brlocks/lglocks: API cleanups
[deliverable/linux.git] / fs / namespace.c
1 /*
2 * linux/fs/namespace.c
3 *
4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/namei.h>
16 #include <linux/security.h>
17 #include <linux/idr.h>
18 #include <linux/acct.h> /* acct_auto_close_mnt */
19 #include <linux/ramfs.h> /* init_rootfs */
20 #include <linux/fs_struct.h> /* get_fs_root et.al. */
21 #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
22 #include <linux/uaccess.h>
23 #include "pnode.h"
24 #include "internal.h"
25
26 #define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head))
27 #define HASH_SIZE (1UL << HASH_SHIFT)
28
29 static int event;
30 static DEFINE_IDA(mnt_id_ida);
31 static DEFINE_IDA(mnt_group_ida);
32 static DEFINE_SPINLOCK(mnt_id_lock);
33 static int mnt_id_start = 0;
34 static int mnt_group_start = 1;
35
36 static struct list_head *mount_hashtable __read_mostly;
37 static struct kmem_cache *mnt_cache __read_mostly;
38 static struct rw_semaphore namespace_sem;
39
40 /* /sys/fs */
41 struct kobject *fs_kobj;
42 EXPORT_SYMBOL_GPL(fs_kobj);
43
44 /*
45 * vfsmount lock may be taken for read to prevent changes to the
46 * vfsmount hash, ie. during mountpoint lookups or walking back
47 * up the tree.
48 *
49 * It should be taken for write in all cases where the vfsmount
50 * tree or hash is modified or when a vfsmount structure is modified.
51 */
52 DEFINE_BRLOCK(vfsmount_lock);
53
54 static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry)
55 {
56 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
57 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
58 tmp = tmp + (tmp >> HASH_SHIFT);
59 return tmp & (HASH_SIZE - 1);
60 }
61
62 #define MNT_WRITER_UNDERFLOW_LIMIT -(1<<16)
63
64 /*
65 * allocation is serialized by namespace_sem, but we need the spinlock to
66 * serialize with freeing.
67 */
68 static int mnt_alloc_id(struct mount *mnt)
69 {
70 int res;
71
72 retry:
73 ida_pre_get(&mnt_id_ida, GFP_KERNEL);
74 spin_lock(&mnt_id_lock);
75 res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
76 if (!res)
77 mnt_id_start = mnt->mnt_id + 1;
78 spin_unlock(&mnt_id_lock);
79 if (res == -EAGAIN)
80 goto retry;
81
82 return res;
83 }
84
85 static void mnt_free_id(struct mount *mnt)
86 {
87 int id = mnt->mnt_id;
88 spin_lock(&mnt_id_lock);
89 ida_remove(&mnt_id_ida, id);
90 if (mnt_id_start > id)
91 mnt_id_start = id;
92 spin_unlock(&mnt_id_lock);
93 }
94
95 /*
96 * Allocate a new peer group ID
97 *
98 * mnt_group_ida is protected by namespace_sem
99 */
100 static int mnt_alloc_group_id(struct mount *mnt)
101 {
102 int res;
103
104 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
105 return -ENOMEM;
106
107 res = ida_get_new_above(&mnt_group_ida,
108 mnt_group_start,
109 &mnt->mnt_group_id);
110 if (!res)
111 mnt_group_start = mnt->mnt_group_id + 1;
112
113 return res;
114 }
115
116 /*
117 * Release a peer group ID
118 */
119 void mnt_release_group_id(struct mount *mnt)
120 {
121 int id = mnt->mnt_group_id;
122 ida_remove(&mnt_group_ida, id);
123 if (mnt_group_start > id)
124 mnt_group_start = id;
125 mnt->mnt_group_id = 0;
126 }
127
128 /*
129 * vfsmount lock must be held for read
130 */
131 static inline void mnt_add_count(struct mount *mnt, int n)
132 {
133 #ifdef CONFIG_SMP
134 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
135 #else
136 preempt_disable();
137 mnt->mnt_count += n;
138 preempt_enable();
139 #endif
140 }
141
142 /*
143 * vfsmount lock must be held for write
144 */
145 unsigned int mnt_get_count(struct mount *mnt)
146 {
147 #ifdef CONFIG_SMP
148 unsigned int count = 0;
149 int cpu;
150
151 for_each_possible_cpu(cpu) {
152 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
153 }
154
155 return count;
156 #else
157 return mnt->mnt_count;
158 #endif
159 }
160
161 static struct mount *alloc_vfsmnt(const char *name)
162 {
163 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
164 if (mnt) {
165 int err;
166
167 err = mnt_alloc_id(mnt);
168 if (err)
169 goto out_free_cache;
170
171 if (name) {
172 mnt->mnt_devname = kstrdup(name, GFP_KERNEL);
173 if (!mnt->mnt_devname)
174 goto out_free_id;
175 }
176
177 #ifdef CONFIG_SMP
178 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
179 if (!mnt->mnt_pcp)
180 goto out_free_devname;
181
182 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
183 #else
184 mnt->mnt_count = 1;
185 mnt->mnt_writers = 0;
186 #endif
187
188 INIT_LIST_HEAD(&mnt->mnt_hash);
189 INIT_LIST_HEAD(&mnt->mnt_child);
190 INIT_LIST_HEAD(&mnt->mnt_mounts);
191 INIT_LIST_HEAD(&mnt->mnt_list);
192 INIT_LIST_HEAD(&mnt->mnt_expire);
193 INIT_LIST_HEAD(&mnt->mnt_share);
194 INIT_LIST_HEAD(&mnt->mnt_slave_list);
195 INIT_LIST_HEAD(&mnt->mnt_slave);
196 #ifdef CONFIG_FSNOTIFY
197 INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
198 #endif
199 }
200 return mnt;
201
202 #ifdef CONFIG_SMP
203 out_free_devname:
204 kfree(mnt->mnt_devname);
205 #endif
206 out_free_id:
207 mnt_free_id(mnt);
208 out_free_cache:
209 kmem_cache_free(mnt_cache, mnt);
210 return NULL;
211 }
212
213 /*
214 * Most r/o checks on a fs are for operations that take
215 * discrete amounts of time, like a write() or unlink().
216 * We must keep track of when those operations start
217 * (for permission checks) and when they end, so that
218 * we can determine when writes are able to occur to
219 * a filesystem.
220 */
221 /*
222 * __mnt_is_readonly: check whether a mount is read-only
223 * @mnt: the mount to check for its write status
224 *
225 * This shouldn't be used directly ouside of the VFS.
226 * It does not guarantee that the filesystem will stay
227 * r/w, just that it is right *now*. This can not and
228 * should not be used in place of IS_RDONLY(inode).
229 * mnt_want/drop_write() will _keep_ the filesystem
230 * r/w.
231 */
232 int __mnt_is_readonly(struct vfsmount *mnt)
233 {
234 if (mnt->mnt_flags & MNT_READONLY)
235 return 1;
236 if (mnt->mnt_sb->s_flags & MS_RDONLY)
237 return 1;
238 return 0;
239 }
240 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
241
242 static inline void mnt_inc_writers(struct mount *mnt)
243 {
244 #ifdef CONFIG_SMP
245 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
246 #else
247 mnt->mnt_writers++;
248 #endif
249 }
250
251 static inline void mnt_dec_writers(struct mount *mnt)
252 {
253 #ifdef CONFIG_SMP
254 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
255 #else
256 mnt->mnt_writers--;
257 #endif
258 }
259
260 static unsigned int mnt_get_writers(struct mount *mnt)
261 {
262 #ifdef CONFIG_SMP
263 unsigned int count = 0;
264 int cpu;
265
266 for_each_possible_cpu(cpu) {
267 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
268 }
269
270 return count;
271 #else
272 return mnt->mnt_writers;
273 #endif
274 }
275
276 static int mnt_is_readonly(struct vfsmount *mnt)
277 {
278 if (mnt->mnt_sb->s_readonly_remount)
279 return 1;
280 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
281 smp_rmb();
282 return __mnt_is_readonly(mnt);
283 }
284
285 /*
286 * Most r/o checks on a fs are for operations that take
287 * discrete amounts of time, like a write() or unlink().
288 * We must keep track of when those operations start
289 * (for permission checks) and when they end, so that
290 * we can determine when writes are able to occur to
291 * a filesystem.
292 */
293 /**
294 * mnt_want_write - get write access to a mount
295 * @m: the mount on which to take a write
296 *
297 * This tells the low-level filesystem that a write is
298 * about to be performed to it, and makes sure that
299 * writes are allowed before returning success. When
300 * the write operation is finished, mnt_drop_write()
301 * must be called. This is effectively a refcount.
302 */
303 int mnt_want_write(struct vfsmount *m)
304 {
305 struct mount *mnt = real_mount(m);
306 int ret = 0;
307
308 preempt_disable();
309 mnt_inc_writers(mnt);
310 /*
311 * The store to mnt_inc_writers must be visible before we pass
312 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
313 * incremented count after it has set MNT_WRITE_HOLD.
314 */
315 smp_mb();
316 while (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
317 cpu_relax();
318 /*
319 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
320 * be set to match its requirements. So we must not load that until
321 * MNT_WRITE_HOLD is cleared.
322 */
323 smp_rmb();
324 if (mnt_is_readonly(m)) {
325 mnt_dec_writers(mnt);
326 ret = -EROFS;
327 }
328 preempt_enable();
329 return ret;
330 }
331 EXPORT_SYMBOL_GPL(mnt_want_write);
332
333 /**
334 * mnt_clone_write - get write access to a mount
335 * @mnt: the mount on which to take a write
336 *
337 * This is effectively like mnt_want_write, except
338 * it must only be used to take an extra write reference
339 * on a mountpoint that we already know has a write reference
340 * on it. This allows some optimisation.
341 *
342 * After finished, mnt_drop_write must be called as usual to
343 * drop the reference.
344 */
345 int mnt_clone_write(struct vfsmount *mnt)
346 {
347 /* superblock may be r/o */
348 if (__mnt_is_readonly(mnt))
349 return -EROFS;
350 preempt_disable();
351 mnt_inc_writers(real_mount(mnt));
352 preempt_enable();
353 return 0;
354 }
355 EXPORT_SYMBOL_GPL(mnt_clone_write);
356
357 /**
358 * mnt_want_write_file - get write access to a file's mount
359 * @file: the file who's mount on which to take a write
360 *
361 * This is like mnt_want_write, but it takes a file and can
362 * do some optimisations if the file is open for write already
363 */
364 int mnt_want_write_file(struct file *file)
365 {
366 struct inode *inode = file->f_dentry->d_inode;
367 if (!(file->f_mode & FMODE_WRITE) || special_file(inode->i_mode))
368 return mnt_want_write(file->f_path.mnt);
369 else
370 return mnt_clone_write(file->f_path.mnt);
371 }
372 EXPORT_SYMBOL_GPL(mnt_want_write_file);
373
374 /**
375 * mnt_drop_write - give up write access to a mount
376 * @mnt: the mount on which to give up write access
377 *
378 * Tells the low-level filesystem that we are done
379 * performing writes to it. Must be matched with
380 * mnt_want_write() call above.
381 */
382 void mnt_drop_write(struct vfsmount *mnt)
383 {
384 preempt_disable();
385 mnt_dec_writers(real_mount(mnt));
386 preempt_enable();
387 }
388 EXPORT_SYMBOL_GPL(mnt_drop_write);
389
390 void mnt_drop_write_file(struct file *file)
391 {
392 mnt_drop_write(file->f_path.mnt);
393 }
394 EXPORT_SYMBOL(mnt_drop_write_file);
395
396 static int mnt_make_readonly(struct mount *mnt)
397 {
398 int ret = 0;
399
400 br_write_lock(&vfsmount_lock);
401 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
402 /*
403 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
404 * should be visible before we do.
405 */
406 smp_mb();
407
408 /*
409 * With writers on hold, if this value is zero, then there are
410 * definitely no active writers (although held writers may subsequently
411 * increment the count, they'll have to wait, and decrement it after
412 * seeing MNT_READONLY).
413 *
414 * It is OK to have counter incremented on one CPU and decremented on
415 * another: the sum will add up correctly. The danger would be when we
416 * sum up each counter, if we read a counter before it is incremented,
417 * but then read another CPU's count which it has been subsequently
418 * decremented from -- we would see more decrements than we should.
419 * MNT_WRITE_HOLD protects against this scenario, because
420 * mnt_want_write first increments count, then smp_mb, then spins on
421 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
422 * we're counting up here.
423 */
424 if (mnt_get_writers(mnt) > 0)
425 ret = -EBUSY;
426 else
427 mnt->mnt.mnt_flags |= MNT_READONLY;
428 /*
429 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
430 * that become unheld will see MNT_READONLY.
431 */
432 smp_wmb();
433 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
434 br_write_unlock(&vfsmount_lock);
435 return ret;
436 }
437
438 static void __mnt_unmake_readonly(struct mount *mnt)
439 {
440 br_write_lock(&vfsmount_lock);
441 mnt->mnt.mnt_flags &= ~MNT_READONLY;
442 br_write_unlock(&vfsmount_lock);
443 }
444
445 int sb_prepare_remount_readonly(struct super_block *sb)
446 {
447 struct mount *mnt;
448 int err = 0;
449
450 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
451 if (atomic_long_read(&sb->s_remove_count))
452 return -EBUSY;
453
454 br_write_lock(&vfsmount_lock);
455 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
456 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
457 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
458 smp_mb();
459 if (mnt_get_writers(mnt) > 0) {
460 err = -EBUSY;
461 break;
462 }
463 }
464 }
465 if (!err && atomic_long_read(&sb->s_remove_count))
466 err = -EBUSY;
467
468 if (!err) {
469 sb->s_readonly_remount = 1;
470 smp_wmb();
471 }
472 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
473 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
474 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
475 }
476 br_write_unlock(&vfsmount_lock);
477
478 return err;
479 }
480
481 static void free_vfsmnt(struct mount *mnt)
482 {
483 kfree(mnt->mnt_devname);
484 mnt_free_id(mnt);
485 #ifdef CONFIG_SMP
486 free_percpu(mnt->mnt_pcp);
487 #endif
488 kmem_cache_free(mnt_cache, mnt);
489 }
490
491 /*
492 * find the first or last mount at @dentry on vfsmount @mnt depending on
493 * @dir. If @dir is set return the first mount else return the last mount.
494 * vfsmount_lock must be held for read or write.
495 */
496 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry,
497 int dir)
498 {
499 struct list_head *head = mount_hashtable + hash(mnt, dentry);
500 struct list_head *tmp = head;
501 struct mount *p, *found = NULL;
502
503 for (;;) {
504 tmp = dir ? tmp->next : tmp->prev;
505 p = NULL;
506 if (tmp == head)
507 break;
508 p = list_entry(tmp, struct mount, mnt_hash);
509 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry) {
510 found = p;
511 break;
512 }
513 }
514 return found;
515 }
516
517 /*
518 * lookup_mnt increments the ref count before returning
519 * the vfsmount struct.
520 */
521 struct vfsmount *lookup_mnt(struct path *path)
522 {
523 struct mount *child_mnt;
524
525 br_read_lock(&vfsmount_lock);
526 child_mnt = __lookup_mnt(path->mnt, path->dentry, 1);
527 if (child_mnt) {
528 mnt_add_count(child_mnt, 1);
529 br_read_unlock(&vfsmount_lock);
530 return &child_mnt->mnt;
531 } else {
532 br_read_unlock(&vfsmount_lock);
533 return NULL;
534 }
535 }
536
537 static inline int check_mnt(struct mount *mnt)
538 {
539 return mnt->mnt_ns == current->nsproxy->mnt_ns;
540 }
541
542 /*
543 * vfsmount lock must be held for write
544 */
545 static void touch_mnt_namespace(struct mnt_namespace *ns)
546 {
547 if (ns) {
548 ns->event = ++event;
549 wake_up_interruptible(&ns->poll);
550 }
551 }
552
553 /*
554 * vfsmount lock must be held for write
555 */
556 static void __touch_mnt_namespace(struct mnt_namespace *ns)
557 {
558 if (ns && ns->event != event) {
559 ns->event = event;
560 wake_up_interruptible(&ns->poll);
561 }
562 }
563
564 /*
565 * Clear dentry's mounted state if it has no remaining mounts.
566 * vfsmount_lock must be held for write.
567 */
568 static void dentry_reset_mounted(struct dentry *dentry)
569 {
570 unsigned u;
571
572 for (u = 0; u < HASH_SIZE; u++) {
573 struct mount *p;
574
575 list_for_each_entry(p, &mount_hashtable[u], mnt_hash) {
576 if (p->mnt_mountpoint == dentry)
577 return;
578 }
579 }
580 spin_lock(&dentry->d_lock);
581 dentry->d_flags &= ~DCACHE_MOUNTED;
582 spin_unlock(&dentry->d_lock);
583 }
584
585 /*
586 * vfsmount lock must be held for write
587 */
588 static void detach_mnt(struct mount *mnt, struct path *old_path)
589 {
590 old_path->dentry = mnt->mnt_mountpoint;
591 old_path->mnt = &mnt->mnt_parent->mnt;
592 mnt->mnt_parent = mnt;
593 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
594 list_del_init(&mnt->mnt_child);
595 list_del_init(&mnt->mnt_hash);
596 dentry_reset_mounted(old_path->dentry);
597 }
598
599 /*
600 * vfsmount lock must be held for write
601 */
602 void mnt_set_mountpoint(struct mount *mnt, struct dentry *dentry,
603 struct mount *child_mnt)
604 {
605 mnt_add_count(mnt, 1); /* essentially, that's mntget */
606 child_mnt->mnt_mountpoint = dget(dentry);
607 child_mnt->mnt_parent = mnt;
608 spin_lock(&dentry->d_lock);
609 dentry->d_flags |= DCACHE_MOUNTED;
610 spin_unlock(&dentry->d_lock);
611 }
612
613 /*
614 * vfsmount lock must be held for write
615 */
616 static void attach_mnt(struct mount *mnt, struct path *path)
617 {
618 mnt_set_mountpoint(real_mount(path->mnt), path->dentry, mnt);
619 list_add_tail(&mnt->mnt_hash, mount_hashtable +
620 hash(path->mnt, path->dentry));
621 list_add_tail(&mnt->mnt_child, &real_mount(path->mnt)->mnt_mounts);
622 }
623
624 static inline void __mnt_make_longterm(struct mount *mnt)
625 {
626 #ifdef CONFIG_SMP
627 atomic_inc(&mnt->mnt_longterm);
628 #endif
629 }
630
631 /* needs vfsmount lock for write */
632 static inline void __mnt_make_shortterm(struct mount *mnt)
633 {
634 #ifdef CONFIG_SMP
635 atomic_dec(&mnt->mnt_longterm);
636 #endif
637 }
638
639 /*
640 * vfsmount lock must be held for write
641 */
642 static void commit_tree(struct mount *mnt)
643 {
644 struct mount *parent = mnt->mnt_parent;
645 struct mount *m;
646 LIST_HEAD(head);
647 struct mnt_namespace *n = parent->mnt_ns;
648
649 BUG_ON(parent == mnt);
650
651 list_add_tail(&head, &mnt->mnt_list);
652 list_for_each_entry(m, &head, mnt_list) {
653 m->mnt_ns = n;
654 __mnt_make_longterm(m);
655 }
656
657 list_splice(&head, n->list.prev);
658
659 list_add_tail(&mnt->mnt_hash, mount_hashtable +
660 hash(&parent->mnt, mnt->mnt_mountpoint));
661 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
662 touch_mnt_namespace(n);
663 }
664
665 static struct mount *next_mnt(struct mount *p, struct mount *root)
666 {
667 struct list_head *next = p->mnt_mounts.next;
668 if (next == &p->mnt_mounts) {
669 while (1) {
670 if (p == root)
671 return NULL;
672 next = p->mnt_child.next;
673 if (next != &p->mnt_parent->mnt_mounts)
674 break;
675 p = p->mnt_parent;
676 }
677 }
678 return list_entry(next, struct mount, mnt_child);
679 }
680
681 static struct mount *skip_mnt_tree(struct mount *p)
682 {
683 struct list_head *prev = p->mnt_mounts.prev;
684 while (prev != &p->mnt_mounts) {
685 p = list_entry(prev, struct mount, mnt_child);
686 prev = p->mnt_mounts.prev;
687 }
688 return p;
689 }
690
691 struct vfsmount *
692 vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
693 {
694 struct mount *mnt;
695 struct dentry *root;
696
697 if (!type)
698 return ERR_PTR(-ENODEV);
699
700 mnt = alloc_vfsmnt(name);
701 if (!mnt)
702 return ERR_PTR(-ENOMEM);
703
704 if (flags & MS_KERNMOUNT)
705 mnt->mnt.mnt_flags = MNT_INTERNAL;
706
707 root = mount_fs(type, flags, name, data);
708 if (IS_ERR(root)) {
709 free_vfsmnt(mnt);
710 return ERR_CAST(root);
711 }
712
713 mnt->mnt.mnt_root = root;
714 mnt->mnt.mnt_sb = root->d_sb;
715 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
716 mnt->mnt_parent = mnt;
717 br_write_lock(&vfsmount_lock);
718 list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
719 br_write_unlock(&vfsmount_lock);
720 return &mnt->mnt;
721 }
722 EXPORT_SYMBOL_GPL(vfs_kern_mount);
723
724 static struct mount *clone_mnt(struct mount *old, struct dentry *root,
725 int flag)
726 {
727 struct super_block *sb = old->mnt.mnt_sb;
728 struct mount *mnt = alloc_vfsmnt(old->mnt_devname);
729
730 if (mnt) {
731 if (flag & (CL_SLAVE | CL_PRIVATE))
732 mnt->mnt_group_id = 0; /* not a peer of original */
733 else
734 mnt->mnt_group_id = old->mnt_group_id;
735
736 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
737 int err = mnt_alloc_group_id(mnt);
738 if (err)
739 goto out_free;
740 }
741
742 mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~MNT_WRITE_HOLD;
743 atomic_inc(&sb->s_active);
744 mnt->mnt.mnt_sb = sb;
745 mnt->mnt.mnt_root = dget(root);
746 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
747 mnt->mnt_parent = mnt;
748 br_write_lock(&vfsmount_lock);
749 list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
750 br_write_unlock(&vfsmount_lock);
751
752 if (flag & CL_SLAVE) {
753 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
754 mnt->mnt_master = old;
755 CLEAR_MNT_SHARED(mnt);
756 } else if (!(flag & CL_PRIVATE)) {
757 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
758 list_add(&mnt->mnt_share, &old->mnt_share);
759 if (IS_MNT_SLAVE(old))
760 list_add(&mnt->mnt_slave, &old->mnt_slave);
761 mnt->mnt_master = old->mnt_master;
762 }
763 if (flag & CL_MAKE_SHARED)
764 set_mnt_shared(mnt);
765
766 /* stick the duplicate mount on the same expiry list
767 * as the original if that was on one */
768 if (flag & CL_EXPIRE) {
769 if (!list_empty(&old->mnt_expire))
770 list_add(&mnt->mnt_expire, &old->mnt_expire);
771 }
772 }
773 return mnt;
774
775 out_free:
776 free_vfsmnt(mnt);
777 return NULL;
778 }
779
780 static inline void mntfree(struct mount *mnt)
781 {
782 struct vfsmount *m = &mnt->mnt;
783 struct super_block *sb = m->mnt_sb;
784
785 /*
786 * This probably indicates that somebody messed
787 * up a mnt_want/drop_write() pair. If this
788 * happens, the filesystem was probably unable
789 * to make r/w->r/o transitions.
790 */
791 /*
792 * The locking used to deal with mnt_count decrement provides barriers,
793 * so mnt_get_writers() below is safe.
794 */
795 WARN_ON(mnt_get_writers(mnt));
796 fsnotify_vfsmount_delete(m);
797 dput(m->mnt_root);
798 free_vfsmnt(mnt);
799 deactivate_super(sb);
800 }
801
802 static void mntput_no_expire(struct mount *mnt)
803 {
804 put_again:
805 #ifdef CONFIG_SMP
806 br_read_lock(&vfsmount_lock);
807 if (likely(atomic_read(&mnt->mnt_longterm))) {
808 mnt_add_count(mnt, -1);
809 br_read_unlock(&vfsmount_lock);
810 return;
811 }
812 br_read_unlock(&vfsmount_lock);
813
814 br_write_lock(&vfsmount_lock);
815 mnt_add_count(mnt, -1);
816 if (mnt_get_count(mnt)) {
817 br_write_unlock(&vfsmount_lock);
818 return;
819 }
820 #else
821 mnt_add_count(mnt, -1);
822 if (likely(mnt_get_count(mnt)))
823 return;
824 br_write_lock(&vfsmount_lock);
825 #endif
826 if (unlikely(mnt->mnt_pinned)) {
827 mnt_add_count(mnt, mnt->mnt_pinned + 1);
828 mnt->mnt_pinned = 0;
829 br_write_unlock(&vfsmount_lock);
830 acct_auto_close_mnt(&mnt->mnt);
831 goto put_again;
832 }
833
834 list_del(&mnt->mnt_instance);
835 br_write_unlock(&vfsmount_lock);
836 mntfree(mnt);
837 }
838
839 void mntput(struct vfsmount *mnt)
840 {
841 if (mnt) {
842 struct mount *m = real_mount(mnt);
843 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
844 if (unlikely(m->mnt_expiry_mark))
845 m->mnt_expiry_mark = 0;
846 mntput_no_expire(m);
847 }
848 }
849 EXPORT_SYMBOL(mntput);
850
851 struct vfsmount *mntget(struct vfsmount *mnt)
852 {
853 if (mnt)
854 mnt_add_count(real_mount(mnt), 1);
855 return mnt;
856 }
857 EXPORT_SYMBOL(mntget);
858
859 void mnt_pin(struct vfsmount *mnt)
860 {
861 br_write_lock(&vfsmount_lock);
862 real_mount(mnt)->mnt_pinned++;
863 br_write_unlock(&vfsmount_lock);
864 }
865 EXPORT_SYMBOL(mnt_pin);
866
867 void mnt_unpin(struct vfsmount *m)
868 {
869 struct mount *mnt = real_mount(m);
870 br_write_lock(&vfsmount_lock);
871 if (mnt->mnt_pinned) {
872 mnt_add_count(mnt, 1);
873 mnt->mnt_pinned--;
874 }
875 br_write_unlock(&vfsmount_lock);
876 }
877 EXPORT_SYMBOL(mnt_unpin);
878
879 static inline void mangle(struct seq_file *m, const char *s)
880 {
881 seq_escape(m, s, " \t\n\\");
882 }
883
884 /*
885 * Simple .show_options callback for filesystems which don't want to
886 * implement more complex mount option showing.
887 *
888 * See also save_mount_options().
889 */
890 int generic_show_options(struct seq_file *m, struct dentry *root)
891 {
892 const char *options;
893
894 rcu_read_lock();
895 options = rcu_dereference(root->d_sb->s_options);
896
897 if (options != NULL && options[0]) {
898 seq_putc(m, ',');
899 mangle(m, options);
900 }
901 rcu_read_unlock();
902
903 return 0;
904 }
905 EXPORT_SYMBOL(generic_show_options);
906
907 /*
908 * If filesystem uses generic_show_options(), this function should be
909 * called from the fill_super() callback.
910 *
911 * The .remount_fs callback usually needs to be handled in a special
912 * way, to make sure, that previous options are not overwritten if the
913 * remount fails.
914 *
915 * Also note, that if the filesystem's .remount_fs function doesn't
916 * reset all options to their default value, but changes only newly
917 * given options, then the displayed options will not reflect reality
918 * any more.
919 */
920 void save_mount_options(struct super_block *sb, char *options)
921 {
922 BUG_ON(sb->s_options);
923 rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
924 }
925 EXPORT_SYMBOL(save_mount_options);
926
927 void replace_mount_options(struct super_block *sb, char *options)
928 {
929 char *old = sb->s_options;
930 rcu_assign_pointer(sb->s_options, options);
931 if (old) {
932 synchronize_rcu();
933 kfree(old);
934 }
935 }
936 EXPORT_SYMBOL(replace_mount_options);
937
938 #ifdef CONFIG_PROC_FS
939 /* iterator; we want it to have access to namespace_sem, thus here... */
940 static void *m_start(struct seq_file *m, loff_t *pos)
941 {
942 struct proc_mounts *p = container_of(m, struct proc_mounts, m);
943
944 down_read(&namespace_sem);
945 return seq_list_start(&p->ns->list, *pos);
946 }
947
948 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
949 {
950 struct proc_mounts *p = container_of(m, struct proc_mounts, m);
951
952 return seq_list_next(v, &p->ns->list, pos);
953 }
954
955 static void m_stop(struct seq_file *m, void *v)
956 {
957 up_read(&namespace_sem);
958 }
959
960 static int m_show(struct seq_file *m, void *v)
961 {
962 struct proc_mounts *p = container_of(m, struct proc_mounts, m);
963 struct mount *r = list_entry(v, struct mount, mnt_list);
964 return p->show(m, &r->mnt);
965 }
966
967 const struct seq_operations mounts_op = {
968 .start = m_start,
969 .next = m_next,
970 .stop = m_stop,
971 .show = m_show,
972 };
973 #endif /* CONFIG_PROC_FS */
974
975 /**
976 * may_umount_tree - check if a mount tree is busy
977 * @mnt: root of mount tree
978 *
979 * This is called to check if a tree of mounts has any
980 * open files, pwds, chroots or sub mounts that are
981 * busy.
982 */
983 int may_umount_tree(struct vfsmount *m)
984 {
985 struct mount *mnt = real_mount(m);
986 int actual_refs = 0;
987 int minimum_refs = 0;
988 struct mount *p;
989 BUG_ON(!m);
990
991 /* write lock needed for mnt_get_count */
992 br_write_lock(&vfsmount_lock);
993 for (p = mnt; p; p = next_mnt(p, mnt)) {
994 actual_refs += mnt_get_count(p);
995 minimum_refs += 2;
996 }
997 br_write_unlock(&vfsmount_lock);
998
999 if (actual_refs > minimum_refs)
1000 return 0;
1001
1002 return 1;
1003 }
1004
1005 EXPORT_SYMBOL(may_umount_tree);
1006
1007 /**
1008 * may_umount - check if a mount point is busy
1009 * @mnt: root of mount
1010 *
1011 * This is called to check if a mount point has any
1012 * open files, pwds, chroots or sub mounts. If the
1013 * mount has sub mounts this will return busy
1014 * regardless of whether the sub mounts are busy.
1015 *
1016 * Doesn't take quota and stuff into account. IOW, in some cases it will
1017 * give false negatives. The main reason why it's here is that we need
1018 * a non-destructive way to look for easily umountable filesystems.
1019 */
1020 int may_umount(struct vfsmount *mnt)
1021 {
1022 int ret = 1;
1023 down_read(&namespace_sem);
1024 br_write_lock(&vfsmount_lock);
1025 if (propagate_mount_busy(real_mount(mnt), 2))
1026 ret = 0;
1027 br_write_unlock(&vfsmount_lock);
1028 up_read(&namespace_sem);
1029 return ret;
1030 }
1031
1032 EXPORT_SYMBOL(may_umount);
1033
1034 void release_mounts(struct list_head *head)
1035 {
1036 struct mount *mnt;
1037 while (!list_empty(head)) {
1038 mnt = list_first_entry(head, struct mount, mnt_hash);
1039 list_del_init(&mnt->mnt_hash);
1040 if (mnt_has_parent(mnt)) {
1041 struct dentry *dentry;
1042 struct mount *m;
1043
1044 br_write_lock(&vfsmount_lock);
1045 dentry = mnt->mnt_mountpoint;
1046 m = mnt->mnt_parent;
1047 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1048 mnt->mnt_parent = mnt;
1049 m->mnt_ghosts--;
1050 br_write_unlock(&vfsmount_lock);
1051 dput(dentry);
1052 mntput(&m->mnt);
1053 }
1054 mntput(&mnt->mnt);
1055 }
1056 }
1057
1058 /*
1059 * vfsmount lock must be held for write
1060 * namespace_sem must be held for write
1061 */
1062 void umount_tree(struct mount *mnt, int propagate, struct list_head *kill)
1063 {
1064 LIST_HEAD(tmp_list);
1065 struct mount *p;
1066
1067 for (p = mnt; p; p = next_mnt(p, mnt))
1068 list_move(&p->mnt_hash, &tmp_list);
1069
1070 if (propagate)
1071 propagate_umount(&tmp_list);
1072
1073 list_for_each_entry(p, &tmp_list, mnt_hash) {
1074 list_del_init(&p->mnt_expire);
1075 list_del_init(&p->mnt_list);
1076 __touch_mnt_namespace(p->mnt_ns);
1077 p->mnt_ns = NULL;
1078 __mnt_make_shortterm(p);
1079 list_del_init(&p->mnt_child);
1080 if (mnt_has_parent(p)) {
1081 p->mnt_parent->mnt_ghosts++;
1082 dentry_reset_mounted(p->mnt_mountpoint);
1083 }
1084 change_mnt_propagation(p, MS_PRIVATE);
1085 }
1086 list_splice(&tmp_list, kill);
1087 }
1088
1089 static void shrink_submounts(struct mount *mnt, struct list_head *umounts);
1090
1091 static int do_umount(struct mount *mnt, int flags)
1092 {
1093 struct super_block *sb = mnt->mnt.mnt_sb;
1094 int retval;
1095 LIST_HEAD(umount_list);
1096
1097 retval = security_sb_umount(&mnt->mnt, flags);
1098 if (retval)
1099 return retval;
1100
1101 /*
1102 * Allow userspace to request a mountpoint be expired rather than
1103 * unmounting unconditionally. Unmount only happens if:
1104 * (1) the mark is already set (the mark is cleared by mntput())
1105 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1106 */
1107 if (flags & MNT_EXPIRE) {
1108 if (&mnt->mnt == current->fs->root.mnt ||
1109 flags & (MNT_FORCE | MNT_DETACH))
1110 return -EINVAL;
1111
1112 /*
1113 * probably don't strictly need the lock here if we examined
1114 * all race cases, but it's a slowpath.
1115 */
1116 br_write_lock(&vfsmount_lock);
1117 if (mnt_get_count(mnt) != 2) {
1118 br_write_unlock(&vfsmount_lock);
1119 return -EBUSY;
1120 }
1121 br_write_unlock(&vfsmount_lock);
1122
1123 if (!xchg(&mnt->mnt_expiry_mark, 1))
1124 return -EAGAIN;
1125 }
1126
1127 /*
1128 * If we may have to abort operations to get out of this
1129 * mount, and they will themselves hold resources we must
1130 * allow the fs to do things. In the Unix tradition of
1131 * 'Gee thats tricky lets do it in userspace' the umount_begin
1132 * might fail to complete on the first run through as other tasks
1133 * must return, and the like. Thats for the mount program to worry
1134 * about for the moment.
1135 */
1136
1137 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1138 sb->s_op->umount_begin(sb);
1139 }
1140
1141 /*
1142 * No sense to grab the lock for this test, but test itself looks
1143 * somewhat bogus. Suggestions for better replacement?
1144 * Ho-hum... In principle, we might treat that as umount + switch
1145 * to rootfs. GC would eventually take care of the old vfsmount.
1146 * Actually it makes sense, especially if rootfs would contain a
1147 * /reboot - static binary that would close all descriptors and
1148 * call reboot(9). Then init(8) could umount root and exec /reboot.
1149 */
1150 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1151 /*
1152 * Special case for "unmounting" root ...
1153 * we just try to remount it readonly.
1154 */
1155 down_write(&sb->s_umount);
1156 if (!(sb->s_flags & MS_RDONLY))
1157 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1158 up_write(&sb->s_umount);
1159 return retval;
1160 }
1161
1162 down_write(&namespace_sem);
1163 br_write_lock(&vfsmount_lock);
1164 event++;
1165
1166 if (!(flags & MNT_DETACH))
1167 shrink_submounts(mnt, &umount_list);
1168
1169 retval = -EBUSY;
1170 if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) {
1171 if (!list_empty(&mnt->mnt_list))
1172 umount_tree(mnt, 1, &umount_list);
1173 retval = 0;
1174 }
1175 br_write_unlock(&vfsmount_lock);
1176 up_write(&namespace_sem);
1177 release_mounts(&umount_list);
1178 return retval;
1179 }
1180
1181 /*
1182 * Now umount can handle mount points as well as block devices.
1183 * This is important for filesystems which use unnamed block devices.
1184 *
1185 * We now support a flag for forced unmount like the other 'big iron'
1186 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1187 */
1188
1189 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1190 {
1191 struct path path;
1192 struct mount *mnt;
1193 int retval;
1194 int lookup_flags = 0;
1195
1196 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1197 return -EINVAL;
1198
1199 if (!(flags & UMOUNT_NOFOLLOW))
1200 lookup_flags |= LOOKUP_FOLLOW;
1201
1202 retval = user_path_at(AT_FDCWD, name, lookup_flags, &path);
1203 if (retval)
1204 goto out;
1205 mnt = real_mount(path.mnt);
1206 retval = -EINVAL;
1207 if (path.dentry != path.mnt->mnt_root)
1208 goto dput_and_out;
1209 if (!check_mnt(mnt))
1210 goto dput_and_out;
1211
1212 retval = -EPERM;
1213 if (!capable(CAP_SYS_ADMIN))
1214 goto dput_and_out;
1215
1216 retval = do_umount(mnt, flags);
1217 dput_and_out:
1218 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
1219 dput(path.dentry);
1220 mntput_no_expire(mnt);
1221 out:
1222 return retval;
1223 }
1224
1225 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1226
1227 /*
1228 * The 2.0 compatible umount. No flags.
1229 */
1230 SYSCALL_DEFINE1(oldumount, char __user *, name)
1231 {
1232 return sys_umount(name, 0);
1233 }
1234
1235 #endif
1236
1237 static int mount_is_safe(struct path *path)
1238 {
1239 if (capable(CAP_SYS_ADMIN))
1240 return 0;
1241 return -EPERM;
1242 #ifdef notyet
1243 if (S_ISLNK(path->dentry->d_inode->i_mode))
1244 return -EPERM;
1245 if (path->dentry->d_inode->i_mode & S_ISVTX) {
1246 if (current_uid() != path->dentry->d_inode->i_uid)
1247 return -EPERM;
1248 }
1249 if (inode_permission(path->dentry->d_inode, MAY_WRITE))
1250 return -EPERM;
1251 return 0;
1252 #endif
1253 }
1254
1255 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
1256 int flag)
1257 {
1258 struct mount *res, *p, *q, *r;
1259 struct path path;
1260
1261 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(mnt))
1262 return NULL;
1263
1264 res = q = clone_mnt(mnt, dentry, flag);
1265 if (!q)
1266 goto Enomem;
1267 q->mnt_mountpoint = mnt->mnt_mountpoint;
1268
1269 p = mnt;
1270 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1271 struct mount *s;
1272 if (!is_subdir(r->mnt_mountpoint, dentry))
1273 continue;
1274
1275 for (s = r; s; s = next_mnt(s, r)) {
1276 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(s)) {
1277 s = skip_mnt_tree(s);
1278 continue;
1279 }
1280 while (p != s->mnt_parent) {
1281 p = p->mnt_parent;
1282 q = q->mnt_parent;
1283 }
1284 p = s;
1285 path.mnt = &q->mnt;
1286 path.dentry = p->mnt_mountpoint;
1287 q = clone_mnt(p, p->mnt.mnt_root, flag);
1288 if (!q)
1289 goto Enomem;
1290 br_write_lock(&vfsmount_lock);
1291 list_add_tail(&q->mnt_list, &res->mnt_list);
1292 attach_mnt(q, &path);
1293 br_write_unlock(&vfsmount_lock);
1294 }
1295 }
1296 return res;
1297 Enomem:
1298 if (res) {
1299 LIST_HEAD(umount_list);
1300 br_write_lock(&vfsmount_lock);
1301 umount_tree(res, 0, &umount_list);
1302 br_write_unlock(&vfsmount_lock);
1303 release_mounts(&umount_list);
1304 }
1305 return NULL;
1306 }
1307
1308 struct vfsmount *collect_mounts(struct path *path)
1309 {
1310 struct mount *tree;
1311 down_write(&namespace_sem);
1312 tree = copy_tree(real_mount(path->mnt), path->dentry,
1313 CL_COPY_ALL | CL_PRIVATE);
1314 up_write(&namespace_sem);
1315 return tree ? &tree->mnt : NULL;
1316 }
1317
1318 void drop_collected_mounts(struct vfsmount *mnt)
1319 {
1320 LIST_HEAD(umount_list);
1321 down_write(&namespace_sem);
1322 br_write_lock(&vfsmount_lock);
1323 umount_tree(real_mount(mnt), 0, &umount_list);
1324 br_write_unlock(&vfsmount_lock);
1325 up_write(&namespace_sem);
1326 release_mounts(&umount_list);
1327 }
1328
1329 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1330 struct vfsmount *root)
1331 {
1332 struct mount *mnt;
1333 int res = f(root, arg);
1334 if (res)
1335 return res;
1336 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1337 res = f(&mnt->mnt, arg);
1338 if (res)
1339 return res;
1340 }
1341 return 0;
1342 }
1343
1344 static void cleanup_group_ids(struct mount *mnt, struct mount *end)
1345 {
1346 struct mount *p;
1347
1348 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1349 if (p->mnt_group_id && !IS_MNT_SHARED(p))
1350 mnt_release_group_id(p);
1351 }
1352 }
1353
1354 static int invent_group_ids(struct mount *mnt, bool recurse)
1355 {
1356 struct mount *p;
1357
1358 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1359 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1360 int err = mnt_alloc_group_id(p);
1361 if (err) {
1362 cleanup_group_ids(mnt, p);
1363 return err;
1364 }
1365 }
1366 }
1367
1368 return 0;
1369 }
1370
1371 /*
1372 * @source_mnt : mount tree to be attached
1373 * @nd : place the mount tree @source_mnt is attached
1374 * @parent_nd : if non-null, detach the source_mnt from its parent and
1375 * store the parent mount and mountpoint dentry.
1376 * (done when source_mnt is moved)
1377 *
1378 * NOTE: in the table below explains the semantics when a source mount
1379 * of a given type is attached to a destination mount of a given type.
1380 * ---------------------------------------------------------------------------
1381 * | BIND MOUNT OPERATION |
1382 * |**************************************************************************
1383 * | source-->| shared | private | slave | unbindable |
1384 * | dest | | | | |
1385 * | | | | | | |
1386 * | v | | | | |
1387 * |**************************************************************************
1388 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1389 * | | | | | |
1390 * |non-shared| shared (+) | private | slave (*) | invalid |
1391 * ***************************************************************************
1392 * A bind operation clones the source mount and mounts the clone on the
1393 * destination mount.
1394 *
1395 * (++) the cloned mount is propagated to all the mounts in the propagation
1396 * tree of the destination mount and the cloned mount is added to
1397 * the peer group of the source mount.
1398 * (+) the cloned mount is created under the destination mount and is marked
1399 * as shared. The cloned mount is added to the peer group of the source
1400 * mount.
1401 * (+++) the mount is propagated to all the mounts in the propagation tree
1402 * of the destination mount and the cloned mount is made slave
1403 * of the same master as that of the source mount. The cloned mount
1404 * is marked as 'shared and slave'.
1405 * (*) the cloned mount is made a slave of the same master as that of the
1406 * source mount.
1407 *
1408 * ---------------------------------------------------------------------------
1409 * | MOVE MOUNT OPERATION |
1410 * |**************************************************************************
1411 * | source-->| shared | private | slave | unbindable |
1412 * | dest | | | | |
1413 * | | | | | | |
1414 * | v | | | | |
1415 * |**************************************************************************
1416 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1417 * | | | | | |
1418 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1419 * ***************************************************************************
1420 *
1421 * (+) the mount is moved to the destination. And is then propagated to
1422 * all the mounts in the propagation tree of the destination mount.
1423 * (+*) the mount is moved to the destination.
1424 * (+++) the mount is moved to the destination and is then propagated to
1425 * all the mounts belonging to the destination mount's propagation tree.
1426 * the mount is marked as 'shared and slave'.
1427 * (*) the mount continues to be a slave at the new location.
1428 *
1429 * if the source mount is a tree, the operations explained above is
1430 * applied to each mount in the tree.
1431 * Must be called without spinlocks held, since this function can sleep
1432 * in allocations.
1433 */
1434 static int attach_recursive_mnt(struct mount *source_mnt,
1435 struct path *path, struct path *parent_path)
1436 {
1437 LIST_HEAD(tree_list);
1438 struct mount *dest_mnt = real_mount(path->mnt);
1439 struct dentry *dest_dentry = path->dentry;
1440 struct mount *child, *p;
1441 int err;
1442
1443 if (IS_MNT_SHARED(dest_mnt)) {
1444 err = invent_group_ids(source_mnt, true);
1445 if (err)
1446 goto out;
1447 }
1448 err = propagate_mnt(dest_mnt, dest_dentry, source_mnt, &tree_list);
1449 if (err)
1450 goto out_cleanup_ids;
1451
1452 br_write_lock(&vfsmount_lock);
1453
1454 if (IS_MNT_SHARED(dest_mnt)) {
1455 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
1456 set_mnt_shared(p);
1457 }
1458 if (parent_path) {
1459 detach_mnt(source_mnt, parent_path);
1460 attach_mnt(source_mnt, path);
1461 touch_mnt_namespace(source_mnt->mnt_ns);
1462 } else {
1463 mnt_set_mountpoint(dest_mnt, dest_dentry, source_mnt);
1464 commit_tree(source_mnt);
1465 }
1466
1467 list_for_each_entry_safe(child, p, &tree_list, mnt_hash) {
1468 list_del_init(&child->mnt_hash);
1469 commit_tree(child);
1470 }
1471 br_write_unlock(&vfsmount_lock);
1472
1473 return 0;
1474
1475 out_cleanup_ids:
1476 if (IS_MNT_SHARED(dest_mnt))
1477 cleanup_group_ids(source_mnt, NULL);
1478 out:
1479 return err;
1480 }
1481
1482 static int lock_mount(struct path *path)
1483 {
1484 struct vfsmount *mnt;
1485 retry:
1486 mutex_lock(&path->dentry->d_inode->i_mutex);
1487 if (unlikely(cant_mount(path->dentry))) {
1488 mutex_unlock(&path->dentry->d_inode->i_mutex);
1489 return -ENOENT;
1490 }
1491 down_write(&namespace_sem);
1492 mnt = lookup_mnt(path);
1493 if (likely(!mnt))
1494 return 0;
1495 up_write(&namespace_sem);
1496 mutex_unlock(&path->dentry->d_inode->i_mutex);
1497 path_put(path);
1498 path->mnt = mnt;
1499 path->dentry = dget(mnt->mnt_root);
1500 goto retry;
1501 }
1502
1503 static void unlock_mount(struct path *path)
1504 {
1505 up_write(&namespace_sem);
1506 mutex_unlock(&path->dentry->d_inode->i_mutex);
1507 }
1508
1509 static int graft_tree(struct mount *mnt, struct path *path)
1510 {
1511 if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER)
1512 return -EINVAL;
1513
1514 if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1515 S_ISDIR(mnt->mnt.mnt_root->d_inode->i_mode))
1516 return -ENOTDIR;
1517
1518 if (d_unlinked(path->dentry))
1519 return -ENOENT;
1520
1521 return attach_recursive_mnt(mnt, path, NULL);
1522 }
1523
1524 /*
1525 * Sanity check the flags to change_mnt_propagation.
1526 */
1527
1528 static int flags_to_propagation_type(int flags)
1529 {
1530 int type = flags & ~(MS_REC | MS_SILENT);
1531
1532 /* Fail if any non-propagation flags are set */
1533 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
1534 return 0;
1535 /* Only one propagation flag should be set */
1536 if (!is_power_of_2(type))
1537 return 0;
1538 return type;
1539 }
1540
1541 /*
1542 * recursively change the type of the mountpoint.
1543 */
1544 static int do_change_type(struct path *path, int flag)
1545 {
1546 struct mount *m;
1547 struct mount *mnt = real_mount(path->mnt);
1548 int recurse = flag & MS_REC;
1549 int type;
1550 int err = 0;
1551
1552 if (!capable(CAP_SYS_ADMIN))
1553 return -EPERM;
1554
1555 if (path->dentry != path->mnt->mnt_root)
1556 return -EINVAL;
1557
1558 type = flags_to_propagation_type(flag);
1559 if (!type)
1560 return -EINVAL;
1561
1562 down_write(&namespace_sem);
1563 if (type == MS_SHARED) {
1564 err = invent_group_ids(mnt, recurse);
1565 if (err)
1566 goto out_unlock;
1567 }
1568
1569 br_write_lock(&vfsmount_lock);
1570 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
1571 change_mnt_propagation(m, type);
1572 br_write_unlock(&vfsmount_lock);
1573
1574 out_unlock:
1575 up_write(&namespace_sem);
1576 return err;
1577 }
1578
1579 /*
1580 * do loopback mount.
1581 */
1582 static int do_loopback(struct path *path, char *old_name,
1583 int recurse)
1584 {
1585 LIST_HEAD(umount_list);
1586 struct path old_path;
1587 struct mount *mnt = NULL, *old;
1588 int err = mount_is_safe(path);
1589 if (err)
1590 return err;
1591 if (!old_name || !*old_name)
1592 return -EINVAL;
1593 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
1594 if (err)
1595 return err;
1596
1597 err = lock_mount(path);
1598 if (err)
1599 goto out;
1600
1601 old = real_mount(old_path.mnt);
1602
1603 err = -EINVAL;
1604 if (IS_MNT_UNBINDABLE(old))
1605 goto out2;
1606
1607 if (!check_mnt(real_mount(path->mnt)) || !check_mnt(old))
1608 goto out2;
1609
1610 err = -ENOMEM;
1611 if (recurse)
1612 mnt = copy_tree(old, old_path.dentry, 0);
1613 else
1614 mnt = clone_mnt(old, old_path.dentry, 0);
1615
1616 if (!mnt)
1617 goto out2;
1618
1619 err = graft_tree(mnt, path);
1620 if (err) {
1621 br_write_lock(&vfsmount_lock);
1622 umount_tree(mnt, 0, &umount_list);
1623 br_write_unlock(&vfsmount_lock);
1624 }
1625 out2:
1626 unlock_mount(path);
1627 release_mounts(&umount_list);
1628 out:
1629 path_put(&old_path);
1630 return err;
1631 }
1632
1633 static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
1634 {
1635 int error = 0;
1636 int readonly_request = 0;
1637
1638 if (ms_flags & MS_RDONLY)
1639 readonly_request = 1;
1640 if (readonly_request == __mnt_is_readonly(mnt))
1641 return 0;
1642
1643 if (readonly_request)
1644 error = mnt_make_readonly(real_mount(mnt));
1645 else
1646 __mnt_unmake_readonly(real_mount(mnt));
1647 return error;
1648 }
1649
1650 /*
1651 * change filesystem flags. dir should be a physical root of filesystem.
1652 * If you've mounted a non-root directory somewhere and want to do remount
1653 * on it - tough luck.
1654 */
1655 static int do_remount(struct path *path, int flags, int mnt_flags,
1656 void *data)
1657 {
1658 int err;
1659 struct super_block *sb = path->mnt->mnt_sb;
1660 struct mount *mnt = real_mount(path->mnt);
1661
1662 if (!capable(CAP_SYS_ADMIN))
1663 return -EPERM;
1664
1665 if (!check_mnt(mnt))
1666 return -EINVAL;
1667
1668 if (path->dentry != path->mnt->mnt_root)
1669 return -EINVAL;
1670
1671 err = security_sb_remount(sb, data);
1672 if (err)
1673 return err;
1674
1675 down_write(&sb->s_umount);
1676 if (flags & MS_BIND)
1677 err = change_mount_flags(path->mnt, flags);
1678 else
1679 err = do_remount_sb(sb, flags, data, 0);
1680 if (!err) {
1681 br_write_lock(&vfsmount_lock);
1682 mnt_flags |= mnt->mnt.mnt_flags & MNT_PROPAGATION_MASK;
1683 mnt->mnt.mnt_flags = mnt_flags;
1684 br_write_unlock(&vfsmount_lock);
1685 }
1686 up_write(&sb->s_umount);
1687 if (!err) {
1688 br_write_lock(&vfsmount_lock);
1689 touch_mnt_namespace(mnt->mnt_ns);
1690 br_write_unlock(&vfsmount_lock);
1691 }
1692 return err;
1693 }
1694
1695 static inline int tree_contains_unbindable(struct mount *mnt)
1696 {
1697 struct mount *p;
1698 for (p = mnt; p; p = next_mnt(p, mnt)) {
1699 if (IS_MNT_UNBINDABLE(p))
1700 return 1;
1701 }
1702 return 0;
1703 }
1704
1705 static int do_move_mount(struct path *path, char *old_name)
1706 {
1707 struct path old_path, parent_path;
1708 struct mount *p;
1709 struct mount *old;
1710 int err = 0;
1711 if (!capable(CAP_SYS_ADMIN))
1712 return -EPERM;
1713 if (!old_name || !*old_name)
1714 return -EINVAL;
1715 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
1716 if (err)
1717 return err;
1718
1719 err = lock_mount(path);
1720 if (err < 0)
1721 goto out;
1722
1723 old = real_mount(old_path.mnt);
1724 p = real_mount(path->mnt);
1725
1726 err = -EINVAL;
1727 if (!check_mnt(p) || !check_mnt(old))
1728 goto out1;
1729
1730 if (d_unlinked(path->dentry))
1731 goto out1;
1732
1733 err = -EINVAL;
1734 if (old_path.dentry != old_path.mnt->mnt_root)
1735 goto out1;
1736
1737 if (!mnt_has_parent(old))
1738 goto out1;
1739
1740 if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1741 S_ISDIR(old_path.dentry->d_inode->i_mode))
1742 goto out1;
1743 /*
1744 * Don't move a mount residing in a shared parent.
1745 */
1746 if (IS_MNT_SHARED(old->mnt_parent))
1747 goto out1;
1748 /*
1749 * Don't move a mount tree containing unbindable mounts to a destination
1750 * mount which is shared.
1751 */
1752 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
1753 goto out1;
1754 err = -ELOOP;
1755 for (; mnt_has_parent(p); p = p->mnt_parent)
1756 if (p == old)
1757 goto out1;
1758
1759 err = attach_recursive_mnt(old, path, &parent_path);
1760 if (err)
1761 goto out1;
1762
1763 /* if the mount is moved, it should no longer be expire
1764 * automatically */
1765 list_del_init(&old->mnt_expire);
1766 out1:
1767 unlock_mount(path);
1768 out:
1769 if (!err)
1770 path_put(&parent_path);
1771 path_put(&old_path);
1772 return err;
1773 }
1774
1775 static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
1776 {
1777 int err;
1778 const char *subtype = strchr(fstype, '.');
1779 if (subtype) {
1780 subtype++;
1781 err = -EINVAL;
1782 if (!subtype[0])
1783 goto err;
1784 } else
1785 subtype = "";
1786
1787 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
1788 err = -ENOMEM;
1789 if (!mnt->mnt_sb->s_subtype)
1790 goto err;
1791 return mnt;
1792
1793 err:
1794 mntput(mnt);
1795 return ERR_PTR(err);
1796 }
1797
1798 static struct vfsmount *
1799 do_kern_mount(const char *fstype, int flags, const char *name, void *data)
1800 {
1801 struct file_system_type *type = get_fs_type(fstype);
1802 struct vfsmount *mnt;
1803 if (!type)
1804 return ERR_PTR(-ENODEV);
1805 mnt = vfs_kern_mount(type, flags, name, data);
1806 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
1807 !mnt->mnt_sb->s_subtype)
1808 mnt = fs_set_subtype(mnt, fstype);
1809 put_filesystem(type);
1810 return mnt;
1811 }
1812
1813 /*
1814 * add a mount into a namespace's mount tree
1815 */
1816 static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
1817 {
1818 int err;
1819
1820 mnt_flags &= ~(MNT_SHARED | MNT_WRITE_HOLD | MNT_INTERNAL);
1821
1822 err = lock_mount(path);
1823 if (err)
1824 return err;
1825
1826 err = -EINVAL;
1827 if (!(mnt_flags & MNT_SHRINKABLE) && !check_mnt(real_mount(path->mnt)))
1828 goto unlock;
1829
1830 /* Refuse the same filesystem on the same mount point */
1831 err = -EBUSY;
1832 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
1833 path->mnt->mnt_root == path->dentry)
1834 goto unlock;
1835
1836 err = -EINVAL;
1837 if (S_ISLNK(newmnt->mnt.mnt_root->d_inode->i_mode))
1838 goto unlock;
1839
1840 newmnt->mnt.mnt_flags = mnt_flags;
1841 err = graft_tree(newmnt, path);
1842
1843 unlock:
1844 unlock_mount(path);
1845 return err;
1846 }
1847
1848 /*
1849 * create a new mount for userspace and request it to be added into the
1850 * namespace's tree
1851 */
1852 static int do_new_mount(struct path *path, char *type, int flags,
1853 int mnt_flags, char *name, void *data)
1854 {
1855 struct vfsmount *mnt;
1856 int err;
1857
1858 if (!type)
1859 return -EINVAL;
1860
1861 /* we need capabilities... */
1862 if (!capable(CAP_SYS_ADMIN))
1863 return -EPERM;
1864
1865 mnt = do_kern_mount(type, flags, name, data);
1866 if (IS_ERR(mnt))
1867 return PTR_ERR(mnt);
1868
1869 err = do_add_mount(real_mount(mnt), path, mnt_flags);
1870 if (err)
1871 mntput(mnt);
1872 return err;
1873 }
1874
1875 int finish_automount(struct vfsmount *m, struct path *path)
1876 {
1877 struct mount *mnt = real_mount(m);
1878 int err;
1879 /* The new mount record should have at least 2 refs to prevent it being
1880 * expired before we get a chance to add it
1881 */
1882 BUG_ON(mnt_get_count(mnt) < 2);
1883
1884 if (m->mnt_sb == path->mnt->mnt_sb &&
1885 m->mnt_root == path->dentry) {
1886 err = -ELOOP;
1887 goto fail;
1888 }
1889
1890 err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
1891 if (!err)
1892 return 0;
1893 fail:
1894 /* remove m from any expiration list it may be on */
1895 if (!list_empty(&mnt->mnt_expire)) {
1896 down_write(&namespace_sem);
1897 br_write_lock(&vfsmount_lock);
1898 list_del_init(&mnt->mnt_expire);
1899 br_write_unlock(&vfsmount_lock);
1900 up_write(&namespace_sem);
1901 }
1902 mntput(m);
1903 mntput(m);
1904 return err;
1905 }
1906
1907 /**
1908 * mnt_set_expiry - Put a mount on an expiration list
1909 * @mnt: The mount to list.
1910 * @expiry_list: The list to add the mount to.
1911 */
1912 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
1913 {
1914 down_write(&namespace_sem);
1915 br_write_lock(&vfsmount_lock);
1916
1917 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
1918
1919 br_write_unlock(&vfsmount_lock);
1920 up_write(&namespace_sem);
1921 }
1922 EXPORT_SYMBOL(mnt_set_expiry);
1923
1924 /*
1925 * process a list of expirable mountpoints with the intent of discarding any
1926 * mountpoints that aren't in use and haven't been touched since last we came
1927 * here
1928 */
1929 void mark_mounts_for_expiry(struct list_head *mounts)
1930 {
1931 struct mount *mnt, *next;
1932 LIST_HEAD(graveyard);
1933 LIST_HEAD(umounts);
1934
1935 if (list_empty(mounts))
1936 return;
1937
1938 down_write(&namespace_sem);
1939 br_write_lock(&vfsmount_lock);
1940
1941 /* extract from the expiration list every vfsmount that matches the
1942 * following criteria:
1943 * - only referenced by its parent vfsmount
1944 * - still marked for expiry (marked on the last call here; marks are
1945 * cleared by mntput())
1946 */
1947 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
1948 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
1949 propagate_mount_busy(mnt, 1))
1950 continue;
1951 list_move(&mnt->mnt_expire, &graveyard);
1952 }
1953 while (!list_empty(&graveyard)) {
1954 mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
1955 touch_mnt_namespace(mnt->mnt_ns);
1956 umount_tree(mnt, 1, &umounts);
1957 }
1958 br_write_unlock(&vfsmount_lock);
1959 up_write(&namespace_sem);
1960
1961 release_mounts(&umounts);
1962 }
1963
1964 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
1965
1966 /*
1967 * Ripoff of 'select_parent()'
1968 *
1969 * search the list of submounts for a given mountpoint, and move any
1970 * shrinkable submounts to the 'graveyard' list.
1971 */
1972 static int select_submounts(struct mount *parent, struct list_head *graveyard)
1973 {
1974 struct mount *this_parent = parent;
1975 struct list_head *next;
1976 int found = 0;
1977
1978 repeat:
1979 next = this_parent->mnt_mounts.next;
1980 resume:
1981 while (next != &this_parent->mnt_mounts) {
1982 struct list_head *tmp = next;
1983 struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
1984
1985 next = tmp->next;
1986 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
1987 continue;
1988 /*
1989 * Descend a level if the d_mounts list is non-empty.
1990 */
1991 if (!list_empty(&mnt->mnt_mounts)) {
1992 this_parent = mnt;
1993 goto repeat;
1994 }
1995
1996 if (!propagate_mount_busy(mnt, 1)) {
1997 list_move_tail(&mnt->mnt_expire, graveyard);
1998 found++;
1999 }
2000 }
2001 /*
2002 * All done at this level ... ascend and resume the search
2003 */
2004 if (this_parent != parent) {
2005 next = this_parent->mnt_child.next;
2006 this_parent = this_parent->mnt_parent;
2007 goto resume;
2008 }
2009 return found;
2010 }
2011
2012 /*
2013 * process a list of expirable mountpoints with the intent of discarding any
2014 * submounts of a specific parent mountpoint
2015 *
2016 * vfsmount_lock must be held for write
2017 */
2018 static void shrink_submounts(struct mount *mnt, struct list_head *umounts)
2019 {
2020 LIST_HEAD(graveyard);
2021 struct mount *m;
2022
2023 /* extract submounts of 'mountpoint' from the expiration list */
2024 while (select_submounts(mnt, &graveyard)) {
2025 while (!list_empty(&graveyard)) {
2026 m = list_first_entry(&graveyard, struct mount,
2027 mnt_expire);
2028 touch_mnt_namespace(m->mnt_ns);
2029 umount_tree(m, 1, umounts);
2030 }
2031 }
2032 }
2033
2034 /*
2035 * Some copy_from_user() implementations do not return the exact number of
2036 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
2037 * Note that this function differs from copy_from_user() in that it will oops
2038 * on bad values of `to', rather than returning a short copy.
2039 */
2040 static long exact_copy_from_user(void *to, const void __user * from,
2041 unsigned long n)
2042 {
2043 char *t = to;
2044 const char __user *f = from;
2045 char c;
2046
2047 if (!access_ok(VERIFY_READ, from, n))
2048 return n;
2049
2050 while (n) {
2051 if (__get_user(c, f)) {
2052 memset(t, 0, n);
2053 break;
2054 }
2055 *t++ = c;
2056 f++;
2057 n--;
2058 }
2059 return n;
2060 }
2061
2062 int copy_mount_options(const void __user * data, unsigned long *where)
2063 {
2064 int i;
2065 unsigned long page;
2066 unsigned long size;
2067
2068 *where = 0;
2069 if (!data)
2070 return 0;
2071
2072 if (!(page = __get_free_page(GFP_KERNEL)))
2073 return -ENOMEM;
2074
2075 /* We only care that *some* data at the address the user
2076 * gave us is valid. Just in case, we'll zero
2077 * the remainder of the page.
2078 */
2079 /* copy_from_user cannot cross TASK_SIZE ! */
2080 size = TASK_SIZE - (unsigned long)data;
2081 if (size > PAGE_SIZE)
2082 size = PAGE_SIZE;
2083
2084 i = size - exact_copy_from_user((void *)page, data, size);
2085 if (!i) {
2086 free_page(page);
2087 return -EFAULT;
2088 }
2089 if (i != PAGE_SIZE)
2090 memset((char *)page + i, 0, PAGE_SIZE - i);
2091 *where = page;
2092 return 0;
2093 }
2094
2095 int copy_mount_string(const void __user *data, char **where)
2096 {
2097 char *tmp;
2098
2099 if (!data) {
2100 *where = NULL;
2101 return 0;
2102 }
2103
2104 tmp = strndup_user(data, PAGE_SIZE);
2105 if (IS_ERR(tmp))
2106 return PTR_ERR(tmp);
2107
2108 *where = tmp;
2109 return 0;
2110 }
2111
2112 /*
2113 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2114 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2115 *
2116 * data is a (void *) that can point to any structure up to
2117 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2118 * information (or be NULL).
2119 *
2120 * Pre-0.97 versions of mount() didn't have a flags word.
2121 * When the flags word was introduced its top half was required
2122 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2123 * Therefore, if this magic number is present, it carries no information
2124 * and must be discarded.
2125 */
2126 long do_mount(char *dev_name, char *dir_name, char *type_page,
2127 unsigned long flags, void *data_page)
2128 {
2129 struct path path;
2130 int retval = 0;
2131 int mnt_flags = 0;
2132
2133 /* Discard magic */
2134 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2135 flags &= ~MS_MGC_MSK;
2136
2137 /* Basic sanity checks */
2138
2139 if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
2140 return -EINVAL;
2141
2142 if (data_page)
2143 ((char *)data_page)[PAGE_SIZE - 1] = 0;
2144
2145 /* ... and get the mountpoint */
2146 retval = kern_path(dir_name, LOOKUP_FOLLOW, &path);
2147 if (retval)
2148 return retval;
2149
2150 retval = security_sb_mount(dev_name, &path,
2151 type_page, flags, data_page);
2152 if (retval)
2153 goto dput_out;
2154
2155 /* Default to relatime unless overriden */
2156 if (!(flags & MS_NOATIME))
2157 mnt_flags |= MNT_RELATIME;
2158
2159 /* Separate the per-mountpoint flags */
2160 if (flags & MS_NOSUID)
2161 mnt_flags |= MNT_NOSUID;
2162 if (flags & MS_NODEV)
2163 mnt_flags |= MNT_NODEV;
2164 if (flags & MS_NOEXEC)
2165 mnt_flags |= MNT_NOEXEC;
2166 if (flags & MS_NOATIME)
2167 mnt_flags |= MNT_NOATIME;
2168 if (flags & MS_NODIRATIME)
2169 mnt_flags |= MNT_NODIRATIME;
2170 if (flags & MS_STRICTATIME)
2171 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2172 if (flags & MS_RDONLY)
2173 mnt_flags |= MNT_READONLY;
2174
2175 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
2176 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
2177 MS_STRICTATIME);
2178
2179 if (flags & MS_REMOUNT)
2180 retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
2181 data_page);
2182 else if (flags & MS_BIND)
2183 retval = do_loopback(&path, dev_name, flags & MS_REC);
2184 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2185 retval = do_change_type(&path, flags);
2186 else if (flags & MS_MOVE)
2187 retval = do_move_mount(&path, dev_name);
2188 else
2189 retval = do_new_mount(&path, type_page, flags, mnt_flags,
2190 dev_name, data_page);
2191 dput_out:
2192 path_put(&path);
2193 return retval;
2194 }
2195
2196 static struct mnt_namespace *alloc_mnt_ns(void)
2197 {
2198 struct mnt_namespace *new_ns;
2199
2200 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2201 if (!new_ns)
2202 return ERR_PTR(-ENOMEM);
2203 atomic_set(&new_ns->count, 1);
2204 new_ns->root = NULL;
2205 INIT_LIST_HEAD(&new_ns->list);
2206 init_waitqueue_head(&new_ns->poll);
2207 new_ns->event = 0;
2208 return new_ns;
2209 }
2210
2211 void mnt_make_longterm(struct vfsmount *mnt)
2212 {
2213 __mnt_make_longterm(real_mount(mnt));
2214 }
2215
2216 void mnt_make_shortterm(struct vfsmount *m)
2217 {
2218 #ifdef CONFIG_SMP
2219 struct mount *mnt = real_mount(m);
2220 if (atomic_add_unless(&mnt->mnt_longterm, -1, 1))
2221 return;
2222 br_write_lock(&vfsmount_lock);
2223 atomic_dec(&mnt->mnt_longterm);
2224 br_write_unlock(&vfsmount_lock);
2225 #endif
2226 }
2227
2228 /*
2229 * Allocate a new namespace structure and populate it with contents
2230 * copied from the namespace of the passed in task structure.
2231 */
2232 static struct mnt_namespace *dup_mnt_ns(struct mnt_namespace *mnt_ns,
2233 struct fs_struct *fs)
2234 {
2235 struct mnt_namespace *new_ns;
2236 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
2237 struct mount *p, *q;
2238 struct mount *old = mnt_ns->root;
2239 struct mount *new;
2240
2241 new_ns = alloc_mnt_ns();
2242 if (IS_ERR(new_ns))
2243 return new_ns;
2244
2245 down_write(&namespace_sem);
2246 /* First pass: copy the tree topology */
2247 new = copy_tree(old, old->mnt.mnt_root, CL_COPY_ALL | CL_EXPIRE);
2248 if (!new) {
2249 up_write(&namespace_sem);
2250 kfree(new_ns);
2251 return ERR_PTR(-ENOMEM);
2252 }
2253 new_ns->root = new;
2254 br_write_lock(&vfsmount_lock);
2255 list_add_tail(&new_ns->list, &new->mnt_list);
2256 br_write_unlock(&vfsmount_lock);
2257
2258 /*
2259 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2260 * as belonging to new namespace. We have already acquired a private
2261 * fs_struct, so tsk->fs->lock is not needed.
2262 */
2263 p = old;
2264 q = new;
2265 while (p) {
2266 q->mnt_ns = new_ns;
2267 __mnt_make_longterm(q);
2268 if (fs) {
2269 if (&p->mnt == fs->root.mnt) {
2270 fs->root.mnt = mntget(&q->mnt);
2271 __mnt_make_longterm(q);
2272 mnt_make_shortterm(&p->mnt);
2273 rootmnt = &p->mnt;
2274 }
2275 if (&p->mnt == fs->pwd.mnt) {
2276 fs->pwd.mnt = mntget(&q->mnt);
2277 __mnt_make_longterm(q);
2278 mnt_make_shortterm(&p->mnt);
2279 pwdmnt = &p->mnt;
2280 }
2281 }
2282 p = next_mnt(p, old);
2283 q = next_mnt(q, new);
2284 }
2285 up_write(&namespace_sem);
2286
2287 if (rootmnt)
2288 mntput(rootmnt);
2289 if (pwdmnt)
2290 mntput(pwdmnt);
2291
2292 return new_ns;
2293 }
2294
2295 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2296 struct fs_struct *new_fs)
2297 {
2298 struct mnt_namespace *new_ns;
2299
2300 BUG_ON(!ns);
2301 get_mnt_ns(ns);
2302
2303 if (!(flags & CLONE_NEWNS))
2304 return ns;
2305
2306 new_ns = dup_mnt_ns(ns, new_fs);
2307
2308 put_mnt_ns(ns);
2309 return new_ns;
2310 }
2311
2312 /**
2313 * create_mnt_ns - creates a private namespace and adds a root filesystem
2314 * @mnt: pointer to the new root filesystem mountpoint
2315 */
2316 static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
2317 {
2318 struct mnt_namespace *new_ns = alloc_mnt_ns();
2319 if (!IS_ERR(new_ns)) {
2320 struct mount *mnt = real_mount(m);
2321 mnt->mnt_ns = new_ns;
2322 __mnt_make_longterm(mnt);
2323 new_ns->root = mnt;
2324 list_add(&new_ns->list, &mnt->mnt_list);
2325 } else {
2326 mntput(m);
2327 }
2328 return new_ns;
2329 }
2330
2331 struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
2332 {
2333 struct mnt_namespace *ns;
2334 struct super_block *s;
2335 struct path path;
2336 int err;
2337
2338 ns = create_mnt_ns(mnt);
2339 if (IS_ERR(ns))
2340 return ERR_CAST(ns);
2341
2342 err = vfs_path_lookup(mnt->mnt_root, mnt,
2343 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
2344
2345 put_mnt_ns(ns);
2346
2347 if (err)
2348 return ERR_PTR(err);
2349
2350 /* trade a vfsmount reference for active sb one */
2351 s = path.mnt->mnt_sb;
2352 atomic_inc(&s->s_active);
2353 mntput(path.mnt);
2354 /* lock the sucker */
2355 down_write(&s->s_umount);
2356 /* ... and return the root of (sub)tree on it */
2357 return path.dentry;
2358 }
2359 EXPORT_SYMBOL(mount_subtree);
2360
2361 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
2362 char __user *, type, unsigned long, flags, void __user *, data)
2363 {
2364 int ret;
2365 char *kernel_type;
2366 char *kernel_dir;
2367 char *kernel_dev;
2368 unsigned long data_page;
2369
2370 ret = copy_mount_string(type, &kernel_type);
2371 if (ret < 0)
2372 goto out_type;
2373
2374 kernel_dir = getname(dir_name);
2375 if (IS_ERR(kernel_dir)) {
2376 ret = PTR_ERR(kernel_dir);
2377 goto out_dir;
2378 }
2379
2380 ret = copy_mount_string(dev_name, &kernel_dev);
2381 if (ret < 0)
2382 goto out_dev;
2383
2384 ret = copy_mount_options(data, &data_page);
2385 if (ret < 0)
2386 goto out_data;
2387
2388 ret = do_mount(kernel_dev, kernel_dir, kernel_type, flags,
2389 (void *) data_page);
2390
2391 free_page(data_page);
2392 out_data:
2393 kfree(kernel_dev);
2394 out_dev:
2395 putname(kernel_dir);
2396 out_dir:
2397 kfree(kernel_type);
2398 out_type:
2399 return ret;
2400 }
2401
2402 /*
2403 * Return true if path is reachable from root
2404 *
2405 * namespace_sem or vfsmount_lock is held
2406 */
2407 bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
2408 const struct path *root)
2409 {
2410 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
2411 dentry = mnt->mnt_mountpoint;
2412 mnt = mnt->mnt_parent;
2413 }
2414 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
2415 }
2416
2417 int path_is_under(struct path *path1, struct path *path2)
2418 {
2419 int res;
2420 br_read_lock(&vfsmount_lock);
2421 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
2422 br_read_unlock(&vfsmount_lock);
2423 return res;
2424 }
2425 EXPORT_SYMBOL(path_is_under);
2426
2427 /*
2428 * pivot_root Semantics:
2429 * Moves the root file system of the current process to the directory put_old,
2430 * makes new_root as the new root file system of the current process, and sets
2431 * root/cwd of all processes which had them on the current root to new_root.
2432 *
2433 * Restrictions:
2434 * The new_root and put_old must be directories, and must not be on the
2435 * same file system as the current process root. The put_old must be
2436 * underneath new_root, i.e. adding a non-zero number of /.. to the string
2437 * pointed to by put_old must yield the same directory as new_root. No other
2438 * file system may be mounted on put_old. After all, new_root is a mountpoint.
2439 *
2440 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
2441 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
2442 * in this situation.
2443 *
2444 * Notes:
2445 * - we don't move root/cwd if they are not at the root (reason: if something
2446 * cared enough to change them, it's probably wrong to force them elsewhere)
2447 * - it's okay to pick a root that isn't the root of a file system, e.g.
2448 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
2449 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
2450 * first.
2451 */
2452 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
2453 const char __user *, put_old)
2454 {
2455 struct path new, old, parent_path, root_parent, root;
2456 struct mount *new_mnt, *root_mnt;
2457 int error;
2458
2459 if (!capable(CAP_SYS_ADMIN))
2460 return -EPERM;
2461
2462 error = user_path_dir(new_root, &new);
2463 if (error)
2464 goto out0;
2465
2466 error = user_path_dir(put_old, &old);
2467 if (error)
2468 goto out1;
2469
2470 error = security_sb_pivotroot(&old, &new);
2471 if (error)
2472 goto out2;
2473
2474 get_fs_root(current->fs, &root);
2475 error = lock_mount(&old);
2476 if (error)
2477 goto out3;
2478
2479 error = -EINVAL;
2480 new_mnt = real_mount(new.mnt);
2481 root_mnt = real_mount(root.mnt);
2482 if (IS_MNT_SHARED(real_mount(old.mnt)) ||
2483 IS_MNT_SHARED(new_mnt->mnt_parent) ||
2484 IS_MNT_SHARED(root_mnt->mnt_parent))
2485 goto out4;
2486 if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
2487 goto out4;
2488 error = -ENOENT;
2489 if (d_unlinked(new.dentry))
2490 goto out4;
2491 if (d_unlinked(old.dentry))
2492 goto out4;
2493 error = -EBUSY;
2494 if (new.mnt == root.mnt ||
2495 old.mnt == root.mnt)
2496 goto out4; /* loop, on the same file system */
2497 error = -EINVAL;
2498 if (root.mnt->mnt_root != root.dentry)
2499 goto out4; /* not a mountpoint */
2500 if (!mnt_has_parent(root_mnt))
2501 goto out4; /* not attached */
2502 if (new.mnt->mnt_root != new.dentry)
2503 goto out4; /* not a mountpoint */
2504 if (!mnt_has_parent(new_mnt))
2505 goto out4; /* not attached */
2506 /* make sure we can reach put_old from new_root */
2507 if (!is_path_reachable(real_mount(old.mnt), old.dentry, &new))
2508 goto out4;
2509 br_write_lock(&vfsmount_lock);
2510 detach_mnt(new_mnt, &parent_path);
2511 detach_mnt(root_mnt, &root_parent);
2512 /* mount old root on put_old */
2513 attach_mnt(root_mnt, &old);
2514 /* mount new_root on / */
2515 attach_mnt(new_mnt, &root_parent);
2516 touch_mnt_namespace(current->nsproxy->mnt_ns);
2517 br_write_unlock(&vfsmount_lock);
2518 chroot_fs_refs(&root, &new);
2519 error = 0;
2520 out4:
2521 unlock_mount(&old);
2522 if (!error) {
2523 path_put(&root_parent);
2524 path_put(&parent_path);
2525 }
2526 out3:
2527 path_put(&root);
2528 out2:
2529 path_put(&old);
2530 out1:
2531 path_put(&new);
2532 out0:
2533 return error;
2534 }
2535
2536 static void __init init_mount_tree(void)
2537 {
2538 struct vfsmount *mnt;
2539 struct mnt_namespace *ns;
2540 struct path root;
2541
2542 mnt = do_kern_mount("rootfs", 0, "rootfs", NULL);
2543 if (IS_ERR(mnt))
2544 panic("Can't create rootfs");
2545
2546 ns = create_mnt_ns(mnt);
2547 if (IS_ERR(ns))
2548 panic("Can't allocate initial namespace");
2549
2550 init_task.nsproxy->mnt_ns = ns;
2551 get_mnt_ns(ns);
2552
2553 root.mnt = mnt;
2554 root.dentry = mnt->mnt_root;
2555
2556 set_fs_pwd(current->fs, &root);
2557 set_fs_root(current->fs, &root);
2558 }
2559
2560 void __init mnt_init(void)
2561 {
2562 unsigned u;
2563 int err;
2564
2565 init_rwsem(&namespace_sem);
2566
2567 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
2568 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
2569
2570 mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
2571
2572 if (!mount_hashtable)
2573 panic("Failed to allocate mount hash table\n");
2574
2575 printk(KERN_INFO "Mount-cache hash table entries: %lu\n", HASH_SIZE);
2576
2577 for (u = 0; u < HASH_SIZE; u++)
2578 INIT_LIST_HEAD(&mount_hashtable[u]);
2579
2580 br_lock_init(&vfsmount_lock);
2581
2582 err = sysfs_init();
2583 if (err)
2584 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
2585 __func__, err);
2586 fs_kobj = kobject_create_and_add("fs", NULL);
2587 if (!fs_kobj)
2588 printk(KERN_WARNING "%s: kobj create error\n", __func__);
2589 init_rootfs();
2590 init_mount_tree();
2591 }
2592
2593 void put_mnt_ns(struct mnt_namespace *ns)
2594 {
2595 LIST_HEAD(umount_list);
2596
2597 if (!atomic_dec_and_test(&ns->count))
2598 return;
2599 down_write(&namespace_sem);
2600 br_write_lock(&vfsmount_lock);
2601 umount_tree(ns->root, 0, &umount_list);
2602 br_write_unlock(&vfsmount_lock);
2603 up_write(&namespace_sem);
2604 release_mounts(&umount_list);
2605 kfree(ns);
2606 }
2607
2608 struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
2609 {
2610 struct vfsmount *mnt;
2611 mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
2612 if (!IS_ERR(mnt)) {
2613 /*
2614 * it is a longterm mount, don't release mnt until
2615 * we unmount before file sys is unregistered
2616 */
2617 mnt_make_longterm(mnt);
2618 }
2619 return mnt;
2620 }
2621 EXPORT_SYMBOL_GPL(kern_mount_data);
2622
2623 void kern_unmount(struct vfsmount *mnt)
2624 {
2625 /* release long term mount so mount point can be released */
2626 if (!IS_ERR_OR_NULL(mnt)) {
2627 mnt_make_shortterm(mnt);
2628 mntput(mnt);
2629 }
2630 }
2631 EXPORT_SYMBOL(kern_unmount);
2632
2633 bool our_mnt(struct vfsmount *mnt)
2634 {
2635 return check_mnt(real_mount(mnt));
2636 }
This page took 0.111562 seconds and 5 git commands to generate.