int error;
887 const char *res;
888
889 BUG_ON(nd->flags & LOOKUP_RCU);
890
891 if (nd->link.mnt == nd->path.mnt)
892 mntget(nd->link.mnt);
893
894 if (unlikely(current->total_link_count >= MAXSYMLINKS)) {
895 path_put(&nd->path);
896 path_put(&nd->link);
897 return ERR_PTR(-ELOOP);
898 }
899
900 last->link = nd->link;
901 last->cookie = NULL;
902
903 cond_resched();
904 current->total_link_count++;
905
906 touch_atime(&last->link);
907
908 error = security_inode_follow_link(dentry);
909 res = ERR_PTR(error);
910 if (error)
911 goto out;
912
913 nd->last_type = LAST_BIND;
914 res = inode->i_link;
915 if (!res) {
916 res = inode->i_op->follow_link(dentry, &last->cookie, nd);
917 if (IS_ERR(res)) {
918 out:
919 path_put(&nd->path);
920 path_put(&last->link);
921 return res;
922 }
923 }
924 nd->depth++;
925 return res;
926 }
927
928 static int follow_up_rcu(struct path *path)
929 {
930 struct mount *mnt = real_mount(path->mnt);
931 struct mount *parent;
932 struct dentry *mountpoint;
933
934 parent = mnt->mnt_parent;
935 if (&parent->mnt == path->mnt)
936 return 0;
937 mountpoint = mnt->mnt_mountpoint;
938 path->dentry = mountpoint;
939 path->mnt = &parent->mnt;
940 return 1;
941 }
942
943 /*
944 * follow_up - Find the mountpoint of path's vfsmount
945 *
946 * Given a path, find the mountpoint of its source file system.
947 * Replace @path with the path of the mountpoint in the parent mount.
948 * Up is towards /.
949 *
950 * Return 1 if we went up a level and 0 if we were already at the
951 * root.
952 */
953 int follow_up(struct path *path)
954 {
955 struct mount *mnt = real_mount(path->mnt);
956 struct mount *parent;
957 struct dentry *mountpoint;
958
959 read_seqlock_excl(&mount_lock);
960 parent = mnt->mnt_parent;
961 if (parent == mnt) {
962 read_sequnlock_excl(&mount_lock);
963 return 0;
964 }
965 mntget(&parent->mnt);
966 mountpoint = dget(mnt->mnt_mountpoint);
967 read_sequnlock_excl(&mount_lock);
968 dput(path->dentry);
969 path->dentry = mountpoint;
970 mntput(path->mnt);
971 path->mnt = &parent->mnt;
972 return 1;
973 }
974 EXPORT_SYMBOL(follow_up);
975
976 /*
977 * Perform an automount
978 * - return -EISDIR to tell follow_managed() to stop and return the path we
979 * were called with.
980 */
981 static int follow_automount(struct path *path, unsigned flags,
982 bool *need_mntput)
983 {
984 struct vfsmount *mnt;
985 int err;
986
987 if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
988 return -EREMOTE;
989
990 /* We don't want to mount if someone's just doing a stat -
991 * unless they're stat'ing a directory and appended a '/' to
992 * the name.
993 *
994 * We do, however, want to mount if someone wants to open or
995 * create a file of any type under the mountpoint, wants to
996 * traverse through the mountpoint or wants to open the
997 * mounted directory. Also, autofs may mark negative dentries
998 * as being automount points. These will need the attentions
999 * of the daemon to instantiate them before they can be used.
1000 */
1001 if (!(flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
1002 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
1003 path->dentry->d_inode)
1004 return -EISDIR;
1005
1006 current->total_link_count++;
1007 if (current->total_link_count >= 40)
1008 return -ELOOP;
1009
1010 mnt = path->dentry->d_op->d_automount(path);
1011 if (IS_ERR(mnt)) {
1012 /*
1013 * The filesystem is allowed to return -EISDIR here to indicate
1014 * it doesn't want to automount. For instance, autofs would do
1015 * this so that its userspace daemon can mount on this dentry.
1016 *
1017 * However, we can only permit this if it's a terminal point in
1018 * the path being looked up; if it wasn't then the remainder of
1019 * the path is inaccessible and we should say so.
1020 */
1021 if (PTR_ERR(mnt) == -EISDIR && (flags & LOOKUP_PARENT))
1022 return -EREMOTE;
1023 return PTR_ERR(mnt);
1024 }
1025
1026 if (!mnt) /* mount collision */
1027 return 0;
1028
1029 if (!*need_mntput) {
1030 /* lock_mount() may release path->mnt on error */
1031 mntget(path->mnt);
1032 *need_mntput = true;
1033 }
1034 err = finish_automount(mnt, path);
1035
1036 switch (err) {
1037 case -EBUSY:
1038 /* Someone else made a mount here whilst we were busy */
1039 return 0;
1040 case 0:
1041 path_put(path);
1042 path->mnt = mnt;
1043 path->dentry = dget(mnt->mnt_root);
1044 return 0;
1045 default:
1046 return err;
1047 }
1048
1049 }
1050
1051 /*
1052 * Handle a dentry that is managed in some way.
1053 * - Flagged for transit management (autofs)
1054 * - Flagged as mountpoint
1055 * - Flagged as automount point
1056 *
1057 * This may only be called in refwalk mode.
1058 *
1059 * Serialization is taken care of in namespace.c
1060 */
1061 static int follow_managed(struct path *path, unsigned flags)
1062 {
1063 struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
1064 unsigned managed;
1065 bool need_mntput = false;
1066 int ret = 0;
1067
1068 /* Given that we're not holding a lock here, we retain the value in a
1069 * local variable for each dentry as we look at it so that we don't see
1070 * the components of that value change under us */
1071 while (managed = ACCESS_ONCE(path->dentry->d_flags),
1072 managed &= DCACHE_MANAGED_DENTRY,
1073 unlikely(managed != 0)) {
1074 /* Allow the filesystem to manage the transit without i_mutex
1075 * being held. */
1076 if (managed & DCACHE_MANAGE_TRANSIT) {
1077 BUG_ON(!path->dentry->d_op);
1078 BUG_ON(!path->dentry->d_op->d_manage);
1079 ret = path->dentry->d_op->d_manage(path->dentry, false);
1080 if (ret < 0)
1081 break;
1082 }
1083
1084 /* Transit to a mounted filesystem. */
1085 if (managed & DCACHE_MOUNTED) {
1086 struct vfsmount *mounted = lookup_mnt(path);
1087 if (mounted) {
1088 dput(path->dentry);
1089 if (need_mntput)
1090 mntput(path->mnt);
1091 path->mnt = mounted;
1092 path->dentry = dget(mounted->mnt_root);
1093 need_mntput = true;
1094 continue;
1095 }
1096
1097 /* Something is mounted on this dentry in another
1098 * namespace and/or whatever was mounted there in this
1099 * namespace got unmounted before lookup_mnt() could
1100 * get it */
1101 }
1102
1103 /* Handle an automount point */
1104 if (managed & DCACHE_NEED_AUTOMOUNT) {
1105 ret = follow_automount(path, flags, &need_mntput);
1106 if (ret < 0)
1107 break;
1108 continue;
1109 }
1110
1111 /* We didn't change the current path point */
1112 break;
1113 }
1114
1115 if (need_mntput && path->mnt == mnt)
1116 mntput(path->mnt);
1117 if (ret == -EISDIR)
1118 ret = 0;
1119 return ret < 0 ? ret : need_mntput;
1120 }
1121
1122 int follow_down_one(struct path *path)
1123 {
1124 struct vfsmount *mounted;
1125
1126 mounted = lookup_mnt(path);
1127 if (mounted) {
1128 dput(path->dentry);
1129 mntput(path->mnt);
1130 path->mnt = mounted;
1131 path->dentry = dget(mounted->mnt_root);
1132 return 1;
1133 }
1134 return 0;
1135 }
1136 EXPORT_SYMBOL(follow_down_one);
1137
1138 static inline int managed_dentry_rcu(struct dentry *dentry)
1139 {
1140 return (dentry->d_flags & DCACHE_MANAGE_TRANSIT) ?
1141 dentry->d_op->d_manage(dentry, true) : 0;
1142 }
1143
1144 /*
1145 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if
1146 * we meet a managed dentry that would need blocking.
1147 */
1148 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1149 struct inode **inode)
1150 {
1151 for (;;) {
1152 struct mount *mounted;
1153 /*
1154 * Don't forget we might have a non-mountpoint managed dentry
1155 * that wants to block transit.
1156 */
1157 switch (managed_dentry_rcu(path->dentry)) {
1158 case -ECHILD:
1159 default:
1160 return false;
1161 case -EISDIR:
1162 return true;
1163 case 0:
1164 break;
1165 }
1166
1167 if (!d_mountpoint(path->dentry))
1168 return !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1169
1170 mounted = __lookup_mnt(path->mnt, path->dentry);
1171 if (!mounted)
1172 break;
1173 path->mnt = &mounted->mnt;
1174 path->dentry = mounted->mnt.mnt_root;
1175 nd->flags |= LOOKUP_JUMPED;
1176 nd->seq = read_seqcount_begin(&path->dentry->d_seq);
1177 /*
1178 * Update the inode too. We don't need to re-check the
1179 * dentry sequence number here after this d_inode read,
1180 * because a mount-point is always pinned.
1181 */
1182 *inode = path->dentry->d_inode;
1183 }
1184 return !read_seqretry(&mount_lock, nd->m_seq) &&
1185 !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1186 }
1187
1188 static int follow_dotdot_rcu(struct nameidata *nd)
1189 {
1190 struct inode *inode = nd->inode;
1191 if (!nd->root.mnt)
1192 set_root_rcu(nd);
1193
1194 while (1) {
1195 if (nd->path.dentry == nd->root.dentry &&
1196 nd->path.mnt == nd->root.mnt) {
1197 break;
1198 }
1199 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1200 struct dentry *old = nd->path.dentry;
1201 struct dentry *parent = old->d_parent;
1202 unsigned seq;
1203
1204 inode = parent->d_inode;
1205 seq = read_seqcount_begin(&parent->d_seq);
1206 if (read_seqcount_retry(&old->d_seq, nd->seq))
1207 goto failed;
1208 nd->path.dentry = parent;
1209 nd->seq = seq;
1210 break;
1211 }
1212 if (!follow_up_rcu(&nd->path))
1213 break;
1214 inode = nd->path.dentry->d_inode;
1215 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1216 }
1217 while (d_mountpoint(nd->path.dentry)) {
1218 struct mount *mounted;
1219 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry);
1220 if (!mounted)
1221 break;
1222 nd->path.mnt = &mounted->mnt;
1223 nd->path.dentry = mounted->mnt.mnt_root;
1224 inode = nd->path.dentry->d_inode;
1225 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1226 if (read_seqretry(&mount_lock, nd->m_seq))
1227 goto failed;
1228 }
1229 nd->inode = inode;
1230 return 0;
1231
1232 failed:
1233 return -ECHILD;
1234 }
1235
1236 /*
1237 * Follow down to the covering mount currently visible to userspace. At each
1238 * point, the filesystem owning that dentry may be queried as to whether the
1239 * caller is permitted to proceed or not.
1240 */
1241 int follow_down(struct path *path)
1242 {
1243 unsigned managed;
1244 int ret;
1245
1246 while (managed = ACCESS_ONCE(path->dentry->d_flags),
1247 unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1248 /* Allow the filesystem to manage the transit without i_mutex
1249 * being held.
1250 *
1251 * We indicate to the filesystem if someone is trying to mount
1252 * something here. This gives autofs the chance to deny anyone
1253 * other than its daemon the right to mount on its
1254 * superstructure.
1255 *
1256 * The filesystem may sleep at this point.
1257 */
1258 if (managed & DCACHE_MANAGE_TRANSIT) {
1259 BUG_ON(!path->dentry->d_op);
1260 BUG_ON(!path->dentry->d_op->d_manage);
1261 ret = path->dentry->d_op->d_manage(
1262 path->dentry, false);
1263 if (ret < 0)
1264 return ret == -EISDIR ? 0 : ret;
1265 }
1266
1267 /* Transit to a mounted filesystem. */
1268 if (managed & DCACHE_MOUNTED) {
1269 struct vfsmount *mounted = lookup_mnt(path);
1270 if (!mounted)
1271 break;
1272 dput(path->dentry);
1273 mntput(path->mnt);
1274 path->mnt = mounted;
1275 path->dentry = dget(mounted->mnt_root);
1276 continue;
1277 }
1278
1279 /* Don't handle automount points here */
1280 break;
1281 }
1282 return 0;
1283 }
1284 EXPORT_SYMBOL(follow_down);
1285
1286 /*
1287 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1288 */
1289 static void follow_mount(struct path *path)
1290 {
1291 while (d_mountpoint(path->dentry)) {
1292 struct vfsmount *mounted = lookup_mnt(path);
1293 if (!mounted)
1294 break;
1295 dput(path->dentry);
1296 mntput(path->mnt);
1297 path->mnt = mounted;
1298 path->dentry = dget(mounted->mnt_root);
1299 }
1300 }
1301
1302 static void follow_dotdot(struct nameidata *nd)
1303 {
1304 if (!nd->root.mnt)
1305 set_root(nd);
1306
1307 while(1) {
1308 struct dentry *old = nd->path.dentry;
1309
1310 if (nd->path.dentry == nd->root.dentry &&
1311 nd->path.mnt == nd->root.mnt) {
1312 break;
1313 }
1314 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1315 /* rare case of legitimate dget_parent()... */
1316 nd->path.dentry = dget_parent(nd->path.dentry);
1317 dput(old);
1318 break;
1319 }
1320 if (!follow_up(&nd->path))
1321 break;
1322 }
1323 follow_mount(&nd->path);
1324 nd->inode = nd->path.dentry->d_inode;
1325 }
1326
1327 /*
1328 * This looks up the name in dcache, possibly revalidates the old dentry and
1329 * allocates a new one if not found or not valid. In the need_lookup argument
1330 * returns whether i_op->lookup is necessary.
1331 *
1332 * dir->d_inode->i_mutex must be held
1333 */
1334 static struct dentry *lookup_dcache(struct qstr *name, struct dentry *dir,
1335 unsigned int flags, bool *need_lookup)
1336 {
1337 struct dentry *dentry;
1338 int error;
1339
1340 *need_lookup = false;
1341 dentry = d_lookup(dir, name);
1342 if (dentry) {
1343 if (dentry->d_flags & DCACHE_OP_REVALIDATE) {
1344 error = d_revalidate(dentry, flags);
1345 if (unlikely(error <= 0)) {
1346 if (error < 0) {
1347 dput(dentry);
1348 return ERR_PTR(error);
1349 } else {
1350 d_invalidate(dentry);
1351 dput(dentry);
1352 dentry = NULL;
1353 }
1354 }
1355 }
1356 }
1357
1358 if (!dentry) {
1359 dentry = d_alloc(dir, name);
1360 if (unlikely(!dentry))
1361 return ERR_PTR(-ENOMEM);
1362
1363 *need_lookup = true;
1364 }
1365 return dentry;
1366 }
1367
1368 /*
1369 * Call i_op->lookup on the dentry. The dentry must be negative and
1370 * unhashed.
1371 *
1372 * dir->d_inode->i_mutex must be held
1373 */
1374 static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry,
1375 unsigned int flags)
1376 {
1377 struct dentry *old;
1378
1379 /* Don't create child dentry for a dead directory. */
1380 if (unlikely(IS_DEADDIR(dir))) {
1381 dput(dentry);
1382 return ERR_PTR(-ENOENT);
1383 }
1384
1385 old = dir->i_op->lookup(dir, dentry, flags);
1386 if (unlikely(old)) {
1387 dput(dentry);
1388 dentry = old;
1389 }
1390 return dentry;
1391 }
1392
1393 static struct dentry *__lookup_hash(struct qstr *name,
1394 struct dentry *base, unsigned int flags)
1395 {
1396 bool need_lookup;
1397 struct dentry *dentry;
1398
1399 dentry = lookup_dcache(name, base, flags, &need_lookup);
1400 if (!need_lookup)
1401 return dentry;
1402
1403 return lookup_real(base->d_inode, dentry, flags);
1404 }
1405
1406 /*
1407 * It's more convoluted than I'd like it to be, but... it's still fairly
1408 * small and for now I'd prefer to have fast path as straight as possible.
1409 * It _is_ time-critical.
1410 */
1411 static int lookup_fast(struct nameidata *nd,
1412 struct path *path, struct inode **inode)
1413 {
1414 struct vfsmount *mnt = nd->path.mnt;
1415 struct dentry *dentry, *parent = nd->path.dentry;
1416 int need_reval = 1;
1417 int status = 1;
1418 int err;
1419
1420 /*
1421 * Rename seqlock is not required here because in the off chance
1422 * of a false negative due to a concurrent rename, we're going to
1423 * do the non-racy lookup, below.
1424 */
1425 if (nd->flags & LOOKUP_RCU) {
1426 unsigned seq;
1427 bool negative;
1428 dentry = __d_lookup_rcu(parent, &nd->last, &seq);
1429 if (!dentry)
1430 goto unlazy;
1431
1432 /*
1433 * This sequence count validates that the inode matches
1434 * the dentry name information from lookup.
1435 */
1436 *inode = dentry->d_inode;
1437 negative = d_is_negative(dentry);
1438 if (read_seqcount_retry(&dentry->d_seq, seq))
1439 return -ECHILD;
1440 if (negative)
1441 return -ENOENT;
1442
1443 /*
1444 * This sequence count validates that the parent had no
1445 * changes while we did the lookup of the dentry above.
1446 *
1447 * The memory barrier in read_seqcount_begin of child is
1448 * enough, we can use __read_seqcount_retry here.
1449 */
1450 if (__read_seqcount_retry(&parent->d_seq, nd->seq))
1451 return -ECHILD;
1452 nd->seq = seq;
1453
1454 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) {
1455 status = d_revalidate(dentry, nd->flags);
1456 if (unlikely(status <= 0)) {
1457 if (status != -ECHILD)
1458 need_reval = 0;
1459 goto unlazy;
1460 }
1461 }
1462 path->mnt = mnt;
1463 path->dentry = dentry;
1464 if (likely(__follow_mount_rcu(nd, path, inode)))
1465 return 0;
1466 unlazy:
1467 if (unlazy_walk(nd, dentry))
1468 return -ECHILD;
1469 } else {
1470 dentry = __d_lookup(parent, &nd->last);
1471 }
1472
1473 if (unlikely(!dentry))
1474 goto need_lookup;
1475
1476 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE) && need_reval)
1477 status = d_revalidate(dentry, nd->flags);
1478 if (unlikely(status <= 0)) {
1479 if (status < 0) {
1480 dput(dentry);
1481 return status;
1482 }
1483 d_invalidate(dentry);
1484 dput(dentry);
1485 goto need_lookup;
1486 }
1487
1488 if (unlikely(d_is_negative(dentry))) {
1489 dput(dentry);
1490 return -ENOENT;
1491 }
1492 path->mnt = mnt;
1493 path->dentry = dentry;
1494 err = follow_managed(path, nd->flags);
1495 if (unlikely(err < 0)) {
1496 path_put_conditional(path, nd);
1497 return err;
1498 }
1499 if (err)
1500 nd->flags |= LOOKUP_JUMPED;
1501 *inode = path->dentry->d_inode;
1502 return 0;
1503
1504 need_lookup:
1505 return 1;
1506 }
1507
1508 /* Fast lookup failed, do it the slow way */
1509 static int lookup_slow(struct nameidata *nd, struct path *path)
1510 {
1511 struct dentry *dentry, *parent;
1512 int err;
1513
1514 parent = nd->path.dentry;
1515 BUG_ON(nd->inode != parent->d_inode);
1516
1517 mutex_lock(&parent->d_inode->i_mutex);
1518 dentry = __lookup_hash(&nd->last, parent, nd->flags);
1519 mutex_unlock(&parent->d_inode->i_mutex);
1520 if (IS_ERR(dentry))
1521 return PTR_ERR(dentry);
1522 path->mnt = nd->path.mnt;
1523 path->dentry = dentry;
1524 err = follow_managed(path, nd->flags);
1525 if (unlikely(err < 0)) {
1526 path_put_conditional(path, nd);
1527 return err;
1528 }
1529 if (err)
1530 nd->flags |= LOOKUP_JUMPED;
1531 return 0;
1532 }
1533
1534 static inline int may_lookup(struct nameidata *nd)
1535 {
1536 if (nd->flags & LOOKUP_RCU) {
1537 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1538 if (err != -ECHILD)
1539 return err;
1540 if (unlazy_walk(nd, NULL))
1541 return -ECHILD;
1542 }
1543 return inode_permission(nd->inode, MAY_EXEC);
1544 }
1545
1546 static inline int handle_dots(struct nameidata *nd, int type)
1547 {
1548 if (type == LAST_DOTDOT) {
1549 if (nd->flags & LOOKUP_RCU) {
1550 return follow_dotdot_rcu(nd);
1551 } else
1552 follow_dotdot(nd);
1553 }
1554 return 0;
1555 }
1556
1557 static void terminate_walk(struct nameidata *nd)
1558 {
1559 if (!(nd->flags & LOOKUP_RCU)) {
1560 path_put(&nd->path);
1561 } else {
1562 nd->flags &= ~LOOKUP_RCU;
1563 if (!(nd->flags & LOOKUP_ROOT))
1564 nd->root.mnt = NULL;
1565 rcu_read_unlock();
1566 }
1567 }
1568
1569 /*
1570 * Do we need to follow links? We _really_ want to be able
1571 * to do this check without having to look at inode->i_op,
1572 * so we keep a cache of "no, this doesn't need follow_link"
1573 * for the common case.
1574 */
1575 static inline int should_follow_link(struct dentry *dentry, int follow)
1576 {
1577 return unlikely(d_is_symlink(dentry)) ? follow : 0;
1578 }
1579
1580 static int walk_component(struct nameidata *nd, int follow)
1581 {
1582 struct path path;
1583 struct inode *inode;
1584 int err;
1585 /*
1586 * "." and ".." are special - ".." especially so because it has
1587 * to be able to know about the current root directory and
1588 * parent relationships.
1589 */
1590 if (unlikely(nd->last_type != LAST_NORM)) {
1591 err = handle_dots(nd, nd->last_type);
1592 if (err)
1593 goto out_err;
1594 return 0;
1595 }
1596 err = lookup_fast(nd, &path, &inode);
1597 if (unlikely(err)) {
1598 if (err < 0)
1599 goto out_err;
1600
1601 err = lookup_slow(nd, &path);
1602 if (err < 0)
1603 goto out_err;
1604
1605 inode = path.dentry->d_inode;
1606 err = -ENOENT;
1607 if (d_is_negative(path.dentry))
1608 goto out_path_put;
1609 }
1610
1611 if (should_follow_link(path.dentry, follow)) {
1612 if (nd->flags & LOOKUP_RCU) {
1613 if (unlikely(nd->path.mnt != path.mnt ||
1614 unlazy_walk(nd, path.dentry))) {
1615 err = -ECHILD;
1616 goto out_err;
1617 }
1618 }
1619 BUG_ON(inode != path.dentry->d_inode);
1620 nd->link = path;
1621 return 1;
1622 }
1623 path_to_nameidata(&path, nd);
1624 nd->inode = inode;
1625 return 0;
1626
1627 out_path_put:
1628 path_to_nameidata(&path, nd);
1629 out_err:
1630 terminate_walk(nd);
1631 return err;
1632 }
1633
1634 /*
1635 * We can do the critical dentry name comparison and hashing
1636 * operations one word at a time, but we are limited to:
1637 *
1638 * - Architectures with fast unaligned word accesses. We could
1639 * do a "get_unaligned()" if this helps and is sufficiently
1640 * fast.
1641 *
1642 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1643 * do not trap on the (extremely unlikely) case of a page
1644 * crossing operation.
1645 *
1646 * - Furthermore, we need an efficient 64-bit compile for the
1647 * 64-bit case in order to generate the "number of bytes in
1648 * the final mask". Again, that could be replaced with a
1649 * efficient population count instruction or similar.
1650 */
1651 #ifdef CONFIG_DCACHE_WORD_ACCESS
1652
1653 #include <asm/word-at-a-time.h>
1654
1655 #ifdef CONFIG_64BIT
1656
1657 static inline unsigned int fold_hash(unsigned long hash)
1658 {
1659 return hash_64(hash, 32);
1660 }
1661
1662 #else /* 32-bit case */
1663
1664 #define fold_hash(x) (x)
1665
1666 #endif
1667
1668 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1669 {
1670 unsigned long a, mask;
1671 unsigned long hash = 0;
1672
1673 for (;;) {
1674 a = load_unaligned_zeropad(name);
1675 if (len < sizeof(unsigned long))
1676 break;
1677 hash += a;
1678 hash *= 9;
1679 name += sizeof(unsigned long);
1680 len -= sizeof(unsigned long);
1681 if (!len)
1682 goto done;
1683 }
1684 mask = bytemask_from_count(len);
1685 hash += mask & a;
1686 done:
1687 return fold_hash(hash);
1688 }
1689 EXPORT_SYMBOL(full_name_hash);
1690
1691 /*
1692 * Calculate the length and hash of the path component, and
1693 * return the "hash_len" as the result.
1694 */
1695 static inline u64 hash_name(const char *name)
1696 {
1697 unsigned long a, b, adata, bdata, mask, hash, len;
1698 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1699
1700 hash = a = 0;
1701 len = -sizeof(unsigned long);
1702 do {
1703 hash = (hash + a) * 9;
1704 len += sizeof(unsigned long);
1705 a = load_unaligned_zeropad(name+len);
1706 b = a ^ REPEAT_BYTE('/');
1707 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
1708
1709 adata = prep_zero_mask(a, adata, &constants);
1710 bdata = prep_zero_mask(b, bdata, &constants);
1711
1712 mask = create_zero_mask(adata | bdata);
1713
1714 hash += a & zero_bytemask(mask);
1715 len += find_zero(mask);
1716 return hashlen_create(fold_hash(hash), len);
1717 }
1718
1719 #else
1720
1721 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1722 {
1723 unsigned long hash = init_name_hash();
1724 while (len--)
1725 hash = partial_name_hash(*name++, hash);
1726 return end_name_hash(hash);
1727 }
1728 EXPORT_SYMBOL(full_name_hash);
1729
1730 /*
1731 * We know there's a real path component here of at least
1732 * one character.
1733 */
1734 static inline u64 hash_name(const char *name)
1735 {
1736 unsigned long hash = init_name_hash();
1737 unsigned long len = 0, c;
1738
1739 c = (unsigned char)*name;
1740 do {
1741 len++;
1742 hash = partial_name_hash(c, hash);
1743 c = (unsigned char)name[len];
1744 } while (c && c != '/');
1745 return hashlen_create(end_name_hash(hash), len);
1746 }
1747
1748 #endif
1749
1750 /*
1751 * Name resolution.
1752 * This is the basic name resolution function, turning a pathname into
1753 * the final dentry. We expect 'base' to be positive and a directory.
1754 *
1755 * Returns 0 and nd will have valid dentry and mnt on success.
1756 * Returns error and drops reference to input namei data on failure.
1757 */
1758 static int link_path_walk(const char *name, struct nameidata *nd)
1759 {
1760 int err;
1761
1762 while (*name=='/')
1763 name++;
1764 if (!*name)
1765 return 0;
1766
1767 /* At this point we know we have a real path component. */
1768 for(;;) {
1769 u64 hash_len;
1770 int type;
1771
1772 err = may_lookup(nd);
1773 if (err)
1774 break;
1775
1776 hash_len = hash_name(name);
1777
1778 type = LAST_NORM;
1779 if (name[0] == '.') switch (hashlen_len(hash_len)) {
1780 case 2:
1781 if (name[1] == '.') {
1782 type = LAST_DOTDOT;
1783 nd->flags |= LOOKUP_JUMPED;
1784 }
1785 break;
1786 case 1:
1787 type = LAST_DOT;
1788 }
1789 if (likely(type == LAST_NORM)) {
1790 struct dentry *parent = nd->path.dentry;
1791 nd->flags &= ~LOOKUP_JUMPED;
1792 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
1793 struct qstr this = { { .hash_len = hash_len }, .name = name };
1794 err = parent->d_op->d_hash(parent, &this);
1795 if (err < 0)
1796 break;
1797 hash_len = this.hash_len;
1798 name = this.name;
1799 }
1800 }
1801
1802 nd->last.hash_len = hash_len;
1803 nd->last.name = name;
1804 nd->last_type = type;
1805
1806 name += hashlen_len(hash_len);
1807 if (!*name)
1808 goto OK;
1809 /*
1810 * If it wasn't NUL, we know it was '/'. Skip that
1811 * slash, and continue until no more slashes.
1812 */
1813 do {
1814 name++;
1815 } while (unlikely(*name == '/'));
1816 if (!*name)
1817 goto OK;
1818
1819 err = walk_component(nd, LOOKUP_FOLLOW);
1820 Walked:
1821 if (err < 0)
1822 goto Err;
1823
1824 if (err) {
1825 const char *s;
1826
1827 err = nd_alloc_stack(nd);
1828 if (unlikely(err)) {
1829 path_to_nameidata(&nd->link, nd);
1830 break;
1831 }
1832
1833 s = get_link(nd);
1834
1835 if (unlikely(IS_ERR(s))) {
1836 err = PTR_ERR(s);
1837 goto Err;
1838 }
1839 err = 0;
1840 if (unlikely(!s)) {
1841 /* jumped */
1842 put_link(nd);
1843 } else {
1844 if (*s == '/') {
1845 if (!nd->root.mnt)
1846 set_root(nd);
1847 path_put(&nd->path);
1848 nd->path = nd->root;
1849 path_get(&nd->root);
1850 nd->flags |= LOOKUP_JUMPED;
1851 while (unlikely(*++s == '/'))
1852 ;
1853 }
1854 nd->inode = nd->path.dentry->d_inode;
1855 nd->stack[nd->depth - 1].name = name;
1856 if (!*s)
1857 goto OK;
1858 name = s;
1859 continue;
1860 }
1861 }
1862 if (!d_can_lookup(nd->path.dentry)) {
1863 err = -ENOTDIR;
1864 break;
1865 }
1866 }
1867 terminate_walk(nd);
1868 Err:
1869 while (unlikely(nd->depth))
1870 put_link(nd);
1871 return err;
1872 OK:
1873 if (!nd->depth) /* called from path_init(), done */
1874 return 0;
1875 name = nd->stack[nd->depth - 1].name;
1876 if (!name) /* called from trailing_symlink(), done */
1877 return 0;
1878
1879 err = walk_component(nd, LOOKUP_FOLLOW);
1880 put_link(nd);
1881 goto Walked;
1882 }
1883
1884 static int path_init(int dfd, const struct filename *name, unsigned int flags,
1885 struct nameidata *nd)
1886 {
1887 int retval = 0;
1888 const char *s = name->name;
1889
1890 nd->last_type = LAST_ROOT; /* if there are only slashes... */
1891 nd->flags = flags | LOOKUP_JUMPED | LOOKUP_PARENT;
1892 nd->depth = 0;
1893 nd->base = NULL;
1894 if (flags & LOOKUP_ROOT) {
1895 struct dentry *root = nd->root.dentry;
1896 struct inode *inode = root->d_inode;
1897 if (*s) {
1898 if (!d_can_lookup(root))
1899 return -ENOTDIR;
1900 retval = inode_permission(inode, MAY_EXEC);
1901 if (retval)
1902 return retval;
1903 }
1904 nd->path = nd->root;
1905 nd->inode = inode;
1906 if (flags & LOOKUP_RCU) {
1907 rcu_read_lock();
1908 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1909 nd->m_seq = read_seqbegin(&mount_lock);
1910 } else {
1911 path_get(&nd->path);
1912 }
1913 goto done;
1914 }
1915
1916 nd->root.mnt = NULL;
1917
1918 nd->m_seq = read_seqbegin(&mount_lock);
1919 if (*s == '/') {
1920 if (flags & LOOKUP_RCU) {
1921 rcu_read_lock();
1922 nd->seq = set_root_rcu(nd);
1923 } else {
1924 set_root(nd);
1925 path_get(&nd->root);
1926 }
1927 nd->path = nd->root;
1928 } else if (dfd == AT_FDCWD) {
1929 if (flags & LOOKUP_RCU) {
1930 struct fs_struct *fs = current->fs;
1931 unsigned seq;
1932
1933 rcu_read_lock();
1934
1935 do {
1936 seq = read_seqcount_begin(&fs->seq);
1937 nd->path = fs->pwd;
1938 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1939 } while (read_seqcount_retry(&fs->seq, seq));
1940 } else {
1941 get_fs_pwd(current->fs, &nd->path);
1942 }
1943 } else {
1944 /* Caller must check execute permissions on the starting path component */
1945 struct fd f = fdget_raw(dfd);
1946 struct dentry *dentry;
1947
1948 if (!f.file)
1949 return -EBADF;
1950
1951 dentry = f.file->f_path.dentry;
1952
1953 if (*s) {
1954 if (!d_can_lookup(dentry)) {
1955 fdput(f);
1956 return -ENOTDIR;
1957 }
1958 }
1959
1960 nd->path = f.file->f_path;
1961 if (flags & LOOKUP_RCU) {
1962 if (f.flags & FDPUT_FPUT)
1963 nd->base = f.file;
1964 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1965 rcu_read_lock();
1966 } else {
1967 path_get(&nd->path);
1968 fdput(f);
1969 }
1970 }
1971
1972 nd->inode = nd->path.dentry->d_inode;
1973 if (!(flags & LOOKUP_RCU))
1974 goto done;
1975 if (likely(!read_seqcount_retry(&nd->path.dentry->d_seq, nd->seq)))
1976 goto done;
1977 if (!(nd->flags & LOOKUP_ROOT))
1978 nd->root.mnt = NULL;
1979 rcu_read_unlock();
1980 return -ECHILD;
1981 done:
1982 current->total_link_count = 0;
1983 return link_path_walk(s, nd);
1984 }
1985
1986 static void path_cleanup(struct nameidata *nd)
1987 {
1988 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
1989 path_put(&nd->root);
1990 nd->root.mnt = NULL;
1991 }
1992 if (unlikely(nd->base))
1993 fput(nd->base);
1994 }
1995
1996 static int trailing_symlink(struct nameidata *nd)
1997 {
1998 const char *s;
1999 int error = may_follow_link(&nd->link, nd);
2000 if (unlikely(error))
2001 return error;
2002 nd->flags |= LOOKUP_PARENT;
2003 s = get_link(nd);
2004 if (unlikely(IS_ERR(s)))
2005 return PTR_ERR(s);
2006 if (unlikely(!s))
2007 return 0;
2008 if (*s == '/') {
2009 if (!nd->root.mnt)
2010 set_root(nd);
2011 path_put(&nd->path);
2012 nd->path = nd->root;
2013 path_get(&nd->root);
2014 nd->flags |= LOOKUP_JUMPED;
2015 }
2016 nd->inode = nd->path.dentry->d_inode;
2017 nd->stack[0].name = NULL;
2018 return link_path_walk(s, nd);
2019 }
2020
2021 static inline int lookup_last(struct nameidata *nd)
2022 {
2023 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
2024 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2025
2026 nd->flags &= ~LOOKUP_PARENT;
2027 return walk_component(nd, nd->flags & LOOKUP_FOLLOW);
2028 }
2029
2030 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2031 static int path_lookupat(int dfd, const struct filename *name,
2032 unsigned int flags, struct nameidata *nd)
2033 {
2034 int err;
2035
2036 /*
2037 * Path walking is largely split up into 2 different synchronisation
2038 * schemes, rcu-walk and ref-walk (explained in
2039 * Documentation/filesystems/path-lookup.txt). These share much of the
2040 * path walk code, but some things particularly setup, cleanup, and
2041 * following mounts are sufficiently divergent that functions are
2042 * duplicated. Typically there is a function foo(), and its RCU
2043 * analogue, foo_rcu().
2044 *
2045 * -ECHILD is the error number of choice (just to avoid clashes) that
2046 * is returned if some aspect of an rcu-walk fails. Such an error must
2047 * be handled by restarting a traditional ref-walk (which will always
2048 * be able to complete).
2049 */
2050 err = path_init(dfd, name, flags, nd);
2051 if (!err && !(flags & LOOKUP_PARENT)) {
2052 err = lookup_last(nd);
2053 while (err > 0) {
2054 err = trailing_symlink(nd);
2055 if (err)
2056 break;
2057 err = lookup_last(nd);
2058 put_link(nd);
2059 }
2060 }
2061
2062 if (!err)
2063 err = complete_walk(nd);
2064
2065 if (!err && nd->flags & LOOKUP_DIRECTORY) {
2066 if (!d_can_lookup(nd->path.dentry)) {
2067 path_put(&nd->path);
2068 err = -ENOTDIR;
2069 }
2070 }
2071
2072 path_cleanup(nd);
2073 return err;
2074 }
2075
2076 static int filename_lookup(int dfd, struct filename *name,
2077 unsigned int flags, struct nameidata *nd)
2078 {
2079 int retval;
2080
2081 set_nameidata(nd);
2082 retval = path_lookupat(dfd, name, flags | LOOKUP_RCU, nd);
2083
2084 if (unlikely(retval == -ECHILD))
2085 retval = path_lookupat(dfd, name, flags, nd);
2086 if (unlikely(retval == -ESTALE))
2087 retval = path_lookupat(dfd, name, flags | LOOKUP_REVAL, nd);
2088
2089 if (likely(!retval))
2090 audit_inode(name, nd->path.dentry, flags & LOOKUP_PARENT);
2091 restore_nameidata(nd);
2092 return retval;
2093 }
2094
2095 /* does lookup, returns the object with parent locked */
2096 struct dentry *kern_path_locked(const char *name, struct path *path)
2097 {
2098 struct filename *filename = getname_kernel(name);
2099 struct nameidata nd;
2100 struct dentry *d;
2101 int err;
2102
2103 if (IS_ERR(filename))
2104 return ERR_CAST(filename);
2105
2106 err = filename_lookup(AT_FDCWD, filename, LOOKUP_PARENT, &nd);
2107 if (err) {
2108 d = ERR_PTR(err);
2109 goto out;
2110 }
2111 if (nd.last_type != LAST_NORM) {
2112 path_put(&nd.path);
2113 d = ERR_PTR(-EINVAL);
2114 goto out;
2115 }
2116 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2117 d = __lookup_hash(&nd.last, nd.path.dentry, 0);
2118 if (IS_ERR(d)) {
2119 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2120 path_put(&nd.path);
2121 goto out;
2122 }
2123 *path = nd.path;
2124 out:
2125 putname(filename);
2126 return d;
2127 }
2128
2129 int kern_path(const char *name, unsigned int flags, struct path *path)
2130 {
2131 struct nameidata nd;
2132 struct filename *filename = getname_kernel(name);
2133 int res = PTR_ERR(filename);
2134
2135 if (!IS_ERR(filename)) {
2136 res = filename_lookup(AT_FDCWD, filename, flags, &nd);
2137 putname(filename);
2138 if (!res)
2139 *path = nd.path;
2140 }
2141 return res;
2142 }
2143 EXPORT_SYMBOL(kern_path);
2144
2145 /**
2146 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2147 * @dentry: pointer to dentry of the base directory
2148 * @mnt: pointer to vfs mount of the base directory
2149 * @name: pointer to file name
2150 * @flags: lookup flags
2151 * @path: pointer to struct path to fill
2152 */
2153 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2154 const char *name, unsigned int flags,
2155 struct path *path)
2156 {
2157 struct filename *filename = getname_kernel(name);
2158 int err = PTR_ERR(filename);
2159
2160 BUG_ON(flags & LOOKUP_PARENT);
2161
2162 /* the first argument of filename_lookup() is ignored with LOOKUP_ROOT */
2163 if (!IS_ERR(filename)) {
2164 struct nameidata nd;
2165 nd.root.dentry = dentry;
2166 nd.root.mnt = mnt;
2167 err = filename_lookup(AT_FDCWD, filename,
2168 flags | LOOKUP_ROOT, &nd);
2169 if (!err)
2170 *path = nd.path;
2171 putname(filename);
2172 }
2173 return err;
2174 }
2175 EXPORT_SYMBOL(vfs_path_lookup);
2176
2177 /**
2178 * lookup_one_len - filesystem helper to lookup single pathname component
2179 * @name: pathname component to lookup
2180 * @base: base directory to lookup from
2181 * @len: maximum length @len should be interpreted to
2182 *
2183 * Note that this routine is purely a helper for filesystem usage and should
2184 * not be called by generic code.
2185 */
2186 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2187 {
2188 struct qstr this;
2189 unsigned int c;
2190 int err;
2191
2192 WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex));
2193
2194 this.name = name;
2195 this.len = len;
2196 this.hash = full_name_hash(name, len);
2197 if (!len)
2198 return ERR_PTR(-EACCES);
2199
2200 if (unlikely(name[0] == '.')) {
2201 if (len < 2 || (len == 2 && name[1] == '.'))
2202 return ERR_PTR(-EACCES);
2203 }
2204
2205 while (len--) {
2206 c = *(const unsigned char *)name++;
2207 if (c == '/' || c == '\0')
2208 return ERR_PTR(-EACCES);
2209 }
2210 /*
2211 * See if the low-level filesystem might want
2212 * to use its own hash..
2213 */
2214 if (base->d_flags & DCACHE_OP_HASH) {
2215 int err = base->d_op->d_hash(base, &this);
2216 if (err < 0)
2217 return ERR_PTR(err);
2218 }
2219
2220 err = inode_permission(base->d_inode, MAY_EXEC);
2221 if (err)
2222 return ERR_PTR(err);
2223
2224 return __lookup_hash(&this, base, 0);
2225 }
2226 EXPORT_SYMBOL(lookup_one_len);
2227
2228 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2229 struct path *path, int *empty)
2230 {
2231 struct nameidata nd;
2232 struct filename *tmp = getname_flags(name, flags, empty);
2233 int err = PTR_ERR(tmp);
2234 if (!IS_ERR(tmp)) {
2235
2236 BUG_ON(flags & LOOKUP_PARENT);
2237
2238 err = filename_lookup(dfd, tmp, flags, &nd);
2239 putname(tmp);
2240 if (!err)
2241 *path = nd.path;
2242 }
2243 return err;
2244 }
2245
2246 int user_path_at(int dfd, const char __user *name, unsigned flags,
2247 struct path *path)
2248 {
2249 return user_path_at_empty(dfd, name, flags, path, NULL);
2250 }
2251 EXPORT_SYMBOL(user_path_at);
2252
2253 /*
2254 * NB: most callers don't do anything directly with the reference to the
2255 * to struct filename, but the nd->last pointer points into the name string
2256 * allocated by getname. So we must hold the reference to it until all
2257 * path-walking is complete.
2258 */
2259 static struct filename *
2260 user_path_parent(int dfd, const char __user *path,
2261 struct path *parent,
2262 struct qstr *last,
2263 int *type,
2264 unsigned int flags)
2265 {
2266 struct nameidata nd;
2267 struct filename *s = getname(path);
2268 int error;
2269
2270 /* only LOOKUP_REVAL is allowed in extra flags */
2271 flags &= LOOKUP_REVAL;
2272
2273 if (IS_ERR(s))
2274 return s;
2275
2276 error = filename_lookup(dfd, s, flags | LOOKUP_PARENT, &nd);
2277 if (error) {
2278 putname(s);
2279 return ERR_PTR(error);
2280 }
2281 *parent = nd.path;
2282 *last = nd.last;
2283 *type = nd.last_type;
2284
2285 return s;
2286 }
2287
2288 /**
2289 * mountpoint_last - look up last component for umount
2290 * @nd: pathwalk nameidata - currently pointing at parent directory of "last"
2291 * @path: pointer to container for result
2292 *
2293 * This is a special lookup_last function just for umount. In this case, we
2294 * need to resolve the path without doing any revalidation.
2295 *
2296 * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since
2297 * mountpoints are always pinned in the dcache, their ancestors are too. Thus,
2298 * in almost all cases, this lookup will be served out of the dcache. The only
2299 * cases where it won't are if nd->last refers to a symlink or the path is
2300 * bogus and it doesn't exist.
2301 *
2302 * Returns:
2303 * -error: if there was an error during lookup. This includes -ENOENT if the
2304 * lookup found a negative dentry. The nd->path reference will also be
2305 * put in this case.
2306 *
2307 * 0: if we successfully resolved nd->path and found it to not to be a
2308 * symlink that needs to be followed. "path" will also be populated.
2309 * The nd->path reference will also be put.
2310 *
2311 * 1: if we successfully resolved nd->last and found it to be a symlink
2312 * that needs to be followed. "path" will be populated with the path
2313 * to the link, and nd->path will *not* be put.
2314 */
2315 static int
2316 mountpoint_last(struct nameidata *nd, struct path *path)
2317 {
2318 int error = 0;
2319 struct dentry *dentry;
2320 struct dentry *dir = nd->path.dentry;
2321
2322 /* If we're in rcuwalk, drop out of it to handle last component */
2323 if (nd->flags & LOOKUP_RCU) {
2324 if (unlazy_walk(nd, NULL)) {
2325 error = -ECHILD;
2326 goto out;
2327 }
2328 }
2329
2330 nd->flags &= ~LOOKUP_PARENT;
2331
2332 if (unlikely(nd->last_type != LAST_NORM)) {
2333 error = handle_dots(nd, nd->last_type);
2334 if (error)
2335 goto out;
2336 dentry = dget(nd->path.dentry);
2337 goto done;
2338 }
2339
2340 mutex_lock(&dir->d_inode->i_mutex);
2341 dentry = d_lookup(dir, &nd->last);
2342 if (!dentry) {
2343 /*
2344 * No cached dentry. Mounted dentries are pinned in the cache,
2345 * so that means that this dentry is probably a symlink or the
2346 * path doesn't actually point to a mounted dentry.
2347 */
2348 dentry = d_alloc(dir, &nd->last);
2349 if (!dentry) {
2350 error = -ENOMEM;
2351 mutex_unlock(&dir->d_inode->i_mutex);
2352 goto out;
2353 }
2354 dentry = lookup_real(dir->d_inode, dentry, nd->flags);
2355 error = PTR_ERR(dentry);
2356 if (IS_ERR(dentry)) {
2357 mutex_unlock(&dir->d_inode->i_mutex);
2358 goto out;
2359 }
2360 }
2361 mutex_unlock(&dir->d_inode->i_mutex);
2362
2363 done:
2364 if (d_is_negative(dentry)) {
2365 error = -ENOENT;
2366 dput(dentry);
2367 goto out;
2368 }
2369 path->dentry = dentry;
2370 path->mnt = nd->path.mnt;
2371 if (should_follow_link(dentry, nd->flags & LOOKUP_FOLLOW)) {
2372 nd->link = *path;
2373 return 1;
2374 }
2375 mntget(path->mnt);
2376 follow_mount(path);
2377 error = 0;
2378 out:
2379 terminate_walk(nd);
2380 return error;
2381 }
2382
2383 /**
2384 * path_mountpoint - look up a path to be umounted
2385 * @dfd: directory file descriptor to start walk from
2386 * @name: full pathname to walk
2387 * @path: pointer to container for result
2388 * @flags: lookup flags
2389 *
2390 * Look up the given name, but don't attempt to revalidate the last component.
2391 * Returns 0 and "path" will be valid on success; Returns error otherwise.
2392 */
2393 static int
2394 path_mountpoint(int dfd, const struct filename *name, struct path *path,
2395 struct nameidata *nd, unsigned int flags)
2396 {
2397 int err = path_init(dfd, name, flags, nd);
2398 if (unlikely(err))
2399 goto out;
2400
2401 err = mountpoint_last(nd, path);
2402 while (err > 0) {
2403 err = trailing_symlink(nd);
2404 if (err)
2405 break;
2406 err = mountpoint_last(nd, path);
2407 put_link(nd);
2408 }
2409 out:
2410 path_cleanup(nd);
2411 return err;
2412 }
2413
2414 static int
2415 filename_mountpoint(int dfd, struct filename *name, struct path *path,
2416 unsigned int flags)
2417 {
2418 struct nameidata nd;
2419 int error;
2420 if (IS_ERR(name))
2421 return PTR_ERR(name);
2422 set_nameidata(&nd);
2423 error = path_mountpoint(dfd, name, path, &nd, flags | LOOKUP_RCU);
2424 if (unlikely(error == -ECHILD))
2425 error = path_mountpoint(dfd, name, path, &nd, flags);
2426 if (unlikely(error == -ESTALE))
2427 error = path_mountpoint(dfd, name, path, &nd, flags | LOOKUP_REVAL);
2428 if (likely(!error))
2429 audit_inode(name, path->dentry, 0);
2430 restore_nameidata(&nd);
2431 putname(name);
2432 return error;
2433 }
2434
2435 /**
2436 * user_path_mountpoint_at - lookup a path from userland in order to umount it
2437 * @dfd: directory file descriptor
2438 * @name: pathname from userland
2439 * @flags: lookup flags
2440 * @path: pointer to container to hold result
2441 *
2442 * A umount is a special case for path walking. We're not actually interested
2443 * in the inode in this situation, and ESTALE errors can be a problem. We
2444 * simply want track down the dentry and vfsmount attached at the mountpoint
2445 * and avoid revalidating the last component.
2446 *
2447 * Returns 0 and populates "path" on success.
2448 */
2449 int
2450 user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags,
2451 struct path *path)
2452 {
2453 return filename_mountpoint(dfd, getname(name), path, flags);
2454 }
2455
2456 int
2457 kern_path_mountpoint(int dfd, const char *name, struct path *path,
2458 unsigned int flags)
2459 {
2460 return filename_mountpoint(dfd, getname_kernel(name), path, flags);
2461 }
2462 EXPORT_SYMBOL(kern_path_mountpoint);
2463
2464 int __check_sticky(struct inode *dir, struct inode *inode)
2465 {
2466 kuid_t fsuid = current_fsuid();
2467
2468 if (uid_eq(inode->i_uid, fsuid))
2469 return 0;
2470 if (uid_eq(dir->i_uid, fsuid))
2471 return 0;
2472 return !capable_wrt_inode_uidgid(inode, CAP_FOWNER);
2473 }
2474 EXPORT_SYMBOL(__check_sticky);
2475
2476 /*
2477 * Check whether we can remove a link victim from directory dir, check
2478 * whether the type of victim is right.
2479 * 1. We can't do it if dir is read-only (done in permission())
2480 * 2. We should have write and exec permissions on dir
2481 * 3. We can't remove anything from append-only dir
2482 * 4. We can't do anything with immutable dir (done in permission())
2483 * 5. If the sticky bit on dir is set we should either
2484 * a. be owner of dir, or
2485 * b. be owner of victim, or
2486 * c. have CAP_FOWNER capability
2487 * 6. If the victim is append-only or immutable we can't do antyhing with
2488 * links pointing to it.
2489 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2490 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2491 * 9. We can't remove a root or mountpoint.
2492 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
2493 * nfs_async_unlink().
2494 */
2495 static int may_delete(struct inode *dir, struct dentry *victim, bool isdir)
2496 {
2497 struct inode *inode = victim->d_inode;
2498 int error;
2499
2500 if (d_is_negative(victim))
2501 return -ENOENT;
2502 BUG_ON(!inode);
2503
2504 BUG_ON(victim->d_parent->d_inode != dir);
2505 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2506
2507 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2508 if (error)
2509 return error;
2510 if (IS_APPEND(dir))
2511 return -EPERM;
2512
2513 if (check_sticky(dir, inode) || IS_APPEND(inode) ||
2514 IS_IMMUTABLE(inode) || IS_SWAPFILE(inode))
2515 return -EPERM;
2516 if (isdir) {
2517 if (!d_is_dir(victim))
2518 return -ENOTDIR;
2519 if (IS_ROOT(victim))
2520 return -EBUSY;
2521 } else if (d_is_dir(victim))
2522 return -EISDIR;
2523 if (IS_DEADDIR(dir))
2524 return -ENOENT;
2525 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2526 return -EBUSY;
2527 return 0;
2528 }
2529
2530 /* Check whether we can create an object with dentry child in directory
2531 * dir.
2532 * 1. We can't do it if child already exists (open has special treatment for
2533 * this case, but since we are inlined it's OK)
2534 * 2. We can't do it if dir is read-only (done in permission())
2535 * 3. We should have write and exec permissions on dir
2536 * 4. We can't do it if dir is immutable (done in permission())
2537 */
2538 static inline int may_create(struct inode *dir, struct dentry *child)
2539 {
2540 audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
2541 if (child->d_inode)
2542 return -EEXIST;
2543 if (IS_DEADDIR(dir))
2544 return -ENOENT;
2545 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2546 }
2547
2548 /*
2549 * p1 and p2 should be directories on the same fs.
2550 */
2551 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2552 {
2553 struct dentry *p;
2554
2555 if (p1 == p2) {
2556 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2557 return NULL;
2558 }
2559
2560 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2561
2562 p = d_ancestor(p2, p1);
2563 if (p) {
2564 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
2565 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
2566 return p;
2567 }
2568
2569 p = d_ancestor(p1, p2);
2570 if (p) {
2571 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2572 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2573 return p;
2574 }
2575
2576 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2577 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT2);
2578 return NULL;
2579 }
2580 EXPORT_SYMBOL(lock_rename);
2581
2582 void unlock_rename(struct dentry *p1, struct dentry *p2)
2583 {
2584 mutex_unlock(&p1->d_inode->i_mutex);
2585 if (p1 != p2) {
2586 mutex_unlock(&p2->d_inode->i_mutex);
2587 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2588 }
2589 }
2590 EXPORT_SYMBOL(unlock_rename);
2591
2592 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2593 bool want_excl)
2594 {
2595 int error = may_create(dir, dentry);
2596 if (error)
2597 return error;
2598
2599 if (!dir->i_op->create)
2600 return -EACCES; /* shouldn't it be ENOSYS? */
2601 mode &= S_IALLUGO;
2602 mode |= S_IFREG;
2603 error = security_inode_create(dir, dentry, mode);
2604 if (error)
2605 return error;
2606 error = dir->i_op->create(dir, dentry, mode, want_excl);
2607 if (!error)
2608 fsnotify_create(dir, dentry);
2609 return error;
2610 }
2611 EXPORT_SYMBOL(vfs_create);
2612
2613 static int may_open(struct path *path, int acc_mode, int flag)
2614 {
2615 struct dentry *dentry = path->dentry;
2616 struct inode *inode = dentry->d_inode;
2617 int error;
2618
2619 /* O_PATH? */
2620 if (!acc_mode)
2621 return 0;
2622
2623 if (!inode)
2624 return -ENOENT;
2625
2626 switch (inode->i_mode & S_IFMT) {
2627 case S_IFLNK:
2628 return -ELOOP;
2629 case S_IFDIR:
2630 if (acc_mode & MAY_WRITE)
2631 return -EISDIR;
2632 break;
2633 case S_IFBLK:
2634 case S_IFCHR:
2635 if (path->mnt->mnt_flags & MNT_NODEV)
2636 return -EACCES;
2637 /*FALLTHRU*/
2638 case S_IFIFO:
2639 case S_IFSOCK:
2640 flag &= ~O_TRUNC;
2641 break;
2642 }
2643
2644 error = inode_permission(inode, acc_mode);
2645 if (error)
2646 return error;
2647
2648 /*
2649 * An append-only file must be opened in append mode for writing.
2650 */
2651 if (IS_APPEND(inode)) {
2652 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2653 return -EPERM;
2654 if (flag & O_TRUNC)
2655 return -EPERM;
2656 }
2657
2658 /* O_NOATIME can only be set by the owner or superuser */
2659 if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2660 return -EPERM;
2661
2662 return 0;
2663 }
2664
2665 static int handle_truncate(struct file *filp)
2666 {
2667 struct path *path = &filp->f_path;
2668 struct inode *inode = path->dentry->d_inode;
2669 int error = get_write_access(inode);
2670 if (error)
2671 return error;
2672 /*
2673 * Refuse to truncate files with mandatory locks held on them.
2674 */
2675 error = locks_verify_locked(filp);
2676 if (!error)
2677 error = security_path_truncate(path);
2678 if (!error) {
2679 error = do_truncate(path->dentry, 0,
2680 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2681 filp);
2682 }
2683 put_write_access(inode);
2684 return error;
2685 }
2686
2687 static inline int open_to_namei_flags(int flag)
2688 {
2689 if ((flag & O_ACCMODE) == 3)
2690 flag--;
2691 return flag;
2692 }
2693
2694 static int may_o_create(struct path *dir, struct dentry *dentry, umode_t mode)
2695 {
2696 int error = security_path_mknod(dir, dentry, mode, 0);
2697 if (error)
2698 return error;
2699
2700 error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
2701 if (error)
2702 return error;
2703
2704 return security_inode_create(dir->dentry->d_inode, dentry, mode);
2705 }
2706
2707 /*
2708 * Attempt to atomically look up, create and open a file from a negative
2709 * dentry.
2710 *
2711 * Returns 0 if successful. The file will have been created and attached to
2712 * @file by the filesystem calling finish_open().
2713 *
2714 * Returns 1 if the file was looked up only or didn't need creating. The
2715 * caller will need to perform the open themselves. @path will have been
2716 * updated to point to the new dentry. This may be negative.
2717 *
2718 * Returns an error code otherwise.
2719 */
2720 static int atomic_open(struct nameidata *nd, struct dentry *dentry,
2721 struct path *path, struct file *file,
2722 const struct open_flags *op,
2723 bool got_write, bool need_lookup,
2724 int *opened)
2725 {
2726 struct inode *dir = nd->path.dentry->d_inode;
2727 unsigned open_flag = open_to_namei_flags(op->open_flag);
2728 umode_t mode;
2729 int error;
2730 int acc_mode;
2731 int create_error = 0;
2732 struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
2733 bool excl;
2734
2735 BUG_ON(dentry->d_inode);
2736
2737 /* Don't create child dentry for a dead directory. */
2738 if (unlikely(IS_DEADDIR(dir))) {
2739 error = -ENOENT;
2740 goto out;
2741 }
2742
2743 mode = op->mode;
2744 if ((open_flag & O_CREAT) && !IS_POSIXACL(dir))
2745 mode &= ~current_umask();
2746
2747 excl = (open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT);
2748 if (excl)
2749 open_flag &= ~O_TRUNC;
2750
2751 /*
2752 * Checking write permission is tricky, bacuse we don't know if we are
2753 * going to actually need it: O_CREAT opens should work as long as the
2754 * file exists. But checking existence breaks atomicity. The trick is
2755 * to check access and if not granted clear O_CREAT from the flags.
2756 *
2757 * Another problem is returing the "right" error value (e.g. for an
2758 * O_EXCL open we want to return EEXIST not EROFS).
2759 */
2760 if (((open_flag & (O_CREAT | O_TRUNC)) ||
2761 (open_flag & O_ACCMODE) != O_RDONLY) && unlikely(!got_write)) {
2762 if (!(open_flag & O_CREAT)) {
2763 /*
2764 * No O_CREATE -> atomicity not a requirement -> fall
2765 * back to lookup + open
2766 */
2767 goto no_open;
2768 } else if (open_flag & (O_EXCL | O_TRUNC)) {
2769 /* Fall back and fail with the right error */
2770 create_error = -EROFS;
2771 goto no_open;
2772 } else {
2773 /* No side effects, safe to clear O_CREAT */
2774 create_error = -EROFS;
2775 open_flag &= ~O_CREAT;
2776 }
2777 }
2778
2779 if (open_flag & O_CREAT) {
2780 error = may_o_create(&nd->path, dentry, mode);
2781 if (error) {
2782 create_error = error;
2783 if (open_flag & O_EXCL)
2784 goto no_open;
2785 open_flag &= ~O_CREAT;
2786 }
2787 }
2788
2789 if (nd->flags & LOOKUP_DIRECTORY)
2790 open_flag |= O_DIRECTORY;
2791
2792 file->f_path.dentry = DENTRY_NOT_SET;
2793 file->f_path.mnt = nd->path.mnt;
2794 error = dir->i_op->atomic_open(dir, dentry, file, open_flag, mode,
2795 opened);
2796 if (error < 0) {
2797 if (create_error && error == -ENOENT)
2798 error = create_error;
2799 goto out;
2800 }
2801
2802 if (error) { /* returned 1, that is */
2803 if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
2804 error = -EIO;
2805 goto out;
2806 }
2807 if (file->f_path.dentry) {
2808 dput(dentry);
2809 dentry = file->f_path.dentry;
2810 }
2811 if (*opened & FILE_CREATED)
2812 fsnotify_create(dir, dentry);
2813 if (!dentry->d_inode) {
2814 WARN_ON(*opened & FILE_CREATED);
2815 if (create_error) {
2816 error = create_error;
2817 goto out;
2818 }
2819 } else {
2820 if (excl && !(*opened & FILE_CREATED)) {
2821 error = -EEXIST;
2822 goto out;
2823 }
2824 }
2825 goto looked_up;
2826 }
2827
2828 /*
2829 * We didn't have the inode before the open, so check open permission
2830 * here.
2831 */
2832 acc_mode = op->acc_mode;
2833 if (*opened & FILE_CREATED) {
2834 WARN_ON(!(open_flag & O_CREAT));
2835 fsnotify_create(dir, dentry);
2836 acc_mode = MAY_OPEN;
2837 }
2838 error = may_open(&file->f_path, acc_mode, open_flag);
2839 if (error)
2840 fput(file);
2841
2842 out:
2843 dput(dentry);
2844 return error;
2845
2846 no_open:
2847 if (need_lookup) {
2848 dentry = lookup_real(dir, dentry, nd->flags);
2849 if (IS_ERR(dentry))
2850 return PTR_ERR(dentry);
2851
2852 if (create_error) {
2853 int open_flag = op->open_flag;
2854
2855 error = create_error;
2856 if ((open_flag & O_EXCL)) {
2857 if (!dentry->d_inode)
2858 goto out;
2859 } else if (!dentry->d_inode) {
2860 goto out;
2861 } else if ((open_flag & O_TRUNC) &&
2862 d_is_reg(dentry)) {
2863 goto out;
2864 }
2865 /* will fail later, go on to get the right error */
2866 }
2867 }
2868 looked_up:
2869 path->dentry = dentry;
2870 path->mnt = nd->path.mnt;
2871 return 1;
2872 }
2873
2874 /*
2875 * Look up and maybe create and open the last component.
2876 *
2877 * Must be called with i_mutex held on parent.
2878 *
2879 * Returns 0 if the file was successfully atomically created (if necessary) and
2880 * opened. In this case the file will be returned attached to @file.
2881 *
2882 * Returns 1 if the file was not completely opened at this time, though lookups
2883 * and creations will have been performed and the dentry returned in @path will
2884 * be positive upon return if O_CREAT was specified. If O_CREAT wasn't
2885 * specified then a negative dentry may be returned.
2886 *
2887 * An error code is returned otherwise.
2888 *
2889 * FILE_CREATE will be set in @*opened if the dentry was created and will be
2890 * cleared otherwise prior to returning.
2891 */
2892 static int lookup_open(struct nameidata *nd, struct path *path,
2893 struct file *file,
2894 const struct open_flags *op,
2895 bool got_write, int *opened)
2896 {
2897 struct dentry *dir = nd->path.dentry;
2898 struct inode *dir_inode = dir->d_inode;
2899 struct dentry *dentry;
2900 int error;
2901 bool need_lookup;
2902
2903 *opened &= ~FILE_CREATED;
2904 dentry = lookup_dcache(&nd->last, dir, nd->flags, &need_lookup);
2905 if (IS_ERR(dentry))
2906 return PTR_ERR(dentry);
2907
2908 /* Cached positive dentry: will open in f_op->open */
2909 if (!need_lookup && dentry->d_inode)
2910 goto out_no_open;
2911
2912 if ((nd->flags & LOOKUP_OPEN) && dir_inode->i_op->atomic_open) {
2913 return atomic_open(nd, dentry, path, file, op, got_write,
2914 need_lookup, opened);
2915 }
2916
2917 if (need_lookup) {
2918 BUG_ON(dentry->d_inode);
2919
2920 dentry = lookup_real(dir_inode, dentry, nd->flags);
2921 if (IS_ERR(dentry))
2922 return PTR_ERR(dentry);
2923 }
2924
2925 /* Negative dentry, just create the file */
2926 if (!dentry->d_inode && (op->open_flag & O_CREAT)) {
2927 umode_t mode = op->mode;
2928 if (!IS_POSIXACL(dir->d_inode))
2929 mode &= ~current_umask();
2930 /*
2931 * This write is needed to ensure that a
2932 * rw->ro transition does not occur between
2933 * the time when the file is created and when
2934 * a permanent write count is taken through
2935 * the 'struct file' in finish_open().
2936 */
2937 if (!got_write) {
2938 error = -EROFS;
2939 goto out_dput;
2940 }
2941 *opened |= FILE_CREATED;
2942 error = security_path_mknod(&nd->path, dentry, mode, 0);
2943 if (error)
2944 goto out_dput;
2945 error = vfs_create(dir->d_inode, dentry, mode,
2946 nd->flags & LOOKUP_EXCL);
2947 if (error)
2948 goto out_dput;
2949 }
2950 out_no_open:
2951 path->dentry = dentry;
2952 path->mnt = nd->path.mnt;
2953 return 1;
2954
2955 out_dput:
2956 dput(dentry);
2957 return error;
2958 }
2959
2960 /*
2961 * Handle the last step of open()
2962 */
2963 static int do_last(struct nameidata *nd,
2964 struct file *file, const struct open_flags *op,
2965 int *opened, struct filename *name)
2966 {
2967 struct dentry *dir = nd->path.dentry;
2968 int open_flag = op->open_flag;
2969 bool will_truncate = (open_flag & O_TRUNC) != 0;
2970 bool got_write = false;
2971 int acc_mode = op->acc_mode;
2972 struct inode *inode;
2973 struct path save_parent = { .dentry = NULL, .mnt = NULL };
2974 struct path path;
2975 bool retried = false;
2976 int error;
2977
2978 nd->flags &= ~LOOKUP_PARENT;
2979 nd->flags |= op->intent;
2980
2981 if (nd->last_type != LAST_NORM) {
2982 error = handle_dots(nd, nd->last_type);
2983 if (unlikely(error)) {
2984 terminate_walk(nd);
2985 return error;
2986 }
2987 goto finish_open;
2988 }
2989
2990 if (!(open_flag & O_CREAT)) {
2991 if (nd->last.name[nd->last.len])
2992 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2993 /* we _can_ be in RCU mode here */
2994 error = lookup_fast(nd, &path, &inode);
2995 if (likely(!error))
2996 goto finish_lookup;
2997
2998 if (error < 0)
2999 goto out;
3000
3001 BUG_ON(nd->inode != dir->d_inode);
3002 } else {
3003 /* create side of things */
3004 /*
3005 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED
3006 * has been cleared when we got to the last component we are
3007 * about to look up
3008 */
3009 error = complete_walk(nd);
3010 if (error)
3011 return error;
3012
3013 audit_inode(name, dir, LOOKUP_PARENT);
3014 error = -EISDIR;
3015 /* trailing slashes? */
3016 if (nd->last.name[nd->last.len])
3017 goto out;
3018 }
3019
3020 retry_lookup:
3021 if (op->open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
3022 error = mnt_want_write(nd->path.mnt);
3023 if (!error)
3024 got_write = true;
3025 /*
3026 * do _not_ fail yet - we might not need that or fail with
3027 * a different error; let lookup_open() decide; we'll be
3028 * dropping this one anyway.
3029 */
3030 }
3031 mutex_lock(&dir->d_inode->i_mutex);
3032 error = lookup_open(nd, &path, file, op, got_write, opened);
3033 mutex_unlock(&dir->d_inode->i_mutex);
3034
3035 if (error <= 0) {
3036 if (error)
3037 goto out;
3038
3039 if ((*opened & FILE_CREATED) ||
3040 !S_ISREG(file_inode(file)->i_mode))
3041 will_truncate = false;
3042
3043 audit_inode(name, file->f_path.dentry, 0);
3044 goto opened;
3045 }
3046
3047 if (*opened & FILE_CREATED) {
3048 /* Don't check for write permission, don't truncate */
3049 open_flag &= ~O_TRUNC;
3050 will_truncate = false;
3051 acc_mode = MAY_OPEN;
3052 path_to_nameidata(&path, nd);
3053 goto finish_open_created;
3054 }
3055
3056 /*
3057 * create/update audit record if it already exists.
3058 */
3059 if (d_is_positive(path.dentry))
3060 audit_inode(name, path.dentry, 0);
3061
3062 /*
3063 * If atomic_open() acquired write access it is dropped now due to
3064 * possible mount and symlink following (this might be optimized away if
3065 * necessary...)
3066 */
3067 if (got_write) {
3068 mnt_drop_write(nd->path.mnt);
3069 got_write = false;
3070 }
3071
3072 error = -EEXIST;
3073 if ((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))
3074 goto exit_dput;
3075
3076 error = follow_managed(&path, nd->flags);
3077 if (error < 0)
3078 goto exit_dput;
3079
3080 if (error)
3081 nd->flags |= LOOKUP_JUMPED;
3082
3083 BUG_ON(nd->flags & LOOKUP_RCU);
3084 inode = path.dentry->d_inode;
3085 error = -ENOENT;
3086 if (d_is_negative(path.dentry)) {
3087 path_to_nameidata(&path, nd);
3088 goto out;
3089 }
3090 finish_lookup:
3091 if (should_follow_link(path.dentry, nd->flags & LOOKUP_FOLLOW)) {
3092 if (nd->flags & LOOKUP_RCU) {
3093 if (unlikely(nd->path.mnt != path.mnt ||
3094 unlazy_walk(nd, path.dentry))) {
3095 error = -ECHILD;
3096 goto out;
3097 }
3098 }
3099 BUG_ON(inode != path.dentry->d_inode);
3100 nd->link = path;
3101 return 1;
3102 }
3103
3104 if (unlikely(d_is_symlink(path.dentry)) && !(open_flag & O_PATH)) {
3105 path_to_nameidata(&path, nd);
3106 error = -ELOOP;
3107 goto out;
3108 }
3109
3110 if ((nd->flags & LOOKUP_RCU) || nd->path.mnt != path.mnt) {
3111 path_to_nameidata(&path, nd);
3112 } else {
3113 save_parent.dentry = nd->path.dentry;
3114 save_parent.mnt = mntget(path.mnt);
3115 nd->path.dentry = path.dentry;
3116
3117 }
3118 nd->inode = inode;
3119 /* Why this, you ask? _Now_ we might have grown LOOKUP_JUMPED... */
3120 finish_open:
3121 error = complete_walk(nd);
3122 if (error) {
3123 path_put(&save_parent);
3124 return error;
3125 }
3126 audit_inode(name, nd->path.dentry, 0);
3127 error = -EISDIR;
3128 if ((open_flag & O_CREAT) && d_is_dir(nd->path.dentry))
3129 goto out;
3130 error = -ENOTDIR;
3131 if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3132 goto out;
3133 if (!d_is_reg(nd->path.dentry))
3134 will_truncate = false;
3135
3136 if (will_truncate) {
3137 error = mnt_want_write(nd->path.mnt);
3138 if (error)
3139 goto out;
3140 got_write = true;
3141 }
3142 finish_open_created:
3143 error = may_open(&nd->path, acc_mode, open_flag);
3144 if (error)
3145 goto out;
3146
3147 BUG_ON(*opened & FILE_OPENED); /* once it's opened, it's opened */
3148 error = vfs_open(&nd->path, file, current_cred());
3149 if (!error) {
3150 *opened |= FILE_OPENED;
3151 } else {
3152 if (error == -EOPENSTALE)
3153 goto stale_open;
3154 goto out;
3155 }
3156 opened:
3157 error = open_check_o_direct(file);
3158 if (error)
3159 goto exit_fput;
3160 error = ima_file_check(file, op->acc_mode, *opened);
3161 if (error)
3162 goto exit_fput;
3163
3164 if (will_truncate) {
3165 error = handle_truncate(file);
3166 if (error)
3167 goto exit_fput;
3168 }
3169 out:
3170 if (got_write)
3171 mnt_drop_write(nd->path.mnt);
3172 path_put(&save_parent);
3173 terminate_walk(nd);
3174 return error;
3175
3176 exit_dput:
3177 path_put_conditional(&path, nd);
3178 goto out;
3179 exit_fput:
3180 fput(file);
3181 goto out;
3182
3183 stale_open:
3184 /* If no saved parent or already retried then can't retry */
3185 if (!save_parent.dentry || retried)
3186 goto out;
3187
3188 BUG_ON(save_parent.dentry != dir);
3189 path_put(&nd->path);
3190 nd->path = save_parent;
3191 nd->inode = dir->d_inode;
3192 save_parent.mnt = NULL;
3193 save_parent.dentry = NULL;
3194 if (got_write) {
3195 mnt_drop_write(nd->path.mnt);
3196 got_write = false;
3197 }
3198 retried = true;
3199 goto retry_lookup;
3200 }
3201
3202 static int do_tmpfile(int dfd, struct filename *pathname,
3203 struct nameidata *nd, int flags,
3204 const struct open_flags *op,
3205 struct file *file, int *opened)
3206 {
3207 static const struct qstr name = QSTR_INIT("/", 1);
3208 struct dentry *dentry, *child;
3209 struct inode *dir;
3210 int error = path_lookupat(dfd, pathname,
3211 flags | LOOKUP_DIRECTORY, nd);
3212 if (unlikely(error))
3213 return error;
3214 error = mnt_want_write(nd->path.mnt);
3215 if (unlikely(error))
3216 goto out;
3217 /* we want directory to be writable */
3218 error = inode_permission(nd->inode, MAY_WRITE | MAY_EXEC);
3219 if (error)
3220 goto out2;
3221 dentry = nd->path.dentry;
3222 dir = dentry->d_inode;
3223 if (!dir->i_op->tmpfile) {
3224 error = -EOPNOTSUPP;
3225 goto out2;
3226 }
3227 child = d_alloc(dentry, &name);
3228 if (unlikely(!child)) {
3229 error = -ENOMEM;
3230 goto out2;
3231 }
3232 nd->flags &= ~LOOKUP_DIRECTORY;
3233 nd->flags |= op->intent;
3234 dput(nd->path.dentry);
3235 nd->path.dentry = child;
3236 error = dir->i_op->tmpfile(dir, nd->path.dentry, op->mode);
3237 if (error)
3238 goto out2;
3239 audit_inode(pathname, nd->path.dentry, 0);
3240 /* Don't check for other permissions, the inode was just created */
3241 error = may_open(&nd->path, MAY_OPEN, op->open_flag);
3242 if (error)
3243 goto out2;
3244 file->f_path.mnt = nd->path.mnt;
3245 error = finish_open(file, nd->path.dentry, NULL, opened);
3246 if (error)
3247 goto out2;
3248 error = open_check_o_direct(file);
3249 if (error) {
3250 fput(file);
3251 } else if (!(op->open_flag & O_EXCL)) {
3252 struct inode *inode = file_inode(file);
3253 spin_lock(&inode->i_lock);
3254 inode->i_state |= I_LINKABLE;
3255 spin_unlock(&inode->i_lock);
3256 }
3257 out2:
3258 mnt_drop_write(nd->path.mnt);
3259 out:
3260 path_put(&nd->path);
3261 return error;
3262 }
3263
3264 static struct file *path_openat(int dfd, struct filename *pathname,
3265 struct nameidata *nd, const struct open_flags *op, int flags)
3266 {
3267 struct file *file;
3268 int opened = 0;
3269 int error;
3270
3271 file = get_empty_filp();
3272 if (IS_ERR(file))
3273 return file;
3274
3275 file->f_flags = op->open_flag;
3276
3277 if (unlikely(file->f_flags & __O_TMPFILE)) {
3278 error = do_tmpfile(dfd, pathname, nd, flags, op, file, &opened);
3279 goto out2;
3280 }
3281
3282 error = path_init(dfd, pathname, flags, nd);
3283 if (unlikely(error))
3284 goto out;
3285
3286 error = do_last(nd, file, op, &opened, pathname);
3287 while (unlikely(error > 0)) { /* trailing symlink */
3288 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3289 error = trailing_symlink(nd);
3290 if (unlikely(error))
3291 break;
3292 error = do_last(nd, file, op, &opened, pathname);
3293 put_link(nd);
3294 }
3295 out:
3296 path_cleanup(nd);
3297 out2:
3298 if (!(opened & FILE_OPENED)) {
3299 BUG_ON(!error);
3300 put_filp(file);
3301 }
3302 if (unlikely(error)) {
3303 if (error == -EOPENSTALE) {
3304 if (flags & LOOKUP_RCU)
3305 error = -ECHILD;
3306 else
3307 error = -ESTALE;
3308 }
3309 file = ERR_PTR(error);
3310 }
3311 return file;
3312 }
3313
3314 struct file *do_filp_open(int dfd, struct filename *pathname,
3315 const struct open_flags *op)
3316 {
3317 struct nameidata nd;
3318 int flags = op->lookup_flags;
3319 struct file *filp;
3320
3321 set_nameidata(&nd);
3322 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_RCU);
3323 if (unlikely(filp == ERR_PTR(-ECHILD)))
3324 filp = path_openat(dfd, pathname, &nd, op, flags);
3325 if (unlikely(filp == ERR_PTR(-ESTALE)))
3326 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_REVAL);
3327 restore_nameidata(&nd);
3328 return filp;
3329 }
3330
3331 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
3332 const char *name, const struct open_flags *op)
3333 {
3334 struct nameidata nd;
3335 struct file *file;
3336 struct filename *filename;
3337 int flags = op->lookup_flags | LOOKUP_ROOT;
3338
3339 nd.root.mnt = mnt;
3340 nd.root.dentry = dentry;
3341 set_nameidata(&nd);
3342
3343 if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN)
3344 return ERR_PTR(-ELOOP);
3345
3346 filename = getname_kernel(name);
3347 if (unlikely(IS_ERR(filename)))
3348 return ERR_CAST(filename);
3349
3350 file = path_openat(-1, filename, &nd, op, flags | LOOKUP_RCU);
3351 if (unlikely(file == ERR_PTR(-ECHILD)))
3352 file = path_openat(-1, filename, &nd, op, flags);
3353 if (unlikely(file == ERR_PTR(-ESTALE)))
3354 file = path_openat(-1, filename, &nd, op, flags | LOOKUP_REVAL);
3355 restore_nameidata(&nd);
3356 putname(filename);
3357 return file;
3358 }
3359
3360 static struct dentry *filename_create(int dfd, struct filename *name,
3361 struct path *path, unsigned int lookup_flags)
3362 {
3363 struct dentry *dentry = ERR_PTR(-EEXIST);
3364 struct nameidata nd;
3365 int err2;
3366 int error;
3367 bool is_dir = (lookup_flags & LOOKUP_DIRECTORY);
3368
3369 /*
3370 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
3371 * other flags passed in are ignored!
3372 */
3373 lookup_flags &= LOOKUP_REVAL;
3374
3375 error = filename_lookup(dfd, name, LOOKUP_PARENT|lookup_flags, &nd);
3376 if (error)
3377 return ERR_PTR(error);
3378
3379 /*
3380 * Yucky last component or no last component at all?
3381 * (foo/., foo/.., /////)
3382 */
3383 if (nd.last_type != LAST_NORM)
3384 goto out;
3385 nd.flags &= ~LOOKUP_PARENT;
3386 nd.flags |= LOOKUP_CREATE | LOOKUP_EXCL;
3387
3388 /* don't fail immediately if it's r/o, at least try to report other errors */
3389 err2 = mnt_want_write(nd.path.mnt);
3390 /*
3391 * Do the final lookup.
3392 */
3393 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3394 dentry = __lookup_hash(&nd.last, nd.path.dentry, nd.flags);
3395 if (IS_ERR(dentry))
3396 goto unlock;
3397
3398 error = -EEXIST;
3399 if (d_is_positive(dentry))
3400 goto fail;
3401
3402 /*
3403 * Special case - lookup gave negative, but... we had foo/bar/
3404 * From the vfs_mknod() POV we just have a negative dentry -
3405 * all is fine. Let's be bastards - you had / on the end, you've
3406 * been asking for (non-existent) directory. -ENOENT for you.
3407 */
3408 if (unlikely(!is_dir && nd.last.name[nd.last.len])) {
3409 error = -ENOENT;
3410 goto fail;
3411 }
3412 if (unlikely(err2)) {
3413 error = err2;
3414 goto fail;
3415 }
3416 *path = nd.path;
3417 return dentry;
3418 fail:
3419 dput(dentry);
3420 dentry = ERR_PTR(error);
3421 unlock:
3422 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3423 if (!err2)
3424 mnt_drop_write(nd.path.mnt);
3425 out:
3426 path_put(&nd.path);
3427 return dentry;
3428 }
3429
3430 struct dentry *kern_path_create(int dfd, const char *pathname,
3431 struct path *path, unsigned int lookup_flags)
3432 {
3433 struct filename *filename = getname_kernel(pathname);
3434 struct dentry *res;
3435
3436 if (IS_ERR(filename))
3437 return ERR_CAST(filename);
3438 res = filename_create(dfd, filename, path, lookup_flags);
3439 putname(filename);
3440 return res;
3441 }
3442 EXPORT_SYMBOL(kern_path_create);
3443
3444 void done_path_create(struct path *path, struct dentry *dentry)
3445 {
3446 dput(dentry);
3447 mutex_unlock(&path->dentry->d_inode->i_mutex);
3448 mnt_drop_write(path->mnt);
3449 path_put(path);
3450 }
3451 EXPORT_SYMBOL(done_path_create);
3452
3453 struct dentry *user_path_create(int dfd, const char __user *pathname,
3454 struct path *path, unsigned int lookup_flags)
3455 {
3456 struct filename *tmp = getname(pathname);
3457 struct dentry *res;
3458 if (IS_ERR(tmp))
3459 return ERR_CAST(tmp);
3460 res = filename_create(dfd, tmp, path, lookup_flags);
3461 putname(tmp);
3462 return res;
3463 }
3464 EXPORT_SYMBOL(user_path_create);
3465
3466 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3467 {
3468 int error = may_create(dir, dentry);
3469
3470 if (error)
3471 return error;
3472
3473 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
3474 return -EPERM;
3475
3476 if (!dir->i_op->mknod)
3477 return -EPERM;
3478
3479 error = devcgroup_inode_mknod(mode, dev);
3480 if (error)
3481 return error;
3482
3483 error = security_inode_mknod(dir, dentry, mode, dev);
3484 if (error)
3485 return error;
3486
3487 error = dir->i_op->mknod(dir, dentry, mode, dev);
3488 if (!error)
3489 fsnotify_create(dir, dentry);
3490 return error;
3491 }
3492 EXPORT_SYMBOL(vfs_mknod);
3493
3494 static int may_mknod(umode_t mode)
3495 {
3496 switch (mode & S_IFMT) {
3497 case S_IFREG:
3498 case S_IFCHR:
3499 case S_IFBLK:
3500 case S_IFIFO:
3501 case S_IFSOCK:
3502 case 0: /* zero mode translates to S_IFREG */
3503 return 0;
3504 case S_IFDIR:
3505 return -EPERM;
3506 default:
3507 return -EINVAL;
3508 }
3509 }
3510
3511 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3512 unsigned, dev)
3513 {
3514 struct dentry *dentry;
3515 struct path path;
3516 int error;
3517 unsigned int lookup_flags = 0;
3518
3519 error = may_mknod(mode);
3520 if (error)
3521 return error;
3522 retry:
3523 dentry = user_path_create(dfd, filename, &path, lookup_flags);
3524 if (IS_ERR(dentry))
3525 return PTR_ERR(dentry);
3526
3527 if (!IS_POSIXACL(path.dentry->d_inode))
3528 mode &= ~current_umask();
3529 error = security_path_mknod(&path, dentry, mode, dev);
3530 if (error)
3531 goto out;
3532 switch (mode & S_IFMT) {
3533 case 0: case S_IFREG:
3534 error = vfs_create(path.dentry->d_inode,dentry,mode,true);
3535 break;
3536 case S_IFCHR: case S_IFBLK:
3537 error = vfs_mknod(path.dentry->d_inode,dentry,mode,
3538 new_decode_dev(dev));
3539 break;
3540 case S_IFIFO: case S_IFSOCK:
3541 error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
3542 break;
3543 }
3544 out:
3545 done_path_create(&path, dentry);
3546 if (retry_estale(error, lookup_flags)) {
3547 lookup_flags |= LOOKUP_REVAL;
3548 goto retry;
3549 }
3550 return error;
3551 }
3552
3553 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3554 {
3555 return sys_mknodat(AT_FDCWD, filename, mode, dev);
3556 }
3557
3558 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3559 {
3560 int error = may_create(dir, dentry);
3561 unsigned max_links = dir->i_sb->s_max_links;
3562
3563 if (error)
3564 return error;
3565
3566 if (!dir->i_op->mkdir)
3567 return -EPERM;
3568
3569 mode &= (S_IRWXUGO|S_ISVTX);
3570 error = security_inode_mkdir(dir, dentry, mode);
3571 if (error)
3572 return error;
3573
3574 if (max_links && dir->i_nlink >= max_links)
3575 return -EMLINK;
3576
3577 error = dir->i_op->mkdir(dir, dentry, mode);
3578 if (!error)
3579 fsnotify_mkdir(dir, dentry);
3580 return error;
3581 }
3582 EXPORT_SYMBOL(vfs_mkdir);
3583
3584 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3585 {
3586 struct dentry *dentry;
3587 struct path path;
3588 int error;
3589 unsigned int lookup_flags = LOOKUP_DIRECTORY;
3590
3591 retry:
3592 dentry = user_path_create(dfd, pathname, &path, lookup_flags);
3593 if (IS_ERR(dentry))
3594 return PTR_ERR(dentry);
3595
3596 if (!IS_POSIXACL(path.dentry->d_inode))
3597 mode &= ~current_umask();
3598 error = security_path_mkdir(&path, dentry, mode);
3599 if (!error)
3600 error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
3601 done_path_create(&path, dentry);
3602 if (retry_estale(error, lookup_flags)) {
3603 lookup_flags |= LOOKUP_REVAL;
3604 goto retry;
3605 }
3606 return error;
3607 }
3608
3609 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3610 {
3611 return sys_mkdirat(AT_FDCWD, pathname, mode);
3612 }
3613
3614 /*
3615 * The dentry_unhash() helper will try to drop the dentry early: we
3616 * should have a usage count of 1 if we're the only user of this
3617 * dentry, and if that is true (possibly after pruning the dcache),
3618 * then we drop the dentry now.
3619 *
3620 * A low-level filesystem can, if it choses, legally
3621 * do a
3622 *
3623 * if (!d_unhashed(dentry))
3624 * return -EBUSY;
3625 *
3626 * if it cannot handle the case of removing a directory
3627 * that is still in use by something else..
3628 */
3629 void dentry_unhash(struct dentry *dentry)
3630 {
3631 shrink_dcache_parent(dentry);
3632 spin_lock(&dentry->d_lock);
3633 if (dentry->d_lockref.count == 1)
3634 __d_drop(dentry);
3635 spin_unlock(&dentry->d_lock);
3636 }
3637 EXPORT_SYMBOL(dentry_unhash);
3638
3639 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
3640 {
3641 int error = may_delete(dir, dentry, 1);
3642
3643 if (error)
3644 return error;
3645
3646 if (!dir->i_op->rmdir)
3647 return -EPERM;
3648
3649 dget(dentry);
3650 mutex_lock(&dentry->d_inode->i_mutex);
3651
3652 error = -EBUSY;
3653 if (is_local_mountpoint(dentry))
3654 goto out;
3655
3656 error = security_inode_rmdir(dir, dentry);
3657 if (error)
3658 goto out;
3659
3660 shrink_dcache_parent(dentry);
3661 error = dir->i_op->rmdir(dir, dentry);
3662 if (error)
3663 goto out;
3664
3665 dentry->d_inode->i_flags |= S_DEAD;
3666 dont_mount(dentry);
3667 detach_mounts(dentry);
3668
3669 out:
3670 mutex_unlock(&dentry->d_inode->i_mutex);
3671 dput(dentry);
3672 if (!error)
3673 d_delete(dentry);
3674 return error;
3675 }
3676 EXPORT_SYMBOL(vfs_rmdir);
3677
3678 static long do_rmdir(int dfd, const char __user *pathname)
3679 {
3680 int error = 0;
3681 struct filename *name;
3682 struct dentry *dentry;
3683 struct path path;
3684 struct qstr last;
3685 int type;
3686 unsigned int lookup_flags = 0;
3687 retry:
3688 name = user_path_parent(dfd, pathname,
3689 &path, &last, &type, lookup_flags);
3690 if (IS_ERR(name))
3691 return PTR_ERR(name);
3692
3693 switch (type) {
3694 case LAST_DOTDOT:
3695 error = -ENOTEMPTY;
3696 goto exit1;
3697 case LAST_DOT:
3698 error = -EINVAL;
3699 goto exit1;
3700 case LAST_ROOT:
3701 error = -EBUSY;
3702 goto exit1;
3703 }
3704
3705 error = mnt_want_write(path.mnt);
3706 if (error)
3707 goto exit1;
3708
3709 mutex_lock_nested(&path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3710 dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3711 error = PTR_ERR(dentry);
3712 if (IS_ERR(dentry))
3713 goto exit2;
3714 if (!dentry->d_inode) {
3715 error = -ENOENT;
3716 goto exit3;
3717 }
3718 error = security_path_rmdir(&path, dentry);
3719 if (error)
3720 goto exit3;
3721 error = vfs_rmdir(path.dentry->d_inode, dentry);
3722 exit3:
3723 dput(dentry);
3724 exit2:
3725 mutex_unlock(&path.dentry->d_inode->i_mutex);
3726 mnt_drop_write(path.mnt);
3727 exit1:
3728 path_put(&path);
3729 putname(name);
3730 if (retry_estale(error, lookup_flags)) {
3731 lookup_flags |= LOOKUP_REVAL;
3732 goto retry;
3733 }
3734 return error;
3735 }
3736
3737 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3738 {
3739 return do_rmdir(AT_FDCWD, pathname);
3740 }
3741
3742 /**
3743 * vfs_unlink - unlink a filesystem object
3744 * @dir: parent directory
3745 * @dentry: victim
3746 * @delegated_inode: returns victim inode, if the inode is delegated.
3747 *
3748 * The caller must hold dir->i_mutex.
3749 *
3750 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
3751 * return a reference to the inode in delegated_inode. The caller
3752 * should then break the delegation on that inode and retry. Because
3753 * breaking a delegation may take a long time, the caller should drop
3754 * dir->i_mutex before doing so.
3755 *
3756 * Alternatively, a caller may pass NULL for delegated_inode. This may
3757 * be appropriate for callers that expect the underlying filesystem not
3758 * to be NFS exported.
3759 */
3760 int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode)
3761 {
3762 struct inode *target = dentry->d_inode;
3763 int error = may_delete(dir, dentry, 0);
3764
3765 if (error)
3766 return error;
3767
3768 if (!dir->i_op->unlink)
3769 return -EPERM;
3770
3771 mutex_lock(&target->i_mutex);
3772 if (is_local_mountpoint(dentry))
3773 error = -EBUSY;
3774 else {
3775 error = security_inode_unlink(dir, dentry);
3776 if (!error) {
3777 error = try_break_deleg(target, delegated_inode);
3778 if (error)
3779 goto out;
3780 error = dir->i_op->unlink(dir, dentry);
3781 if (!error) {
3782 dont_mount(dentry);
3783 detach_mounts(dentry);
3784 }
3785 }
3786 }
3787 out:
3788 mutex_unlock(&target->i_mutex);
3789
3790 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
3791 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
3792 fsnotify_link_count(target);
3793 d_delete(dentry);
3794 }
3795
3796 return error;
3797 }
3798 EXPORT_SYMBOL(vfs_unlink);
3799
3800 /*
3801 * Make sure that the actual truncation of the file will occur outside its
3802 * directory's i_mutex. Truncate can take a long time if there is a lot of
3803 * writeout happening, and we don't want to prevent access to the directory
3804 * while waiting on the I/O.
3805 */
3806 static long do_unlinkat(int dfd, const char __user *pathname)
3807 {
3808 int error;
3809 struct filename *name;
3810 struct dentry *dentry;
3811 struct path path;
3812 struct qstr last;
3813 int type;
3814 struct inode *inode = NULL;
3815 struct inode *delegated_inode = NULL;
3816 unsigned int lookup_flags = 0;
3817 retry:
3818 name = user_path_parent(dfd, pathname,
3819 &path, &last, &type, lookup_flags);
3820 if (IS_ERR(name))
3821 return PTR_ERR(name);
3822
3823 error = -EISDIR;
3824 if (type != LAST_NORM)
3825 goto exit1;
3826
3827 error = mnt_want_write(path.mnt);
3828 if (error)
3829 goto exit1;
3830 retry_deleg:
3831 mutex_lock_nested(&path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3832 dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3833 error = PTR_ERR(dentry);
3834 if (!IS_ERR(dentry)) {
3835 /* Why not before? Because we want correct error value */
3836 if (last.name[last.len])
3837 goto slashes;
3838 inode = dentry->d_inode;
3839 if (d_is_negative(dentry))
3840 goto slashes;
3841 ihold(inode);
3842 error = security_path_unlink(&path, dentry);
3843 if (error)
3844 goto exit2;
3845 error = vfs_unlink(path.dentry->d_inode, dentry, &delegated_inode);
3846 exit2:
3847 dput(dentry);
3848 }
3849 mutex_unlock(&path.dentry->d_inode->i_mutex);
3850 if (inode)
3851 iput(inode); /* truncate the inode here */
3852 inode = NULL;
3853 if (delegated_inode) {
3854 error = break_deleg_wait(&delegated_inode);
3855 if (!error)
3856 goto retry_deleg;
3857 }
3858 mnt_drop_write(path.mnt);
3859 exit1:
3860 path_put(&path);
3861 putname(name);
3862 if (retry_estale(error, lookup_flags)) {
3863 lookup_flags |= LOOKUP_REVAL;
3864 inode = NULL;
3865 goto retry;
3866 }
3867 return error;
3868
3869 slashes:
3870 if (d_is_negative(dentry))
3871 error = -ENOENT;
3872 else if (d_is_dir(dentry))
3873 error = -EISDIR;
3874 else
3875 error = -ENOTDIR;
3876 goto exit2;
3877 }
3878
3879 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
3880 {
3881 if ((flag & ~AT_REMOVEDIR) != 0)
3882 return -EINVAL;
3883
3884 if (flag & AT_REMOVEDIR)
3885 return do_rmdir(dfd, pathname);
3886
3887 return do_unlinkat(dfd, pathname);
3888 }
3889
3890 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
3891 {
3892 return do_unlinkat(AT_FDCWD, pathname);
3893 }
3894
3895 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
3896 {
3897 int error = may_create(dir, dentry);
3898
3899 if (error)
3900 return error;
3901
3902 if (!dir->i_op->symlink)
3903 return -EPERM;
3904
3905 error = security_inode_symlink(dir, dentry, oldname);
3906 if (error)
3907 return error;
3908
3909 error = dir->i_op->symlink(dir, dentry, oldname);
3910 if (!error)
3911 fsnotify_create(dir, dentry);
3912 return error;
3913 }
3914 EXPORT_SYMBOL(vfs_symlink);
3915
3916 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
3917 int, newdfd, const char __user *, newname)
3918 {
3919 int error;
3920 struct filename *from;
3921 struct dentry *dentry;
3922 struct path path;
3923 unsigned int lookup_flags = 0;
3924
3925 from = getname(oldname);
3926 if (IS_ERR(from))
3927 return PTR_ERR(from);
3928 retry:
3929 dentry = user_path_create(newdfd, newname, &path, lookup_flags);
3930 error = PTR_ERR(dentry);
3931 if (IS_ERR(dentry))
3932 goto out_putname;
3933
3934 error = security_path_symlink(&path, dentry, from->name);
3935 if (!error)
3936 error = vfs_symlink(path.dentry->d_inode, dentry, from->name);
3937 done_path_create(&path, dentry);
3938 if (retry_estale(error, lookup_flags)) {
3939 lookup_flags |= LOOKUP_REVAL;
3940 goto retry;
3941 }
3942 out_putname:
3943 putname(from);
3944 return error;
3945 }
3946
3947 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
3948 {
3949 return sys_symlinkat(oldname, AT_FDCWD, newname);
3950 }
3951
3952 /**
3953 * vfs_link - create a new link
3954 * @old_dentry: object to be linked
3955 * @dir: new parent
3956 * @new_dentry: where to create the new link
3957 * @delegated_inode: returns inode needing a delegation break
3958 *
3959 * The caller must hold dir->i_mutex
3960 *
3961 * If vfs_link discovers a delegation on the to-be-linked file in need
3962 * of breaking, it will return -EWOULDBLOCK and return a reference to the
3963 * inode in delegated_inode. The caller should then break the delegation
3964 * and retry. Because breaking a delegation may take a long time, the
3965 * caller should drop the i_mutex before doing so.
3966 *
3967 * Alternatively, a caller may pass NULL for delegated_inode. This may
3968 * be appropriate for callers that expect the underlying filesystem not
3969 * to be NFS exported.
3970 */
3971 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode)
3972 {
3973 struct inode *inode = old_dentry->d_inode;
3974 unsigned max_links = dir->i_sb->s_max_links;
3975 int error;
3976
3977 if (!inode)
3978 return -ENOENT;
3979
3980 error = may_create(dir, new_dentry);
3981 if (error)
3982 return error;
3983
3984 if (dir->i_sb != inode->i_sb)
3985 return -EXDEV;
3986
3987 /*
3988 * A link to an append-only or immutable file cannot be created.
3989 */
3990 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3991 return -EPERM;
3992 if (!dir->i_op->link)
3993 return -EPERM;
3994 if (S_ISDIR(inode->i_mode))
3995 return -EPERM;
3996
3997 error = security_inode_link(old_dentry, dir, new_dentry);
3998 if (error)
3999 return error;
4000
4001 mutex_lock(&inode->i_mutex);
4002 /* Make sure we don't allow creating hardlink to an unlinked file */
4003 if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
4004 error = -ENOENT;
4005 else if (max_links && inode->i_nlink >= max_links)
4006 error = -EMLINK;
4007 else {
4008 error = try_break_deleg(inode, delegated_inode);
4009 if (!error)
4010 error = dir->i_op->link(old_dentry, dir, new_dentry);
4011 }
4012
4013 if (!error && (inode->i_state & I_LINKABLE)) {
4014 spin_lock(&inode->i_lock);
4015 inode->i_state &= ~I_LINKABLE;
4016 spin_unlock(&inode->i_lock);
4017 }
4018 mutex_unlock(&inode->i_mutex);
4019 if (!error)
4020 fsnotify_link(dir, inode, new_dentry);
4021 return error;
4022 }
4023 EXPORT_SYMBOL(vfs_link);
4024
4025 /*
4026 * Hardlinks are often used in delicate situations. We avoid
4027 * security-related surprises by not following symlinks on the
4028 * newname. --KAB
4029 *
4030 * We don't follow them on the oldname either to be compatible
4031 * with linux 2.0, and to avoid hard-linking to directories
4032 * and other special files. --ADM
4033 */
4034 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
4035 int, newdfd, const char __user *, newname, int, flags)
4036 {
4037 struct dentry *new_dentry;
4038 struct path old_path, new_path;
4039 struct inode *delegated_inode = NULL;
4040 int how = 0;
4041 int error;
4042
4043 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
4044 return -EINVAL;
4045 /*
4046 * To use null names we require CAP_DAC_READ_SEARCH
4047 * This ensures that not everyone will be able to create
4048 * handlink using the passed filedescriptor.
4049 */
4050 if (flags & AT_EMPTY_PATH) {
4051 if (!capable(CAP_DAC_READ_SEARCH))
4052 return -ENOENT;
4053 how = LOOKUP_EMPTY;
4054 }
4055
4056 if (flags & AT_SYMLINK_FOLLOW)
4057 how |= LOOKUP_FOLLOW;
4058 retry:
4059 error = user_path_at(olddfd, oldname, how, &old_path);
4060 if (error)
4061 return error;
4062
4063 new_dentry = user_path_create(newdfd, newname, &new_path,
4064 (how & LOOKUP_REVAL));
4065 error = PTR_ERR(new_dentry);
4066 if (IS_ERR(new_dentry))
4067 goto out;
4068
4069 error = -EXDEV;
4070 if (old_path.mnt != new_path.mnt)
4071 goto out_dput;
4072 error = may_linkat(&old_path);
4073 if (unlikely(error))
4074 goto out_dput;
4075 error = security_path_link(old_path.dentry, &new_path, new_dentry);
4076 if (error)
4077 goto out_dput;
4078 error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode);
4079 out_dput:
4080 done_path_create(&new_path, new_dentry);
4081 if (delegated_inode) {
4082 error = break_deleg_wait(&delegated_inode);
4083 if (!error) {
4084 path_put(&old_path);
4085 goto retry;
4086 }
4087 }
4088 if (retry_estale(error, how)) {
4089 path_put(&old_path);
4090 how |= LOOKUP_REVAL;
4091 goto retry;
4092 }
4093 out:
4094 path_put(&old_path);
4095
4096 return error;
4097 }
4098
4099 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4100 {
4101 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4102 }
4103
4104 /**
4105 * vfs_rename - rename a filesystem object
4106 * @old_dir: parent of source
4107 * @old_dentry: source
4108 * @new_dir: parent of destination
4109 * @new_dentry: destination
4110 * @delegated_inode: returns an inode needing a delegation break
4111 * @flags: rename flags
4112 *
4113 * The caller must hold multiple mutexes--see lock_rename()).
4114 *
4115 * If vfs_rename discovers a delegation in need of breaking at either
4116 * the source or destination, it will return -EWOULDBLOCK and return a
4117 * reference to the inode in delegated_inode. The caller should then
4118 * break the delegation and retry. Because breaking a delegation may
4119 * take a long time, the caller should drop all locks before doing
4120 * so.
4121 *
4122 * Alternatively, a caller may pass NULL for delegated_inode. This may
4123 * be appropriate for callers that expect the underlying filesystem not
4124 * to be NFS exported.
4125 *
4126 * The worst of all namespace operations - renaming directory. "Perverted"
4127 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4128 * Problems:
4129 * a) we can get into loop creation.
4130 * b) race potential - two innocent renames can create a loop together.
4131 * That's where 4.4 screws up. Current fix: serialization on
4132 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4133 * story.
4134 * c) we have to lock _four_ objects - parents and victim (if it exists),
4135 * and source (if it is not a directory).
4136 * And that - after we got ->i_mutex on parents (until then we don't know
4137 * whether the target exists). Solution: try to be smart with locking
4138 * order for inodes. We rely on the fact that tree topology may change
4139 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
4140 * move will be locked. Thus we can rank directories by the tree
4141 * (ancestors first) and rank all non-directories after them.
4142 * That works since everybody except rename does "lock parent, lookup,
4143 * lock child" and rename is under ->s_vfs_rename_mutex.
4144 * HOWEVER, it relies on the assumption that any object with ->lookup()
4145 * has no more than 1 dentry. If "hybrid" objects will ever appear,
4146 * we'd better make sure that there's no link(2) for them.
4147 * d) conversion from fhandle to dentry may come in the wrong moment - when
4148 * we are removing the target. Solution: we will have to grab ->i_mutex
4149 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4150 * ->i_mutex on parents, which works but leads to some truly excessive
4151 * locking].
4152 */
4153 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4154 struct inode *new_dir, struct dentry *new_dentry,
4155 struct inode **delegated_inode, unsigned int flags)
4156 {
4157 int error;
4158 bool is_dir = d_is_dir(old_dentry);
4159 const unsigned char *old_name;
4160 struct inode *source = old_dentry->d_inode;
4161 struct inode *target = new_dentry->d_inode;
4162 bool new_is_dir = false;
4163 unsigned max_links = new_dir->i_sb->s_max_links;
4164
4165 if (source == target)
4166 return 0;
4167
4168 error = may_delete(old_dir, old_dentry, is_dir);
4169 if (error)
4170 return error;
4171
4172 if (!target) {
4173 error = may_create(new_dir, new_dentry);
4174 } else {
4175 new_is_dir = d_is_dir(new_dentry);
4176
4177 if (!(flags & RENAME_EXCHANGE))
4178 error = may_delete(new_dir, new_dentry, is_dir);
4179 else
4180 error = may_delete(new_dir, new_dentry, new_is_dir);
4181 }
4182 if (error)
4183 return error;
4184
4185 if (!old_dir->i_op->rename && !old_dir->i_op->rename2)
4186 return -EPERM;
4187
4188 if (flags && !old_dir->i_op->rename2)
4189 return -EINVAL;
4190
4191 /*
4192 * If we are going to change the parent - check write permissions,
4193 * we'll need to flip '..'.
4194 */
4195 if (new_dir != old_dir) {
4196 if (is_dir) {
4197 error = inode_permission(source, MAY_WRITE);
4198 if (error)
4199 return error;
4200 }
4201 if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4202 error = inode_permission(target, MAY_WRITE);
4203 if (error)
4204 return error;
4205 }
4206 }
4207
4208 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4209 flags);
4210 if (error)
4211 return error;
4212
4213 old_name = fsnotify_oldname_init(old_dentry->d_name.name);
4214 dget(new_dentry);
4215 if (!is_dir || (flags & RENAME_EXCHANGE))
4216 lock_two_nondirectories(source, target);
4217 else if (target)
4218 mutex_lock(&target->i_mutex);
4219
4220 error = -EBUSY;
4221 if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
4222 goto out;
4223
4224 if (max_links && new_dir != old_dir) {
4225 error = -EMLINK;
4226 if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4227 goto out;
4228 if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
4229 old_dir->i_nlink >= max_links)
4230 goto out;
4231 }
4232 if (is_dir && !(flags & RENAME_EXCHANGE) && target)
4233 shrink_dcache_parent(new_dentry);
4234 if (!is_dir) {
4235 error = try_break_deleg(source, delegated_inode);
4236 if (error)
4237 goto out;
4238 }
4239 if (target && !new_is_dir) {
4240 error = try_break_deleg(target, delegated_inode);
4241 if (error)
4242 goto out;
4243 }
4244 if (!old_dir->i_op->rename2) {
4245 error = old_dir->i_op->rename(old_dir, old_dentry,
4246 new_dir, new_dentry);
4247 } else {
4248 WARN_ON(old_dir->i_op->rename != NULL);
4249 error = old_dir->i_op->rename2(old_dir, old_dentry,
4250 new_dir, new_dentry, flags);
4251 }
4252 if (error)
4253 goto out;
4254
4255 if (!(flags & RENAME_EXCHANGE) && target) {
4256 if (is_dir)
4257 target->i_flags |= S_DEAD;
4258 dont_mount(new_dentry);
4259 detach_mounts(new_dentry);
4260 }
4261 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
4262 if (!(flags & RENAME_EXCHANGE))
4263 d_move(old_dentry, new_dentry);
4264 else
4265 d_exchange(old_dentry, new_dentry);
4266 }
4267 out:
4268 if (!is_dir || (flags & RENAME_EXCHANGE))
4269 unlock_two_nondirectories(source, target);
4270 else if (target)
4271 mutex_unlock(&target->i_mutex);
4272 dput(new_dentry);
4273 if (!error) {
4274 fsnotify_move(old_dir, new_dir, old_name, is_dir,
4275 !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
4276 if (flags & RENAME_EXCHANGE) {
4277 fsnotify_move(new_dir, old_dir, old_dentry->d_name.name,
4278 new_is_dir, NULL, new_dentry);
4279 }
4280 }
4281 fsnotify_oldname_free(old_name);
4282
4283 return error;
4284 }
4285 EXPORT_SYMBOL(vfs_rename);
4286
4287 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
4288 int, newdfd, const char __user *, newname, unsigned int, flags)
4289 {
4290 struct dentry *old_dentry, *new_dentry;
4291 struct dentry *trap;
4292 struct path old_path, new_path;
4293 struct qstr old_last, new_last;
4294 int old_type, new_type;
4295 struct inode *delegated_inode = NULL;
4296 struct filename *from;
4297 struct filename *to;
4298 unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET;
4299 bool should_retry = false;
4300 int error;
4301
4302 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4303 return -EINVAL;
4304
4305 if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
4306 (flags & RENAME_EXCHANGE))
4307 return -EINVAL;
4308
4309 if ((flags & RENAME_WHITEOUT) && !capable(CAP_MKNOD))
4310 return -EPERM;
4311
4312 if (flags & RENAME_EXCHANGE)
4313 target_flags = 0;
4314
4315 retry:
4316 from = user_path_parent(olddfd, oldname,
4317 &old_path, &old_last, &old_type, lookup_flags);
4318 if (IS_ERR(from)) {
4319 error = PTR_ERR(from);
4320 goto exit;
4321 }
4322
4323 to = user_path_parent(newdfd, newname,
4324 &new_path, &new_last, &new_type, lookup_flags);
4325 if (IS_ERR(to)) {
4326 error = PTR_ERR(to);
4327 goto exit1;
4328 }
4329
4330 error = -EXDEV;
4331 if (old_path.mnt != new_path.mnt)
4332 goto exit2;
4333
4334 error = -EBUSY;
4335 if (old_type != LAST_NORM)
4336 goto exit2;
4337
4338 if (flags & RENAME_NOREPLACE)
4339 error = -EEXIST;
4340 if (new_type != LAST_NORM)
4341 goto exit2;
4342
4343 error = mnt_want_write(old_path.mnt);
4344 if (error)
4345 goto exit2;
4346
4347 retry_deleg:
4348 trap = lock_rename(new_path.dentry, old_path.dentry);
4349
4350 old_dentry = __lookup_hash(&old_last, old_path.dentry, lookup_flags);
4351 error = PTR_ERR(old_dentry);
4352 if (IS_ERR(old_dentry))
4353 goto exit3;
4354 /* source must exist */
4355 error = -ENOENT;
4356 if (d_is_negative(old_dentry))
4357 goto exit4;
4358 new_dentry = __lookup_hash(&new_last, new_path.dentry, lookup_flags | target_flags);
4359 error = PTR_ERR(new_dentry);
4360 if (IS_ERR(new_dentry))
4361 goto exit4;
4362 error = -EEXIST;
4363 if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
4364 goto exit5;
4365 if (flags & RENAME_EXCHANGE) {
4366 error = -ENOENT;
4367 if (d_is_negative(new_dentry))
4368 goto exit5;
4369
4370 if (!d_is_dir(new_dentry)) {
4371 error = -ENOTDIR;
4372 if (new_last.name[new_last.len])
4373 goto exit5;
4374 }
4375 }
4376 /* unless the source is a directory trailing slashes give -ENOTDIR */
4377 if (!d_is_dir(old_dentry)) {
4378 error = -ENOTDIR;
4379 if (old_last.name[old_last.len])
4380 goto exit5;
4381 if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len])
4382 goto exit5;
4383 }
4384 /* source should not be ancestor of target */
4385 error = -EINVAL;
4386 if (old_dentry == trap)
4387 goto exit5;
4388 /* target should not be an ancestor of source */
4389 if (!(flags & RENAME_EXCHANGE))
4390 error = -ENOTEMPTY;
4391 if (new_dentry == trap)
4392 goto exit5;
4393
4394 error = security_path_rename(&old_path, old_dentry,
4395 &new_path, new_dentry, flags);
4396 if (error)
4397 goto exit5;
4398 error = vfs_rename(old_path.dentry->d_inode, old_dentry,
4399 new_path.dentry->d_inode, new_dentry,
4400 &delegated_inode, flags);
4401 exit5:
4402 dput(new_dentry);
4403 exit4:
4404 dput(old_dentry);
4405 exit3:
4406 unlock_rename(new_path.dentry, old_path.dentry);
4407 if (delegated_inode) {
4408 error = break_deleg_wait(&delegated_inode);
4409 if (!error)
4410 goto retry_deleg;
4411 }
4412 mnt_drop_write(old_path.mnt);
4413 exit2:
4414 if (retry_estale(error, lookup_flags))
4415 should_retry = true;
4416 path_put(&new_path);
4417 putname(to);
4418 exit1:
4419 path_put(&old_path);
4420 putname(from);
4421 if (should_retry) {
4422 should_retry = false;
4423 lookup_flags |= LOOKUP_REVAL;
4424 goto retry;
4425 }
4426 exit:
4427 return error;
4428 }
4429
4430 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
4431 int, newdfd, const char __user *, newname)
4432 {
4433 return sys_renameat2(olddfd, oldname, newdfd, newname, 0);
4434 }
4435
4436 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4437 {
4438 return sys_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4439 }
4440
4441 int vfs_whiteout(struct inode *dir, struct dentry *dentry)
4442 {
4443 int error = may_create(dir, dentry);
4444 if (error)
4445 return error;
4446
4447 if (!dir->i_op->mknod)
4448 return -EPERM;
4449
4450 return dir->i_op->mknod(dir, dentry,
4451 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
4452 }
4453 EXPORT_SYMBOL(vfs_whiteout);
4454
4455 int readlink_copy(char __user *buffer, int buflen, const char *link)
4456 {
4457 int len = PTR_ERR(link);
4458 if (IS_ERR(link))
4459 goto out;
4460
4461 len = strlen(link);
4462 if (len > (unsigned) buflen)
4463 len = buflen;
4464 if (copy_to_user(buffer, link, len))
4465 len = -EFAULT;
4466 out:
4467 return len;
4468 }
4469 EXPORT_SYMBOL(readlink_copy);
4470
4471 /*
4472 * A helper for ->readlink(). This should be used *ONLY* for symlinks that
4473 * have ->follow_link() touching nd only in nd_set_link(). Using (or not
4474 * using) it for any given inode is up to filesystem.
4475 */
4476 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4477 {
4478 void *cookie;
4479 const char *link = dentry->d_inode->i_link;
4480 int res;
4481
4482 if (!link) {
4483 link = dentry->d_inode->i_op->follow_link(dentry, &cookie, NULL);
4484 if (IS_ERR(link))
4485 return PTR_ERR(link);
4486 }
4487 res = readlink_copy(buffer, buflen, link);
4488 if (cookie && dentry->d_inode->i_op->put_link)
4489 dentry->d_inode->i_op->put_link(dentry, cookie);
4490 return res;
4491 }
4492 EXPORT_SYMBOL(generic_readlink);
4493
4494 /* get the link contents into pagecache */
4495 static char *page_getlink(struct dentry * dentry, struct page **ppage)
4496 {
4497 char *kaddr;
4498 struct page *page;
4499 struct address_space *mapping = dentry->d_inode->i_mapping;
4500 page = read_mapping_page(mapping, 0, NULL);
4501 if (IS_ERR(page))
4502 return (char*)page;
4503 *ppage = page;
4504 kaddr = kmap(page);
4505 nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
4506 return kaddr;
4507 }
4508
4509 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4510 {
4511 struct page *page = NULL;
4512 int res = readlink_copy(buffer, buflen, page_getlink(dentry, &page));
4513 if (page) {
4514 kunmap(page);
4515 page_cache_release(page);
4516 }
4517 return res;
4518 }
4519 EXPORT_SYMBOL(page_readlink);
4520
4521 const char *page_follow_link_light(struct dentry *dentry, void **cookie, struct nameidata *nd)
4522 {
4523 struct page *page = NULL;
4524 char *res = page_getlink(dentry, &page);
4525 if (!IS_ERR(res))
4526 *cookie = page;
4527 return res;
4528 }
4529 EXPORT_SYMBOL(page_follow_link_light);
4530
4531 void page_put_link(struct dentry *dentry, void *cookie)
4532 {
4533 struct page *page = cookie;
4534 kunmap(page);
4535 page_cache_release(page);
4536 }
4537 EXPORT_SYMBOL(page_put_link);
4538
4539 /*
4540 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
4541 */
4542 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
4543 {
4544 struct address_space *mapping = inode->i_mapping;
4545 struct page *page;
4546 void *fsdata;
4547 int err;
4548 char *kaddr;
4549 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
4550 if (nofs)
4551 flags |= AOP_FLAG_NOFS;
4552
4553 retry:
4554 err = pagecache_write_begin(NULL, mapping, 0, len-1,
4555 flags, &page, &fsdata);
4556 if (err)
4557 goto fail;
4558
4559 kaddr = kmap_atomic(page);
4560 memcpy(kaddr, symname, len-1);
4561 kunmap_atomic(kaddr);
4562
4563 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
4564 page, fsdata);
4565 if (err < 0)
4566 goto fail;
4567 if (err < len-1)
4568 goto retry;
4569
4570 mark_inode_dirty(inode);
4571 return 0;
4572 fail:
4573 return err;
4574 }
4575 EXPORT_SYMBOL(__page_symlink);
4576
4577 int page_symlink(struct inode *inode, const char *symname, int len)
4578 {
4579 return __page_symlink(inode, symname, len,
4580 !(mapping_gfp_mask(inode->i_mapping) & __GFP_FS));
4581 }
4582 EXPORT_SYMBOL(page_symlink);
4583
4584 const struct inode_operations page_symlink_inode_operations = {
4585 .readlink = generic_readlink,
4586 .follow_link = page_follow_link_light,
4587 .put_link = page_put_link,
4588 };
4589 EXPORT_SYMBOL(page_symlink_inode_operations);
This page took 0.144093 seconds and 6 git commands to generate.