don't transliterate lower bits of ->intent.open.flags to FMODE_...
[deliverable/linux.git] / fs / namei.c
1 /*
2 * linux/fs/namei.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * Some corrections by tytso.
9 */
10
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12 * lookup logic.
13 */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15 */
16
17 #include <linux/init.h>
18 #include <linux/module.h>
19 #include <linux/slab.h>
20 #include <linux/fs.h>
21 #include <linux/namei.h>
22 #include <linux/pagemap.h>
23 #include <linux/fsnotify.h>
24 #include <linux/personality.h>
25 #include <linux/security.h>
26 #include <linux/ima.h>
27 #include <linux/syscalls.h>
28 #include <linux/mount.h>
29 #include <linux/audit.h>
30 #include <linux/capability.h>
31 #include <linux/file.h>
32 #include <linux/fcntl.h>
33 #include <linux/device_cgroup.h>
34 #include <linux/fs_struct.h>
35 #include <asm/uaccess.h>
36
37 #include "internal.h"
38
39 /* [Feb-1997 T. Schoebel-Theuer]
40 * Fundamental changes in the pathname lookup mechanisms (namei)
41 * were necessary because of omirr. The reason is that omirr needs
42 * to know the _real_ pathname, not the user-supplied one, in case
43 * of symlinks (and also when transname replacements occur).
44 *
45 * The new code replaces the old recursive symlink resolution with
46 * an iterative one (in case of non-nested symlink chains). It does
47 * this with calls to <fs>_follow_link().
48 * As a side effect, dir_namei(), _namei() and follow_link() are now
49 * replaced with a single function lookup_dentry() that can handle all
50 * the special cases of the former code.
51 *
52 * With the new dcache, the pathname is stored at each inode, at least as
53 * long as the refcount of the inode is positive. As a side effect, the
54 * size of the dcache depends on the inode cache and thus is dynamic.
55 *
56 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
57 * resolution to correspond with current state of the code.
58 *
59 * Note that the symlink resolution is not *completely* iterative.
60 * There is still a significant amount of tail- and mid- recursion in
61 * the algorithm. Also, note that <fs>_readlink() is not used in
62 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
63 * may return different results than <fs>_follow_link(). Many virtual
64 * filesystems (including /proc) exhibit this behavior.
65 */
66
67 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
68 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
69 * and the name already exists in form of a symlink, try to create the new
70 * name indicated by the symlink. The old code always complained that the
71 * name already exists, due to not following the symlink even if its target
72 * is nonexistent. The new semantics affects also mknod() and link() when
73 * the name is a symlink pointing to a non-existent name.
74 *
75 * I don't know which semantics is the right one, since I have no access
76 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
77 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
78 * "old" one. Personally, I think the new semantics is much more logical.
79 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
80 * file does succeed in both HP-UX and SunOs, but not in Solaris
81 * and in the old Linux semantics.
82 */
83
84 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
85 * semantics. See the comments in "open_namei" and "do_link" below.
86 *
87 * [10-Sep-98 Alan Modra] Another symlink change.
88 */
89
90 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
91 * inside the path - always follow.
92 * in the last component in creation/removal/renaming - never follow.
93 * if LOOKUP_FOLLOW passed - follow.
94 * if the pathname has trailing slashes - follow.
95 * otherwise - don't follow.
96 * (applied in that order).
97 *
98 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
99 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
100 * During the 2.4 we need to fix the userland stuff depending on it -
101 * hopefully we will be able to get rid of that wart in 2.5. So far only
102 * XEmacs seems to be relying on it...
103 */
104 /*
105 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
106 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
107 * any extra contention...
108 */
109
110 /* In order to reduce some races, while at the same time doing additional
111 * checking and hopefully speeding things up, we copy filenames to the
112 * kernel data space before using them..
113 *
114 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
115 * PATH_MAX includes the nul terminator --RR.
116 */
117 static int do_getname(const char __user *filename, char *page)
118 {
119 int retval;
120 unsigned long len = PATH_MAX;
121
122 if (!segment_eq(get_fs(), KERNEL_DS)) {
123 if ((unsigned long) filename >= TASK_SIZE)
124 return -EFAULT;
125 if (TASK_SIZE - (unsigned long) filename < PATH_MAX)
126 len = TASK_SIZE - (unsigned long) filename;
127 }
128
129 retval = strncpy_from_user(page, filename, len);
130 if (retval > 0) {
131 if (retval < len)
132 return 0;
133 return -ENAMETOOLONG;
134 } else if (!retval)
135 retval = -ENOENT;
136 return retval;
137 }
138
139 static char *getname_flags(const char __user * filename, int flags)
140 {
141 char *tmp, *result;
142
143 result = ERR_PTR(-ENOMEM);
144 tmp = __getname();
145 if (tmp) {
146 int retval = do_getname(filename, tmp);
147
148 result = tmp;
149 if (retval < 0) {
150 if (retval != -ENOENT || !(flags & LOOKUP_EMPTY)) {
151 __putname(tmp);
152 result = ERR_PTR(retval);
153 }
154 }
155 }
156 audit_getname(result);
157 return result;
158 }
159
160 char *getname(const char __user * filename)
161 {
162 return getname_flags(filename, 0);
163 }
164
165 #ifdef CONFIG_AUDITSYSCALL
166 void putname(const char *name)
167 {
168 if (unlikely(!audit_dummy_context()))
169 audit_putname(name);
170 else
171 __putname(name);
172 }
173 EXPORT_SYMBOL(putname);
174 #endif
175
176 /*
177 * This does basic POSIX ACL permission checking
178 */
179 static int acl_permission_check(struct inode *inode, int mask)
180 {
181 int (*check_acl)(struct inode *inode, int mask);
182 unsigned int mode = inode->i_mode;
183
184 mask &= MAY_READ | MAY_WRITE | MAY_EXEC | MAY_NOT_BLOCK;
185
186 if (current_user_ns() != inode_userns(inode))
187 goto other_perms;
188
189 if (current_fsuid() == inode->i_uid)
190 mode >>= 6;
191 else {
192 check_acl = inode->i_op->check_acl;
193 if (IS_POSIXACL(inode) && (mode & S_IRWXG) && check_acl) {
194 int error = check_acl(inode, mask);
195 if (error != -EAGAIN)
196 return error;
197 }
198
199 if (in_group_p(inode->i_gid))
200 mode >>= 3;
201 }
202
203 other_perms:
204 /*
205 * If the DACs are ok we don't need any capability check.
206 */
207 if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
208 return 0;
209 return -EACCES;
210 }
211
212 /**
213 * generic_permission - check for access rights on a Posix-like filesystem
214 * @inode: inode to check access rights for
215 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
216 * @flags: IPERM_FLAG_ flags.
217 *
218 * Used to check for read/write/execute permissions on a file.
219 * We use "fsuid" for this, letting us set arbitrary permissions
220 * for filesystem access without changing the "normal" uids which
221 * are used for other things.
222 *
223 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
224 * request cannot be satisfied (eg. requires blocking or too much complexity).
225 * It would then be called again in ref-walk mode.
226 */
227 int generic_permission(struct inode *inode, int mask)
228 {
229 int ret;
230
231 /*
232 * Do the basic POSIX ACL permission checks.
233 */
234 ret = acl_permission_check(inode, mask);
235 if (ret != -EACCES)
236 return ret;
237
238 if (S_ISDIR(inode->i_mode)) {
239 /* DACs are overridable for directories */
240 if (ns_capable(inode_userns(inode), CAP_DAC_OVERRIDE))
241 return 0;
242 if (!(mask & MAY_WRITE))
243 if (ns_capable(inode_userns(inode), CAP_DAC_READ_SEARCH))
244 return 0;
245 return -EACCES;
246 }
247 /*
248 * Read/write DACs are always overridable.
249 * Executable DACs are overridable when there is
250 * at least one exec bit set.
251 */
252 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
253 if (ns_capable(inode_userns(inode), CAP_DAC_OVERRIDE))
254 return 0;
255
256 /*
257 * Searching includes executable on directories, else just read.
258 */
259 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
260 if (mask == MAY_READ)
261 if (ns_capable(inode_userns(inode), CAP_DAC_READ_SEARCH))
262 return 0;
263
264 return -EACCES;
265 }
266
267 /**
268 * inode_permission - check for access rights to a given inode
269 * @inode: inode to check permission on
270 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
271 *
272 * Used to check for read/write/execute permissions on an inode.
273 * We use "fsuid" for this, letting us set arbitrary permissions
274 * for filesystem access without changing the "normal" uids which
275 * are used for other things.
276 */
277 int inode_permission(struct inode *inode, int mask)
278 {
279 int retval;
280
281 if (mask & MAY_WRITE) {
282 umode_t mode = inode->i_mode;
283
284 /*
285 * Nobody gets write access to a read-only fs.
286 */
287 if (IS_RDONLY(inode) &&
288 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
289 return -EROFS;
290
291 /*
292 * Nobody gets write access to an immutable file.
293 */
294 if (IS_IMMUTABLE(inode))
295 return -EACCES;
296 }
297
298 if (inode->i_op->permission)
299 retval = inode->i_op->permission(inode, mask);
300 else
301 retval = generic_permission(inode, mask);
302
303 if (retval)
304 return retval;
305
306 retval = devcgroup_inode_permission(inode, mask);
307 if (retval)
308 return retval;
309
310 return security_inode_permission(inode, mask);
311 }
312
313 /**
314 * path_get - get a reference to a path
315 * @path: path to get the reference to
316 *
317 * Given a path increment the reference count to the dentry and the vfsmount.
318 */
319 void path_get(struct path *path)
320 {
321 mntget(path->mnt);
322 dget(path->dentry);
323 }
324 EXPORT_SYMBOL(path_get);
325
326 /**
327 * path_put - put a reference to a path
328 * @path: path to put the reference to
329 *
330 * Given a path decrement the reference count to the dentry and the vfsmount.
331 */
332 void path_put(struct path *path)
333 {
334 dput(path->dentry);
335 mntput(path->mnt);
336 }
337 EXPORT_SYMBOL(path_put);
338
339 /*
340 * Path walking has 2 modes, rcu-walk and ref-walk (see
341 * Documentation/filesystems/path-lookup.txt). In situations when we can't
342 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
343 * normal reference counts on dentries and vfsmounts to transition to rcu-walk
344 * mode. Refcounts are grabbed at the last known good point before rcu-walk
345 * got stuck, so ref-walk may continue from there. If this is not successful
346 * (eg. a seqcount has changed), then failure is returned and it's up to caller
347 * to restart the path walk from the beginning in ref-walk mode.
348 */
349
350 /**
351 * unlazy_walk - try to switch to ref-walk mode.
352 * @nd: nameidata pathwalk data
353 * @dentry: child of nd->path.dentry or NULL
354 * Returns: 0 on success, -ECHILD on failure
355 *
356 * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry
357 * for ref-walk mode. @dentry must be a path found by a do_lookup call on
358 * @nd or NULL. Must be called from rcu-walk context.
359 */
360 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry)
361 {
362 struct fs_struct *fs = current->fs;
363 struct dentry *parent = nd->path.dentry;
364 int want_root = 0;
365
366 BUG_ON(!(nd->flags & LOOKUP_RCU));
367 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
368 want_root = 1;
369 spin_lock(&fs->lock);
370 if (nd->root.mnt != fs->root.mnt ||
371 nd->root.dentry != fs->root.dentry)
372 goto err_root;
373 }
374 spin_lock(&parent->d_lock);
375 if (!dentry) {
376 if (!__d_rcu_to_refcount(parent, nd->seq))
377 goto err_parent;
378 BUG_ON(nd->inode != parent->d_inode);
379 } else {
380 if (dentry->d_parent != parent)
381 goto err_parent;
382 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
383 if (!__d_rcu_to_refcount(dentry, nd->seq))
384 goto err_child;
385 /*
386 * If the sequence check on the child dentry passed, then
387 * the child has not been removed from its parent. This
388 * means the parent dentry must be valid and able to take
389 * a reference at this point.
390 */
391 BUG_ON(!IS_ROOT(dentry) && dentry->d_parent != parent);
392 BUG_ON(!parent->d_count);
393 parent->d_count++;
394 spin_unlock(&dentry->d_lock);
395 }
396 spin_unlock(&parent->d_lock);
397 if (want_root) {
398 path_get(&nd->root);
399 spin_unlock(&fs->lock);
400 }
401 mntget(nd->path.mnt);
402
403 rcu_read_unlock();
404 br_read_unlock(vfsmount_lock);
405 nd->flags &= ~LOOKUP_RCU;
406 return 0;
407
408 err_child:
409 spin_unlock(&dentry->d_lock);
410 err_parent:
411 spin_unlock(&parent->d_lock);
412 err_root:
413 if (want_root)
414 spin_unlock(&fs->lock);
415 return -ECHILD;
416 }
417
418 /**
419 * release_open_intent - free up open intent resources
420 * @nd: pointer to nameidata
421 */
422 void release_open_intent(struct nameidata *nd)
423 {
424 struct file *file = nd->intent.open.file;
425
426 if (file && !IS_ERR(file)) {
427 if (file->f_path.dentry == NULL)
428 put_filp(file);
429 else
430 fput(file);
431 }
432 }
433
434 static inline int d_revalidate(struct dentry *dentry, struct nameidata *nd)
435 {
436 return dentry->d_op->d_revalidate(dentry, nd);
437 }
438
439 /**
440 * complete_walk - successful completion of path walk
441 * @nd: pointer nameidata
442 *
443 * If we had been in RCU mode, drop out of it and legitimize nd->path.
444 * Revalidate the final result, unless we'd already done that during
445 * the path walk or the filesystem doesn't ask for it. Return 0 on
446 * success, -error on failure. In case of failure caller does not
447 * need to drop nd->path.
448 */
449 static int complete_walk(struct nameidata *nd)
450 {
451 struct dentry *dentry = nd->path.dentry;
452 int status;
453
454 if (nd->flags & LOOKUP_RCU) {
455 nd->flags &= ~LOOKUP_RCU;
456 if (!(nd->flags & LOOKUP_ROOT))
457 nd->root.mnt = NULL;
458 spin_lock(&dentry->d_lock);
459 if (unlikely(!__d_rcu_to_refcount(dentry, nd->seq))) {
460 spin_unlock(&dentry->d_lock);
461 rcu_read_unlock();
462 br_read_unlock(vfsmount_lock);
463 return -ECHILD;
464 }
465 BUG_ON(nd->inode != dentry->d_inode);
466 spin_unlock(&dentry->d_lock);
467 mntget(nd->path.mnt);
468 rcu_read_unlock();
469 br_read_unlock(vfsmount_lock);
470 }
471
472 if (likely(!(nd->flags & LOOKUP_JUMPED)))
473 return 0;
474
475 if (likely(!(dentry->d_flags & DCACHE_OP_REVALIDATE)))
476 return 0;
477
478 if (likely(!(dentry->d_sb->s_type->fs_flags & FS_REVAL_DOT)))
479 return 0;
480
481 /* Note: we do not d_invalidate() */
482 status = d_revalidate(dentry, nd);
483 if (status > 0)
484 return 0;
485
486 if (!status)
487 status = -ESTALE;
488
489 path_put(&nd->path);
490 return status;
491 }
492
493 static __always_inline void set_root(struct nameidata *nd)
494 {
495 if (!nd->root.mnt)
496 get_fs_root(current->fs, &nd->root);
497 }
498
499 static int link_path_walk(const char *, struct nameidata *);
500
501 static __always_inline void set_root_rcu(struct nameidata *nd)
502 {
503 if (!nd->root.mnt) {
504 struct fs_struct *fs = current->fs;
505 unsigned seq;
506
507 do {
508 seq = read_seqcount_begin(&fs->seq);
509 nd->root = fs->root;
510 nd->seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
511 } while (read_seqcount_retry(&fs->seq, seq));
512 }
513 }
514
515 static __always_inline int __vfs_follow_link(struct nameidata *nd, const char *link)
516 {
517 int ret;
518
519 if (IS_ERR(link))
520 goto fail;
521
522 if (*link == '/') {
523 set_root(nd);
524 path_put(&nd->path);
525 nd->path = nd->root;
526 path_get(&nd->root);
527 nd->flags |= LOOKUP_JUMPED;
528 }
529 nd->inode = nd->path.dentry->d_inode;
530
531 ret = link_path_walk(link, nd);
532 return ret;
533 fail:
534 path_put(&nd->path);
535 return PTR_ERR(link);
536 }
537
538 static void path_put_conditional(struct path *path, struct nameidata *nd)
539 {
540 dput(path->dentry);
541 if (path->mnt != nd->path.mnt)
542 mntput(path->mnt);
543 }
544
545 static inline void path_to_nameidata(const struct path *path,
546 struct nameidata *nd)
547 {
548 if (!(nd->flags & LOOKUP_RCU)) {
549 dput(nd->path.dentry);
550 if (nd->path.mnt != path->mnt)
551 mntput(nd->path.mnt);
552 }
553 nd->path.mnt = path->mnt;
554 nd->path.dentry = path->dentry;
555 }
556
557 static inline void put_link(struct nameidata *nd, struct path *link, void *cookie)
558 {
559 struct inode *inode = link->dentry->d_inode;
560 if (!IS_ERR(cookie) && inode->i_op->put_link)
561 inode->i_op->put_link(link->dentry, nd, cookie);
562 path_put(link);
563 }
564
565 static __always_inline int
566 follow_link(struct path *link, struct nameidata *nd, void **p)
567 {
568 int error;
569 struct dentry *dentry = link->dentry;
570
571 BUG_ON(nd->flags & LOOKUP_RCU);
572
573 if (link->mnt == nd->path.mnt)
574 mntget(link->mnt);
575
576 if (unlikely(current->total_link_count >= 40)) {
577 *p = ERR_PTR(-ELOOP); /* no ->put_link(), please */
578 path_put(&nd->path);
579 return -ELOOP;
580 }
581 cond_resched();
582 current->total_link_count++;
583
584 touch_atime(link->mnt, dentry);
585 nd_set_link(nd, NULL);
586
587 error = security_inode_follow_link(link->dentry, nd);
588 if (error) {
589 *p = ERR_PTR(error); /* no ->put_link(), please */
590 path_put(&nd->path);
591 return error;
592 }
593
594 nd->last_type = LAST_BIND;
595 *p = dentry->d_inode->i_op->follow_link(dentry, nd);
596 error = PTR_ERR(*p);
597 if (!IS_ERR(*p)) {
598 char *s = nd_get_link(nd);
599 error = 0;
600 if (s)
601 error = __vfs_follow_link(nd, s);
602 else if (nd->last_type == LAST_BIND) {
603 nd->flags |= LOOKUP_JUMPED;
604 nd->inode = nd->path.dentry->d_inode;
605 if (nd->inode->i_op->follow_link) {
606 /* stepped on a _really_ weird one */
607 path_put(&nd->path);
608 error = -ELOOP;
609 }
610 }
611 }
612 return error;
613 }
614
615 static int follow_up_rcu(struct path *path)
616 {
617 struct vfsmount *parent;
618 struct dentry *mountpoint;
619
620 parent = path->mnt->mnt_parent;
621 if (parent == path->mnt)
622 return 0;
623 mountpoint = path->mnt->mnt_mountpoint;
624 path->dentry = mountpoint;
625 path->mnt = parent;
626 return 1;
627 }
628
629 int follow_up(struct path *path)
630 {
631 struct vfsmount *parent;
632 struct dentry *mountpoint;
633
634 br_read_lock(vfsmount_lock);
635 parent = path->mnt->mnt_parent;
636 if (parent == path->mnt) {
637 br_read_unlock(vfsmount_lock);
638 return 0;
639 }
640 mntget(parent);
641 mountpoint = dget(path->mnt->mnt_mountpoint);
642 br_read_unlock(vfsmount_lock);
643 dput(path->dentry);
644 path->dentry = mountpoint;
645 mntput(path->mnt);
646 path->mnt = parent;
647 return 1;
648 }
649
650 /*
651 * Perform an automount
652 * - return -EISDIR to tell follow_managed() to stop and return the path we
653 * were called with.
654 */
655 static int follow_automount(struct path *path, unsigned flags,
656 bool *need_mntput)
657 {
658 struct vfsmount *mnt;
659 int err;
660
661 if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
662 return -EREMOTE;
663
664 /* We don't want to mount if someone supplied AT_NO_AUTOMOUNT
665 * and this is the terminal part of the path.
666 */
667 if ((flags & LOOKUP_NO_AUTOMOUNT) && !(flags & LOOKUP_CONTINUE))
668 return -EISDIR; /* we actually want to stop here */
669
670 /* We want to mount if someone is trying to open/create a file of any
671 * type under the mountpoint, wants to traverse through the mountpoint
672 * or wants to open the mounted directory.
673 *
674 * We don't want to mount if someone's just doing a stat and they've
675 * set AT_SYMLINK_NOFOLLOW - unless they're stat'ing a directory and
676 * appended a '/' to the name.
677 */
678 if (!(flags & LOOKUP_FOLLOW) &&
679 !(flags & (LOOKUP_CONTINUE | LOOKUP_DIRECTORY |
680 LOOKUP_OPEN | LOOKUP_CREATE)))
681 return -EISDIR;
682
683 current->total_link_count++;
684 if (current->total_link_count >= 40)
685 return -ELOOP;
686
687 mnt = path->dentry->d_op->d_automount(path);
688 if (IS_ERR(mnt)) {
689 /*
690 * The filesystem is allowed to return -EISDIR here to indicate
691 * it doesn't want to automount. For instance, autofs would do
692 * this so that its userspace daemon can mount on this dentry.
693 *
694 * However, we can only permit this if it's a terminal point in
695 * the path being looked up; if it wasn't then the remainder of
696 * the path is inaccessible and we should say so.
697 */
698 if (PTR_ERR(mnt) == -EISDIR && (flags & LOOKUP_CONTINUE))
699 return -EREMOTE;
700 return PTR_ERR(mnt);
701 }
702
703 if (!mnt) /* mount collision */
704 return 0;
705
706 if (!*need_mntput) {
707 /* lock_mount() may release path->mnt on error */
708 mntget(path->mnt);
709 *need_mntput = true;
710 }
711 err = finish_automount(mnt, path);
712
713 switch (err) {
714 case -EBUSY:
715 /* Someone else made a mount here whilst we were busy */
716 return 0;
717 case 0:
718 path_put(path);
719 path->mnt = mnt;
720 path->dentry = dget(mnt->mnt_root);
721 return 0;
722 default:
723 return err;
724 }
725
726 }
727
728 /*
729 * Handle a dentry that is managed in some way.
730 * - Flagged for transit management (autofs)
731 * - Flagged as mountpoint
732 * - Flagged as automount point
733 *
734 * This may only be called in refwalk mode.
735 *
736 * Serialization is taken care of in namespace.c
737 */
738 static int follow_managed(struct path *path, unsigned flags)
739 {
740 struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
741 unsigned managed;
742 bool need_mntput = false;
743 int ret = 0;
744
745 /* Given that we're not holding a lock here, we retain the value in a
746 * local variable for each dentry as we look at it so that we don't see
747 * the components of that value change under us */
748 while (managed = ACCESS_ONCE(path->dentry->d_flags),
749 managed &= DCACHE_MANAGED_DENTRY,
750 unlikely(managed != 0)) {
751 /* Allow the filesystem to manage the transit without i_mutex
752 * being held. */
753 if (managed & DCACHE_MANAGE_TRANSIT) {
754 BUG_ON(!path->dentry->d_op);
755 BUG_ON(!path->dentry->d_op->d_manage);
756 ret = path->dentry->d_op->d_manage(path->dentry, false);
757 if (ret < 0)
758 break;
759 }
760
761 /* Transit to a mounted filesystem. */
762 if (managed & DCACHE_MOUNTED) {
763 struct vfsmount *mounted = lookup_mnt(path);
764 if (mounted) {
765 dput(path->dentry);
766 if (need_mntput)
767 mntput(path->mnt);
768 path->mnt = mounted;
769 path->dentry = dget(mounted->mnt_root);
770 need_mntput = true;
771 continue;
772 }
773
774 /* Something is mounted on this dentry in another
775 * namespace and/or whatever was mounted there in this
776 * namespace got unmounted before we managed to get the
777 * vfsmount_lock */
778 }
779
780 /* Handle an automount point */
781 if (managed & DCACHE_NEED_AUTOMOUNT) {
782 ret = follow_automount(path, flags, &need_mntput);
783 if (ret < 0)
784 break;
785 continue;
786 }
787
788 /* We didn't change the current path point */
789 break;
790 }
791
792 if (need_mntput && path->mnt == mnt)
793 mntput(path->mnt);
794 if (ret == -EISDIR)
795 ret = 0;
796 return ret;
797 }
798
799 int follow_down_one(struct path *path)
800 {
801 struct vfsmount *mounted;
802
803 mounted = lookup_mnt(path);
804 if (mounted) {
805 dput(path->dentry);
806 mntput(path->mnt);
807 path->mnt = mounted;
808 path->dentry = dget(mounted->mnt_root);
809 return 1;
810 }
811 return 0;
812 }
813
814 static inline bool managed_dentry_might_block(struct dentry *dentry)
815 {
816 return (dentry->d_flags & DCACHE_MANAGE_TRANSIT &&
817 dentry->d_op->d_manage(dentry, true) < 0);
818 }
819
820 /*
821 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if
822 * we meet a managed dentry that would need blocking.
823 */
824 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
825 struct inode **inode)
826 {
827 for (;;) {
828 struct vfsmount *mounted;
829 /*
830 * Don't forget we might have a non-mountpoint managed dentry
831 * that wants to block transit.
832 */
833 if (unlikely(managed_dentry_might_block(path->dentry)))
834 return false;
835
836 if (!d_mountpoint(path->dentry))
837 break;
838
839 mounted = __lookup_mnt(path->mnt, path->dentry, 1);
840 if (!mounted)
841 break;
842 path->mnt = mounted;
843 path->dentry = mounted->mnt_root;
844 nd->seq = read_seqcount_begin(&path->dentry->d_seq);
845 /*
846 * Update the inode too. We don't need to re-check the
847 * dentry sequence number here after this d_inode read,
848 * because a mount-point is always pinned.
849 */
850 *inode = path->dentry->d_inode;
851 }
852 return true;
853 }
854
855 static void follow_mount_rcu(struct nameidata *nd)
856 {
857 while (d_mountpoint(nd->path.dentry)) {
858 struct vfsmount *mounted;
859 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry, 1);
860 if (!mounted)
861 break;
862 nd->path.mnt = mounted;
863 nd->path.dentry = mounted->mnt_root;
864 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
865 }
866 }
867
868 static int follow_dotdot_rcu(struct nameidata *nd)
869 {
870 set_root_rcu(nd);
871
872 while (1) {
873 if (nd->path.dentry == nd->root.dentry &&
874 nd->path.mnt == nd->root.mnt) {
875 break;
876 }
877 if (nd->path.dentry != nd->path.mnt->mnt_root) {
878 struct dentry *old = nd->path.dentry;
879 struct dentry *parent = old->d_parent;
880 unsigned seq;
881
882 seq = read_seqcount_begin(&parent->d_seq);
883 if (read_seqcount_retry(&old->d_seq, nd->seq))
884 goto failed;
885 nd->path.dentry = parent;
886 nd->seq = seq;
887 break;
888 }
889 if (!follow_up_rcu(&nd->path))
890 break;
891 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
892 }
893 follow_mount_rcu(nd);
894 nd->inode = nd->path.dentry->d_inode;
895 return 0;
896
897 failed:
898 nd->flags &= ~LOOKUP_RCU;
899 if (!(nd->flags & LOOKUP_ROOT))
900 nd->root.mnt = NULL;
901 rcu_read_unlock();
902 br_read_unlock(vfsmount_lock);
903 return -ECHILD;
904 }
905
906 /*
907 * Follow down to the covering mount currently visible to userspace. At each
908 * point, the filesystem owning that dentry may be queried as to whether the
909 * caller is permitted to proceed or not.
910 */
911 int follow_down(struct path *path)
912 {
913 unsigned managed;
914 int ret;
915
916 while (managed = ACCESS_ONCE(path->dentry->d_flags),
917 unlikely(managed & DCACHE_MANAGED_DENTRY)) {
918 /* Allow the filesystem to manage the transit without i_mutex
919 * being held.
920 *
921 * We indicate to the filesystem if someone is trying to mount
922 * something here. This gives autofs the chance to deny anyone
923 * other than its daemon the right to mount on its
924 * superstructure.
925 *
926 * The filesystem may sleep at this point.
927 */
928 if (managed & DCACHE_MANAGE_TRANSIT) {
929 BUG_ON(!path->dentry->d_op);
930 BUG_ON(!path->dentry->d_op->d_manage);
931 ret = path->dentry->d_op->d_manage(
932 path->dentry, false);
933 if (ret < 0)
934 return ret == -EISDIR ? 0 : ret;
935 }
936
937 /* Transit to a mounted filesystem. */
938 if (managed & DCACHE_MOUNTED) {
939 struct vfsmount *mounted = lookup_mnt(path);
940 if (!mounted)
941 break;
942 dput(path->dentry);
943 mntput(path->mnt);
944 path->mnt = mounted;
945 path->dentry = dget(mounted->mnt_root);
946 continue;
947 }
948
949 /* Don't handle automount points here */
950 break;
951 }
952 return 0;
953 }
954
955 /*
956 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
957 */
958 static void follow_mount(struct path *path)
959 {
960 while (d_mountpoint(path->dentry)) {
961 struct vfsmount *mounted = lookup_mnt(path);
962 if (!mounted)
963 break;
964 dput(path->dentry);
965 mntput(path->mnt);
966 path->mnt = mounted;
967 path->dentry = dget(mounted->mnt_root);
968 }
969 }
970
971 static void follow_dotdot(struct nameidata *nd)
972 {
973 set_root(nd);
974
975 while(1) {
976 struct dentry *old = nd->path.dentry;
977
978 if (nd->path.dentry == nd->root.dentry &&
979 nd->path.mnt == nd->root.mnt) {
980 break;
981 }
982 if (nd->path.dentry != nd->path.mnt->mnt_root) {
983 /* rare case of legitimate dget_parent()... */
984 nd->path.dentry = dget_parent(nd->path.dentry);
985 dput(old);
986 break;
987 }
988 if (!follow_up(&nd->path))
989 break;
990 }
991 follow_mount(&nd->path);
992 nd->inode = nd->path.dentry->d_inode;
993 }
994
995 /*
996 * Allocate a dentry with name and parent, and perform a parent
997 * directory ->lookup on it. Returns the new dentry, or ERR_PTR
998 * on error. parent->d_inode->i_mutex must be held. d_lookup must
999 * have verified that no child exists while under i_mutex.
1000 */
1001 static struct dentry *d_alloc_and_lookup(struct dentry *parent,
1002 struct qstr *name, struct nameidata *nd)
1003 {
1004 struct inode *inode = parent->d_inode;
1005 struct dentry *dentry;
1006 struct dentry *old;
1007
1008 /* Don't create child dentry for a dead directory. */
1009 if (unlikely(IS_DEADDIR(inode)))
1010 return ERR_PTR(-ENOENT);
1011
1012 dentry = d_alloc(parent, name);
1013 if (unlikely(!dentry))
1014 return ERR_PTR(-ENOMEM);
1015
1016 old = inode->i_op->lookup(inode, dentry, nd);
1017 if (unlikely(old)) {
1018 dput(dentry);
1019 dentry = old;
1020 }
1021 return dentry;
1022 }
1023
1024 /*
1025 * We already have a dentry, but require a lookup to be performed on the parent
1026 * directory to fill in d_inode. Returns the new dentry, or ERR_PTR on error.
1027 * parent->d_inode->i_mutex must be held. d_lookup must have verified that no
1028 * child exists while under i_mutex.
1029 */
1030 static struct dentry *d_inode_lookup(struct dentry *parent, struct dentry *dentry,
1031 struct nameidata *nd)
1032 {
1033 struct inode *inode = parent->d_inode;
1034 struct dentry *old;
1035
1036 /* Don't create child dentry for a dead directory. */
1037 if (unlikely(IS_DEADDIR(inode)))
1038 return ERR_PTR(-ENOENT);
1039
1040 old = inode->i_op->lookup(inode, dentry, nd);
1041 if (unlikely(old)) {
1042 dput(dentry);
1043 dentry = old;
1044 }
1045 return dentry;
1046 }
1047
1048 /*
1049 * It's more convoluted than I'd like it to be, but... it's still fairly
1050 * small and for now I'd prefer to have fast path as straight as possible.
1051 * It _is_ time-critical.
1052 */
1053 static int do_lookup(struct nameidata *nd, struct qstr *name,
1054 struct path *path, struct inode **inode)
1055 {
1056 struct vfsmount *mnt = nd->path.mnt;
1057 struct dentry *dentry, *parent = nd->path.dentry;
1058 int need_reval = 1;
1059 int status = 1;
1060 int err;
1061
1062 /*
1063 * Rename seqlock is not required here because in the off chance
1064 * of a false negative due to a concurrent rename, we're going to
1065 * do the non-racy lookup, below.
1066 */
1067 if (nd->flags & LOOKUP_RCU) {
1068 unsigned seq;
1069 *inode = nd->inode;
1070 dentry = __d_lookup_rcu(parent, name, &seq, inode);
1071 if (!dentry)
1072 goto unlazy;
1073
1074 /* Memory barrier in read_seqcount_begin of child is enough */
1075 if (__read_seqcount_retry(&parent->d_seq, nd->seq))
1076 return -ECHILD;
1077 nd->seq = seq;
1078
1079 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) {
1080 status = d_revalidate(dentry, nd);
1081 if (unlikely(status <= 0)) {
1082 if (status != -ECHILD)
1083 need_reval = 0;
1084 goto unlazy;
1085 }
1086 }
1087 if (unlikely(d_need_lookup(dentry)))
1088 goto unlazy;
1089 path->mnt = mnt;
1090 path->dentry = dentry;
1091 if (unlikely(!__follow_mount_rcu(nd, path, inode)))
1092 goto unlazy;
1093 if (unlikely(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT))
1094 goto unlazy;
1095 return 0;
1096 unlazy:
1097 if (unlazy_walk(nd, dentry))
1098 return -ECHILD;
1099 } else {
1100 dentry = __d_lookup(parent, name);
1101 }
1102
1103 if (dentry && unlikely(d_need_lookup(dentry))) {
1104 dput(dentry);
1105 dentry = NULL;
1106 }
1107 retry:
1108 if (unlikely(!dentry)) {
1109 struct inode *dir = parent->d_inode;
1110 BUG_ON(nd->inode != dir);
1111
1112 mutex_lock(&dir->i_mutex);
1113 dentry = d_lookup(parent, name);
1114 if (likely(!dentry)) {
1115 dentry = d_alloc_and_lookup(parent, name, nd);
1116 if (IS_ERR(dentry)) {
1117 mutex_unlock(&dir->i_mutex);
1118 return PTR_ERR(dentry);
1119 }
1120 /* known good */
1121 need_reval = 0;
1122 status = 1;
1123 } else if (unlikely(d_need_lookup(dentry))) {
1124 dentry = d_inode_lookup(parent, dentry, nd);
1125 if (IS_ERR(dentry)) {
1126 mutex_unlock(&dir->i_mutex);
1127 return PTR_ERR(dentry);
1128 }
1129 /* known good */
1130 need_reval = 0;
1131 status = 1;
1132 }
1133 mutex_unlock(&dir->i_mutex);
1134 }
1135 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE) && need_reval)
1136 status = d_revalidate(dentry, nd);
1137 if (unlikely(status <= 0)) {
1138 if (status < 0) {
1139 dput(dentry);
1140 return status;
1141 }
1142 if (!d_invalidate(dentry)) {
1143 dput(dentry);
1144 dentry = NULL;
1145 need_reval = 1;
1146 goto retry;
1147 }
1148 }
1149
1150 path->mnt = mnt;
1151 path->dentry = dentry;
1152 err = follow_managed(path, nd->flags);
1153 if (unlikely(err < 0)) {
1154 path_put_conditional(path, nd);
1155 return err;
1156 }
1157 *inode = path->dentry->d_inode;
1158 return 0;
1159 }
1160
1161 static inline int may_lookup(struct nameidata *nd)
1162 {
1163 if (nd->flags & LOOKUP_RCU) {
1164 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1165 if (err != -ECHILD)
1166 return err;
1167 if (unlazy_walk(nd, NULL))
1168 return -ECHILD;
1169 }
1170 return inode_permission(nd->inode, MAY_EXEC);
1171 }
1172
1173 static inline int handle_dots(struct nameidata *nd, int type)
1174 {
1175 if (type == LAST_DOTDOT) {
1176 if (nd->flags & LOOKUP_RCU) {
1177 if (follow_dotdot_rcu(nd))
1178 return -ECHILD;
1179 } else
1180 follow_dotdot(nd);
1181 }
1182 return 0;
1183 }
1184
1185 static void terminate_walk(struct nameidata *nd)
1186 {
1187 if (!(nd->flags & LOOKUP_RCU)) {
1188 path_put(&nd->path);
1189 } else {
1190 nd->flags &= ~LOOKUP_RCU;
1191 if (!(nd->flags & LOOKUP_ROOT))
1192 nd->root.mnt = NULL;
1193 rcu_read_unlock();
1194 br_read_unlock(vfsmount_lock);
1195 }
1196 }
1197
1198 static inline int walk_component(struct nameidata *nd, struct path *path,
1199 struct qstr *name, int type, int follow)
1200 {
1201 struct inode *inode;
1202 int err;
1203 /*
1204 * "." and ".." are special - ".." especially so because it has
1205 * to be able to know about the current root directory and
1206 * parent relationships.
1207 */
1208 if (unlikely(type != LAST_NORM))
1209 return handle_dots(nd, type);
1210 err = do_lookup(nd, name, path, &inode);
1211 if (unlikely(err)) {
1212 terminate_walk(nd);
1213 return err;
1214 }
1215 if (!inode) {
1216 path_to_nameidata(path, nd);
1217 terminate_walk(nd);
1218 return -ENOENT;
1219 }
1220 if (unlikely(inode->i_op->follow_link) && follow) {
1221 if (nd->flags & LOOKUP_RCU) {
1222 if (unlikely(unlazy_walk(nd, path->dentry))) {
1223 terminate_walk(nd);
1224 return -ECHILD;
1225 }
1226 }
1227 BUG_ON(inode != path->dentry->d_inode);
1228 return 1;
1229 }
1230 path_to_nameidata(path, nd);
1231 nd->inode = inode;
1232 return 0;
1233 }
1234
1235 /*
1236 * This limits recursive symlink follows to 8, while
1237 * limiting consecutive symlinks to 40.
1238 *
1239 * Without that kind of total limit, nasty chains of consecutive
1240 * symlinks can cause almost arbitrarily long lookups.
1241 */
1242 static inline int nested_symlink(struct path *path, struct nameidata *nd)
1243 {
1244 int res;
1245
1246 if (unlikely(current->link_count >= MAX_NESTED_LINKS)) {
1247 path_put_conditional(path, nd);
1248 path_put(&nd->path);
1249 return -ELOOP;
1250 }
1251 BUG_ON(nd->depth >= MAX_NESTED_LINKS);
1252
1253 nd->depth++;
1254 current->link_count++;
1255
1256 do {
1257 struct path link = *path;
1258 void *cookie;
1259
1260 res = follow_link(&link, nd, &cookie);
1261 if (!res)
1262 res = walk_component(nd, path, &nd->last,
1263 nd->last_type, LOOKUP_FOLLOW);
1264 put_link(nd, &link, cookie);
1265 } while (res > 0);
1266
1267 current->link_count--;
1268 nd->depth--;
1269 return res;
1270 }
1271
1272 /*
1273 * Name resolution.
1274 * This is the basic name resolution function, turning a pathname into
1275 * the final dentry. We expect 'base' to be positive and a directory.
1276 *
1277 * Returns 0 and nd will have valid dentry and mnt on success.
1278 * Returns error and drops reference to input namei data on failure.
1279 */
1280 static int link_path_walk(const char *name, struct nameidata *nd)
1281 {
1282 struct path next;
1283 int err;
1284 unsigned int lookup_flags = nd->flags;
1285
1286 while (*name=='/')
1287 name++;
1288 if (!*name)
1289 return 0;
1290
1291 /* At this point we know we have a real path component. */
1292 for(;;) {
1293 unsigned long hash;
1294 struct qstr this;
1295 unsigned int c;
1296 int type;
1297
1298 nd->flags |= LOOKUP_CONTINUE;
1299
1300 err = may_lookup(nd);
1301 if (err)
1302 break;
1303
1304 this.name = name;
1305 c = *(const unsigned char *)name;
1306
1307 hash = init_name_hash();
1308 do {
1309 name++;
1310 hash = partial_name_hash(c, hash);
1311 c = *(const unsigned char *)name;
1312 } while (c && (c != '/'));
1313 this.len = name - (const char *) this.name;
1314 this.hash = end_name_hash(hash);
1315
1316 type = LAST_NORM;
1317 if (this.name[0] == '.') switch (this.len) {
1318 case 2:
1319 if (this.name[1] == '.') {
1320 type = LAST_DOTDOT;
1321 nd->flags |= LOOKUP_JUMPED;
1322 }
1323 break;
1324 case 1:
1325 type = LAST_DOT;
1326 }
1327 if (likely(type == LAST_NORM)) {
1328 struct dentry *parent = nd->path.dentry;
1329 nd->flags &= ~LOOKUP_JUMPED;
1330 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
1331 err = parent->d_op->d_hash(parent, nd->inode,
1332 &this);
1333 if (err < 0)
1334 break;
1335 }
1336 }
1337
1338 /* remove trailing slashes? */
1339 if (!c)
1340 goto last_component;
1341 while (*++name == '/');
1342 if (!*name)
1343 goto last_component;
1344
1345 err = walk_component(nd, &next, &this, type, LOOKUP_FOLLOW);
1346 if (err < 0)
1347 return err;
1348
1349 if (err) {
1350 err = nested_symlink(&next, nd);
1351 if (err)
1352 return err;
1353 }
1354 err = -ENOTDIR;
1355 if (!nd->inode->i_op->lookup)
1356 break;
1357 continue;
1358 /* here ends the main loop */
1359
1360 last_component:
1361 /* Clear LOOKUP_CONTINUE iff it was previously unset */
1362 nd->flags &= lookup_flags | ~LOOKUP_CONTINUE;
1363 nd->last = this;
1364 nd->last_type = type;
1365 return 0;
1366 }
1367 terminate_walk(nd);
1368 return err;
1369 }
1370
1371 static int path_init(int dfd, const char *name, unsigned int flags,
1372 struct nameidata *nd, struct file **fp)
1373 {
1374 int retval = 0;
1375 int fput_needed;
1376 struct file *file;
1377
1378 nd->last_type = LAST_ROOT; /* if there are only slashes... */
1379 nd->flags = flags | LOOKUP_JUMPED;
1380 nd->depth = 0;
1381 if (flags & LOOKUP_ROOT) {
1382 struct inode *inode = nd->root.dentry->d_inode;
1383 if (*name) {
1384 if (!inode->i_op->lookup)
1385 return -ENOTDIR;
1386 retval = inode_permission(inode, MAY_EXEC);
1387 if (retval)
1388 return retval;
1389 }
1390 nd->path = nd->root;
1391 nd->inode = inode;
1392 if (flags & LOOKUP_RCU) {
1393 br_read_lock(vfsmount_lock);
1394 rcu_read_lock();
1395 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1396 } else {
1397 path_get(&nd->path);
1398 }
1399 return 0;
1400 }
1401
1402 nd->root.mnt = NULL;
1403
1404 if (*name=='/') {
1405 if (flags & LOOKUP_RCU) {
1406 br_read_lock(vfsmount_lock);
1407 rcu_read_lock();
1408 set_root_rcu(nd);
1409 } else {
1410 set_root(nd);
1411 path_get(&nd->root);
1412 }
1413 nd->path = nd->root;
1414 } else if (dfd == AT_FDCWD) {
1415 if (flags & LOOKUP_RCU) {
1416 struct fs_struct *fs = current->fs;
1417 unsigned seq;
1418
1419 br_read_lock(vfsmount_lock);
1420 rcu_read_lock();
1421
1422 do {
1423 seq = read_seqcount_begin(&fs->seq);
1424 nd->path = fs->pwd;
1425 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1426 } while (read_seqcount_retry(&fs->seq, seq));
1427 } else {
1428 get_fs_pwd(current->fs, &nd->path);
1429 }
1430 } else {
1431 struct dentry *dentry;
1432
1433 file = fget_raw_light(dfd, &fput_needed);
1434 retval = -EBADF;
1435 if (!file)
1436 goto out_fail;
1437
1438 dentry = file->f_path.dentry;
1439
1440 if (*name) {
1441 retval = -ENOTDIR;
1442 if (!S_ISDIR(dentry->d_inode->i_mode))
1443 goto fput_fail;
1444
1445 retval = inode_permission(dentry->d_inode, MAY_EXEC);
1446 if (retval)
1447 goto fput_fail;
1448 }
1449
1450 nd->path = file->f_path;
1451 if (flags & LOOKUP_RCU) {
1452 if (fput_needed)
1453 *fp = file;
1454 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1455 br_read_lock(vfsmount_lock);
1456 rcu_read_lock();
1457 } else {
1458 path_get(&file->f_path);
1459 fput_light(file, fput_needed);
1460 }
1461 }
1462
1463 nd->inode = nd->path.dentry->d_inode;
1464 return 0;
1465
1466 fput_fail:
1467 fput_light(file, fput_needed);
1468 out_fail:
1469 return retval;
1470 }
1471
1472 static inline int lookup_last(struct nameidata *nd, struct path *path)
1473 {
1474 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
1475 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
1476
1477 nd->flags &= ~LOOKUP_PARENT;
1478 return walk_component(nd, path, &nd->last, nd->last_type,
1479 nd->flags & LOOKUP_FOLLOW);
1480 }
1481
1482 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
1483 static int path_lookupat(int dfd, const char *name,
1484 unsigned int flags, struct nameidata *nd)
1485 {
1486 struct file *base = NULL;
1487 struct path path;
1488 int err;
1489
1490 /*
1491 * Path walking is largely split up into 2 different synchronisation
1492 * schemes, rcu-walk and ref-walk (explained in
1493 * Documentation/filesystems/path-lookup.txt). These share much of the
1494 * path walk code, but some things particularly setup, cleanup, and
1495 * following mounts are sufficiently divergent that functions are
1496 * duplicated. Typically there is a function foo(), and its RCU
1497 * analogue, foo_rcu().
1498 *
1499 * -ECHILD is the error number of choice (just to avoid clashes) that
1500 * is returned if some aspect of an rcu-walk fails. Such an error must
1501 * be handled by restarting a traditional ref-walk (which will always
1502 * be able to complete).
1503 */
1504 err = path_init(dfd, name, flags | LOOKUP_PARENT, nd, &base);
1505
1506 if (unlikely(err))
1507 return err;
1508
1509 current->total_link_count = 0;
1510 err = link_path_walk(name, nd);
1511
1512 if (!err && !(flags & LOOKUP_PARENT)) {
1513 err = lookup_last(nd, &path);
1514 while (err > 0) {
1515 void *cookie;
1516 struct path link = path;
1517 nd->flags |= LOOKUP_PARENT;
1518 err = follow_link(&link, nd, &cookie);
1519 if (!err)
1520 err = lookup_last(nd, &path);
1521 put_link(nd, &link, cookie);
1522 }
1523 }
1524
1525 if (!err)
1526 err = complete_walk(nd);
1527
1528 if (!err && nd->flags & LOOKUP_DIRECTORY) {
1529 if (!nd->inode->i_op->lookup) {
1530 path_put(&nd->path);
1531 err = -ENOTDIR;
1532 }
1533 }
1534
1535 if (base)
1536 fput(base);
1537
1538 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
1539 path_put(&nd->root);
1540 nd->root.mnt = NULL;
1541 }
1542 return err;
1543 }
1544
1545 static int do_path_lookup(int dfd, const char *name,
1546 unsigned int flags, struct nameidata *nd)
1547 {
1548 int retval = path_lookupat(dfd, name, flags | LOOKUP_RCU, nd);
1549 if (unlikely(retval == -ECHILD))
1550 retval = path_lookupat(dfd, name, flags, nd);
1551 if (unlikely(retval == -ESTALE))
1552 retval = path_lookupat(dfd, name, flags | LOOKUP_REVAL, nd);
1553
1554 if (likely(!retval)) {
1555 if (unlikely(!audit_dummy_context())) {
1556 if (nd->path.dentry && nd->inode)
1557 audit_inode(name, nd->path.dentry);
1558 }
1559 }
1560 return retval;
1561 }
1562
1563 int kern_path_parent(const char *name, struct nameidata *nd)
1564 {
1565 return do_path_lookup(AT_FDCWD, name, LOOKUP_PARENT, nd);
1566 }
1567
1568 int kern_path(const char *name, unsigned int flags, struct path *path)
1569 {
1570 struct nameidata nd;
1571 int res = do_path_lookup(AT_FDCWD, name, flags, &nd);
1572 if (!res)
1573 *path = nd.path;
1574 return res;
1575 }
1576
1577 /**
1578 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
1579 * @dentry: pointer to dentry of the base directory
1580 * @mnt: pointer to vfs mount of the base directory
1581 * @name: pointer to file name
1582 * @flags: lookup flags
1583 * @nd: pointer to nameidata
1584 */
1585 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
1586 const char *name, unsigned int flags,
1587 struct nameidata *nd)
1588 {
1589 nd->root.dentry = dentry;
1590 nd->root.mnt = mnt;
1591 /* the first argument of do_path_lookup() is ignored with LOOKUP_ROOT */
1592 return do_path_lookup(AT_FDCWD, name, flags | LOOKUP_ROOT, nd);
1593 }
1594
1595 static struct dentry *__lookup_hash(struct qstr *name,
1596 struct dentry *base, struct nameidata *nd)
1597 {
1598 struct inode *inode = base->d_inode;
1599 struct dentry *dentry;
1600 int err;
1601
1602 err = inode_permission(inode, MAY_EXEC);
1603 if (err)
1604 return ERR_PTR(err);
1605
1606 /*
1607 * Don't bother with __d_lookup: callers are for creat as
1608 * well as unlink, so a lot of the time it would cost
1609 * a double lookup.
1610 */
1611 dentry = d_lookup(base, name);
1612
1613 if (dentry && d_need_lookup(dentry)) {
1614 /*
1615 * __lookup_hash is called with the parent dir's i_mutex already
1616 * held, so we are good to go here.
1617 */
1618 dentry = d_inode_lookup(base, dentry, nd);
1619 if (IS_ERR(dentry))
1620 return dentry;
1621 }
1622
1623 if (dentry && (dentry->d_flags & DCACHE_OP_REVALIDATE)) {
1624 int status = d_revalidate(dentry, nd);
1625 if (unlikely(status <= 0)) {
1626 /*
1627 * The dentry failed validation.
1628 * If d_revalidate returned 0 attempt to invalidate
1629 * the dentry otherwise d_revalidate is asking us
1630 * to return a fail status.
1631 */
1632 if (status < 0) {
1633 dput(dentry);
1634 return ERR_PTR(status);
1635 } else if (!d_invalidate(dentry)) {
1636 dput(dentry);
1637 dentry = NULL;
1638 }
1639 }
1640 }
1641
1642 if (!dentry)
1643 dentry = d_alloc_and_lookup(base, name, nd);
1644
1645 return dentry;
1646 }
1647
1648 /*
1649 * Restricted form of lookup. Doesn't follow links, single-component only,
1650 * needs parent already locked. Doesn't follow mounts.
1651 * SMP-safe.
1652 */
1653 static struct dentry *lookup_hash(struct nameidata *nd)
1654 {
1655 return __lookup_hash(&nd->last, nd->path.dentry, nd);
1656 }
1657
1658 /**
1659 * lookup_one_len - filesystem helper to lookup single pathname component
1660 * @name: pathname component to lookup
1661 * @base: base directory to lookup from
1662 * @len: maximum length @len should be interpreted to
1663 *
1664 * Note that this routine is purely a helper for filesystem usage and should
1665 * not be called by generic code. Also note that by using this function the
1666 * nameidata argument is passed to the filesystem methods and a filesystem
1667 * using this helper needs to be prepared for that.
1668 */
1669 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
1670 {
1671 struct qstr this;
1672 unsigned long hash;
1673 unsigned int c;
1674
1675 WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex));
1676
1677 this.name = name;
1678 this.len = len;
1679 if (!len)
1680 return ERR_PTR(-EACCES);
1681
1682 hash = init_name_hash();
1683 while (len--) {
1684 c = *(const unsigned char *)name++;
1685 if (c == '/' || c == '\0')
1686 return ERR_PTR(-EACCES);
1687 hash = partial_name_hash(c, hash);
1688 }
1689 this.hash = end_name_hash(hash);
1690 /*
1691 * See if the low-level filesystem might want
1692 * to use its own hash..
1693 */
1694 if (base->d_flags & DCACHE_OP_HASH) {
1695 int err = base->d_op->d_hash(base, base->d_inode, &this);
1696 if (err < 0)
1697 return ERR_PTR(err);
1698 }
1699
1700 return __lookup_hash(&this, base, NULL);
1701 }
1702
1703 int user_path_at(int dfd, const char __user *name, unsigned flags,
1704 struct path *path)
1705 {
1706 struct nameidata nd;
1707 char *tmp = getname_flags(name, flags);
1708 int err = PTR_ERR(tmp);
1709 if (!IS_ERR(tmp)) {
1710
1711 BUG_ON(flags & LOOKUP_PARENT);
1712
1713 err = do_path_lookup(dfd, tmp, flags, &nd);
1714 putname(tmp);
1715 if (!err)
1716 *path = nd.path;
1717 }
1718 return err;
1719 }
1720
1721 static int user_path_parent(int dfd, const char __user *path,
1722 struct nameidata *nd, char **name)
1723 {
1724 char *s = getname(path);
1725 int error;
1726
1727 if (IS_ERR(s))
1728 return PTR_ERR(s);
1729
1730 error = do_path_lookup(dfd, s, LOOKUP_PARENT, nd);
1731 if (error)
1732 putname(s);
1733 else
1734 *name = s;
1735
1736 return error;
1737 }
1738
1739 /*
1740 * It's inline, so penalty for filesystems that don't use sticky bit is
1741 * minimal.
1742 */
1743 static inline int check_sticky(struct inode *dir, struct inode *inode)
1744 {
1745 uid_t fsuid = current_fsuid();
1746
1747 if (!(dir->i_mode & S_ISVTX))
1748 return 0;
1749 if (current_user_ns() != inode_userns(inode))
1750 goto other_userns;
1751 if (inode->i_uid == fsuid)
1752 return 0;
1753 if (dir->i_uid == fsuid)
1754 return 0;
1755
1756 other_userns:
1757 return !ns_capable(inode_userns(inode), CAP_FOWNER);
1758 }
1759
1760 /*
1761 * Check whether we can remove a link victim from directory dir, check
1762 * whether the type of victim is right.
1763 * 1. We can't do it if dir is read-only (done in permission())
1764 * 2. We should have write and exec permissions on dir
1765 * 3. We can't remove anything from append-only dir
1766 * 4. We can't do anything with immutable dir (done in permission())
1767 * 5. If the sticky bit on dir is set we should either
1768 * a. be owner of dir, or
1769 * b. be owner of victim, or
1770 * c. have CAP_FOWNER capability
1771 * 6. If the victim is append-only or immutable we can't do antyhing with
1772 * links pointing to it.
1773 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
1774 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
1775 * 9. We can't remove a root or mountpoint.
1776 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
1777 * nfs_async_unlink().
1778 */
1779 static int may_delete(struct inode *dir,struct dentry *victim,int isdir)
1780 {
1781 int error;
1782
1783 if (!victim->d_inode)
1784 return -ENOENT;
1785
1786 BUG_ON(victim->d_parent->d_inode != dir);
1787 audit_inode_child(victim, dir);
1788
1789 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
1790 if (error)
1791 return error;
1792 if (IS_APPEND(dir))
1793 return -EPERM;
1794 if (check_sticky(dir, victim->d_inode)||IS_APPEND(victim->d_inode)||
1795 IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode))
1796 return -EPERM;
1797 if (isdir) {
1798 if (!S_ISDIR(victim->d_inode->i_mode))
1799 return -ENOTDIR;
1800 if (IS_ROOT(victim))
1801 return -EBUSY;
1802 } else if (S_ISDIR(victim->d_inode->i_mode))
1803 return -EISDIR;
1804 if (IS_DEADDIR(dir))
1805 return -ENOENT;
1806 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
1807 return -EBUSY;
1808 return 0;
1809 }
1810
1811 /* Check whether we can create an object with dentry child in directory
1812 * dir.
1813 * 1. We can't do it if child already exists (open has special treatment for
1814 * this case, but since we are inlined it's OK)
1815 * 2. We can't do it if dir is read-only (done in permission())
1816 * 3. We should have write and exec permissions on dir
1817 * 4. We can't do it if dir is immutable (done in permission())
1818 */
1819 static inline int may_create(struct inode *dir, struct dentry *child)
1820 {
1821 if (child->d_inode)
1822 return -EEXIST;
1823 if (IS_DEADDIR(dir))
1824 return -ENOENT;
1825 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
1826 }
1827
1828 /*
1829 * p1 and p2 should be directories on the same fs.
1830 */
1831 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
1832 {
1833 struct dentry *p;
1834
1835 if (p1 == p2) {
1836 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1837 return NULL;
1838 }
1839
1840 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
1841
1842 p = d_ancestor(p2, p1);
1843 if (p) {
1844 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
1845 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
1846 return p;
1847 }
1848
1849 p = d_ancestor(p1, p2);
1850 if (p) {
1851 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1852 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
1853 return p;
1854 }
1855
1856 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1857 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
1858 return NULL;
1859 }
1860
1861 void unlock_rename(struct dentry *p1, struct dentry *p2)
1862 {
1863 mutex_unlock(&p1->d_inode->i_mutex);
1864 if (p1 != p2) {
1865 mutex_unlock(&p2->d_inode->i_mutex);
1866 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
1867 }
1868 }
1869
1870 int vfs_create(struct inode *dir, struct dentry *dentry, int mode,
1871 struct nameidata *nd)
1872 {
1873 int error = may_create(dir, dentry);
1874
1875 if (error)
1876 return error;
1877
1878 if (!dir->i_op->create)
1879 return -EACCES; /* shouldn't it be ENOSYS? */
1880 mode &= S_IALLUGO;
1881 mode |= S_IFREG;
1882 error = security_inode_create(dir, dentry, mode);
1883 if (error)
1884 return error;
1885 error = dir->i_op->create(dir, dentry, mode, nd);
1886 if (!error)
1887 fsnotify_create(dir, dentry);
1888 return error;
1889 }
1890
1891 static int may_open(struct path *path, int acc_mode, int flag)
1892 {
1893 struct dentry *dentry = path->dentry;
1894 struct inode *inode = dentry->d_inode;
1895 int error;
1896
1897 /* O_PATH? */
1898 if (!acc_mode)
1899 return 0;
1900
1901 if (!inode)
1902 return -ENOENT;
1903
1904 switch (inode->i_mode & S_IFMT) {
1905 case S_IFLNK:
1906 return -ELOOP;
1907 case S_IFDIR:
1908 if (acc_mode & MAY_WRITE)
1909 return -EISDIR;
1910 break;
1911 case S_IFBLK:
1912 case S_IFCHR:
1913 if (path->mnt->mnt_flags & MNT_NODEV)
1914 return -EACCES;
1915 /*FALLTHRU*/
1916 case S_IFIFO:
1917 case S_IFSOCK:
1918 flag &= ~O_TRUNC;
1919 break;
1920 }
1921
1922 error = inode_permission(inode, acc_mode);
1923 if (error)
1924 return error;
1925
1926 /*
1927 * An append-only file must be opened in append mode for writing.
1928 */
1929 if (IS_APPEND(inode)) {
1930 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
1931 return -EPERM;
1932 if (flag & O_TRUNC)
1933 return -EPERM;
1934 }
1935
1936 /* O_NOATIME can only be set by the owner or superuser */
1937 if (flag & O_NOATIME && !inode_owner_or_capable(inode))
1938 return -EPERM;
1939
1940 /*
1941 * Ensure there are no outstanding leases on the file.
1942 */
1943 return break_lease(inode, flag);
1944 }
1945
1946 static int handle_truncate(struct file *filp)
1947 {
1948 struct path *path = &filp->f_path;
1949 struct inode *inode = path->dentry->d_inode;
1950 int error = get_write_access(inode);
1951 if (error)
1952 return error;
1953 /*
1954 * Refuse to truncate files with mandatory locks held on them.
1955 */
1956 error = locks_verify_locked(inode);
1957 if (!error)
1958 error = security_path_truncate(path);
1959 if (!error) {
1960 error = do_truncate(path->dentry, 0,
1961 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
1962 filp);
1963 }
1964 put_write_access(inode);
1965 return error;
1966 }
1967
1968 static inline int open_to_namei_flags(int flag)
1969 {
1970 if ((flag & O_ACCMODE) == 3)
1971 flag--;
1972 return flag;
1973 }
1974
1975 /*
1976 * Handle the last step of open()
1977 */
1978 static struct file *do_last(struct nameidata *nd, struct path *path,
1979 const struct open_flags *op, const char *pathname)
1980 {
1981 struct dentry *dir = nd->path.dentry;
1982 struct dentry *dentry;
1983 int open_flag = op->open_flag;
1984 int will_truncate = open_flag & O_TRUNC;
1985 int want_write = 0;
1986 int acc_mode = op->acc_mode;
1987 struct file *filp;
1988 int error;
1989
1990 nd->flags &= ~LOOKUP_PARENT;
1991 nd->flags |= op->intent;
1992
1993 switch (nd->last_type) {
1994 case LAST_DOTDOT:
1995 case LAST_DOT:
1996 error = handle_dots(nd, nd->last_type);
1997 if (error)
1998 return ERR_PTR(error);
1999 /* fallthrough */
2000 case LAST_ROOT:
2001 error = complete_walk(nd);
2002 if (error)
2003 return ERR_PTR(error);
2004 audit_inode(pathname, nd->path.dentry);
2005 if (open_flag & O_CREAT) {
2006 error = -EISDIR;
2007 goto exit;
2008 }
2009 goto ok;
2010 case LAST_BIND:
2011 error = complete_walk(nd);
2012 if (error)
2013 return ERR_PTR(error);
2014 audit_inode(pathname, dir);
2015 goto ok;
2016 }
2017
2018 if (!(open_flag & O_CREAT)) {
2019 int symlink_ok = 0;
2020 if (nd->last.name[nd->last.len])
2021 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2022 if (open_flag & O_PATH && !(nd->flags & LOOKUP_FOLLOW))
2023 symlink_ok = 1;
2024 /* we _can_ be in RCU mode here */
2025 error = walk_component(nd, path, &nd->last, LAST_NORM,
2026 !symlink_ok);
2027 if (error < 0)
2028 return ERR_PTR(error);
2029 if (error) /* symlink */
2030 return NULL;
2031 /* sayonara */
2032 error = complete_walk(nd);
2033 if (error)
2034 return ERR_PTR(-ECHILD);
2035
2036 error = -ENOTDIR;
2037 if (nd->flags & LOOKUP_DIRECTORY) {
2038 if (!nd->inode->i_op->lookup)
2039 goto exit;
2040 }
2041 audit_inode(pathname, nd->path.dentry);
2042 goto ok;
2043 }
2044
2045 /* create side of things */
2046 error = complete_walk(nd);
2047 if (error)
2048 return ERR_PTR(error);
2049
2050 audit_inode(pathname, dir);
2051 error = -EISDIR;
2052 /* trailing slashes? */
2053 if (nd->last.name[nd->last.len])
2054 goto exit;
2055
2056 mutex_lock(&dir->d_inode->i_mutex);
2057
2058 dentry = lookup_hash(nd);
2059 error = PTR_ERR(dentry);
2060 if (IS_ERR(dentry)) {
2061 mutex_unlock(&dir->d_inode->i_mutex);
2062 goto exit;
2063 }
2064
2065 path->dentry = dentry;
2066 path->mnt = nd->path.mnt;
2067
2068 /* Negative dentry, just create the file */
2069 if (!dentry->d_inode) {
2070 int mode = op->mode;
2071 if (!IS_POSIXACL(dir->d_inode))
2072 mode &= ~current_umask();
2073 /*
2074 * This write is needed to ensure that a
2075 * rw->ro transition does not occur between
2076 * the time when the file is created and when
2077 * a permanent write count is taken through
2078 * the 'struct file' in nameidata_to_filp().
2079 */
2080 error = mnt_want_write(nd->path.mnt);
2081 if (error)
2082 goto exit_mutex_unlock;
2083 want_write = 1;
2084 /* Don't check for write permission, don't truncate */
2085 open_flag &= ~O_TRUNC;
2086 will_truncate = 0;
2087 acc_mode = MAY_OPEN;
2088 error = security_path_mknod(&nd->path, dentry, mode, 0);
2089 if (error)
2090 goto exit_mutex_unlock;
2091 error = vfs_create(dir->d_inode, dentry, mode, nd);
2092 if (error)
2093 goto exit_mutex_unlock;
2094 mutex_unlock(&dir->d_inode->i_mutex);
2095 dput(nd->path.dentry);
2096 nd->path.dentry = dentry;
2097 goto common;
2098 }
2099
2100 /*
2101 * It already exists.
2102 */
2103 mutex_unlock(&dir->d_inode->i_mutex);
2104 audit_inode(pathname, path->dentry);
2105
2106 error = -EEXIST;
2107 if (open_flag & O_EXCL)
2108 goto exit_dput;
2109
2110 error = follow_managed(path, nd->flags);
2111 if (error < 0)
2112 goto exit_dput;
2113
2114 error = -ENOENT;
2115 if (!path->dentry->d_inode)
2116 goto exit_dput;
2117
2118 if (path->dentry->d_inode->i_op->follow_link)
2119 return NULL;
2120
2121 path_to_nameidata(path, nd);
2122 nd->inode = path->dentry->d_inode;
2123 error = -EISDIR;
2124 if (S_ISDIR(nd->inode->i_mode))
2125 goto exit;
2126 ok:
2127 if (!S_ISREG(nd->inode->i_mode))
2128 will_truncate = 0;
2129
2130 if (will_truncate) {
2131 error = mnt_want_write(nd->path.mnt);
2132 if (error)
2133 goto exit;
2134 want_write = 1;
2135 }
2136 common:
2137 error = may_open(&nd->path, acc_mode, open_flag);
2138 if (error)
2139 goto exit;
2140 filp = nameidata_to_filp(nd);
2141 if (!IS_ERR(filp)) {
2142 error = ima_file_check(filp, op->acc_mode);
2143 if (error) {
2144 fput(filp);
2145 filp = ERR_PTR(error);
2146 }
2147 }
2148 if (!IS_ERR(filp)) {
2149 if (will_truncate) {
2150 error = handle_truncate(filp);
2151 if (error) {
2152 fput(filp);
2153 filp = ERR_PTR(error);
2154 }
2155 }
2156 }
2157 out:
2158 if (want_write)
2159 mnt_drop_write(nd->path.mnt);
2160 path_put(&nd->path);
2161 return filp;
2162
2163 exit_mutex_unlock:
2164 mutex_unlock(&dir->d_inode->i_mutex);
2165 exit_dput:
2166 path_put_conditional(path, nd);
2167 exit:
2168 filp = ERR_PTR(error);
2169 goto out;
2170 }
2171
2172 static struct file *path_openat(int dfd, const char *pathname,
2173 struct nameidata *nd, const struct open_flags *op, int flags)
2174 {
2175 struct file *base = NULL;
2176 struct file *filp;
2177 struct path path;
2178 int error;
2179
2180 filp = get_empty_filp();
2181 if (!filp)
2182 return ERR_PTR(-ENFILE);
2183
2184 filp->f_flags = op->open_flag;
2185 nd->intent.open.file = filp;
2186 nd->intent.open.flags = open_to_namei_flags(op->open_flag);
2187 nd->intent.open.create_mode = op->mode;
2188
2189 error = path_init(dfd, pathname, flags | LOOKUP_PARENT, nd, &base);
2190 if (unlikely(error))
2191 goto out_filp;
2192
2193 current->total_link_count = 0;
2194 error = link_path_walk(pathname, nd);
2195 if (unlikely(error))
2196 goto out_filp;
2197
2198 filp = do_last(nd, &path, op, pathname);
2199 while (unlikely(!filp)) { /* trailing symlink */
2200 struct path link = path;
2201 void *cookie;
2202 if (!(nd->flags & LOOKUP_FOLLOW)) {
2203 path_put_conditional(&path, nd);
2204 path_put(&nd->path);
2205 filp = ERR_PTR(-ELOOP);
2206 break;
2207 }
2208 nd->flags |= LOOKUP_PARENT;
2209 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
2210 error = follow_link(&link, nd, &cookie);
2211 if (unlikely(error))
2212 filp = ERR_PTR(error);
2213 else
2214 filp = do_last(nd, &path, op, pathname);
2215 put_link(nd, &link, cookie);
2216 }
2217 out:
2218 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT))
2219 path_put(&nd->root);
2220 if (base)
2221 fput(base);
2222 release_open_intent(nd);
2223 return filp;
2224
2225 out_filp:
2226 filp = ERR_PTR(error);
2227 goto out;
2228 }
2229
2230 struct file *do_filp_open(int dfd, const char *pathname,
2231 const struct open_flags *op, int flags)
2232 {
2233 struct nameidata nd;
2234 struct file *filp;
2235
2236 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_RCU);
2237 if (unlikely(filp == ERR_PTR(-ECHILD)))
2238 filp = path_openat(dfd, pathname, &nd, op, flags);
2239 if (unlikely(filp == ERR_PTR(-ESTALE)))
2240 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_REVAL);
2241 return filp;
2242 }
2243
2244 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
2245 const char *name, const struct open_flags *op, int flags)
2246 {
2247 struct nameidata nd;
2248 struct file *file;
2249
2250 nd.root.mnt = mnt;
2251 nd.root.dentry = dentry;
2252
2253 flags |= LOOKUP_ROOT;
2254
2255 if (dentry->d_inode->i_op->follow_link && op->intent & LOOKUP_OPEN)
2256 return ERR_PTR(-ELOOP);
2257
2258 file = path_openat(-1, name, &nd, op, flags | LOOKUP_RCU);
2259 if (unlikely(file == ERR_PTR(-ECHILD)))
2260 file = path_openat(-1, name, &nd, op, flags);
2261 if (unlikely(file == ERR_PTR(-ESTALE)))
2262 file = path_openat(-1, name, &nd, op, flags | LOOKUP_REVAL);
2263 return file;
2264 }
2265
2266 /**
2267 * lookup_create - lookup a dentry, creating it if it doesn't exist
2268 * @nd: nameidata info
2269 * @is_dir: directory flag
2270 *
2271 * Simple function to lookup and return a dentry and create it
2272 * if it doesn't exist. Is SMP-safe.
2273 *
2274 * Returns with nd->path.dentry->d_inode->i_mutex locked.
2275 */
2276 struct dentry *lookup_create(struct nameidata *nd, int is_dir)
2277 {
2278 struct dentry *dentry = ERR_PTR(-EEXIST);
2279
2280 mutex_lock_nested(&nd->path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2281 /*
2282 * Yucky last component or no last component at all?
2283 * (foo/., foo/.., /////)
2284 */
2285 if (nd->last_type != LAST_NORM)
2286 goto fail;
2287 nd->flags &= ~LOOKUP_PARENT;
2288 nd->flags |= LOOKUP_CREATE | LOOKUP_EXCL;
2289 nd->intent.open.flags = O_EXCL;
2290
2291 /*
2292 * Do the final lookup.
2293 */
2294 dentry = lookup_hash(nd);
2295 if (IS_ERR(dentry))
2296 goto fail;
2297
2298 if (dentry->d_inode)
2299 goto eexist;
2300 /*
2301 * Special case - lookup gave negative, but... we had foo/bar/
2302 * From the vfs_mknod() POV we just have a negative dentry -
2303 * all is fine. Let's be bastards - you had / on the end, you've
2304 * been asking for (non-existent) directory. -ENOENT for you.
2305 */
2306 if (unlikely(!is_dir && nd->last.name[nd->last.len])) {
2307 dput(dentry);
2308 dentry = ERR_PTR(-ENOENT);
2309 }
2310 return dentry;
2311 eexist:
2312 dput(dentry);
2313 dentry = ERR_PTR(-EEXIST);
2314 fail:
2315 return dentry;
2316 }
2317 EXPORT_SYMBOL_GPL(lookup_create);
2318
2319 int vfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
2320 {
2321 int error = may_create(dir, dentry);
2322
2323 if (error)
2324 return error;
2325
2326 if ((S_ISCHR(mode) || S_ISBLK(mode)) &&
2327 !ns_capable(inode_userns(dir), CAP_MKNOD))
2328 return -EPERM;
2329
2330 if (!dir->i_op->mknod)
2331 return -EPERM;
2332
2333 error = devcgroup_inode_mknod(mode, dev);
2334 if (error)
2335 return error;
2336
2337 error = security_inode_mknod(dir, dentry, mode, dev);
2338 if (error)
2339 return error;
2340
2341 error = dir->i_op->mknod(dir, dentry, mode, dev);
2342 if (!error)
2343 fsnotify_create(dir, dentry);
2344 return error;
2345 }
2346
2347 static int may_mknod(mode_t mode)
2348 {
2349 switch (mode & S_IFMT) {
2350 case S_IFREG:
2351 case S_IFCHR:
2352 case S_IFBLK:
2353 case S_IFIFO:
2354 case S_IFSOCK:
2355 case 0: /* zero mode translates to S_IFREG */
2356 return 0;
2357 case S_IFDIR:
2358 return -EPERM;
2359 default:
2360 return -EINVAL;
2361 }
2362 }
2363
2364 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, int, mode,
2365 unsigned, dev)
2366 {
2367 int error;
2368 char *tmp;
2369 struct dentry *dentry;
2370 struct nameidata nd;
2371
2372 if (S_ISDIR(mode))
2373 return -EPERM;
2374
2375 error = user_path_parent(dfd, filename, &nd, &tmp);
2376 if (error)
2377 return error;
2378
2379 dentry = lookup_create(&nd, 0);
2380 if (IS_ERR(dentry)) {
2381 error = PTR_ERR(dentry);
2382 goto out_unlock;
2383 }
2384 if (!IS_POSIXACL(nd.path.dentry->d_inode))
2385 mode &= ~current_umask();
2386 error = may_mknod(mode);
2387 if (error)
2388 goto out_dput;
2389 error = mnt_want_write(nd.path.mnt);
2390 if (error)
2391 goto out_dput;
2392 error = security_path_mknod(&nd.path, dentry, mode, dev);
2393 if (error)
2394 goto out_drop_write;
2395 switch (mode & S_IFMT) {
2396 case 0: case S_IFREG:
2397 error = vfs_create(nd.path.dentry->d_inode,dentry,mode,NULL);
2398 break;
2399 case S_IFCHR: case S_IFBLK:
2400 error = vfs_mknod(nd.path.dentry->d_inode,dentry,mode,
2401 new_decode_dev(dev));
2402 break;
2403 case S_IFIFO: case S_IFSOCK:
2404 error = vfs_mknod(nd.path.dentry->d_inode,dentry,mode,0);
2405 break;
2406 }
2407 out_drop_write:
2408 mnt_drop_write(nd.path.mnt);
2409 out_dput:
2410 dput(dentry);
2411 out_unlock:
2412 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2413 path_put(&nd.path);
2414 putname(tmp);
2415
2416 return error;
2417 }
2418
2419 SYSCALL_DEFINE3(mknod, const char __user *, filename, int, mode, unsigned, dev)
2420 {
2421 return sys_mknodat(AT_FDCWD, filename, mode, dev);
2422 }
2423
2424 int vfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
2425 {
2426 int error = may_create(dir, dentry);
2427
2428 if (error)
2429 return error;
2430
2431 if (!dir->i_op->mkdir)
2432 return -EPERM;
2433
2434 mode &= (S_IRWXUGO|S_ISVTX);
2435 error = security_inode_mkdir(dir, dentry, mode);
2436 if (error)
2437 return error;
2438
2439 error = dir->i_op->mkdir(dir, dentry, mode);
2440 if (!error)
2441 fsnotify_mkdir(dir, dentry);
2442 return error;
2443 }
2444
2445 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, int, mode)
2446 {
2447 int error = 0;
2448 char * tmp;
2449 struct dentry *dentry;
2450 struct nameidata nd;
2451
2452 error = user_path_parent(dfd, pathname, &nd, &tmp);
2453 if (error)
2454 goto out_err;
2455
2456 dentry = lookup_create(&nd, 1);
2457 error = PTR_ERR(dentry);
2458 if (IS_ERR(dentry))
2459 goto out_unlock;
2460
2461 if (!IS_POSIXACL(nd.path.dentry->d_inode))
2462 mode &= ~current_umask();
2463 error = mnt_want_write(nd.path.mnt);
2464 if (error)
2465 goto out_dput;
2466 error = security_path_mkdir(&nd.path, dentry, mode);
2467 if (error)
2468 goto out_drop_write;
2469 error = vfs_mkdir(nd.path.dentry->d_inode, dentry, mode);
2470 out_drop_write:
2471 mnt_drop_write(nd.path.mnt);
2472 out_dput:
2473 dput(dentry);
2474 out_unlock:
2475 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2476 path_put(&nd.path);
2477 putname(tmp);
2478 out_err:
2479 return error;
2480 }
2481
2482 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, int, mode)
2483 {
2484 return sys_mkdirat(AT_FDCWD, pathname, mode);
2485 }
2486
2487 /*
2488 * The dentry_unhash() helper will try to drop the dentry early: we
2489 * should have a usage count of 2 if we're the only user of this
2490 * dentry, and if that is true (possibly after pruning the dcache),
2491 * then we drop the dentry now.
2492 *
2493 * A low-level filesystem can, if it choses, legally
2494 * do a
2495 *
2496 * if (!d_unhashed(dentry))
2497 * return -EBUSY;
2498 *
2499 * if it cannot handle the case of removing a directory
2500 * that is still in use by something else..
2501 */
2502 void dentry_unhash(struct dentry *dentry)
2503 {
2504 shrink_dcache_parent(dentry);
2505 spin_lock(&dentry->d_lock);
2506 if (dentry->d_count == 1)
2507 __d_drop(dentry);
2508 spin_unlock(&dentry->d_lock);
2509 }
2510
2511 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
2512 {
2513 int error = may_delete(dir, dentry, 1);
2514
2515 if (error)
2516 return error;
2517
2518 if (!dir->i_op->rmdir)
2519 return -EPERM;
2520
2521 mutex_lock(&dentry->d_inode->i_mutex);
2522
2523 error = -EBUSY;
2524 if (d_mountpoint(dentry))
2525 goto out;
2526
2527 error = security_inode_rmdir(dir, dentry);
2528 if (error)
2529 goto out;
2530
2531 shrink_dcache_parent(dentry);
2532 error = dir->i_op->rmdir(dir, dentry);
2533 if (error)
2534 goto out;
2535
2536 dentry->d_inode->i_flags |= S_DEAD;
2537 dont_mount(dentry);
2538
2539 out:
2540 mutex_unlock(&dentry->d_inode->i_mutex);
2541 if (!error)
2542 d_delete(dentry);
2543 return error;
2544 }
2545
2546 static long do_rmdir(int dfd, const char __user *pathname)
2547 {
2548 int error = 0;
2549 char * name;
2550 struct dentry *dentry;
2551 struct nameidata nd;
2552
2553 error = user_path_parent(dfd, pathname, &nd, &name);
2554 if (error)
2555 return error;
2556
2557 switch(nd.last_type) {
2558 case LAST_DOTDOT:
2559 error = -ENOTEMPTY;
2560 goto exit1;
2561 case LAST_DOT:
2562 error = -EINVAL;
2563 goto exit1;
2564 case LAST_ROOT:
2565 error = -EBUSY;
2566 goto exit1;
2567 }
2568
2569 nd.flags &= ~LOOKUP_PARENT;
2570
2571 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2572 dentry = lookup_hash(&nd);
2573 error = PTR_ERR(dentry);
2574 if (IS_ERR(dentry))
2575 goto exit2;
2576 if (!dentry->d_inode) {
2577 error = -ENOENT;
2578 goto exit3;
2579 }
2580 error = mnt_want_write(nd.path.mnt);
2581 if (error)
2582 goto exit3;
2583 error = security_path_rmdir(&nd.path, dentry);
2584 if (error)
2585 goto exit4;
2586 error = vfs_rmdir(nd.path.dentry->d_inode, dentry);
2587 exit4:
2588 mnt_drop_write(nd.path.mnt);
2589 exit3:
2590 dput(dentry);
2591 exit2:
2592 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2593 exit1:
2594 path_put(&nd.path);
2595 putname(name);
2596 return error;
2597 }
2598
2599 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
2600 {
2601 return do_rmdir(AT_FDCWD, pathname);
2602 }
2603
2604 int vfs_unlink(struct inode *dir, struct dentry *dentry)
2605 {
2606 int error = may_delete(dir, dentry, 0);
2607
2608 if (error)
2609 return error;
2610
2611 if (!dir->i_op->unlink)
2612 return -EPERM;
2613
2614 mutex_lock(&dentry->d_inode->i_mutex);
2615 if (d_mountpoint(dentry))
2616 error = -EBUSY;
2617 else {
2618 error = security_inode_unlink(dir, dentry);
2619 if (!error) {
2620 error = dir->i_op->unlink(dir, dentry);
2621 if (!error)
2622 dont_mount(dentry);
2623 }
2624 }
2625 mutex_unlock(&dentry->d_inode->i_mutex);
2626
2627 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
2628 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
2629 fsnotify_link_count(dentry->d_inode);
2630 d_delete(dentry);
2631 }
2632
2633 return error;
2634 }
2635
2636 /*
2637 * Make sure that the actual truncation of the file will occur outside its
2638 * directory's i_mutex. Truncate can take a long time if there is a lot of
2639 * writeout happening, and we don't want to prevent access to the directory
2640 * while waiting on the I/O.
2641 */
2642 static long do_unlinkat(int dfd, const char __user *pathname)
2643 {
2644 int error;
2645 char *name;
2646 struct dentry *dentry;
2647 struct nameidata nd;
2648 struct inode *inode = NULL;
2649
2650 error = user_path_parent(dfd, pathname, &nd, &name);
2651 if (error)
2652 return error;
2653
2654 error = -EISDIR;
2655 if (nd.last_type != LAST_NORM)
2656 goto exit1;
2657
2658 nd.flags &= ~LOOKUP_PARENT;
2659
2660 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2661 dentry = lookup_hash(&nd);
2662 error = PTR_ERR(dentry);
2663 if (!IS_ERR(dentry)) {
2664 /* Why not before? Because we want correct error value */
2665 if (nd.last.name[nd.last.len])
2666 goto slashes;
2667 inode = dentry->d_inode;
2668 if (!inode)
2669 goto slashes;
2670 ihold(inode);
2671 error = mnt_want_write(nd.path.mnt);
2672 if (error)
2673 goto exit2;
2674 error = security_path_unlink(&nd.path, dentry);
2675 if (error)
2676 goto exit3;
2677 error = vfs_unlink(nd.path.dentry->d_inode, dentry);
2678 exit3:
2679 mnt_drop_write(nd.path.mnt);
2680 exit2:
2681 dput(dentry);
2682 }
2683 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2684 if (inode)
2685 iput(inode); /* truncate the inode here */
2686 exit1:
2687 path_put(&nd.path);
2688 putname(name);
2689 return error;
2690
2691 slashes:
2692 error = !dentry->d_inode ? -ENOENT :
2693 S_ISDIR(dentry->d_inode->i_mode) ? -EISDIR : -ENOTDIR;
2694 goto exit2;
2695 }
2696
2697 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
2698 {
2699 if ((flag & ~AT_REMOVEDIR) != 0)
2700 return -EINVAL;
2701
2702 if (flag & AT_REMOVEDIR)
2703 return do_rmdir(dfd, pathname);
2704
2705 return do_unlinkat(dfd, pathname);
2706 }
2707
2708 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
2709 {
2710 return do_unlinkat(AT_FDCWD, pathname);
2711 }
2712
2713 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
2714 {
2715 int error = may_create(dir, dentry);
2716
2717 if (error)
2718 return error;
2719
2720 if (!dir->i_op->symlink)
2721 return -EPERM;
2722
2723 error = security_inode_symlink(dir, dentry, oldname);
2724 if (error)
2725 return error;
2726
2727 error = dir->i_op->symlink(dir, dentry, oldname);
2728 if (!error)
2729 fsnotify_create(dir, dentry);
2730 return error;
2731 }
2732
2733 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
2734 int, newdfd, const char __user *, newname)
2735 {
2736 int error;
2737 char *from;
2738 char *to;
2739 struct dentry *dentry;
2740 struct nameidata nd;
2741
2742 from = getname(oldname);
2743 if (IS_ERR(from))
2744 return PTR_ERR(from);
2745
2746 error = user_path_parent(newdfd, newname, &nd, &to);
2747 if (error)
2748 goto out_putname;
2749
2750 dentry = lookup_create(&nd, 0);
2751 error = PTR_ERR(dentry);
2752 if (IS_ERR(dentry))
2753 goto out_unlock;
2754
2755 error = mnt_want_write(nd.path.mnt);
2756 if (error)
2757 goto out_dput;
2758 error = security_path_symlink(&nd.path, dentry, from);
2759 if (error)
2760 goto out_drop_write;
2761 error = vfs_symlink(nd.path.dentry->d_inode, dentry, from);
2762 out_drop_write:
2763 mnt_drop_write(nd.path.mnt);
2764 out_dput:
2765 dput(dentry);
2766 out_unlock:
2767 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2768 path_put(&nd.path);
2769 putname(to);
2770 out_putname:
2771 putname(from);
2772 return error;
2773 }
2774
2775 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
2776 {
2777 return sys_symlinkat(oldname, AT_FDCWD, newname);
2778 }
2779
2780 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2781 {
2782 struct inode *inode = old_dentry->d_inode;
2783 int error;
2784
2785 if (!inode)
2786 return -ENOENT;
2787
2788 error = may_create(dir, new_dentry);
2789 if (error)
2790 return error;
2791
2792 if (dir->i_sb != inode->i_sb)
2793 return -EXDEV;
2794
2795 /*
2796 * A link to an append-only or immutable file cannot be created.
2797 */
2798 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
2799 return -EPERM;
2800 if (!dir->i_op->link)
2801 return -EPERM;
2802 if (S_ISDIR(inode->i_mode))
2803 return -EPERM;
2804
2805 error = security_inode_link(old_dentry, dir, new_dentry);
2806 if (error)
2807 return error;
2808
2809 mutex_lock(&inode->i_mutex);
2810 /* Make sure we don't allow creating hardlink to an unlinked file */
2811 if (inode->i_nlink == 0)
2812 error = -ENOENT;
2813 else
2814 error = dir->i_op->link(old_dentry, dir, new_dentry);
2815 mutex_unlock(&inode->i_mutex);
2816 if (!error)
2817 fsnotify_link(dir, inode, new_dentry);
2818 return error;
2819 }
2820
2821 /*
2822 * Hardlinks are often used in delicate situations. We avoid
2823 * security-related surprises by not following symlinks on the
2824 * newname. --KAB
2825 *
2826 * We don't follow them on the oldname either to be compatible
2827 * with linux 2.0, and to avoid hard-linking to directories
2828 * and other special files. --ADM
2829 */
2830 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
2831 int, newdfd, const char __user *, newname, int, flags)
2832 {
2833 struct dentry *new_dentry;
2834 struct nameidata nd;
2835 struct path old_path;
2836 int how = 0;
2837 int error;
2838 char *to;
2839
2840 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
2841 return -EINVAL;
2842 /*
2843 * To use null names we require CAP_DAC_READ_SEARCH
2844 * This ensures that not everyone will be able to create
2845 * handlink using the passed filedescriptor.
2846 */
2847 if (flags & AT_EMPTY_PATH) {
2848 if (!capable(CAP_DAC_READ_SEARCH))
2849 return -ENOENT;
2850 how = LOOKUP_EMPTY;
2851 }
2852
2853 if (flags & AT_SYMLINK_FOLLOW)
2854 how |= LOOKUP_FOLLOW;
2855
2856 error = user_path_at(olddfd, oldname, how, &old_path);
2857 if (error)
2858 return error;
2859
2860 error = user_path_parent(newdfd, newname, &nd, &to);
2861 if (error)
2862 goto out;
2863 error = -EXDEV;
2864 if (old_path.mnt != nd.path.mnt)
2865 goto out_release;
2866 new_dentry = lookup_create(&nd, 0);
2867 error = PTR_ERR(new_dentry);
2868 if (IS_ERR(new_dentry))
2869 goto out_unlock;
2870 error = mnt_want_write(nd.path.mnt);
2871 if (error)
2872 goto out_dput;
2873 error = security_path_link(old_path.dentry, &nd.path, new_dentry);
2874 if (error)
2875 goto out_drop_write;
2876 error = vfs_link(old_path.dentry, nd.path.dentry->d_inode, new_dentry);
2877 out_drop_write:
2878 mnt_drop_write(nd.path.mnt);
2879 out_dput:
2880 dput(new_dentry);
2881 out_unlock:
2882 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2883 out_release:
2884 path_put(&nd.path);
2885 putname(to);
2886 out:
2887 path_put(&old_path);
2888
2889 return error;
2890 }
2891
2892 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
2893 {
2894 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
2895 }
2896
2897 /*
2898 * The worst of all namespace operations - renaming directory. "Perverted"
2899 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
2900 * Problems:
2901 * a) we can get into loop creation. Check is done in is_subdir().
2902 * b) race potential - two innocent renames can create a loop together.
2903 * That's where 4.4 screws up. Current fix: serialization on
2904 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
2905 * story.
2906 * c) we have to lock _three_ objects - parents and victim (if it exists).
2907 * And that - after we got ->i_mutex on parents (until then we don't know
2908 * whether the target exists). Solution: try to be smart with locking
2909 * order for inodes. We rely on the fact that tree topology may change
2910 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
2911 * move will be locked. Thus we can rank directories by the tree
2912 * (ancestors first) and rank all non-directories after them.
2913 * That works since everybody except rename does "lock parent, lookup,
2914 * lock child" and rename is under ->s_vfs_rename_mutex.
2915 * HOWEVER, it relies on the assumption that any object with ->lookup()
2916 * has no more than 1 dentry. If "hybrid" objects will ever appear,
2917 * we'd better make sure that there's no link(2) for them.
2918 * d) conversion from fhandle to dentry may come in the wrong moment - when
2919 * we are removing the target. Solution: we will have to grab ->i_mutex
2920 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
2921 * ->i_mutex on parents, which works but leads to some truly excessive
2922 * locking].
2923 */
2924 static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry,
2925 struct inode *new_dir, struct dentry *new_dentry)
2926 {
2927 int error = 0;
2928 struct inode *target = new_dentry->d_inode;
2929
2930 /*
2931 * If we are going to change the parent - check write permissions,
2932 * we'll need to flip '..'.
2933 */
2934 if (new_dir != old_dir) {
2935 error = inode_permission(old_dentry->d_inode, MAY_WRITE);
2936 if (error)
2937 return error;
2938 }
2939
2940 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
2941 if (error)
2942 return error;
2943
2944 if (target)
2945 mutex_lock(&target->i_mutex);
2946
2947 error = -EBUSY;
2948 if (d_mountpoint(old_dentry) || d_mountpoint(new_dentry))
2949 goto out;
2950
2951 if (target)
2952 shrink_dcache_parent(new_dentry);
2953 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
2954 if (error)
2955 goto out;
2956
2957 if (target) {
2958 target->i_flags |= S_DEAD;
2959 dont_mount(new_dentry);
2960 }
2961 out:
2962 if (target)
2963 mutex_unlock(&target->i_mutex);
2964 if (!error)
2965 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
2966 d_move(old_dentry,new_dentry);
2967 return error;
2968 }
2969
2970 static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry,
2971 struct inode *new_dir, struct dentry *new_dentry)
2972 {
2973 struct inode *target = new_dentry->d_inode;
2974 int error;
2975
2976 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
2977 if (error)
2978 return error;
2979
2980 dget(new_dentry);
2981 if (target)
2982 mutex_lock(&target->i_mutex);
2983
2984 error = -EBUSY;
2985 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
2986 goto out;
2987
2988 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
2989 if (error)
2990 goto out;
2991
2992 if (target)
2993 dont_mount(new_dentry);
2994 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
2995 d_move(old_dentry, new_dentry);
2996 out:
2997 if (target)
2998 mutex_unlock(&target->i_mutex);
2999 dput(new_dentry);
3000 return error;
3001 }
3002
3003 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
3004 struct inode *new_dir, struct dentry *new_dentry)
3005 {
3006 int error;
3007 int is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
3008 const unsigned char *old_name;
3009
3010 if (old_dentry->d_inode == new_dentry->d_inode)
3011 return 0;
3012
3013 error = may_delete(old_dir, old_dentry, is_dir);
3014 if (error)
3015 return error;
3016
3017 if (!new_dentry->d_inode)
3018 error = may_create(new_dir, new_dentry);
3019 else
3020 error = may_delete(new_dir, new_dentry, is_dir);
3021 if (error)
3022 return error;
3023
3024 if (!old_dir->i_op->rename)
3025 return -EPERM;
3026
3027 old_name = fsnotify_oldname_init(old_dentry->d_name.name);
3028
3029 if (is_dir)
3030 error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry);
3031 else
3032 error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry);
3033 if (!error)
3034 fsnotify_move(old_dir, new_dir, old_name, is_dir,
3035 new_dentry->d_inode, old_dentry);
3036 fsnotify_oldname_free(old_name);
3037
3038 return error;
3039 }
3040
3041 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
3042 int, newdfd, const char __user *, newname)
3043 {
3044 struct dentry *old_dir, *new_dir;
3045 struct dentry *old_dentry, *new_dentry;
3046 struct dentry *trap;
3047 struct nameidata oldnd, newnd;
3048 char *from;
3049 char *to;
3050 int error;
3051
3052 error = user_path_parent(olddfd, oldname, &oldnd, &from);
3053 if (error)
3054 goto exit;
3055
3056 error = user_path_parent(newdfd, newname, &newnd, &to);
3057 if (error)
3058 goto exit1;
3059
3060 error = -EXDEV;
3061 if (oldnd.path.mnt != newnd.path.mnt)
3062 goto exit2;
3063
3064 old_dir = oldnd.path.dentry;
3065 error = -EBUSY;
3066 if (oldnd.last_type != LAST_NORM)
3067 goto exit2;
3068
3069 new_dir = newnd.path.dentry;
3070 if (newnd.last_type != LAST_NORM)
3071 goto exit2;
3072
3073 oldnd.flags &= ~LOOKUP_PARENT;
3074 newnd.flags &= ~LOOKUP_PARENT;
3075 newnd.flags |= LOOKUP_RENAME_TARGET;
3076
3077 trap = lock_rename(new_dir, old_dir);
3078
3079 old_dentry = lookup_hash(&oldnd);
3080 error = PTR_ERR(old_dentry);
3081 if (IS_ERR(old_dentry))
3082 goto exit3;
3083 /* source must exist */
3084 error = -ENOENT;
3085 if (!old_dentry->d_inode)
3086 goto exit4;
3087 /* unless the source is a directory trailing slashes give -ENOTDIR */
3088 if (!S_ISDIR(old_dentry->d_inode->i_mode)) {
3089 error = -ENOTDIR;
3090 if (oldnd.last.name[oldnd.last.len])
3091 goto exit4;
3092 if (newnd.last.name[newnd.last.len])
3093 goto exit4;
3094 }
3095 /* source should not be ancestor of target */
3096 error = -EINVAL;
3097 if (old_dentry == trap)
3098 goto exit4;
3099 new_dentry = lookup_hash(&newnd);
3100 error = PTR_ERR(new_dentry);
3101 if (IS_ERR(new_dentry))
3102 goto exit4;
3103 /* target should not be an ancestor of source */
3104 error = -ENOTEMPTY;
3105 if (new_dentry == trap)
3106 goto exit5;
3107
3108 error = mnt_want_write(oldnd.path.mnt);
3109 if (error)
3110 goto exit5;
3111 error = security_path_rename(&oldnd.path, old_dentry,
3112 &newnd.path, new_dentry);
3113 if (error)
3114 goto exit6;
3115 error = vfs_rename(old_dir->d_inode, old_dentry,
3116 new_dir->d_inode, new_dentry);
3117 exit6:
3118 mnt_drop_write(oldnd.path.mnt);
3119 exit5:
3120 dput(new_dentry);
3121 exit4:
3122 dput(old_dentry);
3123 exit3:
3124 unlock_rename(new_dir, old_dir);
3125 exit2:
3126 path_put(&newnd.path);
3127 putname(to);
3128 exit1:
3129 path_put(&oldnd.path);
3130 putname(from);
3131 exit:
3132 return error;
3133 }
3134
3135 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
3136 {
3137 return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname);
3138 }
3139
3140 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link)
3141 {
3142 int len;
3143
3144 len = PTR_ERR(link);
3145 if (IS_ERR(link))
3146 goto out;
3147
3148 len = strlen(link);
3149 if (len > (unsigned) buflen)
3150 len = buflen;
3151 if (copy_to_user(buffer, link, len))
3152 len = -EFAULT;
3153 out:
3154 return len;
3155 }
3156
3157 /*
3158 * A helper for ->readlink(). This should be used *ONLY* for symlinks that
3159 * have ->follow_link() touching nd only in nd_set_link(). Using (or not
3160 * using) it for any given inode is up to filesystem.
3161 */
3162 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
3163 {
3164 struct nameidata nd;
3165 void *cookie;
3166 int res;
3167
3168 nd.depth = 0;
3169 cookie = dentry->d_inode->i_op->follow_link(dentry, &nd);
3170 if (IS_ERR(cookie))
3171 return PTR_ERR(cookie);
3172
3173 res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd));
3174 if (dentry->d_inode->i_op->put_link)
3175 dentry->d_inode->i_op->put_link(dentry, &nd, cookie);
3176 return res;
3177 }
3178
3179 int vfs_follow_link(struct nameidata *nd, const char *link)
3180 {
3181 return __vfs_follow_link(nd, link);
3182 }
3183
3184 /* get the link contents into pagecache */
3185 static char *page_getlink(struct dentry * dentry, struct page **ppage)
3186 {
3187 char *kaddr;
3188 struct page *page;
3189 struct address_space *mapping = dentry->d_inode->i_mapping;
3190 page = read_mapping_page(mapping, 0, NULL);
3191 if (IS_ERR(page))
3192 return (char*)page;
3193 *ppage = page;
3194 kaddr = kmap(page);
3195 nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
3196 return kaddr;
3197 }
3198
3199 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
3200 {
3201 struct page *page = NULL;
3202 char *s = page_getlink(dentry, &page);
3203 int res = vfs_readlink(dentry,buffer,buflen,s);
3204 if (page) {
3205 kunmap(page);
3206 page_cache_release(page);
3207 }
3208 return res;
3209 }
3210
3211 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd)
3212 {
3213 struct page *page = NULL;
3214 nd_set_link(nd, page_getlink(dentry, &page));
3215 return page;
3216 }
3217
3218 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
3219 {
3220 struct page *page = cookie;
3221
3222 if (page) {
3223 kunmap(page);
3224 page_cache_release(page);
3225 }
3226 }
3227
3228 /*
3229 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
3230 */
3231 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
3232 {
3233 struct address_space *mapping = inode->i_mapping;
3234 struct page *page;
3235 void *fsdata;
3236 int err;
3237 char *kaddr;
3238 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
3239 if (nofs)
3240 flags |= AOP_FLAG_NOFS;
3241
3242 retry:
3243 err = pagecache_write_begin(NULL, mapping, 0, len-1,
3244 flags, &page, &fsdata);
3245 if (err)
3246 goto fail;
3247
3248 kaddr = kmap_atomic(page, KM_USER0);
3249 memcpy(kaddr, symname, len-1);
3250 kunmap_atomic(kaddr, KM_USER0);
3251
3252 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
3253 page, fsdata);
3254 if (err < 0)
3255 goto fail;
3256 if (err < len-1)
3257 goto retry;
3258
3259 mark_inode_dirty(inode);
3260 return 0;
3261 fail:
3262 return err;
3263 }
3264
3265 int page_symlink(struct inode *inode, const char *symname, int len)
3266 {
3267 return __page_symlink(inode, symname, len,
3268 !(mapping_gfp_mask(inode->i_mapping) & __GFP_FS));
3269 }
3270
3271 const struct inode_operations page_symlink_inode_operations = {
3272 .readlink = generic_readlink,
3273 .follow_link = page_follow_link_light,
3274 .put_link = page_put_link,
3275 };
3276
3277 EXPORT_SYMBOL(user_path_at);
3278 EXPORT_SYMBOL(follow_down_one);
3279 EXPORT_SYMBOL(follow_down);
3280 EXPORT_SYMBOL(follow_up);
3281 EXPORT_SYMBOL(get_write_access); /* binfmt_aout */
3282 EXPORT_SYMBOL(getname);
3283 EXPORT_SYMBOL(lock_rename);
3284 EXPORT_SYMBOL(lookup_one_len);
3285 EXPORT_SYMBOL(page_follow_link_light);
3286 EXPORT_SYMBOL(page_put_link);
3287 EXPORT_SYMBOL(page_readlink);
3288 EXPORT_SYMBOL(__page_symlink);
3289 EXPORT_SYMBOL(page_symlink);
3290 EXPORT_SYMBOL(page_symlink_inode_operations);
3291 EXPORT_SYMBOL(kern_path_parent);
3292 EXPORT_SYMBOL(kern_path);
3293 EXPORT_SYMBOL(vfs_path_lookup);
3294 EXPORT_SYMBOL(inode_permission);
3295 EXPORT_SYMBOL(unlock_rename);
3296 EXPORT_SYMBOL(vfs_create);
3297 EXPORT_SYMBOL(vfs_follow_link);
3298 EXPORT_SYMBOL(vfs_link);
3299 EXPORT_SYMBOL(vfs_mkdir);
3300 EXPORT_SYMBOL(vfs_mknod);
3301 EXPORT_SYMBOL(generic_permission);
3302 EXPORT_SYMBOL(vfs_readlink);
3303 EXPORT_SYMBOL(vfs_rename);
3304 EXPORT_SYMBOL(vfs_rmdir);
3305 EXPORT_SYMBOL(vfs_symlink);
3306 EXPORT_SYMBOL(vfs_unlink);
3307 EXPORT_SYMBOL(dentry_unhash);
3308 EXPORT_SYMBOL(generic_readlink);
This page took 0.116881 seconds and 6 git commands to generate.