merge handle_reval_dot and nameidata_drop_rcu_last
[deliverable/linux.git] / fs / namei.c
1 /*
2 * linux/fs/namei.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * Some corrections by tytso.
9 */
10
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12 * lookup logic.
13 */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15 */
16
17 #include <linux/init.h>
18 #include <linux/module.h>
19 #include <linux/slab.h>
20 #include <linux/fs.h>
21 #include <linux/namei.h>
22 #include <linux/pagemap.h>
23 #include <linux/fsnotify.h>
24 #include <linux/personality.h>
25 #include <linux/security.h>
26 #include <linux/ima.h>
27 #include <linux/syscalls.h>
28 #include <linux/mount.h>
29 #include <linux/audit.h>
30 #include <linux/capability.h>
31 #include <linux/file.h>
32 #include <linux/fcntl.h>
33 #include <linux/device_cgroup.h>
34 #include <linux/fs_struct.h>
35 #include <asm/uaccess.h>
36
37 #include "internal.h"
38
39 /* [Feb-1997 T. Schoebel-Theuer]
40 * Fundamental changes in the pathname lookup mechanisms (namei)
41 * were necessary because of omirr. The reason is that omirr needs
42 * to know the _real_ pathname, not the user-supplied one, in case
43 * of symlinks (and also when transname replacements occur).
44 *
45 * The new code replaces the old recursive symlink resolution with
46 * an iterative one (in case of non-nested symlink chains). It does
47 * this with calls to <fs>_follow_link().
48 * As a side effect, dir_namei(), _namei() and follow_link() are now
49 * replaced with a single function lookup_dentry() that can handle all
50 * the special cases of the former code.
51 *
52 * With the new dcache, the pathname is stored at each inode, at least as
53 * long as the refcount of the inode is positive. As a side effect, the
54 * size of the dcache depends on the inode cache and thus is dynamic.
55 *
56 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
57 * resolution to correspond with current state of the code.
58 *
59 * Note that the symlink resolution is not *completely* iterative.
60 * There is still a significant amount of tail- and mid- recursion in
61 * the algorithm. Also, note that <fs>_readlink() is not used in
62 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
63 * may return different results than <fs>_follow_link(). Many virtual
64 * filesystems (including /proc) exhibit this behavior.
65 */
66
67 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
68 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
69 * and the name already exists in form of a symlink, try to create the new
70 * name indicated by the symlink. The old code always complained that the
71 * name already exists, due to not following the symlink even if its target
72 * is nonexistent. The new semantics affects also mknod() and link() when
73 * the name is a symlink pointing to a non-existent name.
74 *
75 * I don't know which semantics is the right one, since I have no access
76 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
77 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
78 * "old" one. Personally, I think the new semantics is much more logical.
79 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
80 * file does succeed in both HP-UX and SunOs, but not in Solaris
81 * and in the old Linux semantics.
82 */
83
84 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
85 * semantics. See the comments in "open_namei" and "do_link" below.
86 *
87 * [10-Sep-98 Alan Modra] Another symlink change.
88 */
89
90 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
91 * inside the path - always follow.
92 * in the last component in creation/removal/renaming - never follow.
93 * if LOOKUP_FOLLOW passed - follow.
94 * if the pathname has trailing slashes - follow.
95 * otherwise - don't follow.
96 * (applied in that order).
97 *
98 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
99 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
100 * During the 2.4 we need to fix the userland stuff depending on it -
101 * hopefully we will be able to get rid of that wart in 2.5. So far only
102 * XEmacs seems to be relying on it...
103 */
104 /*
105 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
106 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
107 * any extra contention...
108 */
109
110 /* In order to reduce some races, while at the same time doing additional
111 * checking and hopefully speeding things up, we copy filenames to the
112 * kernel data space before using them..
113 *
114 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
115 * PATH_MAX includes the nul terminator --RR.
116 */
117 static int do_getname(const char __user *filename, char *page)
118 {
119 int retval;
120 unsigned long len = PATH_MAX;
121
122 if (!segment_eq(get_fs(), KERNEL_DS)) {
123 if ((unsigned long) filename >= TASK_SIZE)
124 return -EFAULT;
125 if (TASK_SIZE - (unsigned long) filename < PATH_MAX)
126 len = TASK_SIZE - (unsigned long) filename;
127 }
128
129 retval = strncpy_from_user(page, filename, len);
130 if (retval > 0) {
131 if (retval < len)
132 return 0;
133 return -ENAMETOOLONG;
134 } else if (!retval)
135 retval = -ENOENT;
136 return retval;
137 }
138
139 static char *getname_flags(const char __user * filename, int flags)
140 {
141 char *tmp, *result;
142
143 result = ERR_PTR(-ENOMEM);
144 tmp = __getname();
145 if (tmp) {
146 int retval = do_getname(filename, tmp);
147
148 result = tmp;
149 if (retval < 0) {
150 if (retval != -ENOENT || !(flags & LOOKUP_EMPTY)) {
151 __putname(tmp);
152 result = ERR_PTR(retval);
153 }
154 }
155 }
156 audit_getname(result);
157 return result;
158 }
159
160 char *getname(const char __user * filename)
161 {
162 return getname_flags(filename, 0);
163 }
164
165 #ifdef CONFIG_AUDITSYSCALL
166 void putname(const char *name)
167 {
168 if (unlikely(!audit_dummy_context()))
169 audit_putname(name);
170 else
171 __putname(name);
172 }
173 EXPORT_SYMBOL(putname);
174 #endif
175
176 /*
177 * This does basic POSIX ACL permission checking
178 */
179 static int acl_permission_check(struct inode *inode, int mask, unsigned int flags,
180 int (*check_acl)(struct inode *inode, int mask, unsigned int flags))
181 {
182 umode_t mode = inode->i_mode;
183
184 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
185
186 if (current_user_ns() != inode_userns(inode))
187 goto other_perms;
188
189 if (current_fsuid() == inode->i_uid)
190 mode >>= 6;
191 else {
192 if (IS_POSIXACL(inode) && (mode & S_IRWXG) && check_acl) {
193 int error = check_acl(inode, mask, flags);
194 if (error != -EAGAIN)
195 return error;
196 }
197
198 if (in_group_p(inode->i_gid))
199 mode >>= 3;
200 }
201
202 other_perms:
203 /*
204 * If the DACs are ok we don't need any capability check.
205 */
206 if ((mask & ~mode) == 0)
207 return 0;
208 return -EACCES;
209 }
210
211 /**
212 * generic_permission - check for access rights on a Posix-like filesystem
213 * @inode: inode to check access rights for
214 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
215 * @check_acl: optional callback to check for Posix ACLs
216 * @flags: IPERM_FLAG_ flags.
217 *
218 * Used to check for read/write/execute permissions on a file.
219 * We use "fsuid" for this, letting us set arbitrary permissions
220 * for filesystem access without changing the "normal" uids which
221 * are used for other things.
222 *
223 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
224 * request cannot be satisfied (eg. requires blocking or too much complexity).
225 * It would then be called again in ref-walk mode.
226 */
227 int generic_permission(struct inode *inode, int mask, unsigned int flags,
228 int (*check_acl)(struct inode *inode, int mask, unsigned int flags))
229 {
230 int ret;
231
232 /*
233 * Do the basic POSIX ACL permission checks.
234 */
235 ret = acl_permission_check(inode, mask, flags, check_acl);
236 if (ret != -EACCES)
237 return ret;
238
239 /*
240 * Read/write DACs are always overridable.
241 * Executable DACs are overridable if at least one exec bit is set.
242 */
243 if (!(mask & MAY_EXEC) || execute_ok(inode))
244 if (ns_capable(inode_userns(inode), CAP_DAC_OVERRIDE))
245 return 0;
246
247 /*
248 * Searching includes executable on directories, else just read.
249 */
250 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
251 if (mask == MAY_READ || (S_ISDIR(inode->i_mode) && !(mask & MAY_WRITE)))
252 if (ns_capable(inode_userns(inode), CAP_DAC_READ_SEARCH))
253 return 0;
254
255 return -EACCES;
256 }
257
258 /**
259 * inode_permission - check for access rights to a given inode
260 * @inode: inode to check permission on
261 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
262 *
263 * Used to check for read/write/execute permissions on an inode.
264 * We use "fsuid" for this, letting us set arbitrary permissions
265 * for filesystem access without changing the "normal" uids which
266 * are used for other things.
267 */
268 int inode_permission(struct inode *inode, int mask)
269 {
270 int retval;
271
272 if (mask & MAY_WRITE) {
273 umode_t mode = inode->i_mode;
274
275 /*
276 * Nobody gets write access to a read-only fs.
277 */
278 if (IS_RDONLY(inode) &&
279 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
280 return -EROFS;
281
282 /*
283 * Nobody gets write access to an immutable file.
284 */
285 if (IS_IMMUTABLE(inode))
286 return -EACCES;
287 }
288
289 if (inode->i_op->permission)
290 retval = inode->i_op->permission(inode, mask, 0);
291 else
292 retval = generic_permission(inode, mask, 0,
293 inode->i_op->check_acl);
294
295 if (retval)
296 return retval;
297
298 retval = devcgroup_inode_permission(inode, mask);
299 if (retval)
300 return retval;
301
302 return security_inode_permission(inode, mask);
303 }
304
305 /**
306 * file_permission - check for additional access rights to a given file
307 * @file: file to check access rights for
308 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
309 *
310 * Used to check for read/write/execute permissions on an already opened
311 * file.
312 *
313 * Note:
314 * Do not use this function in new code. All access checks should
315 * be done using inode_permission().
316 */
317 int file_permission(struct file *file, int mask)
318 {
319 return inode_permission(file->f_path.dentry->d_inode, mask);
320 }
321
322 /*
323 * get_write_access() gets write permission for a file.
324 * put_write_access() releases this write permission.
325 * This is used for regular files.
326 * We cannot support write (and maybe mmap read-write shared) accesses and
327 * MAP_DENYWRITE mmappings simultaneously. The i_writecount field of an inode
328 * can have the following values:
329 * 0: no writers, no VM_DENYWRITE mappings
330 * < 0: (-i_writecount) vm_area_structs with VM_DENYWRITE set exist
331 * > 0: (i_writecount) users are writing to the file.
332 *
333 * Normally we operate on that counter with atomic_{inc,dec} and it's safe
334 * except for the cases where we don't hold i_writecount yet. Then we need to
335 * use {get,deny}_write_access() - these functions check the sign and refuse
336 * to do the change if sign is wrong. Exclusion between them is provided by
337 * the inode->i_lock spinlock.
338 */
339
340 int get_write_access(struct inode * inode)
341 {
342 spin_lock(&inode->i_lock);
343 if (atomic_read(&inode->i_writecount) < 0) {
344 spin_unlock(&inode->i_lock);
345 return -ETXTBSY;
346 }
347 atomic_inc(&inode->i_writecount);
348 spin_unlock(&inode->i_lock);
349
350 return 0;
351 }
352
353 int deny_write_access(struct file * file)
354 {
355 struct inode *inode = file->f_path.dentry->d_inode;
356
357 spin_lock(&inode->i_lock);
358 if (atomic_read(&inode->i_writecount) > 0) {
359 spin_unlock(&inode->i_lock);
360 return -ETXTBSY;
361 }
362 atomic_dec(&inode->i_writecount);
363 spin_unlock(&inode->i_lock);
364
365 return 0;
366 }
367
368 /**
369 * path_get - get a reference to a path
370 * @path: path to get the reference to
371 *
372 * Given a path increment the reference count to the dentry and the vfsmount.
373 */
374 void path_get(struct path *path)
375 {
376 mntget(path->mnt);
377 dget(path->dentry);
378 }
379 EXPORT_SYMBOL(path_get);
380
381 /**
382 * path_put - put a reference to a path
383 * @path: path to put the reference to
384 *
385 * Given a path decrement the reference count to the dentry and the vfsmount.
386 */
387 void path_put(struct path *path)
388 {
389 dput(path->dentry);
390 mntput(path->mnt);
391 }
392 EXPORT_SYMBOL(path_put);
393
394 /*
395 * Path walking has 2 modes, rcu-walk and ref-walk (see
396 * Documentation/filesystems/path-lookup.txt). In situations when we can't
397 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
398 * normal reference counts on dentries and vfsmounts to transition to rcu-walk
399 * mode. Refcounts are grabbed at the last known good point before rcu-walk
400 * got stuck, so ref-walk may continue from there. If this is not successful
401 * (eg. a seqcount has changed), then failure is returned and it's up to caller
402 * to restart the path walk from the beginning in ref-walk mode.
403 */
404
405 /**
406 * unlazy_walk - try to switch to ref-walk mode.
407 * @nd: nameidata pathwalk data
408 * @dentry: child of nd->path.dentry or NULL
409 * Returns: 0 on success, -ECHILD on failure
410 *
411 * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry
412 * for ref-walk mode. @dentry must be a path found by a do_lookup call on
413 * @nd or NULL. Must be called from rcu-walk context.
414 */
415 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry)
416 {
417 struct fs_struct *fs = current->fs;
418 struct dentry *parent = nd->path.dentry;
419 int want_root = 0;
420
421 BUG_ON(!(nd->flags & LOOKUP_RCU));
422 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
423 want_root = 1;
424 spin_lock(&fs->lock);
425 if (nd->root.mnt != fs->root.mnt ||
426 nd->root.dentry != fs->root.dentry)
427 goto err_root;
428 }
429 spin_lock(&parent->d_lock);
430 if (!dentry) {
431 if (!__d_rcu_to_refcount(parent, nd->seq))
432 goto err_parent;
433 BUG_ON(nd->inode != parent->d_inode);
434 } else {
435 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
436 if (!__d_rcu_to_refcount(dentry, nd->seq))
437 goto err_child;
438 /*
439 * If the sequence check on the child dentry passed, then
440 * the child has not been removed from its parent. This
441 * means the parent dentry must be valid and able to take
442 * a reference at this point.
443 */
444 BUG_ON(!IS_ROOT(dentry) && dentry->d_parent != parent);
445 BUG_ON(!parent->d_count);
446 parent->d_count++;
447 spin_unlock(&dentry->d_lock);
448 }
449 spin_unlock(&parent->d_lock);
450 if (want_root) {
451 path_get(&nd->root);
452 spin_unlock(&fs->lock);
453 }
454 mntget(nd->path.mnt);
455
456 rcu_read_unlock();
457 br_read_unlock(vfsmount_lock);
458 nd->flags &= ~LOOKUP_RCU;
459 return 0;
460
461 err_child:
462 spin_unlock(&dentry->d_lock);
463 err_parent:
464 spin_unlock(&parent->d_lock);
465 err_root:
466 if (want_root)
467 spin_unlock(&fs->lock);
468 return -ECHILD;
469 }
470
471 /**
472 * release_open_intent - free up open intent resources
473 * @nd: pointer to nameidata
474 */
475 void release_open_intent(struct nameidata *nd)
476 {
477 struct file *file = nd->intent.open.file;
478
479 if (file && !IS_ERR(file)) {
480 if (file->f_path.dentry == NULL)
481 put_filp(file);
482 else
483 fput(file);
484 }
485 }
486
487 static inline int d_revalidate(struct dentry *dentry, struct nameidata *nd)
488 {
489 return dentry->d_op->d_revalidate(dentry, nd);
490 }
491
492 static struct dentry *
493 do_revalidate(struct dentry *dentry, struct nameidata *nd)
494 {
495 int status = d_revalidate(dentry, nd);
496 if (unlikely(status <= 0)) {
497 /*
498 * The dentry failed validation.
499 * If d_revalidate returned 0 attempt to invalidate
500 * the dentry otherwise d_revalidate is asking us
501 * to return a fail status.
502 */
503 if (status < 0) {
504 dput(dentry);
505 dentry = ERR_PTR(status);
506 } else if (!d_invalidate(dentry)) {
507 dput(dentry);
508 dentry = NULL;
509 }
510 }
511 return dentry;
512 }
513
514 /**
515 * complete_walk - successful completion of path walk
516 * @nd: pointer nameidata
517 *
518 * If we had been in RCU mode, drop out of it and legitimize nd->path.
519 * Revalidate the final result, unless we'd already done that during
520 * the path walk or the filesystem doesn't ask for it. Return 0 on
521 * success, -error on failure. In case of failure caller does not
522 * need to drop nd->path.
523 */
524 static int complete_walk(struct nameidata *nd)
525 {
526 struct dentry *dentry = nd->path.dentry;
527 int status;
528
529 if (nd->flags & LOOKUP_RCU) {
530 nd->flags &= ~LOOKUP_RCU;
531 if (!(nd->flags & LOOKUP_ROOT))
532 nd->root.mnt = NULL;
533 spin_lock(&dentry->d_lock);
534 if (unlikely(!__d_rcu_to_refcount(dentry, nd->seq))) {
535 spin_unlock(&dentry->d_lock);
536 rcu_read_unlock();
537 br_read_unlock(vfsmount_lock);
538 return -ECHILD;
539 }
540 BUG_ON(nd->inode != dentry->d_inode);
541 spin_unlock(&dentry->d_lock);
542 mntget(nd->path.mnt);
543 rcu_read_unlock();
544 br_read_unlock(vfsmount_lock);
545 }
546
547 if (likely(!(nd->flags & LOOKUP_JUMPED)))
548 return 0;
549
550 if (likely(!(dentry->d_flags & DCACHE_OP_REVALIDATE)))
551 return 0;
552
553 if (likely(!(dentry->d_sb->s_type->fs_flags & FS_REVAL_DOT)))
554 return 0;
555
556 /* Note: we do not d_invalidate() */
557 status = d_revalidate(dentry, nd);
558 if (status > 0)
559 return 0;
560
561 if (!status)
562 status = -ESTALE;
563
564 path_put(&nd->path);
565 return status;
566 }
567
568 /*
569 * Short-cut version of permission(), for calling on directories
570 * during pathname resolution. Combines parts of permission()
571 * and generic_permission(), and tests ONLY for MAY_EXEC permission.
572 *
573 * If appropriate, check DAC only. If not appropriate, or
574 * short-cut DAC fails, then call ->permission() to do more
575 * complete permission check.
576 */
577 static inline int exec_permission(struct inode *inode, unsigned int flags)
578 {
579 int ret;
580 struct user_namespace *ns = inode_userns(inode);
581
582 if (inode->i_op->permission) {
583 ret = inode->i_op->permission(inode, MAY_EXEC, flags);
584 } else {
585 ret = acl_permission_check(inode, MAY_EXEC, flags,
586 inode->i_op->check_acl);
587 }
588 if (likely(!ret))
589 goto ok;
590 if (ret == -ECHILD)
591 return ret;
592
593 if (ns_capable(ns, CAP_DAC_OVERRIDE) ||
594 ns_capable(ns, CAP_DAC_READ_SEARCH))
595 goto ok;
596
597 return ret;
598 ok:
599 return security_inode_exec_permission(inode, flags);
600 }
601
602 static __always_inline void set_root(struct nameidata *nd)
603 {
604 if (!nd->root.mnt)
605 get_fs_root(current->fs, &nd->root);
606 }
607
608 static int link_path_walk(const char *, struct nameidata *);
609
610 static __always_inline void set_root_rcu(struct nameidata *nd)
611 {
612 if (!nd->root.mnt) {
613 struct fs_struct *fs = current->fs;
614 unsigned seq;
615
616 do {
617 seq = read_seqcount_begin(&fs->seq);
618 nd->root = fs->root;
619 nd->seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
620 } while (read_seqcount_retry(&fs->seq, seq));
621 }
622 }
623
624 static __always_inline int __vfs_follow_link(struct nameidata *nd, const char *link)
625 {
626 int ret;
627
628 if (IS_ERR(link))
629 goto fail;
630
631 if (*link == '/') {
632 set_root(nd);
633 path_put(&nd->path);
634 nd->path = nd->root;
635 path_get(&nd->root);
636 nd->flags |= LOOKUP_JUMPED;
637 }
638 nd->inode = nd->path.dentry->d_inode;
639
640 ret = link_path_walk(link, nd);
641 return ret;
642 fail:
643 path_put(&nd->path);
644 return PTR_ERR(link);
645 }
646
647 static void path_put_conditional(struct path *path, struct nameidata *nd)
648 {
649 dput(path->dentry);
650 if (path->mnt != nd->path.mnt)
651 mntput(path->mnt);
652 }
653
654 static inline void path_to_nameidata(const struct path *path,
655 struct nameidata *nd)
656 {
657 if (!(nd->flags & LOOKUP_RCU)) {
658 dput(nd->path.dentry);
659 if (nd->path.mnt != path->mnt)
660 mntput(nd->path.mnt);
661 }
662 nd->path.mnt = path->mnt;
663 nd->path.dentry = path->dentry;
664 }
665
666 static inline void put_link(struct nameidata *nd, struct path *link, void *cookie)
667 {
668 struct inode *inode = link->dentry->d_inode;
669 if (!IS_ERR(cookie) && inode->i_op->put_link)
670 inode->i_op->put_link(link->dentry, nd, cookie);
671 path_put(link);
672 }
673
674 static __always_inline int
675 follow_link(struct path *link, struct nameidata *nd, void **p)
676 {
677 int error;
678 struct dentry *dentry = link->dentry;
679
680 BUG_ON(nd->flags & LOOKUP_RCU);
681
682 if (link->mnt == nd->path.mnt)
683 mntget(link->mnt);
684
685 if (unlikely(current->total_link_count >= 40)) {
686 *p = ERR_PTR(-ELOOP); /* no ->put_link(), please */
687 path_put(&nd->path);
688 return -ELOOP;
689 }
690 cond_resched();
691 current->total_link_count++;
692
693 touch_atime(link->mnt, dentry);
694 nd_set_link(nd, NULL);
695
696 error = security_inode_follow_link(link->dentry, nd);
697 if (error) {
698 *p = ERR_PTR(error); /* no ->put_link(), please */
699 path_put(&nd->path);
700 return error;
701 }
702
703 nd->last_type = LAST_BIND;
704 *p = dentry->d_inode->i_op->follow_link(dentry, nd);
705 error = PTR_ERR(*p);
706 if (!IS_ERR(*p)) {
707 char *s = nd_get_link(nd);
708 error = 0;
709 if (s)
710 error = __vfs_follow_link(nd, s);
711 else if (nd->last_type == LAST_BIND) {
712 nd->flags |= LOOKUP_JUMPED;
713 nd->inode = nd->path.dentry->d_inode;
714 if (nd->inode->i_op->follow_link) {
715 /* stepped on a _really_ weird one */
716 path_put(&nd->path);
717 error = -ELOOP;
718 }
719 }
720 }
721 return error;
722 }
723
724 static int follow_up_rcu(struct path *path)
725 {
726 struct vfsmount *parent;
727 struct dentry *mountpoint;
728
729 parent = path->mnt->mnt_parent;
730 if (parent == path->mnt)
731 return 0;
732 mountpoint = path->mnt->mnt_mountpoint;
733 path->dentry = mountpoint;
734 path->mnt = parent;
735 return 1;
736 }
737
738 int follow_up(struct path *path)
739 {
740 struct vfsmount *parent;
741 struct dentry *mountpoint;
742
743 br_read_lock(vfsmount_lock);
744 parent = path->mnt->mnt_parent;
745 if (parent == path->mnt) {
746 br_read_unlock(vfsmount_lock);
747 return 0;
748 }
749 mntget(parent);
750 mountpoint = dget(path->mnt->mnt_mountpoint);
751 br_read_unlock(vfsmount_lock);
752 dput(path->dentry);
753 path->dentry = mountpoint;
754 mntput(path->mnt);
755 path->mnt = parent;
756 return 1;
757 }
758
759 /*
760 * Perform an automount
761 * - return -EISDIR to tell follow_managed() to stop and return the path we
762 * were called with.
763 */
764 static int follow_automount(struct path *path, unsigned flags,
765 bool *need_mntput)
766 {
767 struct vfsmount *mnt;
768 int err;
769
770 if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
771 return -EREMOTE;
772
773 /* We don't want to mount if someone supplied AT_NO_AUTOMOUNT
774 * and this is the terminal part of the path.
775 */
776 if ((flags & LOOKUP_NO_AUTOMOUNT) && !(flags & LOOKUP_CONTINUE))
777 return -EISDIR; /* we actually want to stop here */
778
779 /* We want to mount if someone is trying to open/create a file of any
780 * type under the mountpoint, wants to traverse through the mountpoint
781 * or wants to open the mounted directory.
782 *
783 * We don't want to mount if someone's just doing a stat and they've
784 * set AT_SYMLINK_NOFOLLOW - unless they're stat'ing a directory and
785 * appended a '/' to the name.
786 */
787 if (!(flags & LOOKUP_FOLLOW) &&
788 !(flags & (LOOKUP_CONTINUE | LOOKUP_DIRECTORY |
789 LOOKUP_OPEN | LOOKUP_CREATE)))
790 return -EISDIR;
791
792 current->total_link_count++;
793 if (current->total_link_count >= 40)
794 return -ELOOP;
795
796 mnt = path->dentry->d_op->d_automount(path);
797 if (IS_ERR(mnt)) {
798 /*
799 * The filesystem is allowed to return -EISDIR here to indicate
800 * it doesn't want to automount. For instance, autofs would do
801 * this so that its userspace daemon can mount on this dentry.
802 *
803 * However, we can only permit this if it's a terminal point in
804 * the path being looked up; if it wasn't then the remainder of
805 * the path is inaccessible and we should say so.
806 */
807 if (PTR_ERR(mnt) == -EISDIR && (flags & LOOKUP_CONTINUE))
808 return -EREMOTE;
809 return PTR_ERR(mnt);
810 }
811
812 if (!mnt) /* mount collision */
813 return 0;
814
815 err = finish_automount(mnt, path);
816
817 switch (err) {
818 case -EBUSY:
819 /* Someone else made a mount here whilst we were busy */
820 return 0;
821 case 0:
822 dput(path->dentry);
823 if (*need_mntput)
824 mntput(path->mnt);
825 path->mnt = mnt;
826 path->dentry = dget(mnt->mnt_root);
827 *need_mntput = true;
828 return 0;
829 default:
830 return err;
831 }
832
833 }
834
835 /*
836 * Handle a dentry that is managed in some way.
837 * - Flagged for transit management (autofs)
838 * - Flagged as mountpoint
839 * - Flagged as automount point
840 *
841 * This may only be called in refwalk mode.
842 *
843 * Serialization is taken care of in namespace.c
844 */
845 static int follow_managed(struct path *path, unsigned flags)
846 {
847 unsigned managed;
848 bool need_mntput = false;
849 int ret;
850
851 /* Given that we're not holding a lock here, we retain the value in a
852 * local variable for each dentry as we look at it so that we don't see
853 * the components of that value change under us */
854 while (managed = ACCESS_ONCE(path->dentry->d_flags),
855 managed &= DCACHE_MANAGED_DENTRY,
856 unlikely(managed != 0)) {
857 /* Allow the filesystem to manage the transit without i_mutex
858 * being held. */
859 if (managed & DCACHE_MANAGE_TRANSIT) {
860 BUG_ON(!path->dentry->d_op);
861 BUG_ON(!path->dentry->d_op->d_manage);
862 ret = path->dentry->d_op->d_manage(path->dentry, false);
863 if (ret < 0)
864 return ret == -EISDIR ? 0 : ret;
865 }
866
867 /* Transit to a mounted filesystem. */
868 if (managed & DCACHE_MOUNTED) {
869 struct vfsmount *mounted = lookup_mnt(path);
870 if (mounted) {
871 dput(path->dentry);
872 if (need_mntput)
873 mntput(path->mnt);
874 path->mnt = mounted;
875 path->dentry = dget(mounted->mnt_root);
876 need_mntput = true;
877 continue;
878 }
879
880 /* Something is mounted on this dentry in another
881 * namespace and/or whatever was mounted there in this
882 * namespace got unmounted before we managed to get the
883 * vfsmount_lock */
884 }
885
886 /* Handle an automount point */
887 if (managed & DCACHE_NEED_AUTOMOUNT) {
888 ret = follow_automount(path, flags, &need_mntput);
889 if (ret < 0)
890 return ret == -EISDIR ? 0 : ret;
891 continue;
892 }
893
894 /* We didn't change the current path point */
895 break;
896 }
897 return 0;
898 }
899
900 int follow_down_one(struct path *path)
901 {
902 struct vfsmount *mounted;
903
904 mounted = lookup_mnt(path);
905 if (mounted) {
906 dput(path->dentry);
907 mntput(path->mnt);
908 path->mnt = mounted;
909 path->dentry = dget(mounted->mnt_root);
910 return 1;
911 }
912 return 0;
913 }
914
915 static inline bool managed_dentry_might_block(struct dentry *dentry)
916 {
917 return (dentry->d_flags & DCACHE_MANAGE_TRANSIT &&
918 dentry->d_op->d_manage(dentry, true) < 0);
919 }
920
921 /*
922 * Skip to top of mountpoint pile in rcuwalk mode. We abort the rcu-walk if we
923 * meet a managed dentry and we're not walking to "..". True is returned to
924 * continue, false to abort.
925 */
926 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
927 struct inode **inode, bool reverse_transit)
928 {
929 for (;;) {
930 struct vfsmount *mounted;
931 /*
932 * Don't forget we might have a non-mountpoint managed dentry
933 * that wants to block transit.
934 */
935 *inode = path->dentry->d_inode;
936 if (!reverse_transit &&
937 unlikely(managed_dentry_might_block(path->dentry)))
938 return false;
939
940 if (!d_mountpoint(path->dentry))
941 break;
942
943 mounted = __lookup_mnt(path->mnt, path->dentry, 1);
944 if (!mounted)
945 break;
946 path->mnt = mounted;
947 path->dentry = mounted->mnt_root;
948 nd->seq = read_seqcount_begin(&path->dentry->d_seq);
949 }
950
951 if (unlikely(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT))
952 return reverse_transit;
953 return true;
954 }
955
956 static int follow_dotdot_rcu(struct nameidata *nd)
957 {
958 struct inode *inode = nd->inode;
959
960 set_root_rcu(nd);
961
962 while (1) {
963 if (nd->path.dentry == nd->root.dentry &&
964 nd->path.mnt == nd->root.mnt) {
965 break;
966 }
967 if (nd->path.dentry != nd->path.mnt->mnt_root) {
968 struct dentry *old = nd->path.dentry;
969 struct dentry *parent = old->d_parent;
970 unsigned seq;
971
972 seq = read_seqcount_begin(&parent->d_seq);
973 if (read_seqcount_retry(&old->d_seq, nd->seq))
974 goto failed;
975 inode = parent->d_inode;
976 nd->path.dentry = parent;
977 nd->seq = seq;
978 break;
979 }
980 if (!follow_up_rcu(&nd->path))
981 break;
982 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
983 inode = nd->path.dentry->d_inode;
984 }
985 __follow_mount_rcu(nd, &nd->path, &inode, true);
986 nd->inode = inode;
987 return 0;
988
989 failed:
990 nd->flags &= ~LOOKUP_RCU;
991 if (!(nd->flags & LOOKUP_ROOT))
992 nd->root.mnt = NULL;
993 rcu_read_unlock();
994 br_read_unlock(vfsmount_lock);
995 return -ECHILD;
996 }
997
998 /*
999 * Follow down to the covering mount currently visible to userspace. At each
1000 * point, the filesystem owning that dentry may be queried as to whether the
1001 * caller is permitted to proceed or not.
1002 *
1003 * Care must be taken as namespace_sem may be held (indicated by mounting_here
1004 * being true).
1005 */
1006 int follow_down(struct path *path)
1007 {
1008 unsigned managed;
1009 int ret;
1010
1011 while (managed = ACCESS_ONCE(path->dentry->d_flags),
1012 unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1013 /* Allow the filesystem to manage the transit without i_mutex
1014 * being held.
1015 *
1016 * We indicate to the filesystem if someone is trying to mount
1017 * something here. This gives autofs the chance to deny anyone
1018 * other than its daemon the right to mount on its
1019 * superstructure.
1020 *
1021 * The filesystem may sleep at this point.
1022 */
1023 if (managed & DCACHE_MANAGE_TRANSIT) {
1024 BUG_ON(!path->dentry->d_op);
1025 BUG_ON(!path->dentry->d_op->d_manage);
1026 ret = path->dentry->d_op->d_manage(
1027 path->dentry, false);
1028 if (ret < 0)
1029 return ret == -EISDIR ? 0 : ret;
1030 }
1031
1032 /* Transit to a mounted filesystem. */
1033 if (managed & DCACHE_MOUNTED) {
1034 struct vfsmount *mounted = lookup_mnt(path);
1035 if (!mounted)
1036 break;
1037 dput(path->dentry);
1038 mntput(path->mnt);
1039 path->mnt = mounted;
1040 path->dentry = dget(mounted->mnt_root);
1041 continue;
1042 }
1043
1044 /* Don't handle automount points here */
1045 break;
1046 }
1047 return 0;
1048 }
1049
1050 /*
1051 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1052 */
1053 static void follow_mount(struct path *path)
1054 {
1055 while (d_mountpoint(path->dentry)) {
1056 struct vfsmount *mounted = lookup_mnt(path);
1057 if (!mounted)
1058 break;
1059 dput(path->dentry);
1060 mntput(path->mnt);
1061 path->mnt = mounted;
1062 path->dentry = dget(mounted->mnt_root);
1063 }
1064 }
1065
1066 static void follow_dotdot(struct nameidata *nd)
1067 {
1068 set_root(nd);
1069
1070 while(1) {
1071 struct dentry *old = nd->path.dentry;
1072
1073 if (nd->path.dentry == nd->root.dentry &&
1074 nd->path.mnt == nd->root.mnt) {
1075 break;
1076 }
1077 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1078 /* rare case of legitimate dget_parent()... */
1079 nd->path.dentry = dget_parent(nd->path.dentry);
1080 dput(old);
1081 break;
1082 }
1083 if (!follow_up(&nd->path))
1084 break;
1085 }
1086 follow_mount(&nd->path);
1087 nd->inode = nd->path.dentry->d_inode;
1088 }
1089
1090 /*
1091 * Allocate a dentry with name and parent, and perform a parent
1092 * directory ->lookup on it. Returns the new dentry, or ERR_PTR
1093 * on error. parent->d_inode->i_mutex must be held. d_lookup must
1094 * have verified that no child exists while under i_mutex.
1095 */
1096 static struct dentry *d_alloc_and_lookup(struct dentry *parent,
1097 struct qstr *name, struct nameidata *nd)
1098 {
1099 struct inode *inode = parent->d_inode;
1100 struct dentry *dentry;
1101 struct dentry *old;
1102
1103 /* Don't create child dentry for a dead directory. */
1104 if (unlikely(IS_DEADDIR(inode)))
1105 return ERR_PTR(-ENOENT);
1106
1107 dentry = d_alloc(parent, name);
1108 if (unlikely(!dentry))
1109 return ERR_PTR(-ENOMEM);
1110
1111 old = inode->i_op->lookup(inode, dentry, nd);
1112 if (unlikely(old)) {
1113 dput(dentry);
1114 dentry = old;
1115 }
1116 return dentry;
1117 }
1118
1119 /*
1120 * It's more convoluted than I'd like it to be, but... it's still fairly
1121 * small and for now I'd prefer to have fast path as straight as possible.
1122 * It _is_ time-critical.
1123 */
1124 static int do_lookup(struct nameidata *nd, struct qstr *name,
1125 struct path *path, struct inode **inode)
1126 {
1127 struct vfsmount *mnt = nd->path.mnt;
1128 struct dentry *dentry, *parent = nd->path.dentry;
1129 int need_reval = 1;
1130 int status = 1;
1131 int err;
1132
1133 /*
1134 * Rename seqlock is not required here because in the off chance
1135 * of a false negative due to a concurrent rename, we're going to
1136 * do the non-racy lookup, below.
1137 */
1138 if (nd->flags & LOOKUP_RCU) {
1139 unsigned seq;
1140 *inode = nd->inode;
1141 dentry = __d_lookup_rcu(parent, name, &seq, inode);
1142 if (!dentry)
1143 goto unlazy;
1144
1145 /* Memory barrier in read_seqcount_begin of child is enough */
1146 if (__read_seqcount_retry(&parent->d_seq, nd->seq))
1147 return -ECHILD;
1148 nd->seq = seq;
1149
1150 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) {
1151 status = d_revalidate(dentry, nd);
1152 if (unlikely(status <= 0)) {
1153 if (status != -ECHILD)
1154 need_reval = 0;
1155 goto unlazy;
1156 }
1157 }
1158 path->mnt = mnt;
1159 path->dentry = dentry;
1160 if (likely(__follow_mount_rcu(nd, path, inode, false)))
1161 return 0;
1162 unlazy:
1163 if (unlazy_walk(nd, dentry))
1164 return -ECHILD;
1165 } else {
1166 dentry = __d_lookup(parent, name);
1167 }
1168
1169 retry:
1170 if (unlikely(!dentry)) {
1171 struct inode *dir = parent->d_inode;
1172 BUG_ON(nd->inode != dir);
1173
1174 mutex_lock(&dir->i_mutex);
1175 dentry = d_lookup(parent, name);
1176 if (likely(!dentry)) {
1177 dentry = d_alloc_and_lookup(parent, name, nd);
1178 if (IS_ERR(dentry)) {
1179 mutex_unlock(&dir->i_mutex);
1180 return PTR_ERR(dentry);
1181 }
1182 /* known good */
1183 need_reval = 0;
1184 status = 1;
1185 }
1186 mutex_unlock(&dir->i_mutex);
1187 }
1188 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE) && need_reval)
1189 status = d_revalidate(dentry, nd);
1190 if (unlikely(status <= 0)) {
1191 if (status < 0) {
1192 dput(dentry);
1193 return status;
1194 }
1195 if (!d_invalidate(dentry)) {
1196 dput(dentry);
1197 dentry = NULL;
1198 need_reval = 1;
1199 goto retry;
1200 }
1201 }
1202
1203 path->mnt = mnt;
1204 path->dentry = dentry;
1205 err = follow_managed(path, nd->flags);
1206 if (unlikely(err < 0)) {
1207 path_put_conditional(path, nd);
1208 return err;
1209 }
1210 *inode = path->dentry->d_inode;
1211 return 0;
1212 }
1213
1214 static inline int may_lookup(struct nameidata *nd)
1215 {
1216 if (nd->flags & LOOKUP_RCU) {
1217 int err = exec_permission(nd->inode, IPERM_FLAG_RCU);
1218 if (err != -ECHILD)
1219 return err;
1220 if (unlazy_walk(nd, NULL))
1221 return -ECHILD;
1222 }
1223 return exec_permission(nd->inode, 0);
1224 }
1225
1226 static inline int handle_dots(struct nameidata *nd, int type)
1227 {
1228 if (type == LAST_DOTDOT) {
1229 if (nd->flags & LOOKUP_RCU) {
1230 if (follow_dotdot_rcu(nd))
1231 return -ECHILD;
1232 } else
1233 follow_dotdot(nd);
1234 }
1235 return 0;
1236 }
1237
1238 static void terminate_walk(struct nameidata *nd)
1239 {
1240 if (!(nd->flags & LOOKUP_RCU)) {
1241 path_put(&nd->path);
1242 } else {
1243 nd->flags &= ~LOOKUP_RCU;
1244 if (!(nd->flags & LOOKUP_ROOT))
1245 nd->root.mnt = NULL;
1246 rcu_read_unlock();
1247 br_read_unlock(vfsmount_lock);
1248 }
1249 }
1250
1251 static inline int walk_component(struct nameidata *nd, struct path *path,
1252 struct qstr *name, int type, int follow)
1253 {
1254 struct inode *inode;
1255 int err;
1256 /*
1257 * "." and ".." are special - ".." especially so because it has
1258 * to be able to know about the current root directory and
1259 * parent relationships.
1260 */
1261 if (unlikely(type != LAST_NORM))
1262 return handle_dots(nd, type);
1263 err = do_lookup(nd, name, path, &inode);
1264 if (unlikely(err)) {
1265 terminate_walk(nd);
1266 return err;
1267 }
1268 if (!inode) {
1269 path_to_nameidata(path, nd);
1270 terminate_walk(nd);
1271 return -ENOENT;
1272 }
1273 if (unlikely(inode->i_op->follow_link) && follow) {
1274 if (nd->flags & LOOKUP_RCU) {
1275 if (unlikely(unlazy_walk(nd, path->dentry))) {
1276 terminate_walk(nd);
1277 return -ECHILD;
1278 }
1279 }
1280 BUG_ON(inode != path->dentry->d_inode);
1281 return 1;
1282 }
1283 path_to_nameidata(path, nd);
1284 nd->inode = inode;
1285 return 0;
1286 }
1287
1288 /*
1289 * This limits recursive symlink follows to 8, while
1290 * limiting consecutive symlinks to 40.
1291 *
1292 * Without that kind of total limit, nasty chains of consecutive
1293 * symlinks can cause almost arbitrarily long lookups.
1294 */
1295 static inline int nested_symlink(struct path *path, struct nameidata *nd)
1296 {
1297 int res;
1298
1299 BUG_ON(nd->depth >= MAX_NESTED_LINKS);
1300 if (unlikely(current->link_count >= MAX_NESTED_LINKS)) {
1301 path_put_conditional(path, nd);
1302 path_put(&nd->path);
1303 return -ELOOP;
1304 }
1305
1306 nd->depth++;
1307 current->link_count++;
1308
1309 do {
1310 struct path link = *path;
1311 void *cookie;
1312
1313 res = follow_link(&link, nd, &cookie);
1314 if (!res)
1315 res = walk_component(nd, path, &nd->last,
1316 nd->last_type, LOOKUP_FOLLOW);
1317 put_link(nd, &link, cookie);
1318 } while (res > 0);
1319
1320 current->link_count--;
1321 nd->depth--;
1322 return res;
1323 }
1324
1325 /*
1326 * Name resolution.
1327 * This is the basic name resolution function, turning a pathname into
1328 * the final dentry. We expect 'base' to be positive and a directory.
1329 *
1330 * Returns 0 and nd will have valid dentry and mnt on success.
1331 * Returns error and drops reference to input namei data on failure.
1332 */
1333 static int link_path_walk(const char *name, struct nameidata *nd)
1334 {
1335 struct path next;
1336 int err;
1337 unsigned int lookup_flags = nd->flags;
1338
1339 while (*name=='/')
1340 name++;
1341 if (!*name)
1342 return 0;
1343
1344 /* At this point we know we have a real path component. */
1345 for(;;) {
1346 unsigned long hash;
1347 struct qstr this;
1348 unsigned int c;
1349 int type;
1350
1351 nd->flags |= LOOKUP_CONTINUE;
1352
1353 err = may_lookup(nd);
1354 if (err)
1355 break;
1356
1357 this.name = name;
1358 c = *(const unsigned char *)name;
1359
1360 hash = init_name_hash();
1361 do {
1362 name++;
1363 hash = partial_name_hash(c, hash);
1364 c = *(const unsigned char *)name;
1365 } while (c && (c != '/'));
1366 this.len = name - (const char *) this.name;
1367 this.hash = end_name_hash(hash);
1368
1369 type = LAST_NORM;
1370 if (this.name[0] == '.') switch (this.len) {
1371 case 2:
1372 if (this.name[1] == '.') {
1373 type = LAST_DOTDOT;
1374 nd->flags |= LOOKUP_JUMPED;
1375 }
1376 break;
1377 case 1:
1378 type = LAST_DOT;
1379 }
1380 if (likely(type == LAST_NORM)) {
1381 struct dentry *parent = nd->path.dentry;
1382 nd->flags &= ~LOOKUP_JUMPED;
1383 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
1384 err = parent->d_op->d_hash(parent, nd->inode,
1385 &this);
1386 if (err < 0)
1387 break;
1388 }
1389 }
1390
1391 /* remove trailing slashes? */
1392 if (!c)
1393 goto last_component;
1394 while (*++name == '/');
1395 if (!*name)
1396 goto last_component;
1397
1398 err = walk_component(nd, &next, &this, type, LOOKUP_FOLLOW);
1399 if (err < 0)
1400 return err;
1401
1402 if (err) {
1403 err = nested_symlink(&next, nd);
1404 if (err)
1405 return err;
1406 }
1407 err = -ENOTDIR;
1408 if (!nd->inode->i_op->lookup)
1409 break;
1410 continue;
1411 /* here ends the main loop */
1412
1413 last_component:
1414 /* Clear LOOKUP_CONTINUE iff it was previously unset */
1415 nd->flags &= lookup_flags | ~LOOKUP_CONTINUE;
1416 nd->last = this;
1417 nd->last_type = type;
1418 return 0;
1419 }
1420 terminate_walk(nd);
1421 return err;
1422 }
1423
1424 static int path_init(int dfd, const char *name, unsigned int flags,
1425 struct nameidata *nd, struct file **fp)
1426 {
1427 int retval = 0;
1428 int fput_needed;
1429 struct file *file;
1430
1431 nd->last_type = LAST_ROOT; /* if there are only slashes... */
1432 nd->flags = flags | LOOKUP_JUMPED;
1433 nd->depth = 0;
1434 if (flags & LOOKUP_ROOT) {
1435 struct inode *inode = nd->root.dentry->d_inode;
1436 if (*name) {
1437 if (!inode->i_op->lookup)
1438 return -ENOTDIR;
1439 retval = inode_permission(inode, MAY_EXEC);
1440 if (retval)
1441 return retval;
1442 }
1443 nd->path = nd->root;
1444 nd->inode = inode;
1445 if (flags & LOOKUP_RCU) {
1446 br_read_lock(vfsmount_lock);
1447 rcu_read_lock();
1448 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1449 } else {
1450 path_get(&nd->path);
1451 }
1452 return 0;
1453 }
1454
1455 nd->root.mnt = NULL;
1456
1457 if (*name=='/') {
1458 if (flags & LOOKUP_RCU) {
1459 br_read_lock(vfsmount_lock);
1460 rcu_read_lock();
1461 set_root_rcu(nd);
1462 } else {
1463 set_root(nd);
1464 path_get(&nd->root);
1465 }
1466 nd->path = nd->root;
1467 } else if (dfd == AT_FDCWD) {
1468 if (flags & LOOKUP_RCU) {
1469 struct fs_struct *fs = current->fs;
1470 unsigned seq;
1471
1472 br_read_lock(vfsmount_lock);
1473 rcu_read_lock();
1474
1475 do {
1476 seq = read_seqcount_begin(&fs->seq);
1477 nd->path = fs->pwd;
1478 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1479 } while (read_seqcount_retry(&fs->seq, seq));
1480 } else {
1481 get_fs_pwd(current->fs, &nd->path);
1482 }
1483 } else {
1484 struct dentry *dentry;
1485
1486 file = fget_raw_light(dfd, &fput_needed);
1487 retval = -EBADF;
1488 if (!file)
1489 goto out_fail;
1490
1491 dentry = file->f_path.dentry;
1492
1493 if (*name) {
1494 retval = -ENOTDIR;
1495 if (!S_ISDIR(dentry->d_inode->i_mode))
1496 goto fput_fail;
1497
1498 retval = file_permission(file, MAY_EXEC);
1499 if (retval)
1500 goto fput_fail;
1501 }
1502
1503 nd->path = file->f_path;
1504 if (flags & LOOKUP_RCU) {
1505 if (fput_needed)
1506 *fp = file;
1507 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1508 br_read_lock(vfsmount_lock);
1509 rcu_read_lock();
1510 } else {
1511 path_get(&file->f_path);
1512 fput_light(file, fput_needed);
1513 }
1514 }
1515
1516 nd->inode = nd->path.dentry->d_inode;
1517 return 0;
1518
1519 fput_fail:
1520 fput_light(file, fput_needed);
1521 out_fail:
1522 return retval;
1523 }
1524
1525 static inline int lookup_last(struct nameidata *nd, struct path *path)
1526 {
1527 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
1528 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
1529
1530 nd->flags &= ~LOOKUP_PARENT;
1531 return walk_component(nd, path, &nd->last, nd->last_type,
1532 nd->flags & LOOKUP_FOLLOW);
1533 }
1534
1535 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
1536 static int path_lookupat(int dfd, const char *name,
1537 unsigned int flags, struct nameidata *nd)
1538 {
1539 struct file *base = NULL;
1540 struct path path;
1541 int err;
1542
1543 /*
1544 * Path walking is largely split up into 2 different synchronisation
1545 * schemes, rcu-walk and ref-walk (explained in
1546 * Documentation/filesystems/path-lookup.txt). These share much of the
1547 * path walk code, but some things particularly setup, cleanup, and
1548 * following mounts are sufficiently divergent that functions are
1549 * duplicated. Typically there is a function foo(), and its RCU
1550 * analogue, foo_rcu().
1551 *
1552 * -ECHILD is the error number of choice (just to avoid clashes) that
1553 * is returned if some aspect of an rcu-walk fails. Such an error must
1554 * be handled by restarting a traditional ref-walk (which will always
1555 * be able to complete).
1556 */
1557 err = path_init(dfd, name, flags | LOOKUP_PARENT, nd, &base);
1558
1559 if (unlikely(err))
1560 return err;
1561
1562 current->total_link_count = 0;
1563 err = link_path_walk(name, nd);
1564
1565 if (!err && !(flags & LOOKUP_PARENT)) {
1566 err = lookup_last(nd, &path);
1567 while (err > 0) {
1568 void *cookie;
1569 struct path link = path;
1570 nd->flags |= LOOKUP_PARENT;
1571 err = follow_link(&link, nd, &cookie);
1572 if (!err)
1573 err = lookup_last(nd, &path);
1574 put_link(nd, &link, cookie);
1575 }
1576 }
1577
1578 if (!err)
1579 err = complete_walk(nd);
1580
1581 if (!err && nd->flags & LOOKUP_DIRECTORY) {
1582 if (!nd->inode->i_op->lookup) {
1583 path_put(&nd->path);
1584 err = -ENOTDIR;
1585 }
1586 }
1587
1588 if (base)
1589 fput(base);
1590
1591 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
1592 path_put(&nd->root);
1593 nd->root.mnt = NULL;
1594 }
1595 return err;
1596 }
1597
1598 static int do_path_lookup(int dfd, const char *name,
1599 unsigned int flags, struct nameidata *nd)
1600 {
1601 int retval = path_lookupat(dfd, name, flags | LOOKUP_RCU, nd);
1602 if (unlikely(retval == -ECHILD))
1603 retval = path_lookupat(dfd, name, flags, nd);
1604 if (unlikely(retval == -ESTALE))
1605 retval = path_lookupat(dfd, name, flags | LOOKUP_REVAL, nd);
1606
1607 if (likely(!retval)) {
1608 if (unlikely(!audit_dummy_context())) {
1609 if (nd->path.dentry && nd->inode)
1610 audit_inode(name, nd->path.dentry);
1611 }
1612 }
1613 return retval;
1614 }
1615
1616 int kern_path_parent(const char *name, struct nameidata *nd)
1617 {
1618 return do_path_lookup(AT_FDCWD, name, LOOKUP_PARENT, nd);
1619 }
1620
1621 int kern_path(const char *name, unsigned int flags, struct path *path)
1622 {
1623 struct nameidata nd;
1624 int res = do_path_lookup(AT_FDCWD, name, flags, &nd);
1625 if (!res)
1626 *path = nd.path;
1627 return res;
1628 }
1629
1630 /**
1631 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
1632 * @dentry: pointer to dentry of the base directory
1633 * @mnt: pointer to vfs mount of the base directory
1634 * @name: pointer to file name
1635 * @flags: lookup flags
1636 * @nd: pointer to nameidata
1637 */
1638 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
1639 const char *name, unsigned int flags,
1640 struct nameidata *nd)
1641 {
1642 nd->root.dentry = dentry;
1643 nd->root.mnt = mnt;
1644 /* the first argument of do_path_lookup() is ignored with LOOKUP_ROOT */
1645 return do_path_lookup(AT_FDCWD, name, flags | LOOKUP_ROOT, nd);
1646 }
1647
1648 static struct dentry *__lookup_hash(struct qstr *name,
1649 struct dentry *base, struct nameidata *nd)
1650 {
1651 struct inode *inode = base->d_inode;
1652 struct dentry *dentry;
1653 int err;
1654
1655 err = exec_permission(inode, 0);
1656 if (err)
1657 return ERR_PTR(err);
1658
1659 /*
1660 * Don't bother with __d_lookup: callers are for creat as
1661 * well as unlink, so a lot of the time it would cost
1662 * a double lookup.
1663 */
1664 dentry = d_lookup(base, name);
1665
1666 if (dentry && (dentry->d_flags & DCACHE_OP_REVALIDATE))
1667 dentry = do_revalidate(dentry, nd);
1668
1669 if (!dentry)
1670 dentry = d_alloc_and_lookup(base, name, nd);
1671
1672 return dentry;
1673 }
1674
1675 /*
1676 * Restricted form of lookup. Doesn't follow links, single-component only,
1677 * needs parent already locked. Doesn't follow mounts.
1678 * SMP-safe.
1679 */
1680 static struct dentry *lookup_hash(struct nameidata *nd)
1681 {
1682 return __lookup_hash(&nd->last, nd->path.dentry, nd);
1683 }
1684
1685 /**
1686 * lookup_one_len - filesystem helper to lookup single pathname component
1687 * @name: pathname component to lookup
1688 * @base: base directory to lookup from
1689 * @len: maximum length @len should be interpreted to
1690 *
1691 * Note that this routine is purely a helper for filesystem usage and should
1692 * not be called by generic code. Also note that by using this function the
1693 * nameidata argument is passed to the filesystem methods and a filesystem
1694 * using this helper needs to be prepared for that.
1695 */
1696 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
1697 {
1698 struct qstr this;
1699 unsigned long hash;
1700 unsigned int c;
1701
1702 WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex));
1703
1704 this.name = name;
1705 this.len = len;
1706 if (!len)
1707 return ERR_PTR(-EACCES);
1708
1709 hash = init_name_hash();
1710 while (len--) {
1711 c = *(const unsigned char *)name++;
1712 if (c == '/' || c == '\0')
1713 return ERR_PTR(-EACCES);
1714 hash = partial_name_hash(c, hash);
1715 }
1716 this.hash = end_name_hash(hash);
1717 /*
1718 * See if the low-level filesystem might want
1719 * to use its own hash..
1720 */
1721 if (base->d_flags & DCACHE_OP_HASH) {
1722 int err = base->d_op->d_hash(base, base->d_inode, &this);
1723 if (err < 0)
1724 return ERR_PTR(err);
1725 }
1726
1727 return __lookup_hash(&this, base, NULL);
1728 }
1729
1730 int user_path_at(int dfd, const char __user *name, unsigned flags,
1731 struct path *path)
1732 {
1733 struct nameidata nd;
1734 char *tmp = getname_flags(name, flags);
1735 int err = PTR_ERR(tmp);
1736 if (!IS_ERR(tmp)) {
1737
1738 BUG_ON(flags & LOOKUP_PARENT);
1739
1740 err = do_path_lookup(dfd, tmp, flags, &nd);
1741 putname(tmp);
1742 if (!err)
1743 *path = nd.path;
1744 }
1745 return err;
1746 }
1747
1748 static int user_path_parent(int dfd, const char __user *path,
1749 struct nameidata *nd, char **name)
1750 {
1751 char *s = getname(path);
1752 int error;
1753
1754 if (IS_ERR(s))
1755 return PTR_ERR(s);
1756
1757 error = do_path_lookup(dfd, s, LOOKUP_PARENT, nd);
1758 if (error)
1759 putname(s);
1760 else
1761 *name = s;
1762
1763 return error;
1764 }
1765
1766 /*
1767 * It's inline, so penalty for filesystems that don't use sticky bit is
1768 * minimal.
1769 */
1770 static inline int check_sticky(struct inode *dir, struct inode *inode)
1771 {
1772 uid_t fsuid = current_fsuid();
1773
1774 if (!(dir->i_mode & S_ISVTX))
1775 return 0;
1776 if (current_user_ns() != inode_userns(inode))
1777 goto other_userns;
1778 if (inode->i_uid == fsuid)
1779 return 0;
1780 if (dir->i_uid == fsuid)
1781 return 0;
1782
1783 other_userns:
1784 return !ns_capable(inode_userns(inode), CAP_FOWNER);
1785 }
1786
1787 /*
1788 * Check whether we can remove a link victim from directory dir, check
1789 * whether the type of victim is right.
1790 * 1. We can't do it if dir is read-only (done in permission())
1791 * 2. We should have write and exec permissions on dir
1792 * 3. We can't remove anything from append-only dir
1793 * 4. We can't do anything with immutable dir (done in permission())
1794 * 5. If the sticky bit on dir is set we should either
1795 * a. be owner of dir, or
1796 * b. be owner of victim, or
1797 * c. have CAP_FOWNER capability
1798 * 6. If the victim is append-only or immutable we can't do antyhing with
1799 * links pointing to it.
1800 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
1801 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
1802 * 9. We can't remove a root or mountpoint.
1803 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
1804 * nfs_async_unlink().
1805 */
1806 static int may_delete(struct inode *dir,struct dentry *victim,int isdir)
1807 {
1808 int error;
1809
1810 if (!victim->d_inode)
1811 return -ENOENT;
1812
1813 BUG_ON(victim->d_parent->d_inode != dir);
1814 audit_inode_child(victim, dir);
1815
1816 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
1817 if (error)
1818 return error;
1819 if (IS_APPEND(dir))
1820 return -EPERM;
1821 if (check_sticky(dir, victim->d_inode)||IS_APPEND(victim->d_inode)||
1822 IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode))
1823 return -EPERM;
1824 if (isdir) {
1825 if (!S_ISDIR(victim->d_inode->i_mode))
1826 return -ENOTDIR;
1827 if (IS_ROOT(victim))
1828 return -EBUSY;
1829 } else if (S_ISDIR(victim->d_inode->i_mode))
1830 return -EISDIR;
1831 if (IS_DEADDIR(dir))
1832 return -ENOENT;
1833 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
1834 return -EBUSY;
1835 return 0;
1836 }
1837
1838 /* Check whether we can create an object with dentry child in directory
1839 * dir.
1840 * 1. We can't do it if child already exists (open has special treatment for
1841 * this case, but since we are inlined it's OK)
1842 * 2. We can't do it if dir is read-only (done in permission())
1843 * 3. We should have write and exec permissions on dir
1844 * 4. We can't do it if dir is immutable (done in permission())
1845 */
1846 static inline int may_create(struct inode *dir, struct dentry *child)
1847 {
1848 if (child->d_inode)
1849 return -EEXIST;
1850 if (IS_DEADDIR(dir))
1851 return -ENOENT;
1852 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
1853 }
1854
1855 /*
1856 * p1 and p2 should be directories on the same fs.
1857 */
1858 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
1859 {
1860 struct dentry *p;
1861
1862 if (p1 == p2) {
1863 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1864 return NULL;
1865 }
1866
1867 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
1868
1869 p = d_ancestor(p2, p1);
1870 if (p) {
1871 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
1872 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
1873 return p;
1874 }
1875
1876 p = d_ancestor(p1, p2);
1877 if (p) {
1878 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1879 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
1880 return p;
1881 }
1882
1883 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1884 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
1885 return NULL;
1886 }
1887
1888 void unlock_rename(struct dentry *p1, struct dentry *p2)
1889 {
1890 mutex_unlock(&p1->d_inode->i_mutex);
1891 if (p1 != p2) {
1892 mutex_unlock(&p2->d_inode->i_mutex);
1893 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
1894 }
1895 }
1896
1897 int vfs_create(struct inode *dir, struct dentry *dentry, int mode,
1898 struct nameidata *nd)
1899 {
1900 int error = may_create(dir, dentry);
1901
1902 if (error)
1903 return error;
1904
1905 if (!dir->i_op->create)
1906 return -EACCES; /* shouldn't it be ENOSYS? */
1907 mode &= S_IALLUGO;
1908 mode |= S_IFREG;
1909 error = security_inode_create(dir, dentry, mode);
1910 if (error)
1911 return error;
1912 error = dir->i_op->create(dir, dentry, mode, nd);
1913 if (!error)
1914 fsnotify_create(dir, dentry);
1915 return error;
1916 }
1917
1918 static int may_open(struct path *path, int acc_mode, int flag)
1919 {
1920 struct dentry *dentry = path->dentry;
1921 struct inode *inode = dentry->d_inode;
1922 int error;
1923
1924 /* O_PATH? */
1925 if (!acc_mode)
1926 return 0;
1927
1928 if (!inode)
1929 return -ENOENT;
1930
1931 switch (inode->i_mode & S_IFMT) {
1932 case S_IFLNK:
1933 return -ELOOP;
1934 case S_IFDIR:
1935 if (acc_mode & MAY_WRITE)
1936 return -EISDIR;
1937 break;
1938 case S_IFBLK:
1939 case S_IFCHR:
1940 if (path->mnt->mnt_flags & MNT_NODEV)
1941 return -EACCES;
1942 /*FALLTHRU*/
1943 case S_IFIFO:
1944 case S_IFSOCK:
1945 flag &= ~O_TRUNC;
1946 break;
1947 }
1948
1949 error = inode_permission(inode, acc_mode);
1950 if (error)
1951 return error;
1952
1953 /*
1954 * An append-only file must be opened in append mode for writing.
1955 */
1956 if (IS_APPEND(inode)) {
1957 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
1958 return -EPERM;
1959 if (flag & O_TRUNC)
1960 return -EPERM;
1961 }
1962
1963 /* O_NOATIME can only be set by the owner or superuser */
1964 if (flag & O_NOATIME && !inode_owner_or_capable(inode))
1965 return -EPERM;
1966
1967 /*
1968 * Ensure there are no outstanding leases on the file.
1969 */
1970 return break_lease(inode, flag);
1971 }
1972
1973 static int handle_truncate(struct file *filp)
1974 {
1975 struct path *path = &filp->f_path;
1976 struct inode *inode = path->dentry->d_inode;
1977 int error = get_write_access(inode);
1978 if (error)
1979 return error;
1980 /*
1981 * Refuse to truncate files with mandatory locks held on them.
1982 */
1983 error = locks_verify_locked(inode);
1984 if (!error)
1985 error = security_path_truncate(path);
1986 if (!error) {
1987 error = do_truncate(path->dentry, 0,
1988 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
1989 filp);
1990 }
1991 put_write_access(inode);
1992 return error;
1993 }
1994
1995 /*
1996 * Note that while the flag value (low two bits) for sys_open means:
1997 * 00 - read-only
1998 * 01 - write-only
1999 * 10 - read-write
2000 * 11 - special
2001 * it is changed into
2002 * 00 - no permissions needed
2003 * 01 - read-permission
2004 * 10 - write-permission
2005 * 11 - read-write
2006 * for the internal routines (ie open_namei()/follow_link() etc)
2007 * This is more logical, and also allows the 00 "no perm needed"
2008 * to be used for symlinks (where the permissions are checked
2009 * later).
2010 *
2011 */
2012 static inline int open_to_namei_flags(int flag)
2013 {
2014 if ((flag+1) & O_ACCMODE)
2015 flag++;
2016 return flag;
2017 }
2018
2019 /*
2020 * Handle the last step of open()
2021 */
2022 static struct file *do_last(struct nameidata *nd, struct path *path,
2023 const struct open_flags *op, const char *pathname)
2024 {
2025 struct dentry *dir = nd->path.dentry;
2026 struct dentry *dentry;
2027 int open_flag = op->open_flag;
2028 int will_truncate = open_flag & O_TRUNC;
2029 int want_write = 0;
2030 int acc_mode = op->acc_mode;
2031 struct file *filp;
2032 int error;
2033
2034 nd->flags &= ~LOOKUP_PARENT;
2035 nd->flags |= op->intent;
2036
2037 switch (nd->last_type) {
2038 case LAST_DOTDOT:
2039 case LAST_DOT:
2040 error = handle_dots(nd, nd->last_type);
2041 if (error)
2042 return ERR_PTR(error);
2043 /* fallthrough */
2044 case LAST_ROOT:
2045 error = complete_walk(nd);
2046 if (error)
2047 return ERR_PTR(error);
2048 audit_inode(pathname, nd->path.dentry);
2049 if (open_flag & O_CREAT) {
2050 error = -EISDIR;
2051 goto exit;
2052 }
2053 goto ok;
2054 case LAST_BIND:
2055 error = complete_walk(nd);
2056 if (error)
2057 return ERR_PTR(error);
2058 audit_inode(pathname, dir);
2059 goto ok;
2060 }
2061
2062 if (!(open_flag & O_CREAT)) {
2063 int symlink_ok = 0;
2064 if (nd->last.name[nd->last.len])
2065 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2066 if (open_flag & O_PATH && !(nd->flags & LOOKUP_FOLLOW))
2067 symlink_ok = 1;
2068 /* we _can_ be in RCU mode here */
2069 error = walk_component(nd, path, &nd->last, LAST_NORM,
2070 !symlink_ok);
2071 if (error < 0)
2072 return ERR_PTR(error);
2073 if (error) /* symlink */
2074 return NULL;
2075 /* sayonara */
2076 error = complete_walk(nd);
2077 if (error)
2078 return ERR_PTR(-ECHILD);
2079
2080 error = -ENOTDIR;
2081 if (nd->flags & LOOKUP_DIRECTORY) {
2082 if (!nd->inode->i_op->lookup)
2083 goto exit;
2084 }
2085 audit_inode(pathname, nd->path.dentry);
2086 goto ok;
2087 }
2088
2089 /* create side of things */
2090 error = complete_walk(nd);
2091 if (error)
2092 return ERR_PTR(error);
2093
2094 audit_inode(pathname, dir);
2095 error = -EISDIR;
2096 /* trailing slashes? */
2097 if (nd->last.name[nd->last.len])
2098 goto exit;
2099
2100 mutex_lock(&dir->d_inode->i_mutex);
2101
2102 dentry = lookup_hash(nd);
2103 error = PTR_ERR(dentry);
2104 if (IS_ERR(dentry)) {
2105 mutex_unlock(&dir->d_inode->i_mutex);
2106 goto exit;
2107 }
2108
2109 path->dentry = dentry;
2110 path->mnt = nd->path.mnt;
2111
2112 /* Negative dentry, just create the file */
2113 if (!dentry->d_inode) {
2114 int mode = op->mode;
2115 if (!IS_POSIXACL(dir->d_inode))
2116 mode &= ~current_umask();
2117 /*
2118 * This write is needed to ensure that a
2119 * rw->ro transition does not occur between
2120 * the time when the file is created and when
2121 * a permanent write count is taken through
2122 * the 'struct file' in nameidata_to_filp().
2123 */
2124 error = mnt_want_write(nd->path.mnt);
2125 if (error)
2126 goto exit_mutex_unlock;
2127 want_write = 1;
2128 /* Don't check for write permission, don't truncate */
2129 open_flag &= ~O_TRUNC;
2130 will_truncate = 0;
2131 acc_mode = MAY_OPEN;
2132 error = security_path_mknod(&nd->path, dentry, mode, 0);
2133 if (error)
2134 goto exit_mutex_unlock;
2135 error = vfs_create(dir->d_inode, dentry, mode, nd);
2136 if (error)
2137 goto exit_mutex_unlock;
2138 mutex_unlock(&dir->d_inode->i_mutex);
2139 dput(nd->path.dentry);
2140 nd->path.dentry = dentry;
2141 goto common;
2142 }
2143
2144 /*
2145 * It already exists.
2146 */
2147 mutex_unlock(&dir->d_inode->i_mutex);
2148 audit_inode(pathname, path->dentry);
2149
2150 error = -EEXIST;
2151 if (open_flag & O_EXCL)
2152 goto exit_dput;
2153
2154 error = follow_managed(path, nd->flags);
2155 if (error < 0)
2156 goto exit_dput;
2157
2158 error = -ENOENT;
2159 if (!path->dentry->d_inode)
2160 goto exit_dput;
2161
2162 if (path->dentry->d_inode->i_op->follow_link)
2163 return NULL;
2164
2165 path_to_nameidata(path, nd);
2166 nd->inode = path->dentry->d_inode;
2167 error = -EISDIR;
2168 if (S_ISDIR(nd->inode->i_mode))
2169 goto exit;
2170 ok:
2171 if (!S_ISREG(nd->inode->i_mode))
2172 will_truncate = 0;
2173
2174 if (will_truncate) {
2175 error = mnt_want_write(nd->path.mnt);
2176 if (error)
2177 goto exit;
2178 want_write = 1;
2179 }
2180 common:
2181 error = may_open(&nd->path, acc_mode, open_flag);
2182 if (error)
2183 goto exit;
2184 filp = nameidata_to_filp(nd);
2185 if (!IS_ERR(filp)) {
2186 error = ima_file_check(filp, op->acc_mode);
2187 if (error) {
2188 fput(filp);
2189 filp = ERR_PTR(error);
2190 }
2191 }
2192 if (!IS_ERR(filp)) {
2193 if (will_truncate) {
2194 error = handle_truncate(filp);
2195 if (error) {
2196 fput(filp);
2197 filp = ERR_PTR(error);
2198 }
2199 }
2200 }
2201 out:
2202 if (want_write)
2203 mnt_drop_write(nd->path.mnt);
2204 path_put(&nd->path);
2205 return filp;
2206
2207 exit_mutex_unlock:
2208 mutex_unlock(&dir->d_inode->i_mutex);
2209 exit_dput:
2210 path_put_conditional(path, nd);
2211 exit:
2212 filp = ERR_PTR(error);
2213 goto out;
2214 }
2215
2216 static struct file *path_openat(int dfd, const char *pathname,
2217 struct nameidata *nd, const struct open_flags *op, int flags)
2218 {
2219 struct file *base = NULL;
2220 struct file *filp;
2221 struct path path;
2222 int error;
2223
2224 filp = get_empty_filp();
2225 if (!filp)
2226 return ERR_PTR(-ENFILE);
2227
2228 filp->f_flags = op->open_flag;
2229 nd->intent.open.file = filp;
2230 nd->intent.open.flags = open_to_namei_flags(op->open_flag);
2231 nd->intent.open.create_mode = op->mode;
2232
2233 error = path_init(dfd, pathname, flags | LOOKUP_PARENT, nd, &base);
2234 if (unlikely(error))
2235 goto out_filp;
2236
2237 current->total_link_count = 0;
2238 error = link_path_walk(pathname, nd);
2239 if (unlikely(error))
2240 goto out_filp;
2241
2242 filp = do_last(nd, &path, op, pathname);
2243 while (unlikely(!filp)) { /* trailing symlink */
2244 struct path link = path;
2245 void *cookie;
2246 if (!(nd->flags & LOOKUP_FOLLOW)) {
2247 path_put_conditional(&path, nd);
2248 path_put(&nd->path);
2249 filp = ERR_PTR(-ELOOP);
2250 break;
2251 }
2252 nd->flags |= LOOKUP_PARENT;
2253 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
2254 error = follow_link(&link, nd, &cookie);
2255 if (unlikely(error))
2256 filp = ERR_PTR(error);
2257 else
2258 filp = do_last(nd, &path, op, pathname);
2259 put_link(nd, &link, cookie);
2260 }
2261 out:
2262 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT))
2263 path_put(&nd->root);
2264 if (base)
2265 fput(base);
2266 release_open_intent(nd);
2267 return filp;
2268
2269 out_filp:
2270 filp = ERR_PTR(error);
2271 goto out;
2272 }
2273
2274 struct file *do_filp_open(int dfd, const char *pathname,
2275 const struct open_flags *op, int flags)
2276 {
2277 struct nameidata nd;
2278 struct file *filp;
2279
2280 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_RCU);
2281 if (unlikely(filp == ERR_PTR(-ECHILD)))
2282 filp = path_openat(dfd, pathname, &nd, op, flags);
2283 if (unlikely(filp == ERR_PTR(-ESTALE)))
2284 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_REVAL);
2285 return filp;
2286 }
2287
2288 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
2289 const char *name, const struct open_flags *op, int flags)
2290 {
2291 struct nameidata nd;
2292 struct file *file;
2293
2294 nd.root.mnt = mnt;
2295 nd.root.dentry = dentry;
2296
2297 flags |= LOOKUP_ROOT;
2298
2299 if (dentry->d_inode->i_op->follow_link && op->intent & LOOKUP_OPEN)
2300 return ERR_PTR(-ELOOP);
2301
2302 file = path_openat(-1, name, &nd, op, flags | LOOKUP_RCU);
2303 if (unlikely(file == ERR_PTR(-ECHILD)))
2304 file = path_openat(-1, name, &nd, op, flags);
2305 if (unlikely(file == ERR_PTR(-ESTALE)))
2306 file = path_openat(-1, name, &nd, op, flags | LOOKUP_REVAL);
2307 return file;
2308 }
2309
2310 /**
2311 * lookup_create - lookup a dentry, creating it if it doesn't exist
2312 * @nd: nameidata info
2313 * @is_dir: directory flag
2314 *
2315 * Simple function to lookup and return a dentry and create it
2316 * if it doesn't exist. Is SMP-safe.
2317 *
2318 * Returns with nd->path.dentry->d_inode->i_mutex locked.
2319 */
2320 struct dentry *lookup_create(struct nameidata *nd, int is_dir)
2321 {
2322 struct dentry *dentry = ERR_PTR(-EEXIST);
2323
2324 mutex_lock_nested(&nd->path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2325 /*
2326 * Yucky last component or no last component at all?
2327 * (foo/., foo/.., /////)
2328 */
2329 if (nd->last_type != LAST_NORM)
2330 goto fail;
2331 nd->flags &= ~LOOKUP_PARENT;
2332 nd->flags |= LOOKUP_CREATE | LOOKUP_EXCL;
2333 nd->intent.open.flags = O_EXCL;
2334
2335 /*
2336 * Do the final lookup.
2337 */
2338 dentry = lookup_hash(nd);
2339 if (IS_ERR(dentry))
2340 goto fail;
2341
2342 if (dentry->d_inode)
2343 goto eexist;
2344 /*
2345 * Special case - lookup gave negative, but... we had foo/bar/
2346 * From the vfs_mknod() POV we just have a negative dentry -
2347 * all is fine. Let's be bastards - you had / on the end, you've
2348 * been asking for (non-existent) directory. -ENOENT for you.
2349 */
2350 if (unlikely(!is_dir && nd->last.name[nd->last.len])) {
2351 dput(dentry);
2352 dentry = ERR_PTR(-ENOENT);
2353 }
2354 return dentry;
2355 eexist:
2356 dput(dentry);
2357 dentry = ERR_PTR(-EEXIST);
2358 fail:
2359 return dentry;
2360 }
2361 EXPORT_SYMBOL_GPL(lookup_create);
2362
2363 int vfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
2364 {
2365 int error = may_create(dir, dentry);
2366
2367 if (error)
2368 return error;
2369
2370 if ((S_ISCHR(mode) || S_ISBLK(mode)) &&
2371 !ns_capable(inode_userns(dir), CAP_MKNOD))
2372 return -EPERM;
2373
2374 if (!dir->i_op->mknod)
2375 return -EPERM;
2376
2377 error = devcgroup_inode_mknod(mode, dev);
2378 if (error)
2379 return error;
2380
2381 error = security_inode_mknod(dir, dentry, mode, dev);
2382 if (error)
2383 return error;
2384
2385 error = dir->i_op->mknod(dir, dentry, mode, dev);
2386 if (!error)
2387 fsnotify_create(dir, dentry);
2388 return error;
2389 }
2390
2391 static int may_mknod(mode_t mode)
2392 {
2393 switch (mode & S_IFMT) {
2394 case S_IFREG:
2395 case S_IFCHR:
2396 case S_IFBLK:
2397 case S_IFIFO:
2398 case S_IFSOCK:
2399 case 0: /* zero mode translates to S_IFREG */
2400 return 0;
2401 case S_IFDIR:
2402 return -EPERM;
2403 default:
2404 return -EINVAL;
2405 }
2406 }
2407
2408 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, int, mode,
2409 unsigned, dev)
2410 {
2411 int error;
2412 char *tmp;
2413 struct dentry *dentry;
2414 struct nameidata nd;
2415
2416 if (S_ISDIR(mode))
2417 return -EPERM;
2418
2419 error = user_path_parent(dfd, filename, &nd, &tmp);
2420 if (error)
2421 return error;
2422
2423 dentry = lookup_create(&nd, 0);
2424 if (IS_ERR(dentry)) {
2425 error = PTR_ERR(dentry);
2426 goto out_unlock;
2427 }
2428 if (!IS_POSIXACL(nd.path.dentry->d_inode))
2429 mode &= ~current_umask();
2430 error = may_mknod(mode);
2431 if (error)
2432 goto out_dput;
2433 error = mnt_want_write(nd.path.mnt);
2434 if (error)
2435 goto out_dput;
2436 error = security_path_mknod(&nd.path, dentry, mode, dev);
2437 if (error)
2438 goto out_drop_write;
2439 switch (mode & S_IFMT) {
2440 case 0: case S_IFREG:
2441 error = vfs_create(nd.path.dentry->d_inode,dentry,mode,&nd);
2442 break;
2443 case S_IFCHR: case S_IFBLK:
2444 error = vfs_mknod(nd.path.dentry->d_inode,dentry,mode,
2445 new_decode_dev(dev));
2446 break;
2447 case S_IFIFO: case S_IFSOCK:
2448 error = vfs_mknod(nd.path.dentry->d_inode,dentry,mode,0);
2449 break;
2450 }
2451 out_drop_write:
2452 mnt_drop_write(nd.path.mnt);
2453 out_dput:
2454 dput(dentry);
2455 out_unlock:
2456 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2457 path_put(&nd.path);
2458 putname(tmp);
2459
2460 return error;
2461 }
2462
2463 SYSCALL_DEFINE3(mknod, const char __user *, filename, int, mode, unsigned, dev)
2464 {
2465 return sys_mknodat(AT_FDCWD, filename, mode, dev);
2466 }
2467
2468 int vfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
2469 {
2470 int error = may_create(dir, dentry);
2471
2472 if (error)
2473 return error;
2474
2475 if (!dir->i_op->mkdir)
2476 return -EPERM;
2477
2478 mode &= (S_IRWXUGO|S_ISVTX);
2479 error = security_inode_mkdir(dir, dentry, mode);
2480 if (error)
2481 return error;
2482
2483 error = dir->i_op->mkdir(dir, dentry, mode);
2484 if (!error)
2485 fsnotify_mkdir(dir, dentry);
2486 return error;
2487 }
2488
2489 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, int, mode)
2490 {
2491 int error = 0;
2492 char * tmp;
2493 struct dentry *dentry;
2494 struct nameidata nd;
2495
2496 error = user_path_parent(dfd, pathname, &nd, &tmp);
2497 if (error)
2498 goto out_err;
2499
2500 dentry = lookup_create(&nd, 1);
2501 error = PTR_ERR(dentry);
2502 if (IS_ERR(dentry))
2503 goto out_unlock;
2504
2505 if (!IS_POSIXACL(nd.path.dentry->d_inode))
2506 mode &= ~current_umask();
2507 error = mnt_want_write(nd.path.mnt);
2508 if (error)
2509 goto out_dput;
2510 error = security_path_mkdir(&nd.path, dentry, mode);
2511 if (error)
2512 goto out_drop_write;
2513 error = vfs_mkdir(nd.path.dentry->d_inode, dentry, mode);
2514 out_drop_write:
2515 mnt_drop_write(nd.path.mnt);
2516 out_dput:
2517 dput(dentry);
2518 out_unlock:
2519 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2520 path_put(&nd.path);
2521 putname(tmp);
2522 out_err:
2523 return error;
2524 }
2525
2526 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, int, mode)
2527 {
2528 return sys_mkdirat(AT_FDCWD, pathname, mode);
2529 }
2530
2531 /*
2532 * We try to drop the dentry early: we should have
2533 * a usage count of 2 if we're the only user of this
2534 * dentry, and if that is true (possibly after pruning
2535 * the dcache), then we drop the dentry now.
2536 *
2537 * A low-level filesystem can, if it choses, legally
2538 * do a
2539 *
2540 * if (!d_unhashed(dentry))
2541 * return -EBUSY;
2542 *
2543 * if it cannot handle the case of removing a directory
2544 * that is still in use by something else..
2545 */
2546 void dentry_unhash(struct dentry *dentry)
2547 {
2548 dget(dentry);
2549 shrink_dcache_parent(dentry);
2550 spin_lock(&dentry->d_lock);
2551 if (dentry->d_count == 2)
2552 __d_drop(dentry);
2553 spin_unlock(&dentry->d_lock);
2554 }
2555
2556 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
2557 {
2558 int error = may_delete(dir, dentry, 1);
2559
2560 if (error)
2561 return error;
2562
2563 if (!dir->i_op->rmdir)
2564 return -EPERM;
2565
2566 mutex_lock(&dentry->d_inode->i_mutex);
2567 dentry_unhash(dentry);
2568 if (d_mountpoint(dentry))
2569 error = -EBUSY;
2570 else {
2571 error = security_inode_rmdir(dir, dentry);
2572 if (!error) {
2573 error = dir->i_op->rmdir(dir, dentry);
2574 if (!error) {
2575 dentry->d_inode->i_flags |= S_DEAD;
2576 dont_mount(dentry);
2577 }
2578 }
2579 }
2580 mutex_unlock(&dentry->d_inode->i_mutex);
2581 if (!error) {
2582 d_delete(dentry);
2583 }
2584 dput(dentry);
2585
2586 return error;
2587 }
2588
2589 static long do_rmdir(int dfd, const char __user *pathname)
2590 {
2591 int error = 0;
2592 char * name;
2593 struct dentry *dentry;
2594 struct nameidata nd;
2595
2596 error = user_path_parent(dfd, pathname, &nd, &name);
2597 if (error)
2598 return error;
2599
2600 switch(nd.last_type) {
2601 case LAST_DOTDOT:
2602 error = -ENOTEMPTY;
2603 goto exit1;
2604 case LAST_DOT:
2605 error = -EINVAL;
2606 goto exit1;
2607 case LAST_ROOT:
2608 error = -EBUSY;
2609 goto exit1;
2610 }
2611
2612 nd.flags &= ~LOOKUP_PARENT;
2613
2614 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2615 dentry = lookup_hash(&nd);
2616 error = PTR_ERR(dentry);
2617 if (IS_ERR(dentry))
2618 goto exit2;
2619 error = mnt_want_write(nd.path.mnt);
2620 if (error)
2621 goto exit3;
2622 error = security_path_rmdir(&nd.path, dentry);
2623 if (error)
2624 goto exit4;
2625 error = vfs_rmdir(nd.path.dentry->d_inode, dentry);
2626 exit4:
2627 mnt_drop_write(nd.path.mnt);
2628 exit3:
2629 dput(dentry);
2630 exit2:
2631 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2632 exit1:
2633 path_put(&nd.path);
2634 putname(name);
2635 return error;
2636 }
2637
2638 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
2639 {
2640 return do_rmdir(AT_FDCWD, pathname);
2641 }
2642
2643 int vfs_unlink(struct inode *dir, struct dentry *dentry)
2644 {
2645 int error = may_delete(dir, dentry, 0);
2646
2647 if (error)
2648 return error;
2649
2650 if (!dir->i_op->unlink)
2651 return -EPERM;
2652
2653 mutex_lock(&dentry->d_inode->i_mutex);
2654 if (d_mountpoint(dentry))
2655 error = -EBUSY;
2656 else {
2657 error = security_inode_unlink(dir, dentry);
2658 if (!error) {
2659 error = dir->i_op->unlink(dir, dentry);
2660 if (!error)
2661 dont_mount(dentry);
2662 }
2663 }
2664 mutex_unlock(&dentry->d_inode->i_mutex);
2665
2666 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
2667 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
2668 fsnotify_link_count(dentry->d_inode);
2669 d_delete(dentry);
2670 }
2671
2672 return error;
2673 }
2674
2675 /*
2676 * Make sure that the actual truncation of the file will occur outside its
2677 * directory's i_mutex. Truncate can take a long time if there is a lot of
2678 * writeout happening, and we don't want to prevent access to the directory
2679 * while waiting on the I/O.
2680 */
2681 static long do_unlinkat(int dfd, const char __user *pathname)
2682 {
2683 int error;
2684 char *name;
2685 struct dentry *dentry;
2686 struct nameidata nd;
2687 struct inode *inode = NULL;
2688
2689 error = user_path_parent(dfd, pathname, &nd, &name);
2690 if (error)
2691 return error;
2692
2693 error = -EISDIR;
2694 if (nd.last_type != LAST_NORM)
2695 goto exit1;
2696
2697 nd.flags &= ~LOOKUP_PARENT;
2698
2699 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2700 dentry = lookup_hash(&nd);
2701 error = PTR_ERR(dentry);
2702 if (!IS_ERR(dentry)) {
2703 /* Why not before? Because we want correct error value */
2704 if (nd.last.name[nd.last.len])
2705 goto slashes;
2706 inode = dentry->d_inode;
2707 if (inode)
2708 ihold(inode);
2709 error = mnt_want_write(nd.path.mnt);
2710 if (error)
2711 goto exit2;
2712 error = security_path_unlink(&nd.path, dentry);
2713 if (error)
2714 goto exit3;
2715 error = vfs_unlink(nd.path.dentry->d_inode, dentry);
2716 exit3:
2717 mnt_drop_write(nd.path.mnt);
2718 exit2:
2719 dput(dentry);
2720 }
2721 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2722 if (inode)
2723 iput(inode); /* truncate the inode here */
2724 exit1:
2725 path_put(&nd.path);
2726 putname(name);
2727 return error;
2728
2729 slashes:
2730 error = !dentry->d_inode ? -ENOENT :
2731 S_ISDIR(dentry->d_inode->i_mode) ? -EISDIR : -ENOTDIR;
2732 goto exit2;
2733 }
2734
2735 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
2736 {
2737 if ((flag & ~AT_REMOVEDIR) != 0)
2738 return -EINVAL;
2739
2740 if (flag & AT_REMOVEDIR)
2741 return do_rmdir(dfd, pathname);
2742
2743 return do_unlinkat(dfd, pathname);
2744 }
2745
2746 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
2747 {
2748 return do_unlinkat(AT_FDCWD, pathname);
2749 }
2750
2751 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
2752 {
2753 int error = may_create(dir, dentry);
2754
2755 if (error)
2756 return error;
2757
2758 if (!dir->i_op->symlink)
2759 return -EPERM;
2760
2761 error = security_inode_symlink(dir, dentry, oldname);
2762 if (error)
2763 return error;
2764
2765 error = dir->i_op->symlink(dir, dentry, oldname);
2766 if (!error)
2767 fsnotify_create(dir, dentry);
2768 return error;
2769 }
2770
2771 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
2772 int, newdfd, const char __user *, newname)
2773 {
2774 int error;
2775 char *from;
2776 char *to;
2777 struct dentry *dentry;
2778 struct nameidata nd;
2779
2780 from = getname(oldname);
2781 if (IS_ERR(from))
2782 return PTR_ERR(from);
2783
2784 error = user_path_parent(newdfd, newname, &nd, &to);
2785 if (error)
2786 goto out_putname;
2787
2788 dentry = lookup_create(&nd, 0);
2789 error = PTR_ERR(dentry);
2790 if (IS_ERR(dentry))
2791 goto out_unlock;
2792
2793 error = mnt_want_write(nd.path.mnt);
2794 if (error)
2795 goto out_dput;
2796 error = security_path_symlink(&nd.path, dentry, from);
2797 if (error)
2798 goto out_drop_write;
2799 error = vfs_symlink(nd.path.dentry->d_inode, dentry, from);
2800 out_drop_write:
2801 mnt_drop_write(nd.path.mnt);
2802 out_dput:
2803 dput(dentry);
2804 out_unlock:
2805 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2806 path_put(&nd.path);
2807 putname(to);
2808 out_putname:
2809 putname(from);
2810 return error;
2811 }
2812
2813 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
2814 {
2815 return sys_symlinkat(oldname, AT_FDCWD, newname);
2816 }
2817
2818 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2819 {
2820 struct inode *inode = old_dentry->d_inode;
2821 int error;
2822
2823 if (!inode)
2824 return -ENOENT;
2825
2826 error = may_create(dir, new_dentry);
2827 if (error)
2828 return error;
2829
2830 if (dir->i_sb != inode->i_sb)
2831 return -EXDEV;
2832
2833 /*
2834 * A link to an append-only or immutable file cannot be created.
2835 */
2836 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
2837 return -EPERM;
2838 if (!dir->i_op->link)
2839 return -EPERM;
2840 if (S_ISDIR(inode->i_mode))
2841 return -EPERM;
2842
2843 error = security_inode_link(old_dentry, dir, new_dentry);
2844 if (error)
2845 return error;
2846
2847 mutex_lock(&inode->i_mutex);
2848 /* Make sure we don't allow creating hardlink to an unlinked file */
2849 if (inode->i_nlink == 0)
2850 error = -ENOENT;
2851 else
2852 error = dir->i_op->link(old_dentry, dir, new_dentry);
2853 mutex_unlock(&inode->i_mutex);
2854 if (!error)
2855 fsnotify_link(dir, inode, new_dentry);
2856 return error;
2857 }
2858
2859 /*
2860 * Hardlinks are often used in delicate situations. We avoid
2861 * security-related surprises by not following symlinks on the
2862 * newname. --KAB
2863 *
2864 * We don't follow them on the oldname either to be compatible
2865 * with linux 2.0, and to avoid hard-linking to directories
2866 * and other special files. --ADM
2867 */
2868 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
2869 int, newdfd, const char __user *, newname, int, flags)
2870 {
2871 struct dentry *new_dentry;
2872 struct nameidata nd;
2873 struct path old_path;
2874 int how = 0;
2875 int error;
2876 char *to;
2877
2878 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
2879 return -EINVAL;
2880 /*
2881 * To use null names we require CAP_DAC_READ_SEARCH
2882 * This ensures that not everyone will be able to create
2883 * handlink using the passed filedescriptor.
2884 */
2885 if (flags & AT_EMPTY_PATH) {
2886 if (!capable(CAP_DAC_READ_SEARCH))
2887 return -ENOENT;
2888 how = LOOKUP_EMPTY;
2889 }
2890
2891 if (flags & AT_SYMLINK_FOLLOW)
2892 how |= LOOKUP_FOLLOW;
2893
2894 error = user_path_at(olddfd, oldname, how, &old_path);
2895 if (error)
2896 return error;
2897
2898 error = user_path_parent(newdfd, newname, &nd, &to);
2899 if (error)
2900 goto out;
2901 error = -EXDEV;
2902 if (old_path.mnt != nd.path.mnt)
2903 goto out_release;
2904 new_dentry = lookup_create(&nd, 0);
2905 error = PTR_ERR(new_dentry);
2906 if (IS_ERR(new_dentry))
2907 goto out_unlock;
2908 error = mnt_want_write(nd.path.mnt);
2909 if (error)
2910 goto out_dput;
2911 error = security_path_link(old_path.dentry, &nd.path, new_dentry);
2912 if (error)
2913 goto out_drop_write;
2914 error = vfs_link(old_path.dentry, nd.path.dentry->d_inode, new_dentry);
2915 out_drop_write:
2916 mnt_drop_write(nd.path.mnt);
2917 out_dput:
2918 dput(new_dentry);
2919 out_unlock:
2920 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2921 out_release:
2922 path_put(&nd.path);
2923 putname(to);
2924 out:
2925 path_put(&old_path);
2926
2927 return error;
2928 }
2929
2930 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
2931 {
2932 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
2933 }
2934
2935 /*
2936 * The worst of all namespace operations - renaming directory. "Perverted"
2937 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
2938 * Problems:
2939 * a) we can get into loop creation. Check is done in is_subdir().
2940 * b) race potential - two innocent renames can create a loop together.
2941 * That's where 4.4 screws up. Current fix: serialization on
2942 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
2943 * story.
2944 * c) we have to lock _three_ objects - parents and victim (if it exists).
2945 * And that - after we got ->i_mutex on parents (until then we don't know
2946 * whether the target exists). Solution: try to be smart with locking
2947 * order for inodes. We rely on the fact that tree topology may change
2948 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
2949 * move will be locked. Thus we can rank directories by the tree
2950 * (ancestors first) and rank all non-directories after them.
2951 * That works since everybody except rename does "lock parent, lookup,
2952 * lock child" and rename is under ->s_vfs_rename_mutex.
2953 * HOWEVER, it relies on the assumption that any object with ->lookup()
2954 * has no more than 1 dentry. If "hybrid" objects will ever appear,
2955 * we'd better make sure that there's no link(2) for them.
2956 * d) some filesystems don't support opened-but-unlinked directories,
2957 * either because of layout or because they are not ready to deal with
2958 * all cases correctly. The latter will be fixed (taking this sort of
2959 * stuff into VFS), but the former is not going away. Solution: the same
2960 * trick as in rmdir().
2961 * e) conversion from fhandle to dentry may come in the wrong moment - when
2962 * we are removing the target. Solution: we will have to grab ->i_mutex
2963 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
2964 * ->i_mutex on parents, which works but leads to some truly excessive
2965 * locking].
2966 */
2967 static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry,
2968 struct inode *new_dir, struct dentry *new_dentry)
2969 {
2970 int error = 0;
2971 struct inode *target;
2972
2973 /*
2974 * If we are going to change the parent - check write permissions,
2975 * we'll need to flip '..'.
2976 */
2977 if (new_dir != old_dir) {
2978 error = inode_permission(old_dentry->d_inode, MAY_WRITE);
2979 if (error)
2980 return error;
2981 }
2982
2983 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
2984 if (error)
2985 return error;
2986
2987 target = new_dentry->d_inode;
2988 if (target)
2989 mutex_lock(&target->i_mutex);
2990 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
2991 error = -EBUSY;
2992 else {
2993 if (target)
2994 dentry_unhash(new_dentry);
2995 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
2996 }
2997 if (target) {
2998 if (!error) {
2999 target->i_flags |= S_DEAD;
3000 dont_mount(new_dentry);
3001 }
3002 mutex_unlock(&target->i_mutex);
3003 if (d_unhashed(new_dentry))
3004 d_rehash(new_dentry);
3005 dput(new_dentry);
3006 }
3007 if (!error)
3008 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
3009 d_move(old_dentry,new_dentry);
3010 return error;
3011 }
3012
3013 static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry,
3014 struct inode *new_dir, struct dentry *new_dentry)
3015 {
3016 struct inode *target;
3017 int error;
3018
3019 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
3020 if (error)
3021 return error;
3022
3023 dget(new_dentry);
3024 target = new_dentry->d_inode;
3025 if (target)
3026 mutex_lock(&target->i_mutex);
3027 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
3028 error = -EBUSY;
3029 else
3030 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
3031 if (!error) {
3032 if (target)
3033 dont_mount(new_dentry);
3034 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
3035 d_move(old_dentry, new_dentry);
3036 }
3037 if (target)
3038 mutex_unlock(&target->i_mutex);
3039 dput(new_dentry);
3040 return error;
3041 }
3042
3043 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
3044 struct inode *new_dir, struct dentry *new_dentry)
3045 {
3046 int error;
3047 int is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
3048 const unsigned char *old_name;
3049
3050 if (old_dentry->d_inode == new_dentry->d_inode)
3051 return 0;
3052
3053 error = may_delete(old_dir, old_dentry, is_dir);
3054 if (error)
3055 return error;
3056
3057 if (!new_dentry->d_inode)
3058 error = may_create(new_dir, new_dentry);
3059 else
3060 error = may_delete(new_dir, new_dentry, is_dir);
3061 if (error)
3062 return error;
3063
3064 if (!old_dir->i_op->rename)
3065 return -EPERM;
3066
3067 old_name = fsnotify_oldname_init(old_dentry->d_name.name);
3068
3069 if (is_dir)
3070 error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry);
3071 else
3072 error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry);
3073 if (!error)
3074 fsnotify_move(old_dir, new_dir, old_name, is_dir,
3075 new_dentry->d_inode, old_dentry);
3076 fsnotify_oldname_free(old_name);
3077
3078 return error;
3079 }
3080
3081 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
3082 int, newdfd, const char __user *, newname)
3083 {
3084 struct dentry *old_dir, *new_dir;
3085 struct dentry *old_dentry, *new_dentry;
3086 struct dentry *trap;
3087 struct nameidata oldnd, newnd;
3088 char *from;
3089 char *to;
3090 int error;
3091
3092 error = user_path_parent(olddfd, oldname, &oldnd, &from);
3093 if (error)
3094 goto exit;
3095
3096 error = user_path_parent(newdfd, newname, &newnd, &to);
3097 if (error)
3098 goto exit1;
3099
3100 error = -EXDEV;
3101 if (oldnd.path.mnt != newnd.path.mnt)
3102 goto exit2;
3103
3104 old_dir = oldnd.path.dentry;
3105 error = -EBUSY;
3106 if (oldnd.last_type != LAST_NORM)
3107 goto exit2;
3108
3109 new_dir = newnd.path.dentry;
3110 if (newnd.last_type != LAST_NORM)
3111 goto exit2;
3112
3113 oldnd.flags &= ~LOOKUP_PARENT;
3114 newnd.flags &= ~LOOKUP_PARENT;
3115 newnd.flags |= LOOKUP_RENAME_TARGET;
3116
3117 trap = lock_rename(new_dir, old_dir);
3118
3119 old_dentry = lookup_hash(&oldnd);
3120 error = PTR_ERR(old_dentry);
3121 if (IS_ERR(old_dentry))
3122 goto exit3;
3123 /* source must exist */
3124 error = -ENOENT;
3125 if (!old_dentry->d_inode)
3126 goto exit4;
3127 /* unless the source is a directory trailing slashes give -ENOTDIR */
3128 if (!S_ISDIR(old_dentry->d_inode->i_mode)) {
3129 error = -ENOTDIR;
3130 if (oldnd.last.name[oldnd.last.len])
3131 goto exit4;
3132 if (newnd.last.name[newnd.last.len])
3133 goto exit4;
3134 }
3135 /* source should not be ancestor of target */
3136 error = -EINVAL;
3137 if (old_dentry == trap)
3138 goto exit4;
3139 new_dentry = lookup_hash(&newnd);
3140 error = PTR_ERR(new_dentry);
3141 if (IS_ERR(new_dentry))
3142 goto exit4;
3143 /* target should not be an ancestor of source */
3144 error = -ENOTEMPTY;
3145 if (new_dentry == trap)
3146 goto exit5;
3147
3148 error = mnt_want_write(oldnd.path.mnt);
3149 if (error)
3150 goto exit5;
3151 error = security_path_rename(&oldnd.path, old_dentry,
3152 &newnd.path, new_dentry);
3153 if (error)
3154 goto exit6;
3155 error = vfs_rename(old_dir->d_inode, old_dentry,
3156 new_dir->d_inode, new_dentry);
3157 exit6:
3158 mnt_drop_write(oldnd.path.mnt);
3159 exit5:
3160 dput(new_dentry);
3161 exit4:
3162 dput(old_dentry);
3163 exit3:
3164 unlock_rename(new_dir, old_dir);
3165 exit2:
3166 path_put(&newnd.path);
3167 putname(to);
3168 exit1:
3169 path_put(&oldnd.path);
3170 putname(from);
3171 exit:
3172 return error;
3173 }
3174
3175 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
3176 {
3177 return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname);
3178 }
3179
3180 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link)
3181 {
3182 int len;
3183
3184 len = PTR_ERR(link);
3185 if (IS_ERR(link))
3186 goto out;
3187
3188 len = strlen(link);
3189 if (len > (unsigned) buflen)
3190 len = buflen;
3191 if (copy_to_user(buffer, link, len))
3192 len = -EFAULT;
3193 out:
3194 return len;
3195 }
3196
3197 /*
3198 * A helper for ->readlink(). This should be used *ONLY* for symlinks that
3199 * have ->follow_link() touching nd only in nd_set_link(). Using (or not
3200 * using) it for any given inode is up to filesystem.
3201 */
3202 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
3203 {
3204 struct nameidata nd;
3205 void *cookie;
3206 int res;
3207
3208 nd.depth = 0;
3209 cookie = dentry->d_inode->i_op->follow_link(dentry, &nd);
3210 if (IS_ERR(cookie))
3211 return PTR_ERR(cookie);
3212
3213 res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd));
3214 if (dentry->d_inode->i_op->put_link)
3215 dentry->d_inode->i_op->put_link(dentry, &nd, cookie);
3216 return res;
3217 }
3218
3219 int vfs_follow_link(struct nameidata *nd, const char *link)
3220 {
3221 return __vfs_follow_link(nd, link);
3222 }
3223
3224 /* get the link contents into pagecache */
3225 static char *page_getlink(struct dentry * dentry, struct page **ppage)
3226 {
3227 char *kaddr;
3228 struct page *page;
3229 struct address_space *mapping = dentry->d_inode->i_mapping;
3230 page = read_mapping_page(mapping, 0, NULL);
3231 if (IS_ERR(page))
3232 return (char*)page;
3233 *ppage = page;
3234 kaddr = kmap(page);
3235 nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
3236 return kaddr;
3237 }
3238
3239 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
3240 {
3241 struct page *page = NULL;
3242 char *s = page_getlink(dentry, &page);
3243 int res = vfs_readlink(dentry,buffer,buflen,s);
3244 if (page) {
3245 kunmap(page);
3246 page_cache_release(page);
3247 }
3248 return res;
3249 }
3250
3251 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd)
3252 {
3253 struct page *page = NULL;
3254 nd_set_link(nd, page_getlink(dentry, &page));
3255 return page;
3256 }
3257
3258 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
3259 {
3260 struct page *page = cookie;
3261
3262 if (page) {
3263 kunmap(page);
3264 page_cache_release(page);
3265 }
3266 }
3267
3268 /*
3269 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
3270 */
3271 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
3272 {
3273 struct address_space *mapping = inode->i_mapping;
3274 struct page *page;
3275 void *fsdata;
3276 int err;
3277 char *kaddr;
3278 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
3279 if (nofs)
3280 flags |= AOP_FLAG_NOFS;
3281
3282 retry:
3283 err = pagecache_write_begin(NULL, mapping, 0, len-1,
3284 flags, &page, &fsdata);
3285 if (err)
3286 goto fail;
3287
3288 kaddr = kmap_atomic(page, KM_USER0);
3289 memcpy(kaddr, symname, len-1);
3290 kunmap_atomic(kaddr, KM_USER0);
3291
3292 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
3293 page, fsdata);
3294 if (err < 0)
3295 goto fail;
3296 if (err < len-1)
3297 goto retry;
3298
3299 mark_inode_dirty(inode);
3300 return 0;
3301 fail:
3302 return err;
3303 }
3304
3305 int page_symlink(struct inode *inode, const char *symname, int len)
3306 {
3307 return __page_symlink(inode, symname, len,
3308 !(mapping_gfp_mask(inode->i_mapping) & __GFP_FS));
3309 }
3310
3311 const struct inode_operations page_symlink_inode_operations = {
3312 .readlink = generic_readlink,
3313 .follow_link = page_follow_link_light,
3314 .put_link = page_put_link,
3315 };
3316
3317 EXPORT_SYMBOL(user_path_at);
3318 EXPORT_SYMBOL(follow_down_one);
3319 EXPORT_SYMBOL(follow_down);
3320 EXPORT_SYMBOL(follow_up);
3321 EXPORT_SYMBOL(get_write_access); /* binfmt_aout */
3322 EXPORT_SYMBOL(getname);
3323 EXPORT_SYMBOL(lock_rename);
3324 EXPORT_SYMBOL(lookup_one_len);
3325 EXPORT_SYMBOL(page_follow_link_light);
3326 EXPORT_SYMBOL(page_put_link);
3327 EXPORT_SYMBOL(page_readlink);
3328 EXPORT_SYMBOL(__page_symlink);
3329 EXPORT_SYMBOL(page_symlink);
3330 EXPORT_SYMBOL(page_symlink_inode_operations);
3331 EXPORT_SYMBOL(kern_path_parent);
3332 EXPORT_SYMBOL(kern_path);
3333 EXPORT_SYMBOL(vfs_path_lookup);
3334 EXPORT_SYMBOL(inode_permission);
3335 EXPORT_SYMBOL(file_permission);
3336 EXPORT_SYMBOL(unlock_rename);
3337 EXPORT_SYMBOL(vfs_create);
3338 EXPORT_SYMBOL(vfs_follow_link);
3339 EXPORT_SYMBOL(vfs_link);
3340 EXPORT_SYMBOL(vfs_mkdir);
3341 EXPORT_SYMBOL(vfs_mknod);
3342 EXPORT_SYMBOL(generic_permission);
3343 EXPORT_SYMBOL(vfs_readlink);
3344 EXPORT_SYMBOL(vfs_rename);
3345 EXPORT_SYMBOL(vfs_rmdir);
3346 EXPORT_SYMBOL(vfs_symlink);
3347 EXPORT_SYMBOL(vfs_unlink);
3348 EXPORT_SYMBOL(dentry_unhash);
3349 EXPORT_SYMBOL(generic_readlink);
This page took 0.095729 seconds and 6 git commands to generate.