[PATCH] do namei_flags calculation inside open_namei()
[deliverable/linux.git] / fs / namei.c
1 /*
2 * linux/fs/namei.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * Some corrections by tytso.
9 */
10
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12 * lookup logic.
13 */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15 */
16
17 #include <linux/init.h>
18 #include <linux/module.h>
19 #include <linux/slab.h>
20 #include <linux/fs.h>
21 #include <linux/namei.h>
22 #include <linux/quotaops.h>
23 #include <linux/pagemap.h>
24 #include <linux/fsnotify.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/syscalls.h>
28 #include <linux/mount.h>
29 #include <linux/audit.h>
30 #include <linux/capability.h>
31 #include <linux/file.h>
32 #include <linux/fcntl.h>
33 #include <asm/namei.h>
34 #include <asm/uaccess.h>
35
36 #define ACC_MODE(x) ("\000\004\002\006"[(x)&O_ACCMODE])
37
38 /* [Feb-1997 T. Schoebel-Theuer]
39 * Fundamental changes in the pathname lookup mechanisms (namei)
40 * were necessary because of omirr. The reason is that omirr needs
41 * to know the _real_ pathname, not the user-supplied one, in case
42 * of symlinks (and also when transname replacements occur).
43 *
44 * The new code replaces the old recursive symlink resolution with
45 * an iterative one (in case of non-nested symlink chains). It does
46 * this with calls to <fs>_follow_link().
47 * As a side effect, dir_namei(), _namei() and follow_link() are now
48 * replaced with a single function lookup_dentry() that can handle all
49 * the special cases of the former code.
50 *
51 * With the new dcache, the pathname is stored at each inode, at least as
52 * long as the refcount of the inode is positive. As a side effect, the
53 * size of the dcache depends on the inode cache and thus is dynamic.
54 *
55 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
56 * resolution to correspond with current state of the code.
57 *
58 * Note that the symlink resolution is not *completely* iterative.
59 * There is still a significant amount of tail- and mid- recursion in
60 * the algorithm. Also, note that <fs>_readlink() is not used in
61 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
62 * may return different results than <fs>_follow_link(). Many virtual
63 * filesystems (including /proc) exhibit this behavior.
64 */
65
66 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
67 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
68 * and the name already exists in form of a symlink, try to create the new
69 * name indicated by the symlink. The old code always complained that the
70 * name already exists, due to not following the symlink even if its target
71 * is nonexistent. The new semantics affects also mknod() and link() when
72 * the name is a symlink pointing to a non-existant name.
73 *
74 * I don't know which semantics is the right one, since I have no access
75 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
76 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
77 * "old" one. Personally, I think the new semantics is much more logical.
78 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
79 * file does succeed in both HP-UX and SunOs, but not in Solaris
80 * and in the old Linux semantics.
81 */
82
83 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
84 * semantics. See the comments in "open_namei" and "do_link" below.
85 *
86 * [10-Sep-98 Alan Modra] Another symlink change.
87 */
88
89 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
90 * inside the path - always follow.
91 * in the last component in creation/removal/renaming - never follow.
92 * if LOOKUP_FOLLOW passed - follow.
93 * if the pathname has trailing slashes - follow.
94 * otherwise - don't follow.
95 * (applied in that order).
96 *
97 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
98 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
99 * During the 2.4 we need to fix the userland stuff depending on it -
100 * hopefully we will be able to get rid of that wart in 2.5. So far only
101 * XEmacs seems to be relying on it...
102 */
103 /*
104 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
105 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
106 * any extra contention...
107 */
108
109 static int __link_path_walk(const char *name, struct nameidata *nd);
110
111 /* In order to reduce some races, while at the same time doing additional
112 * checking and hopefully speeding things up, we copy filenames to the
113 * kernel data space before using them..
114 *
115 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
116 * PATH_MAX includes the nul terminator --RR.
117 */
118 static int do_getname(const char __user *filename, char *page)
119 {
120 int retval;
121 unsigned long len = PATH_MAX;
122
123 if (!segment_eq(get_fs(), KERNEL_DS)) {
124 if ((unsigned long) filename >= TASK_SIZE)
125 return -EFAULT;
126 if (TASK_SIZE - (unsigned long) filename < PATH_MAX)
127 len = TASK_SIZE - (unsigned long) filename;
128 }
129
130 retval = strncpy_from_user(page, filename, len);
131 if (retval > 0) {
132 if (retval < len)
133 return 0;
134 return -ENAMETOOLONG;
135 } else if (!retval)
136 retval = -ENOENT;
137 return retval;
138 }
139
140 char * getname(const char __user * filename)
141 {
142 char *tmp, *result;
143
144 result = ERR_PTR(-ENOMEM);
145 tmp = __getname();
146 if (tmp) {
147 int retval = do_getname(filename, tmp);
148
149 result = tmp;
150 if (retval < 0) {
151 __putname(tmp);
152 result = ERR_PTR(retval);
153 }
154 }
155 audit_getname(result);
156 return result;
157 }
158
159 #ifdef CONFIG_AUDITSYSCALL
160 void putname(const char *name)
161 {
162 if (unlikely(!audit_dummy_context()))
163 audit_putname(name);
164 else
165 __putname(name);
166 }
167 EXPORT_SYMBOL(putname);
168 #endif
169
170
171 /**
172 * generic_permission - check for access rights on a Posix-like filesystem
173 * @inode: inode to check access rights for
174 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
175 * @check_acl: optional callback to check for Posix ACLs
176 *
177 * Used to check for read/write/execute permissions on a file.
178 * We use "fsuid" for this, letting us set arbitrary permissions
179 * for filesystem access without changing the "normal" uids which
180 * are used for other things..
181 */
182 int generic_permission(struct inode *inode, int mask,
183 int (*check_acl)(struct inode *inode, int mask))
184 {
185 umode_t mode = inode->i_mode;
186
187 if (current->fsuid == inode->i_uid)
188 mode >>= 6;
189 else {
190 if (IS_POSIXACL(inode) && (mode & S_IRWXG) && check_acl) {
191 int error = check_acl(inode, mask);
192 if (error == -EACCES)
193 goto check_capabilities;
194 else if (error != -EAGAIN)
195 return error;
196 }
197
198 if (in_group_p(inode->i_gid))
199 mode >>= 3;
200 }
201
202 /*
203 * If the DACs are ok we don't need any capability check.
204 */
205 if (((mode & mask & (MAY_READ|MAY_WRITE|MAY_EXEC)) == mask))
206 return 0;
207
208 check_capabilities:
209 /*
210 * Read/write DACs are always overridable.
211 * Executable DACs are overridable if at least one exec bit is set.
212 */
213 if (!(mask & MAY_EXEC) ||
214 (inode->i_mode & S_IXUGO) || S_ISDIR(inode->i_mode))
215 if (capable(CAP_DAC_OVERRIDE))
216 return 0;
217
218 /*
219 * Searching includes executable on directories, else just read.
220 */
221 if (mask == MAY_READ || (S_ISDIR(inode->i_mode) && !(mask & MAY_WRITE)))
222 if (capable(CAP_DAC_READ_SEARCH))
223 return 0;
224
225 return -EACCES;
226 }
227
228 int permission(struct inode *inode, int mask, struct nameidata *nd)
229 {
230 int retval, submask;
231 struct vfsmount *mnt = NULL;
232
233 if (nd)
234 mnt = nd->path.mnt;
235
236 if (mask & MAY_WRITE) {
237 umode_t mode = inode->i_mode;
238
239 /*
240 * Nobody gets write access to a read-only fs.
241 */
242 if (IS_RDONLY(inode) &&
243 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
244 return -EROFS;
245
246 /*
247 * Nobody gets write access to an immutable file.
248 */
249 if (IS_IMMUTABLE(inode))
250 return -EACCES;
251 }
252
253 if ((mask & MAY_EXEC) && S_ISREG(inode->i_mode)) {
254 /*
255 * MAY_EXEC on regular files is denied if the fs is mounted
256 * with the "noexec" flag.
257 */
258 if (mnt && (mnt->mnt_flags & MNT_NOEXEC))
259 return -EACCES;
260 }
261
262 /* Ordinary permission routines do not understand MAY_APPEND. */
263 submask = mask & ~MAY_APPEND;
264 if (inode->i_op && inode->i_op->permission) {
265 retval = inode->i_op->permission(inode, submask, nd);
266 if (!retval) {
267 /*
268 * Exec permission on a regular file is denied if none
269 * of the execute bits are set.
270 *
271 * This check should be done by the ->permission()
272 * method.
273 */
274 if ((mask & MAY_EXEC) && S_ISREG(inode->i_mode) &&
275 !(inode->i_mode & S_IXUGO))
276 return -EACCES;
277 }
278 } else {
279 retval = generic_permission(inode, submask, NULL);
280 }
281 if (retval)
282 return retval;
283
284 return security_inode_permission(inode, mask, nd);
285 }
286
287 /**
288 * vfs_permission - check for access rights to a given path
289 * @nd: lookup result that describes the path
290 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
291 *
292 * Used to check for read/write/execute permissions on a path.
293 * We use "fsuid" for this, letting us set arbitrary permissions
294 * for filesystem access without changing the "normal" uids which
295 * are used for other things.
296 */
297 int vfs_permission(struct nameidata *nd, int mask)
298 {
299 return permission(nd->path.dentry->d_inode, mask, nd);
300 }
301
302 /**
303 * file_permission - check for additional access rights to a given file
304 * @file: file to check access rights for
305 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
306 *
307 * Used to check for read/write/execute permissions on an already opened
308 * file.
309 *
310 * Note:
311 * Do not use this function in new code. All access checks should
312 * be done using vfs_permission().
313 */
314 int file_permission(struct file *file, int mask)
315 {
316 return permission(file->f_path.dentry->d_inode, mask, NULL);
317 }
318
319 /*
320 * get_write_access() gets write permission for a file.
321 * put_write_access() releases this write permission.
322 * This is used for regular files.
323 * We cannot support write (and maybe mmap read-write shared) accesses and
324 * MAP_DENYWRITE mmappings simultaneously. The i_writecount field of an inode
325 * can have the following values:
326 * 0: no writers, no VM_DENYWRITE mappings
327 * < 0: (-i_writecount) vm_area_structs with VM_DENYWRITE set exist
328 * > 0: (i_writecount) users are writing to the file.
329 *
330 * Normally we operate on that counter with atomic_{inc,dec} and it's safe
331 * except for the cases where we don't hold i_writecount yet. Then we need to
332 * use {get,deny}_write_access() - these functions check the sign and refuse
333 * to do the change if sign is wrong. Exclusion between them is provided by
334 * the inode->i_lock spinlock.
335 */
336
337 int get_write_access(struct inode * inode)
338 {
339 spin_lock(&inode->i_lock);
340 if (atomic_read(&inode->i_writecount) < 0) {
341 spin_unlock(&inode->i_lock);
342 return -ETXTBSY;
343 }
344 atomic_inc(&inode->i_writecount);
345 spin_unlock(&inode->i_lock);
346
347 return 0;
348 }
349
350 int deny_write_access(struct file * file)
351 {
352 struct inode *inode = file->f_path.dentry->d_inode;
353
354 spin_lock(&inode->i_lock);
355 if (atomic_read(&inode->i_writecount) > 0) {
356 spin_unlock(&inode->i_lock);
357 return -ETXTBSY;
358 }
359 atomic_dec(&inode->i_writecount);
360 spin_unlock(&inode->i_lock);
361
362 return 0;
363 }
364
365 /**
366 * path_get - get a reference to a path
367 * @path: path to get the reference to
368 *
369 * Given a path increment the reference count to the dentry and the vfsmount.
370 */
371 void path_get(struct path *path)
372 {
373 mntget(path->mnt);
374 dget(path->dentry);
375 }
376 EXPORT_SYMBOL(path_get);
377
378 /**
379 * path_put - put a reference to a path
380 * @path: path to put the reference to
381 *
382 * Given a path decrement the reference count to the dentry and the vfsmount.
383 */
384 void path_put(struct path *path)
385 {
386 dput(path->dentry);
387 mntput(path->mnt);
388 }
389 EXPORT_SYMBOL(path_put);
390
391 /**
392 * release_open_intent - free up open intent resources
393 * @nd: pointer to nameidata
394 */
395 void release_open_intent(struct nameidata *nd)
396 {
397 if (nd->intent.open.file->f_path.dentry == NULL)
398 put_filp(nd->intent.open.file);
399 else
400 fput(nd->intent.open.file);
401 }
402
403 static inline struct dentry *
404 do_revalidate(struct dentry *dentry, struct nameidata *nd)
405 {
406 int status = dentry->d_op->d_revalidate(dentry, nd);
407 if (unlikely(status <= 0)) {
408 /*
409 * The dentry failed validation.
410 * If d_revalidate returned 0 attempt to invalidate
411 * the dentry otherwise d_revalidate is asking us
412 * to return a fail status.
413 */
414 if (!status) {
415 if (!d_invalidate(dentry)) {
416 dput(dentry);
417 dentry = NULL;
418 }
419 } else {
420 dput(dentry);
421 dentry = ERR_PTR(status);
422 }
423 }
424 return dentry;
425 }
426
427 /*
428 * Internal lookup() using the new generic dcache.
429 * SMP-safe
430 */
431 static struct dentry * cached_lookup(struct dentry * parent, struct qstr * name, struct nameidata *nd)
432 {
433 struct dentry * dentry = __d_lookup(parent, name);
434
435 /* lockess __d_lookup may fail due to concurrent d_move()
436 * in some unrelated directory, so try with d_lookup
437 */
438 if (!dentry)
439 dentry = d_lookup(parent, name);
440
441 if (dentry && dentry->d_op && dentry->d_op->d_revalidate)
442 dentry = do_revalidate(dentry, nd);
443
444 return dentry;
445 }
446
447 /*
448 * Short-cut version of permission(), for calling by
449 * path_walk(), when dcache lock is held. Combines parts
450 * of permission() and generic_permission(), and tests ONLY for
451 * MAY_EXEC permission.
452 *
453 * If appropriate, check DAC only. If not appropriate, or
454 * short-cut DAC fails, then call permission() to do more
455 * complete permission check.
456 */
457 static int exec_permission_lite(struct inode *inode,
458 struct nameidata *nd)
459 {
460 umode_t mode = inode->i_mode;
461
462 if (inode->i_op && inode->i_op->permission)
463 return -EAGAIN;
464
465 if (current->fsuid == inode->i_uid)
466 mode >>= 6;
467 else if (in_group_p(inode->i_gid))
468 mode >>= 3;
469
470 if (mode & MAY_EXEC)
471 goto ok;
472
473 if ((inode->i_mode & S_IXUGO) && capable(CAP_DAC_OVERRIDE))
474 goto ok;
475
476 if (S_ISDIR(inode->i_mode) && capable(CAP_DAC_OVERRIDE))
477 goto ok;
478
479 if (S_ISDIR(inode->i_mode) && capable(CAP_DAC_READ_SEARCH))
480 goto ok;
481
482 return -EACCES;
483 ok:
484 return security_inode_permission(inode, MAY_EXEC, nd);
485 }
486
487 /*
488 * This is called when everything else fails, and we actually have
489 * to go to the low-level filesystem to find out what we should do..
490 *
491 * We get the directory semaphore, and after getting that we also
492 * make sure that nobody added the entry to the dcache in the meantime..
493 * SMP-safe
494 */
495 static struct dentry * real_lookup(struct dentry * parent, struct qstr * name, struct nameidata *nd)
496 {
497 struct dentry * result;
498 struct inode *dir = parent->d_inode;
499
500 mutex_lock(&dir->i_mutex);
501 /*
502 * First re-do the cached lookup just in case it was created
503 * while we waited for the directory semaphore..
504 *
505 * FIXME! This could use version numbering or similar to
506 * avoid unnecessary cache lookups.
507 *
508 * The "dcache_lock" is purely to protect the RCU list walker
509 * from concurrent renames at this point (we mustn't get false
510 * negatives from the RCU list walk here, unlike the optimistic
511 * fast walk).
512 *
513 * so doing d_lookup() (with seqlock), instead of lockfree __d_lookup
514 */
515 result = d_lookup(parent, name);
516 if (!result) {
517 struct dentry * dentry = d_alloc(parent, name);
518 result = ERR_PTR(-ENOMEM);
519 if (dentry) {
520 result = dir->i_op->lookup(dir, dentry, nd);
521 if (result)
522 dput(dentry);
523 else
524 result = dentry;
525 }
526 mutex_unlock(&dir->i_mutex);
527 return result;
528 }
529
530 /*
531 * Uhhuh! Nasty case: the cache was re-populated while
532 * we waited on the semaphore. Need to revalidate.
533 */
534 mutex_unlock(&dir->i_mutex);
535 if (result->d_op && result->d_op->d_revalidate) {
536 result = do_revalidate(result, nd);
537 if (!result)
538 result = ERR_PTR(-ENOENT);
539 }
540 return result;
541 }
542
543 static int __emul_lookup_dentry(const char *, struct nameidata *);
544
545 /* SMP-safe */
546 static __always_inline int
547 walk_init_root(const char *name, struct nameidata *nd)
548 {
549 struct fs_struct *fs = current->fs;
550
551 read_lock(&fs->lock);
552 if (fs->altroot.dentry && !(nd->flags & LOOKUP_NOALT)) {
553 nd->path = fs->altroot;
554 path_get(&fs->altroot);
555 read_unlock(&fs->lock);
556 if (__emul_lookup_dentry(name,nd))
557 return 0;
558 read_lock(&fs->lock);
559 }
560 nd->path = fs->root;
561 path_get(&fs->root);
562 read_unlock(&fs->lock);
563 return 1;
564 }
565
566 /*
567 * Wrapper to retry pathname resolution whenever the underlying
568 * file system returns an ESTALE.
569 *
570 * Retry the whole path once, forcing real lookup requests
571 * instead of relying on the dcache.
572 */
573 static __always_inline int link_path_walk(const char *name, struct nameidata *nd)
574 {
575 struct path save = nd->path;
576 int result;
577
578 /* make sure the stuff we saved doesn't go away */
579 dget(save.dentry);
580 mntget(save.mnt);
581
582 result = __link_path_walk(name, nd);
583 if (result == -ESTALE) {
584 /* nd->path had been dropped */
585 nd->path = save;
586 dget(nd->path.dentry);
587 mntget(nd->path.mnt);
588 nd->flags |= LOOKUP_REVAL;
589 result = __link_path_walk(name, nd);
590 }
591
592 path_put(&save);
593
594 return result;
595 }
596
597 static __always_inline int __vfs_follow_link(struct nameidata *nd, const char *link)
598 {
599 int res = 0;
600 char *name;
601 if (IS_ERR(link))
602 goto fail;
603
604 if (*link == '/') {
605 path_put(&nd->path);
606 if (!walk_init_root(link, nd))
607 /* weird __emul_prefix() stuff did it */
608 goto out;
609 }
610 res = link_path_walk(link, nd);
611 out:
612 if (nd->depth || res || nd->last_type!=LAST_NORM)
613 return res;
614 /*
615 * If it is an iterative symlinks resolution in open_namei() we
616 * have to copy the last component. And all that crap because of
617 * bloody create() on broken symlinks. Furrfu...
618 */
619 name = __getname();
620 if (unlikely(!name)) {
621 path_put(&nd->path);
622 return -ENOMEM;
623 }
624 strcpy(name, nd->last.name);
625 nd->last.name = name;
626 return 0;
627 fail:
628 path_put(&nd->path);
629 return PTR_ERR(link);
630 }
631
632 static void path_put_conditional(struct path *path, struct nameidata *nd)
633 {
634 dput(path->dentry);
635 if (path->mnt != nd->path.mnt)
636 mntput(path->mnt);
637 }
638
639 static inline void path_to_nameidata(struct path *path, struct nameidata *nd)
640 {
641 dput(nd->path.dentry);
642 if (nd->path.mnt != path->mnt)
643 mntput(nd->path.mnt);
644 nd->path.mnt = path->mnt;
645 nd->path.dentry = path->dentry;
646 }
647
648 static __always_inline int __do_follow_link(struct path *path, struct nameidata *nd)
649 {
650 int error;
651 void *cookie;
652 struct dentry *dentry = path->dentry;
653
654 touch_atime(path->mnt, dentry);
655 nd_set_link(nd, NULL);
656
657 if (path->mnt != nd->path.mnt) {
658 path_to_nameidata(path, nd);
659 dget(dentry);
660 }
661 mntget(path->mnt);
662 cookie = dentry->d_inode->i_op->follow_link(dentry, nd);
663 error = PTR_ERR(cookie);
664 if (!IS_ERR(cookie)) {
665 char *s = nd_get_link(nd);
666 error = 0;
667 if (s)
668 error = __vfs_follow_link(nd, s);
669 if (dentry->d_inode->i_op->put_link)
670 dentry->d_inode->i_op->put_link(dentry, nd, cookie);
671 }
672 path_put(path);
673
674 return error;
675 }
676
677 /*
678 * This limits recursive symlink follows to 8, while
679 * limiting consecutive symlinks to 40.
680 *
681 * Without that kind of total limit, nasty chains of consecutive
682 * symlinks can cause almost arbitrarily long lookups.
683 */
684 static inline int do_follow_link(struct path *path, struct nameidata *nd)
685 {
686 int err = -ELOOP;
687 if (current->link_count >= MAX_NESTED_LINKS)
688 goto loop;
689 if (current->total_link_count >= 40)
690 goto loop;
691 BUG_ON(nd->depth >= MAX_NESTED_LINKS);
692 cond_resched();
693 err = security_inode_follow_link(path->dentry, nd);
694 if (err)
695 goto loop;
696 current->link_count++;
697 current->total_link_count++;
698 nd->depth++;
699 err = __do_follow_link(path, nd);
700 current->link_count--;
701 nd->depth--;
702 return err;
703 loop:
704 path_put_conditional(path, nd);
705 path_put(&nd->path);
706 return err;
707 }
708
709 int follow_up(struct vfsmount **mnt, struct dentry **dentry)
710 {
711 struct vfsmount *parent;
712 struct dentry *mountpoint;
713 spin_lock(&vfsmount_lock);
714 parent=(*mnt)->mnt_parent;
715 if (parent == *mnt) {
716 spin_unlock(&vfsmount_lock);
717 return 0;
718 }
719 mntget(parent);
720 mountpoint=dget((*mnt)->mnt_mountpoint);
721 spin_unlock(&vfsmount_lock);
722 dput(*dentry);
723 *dentry = mountpoint;
724 mntput(*mnt);
725 *mnt = parent;
726 return 1;
727 }
728
729 /* no need for dcache_lock, as serialization is taken care in
730 * namespace.c
731 */
732 static int __follow_mount(struct path *path)
733 {
734 int res = 0;
735 while (d_mountpoint(path->dentry)) {
736 struct vfsmount *mounted = lookup_mnt(path->mnt, path->dentry);
737 if (!mounted)
738 break;
739 dput(path->dentry);
740 if (res)
741 mntput(path->mnt);
742 path->mnt = mounted;
743 path->dentry = dget(mounted->mnt_root);
744 res = 1;
745 }
746 return res;
747 }
748
749 static void follow_mount(struct vfsmount **mnt, struct dentry **dentry)
750 {
751 while (d_mountpoint(*dentry)) {
752 struct vfsmount *mounted = lookup_mnt(*mnt, *dentry);
753 if (!mounted)
754 break;
755 dput(*dentry);
756 mntput(*mnt);
757 *mnt = mounted;
758 *dentry = dget(mounted->mnt_root);
759 }
760 }
761
762 /* no need for dcache_lock, as serialization is taken care in
763 * namespace.c
764 */
765 int follow_down(struct vfsmount **mnt, struct dentry **dentry)
766 {
767 struct vfsmount *mounted;
768
769 mounted = lookup_mnt(*mnt, *dentry);
770 if (mounted) {
771 dput(*dentry);
772 mntput(*mnt);
773 *mnt = mounted;
774 *dentry = dget(mounted->mnt_root);
775 return 1;
776 }
777 return 0;
778 }
779
780 static __always_inline void follow_dotdot(struct nameidata *nd)
781 {
782 struct fs_struct *fs = current->fs;
783
784 while(1) {
785 struct vfsmount *parent;
786 struct dentry *old = nd->path.dentry;
787
788 read_lock(&fs->lock);
789 if (nd->path.dentry == fs->root.dentry &&
790 nd->path.mnt == fs->root.mnt) {
791 read_unlock(&fs->lock);
792 break;
793 }
794 read_unlock(&fs->lock);
795 spin_lock(&dcache_lock);
796 if (nd->path.dentry != nd->path.mnt->mnt_root) {
797 nd->path.dentry = dget(nd->path.dentry->d_parent);
798 spin_unlock(&dcache_lock);
799 dput(old);
800 break;
801 }
802 spin_unlock(&dcache_lock);
803 spin_lock(&vfsmount_lock);
804 parent = nd->path.mnt->mnt_parent;
805 if (parent == nd->path.mnt) {
806 spin_unlock(&vfsmount_lock);
807 break;
808 }
809 mntget(parent);
810 nd->path.dentry = dget(nd->path.mnt->mnt_mountpoint);
811 spin_unlock(&vfsmount_lock);
812 dput(old);
813 mntput(nd->path.mnt);
814 nd->path.mnt = parent;
815 }
816 follow_mount(&nd->path.mnt, &nd->path.dentry);
817 }
818
819 /*
820 * It's more convoluted than I'd like it to be, but... it's still fairly
821 * small and for now I'd prefer to have fast path as straight as possible.
822 * It _is_ time-critical.
823 */
824 static int do_lookup(struct nameidata *nd, struct qstr *name,
825 struct path *path)
826 {
827 struct vfsmount *mnt = nd->path.mnt;
828 struct dentry *dentry = __d_lookup(nd->path.dentry, name);
829
830 if (!dentry)
831 goto need_lookup;
832 if (dentry->d_op && dentry->d_op->d_revalidate)
833 goto need_revalidate;
834 done:
835 path->mnt = mnt;
836 path->dentry = dentry;
837 __follow_mount(path);
838 return 0;
839
840 need_lookup:
841 dentry = real_lookup(nd->path.dentry, name, nd);
842 if (IS_ERR(dentry))
843 goto fail;
844 goto done;
845
846 need_revalidate:
847 dentry = do_revalidate(dentry, nd);
848 if (!dentry)
849 goto need_lookup;
850 if (IS_ERR(dentry))
851 goto fail;
852 goto done;
853
854 fail:
855 return PTR_ERR(dentry);
856 }
857
858 /*
859 * Name resolution.
860 * This is the basic name resolution function, turning a pathname into
861 * the final dentry. We expect 'base' to be positive and a directory.
862 *
863 * Returns 0 and nd will have valid dentry and mnt on success.
864 * Returns error and drops reference to input namei data on failure.
865 */
866 static int __link_path_walk(const char *name, struct nameidata *nd)
867 {
868 struct path next;
869 struct inode *inode;
870 int err;
871 unsigned int lookup_flags = nd->flags;
872
873 while (*name=='/')
874 name++;
875 if (!*name)
876 goto return_reval;
877
878 inode = nd->path.dentry->d_inode;
879 if (nd->depth)
880 lookup_flags = LOOKUP_FOLLOW | (nd->flags & LOOKUP_CONTINUE);
881
882 /* At this point we know we have a real path component. */
883 for(;;) {
884 unsigned long hash;
885 struct qstr this;
886 unsigned int c;
887
888 nd->flags |= LOOKUP_CONTINUE;
889 err = exec_permission_lite(inode, nd);
890 if (err == -EAGAIN)
891 err = vfs_permission(nd, MAY_EXEC);
892 if (err)
893 break;
894
895 this.name = name;
896 c = *(const unsigned char *)name;
897
898 hash = init_name_hash();
899 do {
900 name++;
901 hash = partial_name_hash(c, hash);
902 c = *(const unsigned char *)name;
903 } while (c && (c != '/'));
904 this.len = name - (const char *) this.name;
905 this.hash = end_name_hash(hash);
906
907 /* remove trailing slashes? */
908 if (!c)
909 goto last_component;
910 while (*++name == '/');
911 if (!*name)
912 goto last_with_slashes;
913
914 /*
915 * "." and ".." are special - ".." especially so because it has
916 * to be able to know about the current root directory and
917 * parent relationships.
918 */
919 if (this.name[0] == '.') switch (this.len) {
920 default:
921 break;
922 case 2:
923 if (this.name[1] != '.')
924 break;
925 follow_dotdot(nd);
926 inode = nd->path.dentry->d_inode;
927 /* fallthrough */
928 case 1:
929 continue;
930 }
931 /*
932 * See if the low-level filesystem might want
933 * to use its own hash..
934 */
935 if (nd->path.dentry->d_op && nd->path.dentry->d_op->d_hash) {
936 err = nd->path.dentry->d_op->d_hash(nd->path.dentry,
937 &this);
938 if (err < 0)
939 break;
940 }
941 /* This does the actual lookups.. */
942 err = do_lookup(nd, &this, &next);
943 if (err)
944 break;
945
946 err = -ENOENT;
947 inode = next.dentry->d_inode;
948 if (!inode)
949 goto out_dput;
950 err = -ENOTDIR;
951 if (!inode->i_op)
952 goto out_dput;
953
954 if (inode->i_op->follow_link) {
955 err = do_follow_link(&next, nd);
956 if (err)
957 goto return_err;
958 err = -ENOENT;
959 inode = nd->path.dentry->d_inode;
960 if (!inode)
961 break;
962 err = -ENOTDIR;
963 if (!inode->i_op)
964 break;
965 } else
966 path_to_nameidata(&next, nd);
967 err = -ENOTDIR;
968 if (!inode->i_op->lookup)
969 break;
970 continue;
971 /* here ends the main loop */
972
973 last_with_slashes:
974 lookup_flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
975 last_component:
976 /* Clear LOOKUP_CONTINUE iff it was previously unset */
977 nd->flags &= lookup_flags | ~LOOKUP_CONTINUE;
978 if (lookup_flags & LOOKUP_PARENT)
979 goto lookup_parent;
980 if (this.name[0] == '.') switch (this.len) {
981 default:
982 break;
983 case 2:
984 if (this.name[1] != '.')
985 break;
986 follow_dotdot(nd);
987 inode = nd->path.dentry->d_inode;
988 /* fallthrough */
989 case 1:
990 goto return_reval;
991 }
992 if (nd->path.dentry->d_op && nd->path.dentry->d_op->d_hash) {
993 err = nd->path.dentry->d_op->d_hash(nd->path.dentry,
994 &this);
995 if (err < 0)
996 break;
997 }
998 err = do_lookup(nd, &this, &next);
999 if (err)
1000 break;
1001 inode = next.dentry->d_inode;
1002 if ((lookup_flags & LOOKUP_FOLLOW)
1003 && inode && inode->i_op && inode->i_op->follow_link) {
1004 err = do_follow_link(&next, nd);
1005 if (err)
1006 goto return_err;
1007 inode = nd->path.dentry->d_inode;
1008 } else
1009 path_to_nameidata(&next, nd);
1010 err = -ENOENT;
1011 if (!inode)
1012 break;
1013 if (lookup_flags & LOOKUP_DIRECTORY) {
1014 err = -ENOTDIR;
1015 if (!inode->i_op || !inode->i_op->lookup)
1016 break;
1017 }
1018 goto return_base;
1019 lookup_parent:
1020 nd->last = this;
1021 nd->last_type = LAST_NORM;
1022 if (this.name[0] != '.')
1023 goto return_base;
1024 if (this.len == 1)
1025 nd->last_type = LAST_DOT;
1026 else if (this.len == 2 && this.name[1] == '.')
1027 nd->last_type = LAST_DOTDOT;
1028 else
1029 goto return_base;
1030 return_reval:
1031 /*
1032 * We bypassed the ordinary revalidation routines.
1033 * We may need to check the cached dentry for staleness.
1034 */
1035 if (nd->path.dentry && nd->path.dentry->d_sb &&
1036 (nd->path.dentry->d_sb->s_type->fs_flags & FS_REVAL_DOT)) {
1037 err = -ESTALE;
1038 /* Note: we do not d_invalidate() */
1039 if (!nd->path.dentry->d_op->d_revalidate(
1040 nd->path.dentry, nd))
1041 break;
1042 }
1043 return_base:
1044 return 0;
1045 out_dput:
1046 path_put_conditional(&next, nd);
1047 break;
1048 }
1049 path_put(&nd->path);
1050 return_err:
1051 return err;
1052 }
1053
1054 static int path_walk(const char *name, struct nameidata *nd)
1055 {
1056 current->total_link_count = 0;
1057 return link_path_walk(name, nd);
1058 }
1059
1060 /*
1061 * SMP-safe: Returns 1 and nd will have valid dentry and mnt, if
1062 * everything is done. Returns 0 and drops input nd, if lookup failed;
1063 */
1064 static int __emul_lookup_dentry(const char *name, struct nameidata *nd)
1065 {
1066 if (path_walk(name, nd))
1067 return 0; /* something went wrong... */
1068
1069 if (!nd->path.dentry->d_inode ||
1070 S_ISDIR(nd->path.dentry->d_inode->i_mode)) {
1071 struct path old_path = nd->path;
1072 struct qstr last = nd->last;
1073 int last_type = nd->last_type;
1074 struct fs_struct *fs = current->fs;
1075
1076 /*
1077 * NAME was not found in alternate root or it's a directory.
1078 * Try to find it in the normal root:
1079 */
1080 nd->last_type = LAST_ROOT;
1081 read_lock(&fs->lock);
1082 nd->path = fs->root;
1083 path_get(&fs->root);
1084 read_unlock(&fs->lock);
1085 if (path_walk(name, nd) == 0) {
1086 if (nd->path.dentry->d_inode) {
1087 path_put(&old_path);
1088 return 1;
1089 }
1090 path_put(&nd->path);
1091 }
1092 nd->path = old_path;
1093 nd->last = last;
1094 nd->last_type = last_type;
1095 }
1096 return 1;
1097 }
1098
1099 void set_fs_altroot(void)
1100 {
1101 char *emul = __emul_prefix();
1102 struct nameidata nd;
1103 struct path path = {}, old_path;
1104 int err;
1105 struct fs_struct *fs = current->fs;
1106
1107 if (!emul)
1108 goto set_it;
1109 err = path_lookup(emul, LOOKUP_FOLLOW|LOOKUP_DIRECTORY|LOOKUP_NOALT, &nd);
1110 if (!err)
1111 path = nd.path;
1112 set_it:
1113 write_lock(&fs->lock);
1114 old_path = fs->altroot;
1115 fs->altroot = path;
1116 write_unlock(&fs->lock);
1117 if (old_path.dentry)
1118 path_put(&old_path);
1119 }
1120
1121 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
1122 static int do_path_lookup(int dfd, const char *name,
1123 unsigned int flags, struct nameidata *nd)
1124 {
1125 int retval = 0;
1126 int fput_needed;
1127 struct file *file;
1128 struct fs_struct *fs = current->fs;
1129
1130 nd->last_type = LAST_ROOT; /* if there are only slashes... */
1131 nd->flags = flags;
1132 nd->depth = 0;
1133
1134 if (*name=='/') {
1135 read_lock(&fs->lock);
1136 if (fs->altroot.dentry && !(nd->flags & LOOKUP_NOALT)) {
1137 nd->path = fs->altroot;
1138 path_get(&fs->altroot);
1139 read_unlock(&fs->lock);
1140 if (__emul_lookup_dentry(name,nd))
1141 goto out; /* found in altroot */
1142 read_lock(&fs->lock);
1143 }
1144 nd->path = fs->root;
1145 path_get(&fs->root);
1146 read_unlock(&fs->lock);
1147 } else if (dfd == AT_FDCWD) {
1148 read_lock(&fs->lock);
1149 nd->path = fs->pwd;
1150 path_get(&fs->pwd);
1151 read_unlock(&fs->lock);
1152 } else {
1153 struct dentry *dentry;
1154
1155 file = fget_light(dfd, &fput_needed);
1156 retval = -EBADF;
1157 if (!file)
1158 goto out_fail;
1159
1160 dentry = file->f_path.dentry;
1161
1162 retval = -ENOTDIR;
1163 if (!S_ISDIR(dentry->d_inode->i_mode))
1164 goto fput_fail;
1165
1166 retval = file_permission(file, MAY_EXEC);
1167 if (retval)
1168 goto fput_fail;
1169
1170 nd->path = file->f_path;
1171 path_get(&file->f_path);
1172
1173 fput_light(file, fput_needed);
1174 }
1175
1176 retval = path_walk(name, nd);
1177 out:
1178 if (unlikely(!retval && !audit_dummy_context() && nd->path.dentry &&
1179 nd->path.dentry->d_inode))
1180 audit_inode(name, nd->path.dentry);
1181 out_fail:
1182 return retval;
1183
1184 fput_fail:
1185 fput_light(file, fput_needed);
1186 goto out_fail;
1187 }
1188
1189 int path_lookup(const char *name, unsigned int flags,
1190 struct nameidata *nd)
1191 {
1192 return do_path_lookup(AT_FDCWD, name, flags, nd);
1193 }
1194
1195 /**
1196 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
1197 * @dentry: pointer to dentry of the base directory
1198 * @mnt: pointer to vfs mount of the base directory
1199 * @name: pointer to file name
1200 * @flags: lookup flags
1201 * @nd: pointer to nameidata
1202 */
1203 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
1204 const char *name, unsigned int flags,
1205 struct nameidata *nd)
1206 {
1207 int retval;
1208
1209 /* same as do_path_lookup */
1210 nd->last_type = LAST_ROOT;
1211 nd->flags = flags;
1212 nd->depth = 0;
1213
1214 nd->path.mnt = mntget(mnt);
1215 nd->path.dentry = dget(dentry);
1216
1217 retval = path_walk(name, nd);
1218 if (unlikely(!retval && !audit_dummy_context() && nd->path.dentry &&
1219 nd->path.dentry->d_inode))
1220 audit_inode(name, nd->path.dentry);
1221
1222 return retval;
1223
1224 }
1225
1226 static int __path_lookup_intent_open(int dfd, const char *name,
1227 unsigned int lookup_flags, struct nameidata *nd,
1228 int open_flags, int create_mode)
1229 {
1230 struct file *filp = get_empty_filp();
1231 int err;
1232
1233 if (filp == NULL)
1234 return -ENFILE;
1235 nd->intent.open.file = filp;
1236 nd->intent.open.flags = open_flags;
1237 nd->intent.open.create_mode = create_mode;
1238 err = do_path_lookup(dfd, name, lookup_flags|LOOKUP_OPEN, nd);
1239 if (IS_ERR(nd->intent.open.file)) {
1240 if (err == 0) {
1241 err = PTR_ERR(nd->intent.open.file);
1242 path_put(&nd->path);
1243 }
1244 } else if (err != 0)
1245 release_open_intent(nd);
1246 return err;
1247 }
1248
1249 /**
1250 * path_lookup_open - lookup a file path with open intent
1251 * @dfd: the directory to use as base, or AT_FDCWD
1252 * @name: pointer to file name
1253 * @lookup_flags: lookup intent flags
1254 * @nd: pointer to nameidata
1255 * @open_flags: open intent flags
1256 */
1257 int path_lookup_open(int dfd, const char *name, unsigned int lookup_flags,
1258 struct nameidata *nd, int open_flags)
1259 {
1260 return __path_lookup_intent_open(dfd, name, lookup_flags, nd,
1261 open_flags, 0);
1262 }
1263
1264 /**
1265 * path_lookup_create - lookup a file path with open + create intent
1266 * @dfd: the directory to use as base, or AT_FDCWD
1267 * @name: pointer to file name
1268 * @lookup_flags: lookup intent flags
1269 * @nd: pointer to nameidata
1270 * @open_flags: open intent flags
1271 * @create_mode: create intent flags
1272 */
1273 static int path_lookup_create(int dfd, const char *name,
1274 unsigned int lookup_flags, struct nameidata *nd,
1275 int open_flags, int create_mode)
1276 {
1277 return __path_lookup_intent_open(dfd, name, lookup_flags|LOOKUP_CREATE,
1278 nd, open_flags, create_mode);
1279 }
1280
1281 int __user_path_lookup_open(const char __user *name, unsigned int lookup_flags,
1282 struct nameidata *nd, int open_flags)
1283 {
1284 char *tmp = getname(name);
1285 int err = PTR_ERR(tmp);
1286
1287 if (!IS_ERR(tmp)) {
1288 err = __path_lookup_intent_open(AT_FDCWD, tmp, lookup_flags, nd, open_flags, 0);
1289 putname(tmp);
1290 }
1291 return err;
1292 }
1293
1294 static struct dentry *__lookup_hash(struct qstr *name,
1295 struct dentry *base, struct nameidata *nd)
1296 {
1297 struct dentry *dentry;
1298 struct inode *inode;
1299 int err;
1300
1301 inode = base->d_inode;
1302
1303 /*
1304 * See if the low-level filesystem might want
1305 * to use its own hash..
1306 */
1307 if (base->d_op && base->d_op->d_hash) {
1308 err = base->d_op->d_hash(base, name);
1309 dentry = ERR_PTR(err);
1310 if (err < 0)
1311 goto out;
1312 }
1313
1314 dentry = cached_lookup(base, name, nd);
1315 if (!dentry) {
1316 struct dentry *new = d_alloc(base, name);
1317 dentry = ERR_PTR(-ENOMEM);
1318 if (!new)
1319 goto out;
1320 dentry = inode->i_op->lookup(inode, new, nd);
1321 if (!dentry)
1322 dentry = new;
1323 else
1324 dput(new);
1325 }
1326 out:
1327 return dentry;
1328 }
1329
1330 /*
1331 * Restricted form of lookup. Doesn't follow links, single-component only,
1332 * needs parent already locked. Doesn't follow mounts.
1333 * SMP-safe.
1334 */
1335 static struct dentry *lookup_hash(struct nameidata *nd)
1336 {
1337 int err;
1338
1339 err = permission(nd->path.dentry->d_inode, MAY_EXEC, nd);
1340 if (err)
1341 return ERR_PTR(err);
1342 return __lookup_hash(&nd->last, nd->path.dentry, nd);
1343 }
1344
1345 static int __lookup_one_len(const char *name, struct qstr *this,
1346 struct dentry *base, int len)
1347 {
1348 unsigned long hash;
1349 unsigned int c;
1350
1351 this->name = name;
1352 this->len = len;
1353 if (!len)
1354 return -EACCES;
1355
1356 hash = init_name_hash();
1357 while (len--) {
1358 c = *(const unsigned char *)name++;
1359 if (c == '/' || c == '\0')
1360 return -EACCES;
1361 hash = partial_name_hash(c, hash);
1362 }
1363 this->hash = end_name_hash(hash);
1364 return 0;
1365 }
1366
1367 /**
1368 * lookup_one_len - filesystem helper to lookup single pathname component
1369 * @name: pathname component to lookup
1370 * @base: base directory to lookup from
1371 * @len: maximum length @len should be interpreted to
1372 *
1373 * Note that this routine is purely a helper for filesystem usage and should
1374 * not be called by generic code. Also note that by using this function the
1375 * nameidata argument is passed to the filesystem methods and a filesystem
1376 * using this helper needs to be prepared for that.
1377 */
1378 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
1379 {
1380 int err;
1381 struct qstr this;
1382
1383 err = __lookup_one_len(name, &this, base, len);
1384 if (err)
1385 return ERR_PTR(err);
1386
1387 err = permission(base->d_inode, MAY_EXEC, NULL);
1388 if (err)
1389 return ERR_PTR(err);
1390 return __lookup_hash(&this, base, NULL);
1391 }
1392
1393 /**
1394 * lookup_one_noperm - bad hack for sysfs
1395 * @name: pathname component to lookup
1396 * @base: base directory to lookup from
1397 *
1398 * This is a variant of lookup_one_len that doesn't perform any permission
1399 * checks. It's a horrible hack to work around the braindead sysfs
1400 * architecture and should not be used anywhere else.
1401 *
1402 * DON'T USE THIS FUNCTION EVER, thanks.
1403 */
1404 struct dentry *lookup_one_noperm(const char *name, struct dentry *base)
1405 {
1406 int err;
1407 struct qstr this;
1408
1409 err = __lookup_one_len(name, &this, base, strlen(name));
1410 if (err)
1411 return ERR_PTR(err);
1412 return __lookup_hash(&this, base, NULL);
1413 }
1414
1415 int __user_walk_fd(int dfd, const char __user *name, unsigned flags,
1416 struct nameidata *nd)
1417 {
1418 char *tmp = getname(name);
1419 int err = PTR_ERR(tmp);
1420
1421 if (!IS_ERR(tmp)) {
1422 err = do_path_lookup(dfd, tmp, flags, nd);
1423 putname(tmp);
1424 }
1425 return err;
1426 }
1427
1428 int __user_walk(const char __user *name, unsigned flags, struct nameidata *nd)
1429 {
1430 return __user_walk_fd(AT_FDCWD, name, flags, nd);
1431 }
1432
1433 /*
1434 * It's inline, so penalty for filesystems that don't use sticky bit is
1435 * minimal.
1436 */
1437 static inline int check_sticky(struct inode *dir, struct inode *inode)
1438 {
1439 if (!(dir->i_mode & S_ISVTX))
1440 return 0;
1441 if (inode->i_uid == current->fsuid)
1442 return 0;
1443 if (dir->i_uid == current->fsuid)
1444 return 0;
1445 return !capable(CAP_FOWNER);
1446 }
1447
1448 /*
1449 * Check whether we can remove a link victim from directory dir, check
1450 * whether the type of victim is right.
1451 * 1. We can't do it if dir is read-only (done in permission())
1452 * 2. We should have write and exec permissions on dir
1453 * 3. We can't remove anything from append-only dir
1454 * 4. We can't do anything with immutable dir (done in permission())
1455 * 5. If the sticky bit on dir is set we should either
1456 * a. be owner of dir, or
1457 * b. be owner of victim, or
1458 * c. have CAP_FOWNER capability
1459 * 6. If the victim is append-only or immutable we can't do antyhing with
1460 * links pointing to it.
1461 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
1462 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
1463 * 9. We can't remove a root or mountpoint.
1464 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
1465 * nfs_async_unlink().
1466 */
1467 static int may_delete(struct inode *dir,struct dentry *victim,int isdir)
1468 {
1469 int error;
1470
1471 if (!victim->d_inode)
1472 return -ENOENT;
1473
1474 BUG_ON(victim->d_parent->d_inode != dir);
1475 audit_inode_child(victim->d_name.name, victim, dir);
1476
1477 error = permission(dir,MAY_WRITE | MAY_EXEC, NULL);
1478 if (error)
1479 return error;
1480 if (IS_APPEND(dir))
1481 return -EPERM;
1482 if (check_sticky(dir, victim->d_inode)||IS_APPEND(victim->d_inode)||
1483 IS_IMMUTABLE(victim->d_inode))
1484 return -EPERM;
1485 if (isdir) {
1486 if (!S_ISDIR(victim->d_inode->i_mode))
1487 return -ENOTDIR;
1488 if (IS_ROOT(victim))
1489 return -EBUSY;
1490 } else if (S_ISDIR(victim->d_inode->i_mode))
1491 return -EISDIR;
1492 if (IS_DEADDIR(dir))
1493 return -ENOENT;
1494 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
1495 return -EBUSY;
1496 return 0;
1497 }
1498
1499 /* Check whether we can create an object with dentry child in directory
1500 * dir.
1501 * 1. We can't do it if child already exists (open has special treatment for
1502 * this case, but since we are inlined it's OK)
1503 * 2. We can't do it if dir is read-only (done in permission())
1504 * 3. We should have write and exec permissions on dir
1505 * 4. We can't do it if dir is immutable (done in permission())
1506 */
1507 static inline int may_create(struct inode *dir, struct dentry *child,
1508 struct nameidata *nd)
1509 {
1510 if (child->d_inode)
1511 return -EEXIST;
1512 if (IS_DEADDIR(dir))
1513 return -ENOENT;
1514 return permission(dir,MAY_WRITE | MAY_EXEC, nd);
1515 }
1516
1517 /*
1518 * O_DIRECTORY translates into forcing a directory lookup.
1519 */
1520 static inline int lookup_flags(unsigned int f)
1521 {
1522 unsigned long retval = LOOKUP_FOLLOW;
1523
1524 if (f & O_NOFOLLOW)
1525 retval &= ~LOOKUP_FOLLOW;
1526
1527 if (f & O_DIRECTORY)
1528 retval |= LOOKUP_DIRECTORY;
1529
1530 return retval;
1531 }
1532
1533 /*
1534 * p1 and p2 should be directories on the same fs.
1535 */
1536 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
1537 {
1538 struct dentry *p;
1539
1540 if (p1 == p2) {
1541 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1542 return NULL;
1543 }
1544
1545 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
1546
1547 for (p = p1; p->d_parent != p; p = p->d_parent) {
1548 if (p->d_parent == p2) {
1549 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
1550 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
1551 return p;
1552 }
1553 }
1554
1555 for (p = p2; p->d_parent != p; p = p->d_parent) {
1556 if (p->d_parent == p1) {
1557 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1558 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
1559 return p;
1560 }
1561 }
1562
1563 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1564 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
1565 return NULL;
1566 }
1567
1568 void unlock_rename(struct dentry *p1, struct dentry *p2)
1569 {
1570 mutex_unlock(&p1->d_inode->i_mutex);
1571 if (p1 != p2) {
1572 mutex_unlock(&p2->d_inode->i_mutex);
1573 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
1574 }
1575 }
1576
1577 int vfs_create(struct inode *dir, struct dentry *dentry, int mode,
1578 struct nameidata *nd)
1579 {
1580 int error = may_create(dir, dentry, nd);
1581
1582 if (error)
1583 return error;
1584
1585 if (!dir->i_op || !dir->i_op->create)
1586 return -EACCES; /* shouldn't it be ENOSYS? */
1587 mode &= S_IALLUGO;
1588 mode |= S_IFREG;
1589 error = security_inode_create(dir, dentry, mode);
1590 if (error)
1591 return error;
1592 DQUOT_INIT(dir);
1593 error = dir->i_op->create(dir, dentry, mode, nd);
1594 if (!error)
1595 fsnotify_create(dir, dentry);
1596 return error;
1597 }
1598
1599 int may_open(struct nameidata *nd, int acc_mode, int flag)
1600 {
1601 struct dentry *dentry = nd->path.dentry;
1602 struct inode *inode = dentry->d_inode;
1603 int error;
1604
1605 if (!inode)
1606 return -ENOENT;
1607
1608 if (S_ISLNK(inode->i_mode))
1609 return -ELOOP;
1610
1611 if (S_ISDIR(inode->i_mode) && (acc_mode & MAY_WRITE))
1612 return -EISDIR;
1613
1614 /*
1615 * FIFO's, sockets and device files are special: they don't
1616 * actually live on the filesystem itself, and as such you
1617 * can write to them even if the filesystem is read-only.
1618 */
1619 if (S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
1620 flag &= ~O_TRUNC;
1621 } else if (S_ISBLK(inode->i_mode) || S_ISCHR(inode->i_mode)) {
1622 if (nd->path.mnt->mnt_flags & MNT_NODEV)
1623 return -EACCES;
1624
1625 flag &= ~O_TRUNC;
1626 } else if (IS_RDONLY(inode) && (acc_mode & MAY_WRITE))
1627 return -EROFS;
1628
1629 error = vfs_permission(nd, acc_mode);
1630 if (error)
1631 return error;
1632 /*
1633 * An append-only file must be opened in append mode for writing.
1634 */
1635 if (IS_APPEND(inode)) {
1636 if ((flag & FMODE_WRITE) && !(flag & O_APPEND))
1637 return -EPERM;
1638 if (flag & O_TRUNC)
1639 return -EPERM;
1640 }
1641
1642 /* O_NOATIME can only be set by the owner or superuser */
1643 if (flag & O_NOATIME)
1644 if (!is_owner_or_cap(inode))
1645 return -EPERM;
1646
1647 /*
1648 * Ensure there are no outstanding leases on the file.
1649 */
1650 error = break_lease(inode, flag);
1651 if (error)
1652 return error;
1653
1654 if (flag & O_TRUNC) {
1655 error = get_write_access(inode);
1656 if (error)
1657 return error;
1658
1659 /*
1660 * Refuse to truncate files with mandatory locks held on them.
1661 */
1662 error = locks_verify_locked(inode);
1663 if (!error) {
1664 DQUOT_INIT(inode);
1665
1666 error = do_truncate(dentry, 0,
1667 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
1668 NULL);
1669 }
1670 put_write_access(inode);
1671 if (error)
1672 return error;
1673 } else
1674 if (flag & FMODE_WRITE)
1675 DQUOT_INIT(inode);
1676
1677 return 0;
1678 }
1679
1680 /*
1681 * Be careful about ever adding any more callers of this
1682 * function. Its flags must be in the namei format, not
1683 * what get passed to sys_open().
1684 */
1685 static int __open_namei_create(struct nameidata *nd, struct path *path,
1686 int flag, int mode)
1687 {
1688 int error;
1689 struct dentry *dir = nd->path.dentry;
1690
1691 if (!IS_POSIXACL(dir->d_inode))
1692 mode &= ~current->fs->umask;
1693 error = vfs_create(dir->d_inode, path->dentry, mode, nd);
1694 mutex_unlock(&dir->d_inode->i_mutex);
1695 dput(nd->path.dentry);
1696 nd->path.dentry = path->dentry;
1697 if (error)
1698 return error;
1699 /* Don't check for write permission, don't truncate */
1700 return may_open(nd, 0, flag & ~O_TRUNC);
1701 }
1702
1703 /*
1704 * Note that while the flag value (low two bits) for sys_open means:
1705 * 00 - read-only
1706 * 01 - write-only
1707 * 10 - read-write
1708 * 11 - special
1709 * it is changed into
1710 * 00 - no permissions needed
1711 * 01 - read-permission
1712 * 10 - write-permission
1713 * 11 - read-write
1714 * for the internal routines (ie open_namei()/follow_link() etc)
1715 * This is more logical, and also allows the 00 "no perm needed"
1716 * to be used for symlinks (where the permissions are checked
1717 * later).
1718 *
1719 */
1720 static inline int open_to_namei_flags(int flag)
1721 {
1722 if ((flag+1) & O_ACCMODE)
1723 flag++;
1724 return flag;
1725 }
1726
1727 /*
1728 * open_namei()
1729 *
1730 * namei for open - this is in fact almost the whole open-routine.
1731 *
1732 * Note that the low bits of "flag" aren't the same as in the open
1733 * system call. See open_to_namei_flags().
1734 * SMP-safe
1735 */
1736 int open_namei(int dfd, const char *pathname, int open_flag,
1737 int mode, struct nameidata *nd)
1738 {
1739 int acc_mode, error;
1740 struct path path;
1741 struct dentry *dir;
1742 int count = 0;
1743 int flag = open_to_namei_flags(open_flag);
1744
1745 acc_mode = ACC_MODE(flag);
1746
1747 /* O_TRUNC implies we need access checks for write permissions */
1748 if (flag & O_TRUNC)
1749 acc_mode |= MAY_WRITE;
1750
1751 /* Allow the LSM permission hook to distinguish append
1752 access from general write access. */
1753 if (flag & O_APPEND)
1754 acc_mode |= MAY_APPEND;
1755
1756 /*
1757 * The simplest case - just a plain lookup.
1758 */
1759 if (!(flag & O_CREAT)) {
1760 error = path_lookup_open(dfd, pathname, lookup_flags(flag),
1761 nd, flag);
1762 if (error)
1763 return error;
1764 goto ok;
1765 }
1766
1767 /*
1768 * Create - we need to know the parent.
1769 */
1770 error = path_lookup_create(dfd,pathname,LOOKUP_PARENT,nd,flag,mode);
1771 if (error)
1772 return error;
1773
1774 /*
1775 * We have the parent and last component. First of all, check
1776 * that we are not asked to creat(2) an obvious directory - that
1777 * will not do.
1778 */
1779 error = -EISDIR;
1780 if (nd->last_type != LAST_NORM || nd->last.name[nd->last.len])
1781 goto exit;
1782
1783 dir = nd->path.dentry;
1784 nd->flags &= ~LOOKUP_PARENT;
1785 mutex_lock(&dir->d_inode->i_mutex);
1786 path.dentry = lookup_hash(nd);
1787 path.mnt = nd->path.mnt;
1788
1789 do_last:
1790 error = PTR_ERR(path.dentry);
1791 if (IS_ERR(path.dentry)) {
1792 mutex_unlock(&dir->d_inode->i_mutex);
1793 goto exit;
1794 }
1795
1796 if (IS_ERR(nd->intent.open.file)) {
1797 mutex_unlock(&dir->d_inode->i_mutex);
1798 error = PTR_ERR(nd->intent.open.file);
1799 goto exit_dput;
1800 }
1801
1802 /* Negative dentry, just create the file */
1803 if (!path.dentry->d_inode) {
1804 error = __open_namei_create(nd, &path, flag, mode);
1805 if (error)
1806 goto exit;
1807 return 0;
1808 }
1809
1810 /*
1811 * It already exists.
1812 */
1813 mutex_unlock(&dir->d_inode->i_mutex);
1814 audit_inode(pathname, path.dentry);
1815
1816 error = -EEXIST;
1817 if (flag & O_EXCL)
1818 goto exit_dput;
1819
1820 if (__follow_mount(&path)) {
1821 error = -ELOOP;
1822 if (flag & O_NOFOLLOW)
1823 goto exit_dput;
1824 }
1825
1826 error = -ENOENT;
1827 if (!path.dentry->d_inode)
1828 goto exit_dput;
1829 if (path.dentry->d_inode->i_op && path.dentry->d_inode->i_op->follow_link)
1830 goto do_link;
1831
1832 path_to_nameidata(&path, nd);
1833 error = -EISDIR;
1834 if (path.dentry->d_inode && S_ISDIR(path.dentry->d_inode->i_mode))
1835 goto exit;
1836 ok:
1837 error = may_open(nd, acc_mode, flag);
1838 if (error)
1839 goto exit;
1840 return 0;
1841
1842 exit_dput:
1843 path_put_conditional(&path, nd);
1844 exit:
1845 if (!IS_ERR(nd->intent.open.file))
1846 release_open_intent(nd);
1847 path_put(&nd->path);
1848 return error;
1849
1850 do_link:
1851 error = -ELOOP;
1852 if (flag & O_NOFOLLOW)
1853 goto exit_dput;
1854 /*
1855 * This is subtle. Instead of calling do_follow_link() we do the
1856 * thing by hands. The reason is that this way we have zero link_count
1857 * and path_walk() (called from ->follow_link) honoring LOOKUP_PARENT.
1858 * After that we have the parent and last component, i.e.
1859 * we are in the same situation as after the first path_walk().
1860 * Well, almost - if the last component is normal we get its copy
1861 * stored in nd->last.name and we will have to putname() it when we
1862 * are done. Procfs-like symlinks just set LAST_BIND.
1863 */
1864 nd->flags |= LOOKUP_PARENT;
1865 error = security_inode_follow_link(path.dentry, nd);
1866 if (error)
1867 goto exit_dput;
1868 error = __do_follow_link(&path, nd);
1869 if (error) {
1870 /* Does someone understand code flow here? Or it is only
1871 * me so stupid? Anathema to whoever designed this non-sense
1872 * with "intent.open".
1873 */
1874 release_open_intent(nd);
1875 return error;
1876 }
1877 nd->flags &= ~LOOKUP_PARENT;
1878 if (nd->last_type == LAST_BIND)
1879 goto ok;
1880 error = -EISDIR;
1881 if (nd->last_type != LAST_NORM)
1882 goto exit;
1883 if (nd->last.name[nd->last.len]) {
1884 __putname(nd->last.name);
1885 goto exit;
1886 }
1887 error = -ELOOP;
1888 if (count++==32) {
1889 __putname(nd->last.name);
1890 goto exit;
1891 }
1892 dir = nd->path.dentry;
1893 mutex_lock(&dir->d_inode->i_mutex);
1894 path.dentry = lookup_hash(nd);
1895 path.mnt = nd->path.mnt;
1896 __putname(nd->last.name);
1897 goto do_last;
1898 }
1899
1900 /**
1901 * lookup_create - lookup a dentry, creating it if it doesn't exist
1902 * @nd: nameidata info
1903 * @is_dir: directory flag
1904 *
1905 * Simple function to lookup and return a dentry and create it
1906 * if it doesn't exist. Is SMP-safe.
1907 *
1908 * Returns with nd->path.dentry->d_inode->i_mutex locked.
1909 */
1910 struct dentry *lookup_create(struct nameidata *nd, int is_dir)
1911 {
1912 struct dentry *dentry = ERR_PTR(-EEXIST);
1913
1914 mutex_lock_nested(&nd->path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
1915 /*
1916 * Yucky last component or no last component at all?
1917 * (foo/., foo/.., /////)
1918 */
1919 if (nd->last_type != LAST_NORM)
1920 goto fail;
1921 nd->flags &= ~LOOKUP_PARENT;
1922 nd->flags |= LOOKUP_CREATE;
1923 nd->intent.open.flags = O_EXCL;
1924
1925 /*
1926 * Do the final lookup.
1927 */
1928 dentry = lookup_hash(nd);
1929 if (IS_ERR(dentry))
1930 goto fail;
1931
1932 /*
1933 * Special case - lookup gave negative, but... we had foo/bar/
1934 * From the vfs_mknod() POV we just have a negative dentry -
1935 * all is fine. Let's be bastards - you had / on the end, you've
1936 * been asking for (non-existent) directory. -ENOENT for you.
1937 */
1938 if (!is_dir && nd->last.name[nd->last.len] && !dentry->d_inode)
1939 goto enoent;
1940 return dentry;
1941 enoent:
1942 dput(dentry);
1943 dentry = ERR_PTR(-ENOENT);
1944 fail:
1945 return dentry;
1946 }
1947 EXPORT_SYMBOL_GPL(lookup_create);
1948
1949 int vfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
1950 {
1951 int error = may_create(dir, dentry, NULL);
1952
1953 if (error)
1954 return error;
1955
1956 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
1957 return -EPERM;
1958
1959 if (!dir->i_op || !dir->i_op->mknod)
1960 return -EPERM;
1961
1962 error = security_inode_mknod(dir, dentry, mode, dev);
1963 if (error)
1964 return error;
1965
1966 DQUOT_INIT(dir);
1967 error = dir->i_op->mknod(dir, dentry, mode, dev);
1968 if (!error)
1969 fsnotify_create(dir, dentry);
1970 return error;
1971 }
1972
1973 asmlinkage long sys_mknodat(int dfd, const char __user *filename, int mode,
1974 unsigned dev)
1975 {
1976 int error = 0;
1977 char * tmp;
1978 struct dentry * dentry;
1979 struct nameidata nd;
1980
1981 if (S_ISDIR(mode))
1982 return -EPERM;
1983 tmp = getname(filename);
1984 if (IS_ERR(tmp))
1985 return PTR_ERR(tmp);
1986
1987 error = do_path_lookup(dfd, tmp, LOOKUP_PARENT, &nd);
1988 if (error)
1989 goto out;
1990 dentry = lookup_create(&nd, 0);
1991 error = PTR_ERR(dentry);
1992
1993 if (!IS_POSIXACL(nd.path.dentry->d_inode))
1994 mode &= ~current->fs->umask;
1995 if (!IS_ERR(dentry)) {
1996 switch (mode & S_IFMT) {
1997 case 0: case S_IFREG:
1998 error = vfs_create(nd.path.dentry->d_inode,dentry,mode,&nd);
1999 break;
2000 case S_IFCHR: case S_IFBLK:
2001 error = vfs_mknod(nd.path.dentry->d_inode,dentry,mode,
2002 new_decode_dev(dev));
2003 break;
2004 case S_IFIFO: case S_IFSOCK:
2005 error = vfs_mknod(nd.path.dentry->d_inode,dentry,mode,0);
2006 break;
2007 case S_IFDIR:
2008 error = -EPERM;
2009 break;
2010 default:
2011 error = -EINVAL;
2012 }
2013 dput(dentry);
2014 }
2015 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2016 path_put(&nd.path);
2017 out:
2018 putname(tmp);
2019
2020 return error;
2021 }
2022
2023 asmlinkage long sys_mknod(const char __user *filename, int mode, unsigned dev)
2024 {
2025 return sys_mknodat(AT_FDCWD, filename, mode, dev);
2026 }
2027
2028 int vfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
2029 {
2030 int error = may_create(dir, dentry, NULL);
2031
2032 if (error)
2033 return error;
2034
2035 if (!dir->i_op || !dir->i_op->mkdir)
2036 return -EPERM;
2037
2038 mode &= (S_IRWXUGO|S_ISVTX);
2039 error = security_inode_mkdir(dir, dentry, mode);
2040 if (error)
2041 return error;
2042
2043 DQUOT_INIT(dir);
2044 error = dir->i_op->mkdir(dir, dentry, mode);
2045 if (!error)
2046 fsnotify_mkdir(dir, dentry);
2047 return error;
2048 }
2049
2050 asmlinkage long sys_mkdirat(int dfd, const char __user *pathname, int mode)
2051 {
2052 int error = 0;
2053 char * tmp;
2054 struct dentry *dentry;
2055 struct nameidata nd;
2056
2057 tmp = getname(pathname);
2058 error = PTR_ERR(tmp);
2059 if (IS_ERR(tmp))
2060 goto out_err;
2061
2062 error = do_path_lookup(dfd, tmp, LOOKUP_PARENT, &nd);
2063 if (error)
2064 goto out;
2065 dentry = lookup_create(&nd, 1);
2066 error = PTR_ERR(dentry);
2067 if (IS_ERR(dentry))
2068 goto out_unlock;
2069
2070 if (!IS_POSIXACL(nd.path.dentry->d_inode))
2071 mode &= ~current->fs->umask;
2072 error = vfs_mkdir(nd.path.dentry->d_inode, dentry, mode);
2073 dput(dentry);
2074 out_unlock:
2075 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2076 path_put(&nd.path);
2077 out:
2078 putname(tmp);
2079 out_err:
2080 return error;
2081 }
2082
2083 asmlinkage long sys_mkdir(const char __user *pathname, int mode)
2084 {
2085 return sys_mkdirat(AT_FDCWD, pathname, mode);
2086 }
2087
2088 /*
2089 * We try to drop the dentry early: we should have
2090 * a usage count of 2 if we're the only user of this
2091 * dentry, and if that is true (possibly after pruning
2092 * the dcache), then we drop the dentry now.
2093 *
2094 * A low-level filesystem can, if it choses, legally
2095 * do a
2096 *
2097 * if (!d_unhashed(dentry))
2098 * return -EBUSY;
2099 *
2100 * if it cannot handle the case of removing a directory
2101 * that is still in use by something else..
2102 */
2103 void dentry_unhash(struct dentry *dentry)
2104 {
2105 dget(dentry);
2106 shrink_dcache_parent(dentry);
2107 spin_lock(&dcache_lock);
2108 spin_lock(&dentry->d_lock);
2109 if (atomic_read(&dentry->d_count) == 2)
2110 __d_drop(dentry);
2111 spin_unlock(&dentry->d_lock);
2112 spin_unlock(&dcache_lock);
2113 }
2114
2115 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
2116 {
2117 int error = may_delete(dir, dentry, 1);
2118
2119 if (error)
2120 return error;
2121
2122 if (!dir->i_op || !dir->i_op->rmdir)
2123 return -EPERM;
2124
2125 DQUOT_INIT(dir);
2126
2127 mutex_lock(&dentry->d_inode->i_mutex);
2128 dentry_unhash(dentry);
2129 if (d_mountpoint(dentry))
2130 error = -EBUSY;
2131 else {
2132 error = security_inode_rmdir(dir, dentry);
2133 if (!error) {
2134 error = dir->i_op->rmdir(dir, dentry);
2135 if (!error)
2136 dentry->d_inode->i_flags |= S_DEAD;
2137 }
2138 }
2139 mutex_unlock(&dentry->d_inode->i_mutex);
2140 if (!error) {
2141 d_delete(dentry);
2142 }
2143 dput(dentry);
2144
2145 return error;
2146 }
2147
2148 static long do_rmdir(int dfd, const char __user *pathname)
2149 {
2150 int error = 0;
2151 char * name;
2152 struct dentry *dentry;
2153 struct nameidata nd;
2154
2155 name = getname(pathname);
2156 if(IS_ERR(name))
2157 return PTR_ERR(name);
2158
2159 error = do_path_lookup(dfd, name, LOOKUP_PARENT, &nd);
2160 if (error)
2161 goto exit;
2162
2163 switch(nd.last_type) {
2164 case LAST_DOTDOT:
2165 error = -ENOTEMPTY;
2166 goto exit1;
2167 case LAST_DOT:
2168 error = -EINVAL;
2169 goto exit1;
2170 case LAST_ROOT:
2171 error = -EBUSY;
2172 goto exit1;
2173 }
2174 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2175 dentry = lookup_hash(&nd);
2176 error = PTR_ERR(dentry);
2177 if (IS_ERR(dentry))
2178 goto exit2;
2179 error = vfs_rmdir(nd.path.dentry->d_inode, dentry);
2180 dput(dentry);
2181 exit2:
2182 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2183 exit1:
2184 path_put(&nd.path);
2185 exit:
2186 putname(name);
2187 return error;
2188 }
2189
2190 asmlinkage long sys_rmdir(const char __user *pathname)
2191 {
2192 return do_rmdir(AT_FDCWD, pathname);
2193 }
2194
2195 int vfs_unlink(struct inode *dir, struct dentry *dentry)
2196 {
2197 int error = may_delete(dir, dentry, 0);
2198
2199 if (error)
2200 return error;
2201
2202 if (!dir->i_op || !dir->i_op->unlink)
2203 return -EPERM;
2204
2205 DQUOT_INIT(dir);
2206
2207 mutex_lock(&dentry->d_inode->i_mutex);
2208 if (d_mountpoint(dentry))
2209 error = -EBUSY;
2210 else {
2211 error = security_inode_unlink(dir, dentry);
2212 if (!error)
2213 error = dir->i_op->unlink(dir, dentry);
2214 }
2215 mutex_unlock(&dentry->d_inode->i_mutex);
2216
2217 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
2218 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
2219 fsnotify_link_count(dentry->d_inode);
2220 d_delete(dentry);
2221 }
2222
2223 return error;
2224 }
2225
2226 /*
2227 * Make sure that the actual truncation of the file will occur outside its
2228 * directory's i_mutex. Truncate can take a long time if there is a lot of
2229 * writeout happening, and we don't want to prevent access to the directory
2230 * while waiting on the I/O.
2231 */
2232 static long do_unlinkat(int dfd, const char __user *pathname)
2233 {
2234 int error = 0;
2235 char * name;
2236 struct dentry *dentry;
2237 struct nameidata nd;
2238 struct inode *inode = NULL;
2239
2240 name = getname(pathname);
2241 if(IS_ERR(name))
2242 return PTR_ERR(name);
2243
2244 error = do_path_lookup(dfd, name, LOOKUP_PARENT, &nd);
2245 if (error)
2246 goto exit;
2247 error = -EISDIR;
2248 if (nd.last_type != LAST_NORM)
2249 goto exit1;
2250 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2251 dentry = lookup_hash(&nd);
2252 error = PTR_ERR(dentry);
2253 if (!IS_ERR(dentry)) {
2254 /* Why not before? Because we want correct error value */
2255 if (nd.last.name[nd.last.len])
2256 goto slashes;
2257 inode = dentry->d_inode;
2258 if (inode)
2259 atomic_inc(&inode->i_count);
2260 error = vfs_unlink(nd.path.dentry->d_inode, dentry);
2261 exit2:
2262 dput(dentry);
2263 }
2264 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2265 if (inode)
2266 iput(inode); /* truncate the inode here */
2267 exit1:
2268 path_put(&nd.path);
2269 exit:
2270 putname(name);
2271 return error;
2272
2273 slashes:
2274 error = !dentry->d_inode ? -ENOENT :
2275 S_ISDIR(dentry->d_inode->i_mode) ? -EISDIR : -ENOTDIR;
2276 goto exit2;
2277 }
2278
2279 asmlinkage long sys_unlinkat(int dfd, const char __user *pathname, int flag)
2280 {
2281 if ((flag & ~AT_REMOVEDIR) != 0)
2282 return -EINVAL;
2283
2284 if (flag & AT_REMOVEDIR)
2285 return do_rmdir(dfd, pathname);
2286
2287 return do_unlinkat(dfd, pathname);
2288 }
2289
2290 asmlinkage long sys_unlink(const char __user *pathname)
2291 {
2292 return do_unlinkat(AT_FDCWD, pathname);
2293 }
2294
2295 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname, int mode)
2296 {
2297 int error = may_create(dir, dentry, NULL);
2298
2299 if (error)
2300 return error;
2301
2302 if (!dir->i_op || !dir->i_op->symlink)
2303 return -EPERM;
2304
2305 error = security_inode_symlink(dir, dentry, oldname);
2306 if (error)
2307 return error;
2308
2309 DQUOT_INIT(dir);
2310 error = dir->i_op->symlink(dir, dentry, oldname);
2311 if (!error)
2312 fsnotify_create(dir, dentry);
2313 return error;
2314 }
2315
2316 asmlinkage long sys_symlinkat(const char __user *oldname,
2317 int newdfd, const char __user *newname)
2318 {
2319 int error = 0;
2320 char * from;
2321 char * to;
2322 struct dentry *dentry;
2323 struct nameidata nd;
2324
2325 from = getname(oldname);
2326 if(IS_ERR(from))
2327 return PTR_ERR(from);
2328 to = getname(newname);
2329 error = PTR_ERR(to);
2330 if (IS_ERR(to))
2331 goto out_putname;
2332
2333 error = do_path_lookup(newdfd, to, LOOKUP_PARENT, &nd);
2334 if (error)
2335 goto out;
2336 dentry = lookup_create(&nd, 0);
2337 error = PTR_ERR(dentry);
2338 if (IS_ERR(dentry))
2339 goto out_unlock;
2340
2341 error = vfs_symlink(nd.path.dentry->d_inode, dentry, from, S_IALLUGO);
2342 dput(dentry);
2343 out_unlock:
2344 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2345 path_put(&nd.path);
2346 out:
2347 putname(to);
2348 out_putname:
2349 putname(from);
2350 return error;
2351 }
2352
2353 asmlinkage long sys_symlink(const char __user *oldname, const char __user *newname)
2354 {
2355 return sys_symlinkat(oldname, AT_FDCWD, newname);
2356 }
2357
2358 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2359 {
2360 struct inode *inode = old_dentry->d_inode;
2361 int error;
2362
2363 if (!inode)
2364 return -ENOENT;
2365
2366 error = may_create(dir, new_dentry, NULL);
2367 if (error)
2368 return error;
2369
2370 if (dir->i_sb != inode->i_sb)
2371 return -EXDEV;
2372
2373 /*
2374 * A link to an append-only or immutable file cannot be created.
2375 */
2376 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
2377 return -EPERM;
2378 if (!dir->i_op || !dir->i_op->link)
2379 return -EPERM;
2380 if (S_ISDIR(old_dentry->d_inode->i_mode))
2381 return -EPERM;
2382
2383 error = security_inode_link(old_dentry, dir, new_dentry);
2384 if (error)
2385 return error;
2386
2387 mutex_lock(&old_dentry->d_inode->i_mutex);
2388 DQUOT_INIT(dir);
2389 error = dir->i_op->link(old_dentry, dir, new_dentry);
2390 mutex_unlock(&old_dentry->d_inode->i_mutex);
2391 if (!error)
2392 fsnotify_link(dir, old_dentry->d_inode, new_dentry);
2393 return error;
2394 }
2395
2396 /*
2397 * Hardlinks are often used in delicate situations. We avoid
2398 * security-related surprises by not following symlinks on the
2399 * newname. --KAB
2400 *
2401 * We don't follow them on the oldname either to be compatible
2402 * with linux 2.0, and to avoid hard-linking to directories
2403 * and other special files. --ADM
2404 */
2405 asmlinkage long sys_linkat(int olddfd, const char __user *oldname,
2406 int newdfd, const char __user *newname,
2407 int flags)
2408 {
2409 struct dentry *new_dentry;
2410 struct nameidata nd, old_nd;
2411 int error;
2412 char * to;
2413
2414 if ((flags & ~AT_SYMLINK_FOLLOW) != 0)
2415 return -EINVAL;
2416
2417 to = getname(newname);
2418 if (IS_ERR(to))
2419 return PTR_ERR(to);
2420
2421 error = __user_walk_fd(olddfd, oldname,
2422 flags & AT_SYMLINK_FOLLOW ? LOOKUP_FOLLOW : 0,
2423 &old_nd);
2424 if (error)
2425 goto exit;
2426 error = do_path_lookup(newdfd, to, LOOKUP_PARENT, &nd);
2427 if (error)
2428 goto out;
2429 error = -EXDEV;
2430 if (old_nd.path.mnt != nd.path.mnt)
2431 goto out_release;
2432 new_dentry = lookup_create(&nd, 0);
2433 error = PTR_ERR(new_dentry);
2434 if (IS_ERR(new_dentry))
2435 goto out_unlock;
2436 error = vfs_link(old_nd.path.dentry, nd.path.dentry->d_inode, new_dentry);
2437 dput(new_dentry);
2438 out_unlock:
2439 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2440 out_release:
2441 path_put(&nd.path);
2442 out:
2443 path_put(&old_nd.path);
2444 exit:
2445 putname(to);
2446
2447 return error;
2448 }
2449
2450 asmlinkage long sys_link(const char __user *oldname, const char __user *newname)
2451 {
2452 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
2453 }
2454
2455 /*
2456 * The worst of all namespace operations - renaming directory. "Perverted"
2457 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
2458 * Problems:
2459 * a) we can get into loop creation. Check is done in is_subdir().
2460 * b) race potential - two innocent renames can create a loop together.
2461 * That's where 4.4 screws up. Current fix: serialization on
2462 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
2463 * story.
2464 * c) we have to lock _three_ objects - parents and victim (if it exists).
2465 * And that - after we got ->i_mutex on parents (until then we don't know
2466 * whether the target exists). Solution: try to be smart with locking
2467 * order for inodes. We rely on the fact that tree topology may change
2468 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
2469 * move will be locked. Thus we can rank directories by the tree
2470 * (ancestors first) and rank all non-directories after them.
2471 * That works since everybody except rename does "lock parent, lookup,
2472 * lock child" and rename is under ->s_vfs_rename_mutex.
2473 * HOWEVER, it relies on the assumption that any object with ->lookup()
2474 * has no more than 1 dentry. If "hybrid" objects will ever appear,
2475 * we'd better make sure that there's no link(2) for them.
2476 * d) some filesystems don't support opened-but-unlinked directories,
2477 * either because of layout or because they are not ready to deal with
2478 * all cases correctly. The latter will be fixed (taking this sort of
2479 * stuff into VFS), but the former is not going away. Solution: the same
2480 * trick as in rmdir().
2481 * e) conversion from fhandle to dentry may come in the wrong moment - when
2482 * we are removing the target. Solution: we will have to grab ->i_mutex
2483 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
2484 * ->i_mutex on parents, which works but leads to some truely excessive
2485 * locking].
2486 */
2487 static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry,
2488 struct inode *new_dir, struct dentry *new_dentry)
2489 {
2490 int error = 0;
2491 struct inode *target;
2492
2493 /*
2494 * If we are going to change the parent - check write permissions,
2495 * we'll need to flip '..'.
2496 */
2497 if (new_dir != old_dir) {
2498 error = permission(old_dentry->d_inode, MAY_WRITE, NULL);
2499 if (error)
2500 return error;
2501 }
2502
2503 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
2504 if (error)
2505 return error;
2506
2507 target = new_dentry->d_inode;
2508 if (target) {
2509 mutex_lock(&target->i_mutex);
2510 dentry_unhash(new_dentry);
2511 }
2512 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
2513 error = -EBUSY;
2514 else
2515 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
2516 if (target) {
2517 if (!error)
2518 target->i_flags |= S_DEAD;
2519 mutex_unlock(&target->i_mutex);
2520 if (d_unhashed(new_dentry))
2521 d_rehash(new_dentry);
2522 dput(new_dentry);
2523 }
2524 if (!error)
2525 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
2526 d_move(old_dentry,new_dentry);
2527 return error;
2528 }
2529
2530 static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry,
2531 struct inode *new_dir, struct dentry *new_dentry)
2532 {
2533 struct inode *target;
2534 int error;
2535
2536 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
2537 if (error)
2538 return error;
2539
2540 dget(new_dentry);
2541 target = new_dentry->d_inode;
2542 if (target)
2543 mutex_lock(&target->i_mutex);
2544 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
2545 error = -EBUSY;
2546 else
2547 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
2548 if (!error) {
2549 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
2550 d_move(old_dentry, new_dentry);
2551 }
2552 if (target)
2553 mutex_unlock(&target->i_mutex);
2554 dput(new_dentry);
2555 return error;
2556 }
2557
2558 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
2559 struct inode *new_dir, struct dentry *new_dentry)
2560 {
2561 int error;
2562 int is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
2563 const char *old_name;
2564
2565 if (old_dentry->d_inode == new_dentry->d_inode)
2566 return 0;
2567
2568 error = may_delete(old_dir, old_dentry, is_dir);
2569 if (error)
2570 return error;
2571
2572 if (!new_dentry->d_inode)
2573 error = may_create(new_dir, new_dentry, NULL);
2574 else
2575 error = may_delete(new_dir, new_dentry, is_dir);
2576 if (error)
2577 return error;
2578
2579 if (!old_dir->i_op || !old_dir->i_op->rename)
2580 return -EPERM;
2581
2582 DQUOT_INIT(old_dir);
2583 DQUOT_INIT(new_dir);
2584
2585 old_name = fsnotify_oldname_init(old_dentry->d_name.name);
2586
2587 if (is_dir)
2588 error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry);
2589 else
2590 error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry);
2591 if (!error) {
2592 const char *new_name = old_dentry->d_name.name;
2593 fsnotify_move(old_dir, new_dir, old_name, new_name, is_dir,
2594 new_dentry->d_inode, old_dentry);
2595 }
2596 fsnotify_oldname_free(old_name);
2597
2598 return error;
2599 }
2600
2601 static int do_rename(int olddfd, const char *oldname,
2602 int newdfd, const char *newname)
2603 {
2604 int error = 0;
2605 struct dentry * old_dir, * new_dir;
2606 struct dentry * old_dentry, *new_dentry;
2607 struct dentry * trap;
2608 struct nameidata oldnd, newnd;
2609
2610 error = do_path_lookup(olddfd, oldname, LOOKUP_PARENT, &oldnd);
2611 if (error)
2612 goto exit;
2613
2614 error = do_path_lookup(newdfd, newname, LOOKUP_PARENT, &newnd);
2615 if (error)
2616 goto exit1;
2617
2618 error = -EXDEV;
2619 if (oldnd.path.mnt != newnd.path.mnt)
2620 goto exit2;
2621
2622 old_dir = oldnd.path.dentry;
2623 error = -EBUSY;
2624 if (oldnd.last_type != LAST_NORM)
2625 goto exit2;
2626
2627 new_dir = newnd.path.dentry;
2628 if (newnd.last_type != LAST_NORM)
2629 goto exit2;
2630
2631 trap = lock_rename(new_dir, old_dir);
2632
2633 old_dentry = lookup_hash(&oldnd);
2634 error = PTR_ERR(old_dentry);
2635 if (IS_ERR(old_dentry))
2636 goto exit3;
2637 /* source must exist */
2638 error = -ENOENT;
2639 if (!old_dentry->d_inode)
2640 goto exit4;
2641 /* unless the source is a directory trailing slashes give -ENOTDIR */
2642 if (!S_ISDIR(old_dentry->d_inode->i_mode)) {
2643 error = -ENOTDIR;
2644 if (oldnd.last.name[oldnd.last.len])
2645 goto exit4;
2646 if (newnd.last.name[newnd.last.len])
2647 goto exit4;
2648 }
2649 /* source should not be ancestor of target */
2650 error = -EINVAL;
2651 if (old_dentry == trap)
2652 goto exit4;
2653 new_dentry = lookup_hash(&newnd);
2654 error = PTR_ERR(new_dentry);
2655 if (IS_ERR(new_dentry))
2656 goto exit4;
2657 /* target should not be an ancestor of source */
2658 error = -ENOTEMPTY;
2659 if (new_dentry == trap)
2660 goto exit5;
2661
2662 error = vfs_rename(old_dir->d_inode, old_dentry,
2663 new_dir->d_inode, new_dentry);
2664 exit5:
2665 dput(new_dentry);
2666 exit4:
2667 dput(old_dentry);
2668 exit3:
2669 unlock_rename(new_dir, old_dir);
2670 exit2:
2671 path_put(&newnd.path);
2672 exit1:
2673 path_put(&oldnd.path);
2674 exit:
2675 return error;
2676 }
2677
2678 asmlinkage long sys_renameat(int olddfd, const char __user *oldname,
2679 int newdfd, const char __user *newname)
2680 {
2681 int error;
2682 char * from;
2683 char * to;
2684
2685 from = getname(oldname);
2686 if(IS_ERR(from))
2687 return PTR_ERR(from);
2688 to = getname(newname);
2689 error = PTR_ERR(to);
2690 if (!IS_ERR(to)) {
2691 error = do_rename(olddfd, from, newdfd, to);
2692 putname(to);
2693 }
2694 putname(from);
2695 return error;
2696 }
2697
2698 asmlinkage long sys_rename(const char __user *oldname, const char __user *newname)
2699 {
2700 return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname);
2701 }
2702
2703 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link)
2704 {
2705 int len;
2706
2707 len = PTR_ERR(link);
2708 if (IS_ERR(link))
2709 goto out;
2710
2711 len = strlen(link);
2712 if (len > (unsigned) buflen)
2713 len = buflen;
2714 if (copy_to_user(buffer, link, len))
2715 len = -EFAULT;
2716 out:
2717 return len;
2718 }
2719
2720 /*
2721 * A helper for ->readlink(). This should be used *ONLY* for symlinks that
2722 * have ->follow_link() touching nd only in nd_set_link(). Using (or not
2723 * using) it for any given inode is up to filesystem.
2724 */
2725 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
2726 {
2727 struct nameidata nd;
2728 void *cookie;
2729
2730 nd.depth = 0;
2731 cookie = dentry->d_inode->i_op->follow_link(dentry, &nd);
2732 if (!IS_ERR(cookie)) {
2733 int res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd));
2734 if (dentry->d_inode->i_op->put_link)
2735 dentry->d_inode->i_op->put_link(dentry, &nd, cookie);
2736 cookie = ERR_PTR(res);
2737 }
2738 return PTR_ERR(cookie);
2739 }
2740
2741 int vfs_follow_link(struct nameidata *nd, const char *link)
2742 {
2743 return __vfs_follow_link(nd, link);
2744 }
2745
2746 /* get the link contents into pagecache */
2747 static char *page_getlink(struct dentry * dentry, struct page **ppage)
2748 {
2749 struct page * page;
2750 struct address_space *mapping = dentry->d_inode->i_mapping;
2751 page = read_mapping_page(mapping, 0, NULL);
2752 if (IS_ERR(page))
2753 return (char*)page;
2754 *ppage = page;
2755 return kmap(page);
2756 }
2757
2758 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
2759 {
2760 struct page *page = NULL;
2761 char *s = page_getlink(dentry, &page);
2762 int res = vfs_readlink(dentry,buffer,buflen,s);
2763 if (page) {
2764 kunmap(page);
2765 page_cache_release(page);
2766 }
2767 return res;
2768 }
2769
2770 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd)
2771 {
2772 struct page *page = NULL;
2773 nd_set_link(nd, page_getlink(dentry, &page));
2774 return page;
2775 }
2776
2777 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
2778 {
2779 struct page *page = cookie;
2780
2781 if (page) {
2782 kunmap(page);
2783 page_cache_release(page);
2784 }
2785 }
2786
2787 int __page_symlink(struct inode *inode, const char *symname, int len,
2788 gfp_t gfp_mask)
2789 {
2790 struct address_space *mapping = inode->i_mapping;
2791 struct page *page;
2792 void *fsdata;
2793 int err;
2794 char *kaddr;
2795
2796 retry:
2797 err = pagecache_write_begin(NULL, mapping, 0, len-1,
2798 AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
2799 if (err)
2800 goto fail;
2801
2802 kaddr = kmap_atomic(page, KM_USER0);
2803 memcpy(kaddr, symname, len-1);
2804 kunmap_atomic(kaddr, KM_USER0);
2805
2806 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
2807 page, fsdata);
2808 if (err < 0)
2809 goto fail;
2810 if (err < len-1)
2811 goto retry;
2812
2813 mark_inode_dirty(inode);
2814 return 0;
2815 fail:
2816 return err;
2817 }
2818
2819 int page_symlink(struct inode *inode, const char *symname, int len)
2820 {
2821 return __page_symlink(inode, symname, len,
2822 mapping_gfp_mask(inode->i_mapping));
2823 }
2824
2825 const struct inode_operations page_symlink_inode_operations = {
2826 .readlink = generic_readlink,
2827 .follow_link = page_follow_link_light,
2828 .put_link = page_put_link,
2829 };
2830
2831 EXPORT_SYMBOL(__user_walk);
2832 EXPORT_SYMBOL(__user_walk_fd);
2833 EXPORT_SYMBOL(follow_down);
2834 EXPORT_SYMBOL(follow_up);
2835 EXPORT_SYMBOL(get_write_access); /* binfmt_aout */
2836 EXPORT_SYMBOL(getname);
2837 EXPORT_SYMBOL(lock_rename);
2838 EXPORT_SYMBOL(lookup_one_len);
2839 EXPORT_SYMBOL(page_follow_link_light);
2840 EXPORT_SYMBOL(page_put_link);
2841 EXPORT_SYMBOL(page_readlink);
2842 EXPORT_SYMBOL(__page_symlink);
2843 EXPORT_SYMBOL(page_symlink);
2844 EXPORT_SYMBOL(page_symlink_inode_operations);
2845 EXPORT_SYMBOL(path_lookup);
2846 EXPORT_SYMBOL(vfs_path_lookup);
2847 EXPORT_SYMBOL(permission);
2848 EXPORT_SYMBOL(vfs_permission);
2849 EXPORT_SYMBOL(file_permission);
2850 EXPORT_SYMBOL(unlock_rename);
2851 EXPORT_SYMBOL(vfs_create);
2852 EXPORT_SYMBOL(vfs_follow_link);
2853 EXPORT_SYMBOL(vfs_link);
2854 EXPORT_SYMBOL(vfs_mkdir);
2855 EXPORT_SYMBOL(vfs_mknod);
2856 EXPORT_SYMBOL(generic_permission);
2857 EXPORT_SYMBOL(vfs_readlink);
2858 EXPORT_SYMBOL(vfs_rename);
2859 EXPORT_SYMBOL(vfs_rmdir);
2860 EXPORT_SYMBOL(vfs_symlink);
2861 EXPORT_SYMBOL(vfs_unlink);
2862 EXPORT_SYMBOL(dentry_unhash);
2863 EXPORT_SYMBOL(generic_readlink);
This page took 0.085547 seconds and 6 git commands to generate.