link_path_walk: get rid of duplication
[deliverable/linux.git] / fs / namei.c
1 /*
2 * linux/fs/namei.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * Some corrections by tytso.
9 */
10
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12 * lookup logic.
13 */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15 */
16
17 #include <linux/init.h>
18 #include <linux/export.h>
19 #include <linux/kernel.h>
20 #include <linux/slab.h>
21 #include <linux/fs.h>
22 #include <linux/namei.h>
23 #include <linux/pagemap.h>
24 #include <linux/fsnotify.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/ima.h>
28 #include <linux/syscalls.h>
29 #include <linux/mount.h>
30 #include <linux/audit.h>
31 #include <linux/capability.h>
32 #include <linux/file.h>
33 #include <linux/fcntl.h>
34 #include <linux/device_cgroup.h>
35 #include <linux/fs_struct.h>
36 #include <linux/posix_acl.h>
37 #include <linux/hash.h>
38 #include <asm/uaccess.h>
39
40 #include "internal.h"
41 #include "mount.h"
42
43 /* [Feb-1997 T. Schoebel-Theuer]
44 * Fundamental changes in the pathname lookup mechanisms (namei)
45 * were necessary because of omirr. The reason is that omirr needs
46 * to know the _real_ pathname, not the user-supplied one, in case
47 * of symlinks (and also when transname replacements occur).
48 *
49 * The new code replaces the old recursive symlink resolution with
50 * an iterative one (in case of non-nested symlink chains). It does
51 * this with calls to <fs>_follow_link().
52 * As a side effect, dir_namei(), _namei() and follow_link() are now
53 * replaced with a single function lookup_dentry() that can handle all
54 * the special cases of the former code.
55 *
56 * With the new dcache, the pathname is stored at each inode, at least as
57 * long as the refcount of the inode is positive. As a side effect, the
58 * size of the dcache depends on the inode cache and thus is dynamic.
59 *
60 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
61 * resolution to correspond with current state of the code.
62 *
63 * Note that the symlink resolution is not *completely* iterative.
64 * There is still a significant amount of tail- and mid- recursion in
65 * the algorithm. Also, note that <fs>_readlink() is not used in
66 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
67 * may return different results than <fs>_follow_link(). Many virtual
68 * filesystems (including /proc) exhibit this behavior.
69 */
70
71 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
72 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
73 * and the name already exists in form of a symlink, try to create the new
74 * name indicated by the symlink. The old code always complained that the
75 * name already exists, due to not following the symlink even if its target
76 * is nonexistent. The new semantics affects also mknod() and link() when
77 * the name is a symlink pointing to a non-existent name.
78 *
79 * I don't know which semantics is the right one, since I have no access
80 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
81 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
82 * "old" one. Personally, I think the new semantics is much more logical.
83 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
84 * file does succeed in both HP-UX and SunOs, but not in Solaris
85 * and in the old Linux semantics.
86 */
87
88 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
89 * semantics. See the comments in "open_namei" and "do_link" below.
90 *
91 * [10-Sep-98 Alan Modra] Another symlink change.
92 */
93
94 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
95 * inside the path - always follow.
96 * in the last component in creation/removal/renaming - never follow.
97 * if LOOKUP_FOLLOW passed - follow.
98 * if the pathname has trailing slashes - follow.
99 * otherwise - don't follow.
100 * (applied in that order).
101 *
102 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
103 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
104 * During the 2.4 we need to fix the userland stuff depending on it -
105 * hopefully we will be able to get rid of that wart in 2.5. So far only
106 * XEmacs seems to be relying on it...
107 */
108 /*
109 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
110 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
111 * any extra contention...
112 */
113
114 /* In order to reduce some races, while at the same time doing additional
115 * checking and hopefully speeding things up, we copy filenames to the
116 * kernel data space before using them..
117 *
118 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
119 * PATH_MAX includes the nul terminator --RR.
120 */
121
122 #define EMBEDDED_NAME_MAX (PATH_MAX - offsetof(struct filename, iname))
123
124 struct filename *
125 getname_flags(const char __user *filename, int flags, int *empty)
126 {
127 struct filename *result;
128 char *kname;
129 int len;
130
131 result = audit_reusename(filename);
132 if (result)
133 return result;
134
135 result = __getname();
136 if (unlikely(!result))
137 return ERR_PTR(-ENOMEM);
138
139 /*
140 * First, try to embed the struct filename inside the names_cache
141 * allocation
142 */
143 kname = (char *)result->iname;
144 result->name = kname;
145
146 len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX);
147 if (unlikely(len < 0)) {
148 __putname(result);
149 return ERR_PTR(len);
150 }
151
152 /*
153 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
154 * separate struct filename so we can dedicate the entire
155 * names_cache allocation for the pathname, and re-do the copy from
156 * userland.
157 */
158 if (unlikely(len == EMBEDDED_NAME_MAX)) {
159 const size_t size = offsetof(struct filename, iname[1]);
160 kname = (char *)result;
161
162 /*
163 * size is chosen that way we to guarantee that
164 * result->iname[0] is within the same object and that
165 * kname can't be equal to result->iname, no matter what.
166 */
167 result = kzalloc(size, GFP_KERNEL);
168 if (unlikely(!result)) {
169 __putname(kname);
170 return ERR_PTR(-ENOMEM);
171 }
172 result->name = kname;
173 len = strncpy_from_user(kname, filename, PATH_MAX);
174 if (unlikely(len < 0)) {
175 __putname(kname);
176 kfree(result);
177 return ERR_PTR(len);
178 }
179 if (unlikely(len == PATH_MAX)) {
180 __putname(kname);
181 kfree(result);
182 return ERR_PTR(-ENAMETOOLONG);
183 }
184 }
185
186 result->refcnt = 1;
187 /* The empty path is special. */
188 if (unlikely(!len)) {
189 if (empty)
190 *empty = 1;
191 if (!(flags & LOOKUP_EMPTY)) {
192 putname(result);
193 return ERR_PTR(-ENOENT);
194 }
195 }
196
197 result->uptr = filename;
198 result->aname = NULL;
199 audit_getname(result);
200 return result;
201 }
202
203 struct filename *
204 getname(const char __user * filename)
205 {
206 return getname_flags(filename, 0, NULL);
207 }
208
209 struct filename *
210 getname_kernel(const char * filename)
211 {
212 struct filename *result;
213 int len = strlen(filename) + 1;
214
215 result = __getname();
216 if (unlikely(!result))
217 return ERR_PTR(-ENOMEM);
218
219 if (len <= EMBEDDED_NAME_MAX) {
220 result->name = (char *)result->iname;
221 } else if (len <= PATH_MAX) {
222 struct filename *tmp;
223
224 tmp = kmalloc(sizeof(*tmp), GFP_KERNEL);
225 if (unlikely(!tmp)) {
226 __putname(result);
227 return ERR_PTR(-ENOMEM);
228 }
229 tmp->name = (char *)result;
230 result = tmp;
231 } else {
232 __putname(result);
233 return ERR_PTR(-ENAMETOOLONG);
234 }
235 memcpy((char *)result->name, filename, len);
236 result->uptr = NULL;
237 result->aname = NULL;
238 result->refcnt = 1;
239 audit_getname(result);
240
241 return result;
242 }
243
244 void putname(struct filename *name)
245 {
246 BUG_ON(name->refcnt <= 0);
247
248 if (--name->refcnt > 0)
249 return;
250
251 if (name->name != name->iname) {
252 __putname(name->name);
253 kfree(name);
254 } else
255 __putname(name);
256 }
257
258 static int check_acl(struct inode *inode, int mask)
259 {
260 #ifdef CONFIG_FS_POSIX_ACL
261 struct posix_acl *acl;
262
263 if (mask & MAY_NOT_BLOCK) {
264 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
265 if (!acl)
266 return -EAGAIN;
267 /* no ->get_acl() calls in RCU mode... */
268 if (acl == ACL_NOT_CACHED)
269 return -ECHILD;
270 return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
271 }
272
273 acl = get_acl(inode, ACL_TYPE_ACCESS);
274 if (IS_ERR(acl))
275 return PTR_ERR(acl);
276 if (acl) {
277 int error = posix_acl_permission(inode, acl, mask);
278 posix_acl_release(acl);
279 return error;
280 }
281 #endif
282
283 return -EAGAIN;
284 }
285
286 /*
287 * This does the basic permission checking
288 */
289 static int acl_permission_check(struct inode *inode, int mask)
290 {
291 unsigned int mode = inode->i_mode;
292
293 if (likely(uid_eq(current_fsuid(), inode->i_uid)))
294 mode >>= 6;
295 else {
296 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
297 int error = check_acl(inode, mask);
298 if (error != -EAGAIN)
299 return error;
300 }
301
302 if (in_group_p(inode->i_gid))
303 mode >>= 3;
304 }
305
306 /*
307 * If the DACs are ok we don't need any capability check.
308 */
309 if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
310 return 0;
311 return -EACCES;
312 }
313
314 /**
315 * generic_permission - check for access rights on a Posix-like filesystem
316 * @inode: inode to check access rights for
317 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
318 *
319 * Used to check for read/write/execute permissions on a file.
320 * We use "fsuid" for this, letting us set arbitrary permissions
321 * for filesystem access without changing the "normal" uids which
322 * are used for other things.
323 *
324 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
325 * request cannot be satisfied (eg. requires blocking or too much complexity).
326 * It would then be called again in ref-walk mode.
327 */
328 int generic_permission(struct inode *inode, int mask)
329 {
330 int ret;
331
332 /*
333 * Do the basic permission checks.
334 */
335 ret = acl_permission_check(inode, mask);
336 if (ret != -EACCES)
337 return ret;
338
339 if (S_ISDIR(inode->i_mode)) {
340 /* DACs are overridable for directories */
341 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
342 return 0;
343 if (!(mask & MAY_WRITE))
344 if (capable_wrt_inode_uidgid(inode,
345 CAP_DAC_READ_SEARCH))
346 return 0;
347 return -EACCES;
348 }
349 /*
350 * Read/write DACs are always overridable.
351 * Executable DACs are overridable when there is
352 * at least one exec bit set.
353 */
354 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
355 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
356 return 0;
357
358 /*
359 * Searching includes executable on directories, else just read.
360 */
361 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
362 if (mask == MAY_READ)
363 if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH))
364 return 0;
365
366 return -EACCES;
367 }
368 EXPORT_SYMBOL(generic_permission);
369
370 /*
371 * We _really_ want to just do "generic_permission()" without
372 * even looking at the inode->i_op values. So we keep a cache
373 * flag in inode->i_opflags, that says "this has not special
374 * permission function, use the fast case".
375 */
376 static inline int do_inode_permission(struct inode *inode, int mask)
377 {
378 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
379 if (likely(inode->i_op->permission))
380 return inode->i_op->permission(inode, mask);
381
382 /* This gets set once for the inode lifetime */
383 spin_lock(&inode->i_lock);
384 inode->i_opflags |= IOP_FASTPERM;
385 spin_unlock(&inode->i_lock);
386 }
387 return generic_permission(inode, mask);
388 }
389
390 /**
391 * __inode_permission - Check for access rights to a given inode
392 * @inode: Inode to check permission on
393 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
394 *
395 * Check for read/write/execute permissions on an inode.
396 *
397 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
398 *
399 * This does not check for a read-only file system. You probably want
400 * inode_permission().
401 */
402 int __inode_permission(struct inode *inode, int mask)
403 {
404 int retval;
405
406 if (unlikely(mask & MAY_WRITE)) {
407 /*
408 * Nobody gets write access to an immutable file.
409 */
410 if (IS_IMMUTABLE(inode))
411 return -EACCES;
412 }
413
414 retval = do_inode_permission(inode, mask);
415 if (retval)
416 return retval;
417
418 retval = devcgroup_inode_permission(inode, mask);
419 if (retval)
420 return retval;
421
422 return security_inode_permission(inode, mask);
423 }
424 EXPORT_SYMBOL(__inode_permission);
425
426 /**
427 * sb_permission - Check superblock-level permissions
428 * @sb: Superblock of inode to check permission on
429 * @inode: Inode to check permission on
430 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
431 *
432 * Separate out file-system wide checks from inode-specific permission checks.
433 */
434 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
435 {
436 if (unlikely(mask & MAY_WRITE)) {
437 umode_t mode = inode->i_mode;
438
439 /* Nobody gets write access to a read-only fs. */
440 if ((sb->s_flags & MS_RDONLY) &&
441 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
442 return -EROFS;
443 }
444 return 0;
445 }
446
447 /**
448 * inode_permission - Check for access rights to a given inode
449 * @inode: Inode to check permission on
450 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
451 *
452 * Check for read/write/execute permissions on an inode. We use fs[ug]id for
453 * this, letting us set arbitrary permissions for filesystem access without
454 * changing the "normal" UIDs which are used for other things.
455 *
456 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
457 */
458 int inode_permission(struct inode *inode, int mask)
459 {
460 int retval;
461
462 retval = sb_permission(inode->i_sb, inode, mask);
463 if (retval)
464 return retval;
465 return __inode_permission(inode, mask);
466 }
467 EXPORT_SYMBOL(inode_permission);
468
469 /**
470 * path_get - get a reference to a path
471 * @path: path to get the reference to
472 *
473 * Given a path increment the reference count to the dentry and the vfsmount.
474 */
475 void path_get(const struct path *path)
476 {
477 mntget(path->mnt);
478 dget(path->dentry);
479 }
480 EXPORT_SYMBOL(path_get);
481
482 /**
483 * path_put - put a reference to a path
484 * @path: path to put the reference to
485 *
486 * Given a path decrement the reference count to the dentry and the vfsmount.
487 */
488 void path_put(const struct path *path)
489 {
490 dput(path->dentry);
491 mntput(path->mnt);
492 }
493 EXPORT_SYMBOL(path_put);
494
495 struct nameidata {
496 struct path path;
497 union {
498 struct qstr last;
499 struct path link;
500 };
501 struct path root;
502 struct inode *inode; /* path.dentry.d_inode */
503 unsigned int flags;
504 unsigned seq, m_seq;
505 int last_type;
506 unsigned depth;
507 struct file *base;
508 };
509
510 /*
511 * Path walking has 2 modes, rcu-walk and ref-walk (see
512 * Documentation/filesystems/path-lookup.txt). In situations when we can't
513 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
514 * normal reference counts on dentries and vfsmounts to transition to rcu-walk
515 * mode. Refcounts are grabbed at the last known good point before rcu-walk
516 * got stuck, so ref-walk may continue from there. If this is not successful
517 * (eg. a seqcount has changed), then failure is returned and it's up to caller
518 * to restart the path walk from the beginning in ref-walk mode.
519 */
520
521 /**
522 * unlazy_walk - try to switch to ref-walk mode.
523 * @nd: nameidata pathwalk data
524 * @dentry: child of nd->path.dentry or NULL
525 * Returns: 0 on success, -ECHILD on failure
526 *
527 * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry
528 * for ref-walk mode. @dentry must be a path found by a do_lookup call on
529 * @nd or NULL. Must be called from rcu-walk context.
530 */
531 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry)
532 {
533 struct fs_struct *fs = current->fs;
534 struct dentry *parent = nd->path.dentry;
535
536 BUG_ON(!(nd->flags & LOOKUP_RCU));
537
538 /*
539 * After legitimizing the bastards, terminate_walk()
540 * will do the right thing for non-RCU mode, and all our
541 * subsequent exit cases should rcu_read_unlock()
542 * before returning. Do vfsmount first; if dentry
543 * can't be legitimized, just set nd->path.dentry to NULL
544 * and rely on dput(NULL) being a no-op.
545 */
546 if (!legitimize_mnt(nd->path.mnt, nd->m_seq))
547 return -ECHILD;
548 nd->flags &= ~LOOKUP_RCU;
549
550 if (!lockref_get_not_dead(&parent->d_lockref)) {
551 nd->path.dentry = NULL;
552 goto out;
553 }
554
555 /*
556 * For a negative lookup, the lookup sequence point is the parents
557 * sequence point, and it only needs to revalidate the parent dentry.
558 *
559 * For a positive lookup, we need to move both the parent and the
560 * dentry from the RCU domain to be properly refcounted. And the
561 * sequence number in the dentry validates *both* dentry counters,
562 * since we checked the sequence number of the parent after we got
563 * the child sequence number. So we know the parent must still
564 * be valid if the child sequence number is still valid.
565 */
566 if (!dentry) {
567 if (read_seqcount_retry(&parent->d_seq, nd->seq))
568 goto out;
569 BUG_ON(nd->inode != parent->d_inode);
570 } else {
571 if (!lockref_get_not_dead(&dentry->d_lockref))
572 goto out;
573 if (read_seqcount_retry(&dentry->d_seq, nd->seq))
574 goto drop_dentry;
575 }
576
577 /*
578 * Sequence counts matched. Now make sure that the root is
579 * still valid and get it if required.
580 */
581 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
582 spin_lock(&fs->lock);
583 if (nd->root.mnt != fs->root.mnt || nd->root.dentry != fs->root.dentry)
584 goto unlock_and_drop_dentry;
585 path_get(&nd->root);
586 spin_unlock(&fs->lock);
587 }
588
589 rcu_read_unlock();
590 return 0;
591
592 unlock_and_drop_dentry:
593 spin_unlock(&fs->lock);
594 drop_dentry:
595 rcu_read_unlock();
596 dput(dentry);
597 goto drop_root_mnt;
598 out:
599 rcu_read_unlock();
600 drop_root_mnt:
601 if (!(nd->flags & LOOKUP_ROOT))
602 nd->root.mnt = NULL;
603 return -ECHILD;
604 }
605
606 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
607 {
608 return dentry->d_op->d_revalidate(dentry, flags);
609 }
610
611 /**
612 * complete_walk - successful completion of path walk
613 * @nd: pointer nameidata
614 *
615 * If we had been in RCU mode, drop out of it and legitimize nd->path.
616 * Revalidate the final result, unless we'd already done that during
617 * the path walk or the filesystem doesn't ask for it. Return 0 on
618 * success, -error on failure. In case of failure caller does not
619 * need to drop nd->path.
620 */
621 static int complete_walk(struct nameidata *nd)
622 {
623 struct dentry *dentry = nd->path.dentry;
624 int status;
625
626 if (nd->flags & LOOKUP_RCU) {
627 nd->flags &= ~LOOKUP_RCU;
628 if (!(nd->flags & LOOKUP_ROOT))
629 nd->root.mnt = NULL;
630
631 if (!legitimize_mnt(nd->path.mnt, nd->m_seq)) {
632 rcu_read_unlock();
633 return -ECHILD;
634 }
635 if (unlikely(!lockref_get_not_dead(&dentry->d_lockref))) {
636 rcu_read_unlock();
637 mntput(nd->path.mnt);
638 return -ECHILD;
639 }
640 if (read_seqcount_retry(&dentry->d_seq, nd->seq)) {
641 rcu_read_unlock();
642 dput(dentry);
643 mntput(nd->path.mnt);
644 return -ECHILD;
645 }
646 rcu_read_unlock();
647 }
648
649 if (likely(!(nd->flags & LOOKUP_JUMPED)))
650 return 0;
651
652 if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
653 return 0;
654
655 status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
656 if (status > 0)
657 return 0;
658
659 if (!status)
660 status = -ESTALE;
661
662 path_put(&nd->path);
663 return status;
664 }
665
666 static __always_inline void set_root(struct nameidata *nd)
667 {
668 get_fs_root(current->fs, &nd->root);
669 }
670
671 static __always_inline unsigned set_root_rcu(struct nameidata *nd)
672 {
673 struct fs_struct *fs = current->fs;
674 unsigned seq, res;
675
676 do {
677 seq = read_seqcount_begin(&fs->seq);
678 nd->root = fs->root;
679 res = __read_seqcount_begin(&nd->root.dentry->d_seq);
680 } while (read_seqcount_retry(&fs->seq, seq));
681 return res;
682 }
683
684 static void path_put_conditional(struct path *path, struct nameidata *nd)
685 {
686 dput(path->dentry);
687 if (path->mnt != nd->path.mnt)
688 mntput(path->mnt);
689 }
690
691 static inline void path_to_nameidata(const struct path *path,
692 struct nameidata *nd)
693 {
694 if (!(nd->flags & LOOKUP_RCU)) {
695 dput(nd->path.dentry);
696 if (nd->path.mnt != path->mnt)
697 mntput(nd->path.mnt);
698 }
699 nd->path.mnt = path->mnt;
700 nd->path.dentry = path->dentry;
701 }
702
703 /*
704 * Helper to directly jump to a known parsed path from ->follow_link,
705 * caller must have taken a reference to path beforehand.
706 */
707 void nd_jump_link(struct nameidata *nd, struct path *path)
708 {
709 path_put(&nd->path);
710
711 nd->path = *path;
712 nd->inode = nd->path.dentry->d_inode;
713 nd->flags |= LOOKUP_JUMPED;
714 }
715
716 static inline void put_link(struct nameidata *nd, struct path *link, void *cookie)
717 {
718 struct inode *inode = link->dentry->d_inode;
719 if (cookie && inode->i_op->put_link)
720 inode->i_op->put_link(link->dentry, cookie);
721 path_put(link);
722 }
723
724 int sysctl_protected_symlinks __read_mostly = 0;
725 int sysctl_protected_hardlinks __read_mostly = 0;
726
727 /**
728 * may_follow_link - Check symlink following for unsafe situations
729 * @link: The path of the symlink
730 * @nd: nameidata pathwalk data
731 *
732 * In the case of the sysctl_protected_symlinks sysctl being enabled,
733 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
734 * in a sticky world-writable directory. This is to protect privileged
735 * processes from failing races against path names that may change out
736 * from under them by way of other users creating malicious symlinks.
737 * It will permit symlinks to be followed only when outside a sticky
738 * world-writable directory, or when the uid of the symlink and follower
739 * match, or when the directory owner matches the symlink's owner.
740 *
741 * Returns 0 if following the symlink is allowed, -ve on error.
742 */
743 static inline int may_follow_link(struct path *link, struct nameidata *nd)
744 {
745 const struct inode *inode;
746 const struct inode *parent;
747
748 if (!sysctl_protected_symlinks)
749 return 0;
750
751 /* Allowed if owner and follower match. */
752 inode = link->dentry->d_inode;
753 if (uid_eq(current_cred()->fsuid, inode->i_uid))
754 return 0;
755
756 /* Allowed if parent directory not sticky and world-writable. */
757 parent = nd->path.dentry->d_inode;
758 if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
759 return 0;
760
761 /* Allowed if parent directory and link owner match. */
762 if (uid_eq(parent->i_uid, inode->i_uid))
763 return 0;
764
765 audit_log_link_denied("follow_link", link);
766 path_put_conditional(link, nd);
767 path_put(&nd->path);
768 return -EACCES;
769 }
770
771 /**
772 * safe_hardlink_source - Check for safe hardlink conditions
773 * @inode: the source inode to hardlink from
774 *
775 * Return false if at least one of the following conditions:
776 * - inode is not a regular file
777 * - inode is setuid
778 * - inode is setgid and group-exec
779 * - access failure for read and write
780 *
781 * Otherwise returns true.
782 */
783 static bool safe_hardlink_source(struct inode *inode)
784 {
785 umode_t mode = inode->i_mode;
786
787 /* Special files should not get pinned to the filesystem. */
788 if (!S_ISREG(mode))
789 return false;
790
791 /* Setuid files should not get pinned to the filesystem. */
792 if (mode & S_ISUID)
793 return false;
794
795 /* Executable setgid files should not get pinned to the filesystem. */
796 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
797 return false;
798
799 /* Hardlinking to unreadable or unwritable sources is dangerous. */
800 if (inode_permission(inode, MAY_READ | MAY_WRITE))
801 return false;
802
803 return true;
804 }
805
806 /**
807 * may_linkat - Check permissions for creating a hardlink
808 * @link: the source to hardlink from
809 *
810 * Block hardlink when all of:
811 * - sysctl_protected_hardlinks enabled
812 * - fsuid does not match inode
813 * - hardlink source is unsafe (see safe_hardlink_source() above)
814 * - not CAP_FOWNER
815 *
816 * Returns 0 if successful, -ve on error.
817 */
818 static int may_linkat(struct path *link)
819 {
820 const struct cred *cred;
821 struct inode *inode;
822
823 if (!sysctl_protected_hardlinks)
824 return 0;
825
826 cred = current_cred();
827 inode = link->dentry->d_inode;
828
829 /* Source inode owner (or CAP_FOWNER) can hardlink all they like,
830 * otherwise, it must be a safe source.
831 */
832 if (uid_eq(cred->fsuid, inode->i_uid) || safe_hardlink_source(inode) ||
833 capable(CAP_FOWNER))
834 return 0;
835
836 audit_log_link_denied("linkat", link);
837 return -EPERM;
838 }
839
840 static __always_inline const char *
841 get_link(struct path *link, struct nameidata *nd, void **p)
842 {
843 struct dentry *dentry = link->dentry;
844 struct inode *inode = dentry->d_inode;
845 int error;
846 const char *res;
847
848 BUG_ON(nd->flags & LOOKUP_RCU);
849
850 if (link->mnt == nd->path.mnt)
851 mntget(link->mnt);
852
853 res = ERR_PTR(-ELOOP);
854 if (unlikely(current->total_link_count >= 40))
855 goto out;
856
857 cond_resched();
858 current->total_link_count++;
859
860 touch_atime(link);
861
862 error = security_inode_follow_link(dentry);
863 res = ERR_PTR(error);
864 if (error)
865 goto out;
866
867 nd->last_type = LAST_BIND;
868 *p = NULL;
869 res = inode->i_link;
870 if (!res) {
871 res = inode->i_op->follow_link(dentry, p, nd);
872 if (IS_ERR(res)) {
873 out:
874 path_put(&nd->path);
875 path_put(link);
876 }
877 }
878 return res;
879 }
880
881 static int follow_up_rcu(struct path *path)
882 {
883 struct mount *mnt = real_mount(path->mnt);
884 struct mount *parent;
885 struct dentry *mountpoint;
886
887 parent = mnt->mnt_parent;
888 if (&parent->mnt == path->mnt)
889 return 0;
890 mountpoint = mnt->mnt_mountpoint;
891 path->dentry = mountpoint;
892 path->mnt = &parent->mnt;
893 return 1;
894 }
895
896 /*
897 * follow_up - Find the mountpoint of path's vfsmount
898 *
899 * Given a path, find the mountpoint of its source file system.
900 * Replace @path with the path of the mountpoint in the parent mount.
901 * Up is towards /.
902 *
903 * Return 1 if we went up a level and 0 if we were already at the
904 * root.
905 */
906 int follow_up(struct path *path)
907 {
908 struct mount *mnt = real_mount(path->mnt);
909 struct mount *parent;
910 struct dentry *mountpoint;
911
912 read_seqlock_excl(&mount_lock);
913 parent = mnt->mnt_parent;
914 if (parent == mnt) {
915 read_sequnlock_excl(&mount_lock);
916 return 0;
917 }
918 mntget(&parent->mnt);
919 mountpoint = dget(mnt->mnt_mountpoint);
920 read_sequnlock_excl(&mount_lock);
921 dput(path->dentry);
922 path->dentry = mountpoint;
923 mntput(path->mnt);
924 path->mnt = &parent->mnt;
925 return 1;
926 }
927 EXPORT_SYMBOL(follow_up);
928
929 /*
930 * Perform an automount
931 * - return -EISDIR to tell follow_managed() to stop and return the path we
932 * were called with.
933 */
934 static int follow_automount(struct path *path, unsigned flags,
935 bool *need_mntput)
936 {
937 struct vfsmount *mnt;
938 int err;
939
940 if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
941 return -EREMOTE;
942
943 /* We don't want to mount if someone's just doing a stat -
944 * unless they're stat'ing a directory and appended a '/' to
945 * the name.
946 *
947 * We do, however, want to mount if someone wants to open or
948 * create a file of any type under the mountpoint, wants to
949 * traverse through the mountpoint or wants to open the
950 * mounted directory. Also, autofs may mark negative dentries
951 * as being automount points. These will need the attentions
952 * of the daemon to instantiate them before they can be used.
953 */
954 if (!(flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
955 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
956 path->dentry->d_inode)
957 return -EISDIR;
958
959 current->total_link_count++;
960 if (current->total_link_count >= 40)
961 return -ELOOP;
962
963 mnt = path->dentry->d_op->d_automount(path);
964 if (IS_ERR(mnt)) {
965 /*
966 * The filesystem is allowed to return -EISDIR here to indicate
967 * it doesn't want to automount. For instance, autofs would do
968 * this so that its userspace daemon can mount on this dentry.
969 *
970 * However, we can only permit this if it's a terminal point in
971 * the path being looked up; if it wasn't then the remainder of
972 * the path is inaccessible and we should say so.
973 */
974 if (PTR_ERR(mnt) == -EISDIR && (flags & LOOKUP_PARENT))
975 return -EREMOTE;
976 return PTR_ERR(mnt);
977 }
978
979 if (!mnt) /* mount collision */
980 return 0;
981
982 if (!*need_mntput) {
983 /* lock_mount() may release path->mnt on error */
984 mntget(path->mnt);
985 *need_mntput = true;
986 }
987 err = finish_automount(mnt, path);
988
989 switch (err) {
990 case -EBUSY:
991 /* Someone else made a mount here whilst we were busy */
992 return 0;
993 case 0:
994 path_put(path);
995 path->mnt = mnt;
996 path->dentry = dget(mnt->mnt_root);
997 return 0;
998 default:
999 return err;
1000 }
1001
1002 }
1003
1004 /*
1005 * Handle a dentry that is managed in some way.
1006 * - Flagged for transit management (autofs)
1007 * - Flagged as mountpoint
1008 * - Flagged as automount point
1009 *
1010 * This may only be called in refwalk mode.
1011 *
1012 * Serialization is taken care of in namespace.c
1013 */
1014 static int follow_managed(struct path *path, unsigned flags)
1015 {
1016 struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
1017 unsigned managed;
1018 bool need_mntput = false;
1019 int ret = 0;
1020
1021 /* Given that we're not holding a lock here, we retain the value in a
1022 * local variable for each dentry as we look at it so that we don't see
1023 * the components of that value change under us */
1024 while (managed = ACCESS_ONCE(path->dentry->d_flags),
1025 managed &= DCACHE_MANAGED_DENTRY,
1026 unlikely(managed != 0)) {
1027 /* Allow the filesystem to manage the transit without i_mutex
1028 * being held. */
1029 if (managed & DCACHE_MANAGE_TRANSIT) {
1030 BUG_ON(!path->dentry->d_op);
1031 BUG_ON(!path->dentry->d_op->d_manage);
1032 ret = path->dentry->d_op->d_manage(path->dentry, false);
1033 if (ret < 0)
1034 break;
1035 }
1036
1037 /* Transit to a mounted filesystem. */
1038 if (managed & DCACHE_MOUNTED) {
1039 struct vfsmount *mounted = lookup_mnt(path);
1040 if (mounted) {
1041 dput(path->dentry);
1042 if (need_mntput)
1043 mntput(path->mnt);
1044 path->mnt = mounted;
1045 path->dentry = dget(mounted->mnt_root);
1046 need_mntput = true;
1047 continue;
1048 }
1049
1050 /* Something is mounted on this dentry in another
1051 * namespace and/or whatever was mounted there in this
1052 * namespace got unmounted before lookup_mnt() could
1053 * get it */
1054 }
1055
1056 /* Handle an automount point */
1057 if (managed & DCACHE_NEED_AUTOMOUNT) {
1058 ret = follow_automount(path, flags, &need_mntput);
1059 if (ret < 0)
1060 break;
1061 continue;
1062 }
1063
1064 /* We didn't change the current path point */
1065 break;
1066 }
1067
1068 if (need_mntput && path->mnt == mnt)
1069 mntput(path->mnt);
1070 if (ret == -EISDIR)
1071 ret = 0;
1072 return ret < 0 ? ret : need_mntput;
1073 }
1074
1075 int follow_down_one(struct path *path)
1076 {
1077 struct vfsmount *mounted;
1078
1079 mounted = lookup_mnt(path);
1080 if (mounted) {
1081 dput(path->dentry);
1082 mntput(path->mnt);
1083 path->mnt = mounted;
1084 path->dentry = dget(mounted->mnt_root);
1085 return 1;
1086 }
1087 return 0;
1088 }
1089 EXPORT_SYMBOL(follow_down_one);
1090
1091 static inline int managed_dentry_rcu(struct dentry *dentry)
1092 {
1093 return (dentry->d_flags & DCACHE_MANAGE_TRANSIT) ?
1094 dentry->d_op->d_manage(dentry, true) : 0;
1095 }
1096
1097 /*
1098 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if
1099 * we meet a managed dentry that would need blocking.
1100 */
1101 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1102 struct inode **inode)
1103 {
1104 for (;;) {
1105 struct mount *mounted;
1106 /*
1107 * Don't forget we might have a non-mountpoint managed dentry
1108 * that wants to block transit.
1109 */
1110 switch (managed_dentry_rcu(path->dentry)) {
1111 case -ECHILD:
1112 default:
1113 return false;
1114 case -EISDIR:
1115 return true;
1116 case 0:
1117 break;
1118 }
1119
1120 if (!d_mountpoint(path->dentry))
1121 return !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1122
1123 mounted = __lookup_mnt(path->mnt, path->dentry);
1124 if (!mounted)
1125 break;
1126 path->mnt = &mounted->mnt;
1127 path->dentry = mounted->mnt.mnt_root;
1128 nd->flags |= LOOKUP_JUMPED;
1129 nd->seq = read_seqcount_begin(&path->dentry->d_seq);
1130 /*
1131 * Update the inode too. We don't need to re-check the
1132 * dentry sequence number here after this d_inode read,
1133 * because a mount-point is always pinned.
1134 */
1135 *inode = path->dentry->d_inode;
1136 }
1137 return !read_seqretry(&mount_lock, nd->m_seq) &&
1138 !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1139 }
1140
1141 static int follow_dotdot_rcu(struct nameidata *nd)
1142 {
1143 struct inode *inode = nd->inode;
1144 if (!nd->root.mnt)
1145 set_root_rcu(nd);
1146
1147 while (1) {
1148 if (nd->path.dentry == nd->root.dentry &&
1149 nd->path.mnt == nd->root.mnt) {
1150 break;
1151 }
1152 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1153 struct dentry *old = nd->path.dentry;
1154 struct dentry *parent = old->d_parent;
1155 unsigned seq;
1156
1157 inode = parent->d_inode;
1158 seq = read_seqcount_begin(&parent->d_seq);
1159 if (read_seqcount_retry(&old->d_seq, nd->seq))
1160 goto failed;
1161 nd->path.dentry = parent;
1162 nd->seq = seq;
1163 break;
1164 }
1165 if (!follow_up_rcu(&nd->path))
1166 break;
1167 inode = nd->path.dentry->d_inode;
1168 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1169 }
1170 while (d_mountpoint(nd->path.dentry)) {
1171 struct mount *mounted;
1172 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry);
1173 if (!mounted)
1174 break;
1175 nd->path.mnt = &mounted->mnt;
1176 nd->path.dentry = mounted->mnt.mnt_root;
1177 inode = nd->path.dentry->d_inode;
1178 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1179 if (read_seqretry(&mount_lock, nd->m_seq))
1180 goto failed;
1181 }
1182 nd->inode = inode;
1183 return 0;
1184
1185 failed:
1186 nd->flags &= ~LOOKUP_RCU;
1187 if (!(nd->flags & LOOKUP_ROOT))
1188 nd->root.mnt = NULL;
1189 rcu_read_unlock();
1190 return -ECHILD;
1191 }
1192
1193 /*
1194 * Follow down to the covering mount currently visible to userspace. At each
1195 * point, the filesystem owning that dentry may be queried as to whether the
1196 * caller is permitted to proceed or not.
1197 */
1198 int follow_down(struct path *path)
1199 {
1200 unsigned managed;
1201 int ret;
1202
1203 while (managed = ACCESS_ONCE(path->dentry->d_flags),
1204 unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1205 /* Allow the filesystem to manage the transit without i_mutex
1206 * being held.
1207 *
1208 * We indicate to the filesystem if someone is trying to mount
1209 * something here. This gives autofs the chance to deny anyone
1210 * other than its daemon the right to mount on its
1211 * superstructure.
1212 *
1213 * The filesystem may sleep at this point.
1214 */
1215 if (managed & DCACHE_MANAGE_TRANSIT) {
1216 BUG_ON(!path->dentry->d_op);
1217 BUG_ON(!path->dentry->d_op->d_manage);
1218 ret = path->dentry->d_op->d_manage(
1219 path->dentry, false);
1220 if (ret < 0)
1221 return ret == -EISDIR ? 0 : ret;
1222 }
1223
1224 /* Transit to a mounted filesystem. */
1225 if (managed & DCACHE_MOUNTED) {
1226 struct vfsmount *mounted = lookup_mnt(path);
1227 if (!mounted)
1228 break;
1229 dput(path->dentry);
1230 mntput(path->mnt);
1231 path->mnt = mounted;
1232 path->dentry = dget(mounted->mnt_root);
1233 continue;
1234 }
1235
1236 /* Don't handle automount points here */
1237 break;
1238 }
1239 return 0;
1240 }
1241 EXPORT_SYMBOL(follow_down);
1242
1243 /*
1244 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1245 */
1246 static void follow_mount(struct path *path)
1247 {
1248 while (d_mountpoint(path->dentry)) {
1249 struct vfsmount *mounted = lookup_mnt(path);
1250 if (!mounted)
1251 break;
1252 dput(path->dentry);
1253 mntput(path->mnt);
1254 path->mnt = mounted;
1255 path->dentry = dget(mounted->mnt_root);
1256 }
1257 }
1258
1259 static void follow_dotdot(struct nameidata *nd)
1260 {
1261 if (!nd->root.mnt)
1262 set_root(nd);
1263
1264 while(1) {
1265 struct dentry *old = nd->path.dentry;
1266
1267 if (nd->path.dentry == nd->root.dentry &&
1268 nd->path.mnt == nd->root.mnt) {
1269 break;
1270 }
1271 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1272 /* rare case of legitimate dget_parent()... */
1273 nd->path.dentry = dget_parent(nd->path.dentry);
1274 dput(old);
1275 break;
1276 }
1277 if (!follow_up(&nd->path))
1278 break;
1279 }
1280 follow_mount(&nd->path);
1281 nd->inode = nd->path.dentry->d_inode;
1282 }
1283
1284 /*
1285 * This looks up the name in dcache, possibly revalidates the old dentry and
1286 * allocates a new one if not found or not valid. In the need_lookup argument
1287 * returns whether i_op->lookup is necessary.
1288 *
1289 * dir->d_inode->i_mutex must be held
1290 */
1291 static struct dentry *lookup_dcache(struct qstr *name, struct dentry *dir,
1292 unsigned int flags, bool *need_lookup)
1293 {
1294 struct dentry *dentry;
1295 int error;
1296
1297 *need_lookup = false;
1298 dentry = d_lookup(dir, name);
1299 if (dentry) {
1300 if (dentry->d_flags & DCACHE_OP_REVALIDATE) {
1301 error = d_revalidate(dentry, flags);
1302 if (unlikely(error <= 0)) {
1303 if (error < 0) {
1304 dput(dentry);
1305 return ERR_PTR(error);
1306 } else {
1307 d_invalidate(dentry);
1308 dput(dentry);
1309 dentry = NULL;
1310 }
1311 }
1312 }
1313 }
1314
1315 if (!dentry) {
1316 dentry = d_alloc(dir, name);
1317 if (unlikely(!dentry))
1318 return ERR_PTR(-ENOMEM);
1319
1320 *need_lookup = true;
1321 }
1322 return dentry;
1323 }
1324
1325 /*
1326 * Call i_op->lookup on the dentry. The dentry must be negative and
1327 * unhashed.
1328 *
1329 * dir->d_inode->i_mutex must be held
1330 */
1331 static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry,
1332 unsigned int flags)
1333 {
1334 struct dentry *old;
1335
1336 /* Don't create child dentry for a dead directory. */
1337 if (unlikely(IS_DEADDIR(dir))) {
1338 dput(dentry);
1339 return ERR_PTR(-ENOENT);
1340 }
1341
1342 old = dir->i_op->lookup(dir, dentry, flags);
1343 if (unlikely(old)) {
1344 dput(dentry);
1345 dentry = old;
1346 }
1347 return dentry;
1348 }
1349
1350 static struct dentry *__lookup_hash(struct qstr *name,
1351 struct dentry *base, unsigned int flags)
1352 {
1353 bool need_lookup;
1354 struct dentry *dentry;
1355
1356 dentry = lookup_dcache(name, base, flags, &need_lookup);
1357 if (!need_lookup)
1358 return dentry;
1359
1360 return lookup_real(base->d_inode, dentry, flags);
1361 }
1362
1363 /*
1364 * It's more convoluted than I'd like it to be, but... it's still fairly
1365 * small and for now I'd prefer to have fast path as straight as possible.
1366 * It _is_ time-critical.
1367 */
1368 static int lookup_fast(struct nameidata *nd,
1369 struct path *path, struct inode **inode)
1370 {
1371 struct vfsmount *mnt = nd->path.mnt;
1372 struct dentry *dentry, *parent = nd->path.dentry;
1373 int need_reval = 1;
1374 int status = 1;
1375 int err;
1376
1377 /*
1378 * Rename seqlock is not required here because in the off chance
1379 * of a false negative due to a concurrent rename, we're going to
1380 * do the non-racy lookup, below.
1381 */
1382 if (nd->flags & LOOKUP_RCU) {
1383 unsigned seq;
1384 bool negative;
1385 dentry = __d_lookup_rcu(parent, &nd->last, &seq);
1386 if (!dentry)
1387 goto unlazy;
1388
1389 /*
1390 * This sequence count validates that the inode matches
1391 * the dentry name information from lookup.
1392 */
1393 *inode = dentry->d_inode;
1394 negative = d_is_negative(dentry);
1395 if (read_seqcount_retry(&dentry->d_seq, seq))
1396 return -ECHILD;
1397 if (negative)
1398 return -ENOENT;
1399
1400 /*
1401 * This sequence count validates that the parent had no
1402 * changes while we did the lookup of the dentry above.
1403 *
1404 * The memory barrier in read_seqcount_begin of child is
1405 * enough, we can use __read_seqcount_retry here.
1406 */
1407 if (__read_seqcount_retry(&parent->d_seq, nd->seq))
1408 return -ECHILD;
1409 nd->seq = seq;
1410
1411 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) {
1412 status = d_revalidate(dentry, nd->flags);
1413 if (unlikely(status <= 0)) {
1414 if (status != -ECHILD)
1415 need_reval = 0;
1416 goto unlazy;
1417 }
1418 }
1419 path->mnt = mnt;
1420 path->dentry = dentry;
1421 if (likely(__follow_mount_rcu(nd, path, inode)))
1422 return 0;
1423 unlazy:
1424 if (unlazy_walk(nd, dentry))
1425 return -ECHILD;
1426 } else {
1427 dentry = __d_lookup(parent, &nd->last);
1428 }
1429
1430 if (unlikely(!dentry))
1431 goto need_lookup;
1432
1433 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE) && need_reval)
1434 status = d_revalidate(dentry, nd->flags);
1435 if (unlikely(status <= 0)) {
1436 if (status < 0) {
1437 dput(dentry);
1438 return status;
1439 }
1440 d_invalidate(dentry);
1441 dput(dentry);
1442 goto need_lookup;
1443 }
1444
1445 if (unlikely(d_is_negative(dentry))) {
1446 dput(dentry);
1447 return -ENOENT;
1448 }
1449 path->mnt = mnt;
1450 path->dentry = dentry;
1451 err = follow_managed(path, nd->flags);
1452 if (unlikely(err < 0)) {
1453 path_put_conditional(path, nd);
1454 return err;
1455 }
1456 if (err)
1457 nd->flags |= LOOKUP_JUMPED;
1458 *inode = path->dentry->d_inode;
1459 return 0;
1460
1461 need_lookup:
1462 return 1;
1463 }
1464
1465 /* Fast lookup failed, do it the slow way */
1466 static int lookup_slow(struct nameidata *nd, struct path *path)
1467 {
1468 struct dentry *dentry, *parent;
1469 int err;
1470
1471 parent = nd->path.dentry;
1472 BUG_ON(nd->inode != parent->d_inode);
1473
1474 mutex_lock(&parent->d_inode->i_mutex);
1475 dentry = __lookup_hash(&nd->last, parent, nd->flags);
1476 mutex_unlock(&parent->d_inode->i_mutex);
1477 if (IS_ERR(dentry))
1478 return PTR_ERR(dentry);
1479 path->mnt = nd->path.mnt;
1480 path->dentry = dentry;
1481 err = follow_managed(path, nd->flags);
1482 if (unlikely(err < 0)) {
1483 path_put_conditional(path, nd);
1484 return err;
1485 }
1486 if (err)
1487 nd->flags |= LOOKUP_JUMPED;
1488 return 0;
1489 }
1490
1491 static inline int may_lookup(struct nameidata *nd)
1492 {
1493 if (nd->flags & LOOKUP_RCU) {
1494 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1495 if (err != -ECHILD)
1496 return err;
1497 if (unlazy_walk(nd, NULL))
1498 return -ECHILD;
1499 }
1500 return inode_permission(nd->inode, MAY_EXEC);
1501 }
1502
1503 static inline int handle_dots(struct nameidata *nd, int type)
1504 {
1505 if (type == LAST_DOTDOT) {
1506 if (nd->flags & LOOKUP_RCU) {
1507 if (follow_dotdot_rcu(nd))
1508 return -ECHILD;
1509 } else
1510 follow_dotdot(nd);
1511 }
1512 return 0;
1513 }
1514
1515 static void terminate_walk(struct nameidata *nd)
1516 {
1517 if (!(nd->flags & LOOKUP_RCU)) {
1518 path_put(&nd->path);
1519 } else {
1520 nd->flags &= ~LOOKUP_RCU;
1521 if (!(nd->flags & LOOKUP_ROOT))
1522 nd->root.mnt = NULL;
1523 rcu_read_unlock();
1524 }
1525 }
1526
1527 /*
1528 * Do we need to follow links? We _really_ want to be able
1529 * to do this check without having to look at inode->i_op,
1530 * so we keep a cache of "no, this doesn't need follow_link"
1531 * for the common case.
1532 */
1533 static inline int should_follow_link(struct dentry *dentry, int follow)
1534 {
1535 return unlikely(d_is_symlink(dentry)) ? follow : 0;
1536 }
1537
1538 static int walk_component(struct nameidata *nd, int follow)
1539 {
1540 struct path path;
1541 struct inode *inode;
1542 int err;
1543 /*
1544 * "." and ".." are special - ".." especially so because it has
1545 * to be able to know about the current root directory and
1546 * parent relationships.
1547 */
1548 if (unlikely(nd->last_type != LAST_NORM))
1549 return handle_dots(nd, nd->last_type);
1550 err = lookup_fast(nd, &path, &inode);
1551 if (unlikely(err)) {
1552 if (err < 0)
1553 goto out_err;
1554
1555 err = lookup_slow(nd, &path);
1556 if (err < 0)
1557 goto out_err;
1558
1559 inode = path.dentry->d_inode;
1560 err = -ENOENT;
1561 if (d_is_negative(path.dentry))
1562 goto out_path_put;
1563 }
1564
1565 if (should_follow_link(path.dentry, follow)) {
1566 if (nd->flags & LOOKUP_RCU) {
1567 if (unlikely(nd->path.mnt != path.mnt ||
1568 unlazy_walk(nd, path.dentry))) {
1569 err = -ECHILD;
1570 goto out_err;
1571 }
1572 }
1573 BUG_ON(inode != path.dentry->d_inode);
1574 nd->link = path;
1575 return 1;
1576 }
1577 path_to_nameidata(&path, nd);
1578 nd->inode = inode;
1579 return 0;
1580
1581 out_path_put:
1582 path_to_nameidata(&path, nd);
1583 out_err:
1584 terminate_walk(nd);
1585 return err;
1586 }
1587
1588 /*
1589 * We can do the critical dentry name comparison and hashing
1590 * operations one word at a time, but we are limited to:
1591 *
1592 * - Architectures with fast unaligned word accesses. We could
1593 * do a "get_unaligned()" if this helps and is sufficiently
1594 * fast.
1595 *
1596 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1597 * do not trap on the (extremely unlikely) case of a page
1598 * crossing operation.
1599 *
1600 * - Furthermore, we need an efficient 64-bit compile for the
1601 * 64-bit case in order to generate the "number of bytes in
1602 * the final mask". Again, that could be replaced with a
1603 * efficient population count instruction or similar.
1604 */
1605 #ifdef CONFIG_DCACHE_WORD_ACCESS
1606
1607 #include <asm/word-at-a-time.h>
1608
1609 #ifdef CONFIG_64BIT
1610
1611 static inline unsigned int fold_hash(unsigned long hash)
1612 {
1613 return hash_64(hash, 32);
1614 }
1615
1616 #else /* 32-bit case */
1617
1618 #define fold_hash(x) (x)
1619
1620 #endif
1621
1622 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1623 {
1624 unsigned long a, mask;
1625 unsigned long hash = 0;
1626
1627 for (;;) {
1628 a = load_unaligned_zeropad(name);
1629 if (len < sizeof(unsigned long))
1630 break;
1631 hash += a;
1632 hash *= 9;
1633 name += sizeof(unsigned long);
1634 len -= sizeof(unsigned long);
1635 if (!len)
1636 goto done;
1637 }
1638 mask = bytemask_from_count(len);
1639 hash += mask & a;
1640 done:
1641 return fold_hash(hash);
1642 }
1643 EXPORT_SYMBOL(full_name_hash);
1644
1645 /*
1646 * Calculate the length and hash of the path component, and
1647 * return the "hash_len" as the result.
1648 */
1649 static inline u64 hash_name(const char *name)
1650 {
1651 unsigned long a, b, adata, bdata, mask, hash, len;
1652 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1653
1654 hash = a = 0;
1655 len = -sizeof(unsigned long);
1656 do {
1657 hash = (hash + a) * 9;
1658 len += sizeof(unsigned long);
1659 a = load_unaligned_zeropad(name+len);
1660 b = a ^ REPEAT_BYTE('/');
1661 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
1662
1663 adata = prep_zero_mask(a, adata, &constants);
1664 bdata = prep_zero_mask(b, bdata, &constants);
1665
1666 mask = create_zero_mask(adata | bdata);
1667
1668 hash += a & zero_bytemask(mask);
1669 len += find_zero(mask);
1670 return hashlen_create(fold_hash(hash), len);
1671 }
1672
1673 #else
1674
1675 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1676 {
1677 unsigned long hash = init_name_hash();
1678 while (len--)
1679 hash = partial_name_hash(*name++, hash);
1680 return end_name_hash(hash);
1681 }
1682 EXPORT_SYMBOL(full_name_hash);
1683
1684 /*
1685 * We know there's a real path component here of at least
1686 * one character.
1687 */
1688 static inline u64 hash_name(const char *name)
1689 {
1690 unsigned long hash = init_name_hash();
1691 unsigned long len = 0, c;
1692
1693 c = (unsigned char)*name;
1694 do {
1695 len++;
1696 hash = partial_name_hash(c, hash);
1697 c = (unsigned char)name[len];
1698 } while (c && c != '/');
1699 return hashlen_create(end_name_hash(hash), len);
1700 }
1701
1702 #endif
1703
1704 /*
1705 * Name resolution.
1706 * This is the basic name resolution function, turning a pathname into
1707 * the final dentry. We expect 'base' to be positive and a directory.
1708 *
1709 * Returns 0 and nd will have valid dentry and mnt on success.
1710 * Returns error and drops reference to input namei data on failure.
1711 */
1712 static int link_path_walk(const char *name, struct nameidata *nd)
1713 {
1714 int err;
1715
1716 while (*name=='/')
1717 name++;
1718 if (!*name)
1719 return 0;
1720
1721 /* At this point we know we have a real path component. */
1722 for(;;) {
1723 u64 hash_len;
1724 int type;
1725
1726 err = may_lookup(nd);
1727 if (err)
1728 break;
1729
1730 hash_len = hash_name(name);
1731
1732 type = LAST_NORM;
1733 if (name[0] == '.') switch (hashlen_len(hash_len)) {
1734 case 2:
1735 if (name[1] == '.') {
1736 type = LAST_DOTDOT;
1737 nd->flags |= LOOKUP_JUMPED;
1738 }
1739 break;
1740 case 1:
1741 type = LAST_DOT;
1742 }
1743 if (likely(type == LAST_NORM)) {
1744 struct dentry *parent = nd->path.dentry;
1745 nd->flags &= ~LOOKUP_JUMPED;
1746 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
1747 struct qstr this = { { .hash_len = hash_len }, .name = name };
1748 err = parent->d_op->d_hash(parent, &this);
1749 if (err < 0)
1750 break;
1751 hash_len = this.hash_len;
1752 name = this.name;
1753 }
1754 }
1755
1756 nd->last.hash_len = hash_len;
1757 nd->last.name = name;
1758 nd->last_type = type;
1759
1760 name += hashlen_len(hash_len);
1761 if (!*name)
1762 return 0;
1763 /*
1764 * If it wasn't NUL, we know it was '/'. Skip that
1765 * slash, and continue until no more slashes.
1766 */
1767 do {
1768 name++;
1769 } while (unlikely(*name == '/'));
1770 if (!*name)
1771 return 0;
1772
1773 err = walk_component(nd, LOOKUP_FOLLOW);
1774 Walked:
1775 if (err < 0)
1776 return err;
1777
1778 if (err) {
1779 struct path link;
1780 void *cookie;
1781 const char *s;
1782
1783 if (unlikely(current->link_count >= MAX_NESTED_LINKS)) {
1784 path_put_conditional(&nd->link, nd);
1785 path_put(&nd->path);
1786 return -ELOOP;
1787 }
1788 BUG_ON(nd->depth >= MAX_NESTED_LINKS);
1789
1790 nd->depth++;
1791 current->link_count++;
1792
1793 link = nd->link;
1794 s = get_link(&link, nd, &cookie);
1795
1796 if (unlikely(IS_ERR(s))) {
1797 err = PTR_ERR(s);
1798 current->link_count--;
1799 nd->depth--;
1800 return err;
1801 }
1802 err = 0;
1803 if (unlikely(!s)) {
1804 /* jumped */
1805 put_link(nd, &link, cookie);
1806 current->link_count--;
1807 nd->depth--;
1808 } else {
1809 if (*s == '/') {
1810 if (!nd->root.mnt)
1811 set_root(nd);
1812 path_put(&nd->path);
1813 nd->path = nd->root;
1814 path_get(&nd->root);
1815 nd->flags |= LOOKUP_JUMPED;
1816 }
1817 nd->inode = nd->path.dentry->d_inode;
1818 err = link_path_walk(s, nd);
1819 if (unlikely(err)) {
1820 put_link(nd, &link, cookie);
1821 current->link_count--;
1822 nd->depth--;
1823 return err;
1824 } else {
1825 err = walk_component(nd, LOOKUP_FOLLOW);
1826 put_link(nd, &link, cookie);
1827 current->link_count--;
1828 nd->depth--;
1829 goto Walked;
1830 }
1831 }
1832 }
1833 if (!d_can_lookup(nd->path.dentry)) {
1834 err = -ENOTDIR;
1835 break;
1836 }
1837 }
1838 terminate_walk(nd);
1839 return err;
1840 }
1841
1842 static int path_init(int dfd, const struct filename *name, unsigned int flags,
1843 struct nameidata *nd)
1844 {
1845 int retval = 0;
1846 const char *s = name->name;
1847
1848 nd->last_type = LAST_ROOT; /* if there are only slashes... */
1849 nd->flags = flags | LOOKUP_JUMPED | LOOKUP_PARENT;
1850 nd->depth = 0;
1851 nd->base = NULL;
1852 if (flags & LOOKUP_ROOT) {
1853 struct dentry *root = nd->root.dentry;
1854 struct inode *inode = root->d_inode;
1855 if (*s) {
1856 if (!d_can_lookup(root))
1857 return -ENOTDIR;
1858 retval = inode_permission(inode, MAY_EXEC);
1859 if (retval)
1860 return retval;
1861 }
1862 nd->path = nd->root;
1863 nd->inode = inode;
1864 if (flags & LOOKUP_RCU) {
1865 rcu_read_lock();
1866 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1867 nd->m_seq = read_seqbegin(&mount_lock);
1868 } else {
1869 path_get(&nd->path);
1870 }
1871 goto done;
1872 }
1873
1874 nd->root.mnt = NULL;
1875
1876 nd->m_seq = read_seqbegin(&mount_lock);
1877 if (*s == '/') {
1878 if (flags & LOOKUP_RCU) {
1879 rcu_read_lock();
1880 nd->seq = set_root_rcu(nd);
1881 } else {
1882 set_root(nd);
1883 path_get(&nd->root);
1884 }
1885 nd->path = nd->root;
1886 } else if (dfd == AT_FDCWD) {
1887 if (flags & LOOKUP_RCU) {
1888 struct fs_struct *fs = current->fs;
1889 unsigned seq;
1890
1891 rcu_read_lock();
1892
1893 do {
1894 seq = read_seqcount_begin(&fs->seq);
1895 nd->path = fs->pwd;
1896 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1897 } while (read_seqcount_retry(&fs->seq, seq));
1898 } else {
1899 get_fs_pwd(current->fs, &nd->path);
1900 }
1901 } else {
1902 /* Caller must check execute permissions on the starting path component */
1903 struct fd f = fdget_raw(dfd);
1904 struct dentry *dentry;
1905
1906 if (!f.file)
1907 return -EBADF;
1908
1909 dentry = f.file->f_path.dentry;
1910
1911 if (*s) {
1912 if (!d_can_lookup(dentry)) {
1913 fdput(f);
1914 return -ENOTDIR;
1915 }
1916 }
1917
1918 nd->path = f.file->f_path;
1919 if (flags & LOOKUP_RCU) {
1920 if (f.flags & FDPUT_FPUT)
1921 nd->base = f.file;
1922 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1923 rcu_read_lock();
1924 } else {
1925 path_get(&nd->path);
1926 fdput(f);
1927 }
1928 }
1929
1930 nd->inode = nd->path.dentry->d_inode;
1931 if (!(flags & LOOKUP_RCU))
1932 goto done;
1933 if (likely(!read_seqcount_retry(&nd->path.dentry->d_seq, nd->seq)))
1934 goto done;
1935 if (!(nd->flags & LOOKUP_ROOT))
1936 nd->root.mnt = NULL;
1937 rcu_read_unlock();
1938 return -ECHILD;
1939 done:
1940 current->total_link_count = 0;
1941 return link_path_walk(s, nd);
1942 }
1943
1944 static void path_cleanup(struct nameidata *nd)
1945 {
1946 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
1947 path_put(&nd->root);
1948 nd->root.mnt = NULL;
1949 }
1950 if (unlikely(nd->base))
1951 fput(nd->base);
1952 }
1953
1954 static int trailing_symlink(struct path *link, struct nameidata *nd, void **p)
1955 {
1956 const char *s;
1957 int error = may_follow_link(link, nd);
1958 if (unlikely(error))
1959 return error;
1960 nd->flags |= LOOKUP_PARENT;
1961 s = get_link(link, nd, p);
1962 if (unlikely(IS_ERR(s)))
1963 return PTR_ERR(s);
1964 if (unlikely(!s))
1965 return 0;
1966 if (*s == '/') {
1967 if (!nd->root.mnt)
1968 set_root(nd);
1969 path_put(&nd->path);
1970 nd->path = nd->root;
1971 path_get(&nd->root);
1972 nd->flags |= LOOKUP_JUMPED;
1973 }
1974 nd->inode = nd->path.dentry->d_inode;
1975 error = link_path_walk(s, nd);
1976 if (unlikely(error))
1977 put_link(nd, link, *p);
1978 return error;
1979 }
1980
1981 static inline int lookup_last(struct nameidata *nd)
1982 {
1983 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
1984 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
1985
1986 nd->flags &= ~LOOKUP_PARENT;
1987 return walk_component(nd, nd->flags & LOOKUP_FOLLOW);
1988 }
1989
1990 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
1991 static int path_lookupat(int dfd, const struct filename *name,
1992 unsigned int flags, struct nameidata *nd)
1993 {
1994 int err;
1995
1996 /*
1997 * Path walking is largely split up into 2 different synchronisation
1998 * schemes, rcu-walk and ref-walk (explained in
1999 * Documentation/filesystems/path-lookup.txt). These share much of the
2000 * path walk code, but some things particularly setup, cleanup, and
2001 * following mounts are sufficiently divergent that functions are
2002 * duplicated. Typically there is a function foo(), and its RCU
2003 * analogue, foo_rcu().
2004 *
2005 * -ECHILD is the error number of choice (just to avoid clashes) that
2006 * is returned if some aspect of an rcu-walk fails. Such an error must
2007 * be handled by restarting a traditional ref-walk (which will always
2008 * be able to complete).
2009 */
2010 err = path_init(dfd, name, flags, nd);
2011 if (!err && !(flags & LOOKUP_PARENT)) {
2012 err = lookup_last(nd);
2013 while (err > 0) {
2014 void *cookie;
2015 struct path link = nd->link;
2016 err = trailing_symlink(&link, nd, &cookie);
2017 if (err)
2018 break;
2019 err = lookup_last(nd);
2020 put_link(nd, &link, cookie);
2021 }
2022 }
2023
2024 if (!err)
2025 err = complete_walk(nd);
2026
2027 if (!err && nd->flags & LOOKUP_DIRECTORY) {
2028 if (!d_can_lookup(nd->path.dentry)) {
2029 path_put(&nd->path);
2030 err = -ENOTDIR;
2031 }
2032 }
2033
2034 path_cleanup(nd);
2035 return err;
2036 }
2037
2038 static int filename_lookup(int dfd, struct filename *name,
2039 unsigned int flags, struct nameidata *nd)
2040 {
2041 int retval = path_lookupat(dfd, name, flags | LOOKUP_RCU, nd);
2042 if (unlikely(retval == -ECHILD))
2043 retval = path_lookupat(dfd, name, flags, nd);
2044 if (unlikely(retval == -ESTALE))
2045 retval = path_lookupat(dfd, name, flags | LOOKUP_REVAL, nd);
2046
2047 if (likely(!retval))
2048 audit_inode(name, nd->path.dentry, flags & LOOKUP_PARENT);
2049 return retval;
2050 }
2051
2052 /* does lookup, returns the object with parent locked */
2053 struct dentry *kern_path_locked(const char *name, struct path *path)
2054 {
2055 struct filename *filename = getname_kernel(name);
2056 struct nameidata nd;
2057 struct dentry *d;
2058 int err;
2059
2060 if (IS_ERR(filename))
2061 return ERR_CAST(filename);
2062
2063 err = filename_lookup(AT_FDCWD, filename, LOOKUP_PARENT, &nd);
2064 if (err) {
2065 d = ERR_PTR(err);
2066 goto out;
2067 }
2068 if (nd.last_type != LAST_NORM) {
2069 path_put(&nd.path);
2070 d = ERR_PTR(-EINVAL);
2071 goto out;
2072 }
2073 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2074 d = __lookup_hash(&nd.last, nd.path.dentry, 0);
2075 if (IS_ERR(d)) {
2076 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2077 path_put(&nd.path);
2078 goto out;
2079 }
2080 *path = nd.path;
2081 out:
2082 putname(filename);
2083 return d;
2084 }
2085
2086 int kern_path(const char *name, unsigned int flags, struct path *path)
2087 {
2088 struct nameidata nd;
2089 struct filename *filename = getname_kernel(name);
2090 int res = PTR_ERR(filename);
2091
2092 if (!IS_ERR(filename)) {
2093 res = filename_lookup(AT_FDCWD, filename, flags, &nd);
2094 putname(filename);
2095 if (!res)
2096 *path = nd.path;
2097 }
2098 return res;
2099 }
2100 EXPORT_SYMBOL(kern_path);
2101
2102 /**
2103 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2104 * @dentry: pointer to dentry of the base directory
2105 * @mnt: pointer to vfs mount of the base directory
2106 * @name: pointer to file name
2107 * @flags: lookup flags
2108 * @path: pointer to struct path to fill
2109 */
2110 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2111 const char *name, unsigned int flags,
2112 struct path *path)
2113 {
2114 struct filename *filename = getname_kernel(name);
2115 int err = PTR_ERR(filename);
2116
2117 BUG_ON(flags & LOOKUP_PARENT);
2118
2119 /* the first argument of filename_lookup() is ignored with LOOKUP_ROOT */
2120 if (!IS_ERR(filename)) {
2121 struct nameidata nd;
2122 nd.root.dentry = dentry;
2123 nd.root.mnt = mnt;
2124 err = filename_lookup(AT_FDCWD, filename,
2125 flags | LOOKUP_ROOT, &nd);
2126 if (!err)
2127 *path = nd.path;
2128 putname(filename);
2129 }
2130 return err;
2131 }
2132 EXPORT_SYMBOL(vfs_path_lookup);
2133
2134 /**
2135 * lookup_one_len - filesystem helper to lookup single pathname component
2136 * @name: pathname component to lookup
2137 * @base: base directory to lookup from
2138 * @len: maximum length @len should be interpreted to
2139 *
2140 * Note that this routine is purely a helper for filesystem usage and should
2141 * not be called by generic code.
2142 */
2143 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2144 {
2145 struct qstr this;
2146 unsigned int c;
2147 int err;
2148
2149 WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex));
2150
2151 this.name = name;
2152 this.len = len;
2153 this.hash = full_name_hash(name, len);
2154 if (!len)
2155 return ERR_PTR(-EACCES);
2156
2157 if (unlikely(name[0] == '.')) {
2158 if (len < 2 || (len == 2 && name[1] == '.'))
2159 return ERR_PTR(-EACCES);
2160 }
2161
2162 while (len--) {
2163 c = *(const unsigned char *)name++;
2164 if (c == '/' || c == '\0')
2165 return ERR_PTR(-EACCES);
2166 }
2167 /*
2168 * See if the low-level filesystem might want
2169 * to use its own hash..
2170 */
2171 if (base->d_flags & DCACHE_OP_HASH) {
2172 int err = base->d_op->d_hash(base, &this);
2173 if (err < 0)
2174 return ERR_PTR(err);
2175 }
2176
2177 err = inode_permission(base->d_inode, MAY_EXEC);
2178 if (err)
2179 return ERR_PTR(err);
2180
2181 return __lookup_hash(&this, base, 0);
2182 }
2183 EXPORT_SYMBOL(lookup_one_len);
2184
2185 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2186 struct path *path, int *empty)
2187 {
2188 struct nameidata nd;
2189 struct filename *tmp = getname_flags(name, flags, empty);
2190 int err = PTR_ERR(tmp);
2191 if (!IS_ERR(tmp)) {
2192
2193 BUG_ON(flags & LOOKUP_PARENT);
2194
2195 err = filename_lookup(dfd, tmp, flags, &nd);
2196 putname(tmp);
2197 if (!err)
2198 *path = nd.path;
2199 }
2200 return err;
2201 }
2202
2203 int user_path_at(int dfd, const char __user *name, unsigned flags,
2204 struct path *path)
2205 {
2206 return user_path_at_empty(dfd, name, flags, path, NULL);
2207 }
2208 EXPORT_SYMBOL(user_path_at);
2209
2210 /*
2211 * NB: most callers don't do anything directly with the reference to the
2212 * to struct filename, but the nd->last pointer points into the name string
2213 * allocated by getname. So we must hold the reference to it until all
2214 * path-walking is complete.
2215 */
2216 static struct filename *
2217 user_path_parent(int dfd, const char __user *path,
2218 struct path *parent,
2219 struct qstr *last,
2220 int *type,
2221 unsigned int flags)
2222 {
2223 struct nameidata nd;
2224 struct filename *s = getname(path);
2225 int error;
2226
2227 /* only LOOKUP_REVAL is allowed in extra flags */
2228 flags &= LOOKUP_REVAL;
2229
2230 if (IS_ERR(s))
2231 return s;
2232
2233 error = filename_lookup(dfd, s, flags | LOOKUP_PARENT, &nd);
2234 if (error) {
2235 putname(s);
2236 return ERR_PTR(error);
2237 }
2238 *parent = nd.path;
2239 *last = nd.last;
2240 *type = nd.last_type;
2241
2242 return s;
2243 }
2244
2245 /**
2246 * mountpoint_last - look up last component for umount
2247 * @nd: pathwalk nameidata - currently pointing at parent directory of "last"
2248 * @path: pointer to container for result
2249 *
2250 * This is a special lookup_last function just for umount. In this case, we
2251 * need to resolve the path without doing any revalidation.
2252 *
2253 * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since
2254 * mountpoints are always pinned in the dcache, their ancestors are too. Thus,
2255 * in almost all cases, this lookup will be served out of the dcache. The only
2256 * cases where it won't are if nd->last refers to a symlink or the path is
2257 * bogus and it doesn't exist.
2258 *
2259 * Returns:
2260 * -error: if there was an error during lookup. This includes -ENOENT if the
2261 * lookup found a negative dentry. The nd->path reference will also be
2262 * put in this case.
2263 *
2264 * 0: if we successfully resolved nd->path and found it to not to be a
2265 * symlink that needs to be followed. "path" will also be populated.
2266 * The nd->path reference will also be put.
2267 *
2268 * 1: if we successfully resolved nd->last and found it to be a symlink
2269 * that needs to be followed. "path" will be populated with the path
2270 * to the link, and nd->path will *not* be put.
2271 */
2272 static int
2273 mountpoint_last(struct nameidata *nd, struct path *path)
2274 {
2275 int error = 0;
2276 struct dentry *dentry;
2277 struct dentry *dir = nd->path.dentry;
2278
2279 /* If we're in rcuwalk, drop out of it to handle last component */
2280 if (nd->flags & LOOKUP_RCU) {
2281 if (unlazy_walk(nd, NULL)) {
2282 error = -ECHILD;
2283 goto out;
2284 }
2285 }
2286
2287 nd->flags &= ~LOOKUP_PARENT;
2288
2289 if (unlikely(nd->last_type != LAST_NORM)) {
2290 error = handle_dots(nd, nd->last_type);
2291 if (error)
2292 goto out;
2293 dentry = dget(nd->path.dentry);
2294 goto done;
2295 }
2296
2297 mutex_lock(&dir->d_inode->i_mutex);
2298 dentry = d_lookup(dir, &nd->last);
2299 if (!dentry) {
2300 /*
2301 * No cached dentry. Mounted dentries are pinned in the cache,
2302 * so that means that this dentry is probably a symlink or the
2303 * path doesn't actually point to a mounted dentry.
2304 */
2305 dentry = d_alloc(dir, &nd->last);
2306 if (!dentry) {
2307 error = -ENOMEM;
2308 mutex_unlock(&dir->d_inode->i_mutex);
2309 goto out;
2310 }
2311 dentry = lookup_real(dir->d_inode, dentry, nd->flags);
2312 error = PTR_ERR(dentry);
2313 if (IS_ERR(dentry)) {
2314 mutex_unlock(&dir->d_inode->i_mutex);
2315 goto out;
2316 }
2317 }
2318 mutex_unlock(&dir->d_inode->i_mutex);
2319
2320 done:
2321 if (d_is_negative(dentry)) {
2322 error = -ENOENT;
2323 dput(dentry);
2324 goto out;
2325 }
2326 path->dentry = dentry;
2327 path->mnt = nd->path.mnt;
2328 if (should_follow_link(dentry, nd->flags & LOOKUP_FOLLOW)) {
2329 nd->link = *path;
2330 return 1;
2331 }
2332 mntget(path->mnt);
2333 follow_mount(path);
2334 error = 0;
2335 out:
2336 terminate_walk(nd);
2337 return error;
2338 }
2339
2340 /**
2341 * path_mountpoint - look up a path to be umounted
2342 * @dfd: directory file descriptor to start walk from
2343 * @name: full pathname to walk
2344 * @path: pointer to container for result
2345 * @flags: lookup flags
2346 *
2347 * Look up the given name, but don't attempt to revalidate the last component.
2348 * Returns 0 and "path" will be valid on success; Returns error otherwise.
2349 */
2350 static int
2351 path_mountpoint(int dfd, const struct filename *name, struct path *path,
2352 struct nameidata *nd, unsigned int flags)
2353 {
2354 int err = path_init(dfd, name, flags, nd);
2355 if (unlikely(err))
2356 goto out;
2357
2358 err = mountpoint_last(nd, path);
2359 while (err > 0) {
2360 void *cookie;
2361 struct path link = *path;
2362 err = trailing_symlink(&link, nd, &cookie);
2363 if (err)
2364 break;
2365 err = mountpoint_last(nd, path);
2366 put_link(nd, &link, cookie);
2367 }
2368 out:
2369 path_cleanup(nd);
2370 return err;
2371 }
2372
2373 static int
2374 filename_mountpoint(int dfd, struct filename *name, struct path *path,
2375 unsigned int flags)
2376 {
2377 struct nameidata nd;
2378 int error;
2379 if (IS_ERR(name))
2380 return PTR_ERR(name);
2381 error = path_mountpoint(dfd, name, path, &nd, flags | LOOKUP_RCU);
2382 if (unlikely(error == -ECHILD))
2383 error = path_mountpoint(dfd, name, path, &nd, flags);
2384 if (unlikely(error == -ESTALE))
2385 error = path_mountpoint(dfd, name, path, &nd, flags | LOOKUP_REVAL);
2386 if (likely(!error))
2387 audit_inode(name, path->dentry, 0);
2388 putname(name);
2389 return error;
2390 }
2391
2392 /**
2393 * user_path_mountpoint_at - lookup a path from userland in order to umount it
2394 * @dfd: directory file descriptor
2395 * @name: pathname from userland
2396 * @flags: lookup flags
2397 * @path: pointer to container to hold result
2398 *
2399 * A umount is a special case for path walking. We're not actually interested
2400 * in the inode in this situation, and ESTALE errors can be a problem. We
2401 * simply want track down the dentry and vfsmount attached at the mountpoint
2402 * and avoid revalidating the last component.
2403 *
2404 * Returns 0 and populates "path" on success.
2405 */
2406 int
2407 user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags,
2408 struct path *path)
2409 {
2410 return filename_mountpoint(dfd, getname(name), path, flags);
2411 }
2412
2413 int
2414 kern_path_mountpoint(int dfd, const char *name, struct path *path,
2415 unsigned int flags)
2416 {
2417 return filename_mountpoint(dfd, getname_kernel(name), path, flags);
2418 }
2419 EXPORT_SYMBOL(kern_path_mountpoint);
2420
2421 int __check_sticky(struct inode *dir, struct inode *inode)
2422 {
2423 kuid_t fsuid = current_fsuid();
2424
2425 if (uid_eq(inode->i_uid, fsuid))
2426 return 0;
2427 if (uid_eq(dir->i_uid, fsuid))
2428 return 0;
2429 return !capable_wrt_inode_uidgid(inode, CAP_FOWNER);
2430 }
2431 EXPORT_SYMBOL(__check_sticky);
2432
2433 /*
2434 * Check whether we can remove a link victim from directory dir, check
2435 * whether the type of victim is right.
2436 * 1. We can't do it if dir is read-only (done in permission())
2437 * 2. We should have write and exec permissions on dir
2438 * 3. We can't remove anything from append-only dir
2439 * 4. We can't do anything with immutable dir (done in permission())
2440 * 5. If the sticky bit on dir is set we should either
2441 * a. be owner of dir, or
2442 * b. be owner of victim, or
2443 * c. have CAP_FOWNER capability
2444 * 6. If the victim is append-only or immutable we can't do antyhing with
2445 * links pointing to it.
2446 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2447 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2448 * 9. We can't remove a root or mountpoint.
2449 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
2450 * nfs_async_unlink().
2451 */
2452 static int may_delete(struct inode *dir, struct dentry *victim, bool isdir)
2453 {
2454 struct inode *inode = victim->d_inode;
2455 int error;
2456
2457 if (d_is_negative(victim))
2458 return -ENOENT;
2459 BUG_ON(!inode);
2460
2461 BUG_ON(victim->d_parent->d_inode != dir);
2462 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2463
2464 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2465 if (error)
2466 return error;
2467 if (IS_APPEND(dir))
2468 return -EPERM;
2469
2470 if (check_sticky(dir, inode) || IS_APPEND(inode) ||
2471 IS_IMMUTABLE(inode) || IS_SWAPFILE(inode))
2472 return -EPERM;
2473 if (isdir) {
2474 if (!d_is_dir(victim))
2475 return -ENOTDIR;
2476 if (IS_ROOT(victim))
2477 return -EBUSY;
2478 } else if (d_is_dir(victim))
2479 return -EISDIR;
2480 if (IS_DEADDIR(dir))
2481 return -ENOENT;
2482 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2483 return -EBUSY;
2484 return 0;
2485 }
2486
2487 /* Check whether we can create an object with dentry child in directory
2488 * dir.
2489 * 1. We can't do it if child already exists (open has special treatment for
2490 * this case, but since we are inlined it's OK)
2491 * 2. We can't do it if dir is read-only (done in permission())
2492 * 3. We should have write and exec permissions on dir
2493 * 4. We can't do it if dir is immutable (done in permission())
2494 */
2495 static inline int may_create(struct inode *dir, struct dentry *child)
2496 {
2497 audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
2498 if (child->d_inode)
2499 return -EEXIST;
2500 if (IS_DEADDIR(dir))
2501 return -ENOENT;
2502 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2503 }
2504
2505 /*
2506 * p1 and p2 should be directories on the same fs.
2507 */
2508 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2509 {
2510 struct dentry *p;
2511
2512 if (p1 == p2) {
2513 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2514 return NULL;
2515 }
2516
2517 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2518
2519 p = d_ancestor(p2, p1);
2520 if (p) {
2521 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
2522 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
2523 return p;
2524 }
2525
2526 p = d_ancestor(p1, p2);
2527 if (p) {
2528 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2529 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2530 return p;
2531 }
2532
2533 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2534 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT2);
2535 return NULL;
2536 }
2537 EXPORT_SYMBOL(lock_rename);
2538
2539 void unlock_rename(struct dentry *p1, struct dentry *p2)
2540 {
2541 mutex_unlock(&p1->d_inode->i_mutex);
2542 if (p1 != p2) {
2543 mutex_unlock(&p2->d_inode->i_mutex);
2544 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2545 }
2546 }
2547 EXPORT_SYMBOL(unlock_rename);
2548
2549 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2550 bool want_excl)
2551 {
2552 int error = may_create(dir, dentry);
2553 if (error)
2554 return error;
2555
2556 if (!dir->i_op->create)
2557 return -EACCES; /* shouldn't it be ENOSYS? */
2558 mode &= S_IALLUGO;
2559 mode |= S_IFREG;
2560 error = security_inode_create(dir, dentry, mode);
2561 if (error)
2562 return error;
2563 error = dir->i_op->create(dir, dentry, mode, want_excl);
2564 if (!error)
2565 fsnotify_create(dir, dentry);
2566 return error;
2567 }
2568 EXPORT_SYMBOL(vfs_create);
2569
2570 static int may_open(struct path *path, int acc_mode, int flag)
2571 {
2572 struct dentry *dentry = path->dentry;
2573 struct inode *inode = dentry->d_inode;
2574 int error;
2575
2576 /* O_PATH? */
2577 if (!acc_mode)
2578 return 0;
2579
2580 if (!inode)
2581 return -ENOENT;
2582
2583 switch (inode->i_mode & S_IFMT) {
2584 case S_IFLNK:
2585 return -ELOOP;
2586 case S_IFDIR:
2587 if (acc_mode & MAY_WRITE)
2588 return -EISDIR;
2589 break;
2590 case S_IFBLK:
2591 case S_IFCHR:
2592 if (path->mnt->mnt_flags & MNT_NODEV)
2593 return -EACCES;
2594 /*FALLTHRU*/
2595 case S_IFIFO:
2596 case S_IFSOCK:
2597 flag &= ~O_TRUNC;
2598 break;
2599 }
2600
2601 error = inode_permission(inode, acc_mode);
2602 if (error)
2603 return error;
2604
2605 /*
2606 * An append-only file must be opened in append mode for writing.
2607 */
2608 if (IS_APPEND(inode)) {
2609 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2610 return -EPERM;
2611 if (flag & O_TRUNC)
2612 return -EPERM;
2613 }
2614
2615 /* O_NOATIME can only be set by the owner or superuser */
2616 if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2617 return -EPERM;
2618
2619 return 0;
2620 }
2621
2622 static int handle_truncate(struct file *filp)
2623 {
2624 struct path *path = &filp->f_path;
2625 struct inode *inode = path->dentry->d_inode;
2626 int error = get_write_access(inode);
2627 if (error)
2628 return error;
2629 /*
2630 * Refuse to truncate files with mandatory locks held on them.
2631 */
2632 error = locks_verify_locked(filp);
2633 if (!error)
2634 error = security_path_truncate(path);
2635 if (!error) {
2636 error = do_truncate(path->dentry, 0,
2637 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2638 filp);
2639 }
2640 put_write_access(inode);
2641 return error;
2642 }
2643
2644 static inline int open_to_namei_flags(int flag)
2645 {
2646 if ((flag & O_ACCMODE) == 3)
2647 flag--;
2648 return flag;
2649 }
2650
2651 static int may_o_create(struct path *dir, struct dentry *dentry, umode_t mode)
2652 {
2653 int error = security_path_mknod(dir, dentry, mode, 0);
2654 if (error)
2655 return error;
2656
2657 error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
2658 if (error)
2659 return error;
2660
2661 return security_inode_create(dir->dentry->d_inode, dentry, mode);
2662 }
2663
2664 /*
2665 * Attempt to atomically look up, create and open a file from a negative
2666 * dentry.
2667 *
2668 * Returns 0 if successful. The file will have been created and attached to
2669 * @file by the filesystem calling finish_open().
2670 *
2671 * Returns 1 if the file was looked up only or didn't need creating. The
2672 * caller will need to perform the open themselves. @path will have been
2673 * updated to point to the new dentry. This may be negative.
2674 *
2675 * Returns an error code otherwise.
2676 */
2677 static int atomic_open(struct nameidata *nd, struct dentry *dentry,
2678 struct path *path, struct file *file,
2679 const struct open_flags *op,
2680 bool got_write, bool need_lookup,
2681 int *opened)
2682 {
2683 struct inode *dir = nd->path.dentry->d_inode;
2684 unsigned open_flag = open_to_namei_flags(op->open_flag);
2685 umode_t mode;
2686 int error;
2687 int acc_mode;
2688 int create_error = 0;
2689 struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
2690 bool excl;
2691
2692 BUG_ON(dentry->d_inode);
2693
2694 /* Don't create child dentry for a dead directory. */
2695 if (unlikely(IS_DEADDIR(dir))) {
2696 error = -ENOENT;
2697 goto out;
2698 }
2699
2700 mode = op->mode;
2701 if ((open_flag & O_CREAT) && !IS_POSIXACL(dir))
2702 mode &= ~current_umask();
2703
2704 excl = (open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT);
2705 if (excl)
2706 open_flag &= ~O_TRUNC;
2707
2708 /*
2709 * Checking write permission is tricky, bacuse we don't know if we are
2710 * going to actually need it: O_CREAT opens should work as long as the
2711 * file exists. But checking existence breaks atomicity. The trick is
2712 * to check access and if not granted clear O_CREAT from the flags.
2713 *
2714 * Another problem is returing the "right" error value (e.g. for an
2715 * O_EXCL open we want to return EEXIST not EROFS).
2716 */
2717 if (((open_flag & (O_CREAT | O_TRUNC)) ||
2718 (open_flag & O_ACCMODE) != O_RDONLY) && unlikely(!got_write)) {
2719 if (!(open_flag & O_CREAT)) {
2720 /*
2721 * No O_CREATE -> atomicity not a requirement -> fall
2722 * back to lookup + open
2723 */
2724 goto no_open;
2725 } else if (open_flag & (O_EXCL | O_TRUNC)) {
2726 /* Fall back and fail with the right error */
2727 create_error = -EROFS;
2728 goto no_open;
2729 } else {
2730 /* No side effects, safe to clear O_CREAT */
2731 create_error = -EROFS;
2732 open_flag &= ~O_CREAT;
2733 }
2734 }
2735
2736 if (open_flag & O_CREAT) {
2737 error = may_o_create(&nd->path, dentry, mode);
2738 if (error) {
2739 create_error = error;
2740 if (open_flag & O_EXCL)
2741 goto no_open;
2742 open_flag &= ~O_CREAT;
2743 }
2744 }
2745
2746 if (nd->flags & LOOKUP_DIRECTORY)
2747 open_flag |= O_DIRECTORY;
2748
2749 file->f_path.dentry = DENTRY_NOT_SET;
2750 file->f_path.mnt = nd->path.mnt;
2751 error = dir->i_op->atomic_open(dir, dentry, file, open_flag, mode,
2752 opened);
2753 if (error < 0) {
2754 if (create_error && error == -ENOENT)
2755 error = create_error;
2756 goto out;
2757 }
2758
2759 if (error) { /* returned 1, that is */
2760 if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
2761 error = -EIO;
2762 goto out;
2763 }
2764 if (file->f_path.dentry) {
2765 dput(dentry);
2766 dentry = file->f_path.dentry;
2767 }
2768 if (*opened & FILE_CREATED)
2769 fsnotify_create(dir, dentry);
2770 if (!dentry->d_inode) {
2771 WARN_ON(*opened & FILE_CREATED);
2772 if (create_error) {
2773 error = create_error;
2774 goto out;
2775 }
2776 } else {
2777 if (excl && !(*opened & FILE_CREATED)) {
2778 error = -EEXIST;
2779 goto out;
2780 }
2781 }
2782 goto looked_up;
2783 }
2784
2785 /*
2786 * We didn't have the inode before the open, so check open permission
2787 * here.
2788 */
2789 acc_mode = op->acc_mode;
2790 if (*opened & FILE_CREATED) {
2791 WARN_ON(!(open_flag & O_CREAT));
2792 fsnotify_create(dir, dentry);
2793 acc_mode = MAY_OPEN;
2794 }
2795 error = may_open(&file->f_path, acc_mode, open_flag);
2796 if (error)
2797 fput(file);
2798
2799 out:
2800 dput(dentry);
2801 return error;
2802
2803 no_open:
2804 if (need_lookup) {
2805 dentry = lookup_real(dir, dentry, nd->flags);
2806 if (IS_ERR(dentry))
2807 return PTR_ERR(dentry);
2808
2809 if (create_error) {
2810 int open_flag = op->open_flag;
2811
2812 error = create_error;
2813 if ((open_flag & O_EXCL)) {
2814 if (!dentry->d_inode)
2815 goto out;
2816 } else if (!dentry->d_inode) {
2817 goto out;
2818 } else if ((open_flag & O_TRUNC) &&
2819 d_is_reg(dentry)) {
2820 goto out;
2821 }
2822 /* will fail later, go on to get the right error */
2823 }
2824 }
2825 looked_up:
2826 path->dentry = dentry;
2827 path->mnt = nd->path.mnt;
2828 return 1;
2829 }
2830
2831 /*
2832 * Look up and maybe create and open the last component.
2833 *
2834 * Must be called with i_mutex held on parent.
2835 *
2836 * Returns 0 if the file was successfully atomically created (if necessary) and
2837 * opened. In this case the file will be returned attached to @file.
2838 *
2839 * Returns 1 if the file was not completely opened at this time, though lookups
2840 * and creations will have been performed and the dentry returned in @path will
2841 * be positive upon return if O_CREAT was specified. If O_CREAT wasn't
2842 * specified then a negative dentry may be returned.
2843 *
2844 * An error code is returned otherwise.
2845 *
2846 * FILE_CREATE will be set in @*opened if the dentry was created and will be
2847 * cleared otherwise prior to returning.
2848 */
2849 static int lookup_open(struct nameidata *nd, struct path *path,
2850 struct file *file,
2851 const struct open_flags *op,
2852 bool got_write, int *opened)
2853 {
2854 struct dentry *dir = nd->path.dentry;
2855 struct inode *dir_inode = dir->d_inode;
2856 struct dentry *dentry;
2857 int error;
2858 bool need_lookup;
2859
2860 *opened &= ~FILE_CREATED;
2861 dentry = lookup_dcache(&nd->last, dir, nd->flags, &need_lookup);
2862 if (IS_ERR(dentry))
2863 return PTR_ERR(dentry);
2864
2865 /* Cached positive dentry: will open in f_op->open */
2866 if (!need_lookup && dentry->d_inode)
2867 goto out_no_open;
2868
2869 if ((nd->flags & LOOKUP_OPEN) && dir_inode->i_op->atomic_open) {
2870 return atomic_open(nd, dentry, path, file, op, got_write,
2871 need_lookup, opened);
2872 }
2873
2874 if (need_lookup) {
2875 BUG_ON(dentry->d_inode);
2876
2877 dentry = lookup_real(dir_inode, dentry, nd->flags);
2878 if (IS_ERR(dentry))
2879 return PTR_ERR(dentry);
2880 }
2881
2882 /* Negative dentry, just create the file */
2883 if (!dentry->d_inode && (op->open_flag & O_CREAT)) {
2884 umode_t mode = op->mode;
2885 if (!IS_POSIXACL(dir->d_inode))
2886 mode &= ~current_umask();
2887 /*
2888 * This write is needed to ensure that a
2889 * rw->ro transition does not occur between
2890 * the time when the file is created and when
2891 * a permanent write count is taken through
2892 * the 'struct file' in finish_open().
2893 */
2894 if (!got_write) {
2895 error = -EROFS;
2896 goto out_dput;
2897 }
2898 *opened |= FILE_CREATED;
2899 error = security_path_mknod(&nd->path, dentry, mode, 0);
2900 if (error)
2901 goto out_dput;
2902 error = vfs_create(dir->d_inode, dentry, mode,
2903 nd->flags & LOOKUP_EXCL);
2904 if (error)
2905 goto out_dput;
2906 }
2907 out_no_open:
2908 path->dentry = dentry;
2909 path->mnt = nd->path.mnt;
2910 return 1;
2911
2912 out_dput:
2913 dput(dentry);
2914 return error;
2915 }
2916
2917 /*
2918 * Handle the last step of open()
2919 */
2920 static int do_last(struct nameidata *nd,
2921 struct file *file, const struct open_flags *op,
2922 int *opened, struct filename *name)
2923 {
2924 struct dentry *dir = nd->path.dentry;
2925 int open_flag = op->open_flag;
2926 bool will_truncate = (open_flag & O_TRUNC) != 0;
2927 bool got_write = false;
2928 int acc_mode = op->acc_mode;
2929 struct inode *inode;
2930 struct path save_parent = { .dentry = NULL, .mnt = NULL };
2931 struct path path;
2932 bool retried = false;
2933 int error;
2934
2935 nd->flags &= ~LOOKUP_PARENT;
2936 nd->flags |= op->intent;
2937
2938 if (nd->last_type != LAST_NORM) {
2939 error = handle_dots(nd, nd->last_type);
2940 if (error)
2941 return error;
2942 goto finish_open;
2943 }
2944
2945 if (!(open_flag & O_CREAT)) {
2946 if (nd->last.name[nd->last.len])
2947 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2948 /* we _can_ be in RCU mode here */
2949 error = lookup_fast(nd, &path, &inode);
2950 if (likely(!error))
2951 goto finish_lookup;
2952
2953 if (error < 0)
2954 goto out;
2955
2956 BUG_ON(nd->inode != dir->d_inode);
2957 } else {
2958 /* create side of things */
2959 /*
2960 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED
2961 * has been cleared when we got to the last component we are
2962 * about to look up
2963 */
2964 error = complete_walk(nd);
2965 if (error)
2966 return error;
2967
2968 audit_inode(name, dir, LOOKUP_PARENT);
2969 error = -EISDIR;
2970 /* trailing slashes? */
2971 if (nd->last.name[nd->last.len])
2972 goto out;
2973 }
2974
2975 retry_lookup:
2976 if (op->open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
2977 error = mnt_want_write(nd->path.mnt);
2978 if (!error)
2979 got_write = true;
2980 /*
2981 * do _not_ fail yet - we might not need that or fail with
2982 * a different error; let lookup_open() decide; we'll be
2983 * dropping this one anyway.
2984 */
2985 }
2986 mutex_lock(&dir->d_inode->i_mutex);
2987 error = lookup_open(nd, &path, file, op, got_write, opened);
2988 mutex_unlock(&dir->d_inode->i_mutex);
2989
2990 if (error <= 0) {
2991 if (error)
2992 goto out;
2993
2994 if ((*opened & FILE_CREATED) ||
2995 !S_ISREG(file_inode(file)->i_mode))
2996 will_truncate = false;
2997
2998 audit_inode(name, file->f_path.dentry, 0);
2999 goto opened;
3000 }
3001
3002 if (*opened & FILE_CREATED) {
3003 /* Don't check for write permission, don't truncate */
3004 open_flag &= ~O_TRUNC;
3005 will_truncate = false;
3006 acc_mode = MAY_OPEN;
3007 path_to_nameidata(&path, nd);
3008 goto finish_open_created;
3009 }
3010
3011 /*
3012 * create/update audit record if it already exists.
3013 */
3014 if (d_is_positive(path.dentry))
3015 audit_inode(name, path.dentry, 0);
3016
3017 /*
3018 * If atomic_open() acquired write access it is dropped now due to
3019 * possible mount and symlink following (this might be optimized away if
3020 * necessary...)
3021 */
3022 if (got_write) {
3023 mnt_drop_write(nd->path.mnt);
3024 got_write = false;
3025 }
3026
3027 error = -EEXIST;
3028 if ((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))
3029 goto exit_dput;
3030
3031 error = follow_managed(&path, nd->flags);
3032 if (error < 0)
3033 goto exit_dput;
3034
3035 if (error)
3036 nd->flags |= LOOKUP_JUMPED;
3037
3038 BUG_ON(nd->flags & LOOKUP_RCU);
3039 inode = path.dentry->d_inode;
3040 error = -ENOENT;
3041 if (d_is_negative(path.dentry)) {
3042 path_to_nameidata(&path, nd);
3043 goto out;
3044 }
3045 finish_lookup:
3046 if (should_follow_link(path.dentry, nd->flags & LOOKUP_FOLLOW)) {
3047 if (nd->flags & LOOKUP_RCU) {
3048 if (unlikely(nd->path.mnt != path.mnt ||
3049 unlazy_walk(nd, path.dentry))) {
3050 error = -ECHILD;
3051 goto out;
3052 }
3053 }
3054 BUG_ON(inode != path.dentry->d_inode);
3055 nd->link = path;
3056 return 1;
3057 }
3058
3059 if (unlikely(d_is_symlink(path.dentry)) && !(open_flag & O_PATH)) {
3060 path_to_nameidata(&path, nd);
3061 error = -ELOOP;
3062 goto out;
3063 }
3064
3065 if ((nd->flags & LOOKUP_RCU) || nd->path.mnt != path.mnt) {
3066 path_to_nameidata(&path, nd);
3067 } else {
3068 save_parent.dentry = nd->path.dentry;
3069 save_parent.mnt = mntget(path.mnt);
3070 nd->path.dentry = path.dentry;
3071
3072 }
3073 nd->inode = inode;
3074 /* Why this, you ask? _Now_ we might have grown LOOKUP_JUMPED... */
3075 finish_open:
3076 error = complete_walk(nd);
3077 if (error) {
3078 path_put(&save_parent);
3079 return error;
3080 }
3081 audit_inode(name, nd->path.dentry, 0);
3082 error = -EISDIR;
3083 if ((open_flag & O_CREAT) && d_is_dir(nd->path.dentry))
3084 goto out;
3085 error = -ENOTDIR;
3086 if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3087 goto out;
3088 if (!d_is_reg(nd->path.dentry))
3089 will_truncate = false;
3090
3091 if (will_truncate) {
3092 error = mnt_want_write(nd->path.mnt);
3093 if (error)
3094 goto out;
3095 got_write = true;
3096 }
3097 finish_open_created:
3098 error = may_open(&nd->path, acc_mode, open_flag);
3099 if (error)
3100 goto out;
3101
3102 BUG_ON(*opened & FILE_OPENED); /* once it's opened, it's opened */
3103 error = vfs_open(&nd->path, file, current_cred());
3104 if (!error) {
3105 *opened |= FILE_OPENED;
3106 } else {
3107 if (error == -EOPENSTALE)
3108 goto stale_open;
3109 goto out;
3110 }
3111 opened:
3112 error = open_check_o_direct(file);
3113 if (error)
3114 goto exit_fput;
3115 error = ima_file_check(file, op->acc_mode, *opened);
3116 if (error)
3117 goto exit_fput;
3118
3119 if (will_truncate) {
3120 error = handle_truncate(file);
3121 if (error)
3122 goto exit_fput;
3123 }
3124 out:
3125 if (got_write)
3126 mnt_drop_write(nd->path.mnt);
3127 path_put(&save_parent);
3128 terminate_walk(nd);
3129 return error;
3130
3131 exit_dput:
3132 path_put_conditional(&path, nd);
3133 goto out;
3134 exit_fput:
3135 fput(file);
3136 goto out;
3137
3138 stale_open:
3139 /* If no saved parent or already retried then can't retry */
3140 if (!save_parent.dentry || retried)
3141 goto out;
3142
3143 BUG_ON(save_parent.dentry != dir);
3144 path_put(&nd->path);
3145 nd->path = save_parent;
3146 nd->inode = dir->d_inode;
3147 save_parent.mnt = NULL;
3148 save_parent.dentry = NULL;
3149 if (got_write) {
3150 mnt_drop_write(nd->path.mnt);
3151 got_write = false;
3152 }
3153 retried = true;
3154 goto retry_lookup;
3155 }
3156
3157 static int do_tmpfile(int dfd, struct filename *pathname,
3158 struct nameidata *nd, int flags,
3159 const struct open_flags *op,
3160 struct file *file, int *opened)
3161 {
3162 static const struct qstr name = QSTR_INIT("/", 1);
3163 struct dentry *dentry, *child;
3164 struct inode *dir;
3165 int error = path_lookupat(dfd, pathname,
3166 flags | LOOKUP_DIRECTORY, nd);
3167 if (unlikely(error))
3168 return error;
3169 error = mnt_want_write(nd->path.mnt);
3170 if (unlikely(error))
3171 goto out;
3172 /* we want directory to be writable */
3173 error = inode_permission(nd->inode, MAY_WRITE | MAY_EXEC);
3174 if (error)
3175 goto out2;
3176 dentry = nd->path.dentry;
3177 dir = dentry->d_inode;
3178 if (!dir->i_op->tmpfile) {
3179 error = -EOPNOTSUPP;
3180 goto out2;
3181 }
3182 child = d_alloc(dentry, &name);
3183 if (unlikely(!child)) {
3184 error = -ENOMEM;
3185 goto out2;
3186 }
3187 nd->flags &= ~LOOKUP_DIRECTORY;
3188 nd->flags |= op->intent;
3189 dput(nd->path.dentry);
3190 nd->path.dentry = child;
3191 error = dir->i_op->tmpfile(dir, nd->path.dentry, op->mode);
3192 if (error)
3193 goto out2;
3194 audit_inode(pathname, nd->path.dentry, 0);
3195 /* Don't check for other permissions, the inode was just created */
3196 error = may_open(&nd->path, MAY_OPEN, op->open_flag);
3197 if (error)
3198 goto out2;
3199 file->f_path.mnt = nd->path.mnt;
3200 error = finish_open(file, nd->path.dentry, NULL, opened);
3201 if (error)
3202 goto out2;
3203 error = open_check_o_direct(file);
3204 if (error) {
3205 fput(file);
3206 } else if (!(op->open_flag & O_EXCL)) {
3207 struct inode *inode = file_inode(file);
3208 spin_lock(&inode->i_lock);
3209 inode->i_state |= I_LINKABLE;
3210 spin_unlock(&inode->i_lock);
3211 }
3212 out2:
3213 mnt_drop_write(nd->path.mnt);
3214 out:
3215 path_put(&nd->path);
3216 return error;
3217 }
3218
3219 static struct file *path_openat(int dfd, struct filename *pathname,
3220 struct nameidata *nd, const struct open_flags *op, int flags)
3221 {
3222 struct file *file;
3223 int opened = 0;
3224 int error;
3225
3226 file = get_empty_filp();
3227 if (IS_ERR(file))
3228 return file;
3229
3230 file->f_flags = op->open_flag;
3231
3232 if (unlikely(file->f_flags & __O_TMPFILE)) {
3233 error = do_tmpfile(dfd, pathname, nd, flags, op, file, &opened);
3234 goto out2;
3235 }
3236
3237 error = path_init(dfd, pathname, flags, nd);
3238 if (unlikely(error))
3239 goto out;
3240
3241 error = do_last(nd, file, op, &opened, pathname);
3242 while (unlikely(error > 0)) { /* trailing symlink */
3243 struct path link = nd->link;
3244 void *cookie;
3245 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3246 error = trailing_symlink(&link, nd, &cookie);
3247 if (unlikely(error))
3248 break;
3249 error = do_last(nd, file, op, &opened, pathname);
3250 put_link(nd, &link, cookie);
3251 }
3252 out:
3253 path_cleanup(nd);
3254 out2:
3255 if (!(opened & FILE_OPENED)) {
3256 BUG_ON(!error);
3257 put_filp(file);
3258 }
3259 if (unlikely(error)) {
3260 if (error == -EOPENSTALE) {
3261 if (flags & LOOKUP_RCU)
3262 error = -ECHILD;
3263 else
3264 error = -ESTALE;
3265 }
3266 file = ERR_PTR(error);
3267 }
3268 return file;
3269 }
3270
3271 struct file *do_filp_open(int dfd, struct filename *pathname,
3272 const struct open_flags *op)
3273 {
3274 struct nameidata nd;
3275 int flags = op->lookup_flags;
3276 struct file *filp;
3277
3278 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_RCU);
3279 if (unlikely(filp == ERR_PTR(-ECHILD)))
3280 filp = path_openat(dfd, pathname, &nd, op, flags);
3281 if (unlikely(filp == ERR_PTR(-ESTALE)))
3282 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_REVAL);
3283 return filp;
3284 }
3285
3286 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
3287 const char *name, const struct open_flags *op)
3288 {
3289 struct nameidata nd;
3290 struct file *file;
3291 struct filename *filename;
3292 int flags = op->lookup_flags | LOOKUP_ROOT;
3293
3294 nd.root.mnt = mnt;
3295 nd.root.dentry = dentry;
3296
3297 if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN)
3298 return ERR_PTR(-ELOOP);
3299
3300 filename = getname_kernel(name);
3301 if (unlikely(IS_ERR(filename)))
3302 return ERR_CAST(filename);
3303
3304 file = path_openat(-1, filename, &nd, op, flags | LOOKUP_RCU);
3305 if (unlikely(file == ERR_PTR(-ECHILD)))
3306 file = path_openat(-1, filename, &nd, op, flags);
3307 if (unlikely(file == ERR_PTR(-ESTALE)))
3308 file = path_openat(-1, filename, &nd, op, flags | LOOKUP_REVAL);
3309 putname(filename);
3310 return file;
3311 }
3312
3313 static struct dentry *filename_create(int dfd, struct filename *name,
3314 struct path *path, unsigned int lookup_flags)
3315 {
3316 struct dentry *dentry = ERR_PTR(-EEXIST);
3317 struct nameidata nd;
3318 int err2;
3319 int error;
3320 bool is_dir = (lookup_flags & LOOKUP_DIRECTORY);
3321
3322 /*
3323 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
3324 * other flags passed in are ignored!
3325 */
3326 lookup_flags &= LOOKUP_REVAL;
3327
3328 error = filename_lookup(dfd, name, LOOKUP_PARENT|lookup_flags, &nd);
3329 if (error)
3330 return ERR_PTR(error);
3331
3332 /*
3333 * Yucky last component or no last component at all?
3334 * (foo/., foo/.., /////)
3335 */
3336 if (nd.last_type != LAST_NORM)
3337 goto out;
3338 nd.flags &= ~LOOKUP_PARENT;
3339 nd.flags |= LOOKUP_CREATE | LOOKUP_EXCL;
3340
3341 /* don't fail immediately if it's r/o, at least try to report other errors */
3342 err2 = mnt_want_write(nd.path.mnt);
3343 /*
3344 * Do the final lookup.
3345 */
3346 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3347 dentry = __lookup_hash(&nd.last, nd.path.dentry, nd.flags);
3348 if (IS_ERR(dentry))
3349 goto unlock;
3350
3351 error = -EEXIST;
3352 if (d_is_positive(dentry))
3353 goto fail;
3354
3355 /*
3356 * Special case - lookup gave negative, but... we had foo/bar/
3357 * From the vfs_mknod() POV we just have a negative dentry -
3358 * all is fine. Let's be bastards - you had / on the end, you've
3359 * been asking for (non-existent) directory. -ENOENT for you.
3360 */
3361 if (unlikely(!is_dir && nd.last.name[nd.last.len])) {
3362 error = -ENOENT;
3363 goto fail;
3364 }
3365 if (unlikely(err2)) {
3366 error = err2;
3367 goto fail;
3368 }
3369 *path = nd.path;
3370 return dentry;
3371 fail:
3372 dput(dentry);
3373 dentry = ERR_PTR(error);
3374 unlock:
3375 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3376 if (!err2)
3377 mnt_drop_write(nd.path.mnt);
3378 out:
3379 path_put(&nd.path);
3380 return dentry;
3381 }
3382
3383 struct dentry *kern_path_create(int dfd, const char *pathname,
3384 struct path *path, unsigned int lookup_flags)
3385 {
3386 struct filename *filename = getname_kernel(pathname);
3387 struct dentry *res;
3388
3389 if (IS_ERR(filename))
3390 return ERR_CAST(filename);
3391 res = filename_create(dfd, filename, path, lookup_flags);
3392 putname(filename);
3393 return res;
3394 }
3395 EXPORT_SYMBOL(kern_path_create);
3396
3397 void done_path_create(struct path *path, struct dentry *dentry)
3398 {
3399 dput(dentry);
3400 mutex_unlock(&path->dentry->d_inode->i_mutex);
3401 mnt_drop_write(path->mnt);
3402 path_put(path);
3403 }
3404 EXPORT_SYMBOL(done_path_create);
3405
3406 struct dentry *user_path_create(int dfd, const char __user *pathname,
3407 struct path *path, unsigned int lookup_flags)
3408 {
3409 struct filename *tmp = getname(pathname);
3410 struct dentry *res;
3411 if (IS_ERR(tmp))
3412 return ERR_CAST(tmp);
3413 res = filename_create(dfd, tmp, path, lookup_flags);
3414 putname(tmp);
3415 return res;
3416 }
3417 EXPORT_SYMBOL(user_path_create);
3418
3419 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3420 {
3421 int error = may_create(dir, dentry);
3422
3423 if (error)
3424 return error;
3425
3426 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
3427 return -EPERM;
3428
3429 if (!dir->i_op->mknod)
3430 return -EPERM;
3431
3432 error = devcgroup_inode_mknod(mode, dev);
3433 if (error)
3434 return error;
3435
3436 error = security_inode_mknod(dir, dentry, mode, dev);
3437 if (error)
3438 return error;
3439
3440 error = dir->i_op->mknod(dir, dentry, mode, dev);
3441 if (!error)
3442 fsnotify_create(dir, dentry);
3443 return error;
3444 }
3445 EXPORT_SYMBOL(vfs_mknod);
3446
3447 static int may_mknod(umode_t mode)
3448 {
3449 switch (mode & S_IFMT) {
3450 case S_IFREG:
3451 case S_IFCHR:
3452 case S_IFBLK:
3453 case S_IFIFO:
3454 case S_IFSOCK:
3455 case 0: /* zero mode translates to S_IFREG */
3456 return 0;
3457 case S_IFDIR:
3458 return -EPERM;
3459 default:
3460 return -EINVAL;
3461 }
3462 }
3463
3464 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3465 unsigned, dev)
3466 {
3467 struct dentry *dentry;
3468 struct path path;
3469 int error;
3470 unsigned int lookup_flags = 0;
3471
3472 error = may_mknod(mode);
3473 if (error)
3474 return error;
3475 retry:
3476 dentry = user_path_create(dfd, filename, &path, lookup_flags);
3477 if (IS_ERR(dentry))
3478 return PTR_ERR(dentry);
3479
3480 if (!IS_POSIXACL(path.dentry->d_inode))
3481 mode &= ~current_umask();
3482 error = security_path_mknod(&path, dentry, mode, dev);
3483 if (error)
3484 goto out;
3485 switch (mode & S_IFMT) {
3486 case 0: case S_IFREG:
3487 error = vfs_create(path.dentry->d_inode,dentry,mode,true);
3488 break;
3489 case S_IFCHR: case S_IFBLK:
3490 error = vfs_mknod(path.dentry->d_inode,dentry,mode,
3491 new_decode_dev(dev));
3492 break;
3493 case S_IFIFO: case S_IFSOCK:
3494 error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
3495 break;
3496 }
3497 out:
3498 done_path_create(&path, dentry);
3499 if (retry_estale(error, lookup_flags)) {
3500 lookup_flags |= LOOKUP_REVAL;
3501 goto retry;
3502 }
3503 return error;
3504 }
3505
3506 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3507 {
3508 return sys_mknodat(AT_FDCWD, filename, mode, dev);
3509 }
3510
3511 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3512 {
3513 int error = may_create(dir, dentry);
3514 unsigned max_links = dir->i_sb->s_max_links;
3515
3516 if (error)
3517 return error;
3518
3519 if (!dir->i_op->mkdir)
3520 return -EPERM;
3521
3522 mode &= (S_IRWXUGO|S_ISVTX);
3523 error = security_inode_mkdir(dir, dentry, mode);
3524 if (error)
3525 return error;
3526
3527 if (max_links && dir->i_nlink >= max_links)
3528 return -EMLINK;
3529
3530 error = dir->i_op->mkdir(dir, dentry, mode);
3531 if (!error)
3532 fsnotify_mkdir(dir, dentry);
3533 return error;
3534 }
3535 EXPORT_SYMBOL(vfs_mkdir);
3536
3537 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3538 {
3539 struct dentry *dentry;
3540 struct path path;
3541 int error;
3542 unsigned int lookup_flags = LOOKUP_DIRECTORY;
3543
3544 retry:
3545 dentry = user_path_create(dfd, pathname, &path, lookup_flags);
3546 if (IS_ERR(dentry))
3547 return PTR_ERR(dentry);
3548
3549 if (!IS_POSIXACL(path.dentry->d_inode))
3550 mode &= ~current_umask();
3551 error = security_path_mkdir(&path, dentry, mode);
3552 if (!error)
3553 error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
3554 done_path_create(&path, dentry);
3555 if (retry_estale(error, lookup_flags)) {
3556 lookup_flags |= LOOKUP_REVAL;
3557 goto retry;
3558 }
3559 return error;
3560 }
3561
3562 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3563 {
3564 return sys_mkdirat(AT_FDCWD, pathname, mode);
3565 }
3566
3567 /*
3568 * The dentry_unhash() helper will try to drop the dentry early: we
3569 * should have a usage count of 1 if we're the only user of this
3570 * dentry, and if that is true (possibly after pruning the dcache),
3571 * then we drop the dentry now.
3572 *
3573 * A low-level filesystem can, if it choses, legally
3574 * do a
3575 *
3576 * if (!d_unhashed(dentry))
3577 * return -EBUSY;
3578 *
3579 * if it cannot handle the case of removing a directory
3580 * that is still in use by something else..
3581 */
3582 void dentry_unhash(struct dentry *dentry)
3583 {
3584 shrink_dcache_parent(dentry);
3585 spin_lock(&dentry->d_lock);
3586 if (dentry->d_lockref.count == 1)
3587 __d_drop(dentry);
3588 spin_unlock(&dentry->d_lock);
3589 }
3590 EXPORT_SYMBOL(dentry_unhash);
3591
3592 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
3593 {
3594 int error = may_delete(dir, dentry, 1);
3595
3596 if (error)
3597 return error;
3598
3599 if (!dir->i_op->rmdir)
3600 return -EPERM;
3601
3602 dget(dentry);
3603 mutex_lock(&dentry->d_inode->i_mutex);
3604
3605 error = -EBUSY;
3606 if (is_local_mountpoint(dentry))
3607 goto out;
3608
3609 error = security_inode_rmdir(dir, dentry);
3610 if (error)
3611 goto out;
3612
3613 shrink_dcache_parent(dentry);
3614 error = dir->i_op->rmdir(dir, dentry);
3615 if (error)
3616 goto out;
3617
3618 dentry->d_inode->i_flags |= S_DEAD;
3619 dont_mount(dentry);
3620 detach_mounts(dentry);
3621
3622 out:
3623 mutex_unlock(&dentry->d_inode->i_mutex);
3624 dput(dentry);
3625 if (!error)
3626 d_delete(dentry);
3627 return error;
3628 }
3629 EXPORT_SYMBOL(vfs_rmdir);
3630
3631 static long do_rmdir(int dfd, const char __user *pathname)
3632 {
3633 int error = 0;
3634 struct filename *name;
3635 struct dentry *dentry;
3636 struct path path;
3637 struct qstr last;
3638 int type;
3639 unsigned int lookup_flags = 0;
3640 retry:
3641 name = user_path_parent(dfd, pathname,
3642 &path, &last, &type, lookup_flags);
3643 if (IS_ERR(name))
3644 return PTR_ERR(name);
3645
3646 switch (type) {
3647 case LAST_DOTDOT:
3648 error = -ENOTEMPTY;
3649 goto exit1;
3650 case LAST_DOT:
3651 error = -EINVAL;
3652 goto exit1;
3653 case LAST_ROOT:
3654 error = -EBUSY;
3655 goto exit1;
3656 }
3657
3658 error = mnt_want_write(path.mnt);
3659 if (error)
3660 goto exit1;
3661
3662 mutex_lock_nested(&path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3663 dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3664 error = PTR_ERR(dentry);
3665 if (IS_ERR(dentry))
3666 goto exit2;
3667 if (!dentry->d_inode) {
3668 error = -ENOENT;
3669 goto exit3;
3670 }
3671 error = security_path_rmdir(&path, dentry);
3672 if (error)
3673 goto exit3;
3674 error = vfs_rmdir(path.dentry->d_inode, dentry);
3675 exit3:
3676 dput(dentry);
3677 exit2:
3678 mutex_unlock(&path.dentry->d_inode->i_mutex);
3679 mnt_drop_write(path.mnt);
3680 exit1:
3681 path_put(&path);
3682 putname(name);
3683 if (retry_estale(error, lookup_flags)) {
3684 lookup_flags |= LOOKUP_REVAL;
3685 goto retry;
3686 }
3687 return error;
3688 }
3689
3690 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3691 {
3692 return do_rmdir(AT_FDCWD, pathname);
3693 }
3694
3695 /**
3696 * vfs_unlink - unlink a filesystem object
3697 * @dir: parent directory
3698 * @dentry: victim
3699 * @delegated_inode: returns victim inode, if the inode is delegated.
3700 *
3701 * The caller must hold dir->i_mutex.
3702 *
3703 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
3704 * return a reference to the inode in delegated_inode. The caller
3705 * should then break the delegation on that inode and retry. Because
3706 * breaking a delegation may take a long time, the caller should drop
3707 * dir->i_mutex before doing so.
3708 *
3709 * Alternatively, a caller may pass NULL for delegated_inode. This may
3710 * be appropriate for callers that expect the underlying filesystem not
3711 * to be NFS exported.
3712 */
3713 int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode)
3714 {
3715 struct inode *target = dentry->d_inode;
3716 int error = may_delete(dir, dentry, 0);
3717
3718 if (error)
3719 return error;
3720
3721 if (!dir->i_op->unlink)
3722 return -EPERM;
3723
3724 mutex_lock(&target->i_mutex);
3725 if (is_local_mountpoint(dentry))
3726 error = -EBUSY;
3727 else {
3728 error = security_inode_unlink(dir, dentry);
3729 if (!error) {
3730 error = try_break_deleg(target, delegated_inode);
3731 if (error)
3732 goto out;
3733 error = dir->i_op->unlink(dir, dentry);
3734 if (!error) {
3735 dont_mount(dentry);
3736 detach_mounts(dentry);
3737 }
3738 }
3739 }
3740 out:
3741 mutex_unlock(&target->i_mutex);
3742
3743 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
3744 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
3745 fsnotify_link_count(target);
3746 d_delete(dentry);
3747 }
3748
3749 return error;
3750 }
3751 EXPORT_SYMBOL(vfs_unlink);
3752
3753 /*
3754 * Make sure that the actual truncation of the file will occur outside its
3755 * directory's i_mutex. Truncate can take a long time if there is a lot of
3756 * writeout happening, and we don't want to prevent access to the directory
3757 * while waiting on the I/O.
3758 */
3759 static long do_unlinkat(int dfd, const char __user *pathname)
3760 {
3761 int error;
3762 struct filename *name;
3763 struct dentry *dentry;
3764 struct path path;
3765 struct qstr last;
3766 int type;
3767 struct inode *inode = NULL;
3768 struct inode *delegated_inode = NULL;
3769 unsigned int lookup_flags = 0;
3770 retry:
3771 name = user_path_parent(dfd, pathname,
3772 &path, &last, &type, lookup_flags);
3773 if (IS_ERR(name))
3774 return PTR_ERR(name);
3775
3776 error = -EISDIR;
3777 if (type != LAST_NORM)
3778 goto exit1;
3779
3780 error = mnt_want_write(path.mnt);
3781 if (error)
3782 goto exit1;
3783 retry_deleg:
3784 mutex_lock_nested(&path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3785 dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3786 error = PTR_ERR(dentry);
3787 if (!IS_ERR(dentry)) {
3788 /* Why not before? Because we want correct error value */
3789 if (last.name[last.len])
3790 goto slashes;
3791 inode = dentry->d_inode;
3792 if (d_is_negative(dentry))
3793 goto slashes;
3794 ihold(inode);
3795 error = security_path_unlink(&path, dentry);
3796 if (error)
3797 goto exit2;
3798 error = vfs_unlink(path.dentry->d_inode, dentry, &delegated_inode);
3799 exit2:
3800 dput(dentry);
3801 }
3802 mutex_unlock(&path.dentry->d_inode->i_mutex);
3803 if (inode)
3804 iput(inode); /* truncate the inode here */
3805 inode = NULL;
3806 if (delegated_inode) {
3807 error = break_deleg_wait(&delegated_inode);
3808 if (!error)
3809 goto retry_deleg;
3810 }
3811 mnt_drop_write(path.mnt);
3812 exit1:
3813 path_put(&path);
3814 putname(name);
3815 if (retry_estale(error, lookup_flags)) {
3816 lookup_flags |= LOOKUP_REVAL;
3817 inode = NULL;
3818 goto retry;
3819 }
3820 return error;
3821
3822 slashes:
3823 if (d_is_negative(dentry))
3824 error = -ENOENT;
3825 else if (d_is_dir(dentry))
3826 error = -EISDIR;
3827 else
3828 error = -ENOTDIR;
3829 goto exit2;
3830 }
3831
3832 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
3833 {
3834 if ((flag & ~AT_REMOVEDIR) != 0)
3835 return -EINVAL;
3836
3837 if (flag & AT_REMOVEDIR)
3838 return do_rmdir(dfd, pathname);
3839
3840 return do_unlinkat(dfd, pathname);
3841 }
3842
3843 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
3844 {
3845 return do_unlinkat(AT_FDCWD, pathname);
3846 }
3847
3848 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
3849 {
3850 int error = may_create(dir, dentry);
3851
3852 if (error)
3853 return error;
3854
3855 if (!dir->i_op->symlink)
3856 return -EPERM;
3857
3858 error = security_inode_symlink(dir, dentry, oldname);
3859 if (error)
3860 return error;
3861
3862 error = dir->i_op->symlink(dir, dentry, oldname);
3863 if (!error)
3864 fsnotify_create(dir, dentry);
3865 return error;
3866 }
3867 EXPORT_SYMBOL(vfs_symlink);
3868
3869 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
3870 int, newdfd, const char __user *, newname)
3871 {
3872 int error;
3873 struct filename *from;
3874 struct dentry *dentry;
3875 struct path path;
3876 unsigned int lookup_flags = 0;
3877
3878 from = getname(oldname);
3879 if (IS_ERR(from))
3880 return PTR_ERR(from);
3881 retry:
3882 dentry = user_path_create(newdfd, newname, &path, lookup_flags);
3883 error = PTR_ERR(dentry);
3884 if (IS_ERR(dentry))
3885 goto out_putname;
3886
3887 error = security_path_symlink(&path, dentry, from->name);
3888 if (!error)
3889 error = vfs_symlink(path.dentry->d_inode, dentry, from->name);
3890 done_path_create(&path, dentry);
3891 if (retry_estale(error, lookup_flags)) {
3892 lookup_flags |= LOOKUP_REVAL;
3893 goto retry;
3894 }
3895 out_putname:
3896 putname(from);
3897 return error;
3898 }
3899
3900 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
3901 {
3902 return sys_symlinkat(oldname, AT_FDCWD, newname);
3903 }
3904
3905 /**
3906 * vfs_link - create a new link
3907 * @old_dentry: object to be linked
3908 * @dir: new parent
3909 * @new_dentry: where to create the new link
3910 * @delegated_inode: returns inode needing a delegation break
3911 *
3912 * The caller must hold dir->i_mutex
3913 *
3914 * If vfs_link discovers a delegation on the to-be-linked file in need
3915 * of breaking, it will return -EWOULDBLOCK and return a reference to the
3916 * inode in delegated_inode. The caller should then break the delegation
3917 * and retry. Because breaking a delegation may take a long time, the
3918 * caller should drop the i_mutex before doing so.
3919 *
3920 * Alternatively, a caller may pass NULL for delegated_inode. This may
3921 * be appropriate for callers that expect the underlying filesystem not
3922 * to be NFS exported.
3923 */
3924 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode)
3925 {
3926 struct inode *inode = old_dentry->d_inode;
3927 unsigned max_links = dir->i_sb->s_max_links;
3928 int error;
3929
3930 if (!inode)
3931 return -ENOENT;
3932
3933 error = may_create(dir, new_dentry);
3934 if (error)
3935 return error;
3936
3937 if (dir->i_sb != inode->i_sb)
3938 return -EXDEV;
3939
3940 /*
3941 * A link to an append-only or immutable file cannot be created.
3942 */
3943 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3944 return -EPERM;
3945 if (!dir->i_op->link)
3946 return -EPERM;
3947 if (S_ISDIR(inode->i_mode))
3948 return -EPERM;
3949
3950 error = security_inode_link(old_dentry, dir, new_dentry);
3951 if (error)
3952 return error;
3953
3954 mutex_lock(&inode->i_mutex);
3955 /* Make sure we don't allow creating hardlink to an unlinked file */
3956 if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
3957 error = -ENOENT;
3958 else if (max_links && inode->i_nlink >= max_links)
3959 error = -EMLINK;
3960 else {
3961 error = try_break_deleg(inode, delegated_inode);
3962 if (!error)
3963 error = dir->i_op->link(old_dentry, dir, new_dentry);
3964 }
3965
3966 if (!error && (inode->i_state & I_LINKABLE)) {
3967 spin_lock(&inode->i_lock);
3968 inode->i_state &= ~I_LINKABLE;
3969 spin_unlock(&inode->i_lock);
3970 }
3971 mutex_unlock(&inode->i_mutex);
3972 if (!error)
3973 fsnotify_link(dir, inode, new_dentry);
3974 return error;
3975 }
3976 EXPORT_SYMBOL(vfs_link);
3977
3978 /*
3979 * Hardlinks are often used in delicate situations. We avoid
3980 * security-related surprises by not following symlinks on the
3981 * newname. --KAB
3982 *
3983 * We don't follow them on the oldname either to be compatible
3984 * with linux 2.0, and to avoid hard-linking to directories
3985 * and other special files. --ADM
3986 */
3987 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
3988 int, newdfd, const char __user *, newname, int, flags)
3989 {
3990 struct dentry *new_dentry;
3991 struct path old_path, new_path;
3992 struct inode *delegated_inode = NULL;
3993 int how = 0;
3994 int error;
3995
3996 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
3997 return -EINVAL;
3998 /*
3999 * To use null names we require CAP_DAC_READ_SEARCH
4000 * This ensures that not everyone will be able to create
4001 * handlink using the passed filedescriptor.
4002 */
4003 if (flags & AT_EMPTY_PATH) {
4004 if (!capable(CAP_DAC_READ_SEARCH))
4005 return -ENOENT;
4006 how = LOOKUP_EMPTY;
4007 }
4008
4009 if (flags & AT_SYMLINK_FOLLOW)
4010 how |= LOOKUP_FOLLOW;
4011 retry:
4012 error = user_path_at(olddfd, oldname, how, &old_path);
4013 if (error)
4014 return error;
4015
4016 new_dentry = user_path_create(newdfd, newname, &new_path,
4017 (how & LOOKUP_REVAL));
4018 error = PTR_ERR(new_dentry);
4019 if (IS_ERR(new_dentry))
4020 goto out;
4021
4022 error = -EXDEV;
4023 if (old_path.mnt != new_path.mnt)
4024 goto out_dput;
4025 error = may_linkat(&old_path);
4026 if (unlikely(error))
4027 goto out_dput;
4028 error = security_path_link(old_path.dentry, &new_path, new_dentry);
4029 if (error)
4030 goto out_dput;
4031 error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode);
4032 out_dput:
4033 done_path_create(&new_path, new_dentry);
4034 if (delegated_inode) {
4035 error = break_deleg_wait(&delegated_inode);
4036 if (!error) {
4037 path_put(&old_path);
4038 goto retry;
4039 }
4040 }
4041 if (retry_estale(error, how)) {
4042 path_put(&old_path);
4043 how |= LOOKUP_REVAL;
4044 goto retry;
4045 }
4046 out:
4047 path_put(&old_path);
4048
4049 return error;
4050 }
4051
4052 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4053 {
4054 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4055 }
4056
4057 /**
4058 * vfs_rename - rename a filesystem object
4059 * @old_dir: parent of source
4060 * @old_dentry: source
4061 * @new_dir: parent of destination
4062 * @new_dentry: destination
4063 * @delegated_inode: returns an inode needing a delegation break
4064 * @flags: rename flags
4065 *
4066 * The caller must hold multiple mutexes--see lock_rename()).
4067 *
4068 * If vfs_rename discovers a delegation in need of breaking at either
4069 * the source or destination, it will return -EWOULDBLOCK and return a
4070 * reference to the inode in delegated_inode. The caller should then
4071 * break the delegation and retry. Because breaking a delegation may
4072 * take a long time, the caller should drop all locks before doing
4073 * so.
4074 *
4075 * Alternatively, a caller may pass NULL for delegated_inode. This may
4076 * be appropriate for callers that expect the underlying filesystem not
4077 * to be NFS exported.
4078 *
4079 * The worst of all namespace operations - renaming directory. "Perverted"
4080 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4081 * Problems:
4082 * a) we can get into loop creation.
4083 * b) race potential - two innocent renames can create a loop together.
4084 * That's where 4.4 screws up. Current fix: serialization on
4085 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4086 * story.
4087 * c) we have to lock _four_ objects - parents and victim (if it exists),
4088 * and source (if it is not a directory).
4089 * And that - after we got ->i_mutex on parents (until then we don't know
4090 * whether the target exists). Solution: try to be smart with locking
4091 * order for inodes. We rely on the fact that tree topology may change
4092 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
4093 * move will be locked. Thus we can rank directories by the tree
4094 * (ancestors first) and rank all non-directories after them.
4095 * That works since everybody except rename does "lock parent, lookup,
4096 * lock child" and rename is under ->s_vfs_rename_mutex.
4097 * HOWEVER, it relies on the assumption that any object with ->lookup()
4098 * has no more than 1 dentry. If "hybrid" objects will ever appear,
4099 * we'd better make sure that there's no link(2) for them.
4100 * d) conversion from fhandle to dentry may come in the wrong moment - when
4101 * we are removing the target. Solution: we will have to grab ->i_mutex
4102 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4103 * ->i_mutex on parents, which works but leads to some truly excessive
4104 * locking].
4105 */
4106 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4107 struct inode *new_dir, struct dentry *new_dentry,
4108 struct inode **delegated_inode, unsigned int flags)
4109 {
4110 int error;
4111 bool is_dir = d_is_dir(old_dentry);
4112 const unsigned char *old_name;
4113 struct inode *source = old_dentry->d_inode;
4114 struct inode *target = new_dentry->d_inode;
4115 bool new_is_dir = false;
4116 unsigned max_links = new_dir->i_sb->s_max_links;
4117
4118 if (source == target)
4119 return 0;
4120
4121 error = may_delete(old_dir, old_dentry, is_dir);
4122 if (error)
4123 return error;
4124
4125 if (!target) {
4126 error = may_create(new_dir, new_dentry);
4127 } else {
4128 new_is_dir = d_is_dir(new_dentry);
4129
4130 if (!(flags & RENAME_EXCHANGE))
4131 error = may_delete(new_dir, new_dentry, is_dir);
4132 else
4133 error = may_delete(new_dir, new_dentry, new_is_dir);
4134 }
4135 if (error)
4136 return error;
4137
4138 if (!old_dir->i_op->rename && !old_dir->i_op->rename2)
4139 return -EPERM;
4140
4141 if (flags && !old_dir->i_op->rename2)
4142 return -EINVAL;
4143
4144 /*
4145 * If we are going to change the parent - check write permissions,
4146 * we'll need to flip '..'.
4147 */
4148 if (new_dir != old_dir) {
4149 if (is_dir) {
4150 error = inode_permission(source, MAY_WRITE);
4151 if (error)
4152 return error;
4153 }
4154 if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4155 error = inode_permission(target, MAY_WRITE);
4156 if (error)
4157 return error;
4158 }
4159 }
4160
4161 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4162 flags);
4163 if (error)
4164 return error;
4165
4166 old_name = fsnotify_oldname_init(old_dentry->d_name.name);
4167 dget(new_dentry);
4168 if (!is_dir || (flags & RENAME_EXCHANGE))
4169 lock_two_nondirectories(source, target);
4170 else if (target)
4171 mutex_lock(&target->i_mutex);
4172
4173 error = -EBUSY;
4174 if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
4175 goto out;
4176
4177 if (max_links && new_dir != old_dir) {
4178 error = -EMLINK;
4179 if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4180 goto out;
4181 if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
4182 old_dir->i_nlink >= max_links)
4183 goto out;
4184 }
4185 if (is_dir && !(flags & RENAME_EXCHANGE) && target)
4186 shrink_dcache_parent(new_dentry);
4187 if (!is_dir) {
4188 error = try_break_deleg(source, delegated_inode);
4189 if (error)
4190 goto out;
4191 }
4192 if (target && !new_is_dir) {
4193 error = try_break_deleg(target, delegated_inode);
4194 if (error)
4195 goto out;
4196 }
4197 if (!old_dir->i_op->rename2) {
4198 error = old_dir->i_op->rename(old_dir, old_dentry,
4199 new_dir, new_dentry);
4200 } else {
4201 WARN_ON(old_dir->i_op->rename != NULL);
4202 error = old_dir->i_op->rename2(old_dir, old_dentry,
4203 new_dir, new_dentry, flags);
4204 }
4205 if (error)
4206 goto out;
4207
4208 if (!(flags & RENAME_EXCHANGE) && target) {
4209 if (is_dir)
4210 target->i_flags |= S_DEAD;
4211 dont_mount(new_dentry);
4212 detach_mounts(new_dentry);
4213 }
4214 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
4215 if (!(flags & RENAME_EXCHANGE))
4216 d_move(old_dentry, new_dentry);
4217 else
4218 d_exchange(old_dentry, new_dentry);
4219 }
4220 out:
4221 if (!is_dir || (flags & RENAME_EXCHANGE))
4222 unlock_two_nondirectories(source, target);
4223 else if (target)
4224 mutex_unlock(&target->i_mutex);
4225 dput(new_dentry);
4226 if (!error) {
4227 fsnotify_move(old_dir, new_dir, old_name, is_dir,
4228 !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
4229 if (flags & RENAME_EXCHANGE) {
4230 fsnotify_move(new_dir, old_dir, old_dentry->d_name.name,
4231 new_is_dir, NULL, new_dentry);
4232 }
4233 }
4234 fsnotify_oldname_free(old_name);
4235
4236 return error;
4237 }
4238 EXPORT_SYMBOL(vfs_rename);
4239
4240 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
4241 int, newdfd, const char __user *, newname, unsigned int, flags)
4242 {
4243 struct dentry *old_dentry, *new_dentry;
4244 struct dentry *trap;
4245 struct path old_path, new_path;
4246 struct qstr old_last, new_last;
4247 int old_type, new_type;
4248 struct inode *delegated_inode = NULL;
4249 struct filename *from;
4250 struct filename *to;
4251 unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET;
4252 bool should_retry = false;
4253 int error;
4254
4255 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4256 return -EINVAL;
4257
4258 if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
4259 (flags & RENAME_EXCHANGE))
4260 return -EINVAL;
4261
4262 if ((flags & RENAME_WHITEOUT) && !capable(CAP_MKNOD))
4263 return -EPERM;
4264
4265 if (flags & RENAME_EXCHANGE)
4266 target_flags = 0;
4267
4268 retry:
4269 from = user_path_parent(olddfd, oldname,
4270 &old_path, &old_last, &old_type, lookup_flags);
4271 if (IS_ERR(from)) {
4272 error = PTR_ERR(from);
4273 goto exit;
4274 }
4275
4276 to = user_path_parent(newdfd, newname,
4277 &new_path, &new_last, &new_type, lookup_flags);
4278 if (IS_ERR(to)) {
4279 error = PTR_ERR(to);
4280 goto exit1;
4281 }
4282
4283 error = -EXDEV;
4284 if (old_path.mnt != new_path.mnt)
4285 goto exit2;
4286
4287 error = -EBUSY;
4288 if (old_type != LAST_NORM)
4289 goto exit2;
4290
4291 if (flags & RENAME_NOREPLACE)
4292 error = -EEXIST;
4293 if (new_type != LAST_NORM)
4294 goto exit2;
4295
4296 error = mnt_want_write(old_path.mnt);
4297 if (error)
4298 goto exit2;
4299
4300 retry_deleg:
4301 trap = lock_rename(new_path.dentry, old_path.dentry);
4302
4303 old_dentry = __lookup_hash(&old_last, old_path.dentry, lookup_flags);
4304 error = PTR_ERR(old_dentry);
4305 if (IS_ERR(old_dentry))
4306 goto exit3;
4307 /* source must exist */
4308 error = -ENOENT;
4309 if (d_is_negative(old_dentry))
4310 goto exit4;
4311 new_dentry = __lookup_hash(&new_last, new_path.dentry, lookup_flags | target_flags);
4312 error = PTR_ERR(new_dentry);
4313 if (IS_ERR(new_dentry))
4314 goto exit4;
4315 error = -EEXIST;
4316 if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
4317 goto exit5;
4318 if (flags & RENAME_EXCHANGE) {
4319 error = -ENOENT;
4320 if (d_is_negative(new_dentry))
4321 goto exit5;
4322
4323 if (!d_is_dir(new_dentry)) {
4324 error = -ENOTDIR;
4325 if (new_last.name[new_last.len])
4326 goto exit5;
4327 }
4328 }
4329 /* unless the source is a directory trailing slashes give -ENOTDIR */
4330 if (!d_is_dir(old_dentry)) {
4331 error = -ENOTDIR;
4332 if (old_last.name[old_last.len])
4333 goto exit5;
4334 if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len])
4335 goto exit5;
4336 }
4337 /* source should not be ancestor of target */
4338 error = -EINVAL;
4339 if (old_dentry == trap)
4340 goto exit5;
4341 /* target should not be an ancestor of source */
4342 if (!(flags & RENAME_EXCHANGE))
4343 error = -ENOTEMPTY;
4344 if (new_dentry == trap)
4345 goto exit5;
4346
4347 error = security_path_rename(&old_path, old_dentry,
4348 &new_path, new_dentry, flags);
4349 if (error)
4350 goto exit5;
4351 error = vfs_rename(old_path.dentry->d_inode, old_dentry,
4352 new_path.dentry->d_inode, new_dentry,
4353 &delegated_inode, flags);
4354 exit5:
4355 dput(new_dentry);
4356 exit4:
4357 dput(old_dentry);
4358 exit3:
4359 unlock_rename(new_path.dentry, old_path.dentry);
4360 if (delegated_inode) {
4361 error = break_deleg_wait(&delegated_inode);
4362 if (!error)
4363 goto retry_deleg;
4364 }
4365 mnt_drop_write(old_path.mnt);
4366 exit2:
4367 if (retry_estale(error, lookup_flags))
4368 should_retry = true;
4369 path_put(&new_path);
4370 putname(to);
4371 exit1:
4372 path_put(&old_path);
4373 putname(from);
4374 if (should_retry) {
4375 should_retry = false;
4376 lookup_flags |= LOOKUP_REVAL;
4377 goto retry;
4378 }
4379 exit:
4380 return error;
4381 }
4382
4383 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
4384 int, newdfd, const char __user *, newname)
4385 {
4386 return sys_renameat2(olddfd, oldname, newdfd, newname, 0);
4387 }
4388
4389 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4390 {
4391 return sys_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4392 }
4393
4394 int vfs_whiteout(struct inode *dir, struct dentry *dentry)
4395 {
4396 int error = may_create(dir, dentry);
4397 if (error)
4398 return error;
4399
4400 if (!dir->i_op->mknod)
4401 return -EPERM;
4402
4403 return dir->i_op->mknod(dir, dentry,
4404 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
4405 }
4406 EXPORT_SYMBOL(vfs_whiteout);
4407
4408 int readlink_copy(char __user *buffer, int buflen, const char *link)
4409 {
4410 int len = PTR_ERR(link);
4411 if (IS_ERR(link))
4412 goto out;
4413
4414 len = strlen(link);
4415 if (len > (unsigned) buflen)
4416 len = buflen;
4417 if (copy_to_user(buffer, link, len))
4418 len = -EFAULT;
4419 out:
4420 return len;
4421 }
4422 EXPORT_SYMBOL(readlink_copy);
4423
4424 /*
4425 * A helper for ->readlink(). This should be used *ONLY* for symlinks that
4426 * have ->follow_link() touching nd only in nd_set_link(). Using (or not
4427 * using) it for any given inode is up to filesystem.
4428 */
4429 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4430 {
4431 void *cookie;
4432 const char *link = dentry->d_inode->i_link;
4433 int res;
4434
4435 if (!link) {
4436 link = dentry->d_inode->i_op->follow_link(dentry, &cookie, NULL);
4437 if (IS_ERR(link))
4438 return PTR_ERR(link);
4439 }
4440 res = readlink_copy(buffer, buflen, link);
4441 if (cookie && dentry->d_inode->i_op->put_link)
4442 dentry->d_inode->i_op->put_link(dentry, cookie);
4443 return res;
4444 }
4445 EXPORT_SYMBOL(generic_readlink);
4446
4447 /* get the link contents into pagecache */
4448 static char *page_getlink(struct dentry * dentry, struct page **ppage)
4449 {
4450 char *kaddr;
4451 struct page *page;
4452 struct address_space *mapping = dentry->d_inode->i_mapping;
4453 page = read_mapping_page(mapping, 0, NULL);
4454 if (IS_ERR(page))
4455 return (char*)page;
4456 *ppage = page;
4457 kaddr = kmap(page);
4458 nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
4459 return kaddr;
4460 }
4461
4462 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4463 {
4464 struct page *page = NULL;
4465 int res = readlink_copy(buffer, buflen, page_getlink(dentry, &page));
4466 if (page) {
4467 kunmap(page);
4468 page_cache_release(page);
4469 }
4470 return res;
4471 }
4472 EXPORT_SYMBOL(page_readlink);
4473
4474 const char *page_follow_link_light(struct dentry *dentry, void **cookie, struct nameidata *nd)
4475 {
4476 struct page *page = NULL;
4477 char *res = page_getlink(dentry, &page);
4478 if (!IS_ERR(res))
4479 *cookie = page;
4480 return res;
4481 }
4482 EXPORT_SYMBOL(page_follow_link_light);
4483
4484 void page_put_link(struct dentry *dentry, void *cookie)
4485 {
4486 struct page *page = cookie;
4487 kunmap(page);
4488 page_cache_release(page);
4489 }
4490 EXPORT_SYMBOL(page_put_link);
4491
4492 /*
4493 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
4494 */
4495 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
4496 {
4497 struct address_space *mapping = inode->i_mapping;
4498 struct page *page;
4499 void *fsdata;
4500 int err;
4501 char *kaddr;
4502 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
4503 if (nofs)
4504 flags |= AOP_FLAG_NOFS;
4505
4506 retry:
4507 err = pagecache_write_begin(NULL, mapping, 0, len-1,
4508 flags, &page, &fsdata);
4509 if (err)
4510 goto fail;
4511
4512 kaddr = kmap_atomic(page);
4513 memcpy(kaddr, symname, len-1);
4514 kunmap_atomic(kaddr);
4515
4516 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
4517 page, fsdata);
4518 if (err < 0)
4519 goto fail;
4520 if (err < len-1)
4521 goto retry;
4522
4523 mark_inode_dirty(inode);
4524 return 0;
4525 fail:
4526 return err;
4527 }
4528 EXPORT_SYMBOL(__page_symlink);
4529
4530 int page_symlink(struct inode *inode, const char *symname, int len)
4531 {
4532 return __page_symlink(inode, symname, len,
4533 !(mapping_gfp_mask(inode->i_mapping) & __GFP_FS));
4534 }
4535 EXPORT_SYMBOL(page_symlink);
4536
4537 const struct inode_operations page_symlink_inode_operations = {
4538 .readlink = generic_readlink,
4539 .follow_link = page_follow_link_light,
4540 .put_link = page_put_link,
4541 };
4542 EXPORT_SYMBOL(page_symlink_inode_operations);
This page took 0.127051 seconds and 6 git commands to generate.