proc: Split the namespace stuff out into linux/proc_ns.h
[deliverable/linux.git] / fs / namespace.c
1 /*
2 * linux/fs/namespace.c
3 *
4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/user_namespace.h>
16 #include <linux/namei.h>
17 #include <linux/security.h>
18 #include <linux/idr.h>
19 #include <linux/acct.h> /* acct_auto_close_mnt */
20 #include <linux/ramfs.h> /* init_rootfs */
21 #include <linux/fs_struct.h> /* get_fs_root et.al. */
22 #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
23 #include <linux/uaccess.h>
24 #include <linux/proc_ns.h>
25 #include "pnode.h"
26 #include "internal.h"
27
28 #define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head))
29 #define HASH_SIZE (1UL << HASH_SHIFT)
30
31 static int event;
32 static DEFINE_IDA(mnt_id_ida);
33 static DEFINE_IDA(mnt_group_ida);
34 static DEFINE_SPINLOCK(mnt_id_lock);
35 static int mnt_id_start = 0;
36 static int mnt_group_start = 1;
37
38 static struct list_head *mount_hashtable __read_mostly;
39 static struct list_head *mountpoint_hashtable __read_mostly;
40 static struct kmem_cache *mnt_cache __read_mostly;
41 static struct rw_semaphore namespace_sem;
42
43 /* /sys/fs */
44 struct kobject *fs_kobj;
45 EXPORT_SYMBOL_GPL(fs_kobj);
46
47 /*
48 * vfsmount lock may be taken for read to prevent changes to the
49 * vfsmount hash, ie. during mountpoint lookups or walking back
50 * up the tree.
51 *
52 * It should be taken for write in all cases where the vfsmount
53 * tree or hash is modified or when a vfsmount structure is modified.
54 */
55 DEFINE_BRLOCK(vfsmount_lock);
56
57 static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry)
58 {
59 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
60 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
61 tmp = tmp + (tmp >> HASH_SHIFT);
62 return tmp & (HASH_SIZE - 1);
63 }
64
65 #define MNT_WRITER_UNDERFLOW_LIMIT -(1<<16)
66
67 /*
68 * allocation is serialized by namespace_sem, but we need the spinlock to
69 * serialize with freeing.
70 */
71 static int mnt_alloc_id(struct mount *mnt)
72 {
73 int res;
74
75 retry:
76 ida_pre_get(&mnt_id_ida, GFP_KERNEL);
77 spin_lock(&mnt_id_lock);
78 res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
79 if (!res)
80 mnt_id_start = mnt->mnt_id + 1;
81 spin_unlock(&mnt_id_lock);
82 if (res == -EAGAIN)
83 goto retry;
84
85 return res;
86 }
87
88 static void mnt_free_id(struct mount *mnt)
89 {
90 int id = mnt->mnt_id;
91 spin_lock(&mnt_id_lock);
92 ida_remove(&mnt_id_ida, id);
93 if (mnt_id_start > id)
94 mnt_id_start = id;
95 spin_unlock(&mnt_id_lock);
96 }
97
98 /*
99 * Allocate a new peer group ID
100 *
101 * mnt_group_ida is protected by namespace_sem
102 */
103 static int mnt_alloc_group_id(struct mount *mnt)
104 {
105 int res;
106
107 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
108 return -ENOMEM;
109
110 res = ida_get_new_above(&mnt_group_ida,
111 mnt_group_start,
112 &mnt->mnt_group_id);
113 if (!res)
114 mnt_group_start = mnt->mnt_group_id + 1;
115
116 return res;
117 }
118
119 /*
120 * Release a peer group ID
121 */
122 void mnt_release_group_id(struct mount *mnt)
123 {
124 int id = mnt->mnt_group_id;
125 ida_remove(&mnt_group_ida, id);
126 if (mnt_group_start > id)
127 mnt_group_start = id;
128 mnt->mnt_group_id = 0;
129 }
130
131 /*
132 * vfsmount lock must be held for read
133 */
134 static inline void mnt_add_count(struct mount *mnt, int n)
135 {
136 #ifdef CONFIG_SMP
137 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
138 #else
139 preempt_disable();
140 mnt->mnt_count += n;
141 preempt_enable();
142 #endif
143 }
144
145 /*
146 * vfsmount lock must be held for write
147 */
148 unsigned int mnt_get_count(struct mount *mnt)
149 {
150 #ifdef CONFIG_SMP
151 unsigned int count = 0;
152 int cpu;
153
154 for_each_possible_cpu(cpu) {
155 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
156 }
157
158 return count;
159 #else
160 return mnt->mnt_count;
161 #endif
162 }
163
164 static struct mount *alloc_vfsmnt(const char *name)
165 {
166 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
167 if (mnt) {
168 int err;
169
170 err = mnt_alloc_id(mnt);
171 if (err)
172 goto out_free_cache;
173
174 if (name) {
175 mnt->mnt_devname = kstrdup(name, GFP_KERNEL);
176 if (!mnt->mnt_devname)
177 goto out_free_id;
178 }
179
180 #ifdef CONFIG_SMP
181 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
182 if (!mnt->mnt_pcp)
183 goto out_free_devname;
184
185 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
186 #else
187 mnt->mnt_count = 1;
188 mnt->mnt_writers = 0;
189 #endif
190
191 INIT_LIST_HEAD(&mnt->mnt_hash);
192 INIT_LIST_HEAD(&mnt->mnt_child);
193 INIT_LIST_HEAD(&mnt->mnt_mounts);
194 INIT_LIST_HEAD(&mnt->mnt_list);
195 INIT_LIST_HEAD(&mnt->mnt_expire);
196 INIT_LIST_HEAD(&mnt->mnt_share);
197 INIT_LIST_HEAD(&mnt->mnt_slave_list);
198 INIT_LIST_HEAD(&mnt->mnt_slave);
199 #ifdef CONFIG_FSNOTIFY
200 INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
201 #endif
202 }
203 return mnt;
204
205 #ifdef CONFIG_SMP
206 out_free_devname:
207 kfree(mnt->mnt_devname);
208 #endif
209 out_free_id:
210 mnt_free_id(mnt);
211 out_free_cache:
212 kmem_cache_free(mnt_cache, mnt);
213 return NULL;
214 }
215
216 /*
217 * Most r/o checks on a fs are for operations that take
218 * discrete amounts of time, like a write() or unlink().
219 * We must keep track of when those operations start
220 * (for permission checks) and when they end, so that
221 * we can determine when writes are able to occur to
222 * a filesystem.
223 */
224 /*
225 * __mnt_is_readonly: check whether a mount is read-only
226 * @mnt: the mount to check for its write status
227 *
228 * This shouldn't be used directly ouside of the VFS.
229 * It does not guarantee that the filesystem will stay
230 * r/w, just that it is right *now*. This can not and
231 * should not be used in place of IS_RDONLY(inode).
232 * mnt_want/drop_write() will _keep_ the filesystem
233 * r/w.
234 */
235 int __mnt_is_readonly(struct vfsmount *mnt)
236 {
237 if (mnt->mnt_flags & MNT_READONLY)
238 return 1;
239 if (mnt->mnt_sb->s_flags & MS_RDONLY)
240 return 1;
241 return 0;
242 }
243 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
244
245 static inline void mnt_inc_writers(struct mount *mnt)
246 {
247 #ifdef CONFIG_SMP
248 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
249 #else
250 mnt->mnt_writers++;
251 #endif
252 }
253
254 static inline void mnt_dec_writers(struct mount *mnt)
255 {
256 #ifdef CONFIG_SMP
257 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
258 #else
259 mnt->mnt_writers--;
260 #endif
261 }
262
263 static unsigned int mnt_get_writers(struct mount *mnt)
264 {
265 #ifdef CONFIG_SMP
266 unsigned int count = 0;
267 int cpu;
268
269 for_each_possible_cpu(cpu) {
270 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
271 }
272
273 return count;
274 #else
275 return mnt->mnt_writers;
276 #endif
277 }
278
279 static int mnt_is_readonly(struct vfsmount *mnt)
280 {
281 if (mnt->mnt_sb->s_readonly_remount)
282 return 1;
283 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
284 smp_rmb();
285 return __mnt_is_readonly(mnt);
286 }
287
288 /*
289 * Most r/o & frozen checks on a fs are for operations that take discrete
290 * amounts of time, like a write() or unlink(). We must keep track of when
291 * those operations start (for permission checks) and when they end, so that we
292 * can determine when writes are able to occur to a filesystem.
293 */
294 /**
295 * __mnt_want_write - get write access to a mount without freeze protection
296 * @m: the mount on which to take a write
297 *
298 * This tells the low-level filesystem that a write is about to be performed to
299 * it, and makes sure that writes are allowed (mnt it read-write) before
300 * returning success. This operation does not protect against filesystem being
301 * frozen. When the write operation is finished, __mnt_drop_write() must be
302 * called. This is effectively a refcount.
303 */
304 int __mnt_want_write(struct vfsmount *m)
305 {
306 struct mount *mnt = real_mount(m);
307 int ret = 0;
308
309 preempt_disable();
310 mnt_inc_writers(mnt);
311 /*
312 * The store to mnt_inc_writers must be visible before we pass
313 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
314 * incremented count after it has set MNT_WRITE_HOLD.
315 */
316 smp_mb();
317 while (ACCESS_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
318 cpu_relax();
319 /*
320 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
321 * be set to match its requirements. So we must not load that until
322 * MNT_WRITE_HOLD is cleared.
323 */
324 smp_rmb();
325 if (mnt_is_readonly(m)) {
326 mnt_dec_writers(mnt);
327 ret = -EROFS;
328 }
329 preempt_enable();
330
331 return ret;
332 }
333
334 /**
335 * mnt_want_write - get write access to a mount
336 * @m: the mount on which to take a write
337 *
338 * This tells the low-level filesystem that a write is about to be performed to
339 * it, and makes sure that writes are allowed (mount is read-write, filesystem
340 * is not frozen) before returning success. When the write operation is
341 * finished, mnt_drop_write() must be called. This is effectively a refcount.
342 */
343 int mnt_want_write(struct vfsmount *m)
344 {
345 int ret;
346
347 sb_start_write(m->mnt_sb);
348 ret = __mnt_want_write(m);
349 if (ret)
350 sb_end_write(m->mnt_sb);
351 return ret;
352 }
353 EXPORT_SYMBOL_GPL(mnt_want_write);
354
355 /**
356 * mnt_clone_write - get write access to a mount
357 * @mnt: the mount on which to take a write
358 *
359 * This is effectively like mnt_want_write, except
360 * it must only be used to take an extra write reference
361 * on a mountpoint that we already know has a write reference
362 * on it. This allows some optimisation.
363 *
364 * After finished, mnt_drop_write must be called as usual to
365 * drop the reference.
366 */
367 int mnt_clone_write(struct vfsmount *mnt)
368 {
369 /* superblock may be r/o */
370 if (__mnt_is_readonly(mnt))
371 return -EROFS;
372 preempt_disable();
373 mnt_inc_writers(real_mount(mnt));
374 preempt_enable();
375 return 0;
376 }
377 EXPORT_SYMBOL_GPL(mnt_clone_write);
378
379 /**
380 * __mnt_want_write_file - get write access to a file's mount
381 * @file: the file who's mount on which to take a write
382 *
383 * This is like __mnt_want_write, but it takes a file and can
384 * do some optimisations if the file is open for write already
385 */
386 int __mnt_want_write_file(struct file *file)
387 {
388 struct inode *inode = file_inode(file);
389
390 if (!(file->f_mode & FMODE_WRITE) || special_file(inode->i_mode))
391 return __mnt_want_write(file->f_path.mnt);
392 else
393 return mnt_clone_write(file->f_path.mnt);
394 }
395
396 /**
397 * mnt_want_write_file - get write access to a file's mount
398 * @file: the file who's mount on which to take a write
399 *
400 * This is like mnt_want_write, but it takes a file and can
401 * do some optimisations if the file is open for write already
402 */
403 int mnt_want_write_file(struct file *file)
404 {
405 int ret;
406
407 sb_start_write(file->f_path.mnt->mnt_sb);
408 ret = __mnt_want_write_file(file);
409 if (ret)
410 sb_end_write(file->f_path.mnt->mnt_sb);
411 return ret;
412 }
413 EXPORT_SYMBOL_GPL(mnt_want_write_file);
414
415 /**
416 * __mnt_drop_write - give up write access to a mount
417 * @mnt: the mount on which to give up write access
418 *
419 * Tells the low-level filesystem that we are done
420 * performing writes to it. Must be matched with
421 * __mnt_want_write() call above.
422 */
423 void __mnt_drop_write(struct vfsmount *mnt)
424 {
425 preempt_disable();
426 mnt_dec_writers(real_mount(mnt));
427 preempt_enable();
428 }
429
430 /**
431 * mnt_drop_write - give up write access to a mount
432 * @mnt: the mount on which to give up write access
433 *
434 * Tells the low-level filesystem that we are done performing writes to it and
435 * also allows filesystem to be frozen again. Must be matched with
436 * mnt_want_write() call above.
437 */
438 void mnt_drop_write(struct vfsmount *mnt)
439 {
440 __mnt_drop_write(mnt);
441 sb_end_write(mnt->mnt_sb);
442 }
443 EXPORT_SYMBOL_GPL(mnt_drop_write);
444
445 void __mnt_drop_write_file(struct file *file)
446 {
447 __mnt_drop_write(file->f_path.mnt);
448 }
449
450 void mnt_drop_write_file(struct file *file)
451 {
452 mnt_drop_write(file->f_path.mnt);
453 }
454 EXPORT_SYMBOL(mnt_drop_write_file);
455
456 static int mnt_make_readonly(struct mount *mnt)
457 {
458 int ret = 0;
459
460 br_write_lock(&vfsmount_lock);
461 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
462 /*
463 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
464 * should be visible before we do.
465 */
466 smp_mb();
467
468 /*
469 * With writers on hold, if this value is zero, then there are
470 * definitely no active writers (although held writers may subsequently
471 * increment the count, they'll have to wait, and decrement it after
472 * seeing MNT_READONLY).
473 *
474 * It is OK to have counter incremented on one CPU and decremented on
475 * another: the sum will add up correctly. The danger would be when we
476 * sum up each counter, if we read a counter before it is incremented,
477 * but then read another CPU's count which it has been subsequently
478 * decremented from -- we would see more decrements than we should.
479 * MNT_WRITE_HOLD protects against this scenario, because
480 * mnt_want_write first increments count, then smp_mb, then spins on
481 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
482 * we're counting up here.
483 */
484 if (mnt_get_writers(mnt) > 0)
485 ret = -EBUSY;
486 else
487 mnt->mnt.mnt_flags |= MNT_READONLY;
488 /*
489 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
490 * that become unheld will see MNT_READONLY.
491 */
492 smp_wmb();
493 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
494 br_write_unlock(&vfsmount_lock);
495 return ret;
496 }
497
498 static void __mnt_unmake_readonly(struct mount *mnt)
499 {
500 br_write_lock(&vfsmount_lock);
501 mnt->mnt.mnt_flags &= ~MNT_READONLY;
502 br_write_unlock(&vfsmount_lock);
503 }
504
505 int sb_prepare_remount_readonly(struct super_block *sb)
506 {
507 struct mount *mnt;
508 int err = 0;
509
510 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
511 if (atomic_long_read(&sb->s_remove_count))
512 return -EBUSY;
513
514 br_write_lock(&vfsmount_lock);
515 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
516 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
517 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
518 smp_mb();
519 if (mnt_get_writers(mnt) > 0) {
520 err = -EBUSY;
521 break;
522 }
523 }
524 }
525 if (!err && atomic_long_read(&sb->s_remove_count))
526 err = -EBUSY;
527
528 if (!err) {
529 sb->s_readonly_remount = 1;
530 smp_wmb();
531 }
532 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
533 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
534 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
535 }
536 br_write_unlock(&vfsmount_lock);
537
538 return err;
539 }
540
541 static void free_vfsmnt(struct mount *mnt)
542 {
543 kfree(mnt->mnt_devname);
544 mnt_free_id(mnt);
545 #ifdef CONFIG_SMP
546 free_percpu(mnt->mnt_pcp);
547 #endif
548 kmem_cache_free(mnt_cache, mnt);
549 }
550
551 /*
552 * find the first or last mount at @dentry on vfsmount @mnt depending on
553 * @dir. If @dir is set return the first mount else return the last mount.
554 * vfsmount_lock must be held for read or write.
555 */
556 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry,
557 int dir)
558 {
559 struct list_head *head = mount_hashtable + hash(mnt, dentry);
560 struct list_head *tmp = head;
561 struct mount *p, *found = NULL;
562
563 for (;;) {
564 tmp = dir ? tmp->next : tmp->prev;
565 p = NULL;
566 if (tmp == head)
567 break;
568 p = list_entry(tmp, struct mount, mnt_hash);
569 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry) {
570 found = p;
571 break;
572 }
573 }
574 return found;
575 }
576
577 /*
578 * lookup_mnt - Return the first child mount mounted at path
579 *
580 * "First" means first mounted chronologically. If you create the
581 * following mounts:
582 *
583 * mount /dev/sda1 /mnt
584 * mount /dev/sda2 /mnt
585 * mount /dev/sda3 /mnt
586 *
587 * Then lookup_mnt() on the base /mnt dentry in the root mount will
588 * return successively the root dentry and vfsmount of /dev/sda1, then
589 * /dev/sda2, then /dev/sda3, then NULL.
590 *
591 * lookup_mnt takes a reference to the found vfsmount.
592 */
593 struct vfsmount *lookup_mnt(struct path *path)
594 {
595 struct mount *child_mnt;
596
597 br_read_lock(&vfsmount_lock);
598 child_mnt = __lookup_mnt(path->mnt, path->dentry, 1);
599 if (child_mnt) {
600 mnt_add_count(child_mnt, 1);
601 br_read_unlock(&vfsmount_lock);
602 return &child_mnt->mnt;
603 } else {
604 br_read_unlock(&vfsmount_lock);
605 return NULL;
606 }
607 }
608
609 static struct mountpoint *new_mountpoint(struct dentry *dentry)
610 {
611 struct list_head *chain = mountpoint_hashtable + hash(NULL, dentry);
612 struct mountpoint *mp;
613
614 list_for_each_entry(mp, chain, m_hash) {
615 if (mp->m_dentry == dentry) {
616 /* might be worth a WARN_ON() */
617 if (d_unlinked(dentry))
618 return ERR_PTR(-ENOENT);
619 mp->m_count++;
620 return mp;
621 }
622 }
623
624 mp = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
625 if (!mp)
626 return ERR_PTR(-ENOMEM);
627
628 spin_lock(&dentry->d_lock);
629 if (d_unlinked(dentry)) {
630 spin_unlock(&dentry->d_lock);
631 kfree(mp);
632 return ERR_PTR(-ENOENT);
633 }
634 dentry->d_flags |= DCACHE_MOUNTED;
635 spin_unlock(&dentry->d_lock);
636 mp->m_dentry = dentry;
637 mp->m_count = 1;
638 list_add(&mp->m_hash, chain);
639 return mp;
640 }
641
642 static void put_mountpoint(struct mountpoint *mp)
643 {
644 if (!--mp->m_count) {
645 struct dentry *dentry = mp->m_dentry;
646 spin_lock(&dentry->d_lock);
647 dentry->d_flags &= ~DCACHE_MOUNTED;
648 spin_unlock(&dentry->d_lock);
649 list_del(&mp->m_hash);
650 kfree(mp);
651 }
652 }
653
654 static inline int check_mnt(struct mount *mnt)
655 {
656 return mnt->mnt_ns == current->nsproxy->mnt_ns;
657 }
658
659 /*
660 * vfsmount lock must be held for write
661 */
662 static void touch_mnt_namespace(struct mnt_namespace *ns)
663 {
664 if (ns) {
665 ns->event = ++event;
666 wake_up_interruptible(&ns->poll);
667 }
668 }
669
670 /*
671 * vfsmount lock must be held for write
672 */
673 static void __touch_mnt_namespace(struct mnt_namespace *ns)
674 {
675 if (ns && ns->event != event) {
676 ns->event = event;
677 wake_up_interruptible(&ns->poll);
678 }
679 }
680
681 /*
682 * vfsmount lock must be held for write
683 */
684 static void detach_mnt(struct mount *mnt, struct path *old_path)
685 {
686 old_path->dentry = mnt->mnt_mountpoint;
687 old_path->mnt = &mnt->mnt_parent->mnt;
688 mnt->mnt_parent = mnt;
689 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
690 list_del_init(&mnt->mnt_child);
691 list_del_init(&mnt->mnt_hash);
692 put_mountpoint(mnt->mnt_mp);
693 mnt->mnt_mp = NULL;
694 }
695
696 /*
697 * vfsmount lock must be held for write
698 */
699 void mnt_set_mountpoint(struct mount *mnt,
700 struct mountpoint *mp,
701 struct mount *child_mnt)
702 {
703 mp->m_count++;
704 mnt_add_count(mnt, 1); /* essentially, that's mntget */
705 child_mnt->mnt_mountpoint = dget(mp->m_dentry);
706 child_mnt->mnt_parent = mnt;
707 child_mnt->mnt_mp = mp;
708 }
709
710 /*
711 * vfsmount lock must be held for write
712 */
713 static void attach_mnt(struct mount *mnt,
714 struct mount *parent,
715 struct mountpoint *mp)
716 {
717 mnt_set_mountpoint(parent, mp, mnt);
718 list_add_tail(&mnt->mnt_hash, mount_hashtable +
719 hash(&parent->mnt, mp->m_dentry));
720 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
721 }
722
723 /*
724 * vfsmount lock must be held for write
725 */
726 static void commit_tree(struct mount *mnt)
727 {
728 struct mount *parent = mnt->mnt_parent;
729 struct mount *m;
730 LIST_HEAD(head);
731 struct mnt_namespace *n = parent->mnt_ns;
732
733 BUG_ON(parent == mnt);
734
735 list_add_tail(&head, &mnt->mnt_list);
736 list_for_each_entry(m, &head, mnt_list)
737 m->mnt_ns = n;
738
739 list_splice(&head, n->list.prev);
740
741 list_add_tail(&mnt->mnt_hash, mount_hashtable +
742 hash(&parent->mnt, mnt->mnt_mountpoint));
743 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
744 touch_mnt_namespace(n);
745 }
746
747 static struct mount *next_mnt(struct mount *p, struct mount *root)
748 {
749 struct list_head *next = p->mnt_mounts.next;
750 if (next == &p->mnt_mounts) {
751 while (1) {
752 if (p == root)
753 return NULL;
754 next = p->mnt_child.next;
755 if (next != &p->mnt_parent->mnt_mounts)
756 break;
757 p = p->mnt_parent;
758 }
759 }
760 return list_entry(next, struct mount, mnt_child);
761 }
762
763 static struct mount *skip_mnt_tree(struct mount *p)
764 {
765 struct list_head *prev = p->mnt_mounts.prev;
766 while (prev != &p->mnt_mounts) {
767 p = list_entry(prev, struct mount, mnt_child);
768 prev = p->mnt_mounts.prev;
769 }
770 return p;
771 }
772
773 struct vfsmount *
774 vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
775 {
776 struct mount *mnt;
777 struct dentry *root;
778
779 if (!type)
780 return ERR_PTR(-ENODEV);
781
782 mnt = alloc_vfsmnt(name);
783 if (!mnt)
784 return ERR_PTR(-ENOMEM);
785
786 if (flags & MS_KERNMOUNT)
787 mnt->mnt.mnt_flags = MNT_INTERNAL;
788
789 root = mount_fs(type, flags, name, data);
790 if (IS_ERR(root)) {
791 free_vfsmnt(mnt);
792 return ERR_CAST(root);
793 }
794
795 mnt->mnt.mnt_root = root;
796 mnt->mnt.mnt_sb = root->d_sb;
797 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
798 mnt->mnt_parent = mnt;
799 br_write_lock(&vfsmount_lock);
800 list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
801 br_write_unlock(&vfsmount_lock);
802 return &mnt->mnt;
803 }
804 EXPORT_SYMBOL_GPL(vfs_kern_mount);
805
806 static struct mount *clone_mnt(struct mount *old, struct dentry *root,
807 int flag)
808 {
809 struct super_block *sb = old->mnt.mnt_sb;
810 struct mount *mnt;
811 int err;
812
813 mnt = alloc_vfsmnt(old->mnt_devname);
814 if (!mnt)
815 return ERR_PTR(-ENOMEM);
816
817 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
818 mnt->mnt_group_id = 0; /* not a peer of original */
819 else
820 mnt->mnt_group_id = old->mnt_group_id;
821
822 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
823 err = mnt_alloc_group_id(mnt);
824 if (err)
825 goto out_free;
826 }
827
828 mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~MNT_WRITE_HOLD;
829 atomic_inc(&sb->s_active);
830 mnt->mnt.mnt_sb = sb;
831 mnt->mnt.mnt_root = dget(root);
832 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
833 mnt->mnt_parent = mnt;
834 br_write_lock(&vfsmount_lock);
835 list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
836 br_write_unlock(&vfsmount_lock);
837
838 if ((flag & CL_SLAVE) ||
839 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
840 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
841 mnt->mnt_master = old;
842 CLEAR_MNT_SHARED(mnt);
843 } else if (!(flag & CL_PRIVATE)) {
844 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
845 list_add(&mnt->mnt_share, &old->mnt_share);
846 if (IS_MNT_SLAVE(old))
847 list_add(&mnt->mnt_slave, &old->mnt_slave);
848 mnt->mnt_master = old->mnt_master;
849 }
850 if (flag & CL_MAKE_SHARED)
851 set_mnt_shared(mnt);
852
853 /* stick the duplicate mount on the same expiry list
854 * as the original if that was on one */
855 if (flag & CL_EXPIRE) {
856 if (!list_empty(&old->mnt_expire))
857 list_add(&mnt->mnt_expire, &old->mnt_expire);
858 }
859
860 return mnt;
861
862 out_free:
863 free_vfsmnt(mnt);
864 return ERR_PTR(err);
865 }
866
867 static inline void mntfree(struct mount *mnt)
868 {
869 struct vfsmount *m = &mnt->mnt;
870 struct super_block *sb = m->mnt_sb;
871
872 /*
873 * This probably indicates that somebody messed
874 * up a mnt_want/drop_write() pair. If this
875 * happens, the filesystem was probably unable
876 * to make r/w->r/o transitions.
877 */
878 /*
879 * The locking used to deal with mnt_count decrement provides barriers,
880 * so mnt_get_writers() below is safe.
881 */
882 WARN_ON(mnt_get_writers(mnt));
883 fsnotify_vfsmount_delete(m);
884 dput(m->mnt_root);
885 free_vfsmnt(mnt);
886 deactivate_super(sb);
887 }
888
889 static void mntput_no_expire(struct mount *mnt)
890 {
891 put_again:
892 #ifdef CONFIG_SMP
893 br_read_lock(&vfsmount_lock);
894 if (likely(mnt->mnt_ns)) {
895 /* shouldn't be the last one */
896 mnt_add_count(mnt, -1);
897 br_read_unlock(&vfsmount_lock);
898 return;
899 }
900 br_read_unlock(&vfsmount_lock);
901
902 br_write_lock(&vfsmount_lock);
903 mnt_add_count(mnt, -1);
904 if (mnt_get_count(mnt)) {
905 br_write_unlock(&vfsmount_lock);
906 return;
907 }
908 #else
909 mnt_add_count(mnt, -1);
910 if (likely(mnt_get_count(mnt)))
911 return;
912 br_write_lock(&vfsmount_lock);
913 #endif
914 if (unlikely(mnt->mnt_pinned)) {
915 mnt_add_count(mnt, mnt->mnt_pinned + 1);
916 mnt->mnt_pinned = 0;
917 br_write_unlock(&vfsmount_lock);
918 acct_auto_close_mnt(&mnt->mnt);
919 goto put_again;
920 }
921
922 list_del(&mnt->mnt_instance);
923 br_write_unlock(&vfsmount_lock);
924 mntfree(mnt);
925 }
926
927 void mntput(struct vfsmount *mnt)
928 {
929 if (mnt) {
930 struct mount *m = real_mount(mnt);
931 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
932 if (unlikely(m->mnt_expiry_mark))
933 m->mnt_expiry_mark = 0;
934 mntput_no_expire(m);
935 }
936 }
937 EXPORT_SYMBOL(mntput);
938
939 struct vfsmount *mntget(struct vfsmount *mnt)
940 {
941 if (mnt)
942 mnt_add_count(real_mount(mnt), 1);
943 return mnt;
944 }
945 EXPORT_SYMBOL(mntget);
946
947 void mnt_pin(struct vfsmount *mnt)
948 {
949 br_write_lock(&vfsmount_lock);
950 real_mount(mnt)->mnt_pinned++;
951 br_write_unlock(&vfsmount_lock);
952 }
953 EXPORT_SYMBOL(mnt_pin);
954
955 void mnt_unpin(struct vfsmount *m)
956 {
957 struct mount *mnt = real_mount(m);
958 br_write_lock(&vfsmount_lock);
959 if (mnt->mnt_pinned) {
960 mnt_add_count(mnt, 1);
961 mnt->mnt_pinned--;
962 }
963 br_write_unlock(&vfsmount_lock);
964 }
965 EXPORT_SYMBOL(mnt_unpin);
966
967 static inline void mangle(struct seq_file *m, const char *s)
968 {
969 seq_escape(m, s, " \t\n\\");
970 }
971
972 /*
973 * Simple .show_options callback for filesystems which don't want to
974 * implement more complex mount option showing.
975 *
976 * See also save_mount_options().
977 */
978 int generic_show_options(struct seq_file *m, struct dentry *root)
979 {
980 const char *options;
981
982 rcu_read_lock();
983 options = rcu_dereference(root->d_sb->s_options);
984
985 if (options != NULL && options[0]) {
986 seq_putc(m, ',');
987 mangle(m, options);
988 }
989 rcu_read_unlock();
990
991 return 0;
992 }
993 EXPORT_SYMBOL(generic_show_options);
994
995 /*
996 * If filesystem uses generic_show_options(), this function should be
997 * called from the fill_super() callback.
998 *
999 * The .remount_fs callback usually needs to be handled in a special
1000 * way, to make sure, that previous options are not overwritten if the
1001 * remount fails.
1002 *
1003 * Also note, that if the filesystem's .remount_fs function doesn't
1004 * reset all options to their default value, but changes only newly
1005 * given options, then the displayed options will not reflect reality
1006 * any more.
1007 */
1008 void save_mount_options(struct super_block *sb, char *options)
1009 {
1010 BUG_ON(sb->s_options);
1011 rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
1012 }
1013 EXPORT_SYMBOL(save_mount_options);
1014
1015 void replace_mount_options(struct super_block *sb, char *options)
1016 {
1017 char *old = sb->s_options;
1018 rcu_assign_pointer(sb->s_options, options);
1019 if (old) {
1020 synchronize_rcu();
1021 kfree(old);
1022 }
1023 }
1024 EXPORT_SYMBOL(replace_mount_options);
1025
1026 #ifdef CONFIG_PROC_FS
1027 /* iterator; we want it to have access to namespace_sem, thus here... */
1028 static void *m_start(struct seq_file *m, loff_t *pos)
1029 {
1030 struct proc_mounts *p = proc_mounts(m);
1031
1032 down_read(&namespace_sem);
1033 return seq_list_start(&p->ns->list, *pos);
1034 }
1035
1036 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1037 {
1038 struct proc_mounts *p = proc_mounts(m);
1039
1040 return seq_list_next(v, &p->ns->list, pos);
1041 }
1042
1043 static void m_stop(struct seq_file *m, void *v)
1044 {
1045 up_read(&namespace_sem);
1046 }
1047
1048 static int m_show(struct seq_file *m, void *v)
1049 {
1050 struct proc_mounts *p = proc_mounts(m);
1051 struct mount *r = list_entry(v, struct mount, mnt_list);
1052 return p->show(m, &r->mnt);
1053 }
1054
1055 const struct seq_operations mounts_op = {
1056 .start = m_start,
1057 .next = m_next,
1058 .stop = m_stop,
1059 .show = m_show,
1060 };
1061 #endif /* CONFIG_PROC_FS */
1062
1063 /**
1064 * may_umount_tree - check if a mount tree is busy
1065 * @mnt: root of mount tree
1066 *
1067 * This is called to check if a tree of mounts has any
1068 * open files, pwds, chroots or sub mounts that are
1069 * busy.
1070 */
1071 int may_umount_tree(struct vfsmount *m)
1072 {
1073 struct mount *mnt = real_mount(m);
1074 int actual_refs = 0;
1075 int minimum_refs = 0;
1076 struct mount *p;
1077 BUG_ON(!m);
1078
1079 /* write lock needed for mnt_get_count */
1080 br_write_lock(&vfsmount_lock);
1081 for (p = mnt; p; p = next_mnt(p, mnt)) {
1082 actual_refs += mnt_get_count(p);
1083 minimum_refs += 2;
1084 }
1085 br_write_unlock(&vfsmount_lock);
1086
1087 if (actual_refs > minimum_refs)
1088 return 0;
1089
1090 return 1;
1091 }
1092
1093 EXPORT_SYMBOL(may_umount_tree);
1094
1095 /**
1096 * may_umount - check if a mount point is busy
1097 * @mnt: root of mount
1098 *
1099 * This is called to check if a mount point has any
1100 * open files, pwds, chroots or sub mounts. If the
1101 * mount has sub mounts this will return busy
1102 * regardless of whether the sub mounts are busy.
1103 *
1104 * Doesn't take quota and stuff into account. IOW, in some cases it will
1105 * give false negatives. The main reason why it's here is that we need
1106 * a non-destructive way to look for easily umountable filesystems.
1107 */
1108 int may_umount(struct vfsmount *mnt)
1109 {
1110 int ret = 1;
1111 down_read(&namespace_sem);
1112 br_write_lock(&vfsmount_lock);
1113 if (propagate_mount_busy(real_mount(mnt), 2))
1114 ret = 0;
1115 br_write_unlock(&vfsmount_lock);
1116 up_read(&namespace_sem);
1117 return ret;
1118 }
1119
1120 EXPORT_SYMBOL(may_umount);
1121
1122 static LIST_HEAD(unmounted); /* protected by namespace_sem */
1123
1124 static void namespace_unlock(void)
1125 {
1126 struct mount *mnt;
1127 LIST_HEAD(head);
1128
1129 if (likely(list_empty(&unmounted))) {
1130 up_write(&namespace_sem);
1131 return;
1132 }
1133
1134 list_splice_init(&unmounted, &head);
1135 up_write(&namespace_sem);
1136
1137 while (!list_empty(&head)) {
1138 mnt = list_first_entry(&head, struct mount, mnt_hash);
1139 list_del_init(&mnt->mnt_hash);
1140 if (mnt_has_parent(mnt)) {
1141 struct dentry *dentry;
1142 struct mount *m;
1143
1144 br_write_lock(&vfsmount_lock);
1145 dentry = mnt->mnt_mountpoint;
1146 m = mnt->mnt_parent;
1147 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1148 mnt->mnt_parent = mnt;
1149 m->mnt_ghosts--;
1150 br_write_unlock(&vfsmount_lock);
1151 dput(dentry);
1152 mntput(&m->mnt);
1153 }
1154 mntput(&mnt->mnt);
1155 }
1156 }
1157
1158 static inline void namespace_lock(void)
1159 {
1160 down_write(&namespace_sem);
1161 }
1162
1163 /*
1164 * vfsmount lock must be held for write
1165 * namespace_sem must be held for write
1166 */
1167 void umount_tree(struct mount *mnt, int propagate)
1168 {
1169 LIST_HEAD(tmp_list);
1170 struct mount *p;
1171
1172 for (p = mnt; p; p = next_mnt(p, mnt))
1173 list_move(&p->mnt_hash, &tmp_list);
1174
1175 if (propagate)
1176 propagate_umount(&tmp_list);
1177
1178 list_for_each_entry(p, &tmp_list, mnt_hash) {
1179 list_del_init(&p->mnt_expire);
1180 list_del_init(&p->mnt_list);
1181 __touch_mnt_namespace(p->mnt_ns);
1182 p->mnt_ns = NULL;
1183 list_del_init(&p->mnt_child);
1184 if (mnt_has_parent(p)) {
1185 p->mnt_parent->mnt_ghosts++;
1186 put_mountpoint(p->mnt_mp);
1187 p->mnt_mp = NULL;
1188 }
1189 change_mnt_propagation(p, MS_PRIVATE);
1190 }
1191 list_splice(&tmp_list, &unmounted);
1192 }
1193
1194 static void shrink_submounts(struct mount *mnt);
1195
1196 static int do_umount(struct mount *mnt, int flags)
1197 {
1198 struct super_block *sb = mnt->mnt.mnt_sb;
1199 int retval;
1200
1201 retval = security_sb_umount(&mnt->mnt, flags);
1202 if (retval)
1203 return retval;
1204
1205 /*
1206 * Allow userspace to request a mountpoint be expired rather than
1207 * unmounting unconditionally. Unmount only happens if:
1208 * (1) the mark is already set (the mark is cleared by mntput())
1209 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1210 */
1211 if (flags & MNT_EXPIRE) {
1212 if (&mnt->mnt == current->fs->root.mnt ||
1213 flags & (MNT_FORCE | MNT_DETACH))
1214 return -EINVAL;
1215
1216 /*
1217 * probably don't strictly need the lock here if we examined
1218 * all race cases, but it's a slowpath.
1219 */
1220 br_write_lock(&vfsmount_lock);
1221 if (mnt_get_count(mnt) != 2) {
1222 br_write_unlock(&vfsmount_lock);
1223 return -EBUSY;
1224 }
1225 br_write_unlock(&vfsmount_lock);
1226
1227 if (!xchg(&mnt->mnt_expiry_mark, 1))
1228 return -EAGAIN;
1229 }
1230
1231 /*
1232 * If we may have to abort operations to get out of this
1233 * mount, and they will themselves hold resources we must
1234 * allow the fs to do things. In the Unix tradition of
1235 * 'Gee thats tricky lets do it in userspace' the umount_begin
1236 * might fail to complete on the first run through as other tasks
1237 * must return, and the like. Thats for the mount program to worry
1238 * about for the moment.
1239 */
1240
1241 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1242 sb->s_op->umount_begin(sb);
1243 }
1244
1245 /*
1246 * No sense to grab the lock for this test, but test itself looks
1247 * somewhat bogus. Suggestions for better replacement?
1248 * Ho-hum... In principle, we might treat that as umount + switch
1249 * to rootfs. GC would eventually take care of the old vfsmount.
1250 * Actually it makes sense, especially if rootfs would contain a
1251 * /reboot - static binary that would close all descriptors and
1252 * call reboot(9). Then init(8) could umount root and exec /reboot.
1253 */
1254 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1255 /*
1256 * Special case for "unmounting" root ...
1257 * we just try to remount it readonly.
1258 */
1259 down_write(&sb->s_umount);
1260 if (!(sb->s_flags & MS_RDONLY))
1261 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1262 up_write(&sb->s_umount);
1263 return retval;
1264 }
1265
1266 namespace_lock();
1267 br_write_lock(&vfsmount_lock);
1268 event++;
1269
1270 if (!(flags & MNT_DETACH))
1271 shrink_submounts(mnt);
1272
1273 retval = -EBUSY;
1274 if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) {
1275 if (!list_empty(&mnt->mnt_list))
1276 umount_tree(mnt, 1);
1277 retval = 0;
1278 }
1279 br_write_unlock(&vfsmount_lock);
1280 namespace_unlock();
1281 return retval;
1282 }
1283
1284 /*
1285 * Is the caller allowed to modify his namespace?
1286 */
1287 static inline bool may_mount(void)
1288 {
1289 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1290 }
1291
1292 /*
1293 * Now umount can handle mount points as well as block devices.
1294 * This is important for filesystems which use unnamed block devices.
1295 *
1296 * We now support a flag for forced unmount like the other 'big iron'
1297 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1298 */
1299
1300 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1301 {
1302 struct path path;
1303 struct mount *mnt;
1304 int retval;
1305 int lookup_flags = 0;
1306
1307 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1308 return -EINVAL;
1309
1310 if (!may_mount())
1311 return -EPERM;
1312
1313 if (!(flags & UMOUNT_NOFOLLOW))
1314 lookup_flags |= LOOKUP_FOLLOW;
1315
1316 retval = user_path_at(AT_FDCWD, name, lookup_flags, &path);
1317 if (retval)
1318 goto out;
1319 mnt = real_mount(path.mnt);
1320 retval = -EINVAL;
1321 if (path.dentry != path.mnt->mnt_root)
1322 goto dput_and_out;
1323 if (!check_mnt(mnt))
1324 goto dput_and_out;
1325
1326 retval = do_umount(mnt, flags);
1327 dput_and_out:
1328 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
1329 dput(path.dentry);
1330 mntput_no_expire(mnt);
1331 out:
1332 return retval;
1333 }
1334
1335 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1336
1337 /*
1338 * The 2.0 compatible umount. No flags.
1339 */
1340 SYSCALL_DEFINE1(oldumount, char __user *, name)
1341 {
1342 return sys_umount(name, 0);
1343 }
1344
1345 #endif
1346
1347 static bool mnt_ns_loop(struct path *path)
1348 {
1349 /* Could bind mounting the mount namespace inode cause a
1350 * mount namespace loop?
1351 */
1352 struct inode *inode = path->dentry->d_inode;
1353 struct proc_ns *ei;
1354 struct mnt_namespace *mnt_ns;
1355
1356 if (!proc_ns_inode(inode))
1357 return false;
1358
1359 ei = get_proc_ns(inode);
1360 if (ei->ns_ops != &mntns_operations)
1361 return false;
1362
1363 mnt_ns = ei->ns;
1364 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1365 }
1366
1367 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
1368 int flag)
1369 {
1370 struct mount *res, *p, *q, *r, *parent;
1371
1372 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(mnt))
1373 return ERR_PTR(-EINVAL);
1374
1375 res = q = clone_mnt(mnt, dentry, flag);
1376 if (IS_ERR(q))
1377 return q;
1378
1379 q->mnt_mountpoint = mnt->mnt_mountpoint;
1380
1381 p = mnt;
1382 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1383 struct mount *s;
1384 if (!is_subdir(r->mnt_mountpoint, dentry))
1385 continue;
1386
1387 for (s = r; s; s = next_mnt(s, r)) {
1388 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(s)) {
1389 s = skip_mnt_tree(s);
1390 continue;
1391 }
1392 while (p != s->mnt_parent) {
1393 p = p->mnt_parent;
1394 q = q->mnt_parent;
1395 }
1396 p = s;
1397 parent = q;
1398 q = clone_mnt(p, p->mnt.mnt_root, flag);
1399 if (IS_ERR(q))
1400 goto out;
1401 br_write_lock(&vfsmount_lock);
1402 list_add_tail(&q->mnt_list, &res->mnt_list);
1403 attach_mnt(q, parent, p->mnt_mp);
1404 br_write_unlock(&vfsmount_lock);
1405 }
1406 }
1407 return res;
1408 out:
1409 if (res) {
1410 br_write_lock(&vfsmount_lock);
1411 umount_tree(res, 0);
1412 br_write_unlock(&vfsmount_lock);
1413 }
1414 return q;
1415 }
1416
1417 /* Caller should check returned pointer for errors */
1418
1419 struct vfsmount *collect_mounts(struct path *path)
1420 {
1421 struct mount *tree;
1422 namespace_lock();
1423 tree = copy_tree(real_mount(path->mnt), path->dentry,
1424 CL_COPY_ALL | CL_PRIVATE);
1425 namespace_unlock();
1426 if (IS_ERR(tree))
1427 return NULL;
1428 return &tree->mnt;
1429 }
1430
1431 void drop_collected_mounts(struct vfsmount *mnt)
1432 {
1433 namespace_lock();
1434 br_write_lock(&vfsmount_lock);
1435 umount_tree(real_mount(mnt), 0);
1436 br_write_unlock(&vfsmount_lock);
1437 namespace_unlock();
1438 }
1439
1440 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1441 struct vfsmount *root)
1442 {
1443 struct mount *mnt;
1444 int res = f(root, arg);
1445 if (res)
1446 return res;
1447 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1448 res = f(&mnt->mnt, arg);
1449 if (res)
1450 return res;
1451 }
1452 return 0;
1453 }
1454
1455 static void cleanup_group_ids(struct mount *mnt, struct mount *end)
1456 {
1457 struct mount *p;
1458
1459 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1460 if (p->mnt_group_id && !IS_MNT_SHARED(p))
1461 mnt_release_group_id(p);
1462 }
1463 }
1464
1465 static int invent_group_ids(struct mount *mnt, bool recurse)
1466 {
1467 struct mount *p;
1468
1469 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1470 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1471 int err = mnt_alloc_group_id(p);
1472 if (err) {
1473 cleanup_group_ids(mnt, p);
1474 return err;
1475 }
1476 }
1477 }
1478
1479 return 0;
1480 }
1481
1482 /*
1483 * @source_mnt : mount tree to be attached
1484 * @nd : place the mount tree @source_mnt is attached
1485 * @parent_nd : if non-null, detach the source_mnt from its parent and
1486 * store the parent mount and mountpoint dentry.
1487 * (done when source_mnt is moved)
1488 *
1489 * NOTE: in the table below explains the semantics when a source mount
1490 * of a given type is attached to a destination mount of a given type.
1491 * ---------------------------------------------------------------------------
1492 * | BIND MOUNT OPERATION |
1493 * |**************************************************************************
1494 * | source-->| shared | private | slave | unbindable |
1495 * | dest | | | | |
1496 * | | | | | | |
1497 * | v | | | | |
1498 * |**************************************************************************
1499 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1500 * | | | | | |
1501 * |non-shared| shared (+) | private | slave (*) | invalid |
1502 * ***************************************************************************
1503 * A bind operation clones the source mount and mounts the clone on the
1504 * destination mount.
1505 *
1506 * (++) the cloned mount is propagated to all the mounts in the propagation
1507 * tree of the destination mount and the cloned mount is added to
1508 * the peer group of the source mount.
1509 * (+) the cloned mount is created under the destination mount and is marked
1510 * as shared. The cloned mount is added to the peer group of the source
1511 * mount.
1512 * (+++) the mount is propagated to all the mounts in the propagation tree
1513 * of the destination mount and the cloned mount is made slave
1514 * of the same master as that of the source mount. The cloned mount
1515 * is marked as 'shared and slave'.
1516 * (*) the cloned mount is made a slave of the same master as that of the
1517 * source mount.
1518 *
1519 * ---------------------------------------------------------------------------
1520 * | MOVE MOUNT OPERATION |
1521 * |**************************************************************************
1522 * | source-->| shared | private | slave | unbindable |
1523 * | dest | | | | |
1524 * | | | | | | |
1525 * | v | | | | |
1526 * |**************************************************************************
1527 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1528 * | | | | | |
1529 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1530 * ***************************************************************************
1531 *
1532 * (+) the mount is moved to the destination. And is then propagated to
1533 * all the mounts in the propagation tree of the destination mount.
1534 * (+*) the mount is moved to the destination.
1535 * (+++) the mount is moved to the destination and is then propagated to
1536 * all the mounts belonging to the destination mount's propagation tree.
1537 * the mount is marked as 'shared and slave'.
1538 * (*) the mount continues to be a slave at the new location.
1539 *
1540 * if the source mount is a tree, the operations explained above is
1541 * applied to each mount in the tree.
1542 * Must be called without spinlocks held, since this function can sleep
1543 * in allocations.
1544 */
1545 static int attach_recursive_mnt(struct mount *source_mnt,
1546 struct mount *dest_mnt,
1547 struct mountpoint *dest_mp,
1548 struct path *parent_path)
1549 {
1550 LIST_HEAD(tree_list);
1551 struct mount *child, *p;
1552 int err;
1553
1554 if (IS_MNT_SHARED(dest_mnt)) {
1555 err = invent_group_ids(source_mnt, true);
1556 if (err)
1557 goto out;
1558 }
1559 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
1560 if (err)
1561 goto out_cleanup_ids;
1562
1563 br_write_lock(&vfsmount_lock);
1564
1565 if (IS_MNT_SHARED(dest_mnt)) {
1566 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
1567 set_mnt_shared(p);
1568 }
1569 if (parent_path) {
1570 detach_mnt(source_mnt, parent_path);
1571 attach_mnt(source_mnt, dest_mnt, dest_mp);
1572 touch_mnt_namespace(source_mnt->mnt_ns);
1573 } else {
1574 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
1575 commit_tree(source_mnt);
1576 }
1577
1578 list_for_each_entry_safe(child, p, &tree_list, mnt_hash) {
1579 list_del_init(&child->mnt_hash);
1580 commit_tree(child);
1581 }
1582 br_write_unlock(&vfsmount_lock);
1583
1584 return 0;
1585
1586 out_cleanup_ids:
1587 if (IS_MNT_SHARED(dest_mnt))
1588 cleanup_group_ids(source_mnt, NULL);
1589 out:
1590 return err;
1591 }
1592
1593 static struct mountpoint *lock_mount(struct path *path)
1594 {
1595 struct vfsmount *mnt;
1596 struct dentry *dentry = path->dentry;
1597 retry:
1598 mutex_lock(&dentry->d_inode->i_mutex);
1599 if (unlikely(cant_mount(dentry))) {
1600 mutex_unlock(&dentry->d_inode->i_mutex);
1601 return ERR_PTR(-ENOENT);
1602 }
1603 namespace_lock();
1604 mnt = lookup_mnt(path);
1605 if (likely(!mnt)) {
1606 struct mountpoint *mp = new_mountpoint(dentry);
1607 if (IS_ERR(mp)) {
1608 namespace_unlock();
1609 mutex_unlock(&dentry->d_inode->i_mutex);
1610 return mp;
1611 }
1612 return mp;
1613 }
1614 namespace_unlock();
1615 mutex_unlock(&path->dentry->d_inode->i_mutex);
1616 path_put(path);
1617 path->mnt = mnt;
1618 dentry = path->dentry = dget(mnt->mnt_root);
1619 goto retry;
1620 }
1621
1622 static void unlock_mount(struct mountpoint *where)
1623 {
1624 struct dentry *dentry = where->m_dentry;
1625 put_mountpoint(where);
1626 namespace_unlock();
1627 mutex_unlock(&dentry->d_inode->i_mutex);
1628 }
1629
1630 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
1631 {
1632 if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER)
1633 return -EINVAL;
1634
1635 if (S_ISDIR(mp->m_dentry->d_inode->i_mode) !=
1636 S_ISDIR(mnt->mnt.mnt_root->d_inode->i_mode))
1637 return -ENOTDIR;
1638
1639 return attach_recursive_mnt(mnt, p, mp, NULL);
1640 }
1641
1642 /*
1643 * Sanity check the flags to change_mnt_propagation.
1644 */
1645
1646 static int flags_to_propagation_type(int flags)
1647 {
1648 int type = flags & ~(MS_REC | MS_SILENT);
1649
1650 /* Fail if any non-propagation flags are set */
1651 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
1652 return 0;
1653 /* Only one propagation flag should be set */
1654 if (!is_power_of_2(type))
1655 return 0;
1656 return type;
1657 }
1658
1659 /*
1660 * recursively change the type of the mountpoint.
1661 */
1662 static int do_change_type(struct path *path, int flag)
1663 {
1664 struct mount *m;
1665 struct mount *mnt = real_mount(path->mnt);
1666 int recurse = flag & MS_REC;
1667 int type;
1668 int err = 0;
1669
1670 if (path->dentry != path->mnt->mnt_root)
1671 return -EINVAL;
1672
1673 type = flags_to_propagation_type(flag);
1674 if (!type)
1675 return -EINVAL;
1676
1677 namespace_lock();
1678 if (type == MS_SHARED) {
1679 err = invent_group_ids(mnt, recurse);
1680 if (err)
1681 goto out_unlock;
1682 }
1683
1684 br_write_lock(&vfsmount_lock);
1685 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
1686 change_mnt_propagation(m, type);
1687 br_write_unlock(&vfsmount_lock);
1688
1689 out_unlock:
1690 namespace_unlock();
1691 return err;
1692 }
1693
1694 /*
1695 * do loopback mount.
1696 */
1697 static int do_loopback(struct path *path, const char *old_name,
1698 int recurse)
1699 {
1700 struct path old_path;
1701 struct mount *mnt = NULL, *old, *parent;
1702 struct mountpoint *mp;
1703 int err;
1704 if (!old_name || !*old_name)
1705 return -EINVAL;
1706 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
1707 if (err)
1708 return err;
1709
1710 err = -EINVAL;
1711 if (mnt_ns_loop(&old_path))
1712 goto out;
1713
1714 mp = lock_mount(path);
1715 err = PTR_ERR(mp);
1716 if (IS_ERR(mp))
1717 goto out;
1718
1719 old = real_mount(old_path.mnt);
1720 parent = real_mount(path->mnt);
1721
1722 err = -EINVAL;
1723 if (IS_MNT_UNBINDABLE(old))
1724 goto out2;
1725
1726 if (!check_mnt(parent) || !check_mnt(old))
1727 goto out2;
1728
1729 if (recurse)
1730 mnt = copy_tree(old, old_path.dentry, 0);
1731 else
1732 mnt = clone_mnt(old, old_path.dentry, 0);
1733
1734 if (IS_ERR(mnt)) {
1735 err = PTR_ERR(mnt);
1736 goto out2;
1737 }
1738
1739 err = graft_tree(mnt, parent, mp);
1740 if (err) {
1741 br_write_lock(&vfsmount_lock);
1742 umount_tree(mnt, 0);
1743 br_write_unlock(&vfsmount_lock);
1744 }
1745 out2:
1746 unlock_mount(mp);
1747 out:
1748 path_put(&old_path);
1749 return err;
1750 }
1751
1752 static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
1753 {
1754 int error = 0;
1755 int readonly_request = 0;
1756
1757 if (ms_flags & MS_RDONLY)
1758 readonly_request = 1;
1759 if (readonly_request == __mnt_is_readonly(mnt))
1760 return 0;
1761
1762 if (readonly_request)
1763 error = mnt_make_readonly(real_mount(mnt));
1764 else
1765 __mnt_unmake_readonly(real_mount(mnt));
1766 return error;
1767 }
1768
1769 /*
1770 * change filesystem flags. dir should be a physical root of filesystem.
1771 * If you've mounted a non-root directory somewhere and want to do remount
1772 * on it - tough luck.
1773 */
1774 static int do_remount(struct path *path, int flags, int mnt_flags,
1775 void *data)
1776 {
1777 int err;
1778 struct super_block *sb = path->mnt->mnt_sb;
1779 struct mount *mnt = real_mount(path->mnt);
1780
1781 if (!check_mnt(mnt))
1782 return -EINVAL;
1783
1784 if (path->dentry != path->mnt->mnt_root)
1785 return -EINVAL;
1786
1787 err = security_sb_remount(sb, data);
1788 if (err)
1789 return err;
1790
1791 down_write(&sb->s_umount);
1792 if (flags & MS_BIND)
1793 err = change_mount_flags(path->mnt, flags);
1794 else if (!capable(CAP_SYS_ADMIN))
1795 err = -EPERM;
1796 else
1797 err = do_remount_sb(sb, flags, data, 0);
1798 if (!err) {
1799 br_write_lock(&vfsmount_lock);
1800 mnt_flags |= mnt->mnt.mnt_flags & MNT_PROPAGATION_MASK;
1801 mnt->mnt.mnt_flags = mnt_flags;
1802 br_write_unlock(&vfsmount_lock);
1803 }
1804 up_write(&sb->s_umount);
1805 if (!err) {
1806 br_write_lock(&vfsmount_lock);
1807 touch_mnt_namespace(mnt->mnt_ns);
1808 br_write_unlock(&vfsmount_lock);
1809 }
1810 return err;
1811 }
1812
1813 static inline int tree_contains_unbindable(struct mount *mnt)
1814 {
1815 struct mount *p;
1816 for (p = mnt; p; p = next_mnt(p, mnt)) {
1817 if (IS_MNT_UNBINDABLE(p))
1818 return 1;
1819 }
1820 return 0;
1821 }
1822
1823 static int do_move_mount(struct path *path, const char *old_name)
1824 {
1825 struct path old_path, parent_path;
1826 struct mount *p;
1827 struct mount *old;
1828 struct mountpoint *mp;
1829 int err;
1830 if (!old_name || !*old_name)
1831 return -EINVAL;
1832 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
1833 if (err)
1834 return err;
1835
1836 mp = lock_mount(path);
1837 err = PTR_ERR(mp);
1838 if (IS_ERR(mp))
1839 goto out;
1840
1841 old = real_mount(old_path.mnt);
1842 p = real_mount(path->mnt);
1843
1844 err = -EINVAL;
1845 if (!check_mnt(p) || !check_mnt(old))
1846 goto out1;
1847
1848 err = -EINVAL;
1849 if (old_path.dentry != old_path.mnt->mnt_root)
1850 goto out1;
1851
1852 if (!mnt_has_parent(old))
1853 goto out1;
1854
1855 if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1856 S_ISDIR(old_path.dentry->d_inode->i_mode))
1857 goto out1;
1858 /*
1859 * Don't move a mount residing in a shared parent.
1860 */
1861 if (IS_MNT_SHARED(old->mnt_parent))
1862 goto out1;
1863 /*
1864 * Don't move a mount tree containing unbindable mounts to a destination
1865 * mount which is shared.
1866 */
1867 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
1868 goto out1;
1869 err = -ELOOP;
1870 for (; mnt_has_parent(p); p = p->mnt_parent)
1871 if (p == old)
1872 goto out1;
1873
1874 err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path);
1875 if (err)
1876 goto out1;
1877
1878 /* if the mount is moved, it should no longer be expire
1879 * automatically */
1880 list_del_init(&old->mnt_expire);
1881 out1:
1882 unlock_mount(mp);
1883 out:
1884 if (!err)
1885 path_put(&parent_path);
1886 path_put(&old_path);
1887 return err;
1888 }
1889
1890 static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
1891 {
1892 int err;
1893 const char *subtype = strchr(fstype, '.');
1894 if (subtype) {
1895 subtype++;
1896 err = -EINVAL;
1897 if (!subtype[0])
1898 goto err;
1899 } else
1900 subtype = "";
1901
1902 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
1903 err = -ENOMEM;
1904 if (!mnt->mnt_sb->s_subtype)
1905 goto err;
1906 return mnt;
1907
1908 err:
1909 mntput(mnt);
1910 return ERR_PTR(err);
1911 }
1912
1913 /*
1914 * add a mount into a namespace's mount tree
1915 */
1916 static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
1917 {
1918 struct mountpoint *mp;
1919 struct mount *parent;
1920 int err;
1921
1922 mnt_flags &= ~(MNT_SHARED | MNT_WRITE_HOLD | MNT_INTERNAL);
1923
1924 mp = lock_mount(path);
1925 if (IS_ERR(mp))
1926 return PTR_ERR(mp);
1927
1928 parent = real_mount(path->mnt);
1929 err = -EINVAL;
1930 if (unlikely(!check_mnt(parent))) {
1931 /* that's acceptable only for automounts done in private ns */
1932 if (!(mnt_flags & MNT_SHRINKABLE))
1933 goto unlock;
1934 /* ... and for those we'd better have mountpoint still alive */
1935 if (!parent->mnt_ns)
1936 goto unlock;
1937 }
1938
1939 /* Refuse the same filesystem on the same mount point */
1940 err = -EBUSY;
1941 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
1942 path->mnt->mnt_root == path->dentry)
1943 goto unlock;
1944
1945 err = -EINVAL;
1946 if (S_ISLNK(newmnt->mnt.mnt_root->d_inode->i_mode))
1947 goto unlock;
1948
1949 newmnt->mnt.mnt_flags = mnt_flags;
1950 err = graft_tree(newmnt, parent, mp);
1951
1952 unlock:
1953 unlock_mount(mp);
1954 return err;
1955 }
1956
1957 /*
1958 * create a new mount for userspace and request it to be added into the
1959 * namespace's tree
1960 */
1961 static int do_new_mount(struct path *path, const char *fstype, int flags,
1962 int mnt_flags, const char *name, void *data)
1963 {
1964 struct file_system_type *type;
1965 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
1966 struct vfsmount *mnt;
1967 int err;
1968
1969 if (!fstype)
1970 return -EINVAL;
1971
1972 type = get_fs_type(fstype);
1973 if (!type)
1974 return -ENODEV;
1975
1976 if (user_ns != &init_user_ns) {
1977 if (!(type->fs_flags & FS_USERNS_MOUNT)) {
1978 put_filesystem(type);
1979 return -EPERM;
1980 }
1981 /* Only in special cases allow devices from mounts
1982 * created outside the initial user namespace.
1983 */
1984 if (!(type->fs_flags & FS_USERNS_DEV_MOUNT)) {
1985 flags |= MS_NODEV;
1986 mnt_flags |= MNT_NODEV;
1987 }
1988 }
1989
1990 mnt = vfs_kern_mount(type, flags, name, data);
1991 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
1992 !mnt->mnt_sb->s_subtype)
1993 mnt = fs_set_subtype(mnt, fstype);
1994
1995 put_filesystem(type);
1996 if (IS_ERR(mnt))
1997 return PTR_ERR(mnt);
1998
1999 err = do_add_mount(real_mount(mnt), path, mnt_flags);
2000 if (err)
2001 mntput(mnt);
2002 return err;
2003 }
2004
2005 int finish_automount(struct vfsmount *m, struct path *path)
2006 {
2007 struct mount *mnt = real_mount(m);
2008 int err;
2009 /* The new mount record should have at least 2 refs to prevent it being
2010 * expired before we get a chance to add it
2011 */
2012 BUG_ON(mnt_get_count(mnt) < 2);
2013
2014 if (m->mnt_sb == path->mnt->mnt_sb &&
2015 m->mnt_root == path->dentry) {
2016 err = -ELOOP;
2017 goto fail;
2018 }
2019
2020 err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
2021 if (!err)
2022 return 0;
2023 fail:
2024 /* remove m from any expiration list it may be on */
2025 if (!list_empty(&mnt->mnt_expire)) {
2026 namespace_lock();
2027 br_write_lock(&vfsmount_lock);
2028 list_del_init(&mnt->mnt_expire);
2029 br_write_unlock(&vfsmount_lock);
2030 namespace_unlock();
2031 }
2032 mntput(m);
2033 mntput(m);
2034 return err;
2035 }
2036
2037 /**
2038 * mnt_set_expiry - Put a mount on an expiration list
2039 * @mnt: The mount to list.
2040 * @expiry_list: The list to add the mount to.
2041 */
2042 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2043 {
2044 namespace_lock();
2045 br_write_lock(&vfsmount_lock);
2046
2047 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
2048
2049 br_write_unlock(&vfsmount_lock);
2050 namespace_unlock();
2051 }
2052 EXPORT_SYMBOL(mnt_set_expiry);
2053
2054 /*
2055 * process a list of expirable mountpoints with the intent of discarding any
2056 * mountpoints that aren't in use and haven't been touched since last we came
2057 * here
2058 */
2059 void mark_mounts_for_expiry(struct list_head *mounts)
2060 {
2061 struct mount *mnt, *next;
2062 LIST_HEAD(graveyard);
2063
2064 if (list_empty(mounts))
2065 return;
2066
2067 namespace_lock();
2068 br_write_lock(&vfsmount_lock);
2069
2070 /* extract from the expiration list every vfsmount that matches the
2071 * following criteria:
2072 * - only referenced by its parent vfsmount
2073 * - still marked for expiry (marked on the last call here; marks are
2074 * cleared by mntput())
2075 */
2076 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
2077 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
2078 propagate_mount_busy(mnt, 1))
2079 continue;
2080 list_move(&mnt->mnt_expire, &graveyard);
2081 }
2082 while (!list_empty(&graveyard)) {
2083 mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
2084 touch_mnt_namespace(mnt->mnt_ns);
2085 umount_tree(mnt, 1);
2086 }
2087 br_write_unlock(&vfsmount_lock);
2088 namespace_unlock();
2089 }
2090
2091 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2092
2093 /*
2094 * Ripoff of 'select_parent()'
2095 *
2096 * search the list of submounts for a given mountpoint, and move any
2097 * shrinkable submounts to the 'graveyard' list.
2098 */
2099 static int select_submounts(struct mount *parent, struct list_head *graveyard)
2100 {
2101 struct mount *this_parent = parent;
2102 struct list_head *next;
2103 int found = 0;
2104
2105 repeat:
2106 next = this_parent->mnt_mounts.next;
2107 resume:
2108 while (next != &this_parent->mnt_mounts) {
2109 struct list_head *tmp = next;
2110 struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
2111
2112 next = tmp->next;
2113 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
2114 continue;
2115 /*
2116 * Descend a level if the d_mounts list is non-empty.
2117 */
2118 if (!list_empty(&mnt->mnt_mounts)) {
2119 this_parent = mnt;
2120 goto repeat;
2121 }
2122
2123 if (!propagate_mount_busy(mnt, 1)) {
2124 list_move_tail(&mnt->mnt_expire, graveyard);
2125 found++;
2126 }
2127 }
2128 /*
2129 * All done at this level ... ascend and resume the search
2130 */
2131 if (this_parent != parent) {
2132 next = this_parent->mnt_child.next;
2133 this_parent = this_parent->mnt_parent;
2134 goto resume;
2135 }
2136 return found;
2137 }
2138
2139 /*
2140 * process a list of expirable mountpoints with the intent of discarding any
2141 * submounts of a specific parent mountpoint
2142 *
2143 * vfsmount_lock must be held for write
2144 */
2145 static void shrink_submounts(struct mount *mnt)
2146 {
2147 LIST_HEAD(graveyard);
2148 struct mount *m;
2149
2150 /* extract submounts of 'mountpoint' from the expiration list */
2151 while (select_submounts(mnt, &graveyard)) {
2152 while (!list_empty(&graveyard)) {
2153 m = list_first_entry(&graveyard, struct mount,
2154 mnt_expire);
2155 touch_mnt_namespace(m->mnt_ns);
2156 umount_tree(m, 1);
2157 }
2158 }
2159 }
2160
2161 /*
2162 * Some copy_from_user() implementations do not return the exact number of
2163 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
2164 * Note that this function differs from copy_from_user() in that it will oops
2165 * on bad values of `to', rather than returning a short copy.
2166 */
2167 static long exact_copy_from_user(void *to, const void __user * from,
2168 unsigned long n)
2169 {
2170 char *t = to;
2171 const char __user *f = from;
2172 char c;
2173
2174 if (!access_ok(VERIFY_READ, from, n))
2175 return n;
2176
2177 while (n) {
2178 if (__get_user(c, f)) {
2179 memset(t, 0, n);
2180 break;
2181 }
2182 *t++ = c;
2183 f++;
2184 n--;
2185 }
2186 return n;
2187 }
2188
2189 int copy_mount_options(const void __user * data, unsigned long *where)
2190 {
2191 int i;
2192 unsigned long page;
2193 unsigned long size;
2194
2195 *where = 0;
2196 if (!data)
2197 return 0;
2198
2199 if (!(page = __get_free_page(GFP_KERNEL)))
2200 return -ENOMEM;
2201
2202 /* We only care that *some* data at the address the user
2203 * gave us is valid. Just in case, we'll zero
2204 * the remainder of the page.
2205 */
2206 /* copy_from_user cannot cross TASK_SIZE ! */
2207 size = TASK_SIZE - (unsigned long)data;
2208 if (size > PAGE_SIZE)
2209 size = PAGE_SIZE;
2210
2211 i = size - exact_copy_from_user((void *)page, data, size);
2212 if (!i) {
2213 free_page(page);
2214 return -EFAULT;
2215 }
2216 if (i != PAGE_SIZE)
2217 memset((char *)page + i, 0, PAGE_SIZE - i);
2218 *where = page;
2219 return 0;
2220 }
2221
2222 int copy_mount_string(const void __user *data, char **where)
2223 {
2224 char *tmp;
2225
2226 if (!data) {
2227 *where = NULL;
2228 return 0;
2229 }
2230
2231 tmp = strndup_user(data, PAGE_SIZE);
2232 if (IS_ERR(tmp))
2233 return PTR_ERR(tmp);
2234
2235 *where = tmp;
2236 return 0;
2237 }
2238
2239 /*
2240 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2241 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2242 *
2243 * data is a (void *) that can point to any structure up to
2244 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2245 * information (or be NULL).
2246 *
2247 * Pre-0.97 versions of mount() didn't have a flags word.
2248 * When the flags word was introduced its top half was required
2249 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2250 * Therefore, if this magic number is present, it carries no information
2251 * and must be discarded.
2252 */
2253 long do_mount(const char *dev_name, const char *dir_name,
2254 const char *type_page, unsigned long flags, void *data_page)
2255 {
2256 struct path path;
2257 int retval = 0;
2258 int mnt_flags = 0;
2259
2260 /* Discard magic */
2261 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2262 flags &= ~MS_MGC_MSK;
2263
2264 /* Basic sanity checks */
2265
2266 if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
2267 return -EINVAL;
2268
2269 if (data_page)
2270 ((char *)data_page)[PAGE_SIZE - 1] = 0;
2271
2272 /* ... and get the mountpoint */
2273 retval = kern_path(dir_name, LOOKUP_FOLLOW, &path);
2274 if (retval)
2275 return retval;
2276
2277 retval = security_sb_mount(dev_name, &path,
2278 type_page, flags, data_page);
2279 if (retval)
2280 goto dput_out;
2281
2282 if (!may_mount())
2283 return -EPERM;
2284
2285 /* Default to relatime unless overriden */
2286 if (!(flags & MS_NOATIME))
2287 mnt_flags |= MNT_RELATIME;
2288
2289 /* Separate the per-mountpoint flags */
2290 if (flags & MS_NOSUID)
2291 mnt_flags |= MNT_NOSUID;
2292 if (flags & MS_NODEV)
2293 mnt_flags |= MNT_NODEV;
2294 if (flags & MS_NOEXEC)
2295 mnt_flags |= MNT_NOEXEC;
2296 if (flags & MS_NOATIME)
2297 mnt_flags |= MNT_NOATIME;
2298 if (flags & MS_NODIRATIME)
2299 mnt_flags |= MNT_NODIRATIME;
2300 if (flags & MS_STRICTATIME)
2301 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2302 if (flags & MS_RDONLY)
2303 mnt_flags |= MNT_READONLY;
2304
2305 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
2306 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
2307 MS_STRICTATIME);
2308
2309 if (flags & MS_REMOUNT)
2310 retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
2311 data_page);
2312 else if (flags & MS_BIND)
2313 retval = do_loopback(&path, dev_name, flags & MS_REC);
2314 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2315 retval = do_change_type(&path, flags);
2316 else if (flags & MS_MOVE)
2317 retval = do_move_mount(&path, dev_name);
2318 else
2319 retval = do_new_mount(&path, type_page, flags, mnt_flags,
2320 dev_name, data_page);
2321 dput_out:
2322 path_put(&path);
2323 return retval;
2324 }
2325
2326 static void free_mnt_ns(struct mnt_namespace *ns)
2327 {
2328 proc_free_inum(ns->proc_inum);
2329 put_user_ns(ns->user_ns);
2330 kfree(ns);
2331 }
2332
2333 /*
2334 * Assign a sequence number so we can detect when we attempt to bind
2335 * mount a reference to an older mount namespace into the current
2336 * mount namespace, preventing reference counting loops. A 64bit
2337 * number incrementing at 10Ghz will take 12,427 years to wrap which
2338 * is effectively never, so we can ignore the possibility.
2339 */
2340 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
2341
2342 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
2343 {
2344 struct mnt_namespace *new_ns;
2345 int ret;
2346
2347 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2348 if (!new_ns)
2349 return ERR_PTR(-ENOMEM);
2350 ret = proc_alloc_inum(&new_ns->proc_inum);
2351 if (ret) {
2352 kfree(new_ns);
2353 return ERR_PTR(ret);
2354 }
2355 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
2356 atomic_set(&new_ns->count, 1);
2357 new_ns->root = NULL;
2358 INIT_LIST_HEAD(&new_ns->list);
2359 init_waitqueue_head(&new_ns->poll);
2360 new_ns->event = 0;
2361 new_ns->user_ns = get_user_ns(user_ns);
2362 return new_ns;
2363 }
2364
2365 /*
2366 * Allocate a new namespace structure and populate it with contents
2367 * copied from the namespace of the passed in task structure.
2368 */
2369 static struct mnt_namespace *dup_mnt_ns(struct mnt_namespace *mnt_ns,
2370 struct user_namespace *user_ns, struct fs_struct *fs)
2371 {
2372 struct mnt_namespace *new_ns;
2373 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
2374 struct mount *p, *q;
2375 struct mount *old = mnt_ns->root;
2376 struct mount *new;
2377 int copy_flags;
2378
2379 new_ns = alloc_mnt_ns(user_ns);
2380 if (IS_ERR(new_ns))
2381 return new_ns;
2382
2383 namespace_lock();
2384 /* First pass: copy the tree topology */
2385 copy_flags = CL_COPY_ALL | CL_EXPIRE;
2386 if (user_ns != mnt_ns->user_ns)
2387 copy_flags |= CL_SHARED_TO_SLAVE;
2388 new = copy_tree(old, old->mnt.mnt_root, copy_flags);
2389 if (IS_ERR(new)) {
2390 namespace_unlock();
2391 free_mnt_ns(new_ns);
2392 return ERR_CAST(new);
2393 }
2394 new_ns->root = new;
2395 br_write_lock(&vfsmount_lock);
2396 list_add_tail(&new_ns->list, &new->mnt_list);
2397 br_write_unlock(&vfsmount_lock);
2398
2399 /*
2400 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2401 * as belonging to new namespace. We have already acquired a private
2402 * fs_struct, so tsk->fs->lock is not needed.
2403 */
2404 p = old;
2405 q = new;
2406 while (p) {
2407 q->mnt_ns = new_ns;
2408 if (fs) {
2409 if (&p->mnt == fs->root.mnt) {
2410 fs->root.mnt = mntget(&q->mnt);
2411 rootmnt = &p->mnt;
2412 }
2413 if (&p->mnt == fs->pwd.mnt) {
2414 fs->pwd.mnt = mntget(&q->mnt);
2415 pwdmnt = &p->mnt;
2416 }
2417 }
2418 p = next_mnt(p, old);
2419 q = next_mnt(q, new);
2420 }
2421 namespace_unlock();
2422
2423 if (rootmnt)
2424 mntput(rootmnt);
2425 if (pwdmnt)
2426 mntput(pwdmnt);
2427
2428 return new_ns;
2429 }
2430
2431 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2432 struct user_namespace *user_ns, struct fs_struct *new_fs)
2433 {
2434 struct mnt_namespace *new_ns;
2435
2436 BUG_ON(!ns);
2437 get_mnt_ns(ns);
2438
2439 if (!(flags & CLONE_NEWNS))
2440 return ns;
2441
2442 new_ns = dup_mnt_ns(ns, user_ns, new_fs);
2443
2444 put_mnt_ns(ns);
2445 return new_ns;
2446 }
2447
2448 /**
2449 * create_mnt_ns - creates a private namespace and adds a root filesystem
2450 * @mnt: pointer to the new root filesystem mountpoint
2451 */
2452 static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
2453 {
2454 struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
2455 if (!IS_ERR(new_ns)) {
2456 struct mount *mnt = real_mount(m);
2457 mnt->mnt_ns = new_ns;
2458 new_ns->root = mnt;
2459 list_add(&new_ns->list, &mnt->mnt_list);
2460 } else {
2461 mntput(m);
2462 }
2463 return new_ns;
2464 }
2465
2466 struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
2467 {
2468 struct mnt_namespace *ns;
2469 struct super_block *s;
2470 struct path path;
2471 int err;
2472
2473 ns = create_mnt_ns(mnt);
2474 if (IS_ERR(ns))
2475 return ERR_CAST(ns);
2476
2477 err = vfs_path_lookup(mnt->mnt_root, mnt,
2478 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
2479
2480 put_mnt_ns(ns);
2481
2482 if (err)
2483 return ERR_PTR(err);
2484
2485 /* trade a vfsmount reference for active sb one */
2486 s = path.mnt->mnt_sb;
2487 atomic_inc(&s->s_active);
2488 mntput(path.mnt);
2489 /* lock the sucker */
2490 down_write(&s->s_umount);
2491 /* ... and return the root of (sub)tree on it */
2492 return path.dentry;
2493 }
2494 EXPORT_SYMBOL(mount_subtree);
2495
2496 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
2497 char __user *, type, unsigned long, flags, void __user *, data)
2498 {
2499 int ret;
2500 char *kernel_type;
2501 struct filename *kernel_dir;
2502 char *kernel_dev;
2503 unsigned long data_page;
2504
2505 ret = copy_mount_string(type, &kernel_type);
2506 if (ret < 0)
2507 goto out_type;
2508
2509 kernel_dir = getname(dir_name);
2510 if (IS_ERR(kernel_dir)) {
2511 ret = PTR_ERR(kernel_dir);
2512 goto out_dir;
2513 }
2514
2515 ret = copy_mount_string(dev_name, &kernel_dev);
2516 if (ret < 0)
2517 goto out_dev;
2518
2519 ret = copy_mount_options(data, &data_page);
2520 if (ret < 0)
2521 goto out_data;
2522
2523 ret = do_mount(kernel_dev, kernel_dir->name, kernel_type, flags,
2524 (void *) data_page);
2525
2526 free_page(data_page);
2527 out_data:
2528 kfree(kernel_dev);
2529 out_dev:
2530 putname(kernel_dir);
2531 out_dir:
2532 kfree(kernel_type);
2533 out_type:
2534 return ret;
2535 }
2536
2537 /*
2538 * Return true if path is reachable from root
2539 *
2540 * namespace_sem or vfsmount_lock is held
2541 */
2542 bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
2543 const struct path *root)
2544 {
2545 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
2546 dentry = mnt->mnt_mountpoint;
2547 mnt = mnt->mnt_parent;
2548 }
2549 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
2550 }
2551
2552 int path_is_under(struct path *path1, struct path *path2)
2553 {
2554 int res;
2555 br_read_lock(&vfsmount_lock);
2556 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
2557 br_read_unlock(&vfsmount_lock);
2558 return res;
2559 }
2560 EXPORT_SYMBOL(path_is_under);
2561
2562 /*
2563 * pivot_root Semantics:
2564 * Moves the root file system of the current process to the directory put_old,
2565 * makes new_root as the new root file system of the current process, and sets
2566 * root/cwd of all processes which had them on the current root to new_root.
2567 *
2568 * Restrictions:
2569 * The new_root and put_old must be directories, and must not be on the
2570 * same file system as the current process root. The put_old must be
2571 * underneath new_root, i.e. adding a non-zero number of /.. to the string
2572 * pointed to by put_old must yield the same directory as new_root. No other
2573 * file system may be mounted on put_old. After all, new_root is a mountpoint.
2574 *
2575 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
2576 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
2577 * in this situation.
2578 *
2579 * Notes:
2580 * - we don't move root/cwd if they are not at the root (reason: if something
2581 * cared enough to change them, it's probably wrong to force them elsewhere)
2582 * - it's okay to pick a root that isn't the root of a file system, e.g.
2583 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
2584 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
2585 * first.
2586 */
2587 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
2588 const char __user *, put_old)
2589 {
2590 struct path new, old, parent_path, root_parent, root;
2591 struct mount *new_mnt, *root_mnt, *old_mnt;
2592 struct mountpoint *old_mp, *root_mp;
2593 int error;
2594
2595 if (!may_mount())
2596 return -EPERM;
2597
2598 error = user_path_dir(new_root, &new);
2599 if (error)
2600 goto out0;
2601
2602 error = user_path_dir(put_old, &old);
2603 if (error)
2604 goto out1;
2605
2606 error = security_sb_pivotroot(&old, &new);
2607 if (error)
2608 goto out2;
2609
2610 get_fs_root(current->fs, &root);
2611 old_mp = lock_mount(&old);
2612 error = PTR_ERR(old_mp);
2613 if (IS_ERR(old_mp))
2614 goto out3;
2615
2616 error = -EINVAL;
2617 new_mnt = real_mount(new.mnt);
2618 root_mnt = real_mount(root.mnt);
2619 old_mnt = real_mount(old.mnt);
2620 if (IS_MNT_SHARED(old_mnt) ||
2621 IS_MNT_SHARED(new_mnt->mnt_parent) ||
2622 IS_MNT_SHARED(root_mnt->mnt_parent))
2623 goto out4;
2624 if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
2625 goto out4;
2626 error = -ENOENT;
2627 if (d_unlinked(new.dentry))
2628 goto out4;
2629 error = -EBUSY;
2630 if (new_mnt == root_mnt || old_mnt == root_mnt)
2631 goto out4; /* loop, on the same file system */
2632 error = -EINVAL;
2633 if (root.mnt->mnt_root != root.dentry)
2634 goto out4; /* not a mountpoint */
2635 if (!mnt_has_parent(root_mnt))
2636 goto out4; /* not attached */
2637 root_mp = root_mnt->mnt_mp;
2638 if (new.mnt->mnt_root != new.dentry)
2639 goto out4; /* not a mountpoint */
2640 if (!mnt_has_parent(new_mnt))
2641 goto out4; /* not attached */
2642 /* make sure we can reach put_old from new_root */
2643 if (!is_path_reachable(old_mnt, old.dentry, &new))
2644 goto out4;
2645 root_mp->m_count++; /* pin it so it won't go away */
2646 br_write_lock(&vfsmount_lock);
2647 detach_mnt(new_mnt, &parent_path);
2648 detach_mnt(root_mnt, &root_parent);
2649 /* mount old root on put_old */
2650 attach_mnt(root_mnt, old_mnt, old_mp);
2651 /* mount new_root on / */
2652 attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp);
2653 touch_mnt_namespace(current->nsproxy->mnt_ns);
2654 br_write_unlock(&vfsmount_lock);
2655 chroot_fs_refs(&root, &new);
2656 put_mountpoint(root_mp);
2657 error = 0;
2658 out4:
2659 unlock_mount(old_mp);
2660 if (!error) {
2661 path_put(&root_parent);
2662 path_put(&parent_path);
2663 }
2664 out3:
2665 path_put(&root);
2666 out2:
2667 path_put(&old);
2668 out1:
2669 path_put(&new);
2670 out0:
2671 return error;
2672 }
2673
2674 static void __init init_mount_tree(void)
2675 {
2676 struct vfsmount *mnt;
2677 struct mnt_namespace *ns;
2678 struct path root;
2679 struct file_system_type *type;
2680
2681 type = get_fs_type("rootfs");
2682 if (!type)
2683 panic("Can't find rootfs type");
2684 mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
2685 put_filesystem(type);
2686 if (IS_ERR(mnt))
2687 panic("Can't create rootfs");
2688
2689 ns = create_mnt_ns(mnt);
2690 if (IS_ERR(ns))
2691 panic("Can't allocate initial namespace");
2692
2693 init_task.nsproxy->mnt_ns = ns;
2694 get_mnt_ns(ns);
2695
2696 root.mnt = mnt;
2697 root.dentry = mnt->mnt_root;
2698
2699 set_fs_pwd(current->fs, &root);
2700 set_fs_root(current->fs, &root);
2701 }
2702
2703 void __init mnt_init(void)
2704 {
2705 unsigned u;
2706 int err;
2707
2708 init_rwsem(&namespace_sem);
2709
2710 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
2711 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
2712
2713 mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
2714 mountpoint_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
2715
2716 if (!mount_hashtable || !mountpoint_hashtable)
2717 panic("Failed to allocate mount hash table\n");
2718
2719 printk(KERN_INFO "Mount-cache hash table entries: %lu\n", HASH_SIZE);
2720
2721 for (u = 0; u < HASH_SIZE; u++)
2722 INIT_LIST_HEAD(&mount_hashtable[u]);
2723 for (u = 0; u < HASH_SIZE; u++)
2724 INIT_LIST_HEAD(&mountpoint_hashtable[u]);
2725
2726 br_lock_init(&vfsmount_lock);
2727
2728 err = sysfs_init();
2729 if (err)
2730 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
2731 __func__, err);
2732 fs_kobj = kobject_create_and_add("fs", NULL);
2733 if (!fs_kobj)
2734 printk(KERN_WARNING "%s: kobj create error\n", __func__);
2735 init_rootfs();
2736 init_mount_tree();
2737 }
2738
2739 void put_mnt_ns(struct mnt_namespace *ns)
2740 {
2741 if (!atomic_dec_and_test(&ns->count))
2742 return;
2743 namespace_lock();
2744 br_write_lock(&vfsmount_lock);
2745 umount_tree(ns->root, 0);
2746 br_write_unlock(&vfsmount_lock);
2747 namespace_unlock();
2748 free_mnt_ns(ns);
2749 }
2750
2751 struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
2752 {
2753 struct vfsmount *mnt;
2754 mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
2755 if (!IS_ERR(mnt)) {
2756 /*
2757 * it is a longterm mount, don't release mnt until
2758 * we unmount before file sys is unregistered
2759 */
2760 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
2761 }
2762 return mnt;
2763 }
2764 EXPORT_SYMBOL_GPL(kern_mount_data);
2765
2766 void kern_unmount(struct vfsmount *mnt)
2767 {
2768 /* release long term mount so mount point can be released */
2769 if (!IS_ERR_OR_NULL(mnt)) {
2770 br_write_lock(&vfsmount_lock);
2771 real_mount(mnt)->mnt_ns = NULL;
2772 br_write_unlock(&vfsmount_lock);
2773 mntput(mnt);
2774 }
2775 }
2776 EXPORT_SYMBOL(kern_unmount);
2777
2778 bool our_mnt(struct vfsmount *mnt)
2779 {
2780 return check_mnt(real_mount(mnt));
2781 }
2782
2783 static void *mntns_get(struct task_struct *task)
2784 {
2785 struct mnt_namespace *ns = NULL;
2786 struct nsproxy *nsproxy;
2787
2788 rcu_read_lock();
2789 nsproxy = task_nsproxy(task);
2790 if (nsproxy) {
2791 ns = nsproxy->mnt_ns;
2792 get_mnt_ns(ns);
2793 }
2794 rcu_read_unlock();
2795
2796 return ns;
2797 }
2798
2799 static void mntns_put(void *ns)
2800 {
2801 put_mnt_ns(ns);
2802 }
2803
2804 static int mntns_install(struct nsproxy *nsproxy, void *ns)
2805 {
2806 struct fs_struct *fs = current->fs;
2807 struct mnt_namespace *mnt_ns = ns;
2808 struct path root;
2809
2810 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
2811 !nsown_capable(CAP_SYS_CHROOT) ||
2812 !nsown_capable(CAP_SYS_ADMIN))
2813 return -EPERM;
2814
2815 if (fs->users != 1)
2816 return -EINVAL;
2817
2818 get_mnt_ns(mnt_ns);
2819 put_mnt_ns(nsproxy->mnt_ns);
2820 nsproxy->mnt_ns = mnt_ns;
2821
2822 /* Find the root */
2823 root.mnt = &mnt_ns->root->mnt;
2824 root.dentry = mnt_ns->root->mnt.mnt_root;
2825 path_get(&root);
2826 while(d_mountpoint(root.dentry) && follow_down_one(&root))
2827 ;
2828
2829 /* Update the pwd and root */
2830 set_fs_pwd(fs, &root);
2831 set_fs_root(fs, &root);
2832
2833 path_put(&root);
2834 return 0;
2835 }
2836
2837 static unsigned int mntns_inum(void *ns)
2838 {
2839 struct mnt_namespace *mnt_ns = ns;
2840 return mnt_ns->proc_inum;
2841 }
2842
2843 const struct proc_ns_operations mntns_operations = {
2844 .name = "mnt",
2845 .type = CLONE_NEWNS,
2846 .get = mntns_get,
2847 .put = mntns_put,
2848 .install = mntns_install,
2849 .inum = mntns_inum,
2850 };
This page took 0.278331 seconds and 5 git commands to generate.