link_path_walk: cleanup - turn goto start; into continue;
[deliverable/linux.git] / fs / namei.c
1 /*
2 * linux/fs/namei.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * Some corrections by tytso.
9 */
10
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12 * lookup logic.
13 */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15 */
16
17 #include <linux/init.h>
18 #include <linux/export.h>
19 #include <linux/kernel.h>
20 #include <linux/slab.h>
21 #include <linux/fs.h>
22 #include <linux/namei.h>
23 #include <linux/pagemap.h>
24 #include <linux/fsnotify.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/ima.h>
28 #include <linux/syscalls.h>
29 #include <linux/mount.h>
30 #include <linux/audit.h>
31 #include <linux/capability.h>
32 #include <linux/file.h>
33 #include <linux/fcntl.h>
34 #include <linux/device_cgroup.h>
35 #include <linux/fs_struct.h>
36 #include <linux/posix_acl.h>
37 #include <linux/hash.h>
38 #include <asm/uaccess.h>
39
40 #include "internal.h"
41 #include "mount.h"
42
43 /* [Feb-1997 T. Schoebel-Theuer]
44 * Fundamental changes in the pathname lookup mechanisms (namei)
45 * were necessary because of omirr. The reason is that omirr needs
46 * to know the _real_ pathname, not the user-supplied one, in case
47 * of symlinks (and also when transname replacements occur).
48 *
49 * The new code replaces the old recursive symlink resolution with
50 * an iterative one (in case of non-nested symlink chains). It does
51 * this with calls to <fs>_follow_link().
52 * As a side effect, dir_namei(), _namei() and follow_link() are now
53 * replaced with a single function lookup_dentry() that can handle all
54 * the special cases of the former code.
55 *
56 * With the new dcache, the pathname is stored at each inode, at least as
57 * long as the refcount of the inode is positive. As a side effect, the
58 * size of the dcache depends on the inode cache and thus is dynamic.
59 *
60 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
61 * resolution to correspond with current state of the code.
62 *
63 * Note that the symlink resolution is not *completely* iterative.
64 * There is still a significant amount of tail- and mid- recursion in
65 * the algorithm. Also, note that <fs>_readlink() is not used in
66 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
67 * may return different results than <fs>_follow_link(). Many virtual
68 * filesystems (including /proc) exhibit this behavior.
69 */
70
71 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
72 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
73 * and the name already exists in form of a symlink, try to create the new
74 * name indicated by the symlink. The old code always complained that the
75 * name already exists, due to not following the symlink even if its target
76 * is nonexistent. The new semantics affects also mknod() and link() when
77 * the name is a symlink pointing to a non-existent name.
78 *
79 * I don't know which semantics is the right one, since I have no access
80 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
81 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
82 * "old" one. Personally, I think the new semantics is much more logical.
83 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
84 * file does succeed in both HP-UX and SunOs, but not in Solaris
85 * and in the old Linux semantics.
86 */
87
88 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
89 * semantics. See the comments in "open_namei" and "do_link" below.
90 *
91 * [10-Sep-98 Alan Modra] Another symlink change.
92 */
93
94 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
95 * inside the path - always follow.
96 * in the last component in creation/removal/renaming - never follow.
97 * if LOOKUP_FOLLOW passed - follow.
98 * if the pathname has trailing slashes - follow.
99 * otherwise - don't follow.
100 * (applied in that order).
101 *
102 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
103 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
104 * During the 2.4 we need to fix the userland stuff depending on it -
105 * hopefully we will be able to get rid of that wart in 2.5. So far only
106 * XEmacs seems to be relying on it...
107 */
108 /*
109 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
110 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
111 * any extra contention...
112 */
113
114 /* In order to reduce some races, while at the same time doing additional
115 * checking and hopefully speeding things up, we copy filenames to the
116 * kernel data space before using them..
117 *
118 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
119 * PATH_MAX includes the nul terminator --RR.
120 */
121
122 #define EMBEDDED_NAME_MAX (PATH_MAX - offsetof(struct filename, iname))
123
124 struct filename *
125 getname_flags(const char __user *filename, int flags, int *empty)
126 {
127 struct filename *result;
128 char *kname;
129 int len;
130
131 result = audit_reusename(filename);
132 if (result)
133 return result;
134
135 result = __getname();
136 if (unlikely(!result))
137 return ERR_PTR(-ENOMEM);
138
139 /*
140 * First, try to embed the struct filename inside the names_cache
141 * allocation
142 */
143 kname = (char *)result->iname;
144 result->name = kname;
145
146 len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX);
147 if (unlikely(len < 0)) {
148 __putname(result);
149 return ERR_PTR(len);
150 }
151
152 /*
153 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
154 * separate struct filename so we can dedicate the entire
155 * names_cache allocation for the pathname, and re-do the copy from
156 * userland.
157 */
158 if (unlikely(len == EMBEDDED_NAME_MAX)) {
159 const size_t size = offsetof(struct filename, iname[1]);
160 kname = (char *)result;
161
162 /*
163 * size is chosen that way we to guarantee that
164 * result->iname[0] is within the same object and that
165 * kname can't be equal to result->iname, no matter what.
166 */
167 result = kzalloc(size, GFP_KERNEL);
168 if (unlikely(!result)) {
169 __putname(kname);
170 return ERR_PTR(-ENOMEM);
171 }
172 result->name = kname;
173 len = strncpy_from_user(kname, filename, PATH_MAX);
174 if (unlikely(len < 0)) {
175 __putname(kname);
176 kfree(result);
177 return ERR_PTR(len);
178 }
179 if (unlikely(len == PATH_MAX)) {
180 __putname(kname);
181 kfree(result);
182 return ERR_PTR(-ENAMETOOLONG);
183 }
184 }
185
186 result->refcnt = 1;
187 /* The empty path is special. */
188 if (unlikely(!len)) {
189 if (empty)
190 *empty = 1;
191 if (!(flags & LOOKUP_EMPTY)) {
192 putname(result);
193 return ERR_PTR(-ENOENT);
194 }
195 }
196
197 result->uptr = filename;
198 result->aname = NULL;
199 audit_getname(result);
200 return result;
201 }
202
203 struct filename *
204 getname(const char __user * filename)
205 {
206 return getname_flags(filename, 0, NULL);
207 }
208
209 struct filename *
210 getname_kernel(const char * filename)
211 {
212 struct filename *result;
213 int len = strlen(filename) + 1;
214
215 result = __getname();
216 if (unlikely(!result))
217 return ERR_PTR(-ENOMEM);
218
219 if (len <= EMBEDDED_NAME_MAX) {
220 result->name = (char *)result->iname;
221 } else if (len <= PATH_MAX) {
222 struct filename *tmp;
223
224 tmp = kmalloc(sizeof(*tmp), GFP_KERNEL);
225 if (unlikely(!tmp)) {
226 __putname(result);
227 return ERR_PTR(-ENOMEM);
228 }
229 tmp->name = (char *)result;
230 result = tmp;
231 } else {
232 __putname(result);
233 return ERR_PTR(-ENAMETOOLONG);
234 }
235 memcpy((char *)result->name, filename, len);
236 result->uptr = NULL;
237 result->aname = NULL;
238 result->refcnt = 1;
239 audit_getname(result);
240
241 return result;
242 }
243
244 void putname(struct filename *name)
245 {
246 BUG_ON(name->refcnt <= 0);
247
248 if (--name->refcnt > 0)
249 return;
250
251 if (name->name != name->iname) {
252 __putname(name->name);
253 kfree(name);
254 } else
255 __putname(name);
256 }
257
258 static int check_acl(struct inode *inode, int mask)
259 {
260 #ifdef CONFIG_FS_POSIX_ACL
261 struct posix_acl *acl;
262
263 if (mask & MAY_NOT_BLOCK) {
264 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
265 if (!acl)
266 return -EAGAIN;
267 /* no ->get_acl() calls in RCU mode... */
268 if (acl == ACL_NOT_CACHED)
269 return -ECHILD;
270 return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
271 }
272
273 acl = get_acl(inode, ACL_TYPE_ACCESS);
274 if (IS_ERR(acl))
275 return PTR_ERR(acl);
276 if (acl) {
277 int error = posix_acl_permission(inode, acl, mask);
278 posix_acl_release(acl);
279 return error;
280 }
281 #endif
282
283 return -EAGAIN;
284 }
285
286 /*
287 * This does the basic permission checking
288 */
289 static int acl_permission_check(struct inode *inode, int mask)
290 {
291 unsigned int mode = inode->i_mode;
292
293 if (likely(uid_eq(current_fsuid(), inode->i_uid)))
294 mode >>= 6;
295 else {
296 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
297 int error = check_acl(inode, mask);
298 if (error != -EAGAIN)
299 return error;
300 }
301
302 if (in_group_p(inode->i_gid))
303 mode >>= 3;
304 }
305
306 /*
307 * If the DACs are ok we don't need any capability check.
308 */
309 if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
310 return 0;
311 return -EACCES;
312 }
313
314 /**
315 * generic_permission - check for access rights on a Posix-like filesystem
316 * @inode: inode to check access rights for
317 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
318 *
319 * Used to check for read/write/execute permissions on a file.
320 * We use "fsuid" for this, letting us set arbitrary permissions
321 * for filesystem access without changing the "normal" uids which
322 * are used for other things.
323 *
324 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
325 * request cannot be satisfied (eg. requires blocking or too much complexity).
326 * It would then be called again in ref-walk mode.
327 */
328 int generic_permission(struct inode *inode, int mask)
329 {
330 int ret;
331
332 /*
333 * Do the basic permission checks.
334 */
335 ret = acl_permission_check(inode, mask);
336 if (ret != -EACCES)
337 return ret;
338
339 if (S_ISDIR(inode->i_mode)) {
340 /* DACs are overridable for directories */
341 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
342 return 0;
343 if (!(mask & MAY_WRITE))
344 if (capable_wrt_inode_uidgid(inode,
345 CAP_DAC_READ_SEARCH))
346 return 0;
347 return -EACCES;
348 }
349 /*
350 * Read/write DACs are always overridable.
351 * Executable DACs are overridable when there is
352 * at least one exec bit set.
353 */
354 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
355 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
356 return 0;
357
358 /*
359 * Searching includes executable on directories, else just read.
360 */
361 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
362 if (mask == MAY_READ)
363 if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH))
364 return 0;
365
366 return -EACCES;
367 }
368 EXPORT_SYMBOL(generic_permission);
369
370 /*
371 * We _really_ want to just do "generic_permission()" without
372 * even looking at the inode->i_op values. So we keep a cache
373 * flag in inode->i_opflags, that says "this has not special
374 * permission function, use the fast case".
375 */
376 static inline int do_inode_permission(struct inode *inode, int mask)
377 {
378 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
379 if (likely(inode->i_op->permission))
380 return inode->i_op->permission(inode, mask);
381
382 /* This gets set once for the inode lifetime */
383 spin_lock(&inode->i_lock);
384 inode->i_opflags |= IOP_FASTPERM;
385 spin_unlock(&inode->i_lock);
386 }
387 return generic_permission(inode, mask);
388 }
389
390 /**
391 * __inode_permission - Check for access rights to a given inode
392 * @inode: Inode to check permission on
393 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
394 *
395 * Check for read/write/execute permissions on an inode.
396 *
397 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
398 *
399 * This does not check for a read-only file system. You probably want
400 * inode_permission().
401 */
402 int __inode_permission(struct inode *inode, int mask)
403 {
404 int retval;
405
406 if (unlikely(mask & MAY_WRITE)) {
407 /*
408 * Nobody gets write access to an immutable file.
409 */
410 if (IS_IMMUTABLE(inode))
411 return -EACCES;
412 }
413
414 retval = do_inode_permission(inode, mask);
415 if (retval)
416 return retval;
417
418 retval = devcgroup_inode_permission(inode, mask);
419 if (retval)
420 return retval;
421
422 return security_inode_permission(inode, mask);
423 }
424 EXPORT_SYMBOL(__inode_permission);
425
426 /**
427 * sb_permission - Check superblock-level permissions
428 * @sb: Superblock of inode to check permission on
429 * @inode: Inode to check permission on
430 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
431 *
432 * Separate out file-system wide checks from inode-specific permission checks.
433 */
434 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
435 {
436 if (unlikely(mask & MAY_WRITE)) {
437 umode_t mode = inode->i_mode;
438
439 /* Nobody gets write access to a read-only fs. */
440 if ((sb->s_flags & MS_RDONLY) &&
441 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
442 return -EROFS;
443 }
444 return 0;
445 }
446
447 /**
448 * inode_permission - Check for access rights to a given inode
449 * @inode: Inode to check permission on
450 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
451 *
452 * Check for read/write/execute permissions on an inode. We use fs[ug]id for
453 * this, letting us set arbitrary permissions for filesystem access without
454 * changing the "normal" UIDs which are used for other things.
455 *
456 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
457 */
458 int inode_permission(struct inode *inode, int mask)
459 {
460 int retval;
461
462 retval = sb_permission(inode->i_sb, inode, mask);
463 if (retval)
464 return retval;
465 return __inode_permission(inode, mask);
466 }
467 EXPORT_SYMBOL(inode_permission);
468
469 /**
470 * path_get - get a reference to a path
471 * @path: path to get the reference to
472 *
473 * Given a path increment the reference count to the dentry and the vfsmount.
474 */
475 void path_get(const struct path *path)
476 {
477 mntget(path->mnt);
478 dget(path->dentry);
479 }
480 EXPORT_SYMBOL(path_get);
481
482 /**
483 * path_put - put a reference to a path
484 * @path: path to put the reference to
485 *
486 * Given a path decrement the reference count to the dentry and the vfsmount.
487 */
488 void path_put(const struct path *path)
489 {
490 dput(path->dentry);
491 mntput(path->mnt);
492 }
493 EXPORT_SYMBOL(path_put);
494
495 struct nameidata {
496 struct path path;
497 union {
498 struct qstr last;
499 struct path link;
500 };
501 struct path root;
502 struct inode *inode; /* path.dentry.d_inode */
503 unsigned int flags;
504 unsigned seq, m_seq;
505 int last_type;
506 unsigned depth;
507 struct file *base;
508 };
509
510 /*
511 * Path walking has 2 modes, rcu-walk and ref-walk (see
512 * Documentation/filesystems/path-lookup.txt). In situations when we can't
513 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
514 * normal reference counts on dentries and vfsmounts to transition to rcu-walk
515 * mode. Refcounts are grabbed at the last known good point before rcu-walk
516 * got stuck, so ref-walk may continue from there. If this is not successful
517 * (eg. a seqcount has changed), then failure is returned and it's up to caller
518 * to restart the path walk from the beginning in ref-walk mode.
519 */
520
521 /**
522 * unlazy_walk - try to switch to ref-walk mode.
523 * @nd: nameidata pathwalk data
524 * @dentry: child of nd->path.dentry or NULL
525 * Returns: 0 on success, -ECHILD on failure
526 *
527 * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry
528 * for ref-walk mode. @dentry must be a path found by a do_lookup call on
529 * @nd or NULL. Must be called from rcu-walk context.
530 */
531 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry)
532 {
533 struct fs_struct *fs = current->fs;
534 struct dentry *parent = nd->path.dentry;
535
536 BUG_ON(!(nd->flags & LOOKUP_RCU));
537
538 /*
539 * After legitimizing the bastards, terminate_walk()
540 * will do the right thing for non-RCU mode, and all our
541 * subsequent exit cases should rcu_read_unlock()
542 * before returning. Do vfsmount first; if dentry
543 * can't be legitimized, just set nd->path.dentry to NULL
544 * and rely on dput(NULL) being a no-op.
545 */
546 if (!legitimize_mnt(nd->path.mnt, nd->m_seq))
547 return -ECHILD;
548 nd->flags &= ~LOOKUP_RCU;
549
550 if (!lockref_get_not_dead(&parent->d_lockref)) {
551 nd->path.dentry = NULL;
552 goto out;
553 }
554
555 /*
556 * For a negative lookup, the lookup sequence point is the parents
557 * sequence point, and it only needs to revalidate the parent dentry.
558 *
559 * For a positive lookup, we need to move both the parent and the
560 * dentry from the RCU domain to be properly refcounted. And the
561 * sequence number in the dentry validates *both* dentry counters,
562 * since we checked the sequence number of the parent after we got
563 * the child sequence number. So we know the parent must still
564 * be valid if the child sequence number is still valid.
565 */
566 if (!dentry) {
567 if (read_seqcount_retry(&parent->d_seq, nd->seq))
568 goto out;
569 BUG_ON(nd->inode != parent->d_inode);
570 } else {
571 if (!lockref_get_not_dead(&dentry->d_lockref))
572 goto out;
573 if (read_seqcount_retry(&dentry->d_seq, nd->seq))
574 goto drop_dentry;
575 }
576
577 /*
578 * Sequence counts matched. Now make sure that the root is
579 * still valid and get it if required.
580 */
581 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
582 spin_lock(&fs->lock);
583 if (nd->root.mnt != fs->root.mnt || nd->root.dentry != fs->root.dentry)
584 goto unlock_and_drop_dentry;
585 path_get(&nd->root);
586 spin_unlock(&fs->lock);
587 }
588
589 rcu_read_unlock();
590 return 0;
591
592 unlock_and_drop_dentry:
593 spin_unlock(&fs->lock);
594 drop_dentry:
595 rcu_read_unlock();
596 dput(dentry);
597 goto drop_root_mnt;
598 out:
599 rcu_read_unlock();
600 drop_root_mnt:
601 if (!(nd->flags & LOOKUP_ROOT))
602 nd->root.mnt = NULL;
603 return -ECHILD;
604 }
605
606 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
607 {
608 return dentry->d_op->d_revalidate(dentry, flags);
609 }
610
611 /**
612 * complete_walk - successful completion of path walk
613 * @nd: pointer nameidata
614 *
615 * If we had been in RCU mode, drop out of it and legitimize nd->path.
616 * Revalidate the final result, unless we'd already done that during
617 * the path walk or the filesystem doesn't ask for it. Return 0 on
618 * success, -error on failure. In case of failure caller does not
619 * need to drop nd->path.
620 */
621 static int complete_walk(struct nameidata *nd)
622 {
623 struct dentry *dentry = nd->path.dentry;
624 int status;
625
626 if (nd->flags & LOOKUP_RCU) {
627 nd->flags &= ~LOOKUP_RCU;
628 if (!(nd->flags & LOOKUP_ROOT))
629 nd->root.mnt = NULL;
630
631 if (!legitimize_mnt(nd->path.mnt, nd->m_seq)) {
632 rcu_read_unlock();
633 return -ECHILD;
634 }
635 if (unlikely(!lockref_get_not_dead(&dentry->d_lockref))) {
636 rcu_read_unlock();
637 mntput(nd->path.mnt);
638 return -ECHILD;
639 }
640 if (read_seqcount_retry(&dentry->d_seq, nd->seq)) {
641 rcu_read_unlock();
642 dput(dentry);
643 mntput(nd->path.mnt);
644 return -ECHILD;
645 }
646 rcu_read_unlock();
647 }
648
649 if (likely(!(nd->flags & LOOKUP_JUMPED)))
650 return 0;
651
652 if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
653 return 0;
654
655 status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
656 if (status > 0)
657 return 0;
658
659 if (!status)
660 status = -ESTALE;
661
662 path_put(&nd->path);
663 return status;
664 }
665
666 static __always_inline void set_root(struct nameidata *nd)
667 {
668 get_fs_root(current->fs, &nd->root);
669 }
670
671 static __always_inline unsigned set_root_rcu(struct nameidata *nd)
672 {
673 struct fs_struct *fs = current->fs;
674 unsigned seq, res;
675
676 do {
677 seq = read_seqcount_begin(&fs->seq);
678 nd->root = fs->root;
679 res = __read_seqcount_begin(&nd->root.dentry->d_seq);
680 } while (read_seqcount_retry(&fs->seq, seq));
681 return res;
682 }
683
684 static void path_put_conditional(struct path *path, struct nameidata *nd)
685 {
686 dput(path->dentry);
687 if (path->mnt != nd->path.mnt)
688 mntput(path->mnt);
689 }
690
691 static inline void path_to_nameidata(const struct path *path,
692 struct nameidata *nd)
693 {
694 if (!(nd->flags & LOOKUP_RCU)) {
695 dput(nd->path.dentry);
696 if (nd->path.mnt != path->mnt)
697 mntput(nd->path.mnt);
698 }
699 nd->path.mnt = path->mnt;
700 nd->path.dentry = path->dentry;
701 }
702
703 /*
704 * Helper to directly jump to a known parsed path from ->follow_link,
705 * caller must have taken a reference to path beforehand.
706 */
707 void nd_jump_link(struct nameidata *nd, struct path *path)
708 {
709 path_put(&nd->path);
710
711 nd->path = *path;
712 nd->inode = nd->path.dentry->d_inode;
713 nd->flags |= LOOKUP_JUMPED;
714 }
715
716 static inline void put_link(struct nameidata *nd, struct path *link, void *cookie)
717 {
718 struct inode *inode = link->dentry->d_inode;
719 if (cookie && inode->i_op->put_link)
720 inode->i_op->put_link(link->dentry, cookie);
721 path_put(link);
722 }
723
724 int sysctl_protected_symlinks __read_mostly = 0;
725 int sysctl_protected_hardlinks __read_mostly = 0;
726
727 /**
728 * may_follow_link - Check symlink following for unsafe situations
729 * @link: The path of the symlink
730 * @nd: nameidata pathwalk data
731 *
732 * In the case of the sysctl_protected_symlinks sysctl being enabled,
733 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
734 * in a sticky world-writable directory. This is to protect privileged
735 * processes from failing races against path names that may change out
736 * from under them by way of other users creating malicious symlinks.
737 * It will permit symlinks to be followed only when outside a sticky
738 * world-writable directory, or when the uid of the symlink and follower
739 * match, or when the directory owner matches the symlink's owner.
740 *
741 * Returns 0 if following the symlink is allowed, -ve on error.
742 */
743 static inline int may_follow_link(struct path *link, struct nameidata *nd)
744 {
745 const struct inode *inode;
746 const struct inode *parent;
747
748 if (!sysctl_protected_symlinks)
749 return 0;
750
751 /* Allowed if owner and follower match. */
752 inode = link->dentry->d_inode;
753 if (uid_eq(current_cred()->fsuid, inode->i_uid))
754 return 0;
755
756 /* Allowed if parent directory not sticky and world-writable. */
757 parent = nd->path.dentry->d_inode;
758 if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
759 return 0;
760
761 /* Allowed if parent directory and link owner match. */
762 if (uid_eq(parent->i_uid, inode->i_uid))
763 return 0;
764
765 audit_log_link_denied("follow_link", link);
766 path_put_conditional(link, nd);
767 path_put(&nd->path);
768 return -EACCES;
769 }
770
771 /**
772 * safe_hardlink_source - Check for safe hardlink conditions
773 * @inode: the source inode to hardlink from
774 *
775 * Return false if at least one of the following conditions:
776 * - inode is not a regular file
777 * - inode is setuid
778 * - inode is setgid and group-exec
779 * - access failure for read and write
780 *
781 * Otherwise returns true.
782 */
783 static bool safe_hardlink_source(struct inode *inode)
784 {
785 umode_t mode = inode->i_mode;
786
787 /* Special files should not get pinned to the filesystem. */
788 if (!S_ISREG(mode))
789 return false;
790
791 /* Setuid files should not get pinned to the filesystem. */
792 if (mode & S_ISUID)
793 return false;
794
795 /* Executable setgid files should not get pinned to the filesystem. */
796 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
797 return false;
798
799 /* Hardlinking to unreadable or unwritable sources is dangerous. */
800 if (inode_permission(inode, MAY_READ | MAY_WRITE))
801 return false;
802
803 return true;
804 }
805
806 /**
807 * may_linkat - Check permissions for creating a hardlink
808 * @link: the source to hardlink from
809 *
810 * Block hardlink when all of:
811 * - sysctl_protected_hardlinks enabled
812 * - fsuid does not match inode
813 * - hardlink source is unsafe (see safe_hardlink_source() above)
814 * - not CAP_FOWNER
815 *
816 * Returns 0 if successful, -ve on error.
817 */
818 static int may_linkat(struct path *link)
819 {
820 const struct cred *cred;
821 struct inode *inode;
822
823 if (!sysctl_protected_hardlinks)
824 return 0;
825
826 cred = current_cred();
827 inode = link->dentry->d_inode;
828
829 /* Source inode owner (or CAP_FOWNER) can hardlink all they like,
830 * otherwise, it must be a safe source.
831 */
832 if (uid_eq(cred->fsuid, inode->i_uid) || safe_hardlink_source(inode) ||
833 capable(CAP_FOWNER))
834 return 0;
835
836 audit_log_link_denied("linkat", link);
837 return -EPERM;
838 }
839
840 static __always_inline const char *
841 get_link(struct path *link, struct nameidata *nd, void **p)
842 {
843 struct dentry *dentry = link->dentry;
844 struct inode *inode = dentry->d_inode;
845 int error;
846 const char *res;
847
848 BUG_ON(nd->flags & LOOKUP_RCU);
849
850 if (link->mnt == nd->path.mnt)
851 mntget(link->mnt);
852
853 res = ERR_PTR(-ELOOP);
854 if (unlikely(current->total_link_count >= 40))
855 goto out;
856
857 cond_resched();
858 current->total_link_count++;
859
860 touch_atime(link);
861
862 error = security_inode_follow_link(dentry);
863 res = ERR_PTR(error);
864 if (error)
865 goto out;
866
867 nd->last_type = LAST_BIND;
868 *p = NULL;
869 res = inode->i_link;
870 if (!res) {
871 res = inode->i_op->follow_link(dentry, p, nd);
872 if (IS_ERR(res)) {
873 out:
874 path_put(&nd->path);
875 path_put(link);
876 }
877 }
878 return res;
879 }
880
881 static int follow_up_rcu(struct path *path)
882 {
883 struct mount *mnt = real_mount(path->mnt);
884 struct mount *parent;
885 struct dentry *mountpoint;
886
887 parent = mnt->mnt_parent;
888 if (&parent->mnt == path->mnt)
889 return 0;
890 mountpoint = mnt->mnt_mountpoint;
891 path->dentry = mountpoint;
892 path->mnt = &parent->mnt;
893 return 1;
894 }
895
896 /*
897 * follow_up - Find the mountpoint of path's vfsmount
898 *
899 * Given a path, find the mountpoint of its source file system.
900 * Replace @path with the path of the mountpoint in the parent mount.
901 * Up is towards /.
902 *
903 * Return 1 if we went up a level and 0 if we were already at the
904 * root.
905 */
906 int follow_up(struct path *path)
907 {
908 struct mount *mnt = real_mount(path->mnt);
909 struct mount *parent;
910 struct dentry *mountpoint;
911
912 read_seqlock_excl(&mount_lock);
913 parent = mnt->mnt_parent;
914 if (parent == mnt) {
915 read_sequnlock_excl(&mount_lock);
916 return 0;
917 }
918 mntget(&parent->mnt);
919 mountpoint = dget(mnt->mnt_mountpoint);
920 read_sequnlock_excl(&mount_lock);
921 dput(path->dentry);
922 path->dentry = mountpoint;
923 mntput(path->mnt);
924 path->mnt = &parent->mnt;
925 return 1;
926 }
927 EXPORT_SYMBOL(follow_up);
928
929 /*
930 * Perform an automount
931 * - return -EISDIR to tell follow_managed() to stop and return the path we
932 * were called with.
933 */
934 static int follow_automount(struct path *path, unsigned flags,
935 bool *need_mntput)
936 {
937 struct vfsmount *mnt;
938 int err;
939
940 if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
941 return -EREMOTE;
942
943 /* We don't want to mount if someone's just doing a stat -
944 * unless they're stat'ing a directory and appended a '/' to
945 * the name.
946 *
947 * We do, however, want to mount if someone wants to open or
948 * create a file of any type under the mountpoint, wants to
949 * traverse through the mountpoint or wants to open the
950 * mounted directory. Also, autofs may mark negative dentries
951 * as being automount points. These will need the attentions
952 * of the daemon to instantiate them before they can be used.
953 */
954 if (!(flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
955 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
956 path->dentry->d_inode)
957 return -EISDIR;
958
959 current->total_link_count++;
960 if (current->total_link_count >= 40)
961 return -ELOOP;
962
963 mnt = path->dentry->d_op->d_automount(path);
964 if (IS_ERR(mnt)) {
965 /*
966 * The filesystem is allowed to return -EISDIR here to indicate
967 * it doesn't want to automount. For instance, autofs would do
968 * this so that its userspace daemon can mount on this dentry.
969 *
970 * However, we can only permit this if it's a terminal point in
971 * the path being looked up; if it wasn't then the remainder of
972 * the path is inaccessible and we should say so.
973 */
974 if (PTR_ERR(mnt) == -EISDIR && (flags & LOOKUP_PARENT))
975 return -EREMOTE;
976 return PTR_ERR(mnt);
977 }
978
979 if (!mnt) /* mount collision */
980 return 0;
981
982 if (!*need_mntput) {
983 /* lock_mount() may release path->mnt on error */
984 mntget(path->mnt);
985 *need_mntput = true;
986 }
987 err = finish_automount(mnt, path);
988
989 switch (err) {
990 case -EBUSY:
991 /* Someone else made a mount here whilst we were busy */
992 return 0;
993 case 0:
994 path_put(path);
995 path->mnt = mnt;
996 path->dentry = dget(mnt->mnt_root);
997 return 0;
998 default:
999 return err;
1000 }
1001
1002 }
1003
1004 /*
1005 * Handle a dentry that is managed in some way.
1006 * - Flagged for transit management (autofs)
1007 * - Flagged as mountpoint
1008 * - Flagged as automount point
1009 *
1010 * This may only be called in refwalk mode.
1011 *
1012 * Serialization is taken care of in namespace.c
1013 */
1014 static int follow_managed(struct path *path, unsigned flags)
1015 {
1016 struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
1017 unsigned managed;
1018 bool need_mntput = false;
1019 int ret = 0;
1020
1021 /* Given that we're not holding a lock here, we retain the value in a
1022 * local variable for each dentry as we look at it so that we don't see
1023 * the components of that value change under us */
1024 while (managed = ACCESS_ONCE(path->dentry->d_flags),
1025 managed &= DCACHE_MANAGED_DENTRY,
1026 unlikely(managed != 0)) {
1027 /* Allow the filesystem to manage the transit without i_mutex
1028 * being held. */
1029 if (managed & DCACHE_MANAGE_TRANSIT) {
1030 BUG_ON(!path->dentry->d_op);
1031 BUG_ON(!path->dentry->d_op->d_manage);
1032 ret = path->dentry->d_op->d_manage(path->dentry, false);
1033 if (ret < 0)
1034 break;
1035 }
1036
1037 /* Transit to a mounted filesystem. */
1038 if (managed & DCACHE_MOUNTED) {
1039 struct vfsmount *mounted = lookup_mnt(path);
1040 if (mounted) {
1041 dput(path->dentry);
1042 if (need_mntput)
1043 mntput(path->mnt);
1044 path->mnt = mounted;
1045 path->dentry = dget(mounted->mnt_root);
1046 need_mntput = true;
1047 continue;
1048 }
1049
1050 /* Something is mounted on this dentry in another
1051 * namespace and/or whatever was mounted there in this
1052 * namespace got unmounted before lookup_mnt() could
1053 * get it */
1054 }
1055
1056 /* Handle an automount point */
1057 if (managed & DCACHE_NEED_AUTOMOUNT) {
1058 ret = follow_automount(path, flags, &need_mntput);
1059 if (ret < 0)
1060 break;
1061 continue;
1062 }
1063
1064 /* We didn't change the current path point */
1065 break;
1066 }
1067
1068 if (need_mntput && path->mnt == mnt)
1069 mntput(path->mnt);
1070 if (ret == -EISDIR)
1071 ret = 0;
1072 return ret < 0 ? ret : need_mntput;
1073 }
1074
1075 int follow_down_one(struct path *path)
1076 {
1077 struct vfsmount *mounted;
1078
1079 mounted = lookup_mnt(path);
1080 if (mounted) {
1081 dput(path->dentry);
1082 mntput(path->mnt);
1083 path->mnt = mounted;
1084 path->dentry = dget(mounted->mnt_root);
1085 return 1;
1086 }
1087 return 0;
1088 }
1089 EXPORT_SYMBOL(follow_down_one);
1090
1091 static inline int managed_dentry_rcu(struct dentry *dentry)
1092 {
1093 return (dentry->d_flags & DCACHE_MANAGE_TRANSIT) ?
1094 dentry->d_op->d_manage(dentry, true) : 0;
1095 }
1096
1097 /*
1098 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if
1099 * we meet a managed dentry that would need blocking.
1100 */
1101 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1102 struct inode **inode)
1103 {
1104 for (;;) {
1105 struct mount *mounted;
1106 /*
1107 * Don't forget we might have a non-mountpoint managed dentry
1108 * that wants to block transit.
1109 */
1110 switch (managed_dentry_rcu(path->dentry)) {
1111 case -ECHILD:
1112 default:
1113 return false;
1114 case -EISDIR:
1115 return true;
1116 case 0:
1117 break;
1118 }
1119
1120 if (!d_mountpoint(path->dentry))
1121 return !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1122
1123 mounted = __lookup_mnt(path->mnt, path->dentry);
1124 if (!mounted)
1125 break;
1126 path->mnt = &mounted->mnt;
1127 path->dentry = mounted->mnt.mnt_root;
1128 nd->flags |= LOOKUP_JUMPED;
1129 nd->seq = read_seqcount_begin(&path->dentry->d_seq);
1130 /*
1131 * Update the inode too. We don't need to re-check the
1132 * dentry sequence number here after this d_inode read,
1133 * because a mount-point is always pinned.
1134 */
1135 *inode = path->dentry->d_inode;
1136 }
1137 return !read_seqretry(&mount_lock, nd->m_seq) &&
1138 !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1139 }
1140
1141 static int follow_dotdot_rcu(struct nameidata *nd)
1142 {
1143 struct inode *inode = nd->inode;
1144 if (!nd->root.mnt)
1145 set_root_rcu(nd);
1146
1147 while (1) {
1148 if (nd->path.dentry == nd->root.dentry &&
1149 nd->path.mnt == nd->root.mnt) {
1150 break;
1151 }
1152 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1153 struct dentry *old = nd->path.dentry;
1154 struct dentry *parent = old->d_parent;
1155 unsigned seq;
1156
1157 inode = parent->d_inode;
1158 seq = read_seqcount_begin(&parent->d_seq);
1159 if (read_seqcount_retry(&old->d_seq, nd->seq))
1160 goto failed;
1161 nd->path.dentry = parent;
1162 nd->seq = seq;
1163 break;
1164 }
1165 if (!follow_up_rcu(&nd->path))
1166 break;
1167 inode = nd->path.dentry->d_inode;
1168 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1169 }
1170 while (d_mountpoint(nd->path.dentry)) {
1171 struct mount *mounted;
1172 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry);
1173 if (!mounted)
1174 break;
1175 nd->path.mnt = &mounted->mnt;
1176 nd->path.dentry = mounted->mnt.mnt_root;
1177 inode = nd->path.dentry->d_inode;
1178 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1179 if (read_seqretry(&mount_lock, nd->m_seq))
1180 goto failed;
1181 }
1182 nd->inode = inode;
1183 return 0;
1184
1185 failed:
1186 nd->flags &= ~LOOKUP_RCU;
1187 if (!(nd->flags & LOOKUP_ROOT))
1188 nd->root.mnt = NULL;
1189 rcu_read_unlock();
1190 return -ECHILD;
1191 }
1192
1193 /*
1194 * Follow down to the covering mount currently visible to userspace. At each
1195 * point, the filesystem owning that dentry may be queried as to whether the
1196 * caller is permitted to proceed or not.
1197 */
1198 int follow_down(struct path *path)
1199 {
1200 unsigned managed;
1201 int ret;
1202
1203 while (managed = ACCESS_ONCE(path->dentry->d_flags),
1204 unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1205 /* Allow the filesystem to manage the transit without i_mutex
1206 * being held.
1207 *
1208 * We indicate to the filesystem if someone is trying to mount
1209 * something here. This gives autofs the chance to deny anyone
1210 * other than its daemon the right to mount on its
1211 * superstructure.
1212 *
1213 * The filesystem may sleep at this point.
1214 */
1215 if (managed & DCACHE_MANAGE_TRANSIT) {
1216 BUG_ON(!path->dentry->d_op);
1217 BUG_ON(!path->dentry->d_op->d_manage);
1218 ret = path->dentry->d_op->d_manage(
1219 path->dentry, false);
1220 if (ret < 0)
1221 return ret == -EISDIR ? 0 : ret;
1222 }
1223
1224 /* Transit to a mounted filesystem. */
1225 if (managed & DCACHE_MOUNTED) {
1226 struct vfsmount *mounted = lookup_mnt(path);
1227 if (!mounted)
1228 break;
1229 dput(path->dentry);
1230 mntput(path->mnt);
1231 path->mnt = mounted;
1232 path->dentry = dget(mounted->mnt_root);
1233 continue;
1234 }
1235
1236 /* Don't handle automount points here */
1237 break;
1238 }
1239 return 0;
1240 }
1241 EXPORT_SYMBOL(follow_down);
1242
1243 /*
1244 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1245 */
1246 static void follow_mount(struct path *path)
1247 {
1248 while (d_mountpoint(path->dentry)) {
1249 struct vfsmount *mounted = lookup_mnt(path);
1250 if (!mounted)
1251 break;
1252 dput(path->dentry);
1253 mntput(path->mnt);
1254 path->mnt = mounted;
1255 path->dentry = dget(mounted->mnt_root);
1256 }
1257 }
1258
1259 static void follow_dotdot(struct nameidata *nd)
1260 {
1261 if (!nd->root.mnt)
1262 set_root(nd);
1263
1264 while(1) {
1265 struct dentry *old = nd->path.dentry;
1266
1267 if (nd->path.dentry == nd->root.dentry &&
1268 nd->path.mnt == nd->root.mnt) {
1269 break;
1270 }
1271 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1272 /* rare case of legitimate dget_parent()... */
1273 nd->path.dentry = dget_parent(nd->path.dentry);
1274 dput(old);
1275 break;
1276 }
1277 if (!follow_up(&nd->path))
1278 break;
1279 }
1280 follow_mount(&nd->path);
1281 nd->inode = nd->path.dentry->d_inode;
1282 }
1283
1284 /*
1285 * This looks up the name in dcache, possibly revalidates the old dentry and
1286 * allocates a new one if not found or not valid. In the need_lookup argument
1287 * returns whether i_op->lookup is necessary.
1288 *
1289 * dir->d_inode->i_mutex must be held
1290 */
1291 static struct dentry *lookup_dcache(struct qstr *name, struct dentry *dir,
1292 unsigned int flags, bool *need_lookup)
1293 {
1294 struct dentry *dentry;
1295 int error;
1296
1297 *need_lookup = false;
1298 dentry = d_lookup(dir, name);
1299 if (dentry) {
1300 if (dentry->d_flags & DCACHE_OP_REVALIDATE) {
1301 error = d_revalidate(dentry, flags);
1302 if (unlikely(error <= 0)) {
1303 if (error < 0) {
1304 dput(dentry);
1305 return ERR_PTR(error);
1306 } else {
1307 d_invalidate(dentry);
1308 dput(dentry);
1309 dentry = NULL;
1310 }
1311 }
1312 }
1313 }
1314
1315 if (!dentry) {
1316 dentry = d_alloc(dir, name);
1317 if (unlikely(!dentry))
1318 return ERR_PTR(-ENOMEM);
1319
1320 *need_lookup = true;
1321 }
1322 return dentry;
1323 }
1324
1325 /*
1326 * Call i_op->lookup on the dentry. The dentry must be negative and
1327 * unhashed.
1328 *
1329 * dir->d_inode->i_mutex must be held
1330 */
1331 static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry,
1332 unsigned int flags)
1333 {
1334 struct dentry *old;
1335
1336 /* Don't create child dentry for a dead directory. */
1337 if (unlikely(IS_DEADDIR(dir))) {
1338 dput(dentry);
1339 return ERR_PTR(-ENOENT);
1340 }
1341
1342 old = dir->i_op->lookup(dir, dentry, flags);
1343 if (unlikely(old)) {
1344 dput(dentry);
1345 dentry = old;
1346 }
1347 return dentry;
1348 }
1349
1350 static struct dentry *__lookup_hash(struct qstr *name,
1351 struct dentry *base, unsigned int flags)
1352 {
1353 bool need_lookup;
1354 struct dentry *dentry;
1355
1356 dentry = lookup_dcache(name, base, flags, &need_lookup);
1357 if (!need_lookup)
1358 return dentry;
1359
1360 return lookup_real(base->d_inode, dentry, flags);
1361 }
1362
1363 /*
1364 * It's more convoluted than I'd like it to be, but... it's still fairly
1365 * small and for now I'd prefer to have fast path as straight as possible.
1366 * It _is_ time-critical.
1367 */
1368 static int lookup_fast(struct nameidata *nd,
1369 struct path *path, struct inode **inode)
1370 {
1371 struct vfsmount *mnt = nd->path.mnt;
1372 struct dentry *dentry, *parent = nd->path.dentry;
1373 int need_reval = 1;
1374 int status = 1;
1375 int err;
1376
1377 /*
1378 * Rename seqlock is not required here because in the off chance
1379 * of a false negative due to a concurrent rename, we're going to
1380 * do the non-racy lookup, below.
1381 */
1382 if (nd->flags & LOOKUP_RCU) {
1383 unsigned seq;
1384 bool negative;
1385 dentry = __d_lookup_rcu(parent, &nd->last, &seq);
1386 if (!dentry)
1387 goto unlazy;
1388
1389 /*
1390 * This sequence count validates that the inode matches
1391 * the dentry name information from lookup.
1392 */
1393 *inode = dentry->d_inode;
1394 negative = d_is_negative(dentry);
1395 if (read_seqcount_retry(&dentry->d_seq, seq))
1396 return -ECHILD;
1397 if (negative)
1398 return -ENOENT;
1399
1400 /*
1401 * This sequence count validates that the parent had no
1402 * changes while we did the lookup of the dentry above.
1403 *
1404 * The memory barrier in read_seqcount_begin of child is
1405 * enough, we can use __read_seqcount_retry here.
1406 */
1407 if (__read_seqcount_retry(&parent->d_seq, nd->seq))
1408 return -ECHILD;
1409 nd->seq = seq;
1410
1411 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) {
1412 status = d_revalidate(dentry, nd->flags);
1413 if (unlikely(status <= 0)) {
1414 if (status != -ECHILD)
1415 need_reval = 0;
1416 goto unlazy;
1417 }
1418 }
1419 path->mnt = mnt;
1420 path->dentry = dentry;
1421 if (likely(__follow_mount_rcu(nd, path, inode)))
1422 return 0;
1423 unlazy:
1424 if (unlazy_walk(nd, dentry))
1425 return -ECHILD;
1426 } else {
1427 dentry = __d_lookup(parent, &nd->last);
1428 }
1429
1430 if (unlikely(!dentry))
1431 goto need_lookup;
1432
1433 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE) && need_reval)
1434 status = d_revalidate(dentry, nd->flags);
1435 if (unlikely(status <= 0)) {
1436 if (status < 0) {
1437 dput(dentry);
1438 return status;
1439 }
1440 d_invalidate(dentry);
1441 dput(dentry);
1442 goto need_lookup;
1443 }
1444
1445 if (unlikely(d_is_negative(dentry))) {
1446 dput(dentry);
1447 return -ENOENT;
1448 }
1449 path->mnt = mnt;
1450 path->dentry = dentry;
1451 err = follow_managed(path, nd->flags);
1452 if (unlikely(err < 0)) {
1453 path_put_conditional(path, nd);
1454 return err;
1455 }
1456 if (err)
1457 nd->flags |= LOOKUP_JUMPED;
1458 *inode = path->dentry->d_inode;
1459 return 0;
1460
1461 need_lookup:
1462 return 1;
1463 }
1464
1465 /* Fast lookup failed, do it the slow way */
1466 static int lookup_slow(struct nameidata *nd, struct path *path)
1467 {
1468 struct dentry *dentry, *parent;
1469 int err;
1470
1471 parent = nd->path.dentry;
1472 BUG_ON(nd->inode != parent->d_inode);
1473
1474 mutex_lock(&parent->d_inode->i_mutex);
1475 dentry = __lookup_hash(&nd->last, parent, nd->flags);
1476 mutex_unlock(&parent->d_inode->i_mutex);
1477 if (IS_ERR(dentry))
1478 return PTR_ERR(dentry);
1479 path->mnt = nd->path.mnt;
1480 path->dentry = dentry;
1481 err = follow_managed(path, nd->flags);
1482 if (unlikely(err < 0)) {
1483 path_put_conditional(path, nd);
1484 return err;
1485 }
1486 if (err)
1487 nd->flags |= LOOKUP_JUMPED;
1488 return 0;
1489 }
1490
1491 static inline int may_lookup(struct nameidata *nd)
1492 {
1493 if (nd->flags & LOOKUP_RCU) {
1494 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1495 if (err != -ECHILD)
1496 return err;
1497 if (unlazy_walk(nd, NULL))
1498 return -ECHILD;
1499 }
1500 return inode_permission(nd->inode, MAY_EXEC);
1501 }
1502
1503 static inline int handle_dots(struct nameidata *nd, int type)
1504 {
1505 if (type == LAST_DOTDOT) {
1506 if (nd->flags & LOOKUP_RCU) {
1507 if (follow_dotdot_rcu(nd))
1508 return -ECHILD;
1509 } else
1510 follow_dotdot(nd);
1511 }
1512 return 0;
1513 }
1514
1515 static void terminate_walk(struct nameidata *nd)
1516 {
1517 if (!(nd->flags & LOOKUP_RCU)) {
1518 path_put(&nd->path);
1519 } else {
1520 nd->flags &= ~LOOKUP_RCU;
1521 if (!(nd->flags & LOOKUP_ROOT))
1522 nd->root.mnt = NULL;
1523 rcu_read_unlock();
1524 }
1525 }
1526
1527 /*
1528 * Do we need to follow links? We _really_ want to be able
1529 * to do this check without having to look at inode->i_op,
1530 * so we keep a cache of "no, this doesn't need follow_link"
1531 * for the common case.
1532 */
1533 static inline int should_follow_link(struct dentry *dentry, int follow)
1534 {
1535 return unlikely(d_is_symlink(dentry)) ? follow : 0;
1536 }
1537
1538 static int walk_component(struct nameidata *nd, int follow)
1539 {
1540 struct path path;
1541 struct inode *inode;
1542 int err;
1543 /*
1544 * "." and ".." are special - ".." especially so because it has
1545 * to be able to know about the current root directory and
1546 * parent relationships.
1547 */
1548 if (unlikely(nd->last_type != LAST_NORM))
1549 return handle_dots(nd, nd->last_type);
1550 err = lookup_fast(nd, &path, &inode);
1551 if (unlikely(err)) {
1552 if (err < 0)
1553 goto out_err;
1554
1555 err = lookup_slow(nd, &path);
1556 if (err < 0)
1557 goto out_err;
1558
1559 inode = path.dentry->d_inode;
1560 err = -ENOENT;
1561 if (d_is_negative(path.dentry))
1562 goto out_path_put;
1563 }
1564
1565 if (should_follow_link(path.dentry, follow)) {
1566 if (nd->flags & LOOKUP_RCU) {
1567 if (unlikely(nd->path.mnt != path.mnt ||
1568 unlazy_walk(nd, path.dentry))) {
1569 err = -ECHILD;
1570 goto out_err;
1571 }
1572 }
1573 BUG_ON(inode != path.dentry->d_inode);
1574 nd->link = path;
1575 return 1;
1576 }
1577 path_to_nameidata(&path, nd);
1578 nd->inode = inode;
1579 return 0;
1580
1581 out_path_put:
1582 path_to_nameidata(&path, nd);
1583 out_err:
1584 terminate_walk(nd);
1585 return err;
1586 }
1587
1588 /*
1589 * We can do the critical dentry name comparison and hashing
1590 * operations one word at a time, but we are limited to:
1591 *
1592 * - Architectures with fast unaligned word accesses. We could
1593 * do a "get_unaligned()" if this helps and is sufficiently
1594 * fast.
1595 *
1596 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1597 * do not trap on the (extremely unlikely) case of a page
1598 * crossing operation.
1599 *
1600 * - Furthermore, we need an efficient 64-bit compile for the
1601 * 64-bit case in order to generate the "number of bytes in
1602 * the final mask". Again, that could be replaced with a
1603 * efficient population count instruction or similar.
1604 */
1605 #ifdef CONFIG_DCACHE_WORD_ACCESS
1606
1607 #include <asm/word-at-a-time.h>
1608
1609 #ifdef CONFIG_64BIT
1610
1611 static inline unsigned int fold_hash(unsigned long hash)
1612 {
1613 return hash_64(hash, 32);
1614 }
1615
1616 #else /* 32-bit case */
1617
1618 #define fold_hash(x) (x)
1619
1620 #endif
1621
1622 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1623 {
1624 unsigned long a, mask;
1625 unsigned long hash = 0;
1626
1627 for (;;) {
1628 a = load_unaligned_zeropad(name);
1629 if (len < sizeof(unsigned long))
1630 break;
1631 hash += a;
1632 hash *= 9;
1633 name += sizeof(unsigned long);
1634 len -= sizeof(unsigned long);
1635 if (!len)
1636 goto done;
1637 }
1638 mask = bytemask_from_count(len);
1639 hash += mask & a;
1640 done:
1641 return fold_hash(hash);
1642 }
1643 EXPORT_SYMBOL(full_name_hash);
1644
1645 /*
1646 * Calculate the length and hash of the path component, and
1647 * return the "hash_len" as the result.
1648 */
1649 static inline u64 hash_name(const char *name)
1650 {
1651 unsigned long a, b, adata, bdata, mask, hash, len;
1652 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1653
1654 hash = a = 0;
1655 len = -sizeof(unsigned long);
1656 do {
1657 hash = (hash + a) * 9;
1658 len += sizeof(unsigned long);
1659 a = load_unaligned_zeropad(name+len);
1660 b = a ^ REPEAT_BYTE('/');
1661 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
1662
1663 adata = prep_zero_mask(a, adata, &constants);
1664 bdata = prep_zero_mask(b, bdata, &constants);
1665
1666 mask = create_zero_mask(adata | bdata);
1667
1668 hash += a & zero_bytemask(mask);
1669 len += find_zero(mask);
1670 return hashlen_create(fold_hash(hash), len);
1671 }
1672
1673 #else
1674
1675 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1676 {
1677 unsigned long hash = init_name_hash();
1678 while (len--)
1679 hash = partial_name_hash(*name++, hash);
1680 return end_name_hash(hash);
1681 }
1682 EXPORT_SYMBOL(full_name_hash);
1683
1684 /*
1685 * We know there's a real path component here of at least
1686 * one character.
1687 */
1688 static inline u64 hash_name(const char *name)
1689 {
1690 unsigned long hash = init_name_hash();
1691 unsigned long len = 0, c;
1692
1693 c = (unsigned char)*name;
1694 do {
1695 len++;
1696 hash = partial_name_hash(c, hash);
1697 c = (unsigned char)name[len];
1698 } while (c && c != '/');
1699 return hashlen_create(end_name_hash(hash), len);
1700 }
1701
1702 #endif
1703
1704 /*
1705 * Name resolution.
1706 * This is the basic name resolution function, turning a pathname into
1707 * the final dentry. We expect 'base' to be positive and a directory.
1708 *
1709 * Returns 0 and nd will have valid dentry and mnt on success.
1710 * Returns error and drops reference to input namei data on failure.
1711 */
1712 static int link_path_walk(const char *name, struct nameidata *nd)
1713 {
1714 struct saved {
1715 struct path link;
1716 void *cookie;
1717 const char *name;
1718 } stack[MAX_NESTED_LINKS], *last = stack + nd->depth - 1;
1719 int err;
1720
1721 while (*name=='/')
1722 name++;
1723 if (!*name)
1724 return 0;
1725
1726 /* At this point we know we have a real path component. */
1727 for(;;) {
1728 u64 hash_len;
1729 int type;
1730
1731 err = may_lookup(nd);
1732 if (err)
1733 break;
1734
1735 hash_len = hash_name(name);
1736
1737 type = LAST_NORM;
1738 if (name[0] == '.') switch (hashlen_len(hash_len)) {
1739 case 2:
1740 if (name[1] == '.') {
1741 type = LAST_DOTDOT;
1742 nd->flags |= LOOKUP_JUMPED;
1743 }
1744 break;
1745 case 1:
1746 type = LAST_DOT;
1747 }
1748 if (likely(type == LAST_NORM)) {
1749 struct dentry *parent = nd->path.dentry;
1750 nd->flags &= ~LOOKUP_JUMPED;
1751 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
1752 struct qstr this = { { .hash_len = hash_len }, .name = name };
1753 err = parent->d_op->d_hash(parent, &this);
1754 if (err < 0)
1755 break;
1756 hash_len = this.hash_len;
1757 name = this.name;
1758 }
1759 }
1760
1761 nd->last.hash_len = hash_len;
1762 nd->last.name = name;
1763 nd->last_type = type;
1764
1765 name += hashlen_len(hash_len);
1766 if (!*name)
1767 goto OK;
1768 /*
1769 * If it wasn't NUL, we know it was '/'. Skip that
1770 * slash, and continue until no more slashes.
1771 */
1772 do {
1773 name++;
1774 } while (unlikely(*name == '/'));
1775 if (!*name)
1776 goto OK;
1777
1778 err = walk_component(nd, LOOKUP_FOLLOW);
1779 Walked:
1780 if (err < 0)
1781 goto Err;
1782
1783 if (err) {
1784 const char *s;
1785
1786 if (unlikely(current->link_count >= MAX_NESTED_LINKS)) {
1787 path_put_conditional(&nd->link, nd);
1788 path_put(&nd->path);
1789 err = -ELOOP;
1790 goto Err;
1791 }
1792 BUG_ON(nd->depth >= MAX_NESTED_LINKS);
1793
1794 nd->depth++;
1795 current->link_count++;
1796 last++;
1797
1798 last->link = nd->link;
1799 s = get_link(&last->link, nd, &last->cookie);
1800
1801 if (unlikely(IS_ERR(s))) {
1802 err = PTR_ERR(s);
1803 current->link_count--;
1804 nd->depth--;
1805 last--;
1806 goto Err;
1807 }
1808 err = 0;
1809 if (unlikely(!s)) {
1810 /* jumped */
1811 put_link(nd, &last->link, last->cookie);
1812 current->link_count--;
1813 nd->depth--;
1814 last--;
1815 } else {
1816 if (*s == '/') {
1817 if (!nd->root.mnt)
1818 set_root(nd);
1819 path_put(&nd->path);
1820 nd->path = nd->root;
1821 path_get(&nd->root);
1822 nd->flags |= LOOKUP_JUMPED;
1823 while (unlikely(*++s == '/'))
1824 ;
1825 }
1826 nd->inode = nd->path.dentry->d_inode;
1827 last->name = name;
1828 if (!*s)
1829 goto OK;
1830 name = s;
1831 continue;
1832 }
1833 }
1834 if (!d_can_lookup(nd->path.dentry)) {
1835 err = -ENOTDIR;
1836 break;
1837 }
1838 }
1839 terminate_walk(nd);
1840 Err:
1841 while (unlikely(nd->depth)) {
1842 put_link(nd, &last->link, last->cookie);
1843 current->link_count--;
1844 nd->depth--;
1845 last--;
1846 }
1847 return err;
1848 OK:
1849 if (unlikely(nd->depth)) {
1850 name = last->name;
1851 err = walk_component(nd, LOOKUP_FOLLOW);
1852 put_link(nd, &last->link, last->cookie);
1853 current->link_count--;
1854 nd->depth--;
1855 last--;
1856 goto Walked;
1857 }
1858 return 0;
1859 }
1860
1861 static int path_init(int dfd, const struct filename *name, unsigned int flags,
1862 struct nameidata *nd)
1863 {
1864 int retval = 0;
1865 const char *s = name->name;
1866
1867 nd->last_type = LAST_ROOT; /* if there are only slashes... */
1868 nd->flags = flags | LOOKUP_JUMPED | LOOKUP_PARENT;
1869 nd->depth = 0;
1870 nd->base = NULL;
1871 if (flags & LOOKUP_ROOT) {
1872 struct dentry *root = nd->root.dentry;
1873 struct inode *inode = root->d_inode;
1874 if (*s) {
1875 if (!d_can_lookup(root))
1876 return -ENOTDIR;
1877 retval = inode_permission(inode, MAY_EXEC);
1878 if (retval)
1879 return retval;
1880 }
1881 nd->path = nd->root;
1882 nd->inode = inode;
1883 if (flags & LOOKUP_RCU) {
1884 rcu_read_lock();
1885 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1886 nd->m_seq = read_seqbegin(&mount_lock);
1887 } else {
1888 path_get(&nd->path);
1889 }
1890 goto done;
1891 }
1892
1893 nd->root.mnt = NULL;
1894
1895 nd->m_seq = read_seqbegin(&mount_lock);
1896 if (*s == '/') {
1897 if (flags & LOOKUP_RCU) {
1898 rcu_read_lock();
1899 nd->seq = set_root_rcu(nd);
1900 } else {
1901 set_root(nd);
1902 path_get(&nd->root);
1903 }
1904 nd->path = nd->root;
1905 } else if (dfd == AT_FDCWD) {
1906 if (flags & LOOKUP_RCU) {
1907 struct fs_struct *fs = current->fs;
1908 unsigned seq;
1909
1910 rcu_read_lock();
1911
1912 do {
1913 seq = read_seqcount_begin(&fs->seq);
1914 nd->path = fs->pwd;
1915 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1916 } while (read_seqcount_retry(&fs->seq, seq));
1917 } else {
1918 get_fs_pwd(current->fs, &nd->path);
1919 }
1920 } else {
1921 /* Caller must check execute permissions on the starting path component */
1922 struct fd f = fdget_raw(dfd);
1923 struct dentry *dentry;
1924
1925 if (!f.file)
1926 return -EBADF;
1927
1928 dentry = f.file->f_path.dentry;
1929
1930 if (*s) {
1931 if (!d_can_lookup(dentry)) {
1932 fdput(f);
1933 return -ENOTDIR;
1934 }
1935 }
1936
1937 nd->path = f.file->f_path;
1938 if (flags & LOOKUP_RCU) {
1939 if (f.flags & FDPUT_FPUT)
1940 nd->base = f.file;
1941 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1942 rcu_read_lock();
1943 } else {
1944 path_get(&nd->path);
1945 fdput(f);
1946 }
1947 }
1948
1949 nd->inode = nd->path.dentry->d_inode;
1950 if (!(flags & LOOKUP_RCU))
1951 goto done;
1952 if (likely(!read_seqcount_retry(&nd->path.dentry->d_seq, nd->seq)))
1953 goto done;
1954 if (!(nd->flags & LOOKUP_ROOT))
1955 nd->root.mnt = NULL;
1956 rcu_read_unlock();
1957 return -ECHILD;
1958 done:
1959 current->total_link_count = 0;
1960 return link_path_walk(s, nd);
1961 }
1962
1963 static void path_cleanup(struct nameidata *nd)
1964 {
1965 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
1966 path_put(&nd->root);
1967 nd->root.mnt = NULL;
1968 }
1969 if (unlikely(nd->base))
1970 fput(nd->base);
1971 }
1972
1973 static int trailing_symlink(struct path *link, struct nameidata *nd, void **p)
1974 {
1975 const char *s;
1976 int error = may_follow_link(link, nd);
1977 if (unlikely(error))
1978 return error;
1979 nd->flags |= LOOKUP_PARENT;
1980 s = get_link(link, nd, p);
1981 if (unlikely(IS_ERR(s)))
1982 return PTR_ERR(s);
1983 if (unlikely(!s))
1984 return 0;
1985 if (*s == '/') {
1986 if (!nd->root.mnt)
1987 set_root(nd);
1988 path_put(&nd->path);
1989 nd->path = nd->root;
1990 path_get(&nd->root);
1991 nd->flags |= LOOKUP_JUMPED;
1992 }
1993 nd->inode = nd->path.dentry->d_inode;
1994 error = link_path_walk(s, nd);
1995 if (unlikely(error))
1996 put_link(nd, link, *p);
1997 return error;
1998 }
1999
2000 static inline int lookup_last(struct nameidata *nd)
2001 {
2002 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
2003 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2004
2005 nd->flags &= ~LOOKUP_PARENT;
2006 return walk_component(nd, nd->flags & LOOKUP_FOLLOW);
2007 }
2008
2009 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2010 static int path_lookupat(int dfd, const struct filename *name,
2011 unsigned int flags, struct nameidata *nd)
2012 {
2013 int err;
2014
2015 /*
2016 * Path walking is largely split up into 2 different synchronisation
2017 * schemes, rcu-walk and ref-walk (explained in
2018 * Documentation/filesystems/path-lookup.txt). These share much of the
2019 * path walk code, but some things particularly setup, cleanup, and
2020 * following mounts are sufficiently divergent that functions are
2021 * duplicated. Typically there is a function foo(), and its RCU
2022 * analogue, foo_rcu().
2023 *
2024 * -ECHILD is the error number of choice (just to avoid clashes) that
2025 * is returned if some aspect of an rcu-walk fails. Such an error must
2026 * be handled by restarting a traditional ref-walk (which will always
2027 * be able to complete).
2028 */
2029 err = path_init(dfd, name, flags, nd);
2030 if (!err && !(flags & LOOKUP_PARENT)) {
2031 err = lookup_last(nd);
2032 while (err > 0) {
2033 void *cookie;
2034 struct path link = nd->link;
2035 err = trailing_symlink(&link, nd, &cookie);
2036 if (err)
2037 break;
2038 err = lookup_last(nd);
2039 put_link(nd, &link, cookie);
2040 }
2041 }
2042
2043 if (!err)
2044 err = complete_walk(nd);
2045
2046 if (!err && nd->flags & LOOKUP_DIRECTORY) {
2047 if (!d_can_lookup(nd->path.dentry)) {
2048 path_put(&nd->path);
2049 err = -ENOTDIR;
2050 }
2051 }
2052
2053 path_cleanup(nd);
2054 return err;
2055 }
2056
2057 static int filename_lookup(int dfd, struct filename *name,
2058 unsigned int flags, struct nameidata *nd)
2059 {
2060 int retval = path_lookupat(dfd, name, flags | LOOKUP_RCU, nd);
2061 if (unlikely(retval == -ECHILD))
2062 retval = path_lookupat(dfd, name, flags, nd);
2063 if (unlikely(retval == -ESTALE))
2064 retval = path_lookupat(dfd, name, flags | LOOKUP_REVAL, nd);
2065
2066 if (likely(!retval))
2067 audit_inode(name, nd->path.dentry, flags & LOOKUP_PARENT);
2068 return retval;
2069 }
2070
2071 /* does lookup, returns the object with parent locked */
2072 struct dentry *kern_path_locked(const char *name, struct path *path)
2073 {
2074 struct filename *filename = getname_kernel(name);
2075 struct nameidata nd;
2076 struct dentry *d;
2077 int err;
2078
2079 if (IS_ERR(filename))
2080 return ERR_CAST(filename);
2081
2082 err = filename_lookup(AT_FDCWD, filename, LOOKUP_PARENT, &nd);
2083 if (err) {
2084 d = ERR_PTR(err);
2085 goto out;
2086 }
2087 if (nd.last_type != LAST_NORM) {
2088 path_put(&nd.path);
2089 d = ERR_PTR(-EINVAL);
2090 goto out;
2091 }
2092 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2093 d = __lookup_hash(&nd.last, nd.path.dentry, 0);
2094 if (IS_ERR(d)) {
2095 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2096 path_put(&nd.path);
2097 goto out;
2098 }
2099 *path = nd.path;
2100 out:
2101 putname(filename);
2102 return d;
2103 }
2104
2105 int kern_path(const char *name, unsigned int flags, struct path *path)
2106 {
2107 struct nameidata nd;
2108 struct filename *filename = getname_kernel(name);
2109 int res = PTR_ERR(filename);
2110
2111 if (!IS_ERR(filename)) {
2112 res = filename_lookup(AT_FDCWD, filename, flags, &nd);
2113 putname(filename);
2114 if (!res)
2115 *path = nd.path;
2116 }
2117 return res;
2118 }
2119 EXPORT_SYMBOL(kern_path);
2120
2121 /**
2122 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2123 * @dentry: pointer to dentry of the base directory
2124 * @mnt: pointer to vfs mount of the base directory
2125 * @name: pointer to file name
2126 * @flags: lookup flags
2127 * @path: pointer to struct path to fill
2128 */
2129 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2130 const char *name, unsigned int flags,
2131 struct path *path)
2132 {
2133 struct filename *filename = getname_kernel(name);
2134 int err = PTR_ERR(filename);
2135
2136 BUG_ON(flags & LOOKUP_PARENT);
2137
2138 /* the first argument of filename_lookup() is ignored with LOOKUP_ROOT */
2139 if (!IS_ERR(filename)) {
2140 struct nameidata nd;
2141 nd.root.dentry = dentry;
2142 nd.root.mnt = mnt;
2143 err = filename_lookup(AT_FDCWD, filename,
2144 flags | LOOKUP_ROOT, &nd);
2145 if (!err)
2146 *path = nd.path;
2147 putname(filename);
2148 }
2149 return err;
2150 }
2151 EXPORT_SYMBOL(vfs_path_lookup);
2152
2153 /**
2154 * lookup_one_len - filesystem helper to lookup single pathname component
2155 * @name: pathname component to lookup
2156 * @base: base directory to lookup from
2157 * @len: maximum length @len should be interpreted to
2158 *
2159 * Note that this routine is purely a helper for filesystem usage and should
2160 * not be called by generic code.
2161 */
2162 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2163 {
2164 struct qstr this;
2165 unsigned int c;
2166 int err;
2167
2168 WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex));
2169
2170 this.name = name;
2171 this.len = len;
2172 this.hash = full_name_hash(name, len);
2173 if (!len)
2174 return ERR_PTR(-EACCES);
2175
2176 if (unlikely(name[0] == '.')) {
2177 if (len < 2 || (len == 2 && name[1] == '.'))
2178 return ERR_PTR(-EACCES);
2179 }
2180
2181 while (len--) {
2182 c = *(const unsigned char *)name++;
2183 if (c == '/' || c == '\0')
2184 return ERR_PTR(-EACCES);
2185 }
2186 /*
2187 * See if the low-level filesystem might want
2188 * to use its own hash..
2189 */
2190 if (base->d_flags & DCACHE_OP_HASH) {
2191 int err = base->d_op->d_hash(base, &this);
2192 if (err < 0)
2193 return ERR_PTR(err);
2194 }
2195
2196 err = inode_permission(base->d_inode, MAY_EXEC);
2197 if (err)
2198 return ERR_PTR(err);
2199
2200 return __lookup_hash(&this, base, 0);
2201 }
2202 EXPORT_SYMBOL(lookup_one_len);
2203
2204 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2205 struct path *path, int *empty)
2206 {
2207 struct nameidata nd;
2208 struct filename *tmp = getname_flags(name, flags, empty);
2209 int err = PTR_ERR(tmp);
2210 if (!IS_ERR(tmp)) {
2211
2212 BUG_ON(flags & LOOKUP_PARENT);
2213
2214 err = filename_lookup(dfd, tmp, flags, &nd);
2215 putname(tmp);
2216 if (!err)
2217 *path = nd.path;
2218 }
2219 return err;
2220 }
2221
2222 int user_path_at(int dfd, const char __user *name, unsigned flags,
2223 struct path *path)
2224 {
2225 return user_path_at_empty(dfd, name, flags, path, NULL);
2226 }
2227 EXPORT_SYMBOL(user_path_at);
2228
2229 /*
2230 * NB: most callers don't do anything directly with the reference to the
2231 * to struct filename, but the nd->last pointer points into the name string
2232 * allocated by getname. So we must hold the reference to it until all
2233 * path-walking is complete.
2234 */
2235 static struct filename *
2236 user_path_parent(int dfd, const char __user *path,
2237 struct path *parent,
2238 struct qstr *last,
2239 int *type,
2240 unsigned int flags)
2241 {
2242 struct nameidata nd;
2243 struct filename *s = getname(path);
2244 int error;
2245
2246 /* only LOOKUP_REVAL is allowed in extra flags */
2247 flags &= LOOKUP_REVAL;
2248
2249 if (IS_ERR(s))
2250 return s;
2251
2252 error = filename_lookup(dfd, s, flags | LOOKUP_PARENT, &nd);
2253 if (error) {
2254 putname(s);
2255 return ERR_PTR(error);
2256 }
2257 *parent = nd.path;
2258 *last = nd.last;
2259 *type = nd.last_type;
2260
2261 return s;
2262 }
2263
2264 /**
2265 * mountpoint_last - look up last component for umount
2266 * @nd: pathwalk nameidata - currently pointing at parent directory of "last"
2267 * @path: pointer to container for result
2268 *
2269 * This is a special lookup_last function just for umount. In this case, we
2270 * need to resolve the path without doing any revalidation.
2271 *
2272 * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since
2273 * mountpoints are always pinned in the dcache, their ancestors are too. Thus,
2274 * in almost all cases, this lookup will be served out of the dcache. The only
2275 * cases where it won't are if nd->last refers to a symlink or the path is
2276 * bogus and it doesn't exist.
2277 *
2278 * Returns:
2279 * -error: if there was an error during lookup. This includes -ENOENT if the
2280 * lookup found a negative dentry. The nd->path reference will also be
2281 * put in this case.
2282 *
2283 * 0: if we successfully resolved nd->path and found it to not to be a
2284 * symlink that needs to be followed. "path" will also be populated.
2285 * The nd->path reference will also be put.
2286 *
2287 * 1: if we successfully resolved nd->last and found it to be a symlink
2288 * that needs to be followed. "path" will be populated with the path
2289 * to the link, and nd->path will *not* be put.
2290 */
2291 static int
2292 mountpoint_last(struct nameidata *nd, struct path *path)
2293 {
2294 int error = 0;
2295 struct dentry *dentry;
2296 struct dentry *dir = nd->path.dentry;
2297
2298 /* If we're in rcuwalk, drop out of it to handle last component */
2299 if (nd->flags & LOOKUP_RCU) {
2300 if (unlazy_walk(nd, NULL)) {
2301 error = -ECHILD;
2302 goto out;
2303 }
2304 }
2305
2306 nd->flags &= ~LOOKUP_PARENT;
2307
2308 if (unlikely(nd->last_type != LAST_NORM)) {
2309 error = handle_dots(nd, nd->last_type);
2310 if (error)
2311 goto out;
2312 dentry = dget(nd->path.dentry);
2313 goto done;
2314 }
2315
2316 mutex_lock(&dir->d_inode->i_mutex);
2317 dentry = d_lookup(dir, &nd->last);
2318 if (!dentry) {
2319 /*
2320 * No cached dentry. Mounted dentries are pinned in the cache,
2321 * so that means that this dentry is probably a symlink or the
2322 * path doesn't actually point to a mounted dentry.
2323 */
2324 dentry = d_alloc(dir, &nd->last);
2325 if (!dentry) {
2326 error = -ENOMEM;
2327 mutex_unlock(&dir->d_inode->i_mutex);
2328 goto out;
2329 }
2330 dentry = lookup_real(dir->d_inode, dentry, nd->flags);
2331 error = PTR_ERR(dentry);
2332 if (IS_ERR(dentry)) {
2333 mutex_unlock(&dir->d_inode->i_mutex);
2334 goto out;
2335 }
2336 }
2337 mutex_unlock(&dir->d_inode->i_mutex);
2338
2339 done:
2340 if (d_is_negative(dentry)) {
2341 error = -ENOENT;
2342 dput(dentry);
2343 goto out;
2344 }
2345 path->dentry = dentry;
2346 path->mnt = nd->path.mnt;
2347 if (should_follow_link(dentry, nd->flags & LOOKUP_FOLLOW)) {
2348 nd->link = *path;
2349 return 1;
2350 }
2351 mntget(path->mnt);
2352 follow_mount(path);
2353 error = 0;
2354 out:
2355 terminate_walk(nd);
2356 return error;
2357 }
2358
2359 /**
2360 * path_mountpoint - look up a path to be umounted
2361 * @dfd: directory file descriptor to start walk from
2362 * @name: full pathname to walk
2363 * @path: pointer to container for result
2364 * @flags: lookup flags
2365 *
2366 * Look up the given name, but don't attempt to revalidate the last component.
2367 * Returns 0 and "path" will be valid on success; Returns error otherwise.
2368 */
2369 static int
2370 path_mountpoint(int dfd, const struct filename *name, struct path *path,
2371 struct nameidata *nd, unsigned int flags)
2372 {
2373 int err = path_init(dfd, name, flags, nd);
2374 if (unlikely(err))
2375 goto out;
2376
2377 err = mountpoint_last(nd, path);
2378 while (err > 0) {
2379 void *cookie;
2380 struct path link = *path;
2381 err = trailing_symlink(&link, nd, &cookie);
2382 if (err)
2383 break;
2384 err = mountpoint_last(nd, path);
2385 put_link(nd, &link, cookie);
2386 }
2387 out:
2388 path_cleanup(nd);
2389 return err;
2390 }
2391
2392 static int
2393 filename_mountpoint(int dfd, struct filename *name, struct path *path,
2394 unsigned int flags)
2395 {
2396 struct nameidata nd;
2397 int error;
2398 if (IS_ERR(name))
2399 return PTR_ERR(name);
2400 error = path_mountpoint(dfd, name, path, &nd, flags | LOOKUP_RCU);
2401 if (unlikely(error == -ECHILD))
2402 error = path_mountpoint(dfd, name, path, &nd, flags);
2403 if (unlikely(error == -ESTALE))
2404 error = path_mountpoint(dfd, name, path, &nd, flags | LOOKUP_REVAL);
2405 if (likely(!error))
2406 audit_inode(name, path->dentry, 0);
2407 putname(name);
2408 return error;
2409 }
2410
2411 /**
2412 * user_path_mountpoint_at - lookup a path from userland in order to umount it
2413 * @dfd: directory file descriptor
2414 * @name: pathname from userland
2415 * @flags: lookup flags
2416 * @path: pointer to container to hold result
2417 *
2418 * A umount is a special case for path walking. We're not actually interested
2419 * in the inode in this situation, and ESTALE errors can be a problem. We
2420 * simply want track down the dentry and vfsmount attached at the mountpoint
2421 * and avoid revalidating the last component.
2422 *
2423 * Returns 0 and populates "path" on success.
2424 */
2425 int
2426 user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags,
2427 struct path *path)
2428 {
2429 return filename_mountpoint(dfd, getname(name), path, flags);
2430 }
2431
2432 int
2433 kern_path_mountpoint(int dfd, const char *name, struct path *path,
2434 unsigned int flags)
2435 {
2436 return filename_mountpoint(dfd, getname_kernel(name), path, flags);
2437 }
2438 EXPORT_SYMBOL(kern_path_mountpoint);
2439
2440 int __check_sticky(struct inode *dir, struct inode *inode)
2441 {
2442 kuid_t fsuid = current_fsuid();
2443
2444 if (uid_eq(inode->i_uid, fsuid))
2445 return 0;
2446 if (uid_eq(dir->i_uid, fsuid))
2447 return 0;
2448 return !capable_wrt_inode_uidgid(inode, CAP_FOWNER);
2449 }
2450 EXPORT_SYMBOL(__check_sticky);
2451
2452 /*
2453 * Check whether we can remove a link victim from directory dir, check
2454 * whether the type of victim is right.
2455 * 1. We can't do it if dir is read-only (done in permission())
2456 * 2. We should have write and exec permissions on dir
2457 * 3. We can't remove anything from append-only dir
2458 * 4. We can't do anything with immutable dir (done in permission())
2459 * 5. If the sticky bit on dir is set we should either
2460 * a. be owner of dir, or
2461 * b. be owner of victim, or
2462 * c. have CAP_FOWNER capability
2463 * 6. If the victim is append-only or immutable we can't do antyhing with
2464 * links pointing to it.
2465 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2466 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2467 * 9. We can't remove a root or mountpoint.
2468 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
2469 * nfs_async_unlink().
2470 */
2471 static int may_delete(struct inode *dir, struct dentry *victim, bool isdir)
2472 {
2473 struct inode *inode = victim->d_inode;
2474 int error;
2475
2476 if (d_is_negative(victim))
2477 return -ENOENT;
2478 BUG_ON(!inode);
2479
2480 BUG_ON(victim->d_parent->d_inode != dir);
2481 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2482
2483 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2484 if (error)
2485 return error;
2486 if (IS_APPEND(dir))
2487 return -EPERM;
2488
2489 if (check_sticky(dir, inode) || IS_APPEND(inode) ||
2490 IS_IMMUTABLE(inode) || IS_SWAPFILE(inode))
2491 return -EPERM;
2492 if (isdir) {
2493 if (!d_is_dir(victim))
2494 return -ENOTDIR;
2495 if (IS_ROOT(victim))
2496 return -EBUSY;
2497 } else if (d_is_dir(victim))
2498 return -EISDIR;
2499 if (IS_DEADDIR(dir))
2500 return -ENOENT;
2501 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2502 return -EBUSY;
2503 return 0;
2504 }
2505
2506 /* Check whether we can create an object with dentry child in directory
2507 * dir.
2508 * 1. We can't do it if child already exists (open has special treatment for
2509 * this case, but since we are inlined it's OK)
2510 * 2. We can't do it if dir is read-only (done in permission())
2511 * 3. We should have write and exec permissions on dir
2512 * 4. We can't do it if dir is immutable (done in permission())
2513 */
2514 static inline int may_create(struct inode *dir, struct dentry *child)
2515 {
2516 audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
2517 if (child->d_inode)
2518 return -EEXIST;
2519 if (IS_DEADDIR(dir))
2520 return -ENOENT;
2521 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2522 }
2523
2524 /*
2525 * p1 and p2 should be directories on the same fs.
2526 */
2527 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2528 {
2529 struct dentry *p;
2530
2531 if (p1 == p2) {
2532 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2533 return NULL;
2534 }
2535
2536 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2537
2538 p = d_ancestor(p2, p1);
2539 if (p) {
2540 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
2541 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
2542 return p;
2543 }
2544
2545 p = d_ancestor(p1, p2);
2546 if (p) {
2547 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2548 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2549 return p;
2550 }
2551
2552 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2553 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT2);
2554 return NULL;
2555 }
2556 EXPORT_SYMBOL(lock_rename);
2557
2558 void unlock_rename(struct dentry *p1, struct dentry *p2)
2559 {
2560 mutex_unlock(&p1->d_inode->i_mutex);
2561 if (p1 != p2) {
2562 mutex_unlock(&p2->d_inode->i_mutex);
2563 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2564 }
2565 }
2566 EXPORT_SYMBOL(unlock_rename);
2567
2568 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2569 bool want_excl)
2570 {
2571 int error = may_create(dir, dentry);
2572 if (error)
2573 return error;
2574
2575 if (!dir->i_op->create)
2576 return -EACCES; /* shouldn't it be ENOSYS? */
2577 mode &= S_IALLUGO;
2578 mode |= S_IFREG;
2579 error = security_inode_create(dir, dentry, mode);
2580 if (error)
2581 return error;
2582 error = dir->i_op->create(dir, dentry, mode, want_excl);
2583 if (!error)
2584 fsnotify_create(dir, dentry);
2585 return error;
2586 }
2587 EXPORT_SYMBOL(vfs_create);
2588
2589 static int may_open(struct path *path, int acc_mode, int flag)
2590 {
2591 struct dentry *dentry = path->dentry;
2592 struct inode *inode = dentry->d_inode;
2593 int error;
2594
2595 /* O_PATH? */
2596 if (!acc_mode)
2597 return 0;
2598
2599 if (!inode)
2600 return -ENOENT;
2601
2602 switch (inode->i_mode & S_IFMT) {
2603 case S_IFLNK:
2604 return -ELOOP;
2605 case S_IFDIR:
2606 if (acc_mode & MAY_WRITE)
2607 return -EISDIR;
2608 break;
2609 case S_IFBLK:
2610 case S_IFCHR:
2611 if (path->mnt->mnt_flags & MNT_NODEV)
2612 return -EACCES;
2613 /*FALLTHRU*/
2614 case S_IFIFO:
2615 case S_IFSOCK:
2616 flag &= ~O_TRUNC;
2617 break;
2618 }
2619
2620 error = inode_permission(inode, acc_mode);
2621 if (error)
2622 return error;
2623
2624 /*
2625 * An append-only file must be opened in append mode for writing.
2626 */
2627 if (IS_APPEND(inode)) {
2628 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2629 return -EPERM;
2630 if (flag & O_TRUNC)
2631 return -EPERM;
2632 }
2633
2634 /* O_NOATIME can only be set by the owner or superuser */
2635 if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2636 return -EPERM;
2637
2638 return 0;
2639 }
2640
2641 static int handle_truncate(struct file *filp)
2642 {
2643 struct path *path = &filp->f_path;
2644 struct inode *inode = path->dentry->d_inode;
2645 int error = get_write_access(inode);
2646 if (error)
2647 return error;
2648 /*
2649 * Refuse to truncate files with mandatory locks held on them.
2650 */
2651 error = locks_verify_locked(filp);
2652 if (!error)
2653 error = security_path_truncate(path);
2654 if (!error) {
2655 error = do_truncate(path->dentry, 0,
2656 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2657 filp);
2658 }
2659 put_write_access(inode);
2660 return error;
2661 }
2662
2663 static inline int open_to_namei_flags(int flag)
2664 {
2665 if ((flag & O_ACCMODE) == 3)
2666 flag--;
2667 return flag;
2668 }
2669
2670 static int may_o_create(struct path *dir, struct dentry *dentry, umode_t mode)
2671 {
2672 int error = security_path_mknod(dir, dentry, mode, 0);
2673 if (error)
2674 return error;
2675
2676 error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
2677 if (error)
2678 return error;
2679
2680 return security_inode_create(dir->dentry->d_inode, dentry, mode);
2681 }
2682
2683 /*
2684 * Attempt to atomically look up, create and open a file from a negative
2685 * dentry.
2686 *
2687 * Returns 0 if successful. The file will have been created and attached to
2688 * @file by the filesystem calling finish_open().
2689 *
2690 * Returns 1 if the file was looked up only or didn't need creating. The
2691 * caller will need to perform the open themselves. @path will have been
2692 * updated to point to the new dentry. This may be negative.
2693 *
2694 * Returns an error code otherwise.
2695 */
2696 static int atomic_open(struct nameidata *nd, struct dentry *dentry,
2697 struct path *path, struct file *file,
2698 const struct open_flags *op,
2699 bool got_write, bool need_lookup,
2700 int *opened)
2701 {
2702 struct inode *dir = nd->path.dentry->d_inode;
2703 unsigned open_flag = open_to_namei_flags(op->open_flag);
2704 umode_t mode;
2705 int error;
2706 int acc_mode;
2707 int create_error = 0;
2708 struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
2709 bool excl;
2710
2711 BUG_ON(dentry->d_inode);
2712
2713 /* Don't create child dentry for a dead directory. */
2714 if (unlikely(IS_DEADDIR(dir))) {
2715 error = -ENOENT;
2716 goto out;
2717 }
2718
2719 mode = op->mode;
2720 if ((open_flag & O_CREAT) && !IS_POSIXACL(dir))
2721 mode &= ~current_umask();
2722
2723 excl = (open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT);
2724 if (excl)
2725 open_flag &= ~O_TRUNC;
2726
2727 /*
2728 * Checking write permission is tricky, bacuse we don't know if we are
2729 * going to actually need it: O_CREAT opens should work as long as the
2730 * file exists. But checking existence breaks atomicity. The trick is
2731 * to check access and if not granted clear O_CREAT from the flags.
2732 *
2733 * Another problem is returing the "right" error value (e.g. for an
2734 * O_EXCL open we want to return EEXIST not EROFS).
2735 */
2736 if (((open_flag & (O_CREAT | O_TRUNC)) ||
2737 (open_flag & O_ACCMODE) != O_RDONLY) && unlikely(!got_write)) {
2738 if (!(open_flag & O_CREAT)) {
2739 /*
2740 * No O_CREATE -> atomicity not a requirement -> fall
2741 * back to lookup + open
2742 */
2743 goto no_open;
2744 } else if (open_flag & (O_EXCL | O_TRUNC)) {
2745 /* Fall back and fail with the right error */
2746 create_error = -EROFS;
2747 goto no_open;
2748 } else {
2749 /* No side effects, safe to clear O_CREAT */
2750 create_error = -EROFS;
2751 open_flag &= ~O_CREAT;
2752 }
2753 }
2754
2755 if (open_flag & O_CREAT) {
2756 error = may_o_create(&nd->path, dentry, mode);
2757 if (error) {
2758 create_error = error;
2759 if (open_flag & O_EXCL)
2760 goto no_open;
2761 open_flag &= ~O_CREAT;
2762 }
2763 }
2764
2765 if (nd->flags & LOOKUP_DIRECTORY)
2766 open_flag |= O_DIRECTORY;
2767
2768 file->f_path.dentry = DENTRY_NOT_SET;
2769 file->f_path.mnt = nd->path.mnt;
2770 error = dir->i_op->atomic_open(dir, dentry, file, open_flag, mode,
2771 opened);
2772 if (error < 0) {
2773 if (create_error && error == -ENOENT)
2774 error = create_error;
2775 goto out;
2776 }
2777
2778 if (error) { /* returned 1, that is */
2779 if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
2780 error = -EIO;
2781 goto out;
2782 }
2783 if (file->f_path.dentry) {
2784 dput(dentry);
2785 dentry = file->f_path.dentry;
2786 }
2787 if (*opened & FILE_CREATED)
2788 fsnotify_create(dir, dentry);
2789 if (!dentry->d_inode) {
2790 WARN_ON(*opened & FILE_CREATED);
2791 if (create_error) {
2792 error = create_error;
2793 goto out;
2794 }
2795 } else {
2796 if (excl && !(*opened & FILE_CREATED)) {
2797 error = -EEXIST;
2798 goto out;
2799 }
2800 }
2801 goto looked_up;
2802 }
2803
2804 /*
2805 * We didn't have the inode before the open, so check open permission
2806 * here.
2807 */
2808 acc_mode = op->acc_mode;
2809 if (*opened & FILE_CREATED) {
2810 WARN_ON(!(open_flag & O_CREAT));
2811 fsnotify_create(dir, dentry);
2812 acc_mode = MAY_OPEN;
2813 }
2814 error = may_open(&file->f_path, acc_mode, open_flag);
2815 if (error)
2816 fput(file);
2817
2818 out:
2819 dput(dentry);
2820 return error;
2821
2822 no_open:
2823 if (need_lookup) {
2824 dentry = lookup_real(dir, dentry, nd->flags);
2825 if (IS_ERR(dentry))
2826 return PTR_ERR(dentry);
2827
2828 if (create_error) {
2829 int open_flag = op->open_flag;
2830
2831 error = create_error;
2832 if ((open_flag & O_EXCL)) {
2833 if (!dentry->d_inode)
2834 goto out;
2835 } else if (!dentry->d_inode) {
2836 goto out;
2837 } else if ((open_flag & O_TRUNC) &&
2838 d_is_reg(dentry)) {
2839 goto out;
2840 }
2841 /* will fail later, go on to get the right error */
2842 }
2843 }
2844 looked_up:
2845 path->dentry = dentry;
2846 path->mnt = nd->path.mnt;
2847 return 1;
2848 }
2849
2850 /*
2851 * Look up and maybe create and open the last component.
2852 *
2853 * Must be called with i_mutex held on parent.
2854 *
2855 * Returns 0 if the file was successfully atomically created (if necessary) and
2856 * opened. In this case the file will be returned attached to @file.
2857 *
2858 * Returns 1 if the file was not completely opened at this time, though lookups
2859 * and creations will have been performed and the dentry returned in @path will
2860 * be positive upon return if O_CREAT was specified. If O_CREAT wasn't
2861 * specified then a negative dentry may be returned.
2862 *
2863 * An error code is returned otherwise.
2864 *
2865 * FILE_CREATE will be set in @*opened if the dentry was created and will be
2866 * cleared otherwise prior to returning.
2867 */
2868 static int lookup_open(struct nameidata *nd, struct path *path,
2869 struct file *file,
2870 const struct open_flags *op,
2871 bool got_write, int *opened)
2872 {
2873 struct dentry *dir = nd->path.dentry;
2874 struct inode *dir_inode = dir->d_inode;
2875 struct dentry *dentry;
2876 int error;
2877 bool need_lookup;
2878
2879 *opened &= ~FILE_CREATED;
2880 dentry = lookup_dcache(&nd->last, dir, nd->flags, &need_lookup);
2881 if (IS_ERR(dentry))
2882 return PTR_ERR(dentry);
2883
2884 /* Cached positive dentry: will open in f_op->open */
2885 if (!need_lookup && dentry->d_inode)
2886 goto out_no_open;
2887
2888 if ((nd->flags & LOOKUP_OPEN) && dir_inode->i_op->atomic_open) {
2889 return atomic_open(nd, dentry, path, file, op, got_write,
2890 need_lookup, opened);
2891 }
2892
2893 if (need_lookup) {
2894 BUG_ON(dentry->d_inode);
2895
2896 dentry = lookup_real(dir_inode, dentry, nd->flags);
2897 if (IS_ERR(dentry))
2898 return PTR_ERR(dentry);
2899 }
2900
2901 /* Negative dentry, just create the file */
2902 if (!dentry->d_inode && (op->open_flag & O_CREAT)) {
2903 umode_t mode = op->mode;
2904 if (!IS_POSIXACL(dir->d_inode))
2905 mode &= ~current_umask();
2906 /*
2907 * This write is needed to ensure that a
2908 * rw->ro transition does not occur between
2909 * the time when the file is created and when
2910 * a permanent write count is taken through
2911 * the 'struct file' in finish_open().
2912 */
2913 if (!got_write) {
2914 error = -EROFS;
2915 goto out_dput;
2916 }
2917 *opened |= FILE_CREATED;
2918 error = security_path_mknod(&nd->path, dentry, mode, 0);
2919 if (error)
2920 goto out_dput;
2921 error = vfs_create(dir->d_inode, dentry, mode,
2922 nd->flags & LOOKUP_EXCL);
2923 if (error)
2924 goto out_dput;
2925 }
2926 out_no_open:
2927 path->dentry = dentry;
2928 path->mnt = nd->path.mnt;
2929 return 1;
2930
2931 out_dput:
2932 dput(dentry);
2933 return error;
2934 }
2935
2936 /*
2937 * Handle the last step of open()
2938 */
2939 static int do_last(struct nameidata *nd,
2940 struct file *file, const struct open_flags *op,
2941 int *opened, struct filename *name)
2942 {
2943 struct dentry *dir = nd->path.dentry;
2944 int open_flag = op->open_flag;
2945 bool will_truncate = (open_flag & O_TRUNC) != 0;
2946 bool got_write = false;
2947 int acc_mode = op->acc_mode;
2948 struct inode *inode;
2949 struct path save_parent = { .dentry = NULL, .mnt = NULL };
2950 struct path path;
2951 bool retried = false;
2952 int error;
2953
2954 nd->flags &= ~LOOKUP_PARENT;
2955 nd->flags |= op->intent;
2956
2957 if (nd->last_type != LAST_NORM) {
2958 error = handle_dots(nd, nd->last_type);
2959 if (error)
2960 return error;
2961 goto finish_open;
2962 }
2963
2964 if (!(open_flag & O_CREAT)) {
2965 if (nd->last.name[nd->last.len])
2966 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2967 /* we _can_ be in RCU mode here */
2968 error = lookup_fast(nd, &path, &inode);
2969 if (likely(!error))
2970 goto finish_lookup;
2971
2972 if (error < 0)
2973 goto out;
2974
2975 BUG_ON(nd->inode != dir->d_inode);
2976 } else {
2977 /* create side of things */
2978 /*
2979 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED
2980 * has been cleared when we got to the last component we are
2981 * about to look up
2982 */
2983 error = complete_walk(nd);
2984 if (error)
2985 return error;
2986
2987 audit_inode(name, dir, LOOKUP_PARENT);
2988 error = -EISDIR;
2989 /* trailing slashes? */
2990 if (nd->last.name[nd->last.len])
2991 goto out;
2992 }
2993
2994 retry_lookup:
2995 if (op->open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
2996 error = mnt_want_write(nd->path.mnt);
2997 if (!error)
2998 got_write = true;
2999 /*
3000 * do _not_ fail yet - we might not need that or fail with
3001 * a different error; let lookup_open() decide; we'll be
3002 * dropping this one anyway.
3003 */
3004 }
3005 mutex_lock(&dir->d_inode->i_mutex);
3006 error = lookup_open(nd, &path, file, op, got_write, opened);
3007 mutex_unlock(&dir->d_inode->i_mutex);
3008
3009 if (error <= 0) {
3010 if (error)
3011 goto out;
3012
3013 if ((*opened & FILE_CREATED) ||
3014 !S_ISREG(file_inode(file)->i_mode))
3015 will_truncate = false;
3016
3017 audit_inode(name, file->f_path.dentry, 0);
3018 goto opened;
3019 }
3020
3021 if (*opened & FILE_CREATED) {
3022 /* Don't check for write permission, don't truncate */
3023 open_flag &= ~O_TRUNC;
3024 will_truncate = false;
3025 acc_mode = MAY_OPEN;
3026 path_to_nameidata(&path, nd);
3027 goto finish_open_created;
3028 }
3029
3030 /*
3031 * create/update audit record if it already exists.
3032 */
3033 if (d_is_positive(path.dentry))
3034 audit_inode(name, path.dentry, 0);
3035
3036 /*
3037 * If atomic_open() acquired write access it is dropped now due to
3038 * possible mount and symlink following (this might be optimized away if
3039 * necessary...)
3040 */
3041 if (got_write) {
3042 mnt_drop_write(nd->path.mnt);
3043 got_write = false;
3044 }
3045
3046 error = -EEXIST;
3047 if ((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))
3048 goto exit_dput;
3049
3050 error = follow_managed(&path, nd->flags);
3051 if (error < 0)
3052 goto exit_dput;
3053
3054 if (error)
3055 nd->flags |= LOOKUP_JUMPED;
3056
3057 BUG_ON(nd->flags & LOOKUP_RCU);
3058 inode = path.dentry->d_inode;
3059 error = -ENOENT;
3060 if (d_is_negative(path.dentry)) {
3061 path_to_nameidata(&path, nd);
3062 goto out;
3063 }
3064 finish_lookup:
3065 if (should_follow_link(path.dentry, nd->flags & LOOKUP_FOLLOW)) {
3066 if (nd->flags & LOOKUP_RCU) {
3067 if (unlikely(nd->path.mnt != path.mnt ||
3068 unlazy_walk(nd, path.dentry))) {
3069 error = -ECHILD;
3070 goto out;
3071 }
3072 }
3073 BUG_ON(inode != path.dentry->d_inode);
3074 nd->link = path;
3075 return 1;
3076 }
3077
3078 if (unlikely(d_is_symlink(path.dentry)) && !(open_flag & O_PATH)) {
3079 path_to_nameidata(&path, nd);
3080 error = -ELOOP;
3081 goto out;
3082 }
3083
3084 if ((nd->flags & LOOKUP_RCU) || nd->path.mnt != path.mnt) {
3085 path_to_nameidata(&path, nd);
3086 } else {
3087 save_parent.dentry = nd->path.dentry;
3088 save_parent.mnt = mntget(path.mnt);
3089 nd->path.dentry = path.dentry;
3090
3091 }
3092 nd->inode = inode;
3093 /* Why this, you ask? _Now_ we might have grown LOOKUP_JUMPED... */
3094 finish_open:
3095 error = complete_walk(nd);
3096 if (error) {
3097 path_put(&save_parent);
3098 return error;
3099 }
3100 audit_inode(name, nd->path.dentry, 0);
3101 error = -EISDIR;
3102 if ((open_flag & O_CREAT) && d_is_dir(nd->path.dentry))
3103 goto out;
3104 error = -ENOTDIR;
3105 if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3106 goto out;
3107 if (!d_is_reg(nd->path.dentry))
3108 will_truncate = false;
3109
3110 if (will_truncate) {
3111 error = mnt_want_write(nd->path.mnt);
3112 if (error)
3113 goto out;
3114 got_write = true;
3115 }
3116 finish_open_created:
3117 error = may_open(&nd->path, acc_mode, open_flag);
3118 if (error)
3119 goto out;
3120
3121 BUG_ON(*opened & FILE_OPENED); /* once it's opened, it's opened */
3122 error = vfs_open(&nd->path, file, current_cred());
3123 if (!error) {
3124 *opened |= FILE_OPENED;
3125 } else {
3126 if (error == -EOPENSTALE)
3127 goto stale_open;
3128 goto out;
3129 }
3130 opened:
3131 error = open_check_o_direct(file);
3132 if (error)
3133 goto exit_fput;
3134 error = ima_file_check(file, op->acc_mode, *opened);
3135 if (error)
3136 goto exit_fput;
3137
3138 if (will_truncate) {
3139 error = handle_truncate(file);
3140 if (error)
3141 goto exit_fput;
3142 }
3143 out:
3144 if (got_write)
3145 mnt_drop_write(nd->path.mnt);
3146 path_put(&save_parent);
3147 terminate_walk(nd);
3148 return error;
3149
3150 exit_dput:
3151 path_put_conditional(&path, nd);
3152 goto out;
3153 exit_fput:
3154 fput(file);
3155 goto out;
3156
3157 stale_open:
3158 /* If no saved parent or already retried then can't retry */
3159 if (!save_parent.dentry || retried)
3160 goto out;
3161
3162 BUG_ON(save_parent.dentry != dir);
3163 path_put(&nd->path);
3164 nd->path = save_parent;
3165 nd->inode = dir->d_inode;
3166 save_parent.mnt = NULL;
3167 save_parent.dentry = NULL;
3168 if (got_write) {
3169 mnt_drop_write(nd->path.mnt);
3170 got_write = false;
3171 }
3172 retried = true;
3173 goto retry_lookup;
3174 }
3175
3176 static int do_tmpfile(int dfd, struct filename *pathname,
3177 struct nameidata *nd, int flags,
3178 const struct open_flags *op,
3179 struct file *file, int *opened)
3180 {
3181 static const struct qstr name = QSTR_INIT("/", 1);
3182 struct dentry *dentry, *child;
3183 struct inode *dir;
3184 int error = path_lookupat(dfd, pathname,
3185 flags | LOOKUP_DIRECTORY, nd);
3186 if (unlikely(error))
3187 return error;
3188 error = mnt_want_write(nd->path.mnt);
3189 if (unlikely(error))
3190 goto out;
3191 /* we want directory to be writable */
3192 error = inode_permission(nd->inode, MAY_WRITE | MAY_EXEC);
3193 if (error)
3194 goto out2;
3195 dentry = nd->path.dentry;
3196 dir = dentry->d_inode;
3197 if (!dir->i_op->tmpfile) {
3198 error = -EOPNOTSUPP;
3199 goto out2;
3200 }
3201 child = d_alloc(dentry, &name);
3202 if (unlikely(!child)) {
3203 error = -ENOMEM;
3204 goto out2;
3205 }
3206 nd->flags &= ~LOOKUP_DIRECTORY;
3207 nd->flags |= op->intent;
3208 dput(nd->path.dentry);
3209 nd->path.dentry = child;
3210 error = dir->i_op->tmpfile(dir, nd->path.dentry, op->mode);
3211 if (error)
3212 goto out2;
3213 audit_inode(pathname, nd->path.dentry, 0);
3214 /* Don't check for other permissions, the inode was just created */
3215 error = may_open(&nd->path, MAY_OPEN, op->open_flag);
3216 if (error)
3217 goto out2;
3218 file->f_path.mnt = nd->path.mnt;
3219 error = finish_open(file, nd->path.dentry, NULL, opened);
3220 if (error)
3221 goto out2;
3222 error = open_check_o_direct(file);
3223 if (error) {
3224 fput(file);
3225 } else if (!(op->open_flag & O_EXCL)) {
3226 struct inode *inode = file_inode(file);
3227 spin_lock(&inode->i_lock);
3228 inode->i_state |= I_LINKABLE;
3229 spin_unlock(&inode->i_lock);
3230 }
3231 out2:
3232 mnt_drop_write(nd->path.mnt);
3233 out:
3234 path_put(&nd->path);
3235 return error;
3236 }
3237
3238 static struct file *path_openat(int dfd, struct filename *pathname,
3239 struct nameidata *nd, const struct open_flags *op, int flags)
3240 {
3241 struct file *file;
3242 int opened = 0;
3243 int error;
3244
3245 file = get_empty_filp();
3246 if (IS_ERR(file))
3247 return file;
3248
3249 file->f_flags = op->open_flag;
3250
3251 if (unlikely(file->f_flags & __O_TMPFILE)) {
3252 error = do_tmpfile(dfd, pathname, nd, flags, op, file, &opened);
3253 goto out2;
3254 }
3255
3256 error = path_init(dfd, pathname, flags, nd);
3257 if (unlikely(error))
3258 goto out;
3259
3260 error = do_last(nd, file, op, &opened, pathname);
3261 while (unlikely(error > 0)) { /* trailing symlink */
3262 struct path link = nd->link;
3263 void *cookie;
3264 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3265 error = trailing_symlink(&link, nd, &cookie);
3266 if (unlikely(error))
3267 break;
3268 error = do_last(nd, file, op, &opened, pathname);
3269 put_link(nd, &link, cookie);
3270 }
3271 out:
3272 path_cleanup(nd);
3273 out2:
3274 if (!(opened & FILE_OPENED)) {
3275 BUG_ON(!error);
3276 put_filp(file);
3277 }
3278 if (unlikely(error)) {
3279 if (error == -EOPENSTALE) {
3280 if (flags & LOOKUP_RCU)
3281 error = -ECHILD;
3282 else
3283 error = -ESTALE;
3284 }
3285 file = ERR_PTR(error);
3286 }
3287 return file;
3288 }
3289
3290 struct file *do_filp_open(int dfd, struct filename *pathname,
3291 const struct open_flags *op)
3292 {
3293 struct nameidata nd;
3294 int flags = op->lookup_flags;
3295 struct file *filp;
3296
3297 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_RCU);
3298 if (unlikely(filp == ERR_PTR(-ECHILD)))
3299 filp = path_openat(dfd, pathname, &nd, op, flags);
3300 if (unlikely(filp == ERR_PTR(-ESTALE)))
3301 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_REVAL);
3302 return filp;
3303 }
3304
3305 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
3306 const char *name, const struct open_flags *op)
3307 {
3308 struct nameidata nd;
3309 struct file *file;
3310 struct filename *filename;
3311 int flags = op->lookup_flags | LOOKUP_ROOT;
3312
3313 nd.root.mnt = mnt;
3314 nd.root.dentry = dentry;
3315
3316 if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN)
3317 return ERR_PTR(-ELOOP);
3318
3319 filename = getname_kernel(name);
3320 if (unlikely(IS_ERR(filename)))
3321 return ERR_CAST(filename);
3322
3323 file = path_openat(-1, filename, &nd, op, flags | LOOKUP_RCU);
3324 if (unlikely(file == ERR_PTR(-ECHILD)))
3325 file = path_openat(-1, filename, &nd, op, flags);
3326 if (unlikely(file == ERR_PTR(-ESTALE)))
3327 file = path_openat(-1, filename, &nd, op, flags | LOOKUP_REVAL);
3328 putname(filename);
3329 return file;
3330 }
3331
3332 static struct dentry *filename_create(int dfd, struct filename *name,
3333 struct path *path, unsigned int lookup_flags)
3334 {
3335 struct dentry *dentry = ERR_PTR(-EEXIST);
3336 struct nameidata nd;
3337 int err2;
3338 int error;
3339 bool is_dir = (lookup_flags & LOOKUP_DIRECTORY);
3340
3341 /*
3342 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
3343 * other flags passed in are ignored!
3344 */
3345 lookup_flags &= LOOKUP_REVAL;
3346
3347 error = filename_lookup(dfd, name, LOOKUP_PARENT|lookup_flags, &nd);
3348 if (error)
3349 return ERR_PTR(error);
3350
3351 /*
3352 * Yucky last component or no last component at all?
3353 * (foo/., foo/.., /////)
3354 */
3355 if (nd.last_type != LAST_NORM)
3356 goto out;
3357 nd.flags &= ~LOOKUP_PARENT;
3358 nd.flags |= LOOKUP_CREATE | LOOKUP_EXCL;
3359
3360 /* don't fail immediately if it's r/o, at least try to report other errors */
3361 err2 = mnt_want_write(nd.path.mnt);
3362 /*
3363 * Do the final lookup.
3364 */
3365 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3366 dentry = __lookup_hash(&nd.last, nd.path.dentry, nd.flags);
3367 if (IS_ERR(dentry))
3368 goto unlock;
3369
3370 error = -EEXIST;
3371 if (d_is_positive(dentry))
3372 goto fail;
3373
3374 /*
3375 * Special case - lookup gave negative, but... we had foo/bar/
3376 * From the vfs_mknod() POV we just have a negative dentry -
3377 * all is fine. Let's be bastards - you had / on the end, you've
3378 * been asking for (non-existent) directory. -ENOENT for you.
3379 */
3380 if (unlikely(!is_dir && nd.last.name[nd.last.len])) {
3381 error = -ENOENT;
3382 goto fail;
3383 }
3384 if (unlikely(err2)) {
3385 error = err2;
3386 goto fail;
3387 }
3388 *path = nd.path;
3389 return dentry;
3390 fail:
3391 dput(dentry);
3392 dentry = ERR_PTR(error);
3393 unlock:
3394 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3395 if (!err2)
3396 mnt_drop_write(nd.path.mnt);
3397 out:
3398 path_put(&nd.path);
3399 return dentry;
3400 }
3401
3402 struct dentry *kern_path_create(int dfd, const char *pathname,
3403 struct path *path, unsigned int lookup_flags)
3404 {
3405 struct filename *filename = getname_kernel(pathname);
3406 struct dentry *res;
3407
3408 if (IS_ERR(filename))
3409 return ERR_CAST(filename);
3410 res = filename_create(dfd, filename, path, lookup_flags);
3411 putname(filename);
3412 return res;
3413 }
3414 EXPORT_SYMBOL(kern_path_create);
3415
3416 void done_path_create(struct path *path, struct dentry *dentry)
3417 {
3418 dput(dentry);
3419 mutex_unlock(&path->dentry->d_inode->i_mutex);
3420 mnt_drop_write(path->mnt);
3421 path_put(path);
3422 }
3423 EXPORT_SYMBOL(done_path_create);
3424
3425 struct dentry *user_path_create(int dfd, const char __user *pathname,
3426 struct path *path, unsigned int lookup_flags)
3427 {
3428 struct filename *tmp = getname(pathname);
3429 struct dentry *res;
3430 if (IS_ERR(tmp))
3431 return ERR_CAST(tmp);
3432 res = filename_create(dfd, tmp, path, lookup_flags);
3433 putname(tmp);
3434 return res;
3435 }
3436 EXPORT_SYMBOL(user_path_create);
3437
3438 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3439 {
3440 int error = may_create(dir, dentry);
3441
3442 if (error)
3443 return error;
3444
3445 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
3446 return -EPERM;
3447
3448 if (!dir->i_op->mknod)
3449 return -EPERM;
3450
3451 error = devcgroup_inode_mknod(mode, dev);
3452 if (error)
3453 return error;
3454
3455 error = security_inode_mknod(dir, dentry, mode, dev);
3456 if (error)
3457 return error;
3458
3459 error = dir->i_op->mknod(dir, dentry, mode, dev);
3460 if (!error)
3461 fsnotify_create(dir, dentry);
3462 return error;
3463 }
3464 EXPORT_SYMBOL(vfs_mknod);
3465
3466 static int may_mknod(umode_t mode)
3467 {
3468 switch (mode & S_IFMT) {
3469 case S_IFREG:
3470 case S_IFCHR:
3471 case S_IFBLK:
3472 case S_IFIFO:
3473 case S_IFSOCK:
3474 case 0: /* zero mode translates to S_IFREG */
3475 return 0;
3476 case S_IFDIR:
3477 return -EPERM;
3478 default:
3479 return -EINVAL;
3480 }
3481 }
3482
3483 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3484 unsigned, dev)
3485 {
3486 struct dentry *dentry;
3487 struct path path;
3488 int error;
3489 unsigned int lookup_flags = 0;
3490
3491 error = may_mknod(mode);
3492 if (error)
3493 return error;
3494 retry:
3495 dentry = user_path_create(dfd, filename, &path, lookup_flags);
3496 if (IS_ERR(dentry))
3497 return PTR_ERR(dentry);
3498
3499 if (!IS_POSIXACL(path.dentry->d_inode))
3500 mode &= ~current_umask();
3501 error = security_path_mknod(&path, dentry, mode, dev);
3502 if (error)
3503 goto out;
3504 switch (mode & S_IFMT) {
3505 case 0: case S_IFREG:
3506 error = vfs_create(path.dentry->d_inode,dentry,mode,true);
3507 break;
3508 case S_IFCHR: case S_IFBLK:
3509 error = vfs_mknod(path.dentry->d_inode,dentry,mode,
3510 new_decode_dev(dev));
3511 break;
3512 case S_IFIFO: case S_IFSOCK:
3513 error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
3514 break;
3515 }
3516 out:
3517 done_path_create(&path, dentry);
3518 if (retry_estale(error, lookup_flags)) {
3519 lookup_flags |= LOOKUP_REVAL;
3520 goto retry;
3521 }
3522 return error;
3523 }
3524
3525 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3526 {
3527 return sys_mknodat(AT_FDCWD, filename, mode, dev);
3528 }
3529
3530 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3531 {
3532 int error = may_create(dir, dentry);
3533 unsigned max_links = dir->i_sb->s_max_links;
3534
3535 if (error)
3536 return error;
3537
3538 if (!dir->i_op->mkdir)
3539 return -EPERM;
3540
3541 mode &= (S_IRWXUGO|S_ISVTX);
3542 error = security_inode_mkdir(dir, dentry, mode);
3543 if (error)
3544 return error;
3545
3546 if (max_links && dir->i_nlink >= max_links)
3547 return -EMLINK;
3548
3549 error = dir->i_op->mkdir(dir, dentry, mode);
3550 if (!error)
3551 fsnotify_mkdir(dir, dentry);
3552 return error;
3553 }
3554 EXPORT_SYMBOL(vfs_mkdir);
3555
3556 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3557 {
3558 struct dentry *dentry;
3559 struct path path;
3560 int error;
3561 unsigned int lookup_flags = LOOKUP_DIRECTORY;
3562
3563 retry:
3564 dentry = user_path_create(dfd, pathname, &path, lookup_flags);
3565 if (IS_ERR(dentry))
3566 return PTR_ERR(dentry);
3567
3568 if (!IS_POSIXACL(path.dentry->d_inode))
3569 mode &= ~current_umask();
3570 error = security_path_mkdir(&path, dentry, mode);
3571 if (!error)
3572 error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
3573 done_path_create(&path, dentry);
3574 if (retry_estale(error, lookup_flags)) {
3575 lookup_flags |= LOOKUP_REVAL;
3576 goto retry;
3577 }
3578 return error;
3579 }
3580
3581 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3582 {
3583 return sys_mkdirat(AT_FDCWD, pathname, mode);
3584 }
3585
3586 /*
3587 * The dentry_unhash() helper will try to drop the dentry early: we
3588 * should have a usage count of 1 if we're the only user of this
3589 * dentry, and if that is true (possibly after pruning the dcache),
3590 * then we drop the dentry now.
3591 *
3592 * A low-level filesystem can, if it choses, legally
3593 * do a
3594 *
3595 * if (!d_unhashed(dentry))
3596 * return -EBUSY;
3597 *
3598 * if it cannot handle the case of removing a directory
3599 * that is still in use by something else..
3600 */
3601 void dentry_unhash(struct dentry *dentry)
3602 {
3603 shrink_dcache_parent(dentry);
3604 spin_lock(&dentry->d_lock);
3605 if (dentry->d_lockref.count == 1)
3606 __d_drop(dentry);
3607 spin_unlock(&dentry->d_lock);
3608 }
3609 EXPORT_SYMBOL(dentry_unhash);
3610
3611 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
3612 {
3613 int error = may_delete(dir, dentry, 1);
3614
3615 if (error)
3616 return error;
3617
3618 if (!dir->i_op->rmdir)
3619 return -EPERM;
3620
3621 dget(dentry);
3622 mutex_lock(&dentry->d_inode->i_mutex);
3623
3624 error = -EBUSY;
3625 if (is_local_mountpoint(dentry))
3626 goto out;
3627
3628 error = security_inode_rmdir(dir, dentry);
3629 if (error)
3630 goto out;
3631
3632 shrink_dcache_parent(dentry);
3633 error = dir->i_op->rmdir(dir, dentry);
3634 if (error)
3635 goto out;
3636
3637 dentry->d_inode->i_flags |= S_DEAD;
3638 dont_mount(dentry);
3639 detach_mounts(dentry);
3640
3641 out:
3642 mutex_unlock(&dentry->d_inode->i_mutex);
3643 dput(dentry);
3644 if (!error)
3645 d_delete(dentry);
3646 return error;
3647 }
3648 EXPORT_SYMBOL(vfs_rmdir);
3649
3650 static long do_rmdir(int dfd, const char __user *pathname)
3651 {
3652 int error = 0;
3653 struct filename *name;
3654 struct dentry *dentry;
3655 struct path path;
3656 struct qstr last;
3657 int type;
3658 unsigned int lookup_flags = 0;
3659 retry:
3660 name = user_path_parent(dfd, pathname,
3661 &path, &last, &type, lookup_flags);
3662 if (IS_ERR(name))
3663 return PTR_ERR(name);
3664
3665 switch (type) {
3666 case LAST_DOTDOT:
3667 error = -ENOTEMPTY;
3668 goto exit1;
3669 case LAST_DOT:
3670 error = -EINVAL;
3671 goto exit1;
3672 case LAST_ROOT:
3673 error = -EBUSY;
3674 goto exit1;
3675 }
3676
3677 error = mnt_want_write(path.mnt);
3678 if (error)
3679 goto exit1;
3680
3681 mutex_lock_nested(&path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3682 dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3683 error = PTR_ERR(dentry);
3684 if (IS_ERR(dentry))
3685 goto exit2;
3686 if (!dentry->d_inode) {
3687 error = -ENOENT;
3688 goto exit3;
3689 }
3690 error = security_path_rmdir(&path, dentry);
3691 if (error)
3692 goto exit3;
3693 error = vfs_rmdir(path.dentry->d_inode, dentry);
3694 exit3:
3695 dput(dentry);
3696 exit2:
3697 mutex_unlock(&path.dentry->d_inode->i_mutex);
3698 mnt_drop_write(path.mnt);
3699 exit1:
3700 path_put(&path);
3701 putname(name);
3702 if (retry_estale(error, lookup_flags)) {
3703 lookup_flags |= LOOKUP_REVAL;
3704 goto retry;
3705 }
3706 return error;
3707 }
3708
3709 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3710 {
3711 return do_rmdir(AT_FDCWD, pathname);
3712 }
3713
3714 /**
3715 * vfs_unlink - unlink a filesystem object
3716 * @dir: parent directory
3717 * @dentry: victim
3718 * @delegated_inode: returns victim inode, if the inode is delegated.
3719 *
3720 * The caller must hold dir->i_mutex.
3721 *
3722 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
3723 * return a reference to the inode in delegated_inode. The caller
3724 * should then break the delegation on that inode and retry. Because
3725 * breaking a delegation may take a long time, the caller should drop
3726 * dir->i_mutex before doing so.
3727 *
3728 * Alternatively, a caller may pass NULL for delegated_inode. This may
3729 * be appropriate for callers that expect the underlying filesystem not
3730 * to be NFS exported.
3731 */
3732 int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode)
3733 {
3734 struct inode *target = dentry->d_inode;
3735 int error = may_delete(dir, dentry, 0);
3736
3737 if (error)
3738 return error;
3739
3740 if (!dir->i_op->unlink)
3741 return -EPERM;
3742
3743 mutex_lock(&target->i_mutex);
3744 if (is_local_mountpoint(dentry))
3745 error = -EBUSY;
3746 else {
3747 error = security_inode_unlink(dir, dentry);
3748 if (!error) {
3749 error = try_break_deleg(target, delegated_inode);
3750 if (error)
3751 goto out;
3752 error = dir->i_op->unlink(dir, dentry);
3753 if (!error) {
3754 dont_mount(dentry);
3755 detach_mounts(dentry);
3756 }
3757 }
3758 }
3759 out:
3760 mutex_unlock(&target->i_mutex);
3761
3762 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
3763 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
3764 fsnotify_link_count(target);
3765 d_delete(dentry);
3766 }
3767
3768 return error;
3769 }
3770 EXPORT_SYMBOL(vfs_unlink);
3771
3772 /*
3773 * Make sure that the actual truncation of the file will occur outside its
3774 * directory's i_mutex. Truncate can take a long time if there is a lot of
3775 * writeout happening, and we don't want to prevent access to the directory
3776 * while waiting on the I/O.
3777 */
3778 static long do_unlinkat(int dfd, const char __user *pathname)
3779 {
3780 int error;
3781 struct filename *name;
3782 struct dentry *dentry;
3783 struct path path;
3784 struct qstr last;
3785 int type;
3786 struct inode *inode = NULL;
3787 struct inode *delegated_inode = NULL;
3788 unsigned int lookup_flags = 0;
3789 retry:
3790 name = user_path_parent(dfd, pathname,
3791 &path, &last, &type, lookup_flags);
3792 if (IS_ERR(name))
3793 return PTR_ERR(name);
3794
3795 error = -EISDIR;
3796 if (type != LAST_NORM)
3797 goto exit1;
3798
3799 error = mnt_want_write(path.mnt);
3800 if (error)
3801 goto exit1;
3802 retry_deleg:
3803 mutex_lock_nested(&path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3804 dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3805 error = PTR_ERR(dentry);
3806 if (!IS_ERR(dentry)) {
3807 /* Why not before? Because we want correct error value */
3808 if (last.name[last.len])
3809 goto slashes;
3810 inode = dentry->d_inode;
3811 if (d_is_negative(dentry))
3812 goto slashes;
3813 ihold(inode);
3814 error = security_path_unlink(&path, dentry);
3815 if (error)
3816 goto exit2;
3817 error = vfs_unlink(path.dentry->d_inode, dentry, &delegated_inode);
3818 exit2:
3819 dput(dentry);
3820 }
3821 mutex_unlock(&path.dentry->d_inode->i_mutex);
3822 if (inode)
3823 iput(inode); /* truncate the inode here */
3824 inode = NULL;
3825 if (delegated_inode) {
3826 error = break_deleg_wait(&delegated_inode);
3827 if (!error)
3828 goto retry_deleg;
3829 }
3830 mnt_drop_write(path.mnt);
3831 exit1:
3832 path_put(&path);
3833 putname(name);
3834 if (retry_estale(error, lookup_flags)) {
3835 lookup_flags |= LOOKUP_REVAL;
3836 inode = NULL;
3837 goto retry;
3838 }
3839 return error;
3840
3841 slashes:
3842 if (d_is_negative(dentry))
3843 error = -ENOENT;
3844 else if (d_is_dir(dentry))
3845 error = -EISDIR;
3846 else
3847 error = -ENOTDIR;
3848 goto exit2;
3849 }
3850
3851 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
3852 {
3853 if ((flag & ~AT_REMOVEDIR) != 0)
3854 return -EINVAL;
3855
3856 if (flag & AT_REMOVEDIR)
3857 return do_rmdir(dfd, pathname);
3858
3859 return do_unlinkat(dfd, pathname);
3860 }
3861
3862 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
3863 {
3864 return do_unlinkat(AT_FDCWD, pathname);
3865 }
3866
3867 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
3868 {
3869 int error = may_create(dir, dentry);
3870
3871 if (error)
3872 return error;
3873
3874 if (!dir->i_op->symlink)
3875 return -EPERM;
3876
3877 error = security_inode_symlink(dir, dentry, oldname);
3878 if (error)
3879 return error;
3880
3881 error = dir->i_op->symlink(dir, dentry, oldname);
3882 if (!error)
3883 fsnotify_create(dir, dentry);
3884 return error;
3885 }
3886 EXPORT_SYMBOL(vfs_symlink);
3887
3888 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
3889 int, newdfd, const char __user *, newname)
3890 {
3891 int error;
3892 struct filename *from;
3893 struct dentry *dentry;
3894 struct path path;
3895 unsigned int lookup_flags = 0;
3896
3897 from = getname(oldname);
3898 if (IS_ERR(from))
3899 return PTR_ERR(from);
3900 retry:
3901 dentry = user_path_create(newdfd, newname, &path, lookup_flags);
3902 error = PTR_ERR(dentry);
3903 if (IS_ERR(dentry))
3904 goto out_putname;
3905
3906 error = security_path_symlink(&path, dentry, from->name);
3907 if (!error)
3908 error = vfs_symlink(path.dentry->d_inode, dentry, from->name);
3909 done_path_create(&path, dentry);
3910 if (retry_estale(error, lookup_flags)) {
3911 lookup_flags |= LOOKUP_REVAL;
3912 goto retry;
3913 }
3914 out_putname:
3915 putname(from);
3916 return error;
3917 }
3918
3919 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
3920 {
3921 return sys_symlinkat(oldname, AT_FDCWD, newname);
3922 }
3923
3924 /**
3925 * vfs_link - create a new link
3926 * @old_dentry: object to be linked
3927 * @dir: new parent
3928 * @new_dentry: where to create the new link
3929 * @delegated_inode: returns inode needing a delegation break
3930 *
3931 * The caller must hold dir->i_mutex
3932 *
3933 * If vfs_link discovers a delegation on the to-be-linked file in need
3934 * of breaking, it will return -EWOULDBLOCK and return a reference to the
3935 * inode in delegated_inode. The caller should then break the delegation
3936 * and retry. Because breaking a delegation may take a long time, the
3937 * caller should drop the i_mutex before doing so.
3938 *
3939 * Alternatively, a caller may pass NULL for delegated_inode. This may
3940 * be appropriate for callers that expect the underlying filesystem not
3941 * to be NFS exported.
3942 */
3943 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode)
3944 {
3945 struct inode *inode = old_dentry->d_inode;
3946 unsigned max_links = dir->i_sb->s_max_links;
3947 int error;
3948
3949 if (!inode)
3950 return -ENOENT;
3951
3952 error = may_create(dir, new_dentry);
3953 if (error)
3954 return error;
3955
3956 if (dir->i_sb != inode->i_sb)
3957 return -EXDEV;
3958
3959 /*
3960 * A link to an append-only or immutable file cannot be created.
3961 */
3962 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3963 return -EPERM;
3964 if (!dir->i_op->link)
3965 return -EPERM;
3966 if (S_ISDIR(inode->i_mode))
3967 return -EPERM;
3968
3969 error = security_inode_link(old_dentry, dir, new_dentry);
3970 if (error)
3971 return error;
3972
3973 mutex_lock(&inode->i_mutex);
3974 /* Make sure we don't allow creating hardlink to an unlinked file */
3975 if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
3976 error = -ENOENT;
3977 else if (max_links && inode->i_nlink >= max_links)
3978 error = -EMLINK;
3979 else {
3980 error = try_break_deleg(inode, delegated_inode);
3981 if (!error)
3982 error = dir->i_op->link(old_dentry, dir, new_dentry);
3983 }
3984
3985 if (!error && (inode->i_state & I_LINKABLE)) {
3986 spin_lock(&inode->i_lock);
3987 inode->i_state &= ~I_LINKABLE;
3988 spin_unlock(&inode->i_lock);
3989 }
3990 mutex_unlock(&inode->i_mutex);
3991 if (!error)
3992 fsnotify_link(dir, inode, new_dentry);
3993 return error;
3994 }
3995 EXPORT_SYMBOL(vfs_link);
3996
3997 /*
3998 * Hardlinks are often used in delicate situations. We avoid
3999 * security-related surprises by not following symlinks on the
4000 * newname. --KAB
4001 *
4002 * We don't follow them on the oldname either to be compatible
4003 * with linux 2.0, and to avoid hard-linking to directories
4004 * and other special files. --ADM
4005 */
4006 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
4007 int, newdfd, const char __user *, newname, int, flags)
4008 {
4009 struct dentry *new_dentry;
4010 struct path old_path, new_path;
4011 struct inode *delegated_inode = NULL;
4012 int how = 0;
4013 int error;
4014
4015 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
4016 return -EINVAL;
4017 /*
4018 * To use null names we require CAP_DAC_READ_SEARCH
4019 * This ensures that not everyone will be able to create
4020 * handlink using the passed filedescriptor.
4021 */
4022 if (flags & AT_EMPTY_PATH) {
4023 if (!capable(CAP_DAC_READ_SEARCH))
4024 return -ENOENT;
4025 how = LOOKUP_EMPTY;
4026 }
4027
4028 if (flags & AT_SYMLINK_FOLLOW)
4029 how |= LOOKUP_FOLLOW;
4030 retry:
4031 error = user_path_at(olddfd, oldname, how, &old_path);
4032 if (error)
4033 return error;
4034
4035 new_dentry = user_path_create(newdfd, newname, &new_path,
4036 (how & LOOKUP_REVAL));
4037 error = PTR_ERR(new_dentry);
4038 if (IS_ERR(new_dentry))
4039 goto out;
4040
4041 error = -EXDEV;
4042 if (old_path.mnt != new_path.mnt)
4043 goto out_dput;
4044 error = may_linkat(&old_path);
4045 if (unlikely(error))
4046 goto out_dput;
4047 error = security_path_link(old_path.dentry, &new_path, new_dentry);
4048 if (error)
4049 goto out_dput;
4050 error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode);
4051 out_dput:
4052 done_path_create(&new_path, new_dentry);
4053 if (delegated_inode) {
4054 error = break_deleg_wait(&delegated_inode);
4055 if (!error) {
4056 path_put(&old_path);
4057 goto retry;
4058 }
4059 }
4060 if (retry_estale(error, how)) {
4061 path_put(&old_path);
4062 how |= LOOKUP_REVAL;
4063 goto retry;
4064 }
4065 out:
4066 path_put(&old_path);
4067
4068 return error;
4069 }
4070
4071 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4072 {
4073 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4074 }
4075
4076 /**
4077 * vfs_rename - rename a filesystem object
4078 * @old_dir: parent of source
4079 * @old_dentry: source
4080 * @new_dir: parent of destination
4081 * @new_dentry: destination
4082 * @delegated_inode: returns an inode needing a delegation break
4083 * @flags: rename flags
4084 *
4085 * The caller must hold multiple mutexes--see lock_rename()).
4086 *
4087 * If vfs_rename discovers a delegation in need of breaking at either
4088 * the source or destination, it will return -EWOULDBLOCK and return a
4089 * reference to the inode in delegated_inode. The caller should then
4090 * break the delegation and retry. Because breaking a delegation may
4091 * take a long time, the caller should drop all locks before doing
4092 * so.
4093 *
4094 * Alternatively, a caller may pass NULL for delegated_inode. This may
4095 * be appropriate for callers that expect the underlying filesystem not
4096 * to be NFS exported.
4097 *
4098 * The worst of all namespace operations - renaming directory. "Perverted"
4099 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4100 * Problems:
4101 * a) we can get into loop creation.
4102 * b) race potential - two innocent renames can create a loop together.
4103 * That's where 4.4 screws up. Current fix: serialization on
4104 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4105 * story.
4106 * c) we have to lock _four_ objects - parents and victim (if it exists),
4107 * and source (if it is not a directory).
4108 * And that - after we got ->i_mutex on parents (until then we don't know
4109 * whether the target exists). Solution: try to be smart with locking
4110 * order for inodes. We rely on the fact that tree topology may change
4111 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
4112 * move will be locked. Thus we can rank directories by the tree
4113 * (ancestors first) and rank all non-directories after them.
4114 * That works since everybody except rename does "lock parent, lookup,
4115 * lock child" and rename is under ->s_vfs_rename_mutex.
4116 * HOWEVER, it relies on the assumption that any object with ->lookup()
4117 * has no more than 1 dentry. If "hybrid" objects will ever appear,
4118 * we'd better make sure that there's no link(2) for them.
4119 * d) conversion from fhandle to dentry may come in the wrong moment - when
4120 * we are removing the target. Solution: we will have to grab ->i_mutex
4121 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4122 * ->i_mutex on parents, which works but leads to some truly excessive
4123 * locking].
4124 */
4125 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4126 struct inode *new_dir, struct dentry *new_dentry,
4127 struct inode **delegated_inode, unsigned int flags)
4128 {
4129 int error;
4130 bool is_dir = d_is_dir(old_dentry);
4131 const unsigned char *old_name;
4132 struct inode *source = old_dentry->d_inode;
4133 struct inode *target = new_dentry->d_inode;
4134 bool new_is_dir = false;
4135 unsigned max_links = new_dir->i_sb->s_max_links;
4136
4137 if (source == target)
4138 return 0;
4139
4140 error = may_delete(old_dir, old_dentry, is_dir);
4141 if (error)
4142 return error;
4143
4144 if (!target) {
4145 error = may_create(new_dir, new_dentry);
4146 } else {
4147 new_is_dir = d_is_dir(new_dentry);
4148
4149 if (!(flags & RENAME_EXCHANGE))
4150 error = may_delete(new_dir, new_dentry, is_dir);
4151 else
4152 error = may_delete(new_dir, new_dentry, new_is_dir);
4153 }
4154 if (error)
4155 return error;
4156
4157 if (!old_dir->i_op->rename && !old_dir->i_op->rename2)
4158 return -EPERM;
4159
4160 if (flags && !old_dir->i_op->rename2)
4161 return -EINVAL;
4162
4163 /*
4164 * If we are going to change the parent - check write permissions,
4165 * we'll need to flip '..'.
4166 */
4167 if (new_dir != old_dir) {
4168 if (is_dir) {
4169 error = inode_permission(source, MAY_WRITE);
4170 if (error)
4171 return error;
4172 }
4173 if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4174 error = inode_permission(target, MAY_WRITE);
4175 if (error)
4176 return error;
4177 }
4178 }
4179
4180 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4181 flags);
4182 if (error)
4183 return error;
4184
4185 old_name = fsnotify_oldname_init(old_dentry->d_name.name);
4186 dget(new_dentry);
4187 if (!is_dir || (flags & RENAME_EXCHANGE))
4188 lock_two_nondirectories(source, target);
4189 else if (target)
4190 mutex_lock(&target->i_mutex);
4191
4192 error = -EBUSY;
4193 if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
4194 goto out;
4195
4196 if (max_links && new_dir != old_dir) {
4197 error = -EMLINK;
4198 if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4199 goto out;
4200 if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
4201 old_dir->i_nlink >= max_links)
4202 goto out;
4203 }
4204 if (is_dir && !(flags & RENAME_EXCHANGE) && target)
4205 shrink_dcache_parent(new_dentry);
4206 if (!is_dir) {
4207 error = try_break_deleg(source, delegated_inode);
4208 if (error)
4209 goto out;
4210 }
4211 if (target && !new_is_dir) {
4212 error = try_break_deleg(target, delegated_inode);
4213 if (error)
4214 goto out;
4215 }
4216 if (!old_dir->i_op->rename2) {
4217 error = old_dir->i_op->rename(old_dir, old_dentry,
4218 new_dir, new_dentry);
4219 } else {
4220 WARN_ON(old_dir->i_op->rename != NULL);
4221 error = old_dir->i_op->rename2(old_dir, old_dentry,
4222 new_dir, new_dentry, flags);
4223 }
4224 if (error)
4225 goto out;
4226
4227 if (!(flags & RENAME_EXCHANGE) && target) {
4228 if (is_dir)
4229 target->i_flags |= S_DEAD;
4230 dont_mount(new_dentry);
4231 detach_mounts(new_dentry);
4232 }
4233 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
4234 if (!(flags & RENAME_EXCHANGE))
4235 d_move(old_dentry, new_dentry);
4236 else
4237 d_exchange(old_dentry, new_dentry);
4238 }
4239 out:
4240 if (!is_dir || (flags & RENAME_EXCHANGE))
4241 unlock_two_nondirectories(source, target);
4242 else if (target)
4243 mutex_unlock(&target->i_mutex);
4244 dput(new_dentry);
4245 if (!error) {
4246 fsnotify_move(old_dir, new_dir, old_name, is_dir,
4247 !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
4248 if (flags & RENAME_EXCHANGE) {
4249 fsnotify_move(new_dir, old_dir, old_dentry->d_name.name,
4250 new_is_dir, NULL, new_dentry);
4251 }
4252 }
4253 fsnotify_oldname_free(old_name);
4254
4255 return error;
4256 }
4257 EXPORT_SYMBOL(vfs_rename);
4258
4259 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
4260 int, newdfd, const char __user *, newname, unsigned int, flags)
4261 {
4262 struct dentry *old_dentry, *new_dentry;
4263 struct dentry *trap;
4264 struct path old_path, new_path;
4265 struct qstr old_last, new_last;
4266 int old_type, new_type;
4267 struct inode *delegated_inode = NULL;
4268 struct filename *from;
4269 struct filename *to;
4270 unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET;
4271 bool should_retry = false;
4272 int error;
4273
4274 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4275 return -EINVAL;
4276
4277 if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
4278 (flags & RENAME_EXCHANGE))
4279 return -EINVAL;
4280
4281 if ((flags & RENAME_WHITEOUT) && !capable(CAP_MKNOD))
4282 return -EPERM;
4283
4284 if (flags & RENAME_EXCHANGE)
4285 target_flags = 0;
4286
4287 retry:
4288 from = user_path_parent(olddfd, oldname,
4289 &old_path, &old_last, &old_type, lookup_flags);
4290 if (IS_ERR(from)) {
4291 error = PTR_ERR(from);
4292 goto exit;
4293 }
4294
4295 to = user_path_parent(newdfd, newname,
4296 &new_path, &new_last, &new_type, lookup_flags);
4297 if (IS_ERR(to)) {
4298 error = PTR_ERR(to);
4299 goto exit1;
4300 }
4301
4302 error = -EXDEV;
4303 if (old_path.mnt != new_path.mnt)
4304 goto exit2;
4305
4306 error = -EBUSY;
4307 if (old_type != LAST_NORM)
4308 goto exit2;
4309
4310 if (flags & RENAME_NOREPLACE)
4311 error = -EEXIST;
4312 if (new_type != LAST_NORM)
4313 goto exit2;
4314
4315 error = mnt_want_write(old_path.mnt);
4316 if (error)
4317 goto exit2;
4318
4319 retry_deleg:
4320 trap = lock_rename(new_path.dentry, old_path.dentry);
4321
4322 old_dentry = __lookup_hash(&old_last, old_path.dentry, lookup_flags);
4323 error = PTR_ERR(old_dentry);
4324 if (IS_ERR(old_dentry))
4325 goto exit3;
4326 /* source must exist */
4327 error = -ENOENT;
4328 if (d_is_negative(old_dentry))
4329 goto exit4;
4330 new_dentry = __lookup_hash(&new_last, new_path.dentry, lookup_flags | target_flags);
4331 error = PTR_ERR(new_dentry);
4332 if (IS_ERR(new_dentry))
4333 goto exit4;
4334 error = -EEXIST;
4335 if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
4336 goto exit5;
4337 if (flags & RENAME_EXCHANGE) {
4338 error = -ENOENT;
4339 if (d_is_negative(new_dentry))
4340 goto exit5;
4341
4342 if (!d_is_dir(new_dentry)) {
4343 error = -ENOTDIR;
4344 if (new_last.name[new_last.len])
4345 goto exit5;
4346 }
4347 }
4348 /* unless the source is a directory trailing slashes give -ENOTDIR */
4349 if (!d_is_dir(old_dentry)) {
4350 error = -ENOTDIR;
4351 if (old_last.name[old_last.len])
4352 goto exit5;
4353 if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len])
4354 goto exit5;
4355 }
4356 /* source should not be ancestor of target */
4357 error = -EINVAL;
4358 if (old_dentry == trap)
4359 goto exit5;
4360 /* target should not be an ancestor of source */
4361 if (!(flags & RENAME_EXCHANGE))
4362 error = -ENOTEMPTY;
4363 if (new_dentry == trap)
4364 goto exit5;
4365
4366 error = security_path_rename(&old_path, old_dentry,
4367 &new_path, new_dentry, flags);
4368 if (error)
4369 goto exit5;
4370 error = vfs_rename(old_path.dentry->d_inode, old_dentry,
4371 new_path.dentry->d_inode, new_dentry,
4372 &delegated_inode, flags);
4373 exit5:
4374 dput(new_dentry);
4375 exit4:
4376 dput(old_dentry);
4377 exit3:
4378 unlock_rename(new_path.dentry, old_path.dentry);
4379 if (delegated_inode) {
4380 error = break_deleg_wait(&delegated_inode);
4381 if (!error)
4382 goto retry_deleg;
4383 }
4384 mnt_drop_write(old_path.mnt);
4385 exit2:
4386 if (retry_estale(error, lookup_flags))
4387 should_retry = true;
4388 path_put(&new_path);
4389 putname(to);
4390 exit1:
4391 path_put(&old_path);
4392 putname(from);
4393 if (should_retry) {
4394 should_retry = false;
4395 lookup_flags |= LOOKUP_REVAL;
4396 goto retry;
4397 }
4398 exit:
4399 return error;
4400 }
4401
4402 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
4403 int, newdfd, const char __user *, newname)
4404 {
4405 return sys_renameat2(olddfd, oldname, newdfd, newname, 0);
4406 }
4407
4408 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4409 {
4410 return sys_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4411 }
4412
4413 int vfs_whiteout(struct inode *dir, struct dentry *dentry)
4414 {
4415 int error = may_create(dir, dentry);
4416 if (error)
4417 return error;
4418
4419 if (!dir->i_op->mknod)
4420 return -EPERM;
4421
4422 return dir->i_op->mknod(dir, dentry,
4423 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
4424 }
4425 EXPORT_SYMBOL(vfs_whiteout);
4426
4427 int readlink_copy(char __user *buffer, int buflen, const char *link)
4428 {
4429 int len = PTR_ERR(link);
4430 if (IS_ERR(link))
4431 goto out;
4432
4433 len = strlen(link);
4434 if (len > (unsigned) buflen)
4435 len = buflen;
4436 if (copy_to_user(buffer, link, len))
4437 len = -EFAULT;
4438 out:
4439 return len;
4440 }
4441 EXPORT_SYMBOL(readlink_copy);
4442
4443 /*
4444 * A helper for ->readlink(). This should be used *ONLY* for symlinks that
4445 * have ->follow_link() touching nd only in nd_set_link(). Using (or not
4446 * using) it for any given inode is up to filesystem.
4447 */
4448 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4449 {
4450 void *cookie;
4451 const char *link = dentry->d_inode->i_link;
4452 int res;
4453
4454 if (!link) {
4455 link = dentry->d_inode->i_op->follow_link(dentry, &cookie, NULL);
4456 if (IS_ERR(link))
4457 return PTR_ERR(link);
4458 }
4459 res = readlink_copy(buffer, buflen, link);
4460 if (cookie && dentry->d_inode->i_op->put_link)
4461 dentry->d_inode->i_op->put_link(dentry, cookie);
4462 return res;
4463 }
4464 EXPORT_SYMBOL(generic_readlink);
4465
4466 /* get the link contents into pagecache */
4467 static char *page_getlink(struct dentry * dentry, struct page **ppage)
4468 {
4469 char *kaddr;
4470 struct page *page;
4471 struct address_space *mapping = dentry->d_inode->i_mapping;
4472 page = read_mapping_page(mapping, 0, NULL);
4473 if (IS_ERR(page))
4474 return (char*)page;
4475 *ppage = page;
4476 kaddr = kmap(page);
4477 nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
4478 return kaddr;
4479 }
4480
4481 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4482 {
4483 struct page *page = NULL;
4484 int res = readlink_copy(buffer, buflen, page_getlink(dentry, &page));
4485 if (page) {
4486 kunmap(page);
4487 page_cache_release(page);
4488 }
4489 return res;
4490 }
4491 EXPORT_SYMBOL(page_readlink);
4492
4493 const char *page_follow_link_light(struct dentry *dentry, void **cookie, struct nameidata *nd)
4494 {
4495 struct page *page = NULL;
4496 char *res = page_getlink(dentry, &page);
4497 if (!IS_ERR(res))
4498 *cookie = page;
4499 return res;
4500 }
4501 EXPORT_SYMBOL(page_follow_link_light);
4502
4503 void page_put_link(struct dentry *dentry, void *cookie)
4504 {
4505 struct page *page = cookie;
4506 kunmap(page);
4507 page_cache_release(page);
4508 }
4509 EXPORT_SYMBOL(page_put_link);
4510
4511 /*
4512 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
4513 */
4514 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
4515 {
4516 struct address_space *mapping = inode->i_mapping;
4517 struct page *page;
4518 void *fsdata;
4519 int err;
4520 char *kaddr;
4521 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
4522 if (nofs)
4523 flags |= AOP_FLAG_NOFS;
4524
4525 retry:
4526 err = pagecache_write_begin(NULL, mapping, 0, len-1,
4527 flags, &page, &fsdata);
4528 if (err)
4529 goto fail;
4530
4531 kaddr = kmap_atomic(page);
4532 memcpy(kaddr, symname, len-1);
4533 kunmap_atomic(kaddr);
4534
4535 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
4536 page, fsdata);
4537 if (err < 0)
4538 goto fail;
4539 if (err < len-1)
4540 goto retry;
4541
4542 mark_inode_dirty(inode);
4543 return 0;
4544 fail:
4545 return err;
4546 }
4547 EXPORT_SYMBOL(__page_symlink);
4548
4549 int page_symlink(struct inode *inode, const char *symname, int len)
4550 {
4551 return __page_symlink(inode, symname, len,
4552 !(mapping_gfp_mask(inode->i_mapping) & __GFP_FS));
4553 }
4554 EXPORT_SYMBOL(page_symlink);
4555
4556 const struct inode_operations page_symlink_inode_operations = {
4557 .readlink = generic_readlink,
4558 .follow_link = page_follow_link_light,
4559 .put_link = page_put_link,
4560 };
4561 EXPORT_SYMBOL(page_symlink_inode_operations);
This page took 0.163115 seconds and 6 git commands to generate.