namei: trim redundant arguments of fs/namei.c:put_link()
[deliverable/linux.git] / fs / namei.c
1 /*
2 * linux/fs/namei.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * Some corrections by tytso.
9 */
10
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12 * lookup logic.
13 */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15 */
16
17 #include <linux/init.h>
18 #include <linux/export.h>
19 #include <linux/kernel.h>
20 #include <linux/slab.h>
21 #include <linux/fs.h>
22 #include <linux/namei.h>
23 #include <linux/pagemap.h>
24 #include <linux/fsnotify.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/ima.h>
28 #include <linux/syscalls.h>
29 #include <linux/mount.h>
30 #include <linux/audit.h>
31 #include <linux/capability.h>
32 #include <linux/file.h>
33 #include <linux/fcntl.h>
34 #include <linux/device_cgroup.h>
35 #include <linux/fs_struct.h>
36 #include <linux/posix_acl.h>
37 #include <linux/hash.h>
38 #include <asm/uaccess.h>
39
40 #include "internal.h"
41 #include "mount.h"
42
43 /* [Feb-1997 T. Schoebel-Theuer]
44 * Fundamental changes in the pathname lookup mechanisms (namei)
45 * were necessary because of omirr. The reason is that omirr needs
46 * to know the _real_ pathname, not the user-supplied one, in case
47 * of symlinks (and also when transname replacements occur).
48 *
49 * The new code replaces the old recursive symlink resolution with
50 * an iterative one (in case of non-nested symlink chains). It does
51 * this with calls to <fs>_follow_link().
52 * As a side effect, dir_namei(), _namei() and follow_link() are now
53 * replaced with a single function lookup_dentry() that can handle all
54 * the special cases of the former code.
55 *
56 * With the new dcache, the pathname is stored at each inode, at least as
57 * long as the refcount of the inode is positive. As a side effect, the
58 * size of the dcache depends on the inode cache and thus is dynamic.
59 *
60 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
61 * resolution to correspond with current state of the code.
62 *
63 * Note that the symlink resolution is not *completely* iterative.
64 * There is still a significant amount of tail- and mid- recursion in
65 * the algorithm. Also, note that <fs>_readlink() is not used in
66 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
67 * may return different results than <fs>_follow_link(). Many virtual
68 * filesystems (including /proc) exhibit this behavior.
69 */
70
71 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
72 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
73 * and the name already exists in form of a symlink, try to create the new
74 * name indicated by the symlink. The old code always complained that the
75 * name already exists, due to not following the symlink even if its target
76 * is nonexistent. The new semantics affects also mknod() and link() when
77 * the name is a symlink pointing to a non-existent name.
78 *
79 * I don't know which semantics is the right one, since I have no access
80 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
81 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
82 * "old" one. Personally, I think the new semantics is much more logical.
83 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
84 * file does succeed in both HP-UX and SunOs, but not in Solaris
85 * and in the old Linux semantics.
86 */
87
88 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
89 * semantics. See the comments in "open_namei" and "do_link" below.
90 *
91 * [10-Sep-98 Alan Modra] Another symlink change.
92 */
93
94 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
95 * inside the path - always follow.
96 * in the last component in creation/removal/renaming - never follow.
97 * if LOOKUP_FOLLOW passed - follow.
98 * if the pathname has trailing slashes - follow.
99 * otherwise - don't follow.
100 * (applied in that order).
101 *
102 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
103 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
104 * During the 2.4 we need to fix the userland stuff depending on it -
105 * hopefully we will be able to get rid of that wart in 2.5. So far only
106 * XEmacs seems to be relying on it...
107 */
108 /*
109 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
110 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
111 * any extra contention...
112 */
113
114 /* In order to reduce some races, while at the same time doing additional
115 * checking and hopefully speeding things up, we copy filenames to the
116 * kernel data space before using them..
117 *
118 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
119 * PATH_MAX includes the nul terminator --RR.
120 */
121
122 #define EMBEDDED_NAME_MAX (PATH_MAX - offsetof(struct filename, iname))
123
124 struct filename *
125 getname_flags(const char __user *filename, int flags, int *empty)
126 {
127 struct filename *result;
128 char *kname;
129 int len;
130
131 result = audit_reusename(filename);
132 if (result)
133 return result;
134
135 result = __getname();
136 if (unlikely(!result))
137 return ERR_PTR(-ENOMEM);
138
139 /*
140 * First, try to embed the struct filename inside the names_cache
141 * allocation
142 */
143 kname = (char *)result->iname;
144 result->name = kname;
145
146 len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX);
147 if (unlikely(len < 0)) {
148 __putname(result);
149 return ERR_PTR(len);
150 }
151
152 /*
153 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
154 * separate struct filename so we can dedicate the entire
155 * names_cache allocation for the pathname, and re-do the copy from
156 * userland.
157 */
158 if (unlikely(len == EMBEDDED_NAME_MAX)) {
159 const size_t size = offsetof(struct filename, iname[1]);
160 kname = (char *)result;
161
162 /*
163 * size is chosen that way we to guarantee that
164 * result->iname[0] is within the same object and that
165 * kname can't be equal to result->iname, no matter what.
166 */
167 result = kzalloc(size, GFP_KERNEL);
168 if (unlikely(!result)) {
169 __putname(kname);
170 return ERR_PTR(-ENOMEM);
171 }
172 result->name = kname;
173 len = strncpy_from_user(kname, filename, PATH_MAX);
174 if (unlikely(len < 0)) {
175 __putname(kname);
176 kfree(result);
177 return ERR_PTR(len);
178 }
179 if (unlikely(len == PATH_MAX)) {
180 __putname(kname);
181 kfree(result);
182 return ERR_PTR(-ENAMETOOLONG);
183 }
184 }
185
186 result->refcnt = 1;
187 /* The empty path is special. */
188 if (unlikely(!len)) {
189 if (empty)
190 *empty = 1;
191 if (!(flags & LOOKUP_EMPTY)) {
192 putname(result);
193 return ERR_PTR(-ENOENT);
194 }
195 }
196
197 result->uptr = filename;
198 result->aname = NULL;
199 audit_getname(result);
200 return result;
201 }
202
203 struct filename *
204 getname(const char __user * filename)
205 {
206 return getname_flags(filename, 0, NULL);
207 }
208
209 struct filename *
210 getname_kernel(const char * filename)
211 {
212 struct filename *result;
213 int len = strlen(filename) + 1;
214
215 result = __getname();
216 if (unlikely(!result))
217 return ERR_PTR(-ENOMEM);
218
219 if (len <= EMBEDDED_NAME_MAX) {
220 result->name = (char *)result->iname;
221 } else if (len <= PATH_MAX) {
222 struct filename *tmp;
223
224 tmp = kmalloc(sizeof(*tmp), GFP_KERNEL);
225 if (unlikely(!tmp)) {
226 __putname(result);
227 return ERR_PTR(-ENOMEM);
228 }
229 tmp->name = (char *)result;
230 result = tmp;
231 } else {
232 __putname(result);
233 return ERR_PTR(-ENAMETOOLONG);
234 }
235 memcpy((char *)result->name, filename, len);
236 result->uptr = NULL;
237 result->aname = NULL;
238 result->refcnt = 1;
239 audit_getname(result);
240
241 return result;
242 }
243
244 void putname(struct filename *name)
245 {
246 BUG_ON(name->refcnt <= 0);
247
248 if (--name->refcnt > 0)
249 return;
250
251 if (name->name != name->iname) {
252 __putname(name->name);
253 kfree(name);
254 } else
255 __putname(name);
256 }
257
258 static int check_acl(struct inode *inode, int mask)
259 {
260 #ifdef CONFIG_FS_POSIX_ACL
261 struct posix_acl *acl;
262
263 if (mask & MAY_NOT_BLOCK) {
264 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
265 if (!acl)
266 return -EAGAIN;
267 /* no ->get_acl() calls in RCU mode... */
268 if (acl == ACL_NOT_CACHED)
269 return -ECHILD;
270 return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
271 }
272
273 acl = get_acl(inode, ACL_TYPE_ACCESS);
274 if (IS_ERR(acl))
275 return PTR_ERR(acl);
276 if (acl) {
277 int error = posix_acl_permission(inode, acl, mask);
278 posix_acl_release(acl);
279 return error;
280 }
281 #endif
282
283 return -EAGAIN;
284 }
285
286 /*
287 * This does the basic permission checking
288 */
289 static int acl_permission_check(struct inode *inode, int mask)
290 {
291 unsigned int mode = inode->i_mode;
292
293 if (likely(uid_eq(current_fsuid(), inode->i_uid)))
294 mode >>= 6;
295 else {
296 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
297 int error = check_acl(inode, mask);
298 if (error != -EAGAIN)
299 return error;
300 }
301
302 if (in_group_p(inode->i_gid))
303 mode >>= 3;
304 }
305
306 /*
307 * If the DACs are ok we don't need any capability check.
308 */
309 if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
310 return 0;
311 return -EACCES;
312 }
313
314 /**
315 * generic_permission - check for access rights on a Posix-like filesystem
316 * @inode: inode to check access rights for
317 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
318 *
319 * Used to check for read/write/execute permissions on a file.
320 * We use "fsuid" for this, letting us set arbitrary permissions
321 * for filesystem access without changing the "normal" uids which
322 * are used for other things.
323 *
324 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
325 * request cannot be satisfied (eg. requires blocking or too much complexity).
326 * It would then be called again in ref-walk mode.
327 */
328 int generic_permission(struct inode *inode, int mask)
329 {
330 int ret;
331
332 /*
333 * Do the basic permission checks.
334 */
335 ret = acl_permission_check(inode, mask);
336 if (ret != -EACCES)
337 return ret;
338
339 if (S_ISDIR(inode->i_mode)) {
340 /* DACs are overridable for directories */
341 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
342 return 0;
343 if (!(mask & MAY_WRITE))
344 if (capable_wrt_inode_uidgid(inode,
345 CAP_DAC_READ_SEARCH))
346 return 0;
347 return -EACCES;
348 }
349 /*
350 * Read/write DACs are always overridable.
351 * Executable DACs are overridable when there is
352 * at least one exec bit set.
353 */
354 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
355 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
356 return 0;
357
358 /*
359 * Searching includes executable on directories, else just read.
360 */
361 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
362 if (mask == MAY_READ)
363 if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH))
364 return 0;
365
366 return -EACCES;
367 }
368 EXPORT_SYMBOL(generic_permission);
369
370 /*
371 * We _really_ want to just do "generic_permission()" without
372 * even looking at the inode->i_op values. So we keep a cache
373 * flag in inode->i_opflags, that says "this has not special
374 * permission function, use the fast case".
375 */
376 static inline int do_inode_permission(struct inode *inode, int mask)
377 {
378 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
379 if (likely(inode->i_op->permission))
380 return inode->i_op->permission(inode, mask);
381
382 /* This gets set once for the inode lifetime */
383 spin_lock(&inode->i_lock);
384 inode->i_opflags |= IOP_FASTPERM;
385 spin_unlock(&inode->i_lock);
386 }
387 return generic_permission(inode, mask);
388 }
389
390 /**
391 * __inode_permission - Check for access rights to a given inode
392 * @inode: Inode to check permission on
393 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
394 *
395 * Check for read/write/execute permissions on an inode.
396 *
397 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
398 *
399 * This does not check for a read-only file system. You probably want
400 * inode_permission().
401 */
402 int __inode_permission(struct inode *inode, int mask)
403 {
404 int retval;
405
406 if (unlikely(mask & MAY_WRITE)) {
407 /*
408 * Nobody gets write access to an immutable file.
409 */
410 if (IS_IMMUTABLE(inode))
411 return -EACCES;
412 }
413
414 retval = do_inode_permission(inode, mask);
415 if (retval)
416 return retval;
417
418 retval = devcgroup_inode_permission(inode, mask);
419 if (retval)
420 return retval;
421
422 return security_inode_permission(inode, mask);
423 }
424 EXPORT_SYMBOL(__inode_permission);
425
426 /**
427 * sb_permission - Check superblock-level permissions
428 * @sb: Superblock of inode to check permission on
429 * @inode: Inode to check permission on
430 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
431 *
432 * Separate out file-system wide checks from inode-specific permission checks.
433 */
434 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
435 {
436 if (unlikely(mask & MAY_WRITE)) {
437 umode_t mode = inode->i_mode;
438
439 /* Nobody gets write access to a read-only fs. */
440 if ((sb->s_flags & MS_RDONLY) &&
441 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
442 return -EROFS;
443 }
444 return 0;
445 }
446
447 /**
448 * inode_permission - Check for access rights to a given inode
449 * @inode: Inode to check permission on
450 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
451 *
452 * Check for read/write/execute permissions on an inode. We use fs[ug]id for
453 * this, letting us set arbitrary permissions for filesystem access without
454 * changing the "normal" UIDs which are used for other things.
455 *
456 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
457 */
458 int inode_permission(struct inode *inode, int mask)
459 {
460 int retval;
461
462 retval = sb_permission(inode->i_sb, inode, mask);
463 if (retval)
464 return retval;
465 return __inode_permission(inode, mask);
466 }
467 EXPORT_SYMBOL(inode_permission);
468
469 /**
470 * path_get - get a reference to a path
471 * @path: path to get the reference to
472 *
473 * Given a path increment the reference count to the dentry and the vfsmount.
474 */
475 void path_get(const struct path *path)
476 {
477 mntget(path->mnt);
478 dget(path->dentry);
479 }
480 EXPORT_SYMBOL(path_get);
481
482 /**
483 * path_put - put a reference to a path
484 * @path: path to put the reference to
485 *
486 * Given a path decrement the reference count to the dentry and the vfsmount.
487 */
488 void path_put(const struct path *path)
489 {
490 dput(path->dentry);
491 mntput(path->mnt);
492 }
493 EXPORT_SYMBOL(path_put);
494
495 struct nameidata {
496 struct path path;
497 union {
498 struct qstr last;
499 struct path link;
500 };
501 struct path root;
502 struct inode *inode; /* path.dentry.d_inode */
503 unsigned int flags;
504 unsigned seq, m_seq;
505 int last_type;
506 unsigned depth;
507 struct file *base;
508 struct saved {
509 struct path link;
510 void *cookie;
511 const char *name;
512 } stack[MAX_NESTED_LINKS + 1];
513 };
514
515 /*
516 * Path walking has 2 modes, rcu-walk and ref-walk (see
517 * Documentation/filesystems/path-lookup.txt). In situations when we can't
518 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
519 * normal reference counts on dentries and vfsmounts to transition to rcu-walk
520 * mode. Refcounts are grabbed at the last known good point before rcu-walk
521 * got stuck, so ref-walk may continue from there. If this is not successful
522 * (eg. a seqcount has changed), then failure is returned and it's up to caller
523 * to restart the path walk from the beginning in ref-walk mode.
524 */
525
526 /**
527 * unlazy_walk - try to switch to ref-walk mode.
528 * @nd: nameidata pathwalk data
529 * @dentry: child of nd->path.dentry or NULL
530 * Returns: 0 on success, -ECHILD on failure
531 *
532 * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry
533 * for ref-walk mode. @dentry must be a path found by a do_lookup call on
534 * @nd or NULL. Must be called from rcu-walk context.
535 */
536 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry)
537 {
538 struct fs_struct *fs = current->fs;
539 struct dentry *parent = nd->path.dentry;
540
541 BUG_ON(!(nd->flags & LOOKUP_RCU));
542
543 /*
544 * After legitimizing the bastards, terminate_walk()
545 * will do the right thing for non-RCU mode, and all our
546 * subsequent exit cases should rcu_read_unlock()
547 * before returning. Do vfsmount first; if dentry
548 * can't be legitimized, just set nd->path.dentry to NULL
549 * and rely on dput(NULL) being a no-op.
550 */
551 if (!legitimize_mnt(nd->path.mnt, nd->m_seq))
552 return -ECHILD;
553 nd->flags &= ~LOOKUP_RCU;
554
555 if (!lockref_get_not_dead(&parent->d_lockref)) {
556 nd->path.dentry = NULL;
557 goto out;
558 }
559
560 /*
561 * For a negative lookup, the lookup sequence point is the parents
562 * sequence point, and it only needs to revalidate the parent dentry.
563 *
564 * For a positive lookup, we need to move both the parent and the
565 * dentry from the RCU domain to be properly refcounted. And the
566 * sequence number in the dentry validates *both* dentry counters,
567 * since we checked the sequence number of the parent after we got
568 * the child sequence number. So we know the parent must still
569 * be valid if the child sequence number is still valid.
570 */
571 if (!dentry) {
572 if (read_seqcount_retry(&parent->d_seq, nd->seq))
573 goto out;
574 BUG_ON(nd->inode != parent->d_inode);
575 } else {
576 if (!lockref_get_not_dead(&dentry->d_lockref))
577 goto out;
578 if (read_seqcount_retry(&dentry->d_seq, nd->seq))
579 goto drop_dentry;
580 }
581
582 /*
583 * Sequence counts matched. Now make sure that the root is
584 * still valid and get it if required.
585 */
586 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
587 spin_lock(&fs->lock);
588 if (nd->root.mnt != fs->root.mnt || nd->root.dentry != fs->root.dentry)
589 goto unlock_and_drop_dentry;
590 path_get(&nd->root);
591 spin_unlock(&fs->lock);
592 }
593
594 rcu_read_unlock();
595 return 0;
596
597 unlock_and_drop_dentry:
598 spin_unlock(&fs->lock);
599 drop_dentry:
600 rcu_read_unlock();
601 dput(dentry);
602 goto drop_root_mnt;
603 out:
604 rcu_read_unlock();
605 drop_root_mnt:
606 if (!(nd->flags & LOOKUP_ROOT))
607 nd->root.mnt = NULL;
608 return -ECHILD;
609 }
610
611 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
612 {
613 return dentry->d_op->d_revalidate(dentry, flags);
614 }
615
616 /**
617 * complete_walk - successful completion of path walk
618 * @nd: pointer nameidata
619 *
620 * If we had been in RCU mode, drop out of it and legitimize nd->path.
621 * Revalidate the final result, unless we'd already done that during
622 * the path walk or the filesystem doesn't ask for it. Return 0 on
623 * success, -error on failure. In case of failure caller does not
624 * need to drop nd->path.
625 */
626 static int complete_walk(struct nameidata *nd)
627 {
628 struct dentry *dentry = nd->path.dentry;
629 int status;
630
631 if (nd->flags & LOOKUP_RCU) {
632 nd->flags &= ~LOOKUP_RCU;
633 if (!(nd->flags & LOOKUP_ROOT))
634 nd->root.mnt = NULL;
635
636 if (!legitimize_mnt(nd->path.mnt, nd->m_seq)) {
637 rcu_read_unlock();
638 return -ECHILD;
639 }
640 if (unlikely(!lockref_get_not_dead(&dentry->d_lockref))) {
641 rcu_read_unlock();
642 mntput(nd->path.mnt);
643 return -ECHILD;
644 }
645 if (read_seqcount_retry(&dentry->d_seq, nd->seq)) {
646 rcu_read_unlock();
647 dput(dentry);
648 mntput(nd->path.mnt);
649 return -ECHILD;
650 }
651 rcu_read_unlock();
652 }
653
654 if (likely(!(nd->flags & LOOKUP_JUMPED)))
655 return 0;
656
657 if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
658 return 0;
659
660 status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
661 if (status > 0)
662 return 0;
663
664 if (!status)
665 status = -ESTALE;
666
667 path_put(&nd->path);
668 return status;
669 }
670
671 static __always_inline void set_root(struct nameidata *nd)
672 {
673 get_fs_root(current->fs, &nd->root);
674 }
675
676 static __always_inline unsigned set_root_rcu(struct nameidata *nd)
677 {
678 struct fs_struct *fs = current->fs;
679 unsigned seq, res;
680
681 do {
682 seq = read_seqcount_begin(&fs->seq);
683 nd->root = fs->root;
684 res = __read_seqcount_begin(&nd->root.dentry->d_seq);
685 } while (read_seqcount_retry(&fs->seq, seq));
686 return res;
687 }
688
689 static void path_put_conditional(struct path *path, struct nameidata *nd)
690 {
691 dput(path->dentry);
692 if (path->mnt != nd->path.mnt)
693 mntput(path->mnt);
694 }
695
696 static inline void path_to_nameidata(const struct path *path,
697 struct nameidata *nd)
698 {
699 if (!(nd->flags & LOOKUP_RCU)) {
700 dput(nd->path.dentry);
701 if (nd->path.mnt != path->mnt)
702 mntput(nd->path.mnt);
703 }
704 nd->path.mnt = path->mnt;
705 nd->path.dentry = path->dentry;
706 }
707
708 /*
709 * Helper to directly jump to a known parsed path from ->follow_link,
710 * caller must have taken a reference to path beforehand.
711 */
712 void nd_jump_link(struct nameidata *nd, struct path *path)
713 {
714 path_put(&nd->path);
715
716 nd->path = *path;
717 nd->inode = nd->path.dentry->d_inode;
718 nd->flags |= LOOKUP_JUMPED;
719 }
720
721 static inline void put_link(struct nameidata *nd)
722 {
723 struct saved *last = nd->stack + nd->depth;
724 struct inode *inode = last->link.dentry->d_inode;
725 if (last->cookie && inode->i_op->put_link)
726 inode->i_op->put_link(last->link.dentry, last->cookie);
727 path_put(&last->link);
728 }
729
730 int sysctl_protected_symlinks __read_mostly = 0;
731 int sysctl_protected_hardlinks __read_mostly = 0;
732
733 /**
734 * may_follow_link - Check symlink following for unsafe situations
735 * @link: The path of the symlink
736 * @nd: nameidata pathwalk data
737 *
738 * In the case of the sysctl_protected_symlinks sysctl being enabled,
739 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
740 * in a sticky world-writable directory. This is to protect privileged
741 * processes from failing races against path names that may change out
742 * from under them by way of other users creating malicious symlinks.
743 * It will permit symlinks to be followed only when outside a sticky
744 * world-writable directory, or when the uid of the symlink and follower
745 * match, or when the directory owner matches the symlink's owner.
746 *
747 * Returns 0 if following the symlink is allowed, -ve on error.
748 */
749 static inline int may_follow_link(struct path *link, struct nameidata *nd)
750 {
751 const struct inode *inode;
752 const struct inode *parent;
753
754 if (!sysctl_protected_symlinks)
755 return 0;
756
757 /* Allowed if owner and follower match. */
758 inode = link->dentry->d_inode;
759 if (uid_eq(current_cred()->fsuid, inode->i_uid))
760 return 0;
761
762 /* Allowed if parent directory not sticky and world-writable. */
763 parent = nd->path.dentry->d_inode;
764 if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
765 return 0;
766
767 /* Allowed if parent directory and link owner match. */
768 if (uid_eq(parent->i_uid, inode->i_uid))
769 return 0;
770
771 audit_log_link_denied("follow_link", link);
772 path_put_conditional(link, nd);
773 path_put(&nd->path);
774 return -EACCES;
775 }
776
777 /**
778 * safe_hardlink_source - Check for safe hardlink conditions
779 * @inode: the source inode to hardlink from
780 *
781 * Return false if at least one of the following conditions:
782 * - inode is not a regular file
783 * - inode is setuid
784 * - inode is setgid and group-exec
785 * - access failure for read and write
786 *
787 * Otherwise returns true.
788 */
789 static bool safe_hardlink_source(struct inode *inode)
790 {
791 umode_t mode = inode->i_mode;
792
793 /* Special files should not get pinned to the filesystem. */
794 if (!S_ISREG(mode))
795 return false;
796
797 /* Setuid files should not get pinned to the filesystem. */
798 if (mode & S_ISUID)
799 return false;
800
801 /* Executable setgid files should not get pinned to the filesystem. */
802 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
803 return false;
804
805 /* Hardlinking to unreadable or unwritable sources is dangerous. */
806 if (inode_permission(inode, MAY_READ | MAY_WRITE))
807 return false;
808
809 return true;
810 }
811
812 /**
813 * may_linkat - Check permissions for creating a hardlink
814 * @link: the source to hardlink from
815 *
816 * Block hardlink when all of:
817 * - sysctl_protected_hardlinks enabled
818 * - fsuid does not match inode
819 * - hardlink source is unsafe (see safe_hardlink_source() above)
820 * - not CAP_FOWNER
821 *
822 * Returns 0 if successful, -ve on error.
823 */
824 static int may_linkat(struct path *link)
825 {
826 const struct cred *cred;
827 struct inode *inode;
828
829 if (!sysctl_protected_hardlinks)
830 return 0;
831
832 cred = current_cred();
833 inode = link->dentry->d_inode;
834
835 /* Source inode owner (or CAP_FOWNER) can hardlink all they like,
836 * otherwise, it must be a safe source.
837 */
838 if (uid_eq(cred->fsuid, inode->i_uid) || safe_hardlink_source(inode) ||
839 capable(CAP_FOWNER))
840 return 0;
841
842 audit_log_link_denied("linkat", link);
843 return -EPERM;
844 }
845
846 static __always_inline const char *
847 get_link(struct path *link, struct nameidata *nd, void **p)
848 {
849 struct dentry *dentry = link->dentry;
850 struct inode *inode = dentry->d_inode;
851 int error;
852 const char *res;
853
854 BUG_ON(nd->flags & LOOKUP_RCU);
855
856 if (link->mnt == nd->path.mnt)
857 mntget(link->mnt);
858
859 res = ERR_PTR(-ELOOP);
860 if (unlikely(current->total_link_count >= 40))
861 goto out;
862
863 cond_resched();
864 current->total_link_count++;
865
866 touch_atime(link);
867
868 error = security_inode_follow_link(dentry);
869 res = ERR_PTR(error);
870 if (error)
871 goto out;
872
873 nd->last_type = LAST_BIND;
874 *p = NULL;
875 res = inode->i_link;
876 if (!res) {
877 res = inode->i_op->follow_link(dentry, p, nd);
878 if (IS_ERR(res)) {
879 out:
880 path_put(&nd->path);
881 path_put(link);
882 }
883 }
884 return res;
885 }
886
887 static int follow_up_rcu(struct path *path)
888 {
889 struct mount *mnt = real_mount(path->mnt);
890 struct mount *parent;
891 struct dentry *mountpoint;
892
893 parent = mnt->mnt_parent;
894 if (&parent->mnt == path->mnt)
895 return 0;
896 mountpoint = mnt->mnt_mountpoint;
897 path->dentry = mountpoint;
898 path->mnt = &parent->mnt;
899 return 1;
900 }
901
902 /*
903 * follow_up - Find the mountpoint of path's vfsmount
904 *
905 * Given a path, find the mountpoint of its source file system.
906 * Replace @path with the path of the mountpoint in the parent mount.
907 * Up is towards /.
908 *
909 * Return 1 if we went up a level and 0 if we were already at the
910 * root.
911 */
912 int follow_up(struct path *path)
913 {
914 struct mount *mnt = real_mount(path->mnt);
915 struct mount *parent;
916 struct dentry *mountpoint;
917
918 read_seqlock_excl(&mount_lock);
919 parent = mnt->mnt_parent;
920 if (parent == mnt) {
921 read_sequnlock_excl(&mount_lock);
922 return 0;
923 }
924 mntget(&parent->mnt);
925 mountpoint = dget(mnt->mnt_mountpoint);
926 read_sequnlock_excl(&mount_lock);
927 dput(path->dentry);
928 path->dentry = mountpoint;
929 mntput(path->mnt);
930 path->mnt = &parent->mnt;
931 return 1;
932 }
933 EXPORT_SYMBOL(follow_up);
934
935 /*
936 * Perform an automount
937 * - return -EISDIR to tell follow_managed() to stop and return the path we
938 * were called with.
939 */
940 static int follow_automount(struct path *path, unsigned flags,
941 bool *need_mntput)
942 {
943 struct vfsmount *mnt;
944 int err;
945
946 if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
947 return -EREMOTE;
948
949 /* We don't want to mount if someone's just doing a stat -
950 * unless they're stat'ing a directory and appended a '/' to
951 * the name.
952 *
953 * We do, however, want to mount if someone wants to open or
954 * create a file of any type under the mountpoint, wants to
955 * traverse through the mountpoint or wants to open the
956 * mounted directory. Also, autofs may mark negative dentries
957 * as being automount points. These will need the attentions
958 * of the daemon to instantiate them before they can be used.
959 */
960 if (!(flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
961 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
962 path->dentry->d_inode)
963 return -EISDIR;
964
965 current->total_link_count++;
966 if (current->total_link_count >= 40)
967 return -ELOOP;
968
969 mnt = path->dentry->d_op->d_automount(path);
970 if (IS_ERR(mnt)) {
971 /*
972 * The filesystem is allowed to return -EISDIR here to indicate
973 * it doesn't want to automount. For instance, autofs would do
974 * this so that its userspace daemon can mount on this dentry.
975 *
976 * However, we can only permit this if it's a terminal point in
977 * the path being looked up; if it wasn't then the remainder of
978 * the path is inaccessible and we should say so.
979 */
980 if (PTR_ERR(mnt) == -EISDIR && (flags & LOOKUP_PARENT))
981 return -EREMOTE;
982 return PTR_ERR(mnt);
983 }
984
985 if (!mnt) /* mount collision */
986 return 0;
987
988 if (!*need_mntput) {
989 /* lock_mount() may release path->mnt on error */
990 mntget(path->mnt);
991 *need_mntput = true;
992 }
993 err = finish_automount(mnt, path);
994
995 switch (err) {
996 case -EBUSY:
997 /* Someone else made a mount here whilst we were busy */
998 return 0;
999 case 0:
1000 path_put(path);
1001 path->mnt = mnt;
1002 path->dentry = dget(mnt->mnt_root);
1003 return 0;
1004 default:
1005 return err;
1006 }
1007
1008 }
1009
1010 /*
1011 * Handle a dentry that is managed in some way.
1012 * - Flagged for transit management (autofs)
1013 * - Flagged as mountpoint
1014 * - Flagged as automount point
1015 *
1016 * This may only be called in refwalk mode.
1017 *
1018 * Serialization is taken care of in namespace.c
1019 */
1020 static int follow_managed(struct path *path, unsigned flags)
1021 {
1022 struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
1023 unsigned managed;
1024 bool need_mntput = false;
1025 int ret = 0;
1026
1027 /* Given that we're not holding a lock here, we retain the value in a
1028 * local variable for each dentry as we look at it so that we don't see
1029 * the components of that value change under us */
1030 while (managed = ACCESS_ONCE(path->dentry->d_flags),
1031 managed &= DCACHE_MANAGED_DENTRY,
1032 unlikely(managed != 0)) {
1033 /* Allow the filesystem to manage the transit without i_mutex
1034 * being held. */
1035 if (managed & DCACHE_MANAGE_TRANSIT) {
1036 BUG_ON(!path->dentry->d_op);
1037 BUG_ON(!path->dentry->d_op->d_manage);
1038 ret = path->dentry->d_op->d_manage(path->dentry, false);
1039 if (ret < 0)
1040 break;
1041 }
1042
1043 /* Transit to a mounted filesystem. */
1044 if (managed & DCACHE_MOUNTED) {
1045 struct vfsmount *mounted = lookup_mnt(path);
1046 if (mounted) {
1047 dput(path->dentry);
1048 if (need_mntput)
1049 mntput(path->mnt);
1050 path->mnt = mounted;
1051 path->dentry = dget(mounted->mnt_root);
1052 need_mntput = true;
1053 continue;
1054 }
1055
1056 /* Something is mounted on this dentry in another
1057 * namespace and/or whatever was mounted there in this
1058 * namespace got unmounted before lookup_mnt() could
1059 * get it */
1060 }
1061
1062 /* Handle an automount point */
1063 if (managed & DCACHE_NEED_AUTOMOUNT) {
1064 ret = follow_automount(path, flags, &need_mntput);
1065 if (ret < 0)
1066 break;
1067 continue;
1068 }
1069
1070 /* We didn't change the current path point */
1071 break;
1072 }
1073
1074 if (need_mntput && path->mnt == mnt)
1075 mntput(path->mnt);
1076 if (ret == -EISDIR)
1077 ret = 0;
1078 return ret < 0 ? ret : need_mntput;
1079 }
1080
1081 int follow_down_one(struct path *path)
1082 {
1083 struct vfsmount *mounted;
1084
1085 mounted = lookup_mnt(path);
1086 if (mounted) {
1087 dput(path->dentry);
1088 mntput(path->mnt);
1089 path->mnt = mounted;
1090 path->dentry = dget(mounted->mnt_root);
1091 return 1;
1092 }
1093 return 0;
1094 }
1095 EXPORT_SYMBOL(follow_down_one);
1096
1097 static inline int managed_dentry_rcu(struct dentry *dentry)
1098 {
1099 return (dentry->d_flags & DCACHE_MANAGE_TRANSIT) ?
1100 dentry->d_op->d_manage(dentry, true) : 0;
1101 }
1102
1103 /*
1104 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if
1105 * we meet a managed dentry that would need blocking.
1106 */
1107 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1108 struct inode **inode)
1109 {
1110 for (;;) {
1111 struct mount *mounted;
1112 /*
1113 * Don't forget we might have a non-mountpoint managed dentry
1114 * that wants to block transit.
1115 */
1116 switch (managed_dentry_rcu(path->dentry)) {
1117 case -ECHILD:
1118 default:
1119 return false;
1120 case -EISDIR:
1121 return true;
1122 case 0:
1123 break;
1124 }
1125
1126 if (!d_mountpoint(path->dentry))
1127 return !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1128
1129 mounted = __lookup_mnt(path->mnt, path->dentry);
1130 if (!mounted)
1131 break;
1132 path->mnt = &mounted->mnt;
1133 path->dentry = mounted->mnt.mnt_root;
1134 nd->flags |= LOOKUP_JUMPED;
1135 nd->seq = read_seqcount_begin(&path->dentry->d_seq);
1136 /*
1137 * Update the inode too. We don't need to re-check the
1138 * dentry sequence number here after this d_inode read,
1139 * because a mount-point is always pinned.
1140 */
1141 *inode = path->dentry->d_inode;
1142 }
1143 return !read_seqretry(&mount_lock, nd->m_seq) &&
1144 !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1145 }
1146
1147 static int follow_dotdot_rcu(struct nameidata *nd)
1148 {
1149 struct inode *inode = nd->inode;
1150 if (!nd->root.mnt)
1151 set_root_rcu(nd);
1152
1153 while (1) {
1154 if (nd->path.dentry == nd->root.dentry &&
1155 nd->path.mnt == nd->root.mnt) {
1156 break;
1157 }
1158 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1159 struct dentry *old = nd->path.dentry;
1160 struct dentry *parent = old->d_parent;
1161 unsigned seq;
1162
1163 inode = parent->d_inode;
1164 seq = read_seqcount_begin(&parent->d_seq);
1165 if (read_seqcount_retry(&old->d_seq, nd->seq))
1166 goto failed;
1167 nd->path.dentry = parent;
1168 nd->seq = seq;
1169 break;
1170 }
1171 if (!follow_up_rcu(&nd->path))
1172 break;
1173 inode = nd->path.dentry->d_inode;
1174 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1175 }
1176 while (d_mountpoint(nd->path.dentry)) {
1177 struct mount *mounted;
1178 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry);
1179 if (!mounted)
1180 break;
1181 nd->path.mnt = &mounted->mnt;
1182 nd->path.dentry = mounted->mnt.mnt_root;
1183 inode = nd->path.dentry->d_inode;
1184 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1185 if (read_seqretry(&mount_lock, nd->m_seq))
1186 goto failed;
1187 }
1188 nd->inode = inode;
1189 return 0;
1190
1191 failed:
1192 nd->flags &= ~LOOKUP_RCU;
1193 if (!(nd->flags & LOOKUP_ROOT))
1194 nd->root.mnt = NULL;
1195 rcu_read_unlock();
1196 return -ECHILD;
1197 }
1198
1199 /*
1200 * Follow down to the covering mount currently visible to userspace. At each
1201 * point, the filesystem owning that dentry may be queried as to whether the
1202 * caller is permitted to proceed or not.
1203 */
1204 int follow_down(struct path *path)
1205 {
1206 unsigned managed;
1207 int ret;
1208
1209 while (managed = ACCESS_ONCE(path->dentry->d_flags),
1210 unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1211 /* Allow the filesystem to manage the transit without i_mutex
1212 * being held.
1213 *
1214 * We indicate to the filesystem if someone is trying to mount
1215 * something here. This gives autofs the chance to deny anyone
1216 * other than its daemon the right to mount on its
1217 * superstructure.
1218 *
1219 * The filesystem may sleep at this point.
1220 */
1221 if (managed & DCACHE_MANAGE_TRANSIT) {
1222 BUG_ON(!path->dentry->d_op);
1223 BUG_ON(!path->dentry->d_op->d_manage);
1224 ret = path->dentry->d_op->d_manage(
1225 path->dentry, false);
1226 if (ret < 0)
1227 return ret == -EISDIR ? 0 : ret;
1228 }
1229
1230 /* Transit to a mounted filesystem. */
1231 if (managed & DCACHE_MOUNTED) {
1232 struct vfsmount *mounted = lookup_mnt(path);
1233 if (!mounted)
1234 break;
1235 dput(path->dentry);
1236 mntput(path->mnt);
1237 path->mnt = mounted;
1238 path->dentry = dget(mounted->mnt_root);
1239 continue;
1240 }
1241
1242 /* Don't handle automount points here */
1243 break;
1244 }
1245 return 0;
1246 }
1247 EXPORT_SYMBOL(follow_down);
1248
1249 /*
1250 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1251 */
1252 static void follow_mount(struct path *path)
1253 {
1254 while (d_mountpoint(path->dentry)) {
1255 struct vfsmount *mounted = lookup_mnt(path);
1256 if (!mounted)
1257 break;
1258 dput(path->dentry);
1259 mntput(path->mnt);
1260 path->mnt = mounted;
1261 path->dentry = dget(mounted->mnt_root);
1262 }
1263 }
1264
1265 static void follow_dotdot(struct nameidata *nd)
1266 {
1267 if (!nd->root.mnt)
1268 set_root(nd);
1269
1270 while(1) {
1271 struct dentry *old = nd->path.dentry;
1272
1273 if (nd->path.dentry == nd->root.dentry &&
1274 nd->path.mnt == nd->root.mnt) {
1275 break;
1276 }
1277 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1278 /* rare case of legitimate dget_parent()... */
1279 nd->path.dentry = dget_parent(nd->path.dentry);
1280 dput(old);
1281 break;
1282 }
1283 if (!follow_up(&nd->path))
1284 break;
1285 }
1286 follow_mount(&nd->path);
1287 nd->inode = nd->path.dentry->d_inode;
1288 }
1289
1290 /*
1291 * This looks up the name in dcache, possibly revalidates the old dentry and
1292 * allocates a new one if not found or not valid. In the need_lookup argument
1293 * returns whether i_op->lookup is necessary.
1294 *
1295 * dir->d_inode->i_mutex must be held
1296 */
1297 static struct dentry *lookup_dcache(struct qstr *name, struct dentry *dir,
1298 unsigned int flags, bool *need_lookup)
1299 {
1300 struct dentry *dentry;
1301 int error;
1302
1303 *need_lookup = false;
1304 dentry = d_lookup(dir, name);
1305 if (dentry) {
1306 if (dentry->d_flags & DCACHE_OP_REVALIDATE) {
1307 error = d_revalidate(dentry, flags);
1308 if (unlikely(error <= 0)) {
1309 if (error < 0) {
1310 dput(dentry);
1311 return ERR_PTR(error);
1312 } else {
1313 d_invalidate(dentry);
1314 dput(dentry);
1315 dentry = NULL;
1316 }
1317 }
1318 }
1319 }
1320
1321 if (!dentry) {
1322 dentry = d_alloc(dir, name);
1323 if (unlikely(!dentry))
1324 return ERR_PTR(-ENOMEM);
1325
1326 *need_lookup = true;
1327 }
1328 return dentry;
1329 }
1330
1331 /*
1332 * Call i_op->lookup on the dentry. The dentry must be negative and
1333 * unhashed.
1334 *
1335 * dir->d_inode->i_mutex must be held
1336 */
1337 static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry,
1338 unsigned int flags)
1339 {
1340 struct dentry *old;
1341
1342 /* Don't create child dentry for a dead directory. */
1343 if (unlikely(IS_DEADDIR(dir))) {
1344 dput(dentry);
1345 return ERR_PTR(-ENOENT);
1346 }
1347
1348 old = dir->i_op->lookup(dir, dentry, flags);
1349 if (unlikely(old)) {
1350 dput(dentry);
1351 dentry = old;
1352 }
1353 return dentry;
1354 }
1355
1356 static struct dentry *__lookup_hash(struct qstr *name,
1357 struct dentry *base, unsigned int flags)
1358 {
1359 bool need_lookup;
1360 struct dentry *dentry;
1361
1362 dentry = lookup_dcache(name, base, flags, &need_lookup);
1363 if (!need_lookup)
1364 return dentry;
1365
1366 return lookup_real(base->d_inode, dentry, flags);
1367 }
1368
1369 /*
1370 * It's more convoluted than I'd like it to be, but... it's still fairly
1371 * small and for now I'd prefer to have fast path as straight as possible.
1372 * It _is_ time-critical.
1373 */
1374 static int lookup_fast(struct nameidata *nd,
1375 struct path *path, struct inode **inode)
1376 {
1377 struct vfsmount *mnt = nd->path.mnt;
1378 struct dentry *dentry, *parent = nd->path.dentry;
1379 int need_reval = 1;
1380 int status = 1;
1381 int err;
1382
1383 /*
1384 * Rename seqlock is not required here because in the off chance
1385 * of a false negative due to a concurrent rename, we're going to
1386 * do the non-racy lookup, below.
1387 */
1388 if (nd->flags & LOOKUP_RCU) {
1389 unsigned seq;
1390 bool negative;
1391 dentry = __d_lookup_rcu(parent, &nd->last, &seq);
1392 if (!dentry)
1393 goto unlazy;
1394
1395 /*
1396 * This sequence count validates that the inode matches
1397 * the dentry name information from lookup.
1398 */
1399 *inode = dentry->d_inode;
1400 negative = d_is_negative(dentry);
1401 if (read_seqcount_retry(&dentry->d_seq, seq))
1402 return -ECHILD;
1403 if (negative)
1404 return -ENOENT;
1405
1406 /*
1407 * This sequence count validates that the parent had no
1408 * changes while we did the lookup of the dentry above.
1409 *
1410 * The memory barrier in read_seqcount_begin of child is
1411 * enough, we can use __read_seqcount_retry here.
1412 */
1413 if (__read_seqcount_retry(&parent->d_seq, nd->seq))
1414 return -ECHILD;
1415 nd->seq = seq;
1416
1417 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) {
1418 status = d_revalidate(dentry, nd->flags);
1419 if (unlikely(status <= 0)) {
1420 if (status != -ECHILD)
1421 need_reval = 0;
1422 goto unlazy;
1423 }
1424 }
1425 path->mnt = mnt;
1426 path->dentry = dentry;
1427 if (likely(__follow_mount_rcu(nd, path, inode)))
1428 return 0;
1429 unlazy:
1430 if (unlazy_walk(nd, dentry))
1431 return -ECHILD;
1432 } else {
1433 dentry = __d_lookup(parent, &nd->last);
1434 }
1435
1436 if (unlikely(!dentry))
1437 goto need_lookup;
1438
1439 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE) && need_reval)
1440 status = d_revalidate(dentry, nd->flags);
1441 if (unlikely(status <= 0)) {
1442 if (status < 0) {
1443 dput(dentry);
1444 return status;
1445 }
1446 d_invalidate(dentry);
1447 dput(dentry);
1448 goto need_lookup;
1449 }
1450
1451 if (unlikely(d_is_negative(dentry))) {
1452 dput(dentry);
1453 return -ENOENT;
1454 }
1455 path->mnt = mnt;
1456 path->dentry = dentry;
1457 err = follow_managed(path, nd->flags);
1458 if (unlikely(err < 0)) {
1459 path_put_conditional(path, nd);
1460 return err;
1461 }
1462 if (err)
1463 nd->flags |= LOOKUP_JUMPED;
1464 *inode = path->dentry->d_inode;
1465 return 0;
1466
1467 need_lookup:
1468 return 1;
1469 }
1470
1471 /* Fast lookup failed, do it the slow way */
1472 static int lookup_slow(struct nameidata *nd, struct path *path)
1473 {
1474 struct dentry *dentry, *parent;
1475 int err;
1476
1477 parent = nd->path.dentry;
1478 BUG_ON(nd->inode != parent->d_inode);
1479
1480 mutex_lock(&parent->d_inode->i_mutex);
1481 dentry = __lookup_hash(&nd->last, parent, nd->flags);
1482 mutex_unlock(&parent->d_inode->i_mutex);
1483 if (IS_ERR(dentry))
1484 return PTR_ERR(dentry);
1485 path->mnt = nd->path.mnt;
1486 path->dentry = dentry;
1487 err = follow_managed(path, nd->flags);
1488 if (unlikely(err < 0)) {
1489 path_put_conditional(path, nd);
1490 return err;
1491 }
1492 if (err)
1493 nd->flags |= LOOKUP_JUMPED;
1494 return 0;
1495 }
1496
1497 static inline int may_lookup(struct nameidata *nd)
1498 {
1499 if (nd->flags & LOOKUP_RCU) {
1500 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1501 if (err != -ECHILD)
1502 return err;
1503 if (unlazy_walk(nd, NULL))
1504 return -ECHILD;
1505 }
1506 return inode_permission(nd->inode, MAY_EXEC);
1507 }
1508
1509 static inline int handle_dots(struct nameidata *nd, int type)
1510 {
1511 if (type == LAST_DOTDOT) {
1512 if (nd->flags & LOOKUP_RCU) {
1513 if (follow_dotdot_rcu(nd))
1514 return -ECHILD;
1515 } else
1516 follow_dotdot(nd);
1517 }
1518 return 0;
1519 }
1520
1521 static void terminate_walk(struct nameidata *nd)
1522 {
1523 if (!(nd->flags & LOOKUP_RCU)) {
1524 path_put(&nd->path);
1525 } else {
1526 nd->flags &= ~LOOKUP_RCU;
1527 if (!(nd->flags & LOOKUP_ROOT))
1528 nd->root.mnt = NULL;
1529 rcu_read_unlock();
1530 }
1531 }
1532
1533 /*
1534 * Do we need to follow links? We _really_ want to be able
1535 * to do this check without having to look at inode->i_op,
1536 * so we keep a cache of "no, this doesn't need follow_link"
1537 * for the common case.
1538 */
1539 static inline int should_follow_link(struct dentry *dentry, int follow)
1540 {
1541 return unlikely(d_is_symlink(dentry)) ? follow : 0;
1542 }
1543
1544 static int walk_component(struct nameidata *nd, int follow)
1545 {
1546 struct path path;
1547 struct inode *inode;
1548 int err;
1549 /*
1550 * "." and ".." are special - ".." especially so because it has
1551 * to be able to know about the current root directory and
1552 * parent relationships.
1553 */
1554 if (unlikely(nd->last_type != LAST_NORM))
1555 return handle_dots(nd, nd->last_type);
1556 err = lookup_fast(nd, &path, &inode);
1557 if (unlikely(err)) {
1558 if (err < 0)
1559 goto out_err;
1560
1561 err = lookup_slow(nd, &path);
1562 if (err < 0)
1563 goto out_err;
1564
1565 inode = path.dentry->d_inode;
1566 err = -ENOENT;
1567 if (d_is_negative(path.dentry))
1568 goto out_path_put;
1569 }
1570
1571 if (should_follow_link(path.dentry, follow)) {
1572 if (nd->flags & LOOKUP_RCU) {
1573 if (unlikely(nd->path.mnt != path.mnt ||
1574 unlazy_walk(nd, path.dentry))) {
1575 err = -ECHILD;
1576 goto out_err;
1577 }
1578 }
1579 BUG_ON(inode != path.dentry->d_inode);
1580 nd->link = path;
1581 return 1;
1582 }
1583 path_to_nameidata(&path, nd);
1584 nd->inode = inode;
1585 return 0;
1586
1587 out_path_put:
1588 path_to_nameidata(&path, nd);
1589 out_err:
1590 terminate_walk(nd);
1591 return err;
1592 }
1593
1594 /*
1595 * We can do the critical dentry name comparison and hashing
1596 * operations one word at a time, but we are limited to:
1597 *
1598 * - Architectures with fast unaligned word accesses. We could
1599 * do a "get_unaligned()" if this helps and is sufficiently
1600 * fast.
1601 *
1602 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1603 * do not trap on the (extremely unlikely) case of a page
1604 * crossing operation.
1605 *
1606 * - Furthermore, we need an efficient 64-bit compile for the
1607 * 64-bit case in order to generate the "number of bytes in
1608 * the final mask". Again, that could be replaced with a
1609 * efficient population count instruction or similar.
1610 */
1611 #ifdef CONFIG_DCACHE_WORD_ACCESS
1612
1613 #include <asm/word-at-a-time.h>
1614
1615 #ifdef CONFIG_64BIT
1616
1617 static inline unsigned int fold_hash(unsigned long hash)
1618 {
1619 return hash_64(hash, 32);
1620 }
1621
1622 #else /* 32-bit case */
1623
1624 #define fold_hash(x) (x)
1625
1626 #endif
1627
1628 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1629 {
1630 unsigned long a, mask;
1631 unsigned long hash = 0;
1632
1633 for (;;) {
1634 a = load_unaligned_zeropad(name);
1635 if (len < sizeof(unsigned long))
1636 break;
1637 hash += a;
1638 hash *= 9;
1639 name += sizeof(unsigned long);
1640 len -= sizeof(unsigned long);
1641 if (!len)
1642 goto done;
1643 }
1644 mask = bytemask_from_count(len);
1645 hash += mask & a;
1646 done:
1647 return fold_hash(hash);
1648 }
1649 EXPORT_SYMBOL(full_name_hash);
1650
1651 /*
1652 * Calculate the length and hash of the path component, and
1653 * return the "hash_len" as the result.
1654 */
1655 static inline u64 hash_name(const char *name)
1656 {
1657 unsigned long a, b, adata, bdata, mask, hash, len;
1658 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1659
1660 hash = a = 0;
1661 len = -sizeof(unsigned long);
1662 do {
1663 hash = (hash + a) * 9;
1664 len += sizeof(unsigned long);
1665 a = load_unaligned_zeropad(name+len);
1666 b = a ^ REPEAT_BYTE('/');
1667 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
1668
1669 adata = prep_zero_mask(a, adata, &constants);
1670 bdata = prep_zero_mask(b, bdata, &constants);
1671
1672 mask = create_zero_mask(adata | bdata);
1673
1674 hash += a & zero_bytemask(mask);
1675 len += find_zero(mask);
1676 return hashlen_create(fold_hash(hash), len);
1677 }
1678
1679 #else
1680
1681 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1682 {
1683 unsigned long hash = init_name_hash();
1684 while (len--)
1685 hash = partial_name_hash(*name++, hash);
1686 return end_name_hash(hash);
1687 }
1688 EXPORT_SYMBOL(full_name_hash);
1689
1690 /*
1691 * We know there's a real path component here of at least
1692 * one character.
1693 */
1694 static inline u64 hash_name(const char *name)
1695 {
1696 unsigned long hash = init_name_hash();
1697 unsigned long len = 0, c;
1698
1699 c = (unsigned char)*name;
1700 do {
1701 len++;
1702 hash = partial_name_hash(c, hash);
1703 c = (unsigned char)name[len];
1704 } while (c && c != '/');
1705 return hashlen_create(end_name_hash(hash), len);
1706 }
1707
1708 #endif
1709
1710 /*
1711 * Name resolution.
1712 * This is the basic name resolution function, turning a pathname into
1713 * the final dentry. We expect 'base' to be positive and a directory.
1714 *
1715 * Returns 0 and nd will have valid dentry and mnt on success.
1716 * Returns error and drops reference to input namei data on failure.
1717 */
1718 static int link_path_walk(const char *name, struct nameidata *nd)
1719 {
1720 struct saved *last = nd->stack;
1721 int err;
1722
1723 while (*name=='/')
1724 name++;
1725 if (!*name)
1726 return 0;
1727
1728 /* At this point we know we have a real path component. */
1729 for(;;) {
1730 u64 hash_len;
1731 int type;
1732
1733 err = may_lookup(nd);
1734 if (err)
1735 break;
1736
1737 hash_len = hash_name(name);
1738
1739 type = LAST_NORM;
1740 if (name[0] == '.') switch (hashlen_len(hash_len)) {
1741 case 2:
1742 if (name[1] == '.') {
1743 type = LAST_DOTDOT;
1744 nd->flags |= LOOKUP_JUMPED;
1745 }
1746 break;
1747 case 1:
1748 type = LAST_DOT;
1749 }
1750 if (likely(type == LAST_NORM)) {
1751 struct dentry *parent = nd->path.dentry;
1752 nd->flags &= ~LOOKUP_JUMPED;
1753 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
1754 struct qstr this = { { .hash_len = hash_len }, .name = name };
1755 err = parent->d_op->d_hash(parent, &this);
1756 if (err < 0)
1757 break;
1758 hash_len = this.hash_len;
1759 name = this.name;
1760 }
1761 }
1762
1763 nd->last.hash_len = hash_len;
1764 nd->last.name = name;
1765 nd->last_type = type;
1766
1767 name += hashlen_len(hash_len);
1768 if (!*name)
1769 goto OK;
1770 /*
1771 * If it wasn't NUL, we know it was '/'. Skip that
1772 * slash, and continue until no more slashes.
1773 */
1774 do {
1775 name++;
1776 } while (unlikely(*name == '/'));
1777 if (!*name)
1778 goto OK;
1779
1780 err = walk_component(nd, LOOKUP_FOLLOW);
1781 Walked:
1782 if (err < 0)
1783 goto Err;
1784
1785 if (err) {
1786 const char *s;
1787
1788 if (unlikely(current->link_count >= MAX_NESTED_LINKS)) {
1789 path_put_conditional(&nd->link, nd);
1790 path_put(&nd->path);
1791 err = -ELOOP;
1792 goto Err;
1793 }
1794 BUG_ON(nd->depth >= MAX_NESTED_LINKS);
1795
1796 nd->depth++;
1797 current->link_count++;
1798 last++;
1799
1800 last->link = nd->link;
1801 s = get_link(&last->link, nd, &last->cookie);
1802
1803 if (unlikely(IS_ERR(s))) {
1804 err = PTR_ERR(s);
1805 current->link_count--;
1806 nd->depth--;
1807 last--;
1808 goto Err;
1809 }
1810 err = 0;
1811 if (unlikely(!s)) {
1812 /* jumped */
1813 put_link(nd);
1814 current->link_count--;
1815 nd->depth--;
1816 last--;
1817 } else {
1818 if (*s == '/') {
1819 if (!nd->root.mnt)
1820 set_root(nd);
1821 path_put(&nd->path);
1822 nd->path = nd->root;
1823 path_get(&nd->root);
1824 nd->flags |= LOOKUP_JUMPED;
1825 while (unlikely(*++s == '/'))
1826 ;
1827 }
1828 nd->inode = nd->path.dentry->d_inode;
1829 last->name = name;
1830 if (!*s)
1831 goto OK;
1832 name = s;
1833 continue;
1834 }
1835 }
1836 if (!d_can_lookup(nd->path.dentry)) {
1837 err = -ENOTDIR;
1838 break;
1839 }
1840 }
1841 terminate_walk(nd);
1842 Err:
1843 while (unlikely(nd->depth)) {
1844 put_link(nd);
1845 current->link_count--;
1846 nd->depth--;
1847 last--;
1848 }
1849 return err;
1850 OK:
1851 if (unlikely(nd->depth)) {
1852 name = last->name;
1853 err = walk_component(nd, LOOKUP_FOLLOW);
1854 put_link(nd);
1855 current->link_count--;
1856 nd->depth--;
1857 last--;
1858 goto Walked;
1859 }
1860 return 0;
1861 }
1862
1863 static int path_init(int dfd, const struct filename *name, unsigned int flags,
1864 struct nameidata *nd)
1865 {
1866 int retval = 0;
1867 const char *s = name->name;
1868
1869 nd->last_type = LAST_ROOT; /* if there are only slashes... */
1870 nd->flags = flags | LOOKUP_JUMPED | LOOKUP_PARENT;
1871 nd->depth = 0;
1872 nd->base = NULL;
1873 if (flags & LOOKUP_ROOT) {
1874 struct dentry *root = nd->root.dentry;
1875 struct inode *inode = root->d_inode;
1876 if (*s) {
1877 if (!d_can_lookup(root))
1878 return -ENOTDIR;
1879 retval = inode_permission(inode, MAY_EXEC);
1880 if (retval)
1881 return retval;
1882 }
1883 nd->path = nd->root;
1884 nd->inode = inode;
1885 if (flags & LOOKUP_RCU) {
1886 rcu_read_lock();
1887 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1888 nd->m_seq = read_seqbegin(&mount_lock);
1889 } else {
1890 path_get(&nd->path);
1891 }
1892 goto done;
1893 }
1894
1895 nd->root.mnt = NULL;
1896
1897 nd->m_seq = read_seqbegin(&mount_lock);
1898 if (*s == '/') {
1899 if (flags & LOOKUP_RCU) {
1900 rcu_read_lock();
1901 nd->seq = set_root_rcu(nd);
1902 } else {
1903 set_root(nd);
1904 path_get(&nd->root);
1905 }
1906 nd->path = nd->root;
1907 } else if (dfd == AT_FDCWD) {
1908 if (flags & LOOKUP_RCU) {
1909 struct fs_struct *fs = current->fs;
1910 unsigned seq;
1911
1912 rcu_read_lock();
1913
1914 do {
1915 seq = read_seqcount_begin(&fs->seq);
1916 nd->path = fs->pwd;
1917 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1918 } while (read_seqcount_retry(&fs->seq, seq));
1919 } else {
1920 get_fs_pwd(current->fs, &nd->path);
1921 }
1922 } else {
1923 /* Caller must check execute permissions on the starting path component */
1924 struct fd f = fdget_raw(dfd);
1925 struct dentry *dentry;
1926
1927 if (!f.file)
1928 return -EBADF;
1929
1930 dentry = f.file->f_path.dentry;
1931
1932 if (*s) {
1933 if (!d_can_lookup(dentry)) {
1934 fdput(f);
1935 return -ENOTDIR;
1936 }
1937 }
1938
1939 nd->path = f.file->f_path;
1940 if (flags & LOOKUP_RCU) {
1941 if (f.flags & FDPUT_FPUT)
1942 nd->base = f.file;
1943 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1944 rcu_read_lock();
1945 } else {
1946 path_get(&nd->path);
1947 fdput(f);
1948 }
1949 }
1950
1951 nd->inode = nd->path.dentry->d_inode;
1952 if (!(flags & LOOKUP_RCU))
1953 goto done;
1954 if (likely(!read_seqcount_retry(&nd->path.dentry->d_seq, nd->seq)))
1955 goto done;
1956 if (!(nd->flags & LOOKUP_ROOT))
1957 nd->root.mnt = NULL;
1958 rcu_read_unlock();
1959 return -ECHILD;
1960 done:
1961 current->total_link_count = 0;
1962 return link_path_walk(s, nd);
1963 }
1964
1965 static void path_cleanup(struct nameidata *nd)
1966 {
1967 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
1968 path_put(&nd->root);
1969 nd->root.mnt = NULL;
1970 }
1971 if (unlikely(nd->base))
1972 fput(nd->base);
1973 }
1974
1975 static int trailing_symlink(struct nameidata *nd)
1976 {
1977 const char *s;
1978 int error = may_follow_link(&nd->link, nd);
1979 if (unlikely(error))
1980 return error;
1981 nd->flags |= LOOKUP_PARENT;
1982 nd->stack[0].link = nd->link;
1983 s = get_link(&nd->stack[0].link, nd, &nd->stack[0].cookie);
1984 if (unlikely(IS_ERR(s)))
1985 return PTR_ERR(s);
1986 if (unlikely(!s))
1987 return 0;
1988 if (*s == '/') {
1989 if (!nd->root.mnt)
1990 set_root(nd);
1991 path_put(&nd->path);
1992 nd->path = nd->root;
1993 path_get(&nd->root);
1994 nd->flags |= LOOKUP_JUMPED;
1995 }
1996 nd->inode = nd->path.dentry->d_inode;
1997 error = link_path_walk(s, nd);
1998 if (unlikely(error))
1999 put_link(nd);
2000 return error;
2001 }
2002
2003 static inline int lookup_last(struct nameidata *nd)
2004 {
2005 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
2006 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2007
2008 nd->flags &= ~LOOKUP_PARENT;
2009 return walk_component(nd, nd->flags & LOOKUP_FOLLOW);
2010 }
2011
2012 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2013 static int path_lookupat(int dfd, const struct filename *name,
2014 unsigned int flags, struct nameidata *nd)
2015 {
2016 int err;
2017
2018 /*
2019 * Path walking is largely split up into 2 different synchronisation
2020 * schemes, rcu-walk and ref-walk (explained in
2021 * Documentation/filesystems/path-lookup.txt). These share much of the
2022 * path walk code, but some things particularly setup, cleanup, and
2023 * following mounts are sufficiently divergent that functions are
2024 * duplicated. Typically there is a function foo(), and its RCU
2025 * analogue, foo_rcu().
2026 *
2027 * -ECHILD is the error number of choice (just to avoid clashes) that
2028 * is returned if some aspect of an rcu-walk fails. Such an error must
2029 * be handled by restarting a traditional ref-walk (which will always
2030 * be able to complete).
2031 */
2032 err = path_init(dfd, name, flags, nd);
2033 if (!err && !(flags & LOOKUP_PARENT)) {
2034 err = lookup_last(nd);
2035 while (err > 0) {
2036 err = trailing_symlink(nd);
2037 if (err)
2038 break;
2039 err = lookup_last(nd);
2040 put_link(nd);
2041 }
2042 }
2043
2044 if (!err)
2045 err = complete_walk(nd);
2046
2047 if (!err && nd->flags & LOOKUP_DIRECTORY) {
2048 if (!d_can_lookup(nd->path.dentry)) {
2049 path_put(&nd->path);
2050 err = -ENOTDIR;
2051 }
2052 }
2053
2054 path_cleanup(nd);
2055 return err;
2056 }
2057
2058 static int filename_lookup(int dfd, struct filename *name,
2059 unsigned int flags, struct nameidata *nd)
2060 {
2061 int retval = path_lookupat(dfd, name, flags | LOOKUP_RCU, nd);
2062 if (unlikely(retval == -ECHILD))
2063 retval = path_lookupat(dfd, name, flags, nd);
2064 if (unlikely(retval == -ESTALE))
2065 retval = path_lookupat(dfd, name, flags | LOOKUP_REVAL, nd);
2066
2067 if (likely(!retval))
2068 audit_inode(name, nd->path.dentry, flags & LOOKUP_PARENT);
2069 return retval;
2070 }
2071
2072 /* does lookup, returns the object with parent locked */
2073 struct dentry *kern_path_locked(const char *name, struct path *path)
2074 {
2075 struct filename *filename = getname_kernel(name);
2076 struct nameidata nd;
2077 struct dentry *d;
2078 int err;
2079
2080 if (IS_ERR(filename))
2081 return ERR_CAST(filename);
2082
2083 err = filename_lookup(AT_FDCWD, filename, LOOKUP_PARENT, &nd);
2084 if (err) {
2085 d = ERR_PTR(err);
2086 goto out;
2087 }
2088 if (nd.last_type != LAST_NORM) {
2089 path_put(&nd.path);
2090 d = ERR_PTR(-EINVAL);
2091 goto out;
2092 }
2093 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2094 d = __lookup_hash(&nd.last, nd.path.dentry, 0);
2095 if (IS_ERR(d)) {
2096 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2097 path_put(&nd.path);
2098 goto out;
2099 }
2100 *path = nd.path;
2101 out:
2102 putname(filename);
2103 return d;
2104 }
2105
2106 int kern_path(const char *name, unsigned int flags, struct path *path)
2107 {
2108 struct nameidata nd;
2109 struct filename *filename = getname_kernel(name);
2110 int res = PTR_ERR(filename);
2111
2112 if (!IS_ERR(filename)) {
2113 res = filename_lookup(AT_FDCWD, filename, flags, &nd);
2114 putname(filename);
2115 if (!res)
2116 *path = nd.path;
2117 }
2118 return res;
2119 }
2120 EXPORT_SYMBOL(kern_path);
2121
2122 /**
2123 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2124 * @dentry: pointer to dentry of the base directory
2125 * @mnt: pointer to vfs mount of the base directory
2126 * @name: pointer to file name
2127 * @flags: lookup flags
2128 * @path: pointer to struct path to fill
2129 */
2130 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2131 const char *name, unsigned int flags,
2132 struct path *path)
2133 {
2134 struct filename *filename = getname_kernel(name);
2135 int err = PTR_ERR(filename);
2136
2137 BUG_ON(flags & LOOKUP_PARENT);
2138
2139 /* the first argument of filename_lookup() is ignored with LOOKUP_ROOT */
2140 if (!IS_ERR(filename)) {
2141 struct nameidata nd;
2142 nd.root.dentry = dentry;
2143 nd.root.mnt = mnt;
2144 err = filename_lookup(AT_FDCWD, filename,
2145 flags | LOOKUP_ROOT, &nd);
2146 if (!err)
2147 *path = nd.path;
2148 putname(filename);
2149 }
2150 return err;
2151 }
2152 EXPORT_SYMBOL(vfs_path_lookup);
2153
2154 /**
2155 * lookup_one_len - filesystem helper to lookup single pathname component
2156 * @name: pathname component to lookup
2157 * @base: base directory to lookup from
2158 * @len: maximum length @len should be interpreted to
2159 *
2160 * Note that this routine is purely a helper for filesystem usage and should
2161 * not be called by generic code.
2162 */
2163 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2164 {
2165 struct qstr this;
2166 unsigned int c;
2167 int err;
2168
2169 WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex));
2170
2171 this.name = name;
2172 this.len = len;
2173 this.hash = full_name_hash(name, len);
2174 if (!len)
2175 return ERR_PTR(-EACCES);
2176
2177 if (unlikely(name[0] == '.')) {
2178 if (len < 2 || (len == 2 && name[1] == '.'))
2179 return ERR_PTR(-EACCES);
2180 }
2181
2182 while (len--) {
2183 c = *(const unsigned char *)name++;
2184 if (c == '/' || c == '\0')
2185 return ERR_PTR(-EACCES);
2186 }
2187 /*
2188 * See if the low-level filesystem might want
2189 * to use its own hash..
2190 */
2191 if (base->d_flags & DCACHE_OP_HASH) {
2192 int err = base->d_op->d_hash(base, &this);
2193 if (err < 0)
2194 return ERR_PTR(err);
2195 }
2196
2197 err = inode_permission(base->d_inode, MAY_EXEC);
2198 if (err)
2199 return ERR_PTR(err);
2200
2201 return __lookup_hash(&this, base, 0);
2202 }
2203 EXPORT_SYMBOL(lookup_one_len);
2204
2205 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2206 struct path *path, int *empty)
2207 {
2208 struct nameidata nd;
2209 struct filename *tmp = getname_flags(name, flags, empty);
2210 int err = PTR_ERR(tmp);
2211 if (!IS_ERR(tmp)) {
2212
2213 BUG_ON(flags & LOOKUP_PARENT);
2214
2215 err = filename_lookup(dfd, tmp, flags, &nd);
2216 putname(tmp);
2217 if (!err)
2218 *path = nd.path;
2219 }
2220 return err;
2221 }
2222
2223 int user_path_at(int dfd, const char __user *name, unsigned flags,
2224 struct path *path)
2225 {
2226 return user_path_at_empty(dfd, name, flags, path, NULL);
2227 }
2228 EXPORT_SYMBOL(user_path_at);
2229
2230 /*
2231 * NB: most callers don't do anything directly with the reference to the
2232 * to struct filename, but the nd->last pointer points into the name string
2233 * allocated by getname. So we must hold the reference to it until all
2234 * path-walking is complete.
2235 */
2236 static struct filename *
2237 user_path_parent(int dfd, const char __user *path,
2238 struct path *parent,
2239 struct qstr *last,
2240 int *type,
2241 unsigned int flags)
2242 {
2243 struct nameidata nd;
2244 struct filename *s = getname(path);
2245 int error;
2246
2247 /* only LOOKUP_REVAL is allowed in extra flags */
2248 flags &= LOOKUP_REVAL;
2249
2250 if (IS_ERR(s))
2251 return s;
2252
2253 error = filename_lookup(dfd, s, flags | LOOKUP_PARENT, &nd);
2254 if (error) {
2255 putname(s);
2256 return ERR_PTR(error);
2257 }
2258 *parent = nd.path;
2259 *last = nd.last;
2260 *type = nd.last_type;
2261
2262 return s;
2263 }
2264
2265 /**
2266 * mountpoint_last - look up last component for umount
2267 * @nd: pathwalk nameidata - currently pointing at parent directory of "last"
2268 * @path: pointer to container for result
2269 *
2270 * This is a special lookup_last function just for umount. In this case, we
2271 * need to resolve the path without doing any revalidation.
2272 *
2273 * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since
2274 * mountpoints are always pinned in the dcache, their ancestors are too. Thus,
2275 * in almost all cases, this lookup will be served out of the dcache. The only
2276 * cases where it won't are if nd->last refers to a symlink or the path is
2277 * bogus and it doesn't exist.
2278 *
2279 * Returns:
2280 * -error: if there was an error during lookup. This includes -ENOENT if the
2281 * lookup found a negative dentry. The nd->path reference will also be
2282 * put in this case.
2283 *
2284 * 0: if we successfully resolved nd->path and found it to not to be a
2285 * symlink that needs to be followed. "path" will also be populated.
2286 * The nd->path reference will also be put.
2287 *
2288 * 1: if we successfully resolved nd->last and found it to be a symlink
2289 * that needs to be followed. "path" will be populated with the path
2290 * to the link, and nd->path will *not* be put.
2291 */
2292 static int
2293 mountpoint_last(struct nameidata *nd, struct path *path)
2294 {
2295 int error = 0;
2296 struct dentry *dentry;
2297 struct dentry *dir = nd->path.dentry;
2298
2299 /* If we're in rcuwalk, drop out of it to handle last component */
2300 if (nd->flags & LOOKUP_RCU) {
2301 if (unlazy_walk(nd, NULL)) {
2302 error = -ECHILD;
2303 goto out;
2304 }
2305 }
2306
2307 nd->flags &= ~LOOKUP_PARENT;
2308
2309 if (unlikely(nd->last_type != LAST_NORM)) {
2310 error = handle_dots(nd, nd->last_type);
2311 if (error)
2312 goto out;
2313 dentry = dget(nd->path.dentry);
2314 goto done;
2315 }
2316
2317 mutex_lock(&dir->d_inode->i_mutex);
2318 dentry = d_lookup(dir, &nd->last);
2319 if (!dentry) {
2320 /*
2321 * No cached dentry. Mounted dentries are pinned in the cache,
2322 * so that means that this dentry is probably a symlink or the
2323 * path doesn't actually point to a mounted dentry.
2324 */
2325 dentry = d_alloc(dir, &nd->last);
2326 if (!dentry) {
2327 error = -ENOMEM;
2328 mutex_unlock(&dir->d_inode->i_mutex);
2329 goto out;
2330 }
2331 dentry = lookup_real(dir->d_inode, dentry, nd->flags);
2332 error = PTR_ERR(dentry);
2333 if (IS_ERR(dentry)) {
2334 mutex_unlock(&dir->d_inode->i_mutex);
2335 goto out;
2336 }
2337 }
2338 mutex_unlock(&dir->d_inode->i_mutex);
2339
2340 done:
2341 if (d_is_negative(dentry)) {
2342 error = -ENOENT;
2343 dput(dentry);
2344 goto out;
2345 }
2346 path->dentry = dentry;
2347 path->mnt = nd->path.mnt;
2348 if (should_follow_link(dentry, nd->flags & LOOKUP_FOLLOW)) {
2349 nd->link = *path;
2350 return 1;
2351 }
2352 mntget(path->mnt);
2353 follow_mount(path);
2354 error = 0;
2355 out:
2356 terminate_walk(nd);
2357 return error;
2358 }
2359
2360 /**
2361 * path_mountpoint - look up a path to be umounted
2362 * @dfd: directory file descriptor to start walk from
2363 * @name: full pathname to walk
2364 * @path: pointer to container for result
2365 * @flags: lookup flags
2366 *
2367 * Look up the given name, but don't attempt to revalidate the last component.
2368 * Returns 0 and "path" will be valid on success; Returns error otherwise.
2369 */
2370 static int
2371 path_mountpoint(int dfd, const struct filename *name, struct path *path,
2372 struct nameidata *nd, unsigned int flags)
2373 {
2374 int err = path_init(dfd, name, flags, nd);
2375 if (unlikely(err))
2376 goto out;
2377
2378 err = mountpoint_last(nd, path);
2379 while (err > 0) {
2380 err = trailing_symlink(nd);
2381 if (err)
2382 break;
2383 err = mountpoint_last(nd, path);
2384 put_link(nd);
2385 }
2386 out:
2387 path_cleanup(nd);
2388 return err;
2389 }
2390
2391 static int
2392 filename_mountpoint(int dfd, struct filename *name, struct path *path,
2393 unsigned int flags)
2394 {
2395 struct nameidata nd;
2396 int error;
2397 if (IS_ERR(name))
2398 return PTR_ERR(name);
2399 error = path_mountpoint(dfd, name, path, &nd, flags | LOOKUP_RCU);
2400 if (unlikely(error == -ECHILD))
2401 error = path_mountpoint(dfd, name, path, &nd, flags);
2402 if (unlikely(error == -ESTALE))
2403 error = path_mountpoint(dfd, name, path, &nd, flags | LOOKUP_REVAL);
2404 if (likely(!error))
2405 audit_inode(name, path->dentry, 0);
2406 putname(name);
2407 return error;
2408 }
2409
2410 /**
2411 * user_path_mountpoint_at - lookup a path from userland in order to umount it
2412 * @dfd: directory file descriptor
2413 * @name: pathname from userland
2414 * @flags: lookup flags
2415 * @path: pointer to container to hold result
2416 *
2417 * A umount is a special case for path walking. We're not actually interested
2418 * in the inode in this situation, and ESTALE errors can be a problem. We
2419 * simply want track down the dentry and vfsmount attached at the mountpoint
2420 * and avoid revalidating the last component.
2421 *
2422 * Returns 0 and populates "path" on success.
2423 */
2424 int
2425 user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags,
2426 struct path *path)
2427 {
2428 return filename_mountpoint(dfd, getname(name), path, flags);
2429 }
2430
2431 int
2432 kern_path_mountpoint(int dfd, const char *name, struct path *path,
2433 unsigned int flags)
2434 {
2435 return filename_mountpoint(dfd, getname_kernel(name), path, flags);
2436 }
2437 EXPORT_SYMBOL(kern_path_mountpoint);
2438
2439 int __check_sticky(struct inode *dir, struct inode *inode)
2440 {
2441 kuid_t fsuid = current_fsuid();
2442
2443 if (uid_eq(inode->i_uid, fsuid))
2444 return 0;
2445 if (uid_eq(dir->i_uid, fsuid))
2446 return 0;
2447 return !capable_wrt_inode_uidgid(inode, CAP_FOWNER);
2448 }
2449 EXPORT_SYMBOL(__check_sticky);
2450
2451 /*
2452 * Check whether we can remove a link victim from directory dir, check
2453 * whether the type of victim is right.
2454 * 1. We can't do it if dir is read-only (done in permission())
2455 * 2. We should have write and exec permissions on dir
2456 * 3. We can't remove anything from append-only dir
2457 * 4. We can't do anything with immutable dir (done in permission())
2458 * 5. If the sticky bit on dir is set we should either
2459 * a. be owner of dir, or
2460 * b. be owner of victim, or
2461 * c. have CAP_FOWNER capability
2462 * 6. If the victim is append-only or immutable we can't do antyhing with
2463 * links pointing to it.
2464 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2465 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2466 * 9. We can't remove a root or mountpoint.
2467 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
2468 * nfs_async_unlink().
2469 */
2470 static int may_delete(struct inode *dir, struct dentry *victim, bool isdir)
2471 {
2472 struct inode *inode = victim->d_inode;
2473 int error;
2474
2475 if (d_is_negative(victim))
2476 return -ENOENT;
2477 BUG_ON(!inode);
2478
2479 BUG_ON(victim->d_parent->d_inode != dir);
2480 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2481
2482 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2483 if (error)
2484 return error;
2485 if (IS_APPEND(dir))
2486 return -EPERM;
2487
2488 if (check_sticky(dir, inode) || IS_APPEND(inode) ||
2489 IS_IMMUTABLE(inode) || IS_SWAPFILE(inode))
2490 return -EPERM;
2491 if (isdir) {
2492 if (!d_is_dir(victim))
2493 return -ENOTDIR;
2494 if (IS_ROOT(victim))
2495 return -EBUSY;
2496 } else if (d_is_dir(victim))
2497 return -EISDIR;
2498 if (IS_DEADDIR(dir))
2499 return -ENOENT;
2500 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2501 return -EBUSY;
2502 return 0;
2503 }
2504
2505 /* Check whether we can create an object with dentry child in directory
2506 * dir.
2507 * 1. We can't do it if child already exists (open has special treatment for
2508 * this case, but since we are inlined it's OK)
2509 * 2. We can't do it if dir is read-only (done in permission())
2510 * 3. We should have write and exec permissions on dir
2511 * 4. We can't do it if dir is immutable (done in permission())
2512 */
2513 static inline int may_create(struct inode *dir, struct dentry *child)
2514 {
2515 audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
2516 if (child->d_inode)
2517 return -EEXIST;
2518 if (IS_DEADDIR(dir))
2519 return -ENOENT;
2520 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2521 }
2522
2523 /*
2524 * p1 and p2 should be directories on the same fs.
2525 */
2526 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2527 {
2528 struct dentry *p;
2529
2530 if (p1 == p2) {
2531 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2532 return NULL;
2533 }
2534
2535 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2536
2537 p = d_ancestor(p2, p1);
2538 if (p) {
2539 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
2540 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
2541 return p;
2542 }
2543
2544 p = d_ancestor(p1, p2);
2545 if (p) {
2546 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2547 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2548 return p;
2549 }
2550
2551 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2552 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT2);
2553 return NULL;
2554 }
2555 EXPORT_SYMBOL(lock_rename);
2556
2557 void unlock_rename(struct dentry *p1, struct dentry *p2)
2558 {
2559 mutex_unlock(&p1->d_inode->i_mutex);
2560 if (p1 != p2) {
2561 mutex_unlock(&p2->d_inode->i_mutex);
2562 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2563 }
2564 }
2565 EXPORT_SYMBOL(unlock_rename);
2566
2567 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2568 bool want_excl)
2569 {
2570 int error = may_create(dir, dentry);
2571 if (error)
2572 return error;
2573
2574 if (!dir->i_op->create)
2575 return -EACCES; /* shouldn't it be ENOSYS? */
2576 mode &= S_IALLUGO;
2577 mode |= S_IFREG;
2578 error = security_inode_create(dir, dentry, mode);
2579 if (error)
2580 return error;
2581 error = dir->i_op->create(dir, dentry, mode, want_excl);
2582 if (!error)
2583 fsnotify_create(dir, dentry);
2584 return error;
2585 }
2586 EXPORT_SYMBOL(vfs_create);
2587
2588 static int may_open(struct path *path, int acc_mode, int flag)
2589 {
2590 struct dentry *dentry = path->dentry;
2591 struct inode *inode = dentry->d_inode;
2592 int error;
2593
2594 /* O_PATH? */
2595 if (!acc_mode)
2596 return 0;
2597
2598 if (!inode)
2599 return -ENOENT;
2600
2601 switch (inode->i_mode & S_IFMT) {
2602 case S_IFLNK:
2603 return -ELOOP;
2604 case S_IFDIR:
2605 if (acc_mode & MAY_WRITE)
2606 return -EISDIR;
2607 break;
2608 case S_IFBLK:
2609 case S_IFCHR:
2610 if (path->mnt->mnt_flags & MNT_NODEV)
2611 return -EACCES;
2612 /*FALLTHRU*/
2613 case S_IFIFO:
2614 case S_IFSOCK:
2615 flag &= ~O_TRUNC;
2616 break;
2617 }
2618
2619 error = inode_permission(inode, acc_mode);
2620 if (error)
2621 return error;
2622
2623 /*
2624 * An append-only file must be opened in append mode for writing.
2625 */
2626 if (IS_APPEND(inode)) {
2627 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2628 return -EPERM;
2629 if (flag & O_TRUNC)
2630 return -EPERM;
2631 }
2632
2633 /* O_NOATIME can only be set by the owner or superuser */
2634 if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2635 return -EPERM;
2636
2637 return 0;
2638 }
2639
2640 static int handle_truncate(struct file *filp)
2641 {
2642 struct path *path = &filp->f_path;
2643 struct inode *inode = path->dentry->d_inode;
2644 int error = get_write_access(inode);
2645 if (error)
2646 return error;
2647 /*
2648 * Refuse to truncate files with mandatory locks held on them.
2649 */
2650 error = locks_verify_locked(filp);
2651 if (!error)
2652 error = security_path_truncate(path);
2653 if (!error) {
2654 error = do_truncate(path->dentry, 0,
2655 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2656 filp);
2657 }
2658 put_write_access(inode);
2659 return error;
2660 }
2661
2662 static inline int open_to_namei_flags(int flag)
2663 {
2664 if ((flag & O_ACCMODE) == 3)
2665 flag--;
2666 return flag;
2667 }
2668
2669 static int may_o_create(struct path *dir, struct dentry *dentry, umode_t mode)
2670 {
2671 int error = security_path_mknod(dir, dentry, mode, 0);
2672 if (error)
2673 return error;
2674
2675 error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
2676 if (error)
2677 return error;
2678
2679 return security_inode_create(dir->dentry->d_inode, dentry, mode);
2680 }
2681
2682 /*
2683 * Attempt to atomically look up, create and open a file from a negative
2684 * dentry.
2685 *
2686 * Returns 0 if successful. The file will have been created and attached to
2687 * @file by the filesystem calling finish_open().
2688 *
2689 * Returns 1 if the file was looked up only or didn't need creating. The
2690 * caller will need to perform the open themselves. @path will have been
2691 * updated to point to the new dentry. This may be negative.
2692 *
2693 * Returns an error code otherwise.
2694 */
2695 static int atomic_open(struct nameidata *nd, struct dentry *dentry,
2696 struct path *path, struct file *file,
2697 const struct open_flags *op,
2698 bool got_write, bool need_lookup,
2699 int *opened)
2700 {
2701 struct inode *dir = nd->path.dentry->d_inode;
2702 unsigned open_flag = open_to_namei_flags(op->open_flag);
2703 umode_t mode;
2704 int error;
2705 int acc_mode;
2706 int create_error = 0;
2707 struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
2708 bool excl;
2709
2710 BUG_ON(dentry->d_inode);
2711
2712 /* Don't create child dentry for a dead directory. */
2713 if (unlikely(IS_DEADDIR(dir))) {
2714 error = -ENOENT;
2715 goto out;
2716 }
2717
2718 mode = op->mode;
2719 if ((open_flag & O_CREAT) && !IS_POSIXACL(dir))
2720 mode &= ~current_umask();
2721
2722 excl = (open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT);
2723 if (excl)
2724 open_flag &= ~O_TRUNC;
2725
2726 /*
2727 * Checking write permission is tricky, bacuse we don't know if we are
2728 * going to actually need it: O_CREAT opens should work as long as the
2729 * file exists. But checking existence breaks atomicity. The trick is
2730 * to check access and if not granted clear O_CREAT from the flags.
2731 *
2732 * Another problem is returing the "right" error value (e.g. for an
2733 * O_EXCL open we want to return EEXIST not EROFS).
2734 */
2735 if (((open_flag & (O_CREAT | O_TRUNC)) ||
2736 (open_flag & O_ACCMODE) != O_RDONLY) && unlikely(!got_write)) {
2737 if (!(open_flag & O_CREAT)) {
2738 /*
2739 * No O_CREATE -> atomicity not a requirement -> fall
2740 * back to lookup + open
2741 */
2742 goto no_open;
2743 } else if (open_flag & (O_EXCL | O_TRUNC)) {
2744 /* Fall back and fail with the right error */
2745 create_error = -EROFS;
2746 goto no_open;
2747 } else {
2748 /* No side effects, safe to clear O_CREAT */
2749 create_error = -EROFS;
2750 open_flag &= ~O_CREAT;
2751 }
2752 }
2753
2754 if (open_flag & O_CREAT) {
2755 error = may_o_create(&nd->path, dentry, mode);
2756 if (error) {
2757 create_error = error;
2758 if (open_flag & O_EXCL)
2759 goto no_open;
2760 open_flag &= ~O_CREAT;
2761 }
2762 }
2763
2764 if (nd->flags & LOOKUP_DIRECTORY)
2765 open_flag |= O_DIRECTORY;
2766
2767 file->f_path.dentry = DENTRY_NOT_SET;
2768 file->f_path.mnt = nd->path.mnt;
2769 error = dir->i_op->atomic_open(dir, dentry, file, open_flag, mode,
2770 opened);
2771 if (error < 0) {
2772 if (create_error && error == -ENOENT)
2773 error = create_error;
2774 goto out;
2775 }
2776
2777 if (error) { /* returned 1, that is */
2778 if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
2779 error = -EIO;
2780 goto out;
2781 }
2782 if (file->f_path.dentry) {
2783 dput(dentry);
2784 dentry = file->f_path.dentry;
2785 }
2786 if (*opened & FILE_CREATED)
2787 fsnotify_create(dir, dentry);
2788 if (!dentry->d_inode) {
2789 WARN_ON(*opened & FILE_CREATED);
2790 if (create_error) {
2791 error = create_error;
2792 goto out;
2793 }
2794 } else {
2795 if (excl && !(*opened & FILE_CREATED)) {
2796 error = -EEXIST;
2797 goto out;
2798 }
2799 }
2800 goto looked_up;
2801 }
2802
2803 /*
2804 * We didn't have the inode before the open, so check open permission
2805 * here.
2806 */
2807 acc_mode = op->acc_mode;
2808 if (*opened & FILE_CREATED) {
2809 WARN_ON(!(open_flag & O_CREAT));
2810 fsnotify_create(dir, dentry);
2811 acc_mode = MAY_OPEN;
2812 }
2813 error = may_open(&file->f_path, acc_mode, open_flag);
2814 if (error)
2815 fput(file);
2816
2817 out:
2818 dput(dentry);
2819 return error;
2820
2821 no_open:
2822 if (need_lookup) {
2823 dentry = lookup_real(dir, dentry, nd->flags);
2824 if (IS_ERR(dentry))
2825 return PTR_ERR(dentry);
2826
2827 if (create_error) {
2828 int open_flag = op->open_flag;
2829
2830 error = create_error;
2831 if ((open_flag & O_EXCL)) {
2832 if (!dentry->d_inode)
2833 goto out;
2834 } else if (!dentry->d_inode) {
2835 goto out;
2836 } else if ((open_flag & O_TRUNC) &&
2837 d_is_reg(dentry)) {
2838 goto out;
2839 }
2840 /* will fail later, go on to get the right error */
2841 }
2842 }
2843 looked_up:
2844 path->dentry = dentry;
2845 path->mnt = nd->path.mnt;
2846 return 1;
2847 }
2848
2849 /*
2850 * Look up and maybe create and open the last component.
2851 *
2852 * Must be called with i_mutex held on parent.
2853 *
2854 * Returns 0 if the file was successfully atomically created (if necessary) and
2855 * opened. In this case the file will be returned attached to @file.
2856 *
2857 * Returns 1 if the file was not completely opened at this time, though lookups
2858 * and creations will have been performed and the dentry returned in @path will
2859 * be positive upon return if O_CREAT was specified. If O_CREAT wasn't
2860 * specified then a negative dentry may be returned.
2861 *
2862 * An error code is returned otherwise.
2863 *
2864 * FILE_CREATE will be set in @*opened if the dentry was created and will be
2865 * cleared otherwise prior to returning.
2866 */
2867 static int lookup_open(struct nameidata *nd, struct path *path,
2868 struct file *file,
2869 const struct open_flags *op,
2870 bool got_write, int *opened)
2871 {
2872 struct dentry *dir = nd->path.dentry;
2873 struct inode *dir_inode = dir->d_inode;
2874 struct dentry *dentry;
2875 int error;
2876 bool need_lookup;
2877
2878 *opened &= ~FILE_CREATED;
2879 dentry = lookup_dcache(&nd->last, dir, nd->flags, &need_lookup);
2880 if (IS_ERR(dentry))
2881 return PTR_ERR(dentry);
2882
2883 /* Cached positive dentry: will open in f_op->open */
2884 if (!need_lookup && dentry->d_inode)
2885 goto out_no_open;
2886
2887 if ((nd->flags & LOOKUP_OPEN) && dir_inode->i_op->atomic_open) {
2888 return atomic_open(nd, dentry, path, file, op, got_write,
2889 need_lookup, opened);
2890 }
2891
2892 if (need_lookup) {
2893 BUG_ON(dentry->d_inode);
2894
2895 dentry = lookup_real(dir_inode, dentry, nd->flags);
2896 if (IS_ERR(dentry))
2897 return PTR_ERR(dentry);
2898 }
2899
2900 /* Negative dentry, just create the file */
2901 if (!dentry->d_inode && (op->open_flag & O_CREAT)) {
2902 umode_t mode = op->mode;
2903 if (!IS_POSIXACL(dir->d_inode))
2904 mode &= ~current_umask();
2905 /*
2906 * This write is needed to ensure that a
2907 * rw->ro transition does not occur between
2908 * the time when the file is created and when
2909 * a permanent write count is taken through
2910 * the 'struct file' in finish_open().
2911 */
2912 if (!got_write) {
2913 error = -EROFS;
2914 goto out_dput;
2915 }
2916 *opened |= FILE_CREATED;
2917 error = security_path_mknod(&nd->path, dentry, mode, 0);
2918 if (error)
2919 goto out_dput;
2920 error = vfs_create(dir->d_inode, dentry, mode,
2921 nd->flags & LOOKUP_EXCL);
2922 if (error)
2923 goto out_dput;
2924 }
2925 out_no_open:
2926 path->dentry = dentry;
2927 path->mnt = nd->path.mnt;
2928 return 1;
2929
2930 out_dput:
2931 dput(dentry);
2932 return error;
2933 }
2934
2935 /*
2936 * Handle the last step of open()
2937 */
2938 static int do_last(struct nameidata *nd,
2939 struct file *file, const struct open_flags *op,
2940 int *opened, struct filename *name)
2941 {
2942 struct dentry *dir = nd->path.dentry;
2943 int open_flag = op->open_flag;
2944 bool will_truncate = (open_flag & O_TRUNC) != 0;
2945 bool got_write = false;
2946 int acc_mode = op->acc_mode;
2947 struct inode *inode;
2948 struct path save_parent = { .dentry = NULL, .mnt = NULL };
2949 struct path path;
2950 bool retried = false;
2951 int error;
2952
2953 nd->flags &= ~LOOKUP_PARENT;
2954 nd->flags |= op->intent;
2955
2956 if (nd->last_type != LAST_NORM) {
2957 error = handle_dots(nd, nd->last_type);
2958 if (error)
2959 return error;
2960 goto finish_open;
2961 }
2962
2963 if (!(open_flag & O_CREAT)) {
2964 if (nd->last.name[nd->last.len])
2965 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2966 /* we _can_ be in RCU mode here */
2967 error = lookup_fast(nd, &path, &inode);
2968 if (likely(!error))
2969 goto finish_lookup;
2970
2971 if (error < 0)
2972 goto out;
2973
2974 BUG_ON(nd->inode != dir->d_inode);
2975 } else {
2976 /* create side of things */
2977 /*
2978 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED
2979 * has been cleared when we got to the last component we are
2980 * about to look up
2981 */
2982 error = complete_walk(nd);
2983 if (error)
2984 return error;
2985
2986 audit_inode(name, dir, LOOKUP_PARENT);
2987 error = -EISDIR;
2988 /* trailing slashes? */
2989 if (nd->last.name[nd->last.len])
2990 goto out;
2991 }
2992
2993 retry_lookup:
2994 if (op->open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
2995 error = mnt_want_write(nd->path.mnt);
2996 if (!error)
2997 got_write = true;
2998 /*
2999 * do _not_ fail yet - we might not need that or fail with
3000 * a different error; let lookup_open() decide; we'll be
3001 * dropping this one anyway.
3002 */
3003 }
3004 mutex_lock(&dir->d_inode->i_mutex);
3005 error = lookup_open(nd, &path, file, op, got_write, opened);
3006 mutex_unlock(&dir->d_inode->i_mutex);
3007
3008 if (error <= 0) {
3009 if (error)
3010 goto out;
3011
3012 if ((*opened & FILE_CREATED) ||
3013 !S_ISREG(file_inode(file)->i_mode))
3014 will_truncate = false;
3015
3016 audit_inode(name, file->f_path.dentry, 0);
3017 goto opened;
3018 }
3019
3020 if (*opened & FILE_CREATED) {
3021 /* Don't check for write permission, don't truncate */
3022 open_flag &= ~O_TRUNC;
3023 will_truncate = false;
3024 acc_mode = MAY_OPEN;
3025 path_to_nameidata(&path, nd);
3026 goto finish_open_created;
3027 }
3028
3029 /*
3030 * create/update audit record if it already exists.
3031 */
3032 if (d_is_positive(path.dentry))
3033 audit_inode(name, path.dentry, 0);
3034
3035 /*
3036 * If atomic_open() acquired write access it is dropped now due to
3037 * possible mount and symlink following (this might be optimized away if
3038 * necessary...)
3039 */
3040 if (got_write) {
3041 mnt_drop_write(nd->path.mnt);
3042 got_write = false;
3043 }
3044
3045 error = -EEXIST;
3046 if ((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))
3047 goto exit_dput;
3048
3049 error = follow_managed(&path, nd->flags);
3050 if (error < 0)
3051 goto exit_dput;
3052
3053 if (error)
3054 nd->flags |= LOOKUP_JUMPED;
3055
3056 BUG_ON(nd->flags & LOOKUP_RCU);
3057 inode = path.dentry->d_inode;
3058 error = -ENOENT;
3059 if (d_is_negative(path.dentry)) {
3060 path_to_nameidata(&path, nd);
3061 goto out;
3062 }
3063 finish_lookup:
3064 if (should_follow_link(path.dentry, nd->flags & LOOKUP_FOLLOW)) {
3065 if (nd->flags & LOOKUP_RCU) {
3066 if (unlikely(nd->path.mnt != path.mnt ||
3067 unlazy_walk(nd, path.dentry))) {
3068 error = -ECHILD;
3069 goto out;
3070 }
3071 }
3072 BUG_ON(inode != path.dentry->d_inode);
3073 nd->link = path;
3074 return 1;
3075 }
3076
3077 if (unlikely(d_is_symlink(path.dentry)) && !(open_flag & O_PATH)) {
3078 path_to_nameidata(&path, nd);
3079 error = -ELOOP;
3080 goto out;
3081 }
3082
3083 if ((nd->flags & LOOKUP_RCU) || nd->path.mnt != path.mnt) {
3084 path_to_nameidata(&path, nd);
3085 } else {
3086 save_parent.dentry = nd->path.dentry;
3087 save_parent.mnt = mntget(path.mnt);
3088 nd->path.dentry = path.dentry;
3089
3090 }
3091 nd->inode = inode;
3092 /* Why this, you ask? _Now_ we might have grown LOOKUP_JUMPED... */
3093 finish_open:
3094 error = complete_walk(nd);
3095 if (error) {
3096 path_put(&save_parent);
3097 return error;
3098 }
3099 audit_inode(name, nd->path.dentry, 0);
3100 error = -EISDIR;
3101 if ((open_flag & O_CREAT) && d_is_dir(nd->path.dentry))
3102 goto out;
3103 error = -ENOTDIR;
3104 if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3105 goto out;
3106 if (!d_is_reg(nd->path.dentry))
3107 will_truncate = false;
3108
3109 if (will_truncate) {
3110 error = mnt_want_write(nd->path.mnt);
3111 if (error)
3112 goto out;
3113 got_write = true;
3114 }
3115 finish_open_created:
3116 error = may_open(&nd->path, acc_mode, open_flag);
3117 if (error)
3118 goto out;
3119
3120 BUG_ON(*opened & FILE_OPENED); /* once it's opened, it's opened */
3121 error = vfs_open(&nd->path, file, current_cred());
3122 if (!error) {
3123 *opened |= FILE_OPENED;
3124 } else {
3125 if (error == -EOPENSTALE)
3126 goto stale_open;
3127 goto out;
3128 }
3129 opened:
3130 error = open_check_o_direct(file);
3131 if (error)
3132 goto exit_fput;
3133 error = ima_file_check(file, op->acc_mode, *opened);
3134 if (error)
3135 goto exit_fput;
3136
3137 if (will_truncate) {
3138 error = handle_truncate(file);
3139 if (error)
3140 goto exit_fput;
3141 }
3142 out:
3143 if (got_write)
3144 mnt_drop_write(nd->path.mnt);
3145 path_put(&save_parent);
3146 terminate_walk(nd);
3147 return error;
3148
3149 exit_dput:
3150 path_put_conditional(&path, nd);
3151 goto out;
3152 exit_fput:
3153 fput(file);
3154 goto out;
3155
3156 stale_open:
3157 /* If no saved parent or already retried then can't retry */
3158 if (!save_parent.dentry || retried)
3159 goto out;
3160
3161 BUG_ON(save_parent.dentry != dir);
3162 path_put(&nd->path);
3163 nd->path = save_parent;
3164 nd->inode = dir->d_inode;
3165 save_parent.mnt = NULL;
3166 save_parent.dentry = NULL;
3167 if (got_write) {
3168 mnt_drop_write(nd->path.mnt);
3169 got_write = false;
3170 }
3171 retried = true;
3172 goto retry_lookup;
3173 }
3174
3175 static int do_tmpfile(int dfd, struct filename *pathname,
3176 struct nameidata *nd, int flags,
3177 const struct open_flags *op,
3178 struct file *file, int *opened)
3179 {
3180 static const struct qstr name = QSTR_INIT("/", 1);
3181 struct dentry *dentry, *child;
3182 struct inode *dir;
3183 int error = path_lookupat(dfd, pathname,
3184 flags | LOOKUP_DIRECTORY, nd);
3185 if (unlikely(error))
3186 return error;
3187 error = mnt_want_write(nd->path.mnt);
3188 if (unlikely(error))
3189 goto out;
3190 /* we want directory to be writable */
3191 error = inode_permission(nd->inode, MAY_WRITE | MAY_EXEC);
3192 if (error)
3193 goto out2;
3194 dentry = nd->path.dentry;
3195 dir = dentry->d_inode;
3196 if (!dir->i_op->tmpfile) {
3197 error = -EOPNOTSUPP;
3198 goto out2;
3199 }
3200 child = d_alloc(dentry, &name);
3201 if (unlikely(!child)) {
3202 error = -ENOMEM;
3203 goto out2;
3204 }
3205 nd->flags &= ~LOOKUP_DIRECTORY;
3206 nd->flags |= op->intent;
3207 dput(nd->path.dentry);
3208 nd->path.dentry = child;
3209 error = dir->i_op->tmpfile(dir, nd->path.dentry, op->mode);
3210 if (error)
3211 goto out2;
3212 audit_inode(pathname, nd->path.dentry, 0);
3213 /* Don't check for other permissions, the inode was just created */
3214 error = may_open(&nd->path, MAY_OPEN, op->open_flag);
3215 if (error)
3216 goto out2;
3217 file->f_path.mnt = nd->path.mnt;
3218 error = finish_open(file, nd->path.dentry, NULL, opened);
3219 if (error)
3220 goto out2;
3221 error = open_check_o_direct(file);
3222 if (error) {
3223 fput(file);
3224 } else if (!(op->open_flag & O_EXCL)) {
3225 struct inode *inode = file_inode(file);
3226 spin_lock(&inode->i_lock);
3227 inode->i_state |= I_LINKABLE;
3228 spin_unlock(&inode->i_lock);
3229 }
3230 out2:
3231 mnt_drop_write(nd->path.mnt);
3232 out:
3233 path_put(&nd->path);
3234 return error;
3235 }
3236
3237 static struct file *path_openat(int dfd, struct filename *pathname,
3238 struct nameidata *nd, const struct open_flags *op, int flags)
3239 {
3240 struct file *file;
3241 int opened = 0;
3242 int error;
3243
3244 file = get_empty_filp();
3245 if (IS_ERR(file))
3246 return file;
3247
3248 file->f_flags = op->open_flag;
3249
3250 if (unlikely(file->f_flags & __O_TMPFILE)) {
3251 error = do_tmpfile(dfd, pathname, nd, flags, op, file, &opened);
3252 goto out2;
3253 }
3254
3255 error = path_init(dfd, pathname, flags, nd);
3256 if (unlikely(error))
3257 goto out;
3258
3259 error = do_last(nd, file, op, &opened, pathname);
3260 while (unlikely(error > 0)) { /* trailing symlink */
3261 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3262 error = trailing_symlink(nd);
3263 if (unlikely(error))
3264 break;
3265 error = do_last(nd, file, op, &opened, pathname);
3266 put_link(nd);
3267 }
3268 out:
3269 path_cleanup(nd);
3270 out2:
3271 if (!(opened & FILE_OPENED)) {
3272 BUG_ON(!error);
3273 put_filp(file);
3274 }
3275 if (unlikely(error)) {
3276 if (error == -EOPENSTALE) {
3277 if (flags & LOOKUP_RCU)
3278 error = -ECHILD;
3279 else
3280 error = -ESTALE;
3281 }
3282 file = ERR_PTR(error);
3283 }
3284 return file;
3285 }
3286
3287 struct file *do_filp_open(int dfd, struct filename *pathname,
3288 const struct open_flags *op)
3289 {
3290 struct nameidata nd;
3291 int flags = op->lookup_flags;
3292 struct file *filp;
3293
3294 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_RCU);
3295 if (unlikely(filp == ERR_PTR(-ECHILD)))
3296 filp = path_openat(dfd, pathname, &nd, op, flags);
3297 if (unlikely(filp == ERR_PTR(-ESTALE)))
3298 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_REVAL);
3299 return filp;
3300 }
3301
3302 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
3303 const char *name, const struct open_flags *op)
3304 {
3305 struct nameidata nd;
3306 struct file *file;
3307 struct filename *filename;
3308 int flags = op->lookup_flags | LOOKUP_ROOT;
3309
3310 nd.root.mnt = mnt;
3311 nd.root.dentry = dentry;
3312
3313 if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN)
3314 return ERR_PTR(-ELOOP);
3315
3316 filename = getname_kernel(name);
3317 if (unlikely(IS_ERR(filename)))
3318 return ERR_CAST(filename);
3319
3320 file = path_openat(-1, filename, &nd, op, flags | LOOKUP_RCU);
3321 if (unlikely(file == ERR_PTR(-ECHILD)))
3322 file = path_openat(-1, filename, &nd, op, flags);
3323 if (unlikely(file == ERR_PTR(-ESTALE)))
3324 file = path_openat(-1, filename, &nd, op, flags | LOOKUP_REVAL);
3325 putname(filename);
3326 return file;
3327 }
3328
3329 static struct dentry *filename_create(int dfd, struct filename *name,
3330 struct path *path, unsigned int lookup_flags)
3331 {
3332 struct dentry *dentry = ERR_PTR(-EEXIST);
3333 struct nameidata nd;
3334 int err2;
3335 int error;
3336 bool is_dir = (lookup_flags & LOOKUP_DIRECTORY);
3337
3338 /*
3339 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
3340 * other flags passed in are ignored!
3341 */
3342 lookup_flags &= LOOKUP_REVAL;
3343
3344 error = filename_lookup(dfd, name, LOOKUP_PARENT|lookup_flags, &nd);
3345 if (error)
3346 return ERR_PTR(error);
3347
3348 /*
3349 * Yucky last component or no last component at all?
3350 * (foo/., foo/.., /////)
3351 */
3352 if (nd.last_type != LAST_NORM)
3353 goto out;
3354 nd.flags &= ~LOOKUP_PARENT;
3355 nd.flags |= LOOKUP_CREATE | LOOKUP_EXCL;
3356
3357 /* don't fail immediately if it's r/o, at least try to report other errors */
3358 err2 = mnt_want_write(nd.path.mnt);
3359 /*
3360 * Do the final lookup.
3361 */
3362 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3363 dentry = __lookup_hash(&nd.last, nd.path.dentry, nd.flags);
3364 if (IS_ERR(dentry))
3365 goto unlock;
3366
3367 error = -EEXIST;
3368 if (d_is_positive(dentry))
3369 goto fail;
3370
3371 /*
3372 * Special case - lookup gave negative, but... we had foo/bar/
3373 * From the vfs_mknod() POV we just have a negative dentry -
3374 * all is fine. Let's be bastards - you had / on the end, you've
3375 * been asking for (non-existent) directory. -ENOENT for you.
3376 */
3377 if (unlikely(!is_dir && nd.last.name[nd.last.len])) {
3378 error = -ENOENT;
3379 goto fail;
3380 }
3381 if (unlikely(err2)) {
3382 error = err2;
3383 goto fail;
3384 }
3385 *path = nd.path;
3386 return dentry;
3387 fail:
3388 dput(dentry);
3389 dentry = ERR_PTR(error);
3390 unlock:
3391 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3392 if (!err2)
3393 mnt_drop_write(nd.path.mnt);
3394 out:
3395 path_put(&nd.path);
3396 return dentry;
3397 }
3398
3399 struct dentry *kern_path_create(int dfd, const char *pathname,
3400 struct path *path, unsigned int lookup_flags)
3401 {
3402 struct filename *filename = getname_kernel(pathname);
3403 struct dentry *res;
3404
3405 if (IS_ERR(filename))
3406 return ERR_CAST(filename);
3407 res = filename_create(dfd, filename, path, lookup_flags);
3408 putname(filename);
3409 return res;
3410 }
3411 EXPORT_SYMBOL(kern_path_create);
3412
3413 void done_path_create(struct path *path, struct dentry *dentry)
3414 {
3415 dput(dentry);
3416 mutex_unlock(&path->dentry->d_inode->i_mutex);
3417 mnt_drop_write(path->mnt);
3418 path_put(path);
3419 }
3420 EXPORT_SYMBOL(done_path_create);
3421
3422 struct dentry *user_path_create(int dfd, const char __user *pathname,
3423 struct path *path, unsigned int lookup_flags)
3424 {
3425 struct filename *tmp = getname(pathname);
3426 struct dentry *res;
3427 if (IS_ERR(tmp))
3428 return ERR_CAST(tmp);
3429 res = filename_create(dfd, tmp, path, lookup_flags);
3430 putname(tmp);
3431 return res;
3432 }
3433 EXPORT_SYMBOL(user_path_create);
3434
3435 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3436 {
3437 int error = may_create(dir, dentry);
3438
3439 if (error)
3440 return error;
3441
3442 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
3443 return -EPERM;
3444
3445 if (!dir->i_op->mknod)
3446 return -EPERM;
3447
3448 error = devcgroup_inode_mknod(mode, dev);
3449 if (error)
3450 return error;
3451
3452 error = security_inode_mknod(dir, dentry, mode, dev);
3453 if (error)
3454 return error;
3455
3456 error = dir->i_op->mknod(dir, dentry, mode, dev);
3457 if (!error)
3458 fsnotify_create(dir, dentry);
3459 return error;
3460 }
3461 EXPORT_SYMBOL(vfs_mknod);
3462
3463 static int may_mknod(umode_t mode)
3464 {
3465 switch (mode & S_IFMT) {
3466 case S_IFREG:
3467 case S_IFCHR:
3468 case S_IFBLK:
3469 case S_IFIFO:
3470 case S_IFSOCK:
3471 case 0: /* zero mode translates to S_IFREG */
3472 return 0;
3473 case S_IFDIR:
3474 return -EPERM;
3475 default:
3476 return -EINVAL;
3477 }
3478 }
3479
3480 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3481 unsigned, dev)
3482 {
3483 struct dentry *dentry;
3484 struct path path;
3485 int error;
3486 unsigned int lookup_flags = 0;
3487
3488 error = may_mknod(mode);
3489 if (error)
3490 return error;
3491 retry:
3492 dentry = user_path_create(dfd, filename, &path, lookup_flags);
3493 if (IS_ERR(dentry))
3494 return PTR_ERR(dentry);
3495
3496 if (!IS_POSIXACL(path.dentry->d_inode))
3497 mode &= ~current_umask();
3498 error = security_path_mknod(&path, dentry, mode, dev);
3499 if (error)
3500 goto out;
3501 switch (mode & S_IFMT) {
3502 case 0: case S_IFREG:
3503 error = vfs_create(path.dentry->d_inode,dentry,mode,true);
3504 break;
3505 case S_IFCHR: case S_IFBLK:
3506 error = vfs_mknod(path.dentry->d_inode,dentry,mode,
3507 new_decode_dev(dev));
3508 break;
3509 case S_IFIFO: case S_IFSOCK:
3510 error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
3511 break;
3512 }
3513 out:
3514 done_path_create(&path, dentry);
3515 if (retry_estale(error, lookup_flags)) {
3516 lookup_flags |= LOOKUP_REVAL;
3517 goto retry;
3518 }
3519 return error;
3520 }
3521
3522 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3523 {
3524 return sys_mknodat(AT_FDCWD, filename, mode, dev);
3525 }
3526
3527 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3528 {
3529 int error = may_create(dir, dentry);
3530 unsigned max_links = dir->i_sb->s_max_links;
3531
3532 if (error)
3533 return error;
3534
3535 if (!dir->i_op->mkdir)
3536 return -EPERM;
3537
3538 mode &= (S_IRWXUGO|S_ISVTX);
3539 error = security_inode_mkdir(dir, dentry, mode);
3540 if (error)
3541 return error;
3542
3543 if (max_links && dir->i_nlink >= max_links)
3544 return -EMLINK;
3545
3546 error = dir->i_op->mkdir(dir, dentry, mode);
3547 if (!error)
3548 fsnotify_mkdir(dir, dentry);
3549 return error;
3550 }
3551 EXPORT_SYMBOL(vfs_mkdir);
3552
3553 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3554 {
3555 struct dentry *dentry;
3556 struct path path;
3557 int error;
3558 unsigned int lookup_flags = LOOKUP_DIRECTORY;
3559
3560 retry:
3561 dentry = user_path_create(dfd, pathname, &path, lookup_flags);
3562 if (IS_ERR(dentry))
3563 return PTR_ERR(dentry);
3564
3565 if (!IS_POSIXACL(path.dentry->d_inode))
3566 mode &= ~current_umask();
3567 error = security_path_mkdir(&path, dentry, mode);
3568 if (!error)
3569 error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
3570 done_path_create(&path, dentry);
3571 if (retry_estale(error, lookup_flags)) {
3572 lookup_flags |= LOOKUP_REVAL;
3573 goto retry;
3574 }
3575 return error;
3576 }
3577
3578 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3579 {
3580 return sys_mkdirat(AT_FDCWD, pathname, mode);
3581 }
3582
3583 /*
3584 * The dentry_unhash() helper will try to drop the dentry early: we
3585 * should have a usage count of 1 if we're the only user of this
3586 * dentry, and if that is true (possibly after pruning the dcache),
3587 * then we drop the dentry now.
3588 *
3589 * A low-level filesystem can, if it choses, legally
3590 * do a
3591 *
3592 * if (!d_unhashed(dentry))
3593 * return -EBUSY;
3594 *
3595 * if it cannot handle the case of removing a directory
3596 * that is still in use by something else..
3597 */
3598 void dentry_unhash(struct dentry *dentry)
3599 {
3600 shrink_dcache_parent(dentry);
3601 spin_lock(&dentry->d_lock);
3602 if (dentry->d_lockref.count == 1)
3603 __d_drop(dentry);
3604 spin_unlock(&dentry->d_lock);
3605 }
3606 EXPORT_SYMBOL(dentry_unhash);
3607
3608 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
3609 {
3610 int error = may_delete(dir, dentry, 1);
3611
3612 if (error)
3613 return error;
3614
3615 if (!dir->i_op->rmdir)
3616 return -EPERM;
3617
3618 dget(dentry);
3619 mutex_lock(&dentry->d_inode->i_mutex);
3620
3621 error = -EBUSY;
3622 if (is_local_mountpoint(dentry))
3623 goto out;
3624
3625 error = security_inode_rmdir(dir, dentry);
3626 if (error)
3627 goto out;
3628
3629 shrink_dcache_parent(dentry);
3630 error = dir->i_op->rmdir(dir, dentry);
3631 if (error)
3632 goto out;
3633
3634 dentry->d_inode->i_flags |= S_DEAD;
3635 dont_mount(dentry);
3636 detach_mounts(dentry);
3637
3638 out:
3639 mutex_unlock(&dentry->d_inode->i_mutex);
3640 dput(dentry);
3641 if (!error)
3642 d_delete(dentry);
3643 return error;
3644 }
3645 EXPORT_SYMBOL(vfs_rmdir);
3646
3647 static long do_rmdir(int dfd, const char __user *pathname)
3648 {
3649 int error = 0;
3650 struct filename *name;
3651 struct dentry *dentry;
3652 struct path path;
3653 struct qstr last;
3654 int type;
3655 unsigned int lookup_flags = 0;
3656 retry:
3657 name = user_path_parent(dfd, pathname,
3658 &path, &last, &type, lookup_flags);
3659 if (IS_ERR(name))
3660 return PTR_ERR(name);
3661
3662 switch (type) {
3663 case LAST_DOTDOT:
3664 error = -ENOTEMPTY;
3665 goto exit1;
3666 case LAST_DOT:
3667 error = -EINVAL;
3668 goto exit1;
3669 case LAST_ROOT:
3670 error = -EBUSY;
3671 goto exit1;
3672 }
3673
3674 error = mnt_want_write(path.mnt);
3675 if (error)
3676 goto exit1;
3677
3678 mutex_lock_nested(&path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3679 dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3680 error = PTR_ERR(dentry);
3681 if (IS_ERR(dentry))
3682 goto exit2;
3683 if (!dentry->d_inode) {
3684 error = -ENOENT;
3685 goto exit3;
3686 }
3687 error = security_path_rmdir(&path, dentry);
3688 if (error)
3689 goto exit3;
3690 error = vfs_rmdir(path.dentry->d_inode, dentry);
3691 exit3:
3692 dput(dentry);
3693 exit2:
3694 mutex_unlock(&path.dentry->d_inode->i_mutex);
3695 mnt_drop_write(path.mnt);
3696 exit1:
3697 path_put(&path);
3698 putname(name);
3699 if (retry_estale(error, lookup_flags)) {
3700 lookup_flags |= LOOKUP_REVAL;
3701 goto retry;
3702 }
3703 return error;
3704 }
3705
3706 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3707 {
3708 return do_rmdir(AT_FDCWD, pathname);
3709 }
3710
3711 /**
3712 * vfs_unlink - unlink a filesystem object
3713 * @dir: parent directory
3714 * @dentry: victim
3715 * @delegated_inode: returns victim inode, if the inode is delegated.
3716 *
3717 * The caller must hold dir->i_mutex.
3718 *
3719 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
3720 * return a reference to the inode in delegated_inode. The caller
3721 * should then break the delegation on that inode and retry. Because
3722 * breaking a delegation may take a long time, the caller should drop
3723 * dir->i_mutex before doing so.
3724 *
3725 * Alternatively, a caller may pass NULL for delegated_inode. This may
3726 * be appropriate for callers that expect the underlying filesystem not
3727 * to be NFS exported.
3728 */
3729 int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode)
3730 {
3731 struct inode *target = dentry->d_inode;
3732 int error = may_delete(dir, dentry, 0);
3733
3734 if (error)
3735 return error;
3736
3737 if (!dir->i_op->unlink)
3738 return -EPERM;
3739
3740 mutex_lock(&target->i_mutex);
3741 if (is_local_mountpoint(dentry))
3742 error = -EBUSY;
3743 else {
3744 error = security_inode_unlink(dir, dentry);
3745 if (!error) {
3746 error = try_break_deleg(target, delegated_inode);
3747 if (error)
3748 goto out;
3749 error = dir->i_op->unlink(dir, dentry);
3750 if (!error) {
3751 dont_mount(dentry);
3752 detach_mounts(dentry);
3753 }
3754 }
3755 }
3756 out:
3757 mutex_unlock(&target->i_mutex);
3758
3759 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
3760 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
3761 fsnotify_link_count(target);
3762 d_delete(dentry);
3763 }
3764
3765 return error;
3766 }
3767 EXPORT_SYMBOL(vfs_unlink);
3768
3769 /*
3770 * Make sure that the actual truncation of the file will occur outside its
3771 * directory's i_mutex. Truncate can take a long time if there is a lot of
3772 * writeout happening, and we don't want to prevent access to the directory
3773 * while waiting on the I/O.
3774 */
3775 static long do_unlinkat(int dfd, const char __user *pathname)
3776 {
3777 int error;
3778 struct filename *name;
3779 struct dentry *dentry;
3780 struct path path;
3781 struct qstr last;
3782 int type;
3783 struct inode *inode = NULL;
3784 struct inode *delegated_inode = NULL;
3785 unsigned int lookup_flags = 0;
3786 retry:
3787 name = user_path_parent(dfd, pathname,
3788 &path, &last, &type, lookup_flags);
3789 if (IS_ERR(name))
3790 return PTR_ERR(name);
3791
3792 error = -EISDIR;
3793 if (type != LAST_NORM)
3794 goto exit1;
3795
3796 error = mnt_want_write(path.mnt);
3797 if (error)
3798 goto exit1;
3799 retry_deleg:
3800 mutex_lock_nested(&path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3801 dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3802 error = PTR_ERR(dentry);
3803 if (!IS_ERR(dentry)) {
3804 /* Why not before? Because we want correct error value */
3805 if (last.name[last.len])
3806 goto slashes;
3807 inode = dentry->d_inode;
3808 if (d_is_negative(dentry))
3809 goto slashes;
3810 ihold(inode);
3811 error = security_path_unlink(&path, dentry);
3812 if (error)
3813 goto exit2;
3814 error = vfs_unlink(path.dentry->d_inode, dentry, &delegated_inode);
3815 exit2:
3816 dput(dentry);
3817 }
3818 mutex_unlock(&path.dentry->d_inode->i_mutex);
3819 if (inode)
3820 iput(inode); /* truncate the inode here */
3821 inode = NULL;
3822 if (delegated_inode) {
3823 error = break_deleg_wait(&delegated_inode);
3824 if (!error)
3825 goto retry_deleg;
3826 }
3827 mnt_drop_write(path.mnt);
3828 exit1:
3829 path_put(&path);
3830 putname(name);
3831 if (retry_estale(error, lookup_flags)) {
3832 lookup_flags |= LOOKUP_REVAL;
3833 inode = NULL;
3834 goto retry;
3835 }
3836 return error;
3837
3838 slashes:
3839 if (d_is_negative(dentry))
3840 error = -ENOENT;
3841 else if (d_is_dir(dentry))
3842 error = -EISDIR;
3843 else
3844 error = -ENOTDIR;
3845 goto exit2;
3846 }
3847
3848 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
3849 {
3850 if ((flag & ~AT_REMOVEDIR) != 0)
3851 return -EINVAL;
3852
3853 if (flag & AT_REMOVEDIR)
3854 return do_rmdir(dfd, pathname);
3855
3856 return do_unlinkat(dfd, pathname);
3857 }
3858
3859 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
3860 {
3861 return do_unlinkat(AT_FDCWD, pathname);
3862 }
3863
3864 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
3865 {
3866 int error = may_create(dir, dentry);
3867
3868 if (error)
3869 return error;
3870
3871 if (!dir->i_op->symlink)
3872 return -EPERM;
3873
3874 error = security_inode_symlink(dir, dentry, oldname);
3875 if (error)
3876 return error;
3877
3878 error = dir->i_op->symlink(dir, dentry, oldname);
3879 if (!error)
3880 fsnotify_create(dir, dentry);
3881 return error;
3882 }
3883 EXPORT_SYMBOL(vfs_symlink);
3884
3885 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
3886 int, newdfd, const char __user *, newname)
3887 {
3888 int error;
3889 struct filename *from;
3890 struct dentry *dentry;
3891 struct path path;
3892 unsigned int lookup_flags = 0;
3893
3894 from = getname(oldname);
3895 if (IS_ERR(from))
3896 return PTR_ERR(from);
3897 retry:
3898 dentry = user_path_create(newdfd, newname, &path, lookup_flags);
3899 error = PTR_ERR(dentry);
3900 if (IS_ERR(dentry))
3901 goto out_putname;
3902
3903 error = security_path_symlink(&path, dentry, from->name);
3904 if (!error)
3905 error = vfs_symlink(path.dentry->d_inode, dentry, from->name);
3906 done_path_create(&path, dentry);
3907 if (retry_estale(error, lookup_flags)) {
3908 lookup_flags |= LOOKUP_REVAL;
3909 goto retry;
3910 }
3911 out_putname:
3912 putname(from);
3913 return error;
3914 }
3915
3916 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
3917 {
3918 return sys_symlinkat(oldname, AT_FDCWD, newname);
3919 }
3920
3921 /**
3922 * vfs_link - create a new link
3923 * @old_dentry: object to be linked
3924 * @dir: new parent
3925 * @new_dentry: where to create the new link
3926 * @delegated_inode: returns inode needing a delegation break
3927 *
3928 * The caller must hold dir->i_mutex
3929 *
3930 * If vfs_link discovers a delegation on the to-be-linked file in need
3931 * of breaking, it will return -EWOULDBLOCK and return a reference to the
3932 * inode in delegated_inode. The caller should then break the delegation
3933 * and retry. Because breaking a delegation may take a long time, the
3934 * caller should drop the i_mutex before doing so.
3935 *
3936 * Alternatively, a caller may pass NULL for delegated_inode. This may
3937 * be appropriate for callers that expect the underlying filesystem not
3938 * to be NFS exported.
3939 */
3940 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode)
3941 {
3942 struct inode *inode = old_dentry->d_inode;
3943 unsigned max_links = dir->i_sb->s_max_links;
3944 int error;
3945
3946 if (!inode)
3947 return -ENOENT;
3948
3949 error = may_create(dir, new_dentry);
3950 if (error)
3951 return error;
3952
3953 if (dir->i_sb != inode->i_sb)
3954 return -EXDEV;
3955
3956 /*
3957 * A link to an append-only or immutable file cannot be created.
3958 */
3959 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3960 return -EPERM;
3961 if (!dir->i_op->link)
3962 return -EPERM;
3963 if (S_ISDIR(inode->i_mode))
3964 return -EPERM;
3965
3966 error = security_inode_link(old_dentry, dir, new_dentry);
3967 if (error)
3968 return error;
3969
3970 mutex_lock(&inode->i_mutex);
3971 /* Make sure we don't allow creating hardlink to an unlinked file */
3972 if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
3973 error = -ENOENT;
3974 else if (max_links && inode->i_nlink >= max_links)
3975 error = -EMLINK;
3976 else {
3977 error = try_break_deleg(inode, delegated_inode);
3978 if (!error)
3979 error = dir->i_op->link(old_dentry, dir, new_dentry);
3980 }
3981
3982 if (!error && (inode->i_state & I_LINKABLE)) {
3983 spin_lock(&inode->i_lock);
3984 inode->i_state &= ~I_LINKABLE;
3985 spin_unlock(&inode->i_lock);
3986 }
3987 mutex_unlock(&inode->i_mutex);
3988 if (!error)
3989 fsnotify_link(dir, inode, new_dentry);
3990 return error;
3991 }
3992 EXPORT_SYMBOL(vfs_link);
3993
3994 /*
3995 * Hardlinks are often used in delicate situations. We avoid
3996 * security-related surprises by not following symlinks on the
3997 * newname. --KAB
3998 *
3999 * We don't follow them on the oldname either to be compatible
4000 * with linux 2.0, and to avoid hard-linking to directories
4001 * and other special files. --ADM
4002 */
4003 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
4004 int, newdfd, const char __user *, newname, int, flags)
4005 {
4006 struct dentry *new_dentry;
4007 struct path old_path, new_path;
4008 struct inode *delegated_inode = NULL;
4009 int how = 0;
4010 int error;
4011
4012 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
4013 return -EINVAL;
4014 /*
4015 * To use null names we require CAP_DAC_READ_SEARCH
4016 * This ensures that not everyone will be able to create
4017 * handlink using the passed filedescriptor.
4018 */
4019 if (flags & AT_EMPTY_PATH) {
4020 if (!capable(CAP_DAC_READ_SEARCH))
4021 return -ENOENT;
4022 how = LOOKUP_EMPTY;
4023 }
4024
4025 if (flags & AT_SYMLINK_FOLLOW)
4026 how |= LOOKUP_FOLLOW;
4027 retry:
4028 error = user_path_at(olddfd, oldname, how, &old_path);
4029 if (error)
4030 return error;
4031
4032 new_dentry = user_path_create(newdfd, newname, &new_path,
4033 (how & LOOKUP_REVAL));
4034 error = PTR_ERR(new_dentry);
4035 if (IS_ERR(new_dentry))
4036 goto out;
4037
4038 error = -EXDEV;
4039 if (old_path.mnt != new_path.mnt)
4040 goto out_dput;
4041 error = may_linkat(&old_path);
4042 if (unlikely(error))
4043 goto out_dput;
4044 error = security_path_link(old_path.dentry, &new_path, new_dentry);
4045 if (error)
4046 goto out_dput;
4047 error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode);
4048 out_dput:
4049 done_path_create(&new_path, new_dentry);
4050 if (delegated_inode) {
4051 error = break_deleg_wait(&delegated_inode);
4052 if (!error) {
4053 path_put(&old_path);
4054 goto retry;
4055 }
4056 }
4057 if (retry_estale(error, how)) {
4058 path_put(&old_path);
4059 how |= LOOKUP_REVAL;
4060 goto retry;
4061 }
4062 out:
4063 path_put(&old_path);
4064
4065 return error;
4066 }
4067
4068 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4069 {
4070 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4071 }
4072
4073 /**
4074 * vfs_rename - rename a filesystem object
4075 * @old_dir: parent of source
4076 * @old_dentry: source
4077 * @new_dir: parent of destination
4078 * @new_dentry: destination
4079 * @delegated_inode: returns an inode needing a delegation break
4080 * @flags: rename flags
4081 *
4082 * The caller must hold multiple mutexes--see lock_rename()).
4083 *
4084 * If vfs_rename discovers a delegation in need of breaking at either
4085 * the source or destination, it will return -EWOULDBLOCK and return a
4086 * reference to the inode in delegated_inode. The caller should then
4087 * break the delegation and retry. Because breaking a delegation may
4088 * take a long time, the caller should drop all locks before doing
4089 * so.
4090 *
4091 * Alternatively, a caller may pass NULL for delegated_inode. This may
4092 * be appropriate for callers that expect the underlying filesystem not
4093 * to be NFS exported.
4094 *
4095 * The worst of all namespace operations - renaming directory. "Perverted"
4096 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4097 * Problems:
4098 * a) we can get into loop creation.
4099 * b) race potential - two innocent renames can create a loop together.
4100 * That's where 4.4 screws up. Current fix: serialization on
4101 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4102 * story.
4103 * c) we have to lock _four_ objects - parents and victim (if it exists),
4104 * and source (if it is not a directory).
4105 * And that - after we got ->i_mutex on parents (until then we don't know
4106 * whether the target exists). Solution: try to be smart with locking
4107 * order for inodes. We rely on the fact that tree topology may change
4108 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
4109 * move will be locked. Thus we can rank directories by the tree
4110 * (ancestors first) and rank all non-directories after them.
4111 * That works since everybody except rename does "lock parent, lookup,
4112 * lock child" and rename is under ->s_vfs_rename_mutex.
4113 * HOWEVER, it relies on the assumption that any object with ->lookup()
4114 * has no more than 1 dentry. If "hybrid" objects will ever appear,
4115 * we'd better make sure that there's no link(2) for them.
4116 * d) conversion from fhandle to dentry may come in the wrong moment - when
4117 * we are removing the target. Solution: we will have to grab ->i_mutex
4118 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4119 * ->i_mutex on parents, which works but leads to some truly excessive
4120 * locking].
4121 */
4122 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4123 struct inode *new_dir, struct dentry *new_dentry,
4124 struct inode **delegated_inode, unsigned int flags)
4125 {
4126 int error;
4127 bool is_dir = d_is_dir(old_dentry);
4128 const unsigned char *old_name;
4129 struct inode *source = old_dentry->d_inode;
4130 struct inode *target = new_dentry->d_inode;
4131 bool new_is_dir = false;
4132 unsigned max_links = new_dir->i_sb->s_max_links;
4133
4134 if (source == target)
4135 return 0;
4136
4137 error = may_delete(old_dir, old_dentry, is_dir);
4138 if (error)
4139 return error;
4140
4141 if (!target) {
4142 error = may_create(new_dir, new_dentry);
4143 } else {
4144 new_is_dir = d_is_dir(new_dentry);
4145
4146 if (!(flags & RENAME_EXCHANGE))
4147 error = may_delete(new_dir, new_dentry, is_dir);
4148 else
4149 error = may_delete(new_dir, new_dentry, new_is_dir);
4150 }
4151 if (error)
4152 return error;
4153
4154 if (!old_dir->i_op->rename && !old_dir->i_op->rename2)
4155 return -EPERM;
4156
4157 if (flags && !old_dir->i_op->rename2)
4158 return -EINVAL;
4159
4160 /*
4161 * If we are going to change the parent - check write permissions,
4162 * we'll need to flip '..'.
4163 */
4164 if (new_dir != old_dir) {
4165 if (is_dir) {
4166 error = inode_permission(source, MAY_WRITE);
4167 if (error)
4168 return error;
4169 }
4170 if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4171 error = inode_permission(target, MAY_WRITE);
4172 if (error)
4173 return error;
4174 }
4175 }
4176
4177 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4178 flags);
4179 if (error)
4180 return error;
4181
4182 old_name = fsnotify_oldname_init(old_dentry->d_name.name);
4183 dget(new_dentry);
4184 if (!is_dir || (flags & RENAME_EXCHANGE))
4185 lock_two_nondirectories(source, target);
4186 else if (target)
4187 mutex_lock(&target->i_mutex);
4188
4189 error = -EBUSY;
4190 if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
4191 goto out;
4192
4193 if (max_links && new_dir != old_dir) {
4194 error = -EMLINK;
4195 if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4196 goto out;
4197 if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
4198 old_dir->i_nlink >= max_links)
4199 goto out;
4200 }
4201 if (is_dir && !(flags & RENAME_EXCHANGE) && target)
4202 shrink_dcache_parent(new_dentry);
4203 if (!is_dir) {
4204 error = try_break_deleg(source, delegated_inode);
4205 if (error)
4206 goto out;
4207 }
4208 if (target && !new_is_dir) {
4209 error = try_break_deleg(target, delegated_inode);
4210 if (error)
4211 goto out;
4212 }
4213 if (!old_dir->i_op->rename2) {
4214 error = old_dir->i_op->rename(old_dir, old_dentry,
4215 new_dir, new_dentry);
4216 } else {
4217 WARN_ON(old_dir->i_op->rename != NULL);
4218 error = old_dir->i_op->rename2(old_dir, old_dentry,
4219 new_dir, new_dentry, flags);
4220 }
4221 if (error)
4222 goto out;
4223
4224 if (!(flags & RENAME_EXCHANGE) && target) {
4225 if (is_dir)
4226 target->i_flags |= S_DEAD;
4227 dont_mount(new_dentry);
4228 detach_mounts(new_dentry);
4229 }
4230 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
4231 if (!(flags & RENAME_EXCHANGE))
4232 d_move(old_dentry, new_dentry);
4233 else
4234 d_exchange(old_dentry, new_dentry);
4235 }
4236 out:
4237 if (!is_dir || (flags & RENAME_EXCHANGE))
4238 unlock_two_nondirectories(source, target);
4239 else if (target)
4240 mutex_unlock(&target->i_mutex);
4241 dput(new_dentry);
4242 if (!error) {
4243 fsnotify_move(old_dir, new_dir, old_name, is_dir,
4244 !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
4245 if (flags & RENAME_EXCHANGE) {
4246 fsnotify_move(new_dir, old_dir, old_dentry->d_name.name,
4247 new_is_dir, NULL, new_dentry);
4248 }
4249 }
4250 fsnotify_oldname_free(old_name);
4251
4252 return error;
4253 }
4254 EXPORT_SYMBOL(vfs_rename);
4255
4256 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
4257 int, newdfd, const char __user *, newname, unsigned int, flags)
4258 {
4259 struct dentry *old_dentry, *new_dentry;
4260 struct dentry *trap;
4261 struct path old_path, new_path;
4262 struct qstr old_last, new_last;
4263 int old_type, new_type;
4264 struct inode *delegated_inode = NULL;
4265 struct filename *from;
4266 struct filename *to;
4267 unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET;
4268 bool should_retry = false;
4269 int error;
4270
4271 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4272 return -EINVAL;
4273
4274 if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
4275 (flags & RENAME_EXCHANGE))
4276 return -EINVAL;
4277
4278 if ((flags & RENAME_WHITEOUT) && !capable(CAP_MKNOD))
4279 return -EPERM;
4280
4281 if (flags & RENAME_EXCHANGE)
4282 target_flags = 0;
4283
4284 retry:
4285 from = user_path_parent(olddfd, oldname,
4286 &old_path, &old_last, &old_type, lookup_flags);
4287 if (IS_ERR(from)) {
4288 error = PTR_ERR(from);
4289 goto exit;
4290 }
4291
4292 to = user_path_parent(newdfd, newname,
4293 &new_path, &new_last, &new_type, lookup_flags);
4294 if (IS_ERR(to)) {
4295 error = PTR_ERR(to);
4296 goto exit1;
4297 }
4298
4299 error = -EXDEV;
4300 if (old_path.mnt != new_path.mnt)
4301 goto exit2;
4302
4303 error = -EBUSY;
4304 if (old_type != LAST_NORM)
4305 goto exit2;
4306
4307 if (flags & RENAME_NOREPLACE)
4308 error = -EEXIST;
4309 if (new_type != LAST_NORM)
4310 goto exit2;
4311
4312 error = mnt_want_write(old_path.mnt);
4313 if (error)
4314 goto exit2;
4315
4316 retry_deleg:
4317 trap = lock_rename(new_path.dentry, old_path.dentry);
4318
4319 old_dentry = __lookup_hash(&old_last, old_path.dentry, lookup_flags);
4320 error = PTR_ERR(old_dentry);
4321 if (IS_ERR(old_dentry))
4322 goto exit3;
4323 /* source must exist */
4324 error = -ENOENT;
4325 if (d_is_negative(old_dentry))
4326 goto exit4;
4327 new_dentry = __lookup_hash(&new_last, new_path.dentry, lookup_flags | target_flags);
4328 error = PTR_ERR(new_dentry);
4329 if (IS_ERR(new_dentry))
4330 goto exit4;
4331 error = -EEXIST;
4332 if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
4333 goto exit5;
4334 if (flags & RENAME_EXCHANGE) {
4335 error = -ENOENT;
4336 if (d_is_negative(new_dentry))
4337 goto exit5;
4338
4339 if (!d_is_dir(new_dentry)) {
4340 error = -ENOTDIR;
4341 if (new_last.name[new_last.len])
4342 goto exit5;
4343 }
4344 }
4345 /* unless the source is a directory trailing slashes give -ENOTDIR */
4346 if (!d_is_dir(old_dentry)) {
4347 error = -ENOTDIR;
4348 if (old_last.name[old_last.len])
4349 goto exit5;
4350 if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len])
4351 goto exit5;
4352 }
4353 /* source should not be ancestor of target */
4354 error = -EINVAL;
4355 if (old_dentry == trap)
4356 goto exit5;
4357 /* target should not be an ancestor of source */
4358 if (!(flags & RENAME_EXCHANGE))
4359 error = -ENOTEMPTY;
4360 if (new_dentry == trap)
4361 goto exit5;
4362
4363 error = security_path_rename(&old_path, old_dentry,
4364 &new_path, new_dentry, flags);
4365 if (error)
4366 goto exit5;
4367 error = vfs_rename(old_path.dentry->d_inode, old_dentry,
4368 new_path.dentry->d_inode, new_dentry,
4369 &delegated_inode, flags);
4370 exit5:
4371 dput(new_dentry);
4372 exit4:
4373 dput(old_dentry);
4374 exit3:
4375 unlock_rename(new_path.dentry, old_path.dentry);
4376 if (delegated_inode) {
4377 error = break_deleg_wait(&delegated_inode);
4378 if (!error)
4379 goto retry_deleg;
4380 }
4381 mnt_drop_write(old_path.mnt);
4382 exit2:
4383 if (retry_estale(error, lookup_flags))
4384 should_retry = true;
4385 path_put(&new_path);
4386 putname(to);
4387 exit1:
4388 path_put(&old_path);
4389 putname(from);
4390 if (should_retry) {
4391 should_retry = false;
4392 lookup_flags |= LOOKUP_REVAL;
4393 goto retry;
4394 }
4395 exit:
4396 return error;
4397 }
4398
4399 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
4400 int, newdfd, const char __user *, newname)
4401 {
4402 return sys_renameat2(olddfd, oldname, newdfd, newname, 0);
4403 }
4404
4405 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4406 {
4407 return sys_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4408 }
4409
4410 int vfs_whiteout(struct inode *dir, struct dentry *dentry)
4411 {
4412 int error = may_create(dir, dentry);
4413 if (error)
4414 return error;
4415
4416 if (!dir->i_op->mknod)
4417 return -EPERM;
4418
4419 return dir->i_op->mknod(dir, dentry,
4420 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
4421 }
4422 EXPORT_SYMBOL(vfs_whiteout);
4423
4424 int readlink_copy(char __user *buffer, int buflen, const char *link)
4425 {
4426 int len = PTR_ERR(link);
4427 if (IS_ERR(link))
4428 goto out;
4429
4430 len = strlen(link);
4431 if (len > (unsigned) buflen)
4432 len = buflen;
4433 if (copy_to_user(buffer, link, len))
4434 len = -EFAULT;
4435 out:
4436 return len;
4437 }
4438 EXPORT_SYMBOL(readlink_copy);
4439
4440 /*
4441 * A helper for ->readlink(). This should be used *ONLY* for symlinks that
4442 * have ->follow_link() touching nd only in nd_set_link(). Using (or not
4443 * using) it for any given inode is up to filesystem.
4444 */
4445 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4446 {
4447 void *cookie;
4448 const char *link = dentry->d_inode->i_link;
4449 int res;
4450
4451 if (!link) {
4452 link = dentry->d_inode->i_op->follow_link(dentry, &cookie, NULL);
4453 if (IS_ERR(link))
4454 return PTR_ERR(link);
4455 }
4456 res = readlink_copy(buffer, buflen, link);
4457 if (cookie && dentry->d_inode->i_op->put_link)
4458 dentry->d_inode->i_op->put_link(dentry, cookie);
4459 return res;
4460 }
4461 EXPORT_SYMBOL(generic_readlink);
4462
4463 /* get the link contents into pagecache */
4464 static char *page_getlink(struct dentry * dentry, struct page **ppage)
4465 {
4466 char *kaddr;
4467 struct page *page;
4468 struct address_space *mapping = dentry->d_inode->i_mapping;
4469 page = read_mapping_page(mapping, 0, NULL);
4470 if (IS_ERR(page))
4471 return (char*)page;
4472 *ppage = page;
4473 kaddr = kmap(page);
4474 nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
4475 return kaddr;
4476 }
4477
4478 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4479 {
4480 struct page *page = NULL;
4481 int res = readlink_copy(buffer, buflen, page_getlink(dentry, &page));
4482 if (page) {
4483 kunmap(page);
4484 page_cache_release(page);
4485 }
4486 return res;
4487 }
4488 EXPORT_SYMBOL(page_readlink);
4489
4490 const char *page_follow_link_light(struct dentry *dentry, void **cookie, struct nameidata *nd)
4491 {
4492 struct page *page = NULL;
4493 char *res = page_getlink(dentry, &page);
4494 if (!IS_ERR(res))
4495 *cookie = page;
4496 return res;
4497 }
4498 EXPORT_SYMBOL(page_follow_link_light);
4499
4500 void page_put_link(struct dentry *dentry, void *cookie)
4501 {
4502 struct page *page = cookie;
4503 kunmap(page);
4504 page_cache_release(page);
4505 }
4506 EXPORT_SYMBOL(page_put_link);
4507
4508 /*
4509 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
4510 */
4511 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
4512 {
4513 struct address_space *mapping = inode->i_mapping;
4514 struct page *page;
4515 void *fsdata;
4516 int err;
4517 char *kaddr;
4518 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
4519 if (nofs)
4520 flags |= AOP_FLAG_NOFS;
4521
4522 retry:
4523 err = pagecache_write_begin(NULL, mapping, 0, len-1,
4524 flags, &page, &fsdata);
4525 if (err)
4526 goto fail;
4527
4528 kaddr = kmap_atomic(page);
4529 memcpy(kaddr, symname, len-1);
4530 kunmap_atomic(kaddr);
4531
4532 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
4533 page, fsdata);
4534 if (err < 0)
4535 goto fail;
4536 if (err < len-1)
4537 goto retry;
4538
4539 mark_inode_dirty(inode);
4540 return 0;
4541 fail:
4542 return err;
4543 }
4544 EXPORT_SYMBOL(__page_symlink);
4545
4546 int page_symlink(struct inode *inode, const char *symname, int len)
4547 {
4548 return __page_symlink(inode, symname, len,
4549 !(mapping_gfp_mask(inode->i_mapping) & __GFP_FS));
4550 }
4551 EXPORT_SYMBOL(page_symlink);
4552
4553 const struct inode_operations page_symlink_inode_operations = {
4554 .readlink = generic_readlink,
4555 .follow_link = page_follow_link_light,
4556 .put_link = page_put_link,
4557 };
4558 EXPORT_SYMBOL(page_symlink_inode_operations);
This page took 0.120609 seconds and 6 git commands to generate.