77ffdb82f63fdcbb32e114ea2cc494ef87fc0115
[deliverable/linux.git] / fs / namespace.c
1 /*
2 * linux/fs/namespace.c
3 *
4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/user_namespace.h>
16 #include <linux/namei.h>
17 #include <linux/security.h>
18 #include <linux/idr.h>
19 #include <linux/init.h> /* init_rootfs */
20 #include <linux/fs_struct.h> /* get_fs_root et.al. */
21 #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
22 #include <linux/uaccess.h>
23 #include <linux/proc_ns.h>
24 #include <linux/magic.h>
25 #include <linux/bootmem.h>
26 #include <linux/task_work.h>
27 #include "pnode.h"
28 #include "internal.h"
29
30 static unsigned int m_hash_mask __read_mostly;
31 static unsigned int m_hash_shift __read_mostly;
32 static unsigned int mp_hash_mask __read_mostly;
33 static unsigned int mp_hash_shift __read_mostly;
34
35 static __initdata unsigned long mhash_entries;
36 static int __init set_mhash_entries(char *str)
37 {
38 if (!str)
39 return 0;
40 mhash_entries = simple_strtoul(str, &str, 0);
41 return 1;
42 }
43 __setup("mhash_entries=", set_mhash_entries);
44
45 static __initdata unsigned long mphash_entries;
46 static int __init set_mphash_entries(char *str)
47 {
48 if (!str)
49 return 0;
50 mphash_entries = simple_strtoul(str, &str, 0);
51 return 1;
52 }
53 __setup("mphash_entries=", set_mphash_entries);
54
55 static u64 event;
56 static DEFINE_IDA(mnt_id_ida);
57 static DEFINE_IDA(mnt_group_ida);
58 static DEFINE_SPINLOCK(mnt_id_lock);
59 static int mnt_id_start = 0;
60 static int mnt_group_start = 1;
61
62 static struct hlist_head *mount_hashtable __read_mostly;
63 static struct hlist_head *mountpoint_hashtable __read_mostly;
64 static struct kmem_cache *mnt_cache __read_mostly;
65 static DECLARE_RWSEM(namespace_sem);
66
67 /* /sys/fs */
68 struct kobject *fs_kobj;
69 EXPORT_SYMBOL_GPL(fs_kobj);
70
71 /*
72 * vfsmount lock may be taken for read to prevent changes to the
73 * vfsmount hash, ie. during mountpoint lookups or walking back
74 * up the tree.
75 *
76 * It should be taken for write in all cases where the vfsmount
77 * tree or hash is modified or when a vfsmount structure is modified.
78 */
79 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
80
81 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
82 {
83 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
84 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
85 tmp = tmp + (tmp >> m_hash_shift);
86 return &mount_hashtable[tmp & m_hash_mask];
87 }
88
89 static inline struct hlist_head *mp_hash(struct dentry *dentry)
90 {
91 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
92 tmp = tmp + (tmp >> mp_hash_shift);
93 return &mountpoint_hashtable[tmp & mp_hash_mask];
94 }
95
96 /*
97 * allocation is serialized by namespace_sem, but we need the spinlock to
98 * serialize with freeing.
99 */
100 static int mnt_alloc_id(struct mount *mnt)
101 {
102 int res;
103
104 retry:
105 ida_pre_get(&mnt_id_ida, GFP_KERNEL);
106 spin_lock(&mnt_id_lock);
107 res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
108 if (!res)
109 mnt_id_start = mnt->mnt_id + 1;
110 spin_unlock(&mnt_id_lock);
111 if (res == -EAGAIN)
112 goto retry;
113
114 return res;
115 }
116
117 static void mnt_free_id(struct mount *mnt)
118 {
119 int id = mnt->mnt_id;
120 spin_lock(&mnt_id_lock);
121 ida_remove(&mnt_id_ida, id);
122 if (mnt_id_start > id)
123 mnt_id_start = id;
124 spin_unlock(&mnt_id_lock);
125 }
126
127 /*
128 * Allocate a new peer group ID
129 *
130 * mnt_group_ida is protected by namespace_sem
131 */
132 static int mnt_alloc_group_id(struct mount *mnt)
133 {
134 int res;
135
136 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
137 return -ENOMEM;
138
139 res = ida_get_new_above(&mnt_group_ida,
140 mnt_group_start,
141 &mnt->mnt_group_id);
142 if (!res)
143 mnt_group_start = mnt->mnt_group_id + 1;
144
145 return res;
146 }
147
148 /*
149 * Release a peer group ID
150 */
151 void mnt_release_group_id(struct mount *mnt)
152 {
153 int id = mnt->mnt_group_id;
154 ida_remove(&mnt_group_ida, id);
155 if (mnt_group_start > id)
156 mnt_group_start = id;
157 mnt->mnt_group_id = 0;
158 }
159
160 /*
161 * vfsmount lock must be held for read
162 */
163 static inline void mnt_add_count(struct mount *mnt, int n)
164 {
165 #ifdef CONFIG_SMP
166 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
167 #else
168 preempt_disable();
169 mnt->mnt_count += n;
170 preempt_enable();
171 #endif
172 }
173
174 /*
175 * vfsmount lock must be held for write
176 */
177 unsigned int mnt_get_count(struct mount *mnt)
178 {
179 #ifdef CONFIG_SMP
180 unsigned int count = 0;
181 int cpu;
182
183 for_each_possible_cpu(cpu) {
184 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
185 }
186
187 return count;
188 #else
189 return mnt->mnt_count;
190 #endif
191 }
192
193 static struct mount *alloc_vfsmnt(const char *name)
194 {
195 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
196 if (mnt) {
197 int err;
198
199 err = mnt_alloc_id(mnt);
200 if (err)
201 goto out_free_cache;
202
203 if (name) {
204 mnt->mnt_devname = kstrdup(name, GFP_KERNEL);
205 if (!mnt->mnt_devname)
206 goto out_free_id;
207 }
208
209 #ifdef CONFIG_SMP
210 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
211 if (!mnt->mnt_pcp)
212 goto out_free_devname;
213
214 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
215 #else
216 mnt->mnt_count = 1;
217 mnt->mnt_writers = 0;
218 #endif
219
220 INIT_HLIST_NODE(&mnt->mnt_hash);
221 INIT_LIST_HEAD(&mnt->mnt_child);
222 INIT_LIST_HEAD(&mnt->mnt_mounts);
223 INIT_LIST_HEAD(&mnt->mnt_list);
224 INIT_LIST_HEAD(&mnt->mnt_expire);
225 INIT_LIST_HEAD(&mnt->mnt_share);
226 INIT_LIST_HEAD(&mnt->mnt_slave_list);
227 INIT_LIST_HEAD(&mnt->mnt_slave);
228 #ifdef CONFIG_FSNOTIFY
229 INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
230 #endif
231 }
232 return mnt;
233
234 #ifdef CONFIG_SMP
235 out_free_devname:
236 kfree(mnt->mnt_devname);
237 #endif
238 out_free_id:
239 mnt_free_id(mnt);
240 out_free_cache:
241 kmem_cache_free(mnt_cache, mnt);
242 return NULL;
243 }
244
245 /*
246 * Most r/o checks on a fs are for operations that take
247 * discrete amounts of time, like a write() or unlink().
248 * We must keep track of when those operations start
249 * (for permission checks) and when they end, so that
250 * we can determine when writes are able to occur to
251 * a filesystem.
252 */
253 /*
254 * __mnt_is_readonly: check whether a mount is read-only
255 * @mnt: the mount to check for its write status
256 *
257 * This shouldn't be used directly ouside of the VFS.
258 * It does not guarantee that the filesystem will stay
259 * r/w, just that it is right *now*. This can not and
260 * should not be used in place of IS_RDONLY(inode).
261 * mnt_want/drop_write() will _keep_ the filesystem
262 * r/w.
263 */
264 int __mnt_is_readonly(struct vfsmount *mnt)
265 {
266 if (mnt->mnt_flags & MNT_READONLY)
267 return 1;
268 if (mnt->mnt_sb->s_flags & MS_RDONLY)
269 return 1;
270 return 0;
271 }
272 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
273
274 static inline void mnt_inc_writers(struct mount *mnt)
275 {
276 #ifdef CONFIG_SMP
277 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
278 #else
279 mnt->mnt_writers++;
280 #endif
281 }
282
283 static inline void mnt_dec_writers(struct mount *mnt)
284 {
285 #ifdef CONFIG_SMP
286 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
287 #else
288 mnt->mnt_writers--;
289 #endif
290 }
291
292 static unsigned int mnt_get_writers(struct mount *mnt)
293 {
294 #ifdef CONFIG_SMP
295 unsigned int count = 0;
296 int cpu;
297
298 for_each_possible_cpu(cpu) {
299 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
300 }
301
302 return count;
303 #else
304 return mnt->mnt_writers;
305 #endif
306 }
307
308 static int mnt_is_readonly(struct vfsmount *mnt)
309 {
310 if (mnt->mnt_sb->s_readonly_remount)
311 return 1;
312 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
313 smp_rmb();
314 return __mnt_is_readonly(mnt);
315 }
316
317 /*
318 * Most r/o & frozen checks on a fs are for operations that take discrete
319 * amounts of time, like a write() or unlink(). We must keep track of when
320 * those operations start (for permission checks) and when they end, so that we
321 * can determine when writes are able to occur to a filesystem.
322 */
323 /**
324 * __mnt_want_write - get write access to a mount without freeze protection
325 * @m: the mount on which to take a write
326 *
327 * This tells the low-level filesystem that a write is about to be performed to
328 * it, and makes sure that writes are allowed (mnt it read-write) before
329 * returning success. This operation does not protect against filesystem being
330 * frozen. When the write operation is finished, __mnt_drop_write() must be
331 * called. This is effectively a refcount.
332 */
333 int __mnt_want_write(struct vfsmount *m)
334 {
335 struct mount *mnt = real_mount(m);
336 int ret = 0;
337
338 preempt_disable();
339 mnt_inc_writers(mnt);
340 /*
341 * The store to mnt_inc_writers must be visible before we pass
342 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
343 * incremented count after it has set MNT_WRITE_HOLD.
344 */
345 smp_mb();
346 while (ACCESS_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
347 cpu_relax();
348 /*
349 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
350 * be set to match its requirements. So we must not load that until
351 * MNT_WRITE_HOLD is cleared.
352 */
353 smp_rmb();
354 if (mnt_is_readonly(m)) {
355 mnt_dec_writers(mnt);
356 ret = -EROFS;
357 }
358 preempt_enable();
359
360 return ret;
361 }
362
363 /**
364 * mnt_want_write - get write access to a mount
365 * @m: the mount on which to take a write
366 *
367 * This tells the low-level filesystem that a write is about to be performed to
368 * it, and makes sure that writes are allowed (mount is read-write, filesystem
369 * is not frozen) before returning success. When the write operation is
370 * finished, mnt_drop_write() must be called. This is effectively a refcount.
371 */
372 int mnt_want_write(struct vfsmount *m)
373 {
374 int ret;
375
376 sb_start_write(m->mnt_sb);
377 ret = __mnt_want_write(m);
378 if (ret)
379 sb_end_write(m->mnt_sb);
380 return ret;
381 }
382 EXPORT_SYMBOL_GPL(mnt_want_write);
383
384 /**
385 * mnt_clone_write - get write access to a mount
386 * @mnt: the mount on which to take a write
387 *
388 * This is effectively like mnt_want_write, except
389 * it must only be used to take an extra write reference
390 * on a mountpoint that we already know has a write reference
391 * on it. This allows some optimisation.
392 *
393 * After finished, mnt_drop_write must be called as usual to
394 * drop the reference.
395 */
396 int mnt_clone_write(struct vfsmount *mnt)
397 {
398 /* superblock may be r/o */
399 if (__mnt_is_readonly(mnt))
400 return -EROFS;
401 preempt_disable();
402 mnt_inc_writers(real_mount(mnt));
403 preempt_enable();
404 return 0;
405 }
406 EXPORT_SYMBOL_GPL(mnt_clone_write);
407
408 /**
409 * __mnt_want_write_file - get write access to a file's mount
410 * @file: the file who's mount on which to take a write
411 *
412 * This is like __mnt_want_write, but it takes a file and can
413 * do some optimisations if the file is open for write already
414 */
415 int __mnt_want_write_file(struct file *file)
416 {
417 if (!(file->f_mode & FMODE_WRITER))
418 return __mnt_want_write(file->f_path.mnt);
419 else
420 return mnt_clone_write(file->f_path.mnt);
421 }
422
423 /**
424 * mnt_want_write_file - get write access to a file's mount
425 * @file: the file who's mount on which to take a write
426 *
427 * This is like mnt_want_write, but it takes a file and can
428 * do some optimisations if the file is open for write already
429 */
430 int mnt_want_write_file(struct file *file)
431 {
432 int ret;
433
434 sb_start_write(file->f_path.mnt->mnt_sb);
435 ret = __mnt_want_write_file(file);
436 if (ret)
437 sb_end_write(file->f_path.mnt->mnt_sb);
438 return ret;
439 }
440 EXPORT_SYMBOL_GPL(mnt_want_write_file);
441
442 /**
443 * __mnt_drop_write - give up write access to a mount
444 * @mnt: the mount on which to give up write access
445 *
446 * Tells the low-level filesystem that we are done
447 * performing writes to it. Must be matched with
448 * __mnt_want_write() call above.
449 */
450 void __mnt_drop_write(struct vfsmount *mnt)
451 {
452 preempt_disable();
453 mnt_dec_writers(real_mount(mnt));
454 preempt_enable();
455 }
456
457 /**
458 * mnt_drop_write - give up write access to a mount
459 * @mnt: the mount on which to give up write access
460 *
461 * Tells the low-level filesystem that we are done performing writes to it and
462 * also allows filesystem to be frozen again. Must be matched with
463 * mnt_want_write() call above.
464 */
465 void mnt_drop_write(struct vfsmount *mnt)
466 {
467 __mnt_drop_write(mnt);
468 sb_end_write(mnt->mnt_sb);
469 }
470 EXPORT_SYMBOL_GPL(mnt_drop_write);
471
472 void __mnt_drop_write_file(struct file *file)
473 {
474 __mnt_drop_write(file->f_path.mnt);
475 }
476
477 void mnt_drop_write_file(struct file *file)
478 {
479 mnt_drop_write(file->f_path.mnt);
480 }
481 EXPORT_SYMBOL(mnt_drop_write_file);
482
483 static int mnt_make_readonly(struct mount *mnt)
484 {
485 int ret = 0;
486
487 lock_mount_hash();
488 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
489 /*
490 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
491 * should be visible before we do.
492 */
493 smp_mb();
494
495 /*
496 * With writers on hold, if this value is zero, then there are
497 * definitely no active writers (although held writers may subsequently
498 * increment the count, they'll have to wait, and decrement it after
499 * seeing MNT_READONLY).
500 *
501 * It is OK to have counter incremented on one CPU and decremented on
502 * another: the sum will add up correctly. The danger would be when we
503 * sum up each counter, if we read a counter before it is incremented,
504 * but then read another CPU's count which it has been subsequently
505 * decremented from -- we would see more decrements than we should.
506 * MNT_WRITE_HOLD protects against this scenario, because
507 * mnt_want_write first increments count, then smp_mb, then spins on
508 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
509 * we're counting up here.
510 */
511 if (mnt_get_writers(mnt) > 0)
512 ret = -EBUSY;
513 else
514 mnt->mnt.mnt_flags |= MNT_READONLY;
515 /*
516 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
517 * that become unheld will see MNT_READONLY.
518 */
519 smp_wmb();
520 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
521 unlock_mount_hash();
522 return ret;
523 }
524
525 static void __mnt_unmake_readonly(struct mount *mnt)
526 {
527 lock_mount_hash();
528 mnt->mnt.mnt_flags &= ~MNT_READONLY;
529 unlock_mount_hash();
530 }
531
532 int sb_prepare_remount_readonly(struct super_block *sb)
533 {
534 struct mount *mnt;
535 int err = 0;
536
537 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
538 if (atomic_long_read(&sb->s_remove_count))
539 return -EBUSY;
540
541 lock_mount_hash();
542 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
543 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
544 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
545 smp_mb();
546 if (mnt_get_writers(mnt) > 0) {
547 err = -EBUSY;
548 break;
549 }
550 }
551 }
552 if (!err && atomic_long_read(&sb->s_remove_count))
553 err = -EBUSY;
554
555 if (!err) {
556 sb->s_readonly_remount = 1;
557 smp_wmb();
558 }
559 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
560 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
561 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
562 }
563 unlock_mount_hash();
564
565 return err;
566 }
567
568 static void free_vfsmnt(struct mount *mnt)
569 {
570 kfree(mnt->mnt_devname);
571 #ifdef CONFIG_SMP
572 free_percpu(mnt->mnt_pcp);
573 #endif
574 kmem_cache_free(mnt_cache, mnt);
575 }
576
577 static void delayed_free_vfsmnt(struct rcu_head *head)
578 {
579 free_vfsmnt(container_of(head, struct mount, mnt_rcu));
580 }
581
582 /* call under rcu_read_lock */
583 bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
584 {
585 struct mount *mnt;
586 if (read_seqretry(&mount_lock, seq))
587 return false;
588 if (bastard == NULL)
589 return true;
590 mnt = real_mount(bastard);
591 mnt_add_count(mnt, 1);
592 if (likely(!read_seqretry(&mount_lock, seq)))
593 return true;
594 if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
595 mnt_add_count(mnt, -1);
596 return false;
597 }
598 rcu_read_unlock();
599 mntput(bastard);
600 rcu_read_lock();
601 return false;
602 }
603
604 /*
605 * find the first mount at @dentry on vfsmount @mnt.
606 * call under rcu_read_lock()
607 */
608 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
609 {
610 struct hlist_head *head = m_hash(mnt, dentry);
611 struct mount *p;
612
613 hlist_for_each_entry_rcu(p, head, mnt_hash)
614 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
615 return p;
616 return NULL;
617 }
618
619 /*
620 * find the last mount at @dentry on vfsmount @mnt.
621 * mount_lock must be held.
622 */
623 struct mount *__lookup_mnt_last(struct vfsmount *mnt, struct dentry *dentry)
624 {
625 struct mount *p, *res;
626 res = p = __lookup_mnt(mnt, dentry);
627 if (!p)
628 goto out;
629 hlist_for_each_entry_continue(p, mnt_hash) {
630 if (&p->mnt_parent->mnt != mnt || p->mnt_mountpoint != dentry)
631 break;
632 res = p;
633 }
634 out:
635 return res;
636 }
637
638 /*
639 * lookup_mnt - Return the first child mount mounted at path
640 *
641 * "First" means first mounted chronologically. If you create the
642 * following mounts:
643 *
644 * mount /dev/sda1 /mnt
645 * mount /dev/sda2 /mnt
646 * mount /dev/sda3 /mnt
647 *
648 * Then lookup_mnt() on the base /mnt dentry in the root mount will
649 * return successively the root dentry and vfsmount of /dev/sda1, then
650 * /dev/sda2, then /dev/sda3, then NULL.
651 *
652 * lookup_mnt takes a reference to the found vfsmount.
653 */
654 struct vfsmount *lookup_mnt(struct path *path)
655 {
656 struct mount *child_mnt;
657 struct vfsmount *m;
658 unsigned seq;
659
660 rcu_read_lock();
661 do {
662 seq = read_seqbegin(&mount_lock);
663 child_mnt = __lookup_mnt(path->mnt, path->dentry);
664 m = child_mnt ? &child_mnt->mnt : NULL;
665 } while (!legitimize_mnt(m, seq));
666 rcu_read_unlock();
667 return m;
668 }
669
670 /*
671 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
672 * current mount namespace.
673 *
674 * The common case is dentries are not mountpoints at all and that
675 * test is handled inline. For the slow case when we are actually
676 * dealing with a mountpoint of some kind, walk through all of the
677 * mounts in the current mount namespace and test to see if the dentry
678 * is a mountpoint.
679 *
680 * The mount_hashtable is not usable in the context because we
681 * need to identify all mounts that may be in the current mount
682 * namespace not just a mount that happens to have some specified
683 * parent mount.
684 */
685 bool __is_local_mountpoint(struct dentry *dentry)
686 {
687 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
688 struct mount *mnt;
689 bool is_covered = false;
690
691 if (!d_mountpoint(dentry))
692 goto out;
693
694 down_read(&namespace_sem);
695 list_for_each_entry(mnt, &ns->list, mnt_list) {
696 is_covered = (mnt->mnt_mountpoint == dentry);
697 if (is_covered)
698 break;
699 }
700 up_read(&namespace_sem);
701 out:
702 return is_covered;
703 }
704
705 static struct mountpoint *new_mountpoint(struct dentry *dentry)
706 {
707 struct hlist_head *chain = mp_hash(dentry);
708 struct mountpoint *mp;
709 int ret;
710
711 hlist_for_each_entry(mp, chain, m_hash) {
712 if (mp->m_dentry == dentry) {
713 /* might be worth a WARN_ON() */
714 if (d_unlinked(dentry))
715 return ERR_PTR(-ENOENT);
716 mp->m_count++;
717 return mp;
718 }
719 }
720
721 mp = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
722 if (!mp)
723 return ERR_PTR(-ENOMEM);
724
725 ret = d_set_mounted(dentry);
726 if (ret) {
727 kfree(mp);
728 return ERR_PTR(ret);
729 }
730
731 mp->m_dentry = dentry;
732 mp->m_count = 1;
733 hlist_add_head(&mp->m_hash, chain);
734 return mp;
735 }
736
737 static void put_mountpoint(struct mountpoint *mp)
738 {
739 if (!--mp->m_count) {
740 struct dentry *dentry = mp->m_dentry;
741 spin_lock(&dentry->d_lock);
742 dentry->d_flags &= ~DCACHE_MOUNTED;
743 spin_unlock(&dentry->d_lock);
744 hlist_del(&mp->m_hash);
745 kfree(mp);
746 }
747 }
748
749 static inline int check_mnt(struct mount *mnt)
750 {
751 return mnt->mnt_ns == current->nsproxy->mnt_ns;
752 }
753
754 /*
755 * vfsmount lock must be held for write
756 */
757 static void touch_mnt_namespace(struct mnt_namespace *ns)
758 {
759 if (ns) {
760 ns->event = ++event;
761 wake_up_interruptible(&ns->poll);
762 }
763 }
764
765 /*
766 * vfsmount lock must be held for write
767 */
768 static void __touch_mnt_namespace(struct mnt_namespace *ns)
769 {
770 if (ns && ns->event != event) {
771 ns->event = event;
772 wake_up_interruptible(&ns->poll);
773 }
774 }
775
776 /*
777 * vfsmount lock must be held for write
778 */
779 static void detach_mnt(struct mount *mnt, struct path *old_path)
780 {
781 old_path->dentry = mnt->mnt_mountpoint;
782 old_path->mnt = &mnt->mnt_parent->mnt;
783 mnt->mnt_parent = mnt;
784 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
785 list_del_init(&mnt->mnt_child);
786 hlist_del_init_rcu(&mnt->mnt_hash);
787 put_mountpoint(mnt->mnt_mp);
788 mnt->mnt_mp = NULL;
789 }
790
791 /*
792 * vfsmount lock must be held for write
793 */
794 void mnt_set_mountpoint(struct mount *mnt,
795 struct mountpoint *mp,
796 struct mount *child_mnt)
797 {
798 mp->m_count++;
799 mnt_add_count(mnt, 1); /* essentially, that's mntget */
800 child_mnt->mnt_mountpoint = dget(mp->m_dentry);
801 child_mnt->mnt_parent = mnt;
802 child_mnt->mnt_mp = mp;
803 }
804
805 /*
806 * vfsmount lock must be held for write
807 */
808 static void attach_mnt(struct mount *mnt,
809 struct mount *parent,
810 struct mountpoint *mp)
811 {
812 mnt_set_mountpoint(parent, mp, mnt);
813 hlist_add_head_rcu(&mnt->mnt_hash, m_hash(&parent->mnt, mp->m_dentry));
814 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
815 }
816
817 static void attach_shadowed(struct mount *mnt,
818 struct mount *parent,
819 struct mount *shadows)
820 {
821 if (shadows) {
822 hlist_add_behind_rcu(&mnt->mnt_hash, &shadows->mnt_hash);
823 list_add(&mnt->mnt_child, &shadows->mnt_child);
824 } else {
825 hlist_add_head_rcu(&mnt->mnt_hash,
826 m_hash(&parent->mnt, mnt->mnt_mountpoint));
827 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
828 }
829 }
830
831 /*
832 * vfsmount lock must be held for write
833 */
834 static void commit_tree(struct mount *mnt, struct mount *shadows)
835 {
836 struct mount *parent = mnt->mnt_parent;
837 struct mount *m;
838 LIST_HEAD(head);
839 struct mnt_namespace *n = parent->mnt_ns;
840
841 BUG_ON(parent == mnt);
842
843 list_add_tail(&head, &mnt->mnt_list);
844 list_for_each_entry(m, &head, mnt_list)
845 m->mnt_ns = n;
846
847 list_splice(&head, n->list.prev);
848
849 attach_shadowed(mnt, parent, shadows);
850 touch_mnt_namespace(n);
851 }
852
853 static struct mount *next_mnt(struct mount *p, struct mount *root)
854 {
855 struct list_head *next = p->mnt_mounts.next;
856 if (next == &p->mnt_mounts) {
857 while (1) {
858 if (p == root)
859 return NULL;
860 next = p->mnt_child.next;
861 if (next != &p->mnt_parent->mnt_mounts)
862 break;
863 p = p->mnt_parent;
864 }
865 }
866 return list_entry(next, struct mount, mnt_child);
867 }
868
869 static struct mount *skip_mnt_tree(struct mount *p)
870 {
871 struct list_head *prev = p->mnt_mounts.prev;
872 while (prev != &p->mnt_mounts) {
873 p = list_entry(prev, struct mount, mnt_child);
874 prev = p->mnt_mounts.prev;
875 }
876 return p;
877 }
878
879 struct vfsmount *
880 vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
881 {
882 struct mount *mnt;
883 struct dentry *root;
884
885 if (!type)
886 return ERR_PTR(-ENODEV);
887
888 mnt = alloc_vfsmnt(name);
889 if (!mnt)
890 return ERR_PTR(-ENOMEM);
891
892 if (flags & MS_KERNMOUNT)
893 mnt->mnt.mnt_flags = MNT_INTERNAL;
894
895 root = mount_fs(type, flags, name, data);
896 if (IS_ERR(root)) {
897 mnt_free_id(mnt);
898 free_vfsmnt(mnt);
899 return ERR_CAST(root);
900 }
901
902 mnt->mnt.mnt_root = root;
903 mnt->mnt.mnt_sb = root->d_sb;
904 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
905 mnt->mnt_parent = mnt;
906 lock_mount_hash();
907 list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
908 unlock_mount_hash();
909 return &mnt->mnt;
910 }
911 EXPORT_SYMBOL_GPL(vfs_kern_mount);
912
913 static struct mount *clone_mnt(struct mount *old, struct dentry *root,
914 int flag)
915 {
916 struct super_block *sb = old->mnt.mnt_sb;
917 struct mount *mnt;
918 int err;
919
920 mnt = alloc_vfsmnt(old->mnt_devname);
921 if (!mnt)
922 return ERR_PTR(-ENOMEM);
923
924 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
925 mnt->mnt_group_id = 0; /* not a peer of original */
926 else
927 mnt->mnt_group_id = old->mnt_group_id;
928
929 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
930 err = mnt_alloc_group_id(mnt);
931 if (err)
932 goto out_free;
933 }
934
935 mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~(MNT_WRITE_HOLD|MNT_MARKED);
936 /* Don't allow unprivileged users to change mount flags */
937 if (flag & CL_UNPRIVILEGED) {
938 mnt->mnt.mnt_flags |= MNT_LOCK_ATIME;
939
940 if (mnt->mnt.mnt_flags & MNT_READONLY)
941 mnt->mnt.mnt_flags |= MNT_LOCK_READONLY;
942
943 if (mnt->mnt.mnt_flags & MNT_NODEV)
944 mnt->mnt.mnt_flags |= MNT_LOCK_NODEV;
945
946 if (mnt->mnt.mnt_flags & MNT_NOSUID)
947 mnt->mnt.mnt_flags |= MNT_LOCK_NOSUID;
948
949 if (mnt->mnt.mnt_flags & MNT_NOEXEC)
950 mnt->mnt.mnt_flags |= MNT_LOCK_NOEXEC;
951 }
952
953 /* Don't allow unprivileged users to reveal what is under a mount */
954 if ((flag & CL_UNPRIVILEGED) && list_empty(&old->mnt_expire))
955 mnt->mnt.mnt_flags |= MNT_LOCKED;
956
957 atomic_inc(&sb->s_active);
958 mnt->mnt.mnt_sb = sb;
959 mnt->mnt.mnt_root = dget(root);
960 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
961 mnt->mnt_parent = mnt;
962 lock_mount_hash();
963 list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
964 unlock_mount_hash();
965
966 if ((flag & CL_SLAVE) ||
967 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
968 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
969 mnt->mnt_master = old;
970 CLEAR_MNT_SHARED(mnt);
971 } else if (!(flag & CL_PRIVATE)) {
972 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
973 list_add(&mnt->mnt_share, &old->mnt_share);
974 if (IS_MNT_SLAVE(old))
975 list_add(&mnt->mnt_slave, &old->mnt_slave);
976 mnt->mnt_master = old->mnt_master;
977 }
978 if (flag & CL_MAKE_SHARED)
979 set_mnt_shared(mnt);
980
981 /* stick the duplicate mount on the same expiry list
982 * as the original if that was on one */
983 if (flag & CL_EXPIRE) {
984 if (!list_empty(&old->mnt_expire))
985 list_add(&mnt->mnt_expire, &old->mnt_expire);
986 }
987
988 return mnt;
989
990 out_free:
991 mnt_free_id(mnt);
992 free_vfsmnt(mnt);
993 return ERR_PTR(err);
994 }
995
996 static void cleanup_mnt(struct mount *mnt)
997 {
998 /*
999 * This probably indicates that somebody messed
1000 * up a mnt_want/drop_write() pair. If this
1001 * happens, the filesystem was probably unable
1002 * to make r/w->r/o transitions.
1003 */
1004 /*
1005 * The locking used to deal with mnt_count decrement provides barriers,
1006 * so mnt_get_writers() below is safe.
1007 */
1008 WARN_ON(mnt_get_writers(mnt));
1009 if (unlikely(mnt->mnt_pins.first))
1010 mnt_pin_kill(mnt);
1011 fsnotify_vfsmount_delete(&mnt->mnt);
1012 dput(mnt->mnt.mnt_root);
1013 deactivate_super(mnt->mnt.mnt_sb);
1014 mnt_free_id(mnt);
1015 call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1016 }
1017
1018 static void __cleanup_mnt(struct rcu_head *head)
1019 {
1020 cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1021 }
1022
1023 static LLIST_HEAD(delayed_mntput_list);
1024 static void delayed_mntput(struct work_struct *unused)
1025 {
1026 struct llist_node *node = llist_del_all(&delayed_mntput_list);
1027 struct llist_node *next;
1028
1029 for (; node; node = next) {
1030 next = llist_next(node);
1031 cleanup_mnt(llist_entry(node, struct mount, mnt_llist));
1032 }
1033 }
1034 static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1035
1036 static void mntput_no_expire(struct mount *mnt)
1037 {
1038 rcu_read_lock();
1039 mnt_add_count(mnt, -1);
1040 if (likely(mnt->mnt_ns)) { /* shouldn't be the last one */
1041 rcu_read_unlock();
1042 return;
1043 }
1044 lock_mount_hash();
1045 if (mnt_get_count(mnt)) {
1046 rcu_read_unlock();
1047 unlock_mount_hash();
1048 return;
1049 }
1050 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1051 rcu_read_unlock();
1052 unlock_mount_hash();
1053 return;
1054 }
1055 mnt->mnt.mnt_flags |= MNT_DOOMED;
1056 rcu_read_unlock();
1057
1058 list_del(&mnt->mnt_instance);
1059 unlock_mount_hash();
1060
1061 if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1062 struct task_struct *task = current;
1063 if (likely(!(task->flags & PF_KTHREAD))) {
1064 init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1065 if (!task_work_add(task, &mnt->mnt_rcu, true))
1066 return;
1067 }
1068 if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1069 schedule_delayed_work(&delayed_mntput_work, 1);
1070 return;
1071 }
1072 cleanup_mnt(mnt);
1073 }
1074
1075 void mntput(struct vfsmount *mnt)
1076 {
1077 if (mnt) {
1078 struct mount *m = real_mount(mnt);
1079 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
1080 if (unlikely(m->mnt_expiry_mark))
1081 m->mnt_expiry_mark = 0;
1082 mntput_no_expire(m);
1083 }
1084 }
1085 EXPORT_SYMBOL(mntput);
1086
1087 struct vfsmount *mntget(struct vfsmount *mnt)
1088 {
1089 if (mnt)
1090 mnt_add_count(real_mount(mnt), 1);
1091 return mnt;
1092 }
1093 EXPORT_SYMBOL(mntget);
1094
1095 struct vfsmount *mnt_clone_internal(struct path *path)
1096 {
1097 struct mount *p;
1098 p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1099 if (IS_ERR(p))
1100 return ERR_CAST(p);
1101 p->mnt.mnt_flags |= MNT_INTERNAL;
1102 return &p->mnt;
1103 }
1104
1105 static inline void mangle(struct seq_file *m, const char *s)
1106 {
1107 seq_escape(m, s, " \t\n\\");
1108 }
1109
1110 /*
1111 * Simple .show_options callback for filesystems which don't want to
1112 * implement more complex mount option showing.
1113 *
1114 * See also save_mount_options().
1115 */
1116 int generic_show_options(struct seq_file *m, struct dentry *root)
1117 {
1118 const char *options;
1119
1120 rcu_read_lock();
1121 options = rcu_dereference(root->d_sb->s_options);
1122
1123 if (options != NULL && options[0]) {
1124 seq_putc(m, ',');
1125 mangle(m, options);
1126 }
1127 rcu_read_unlock();
1128
1129 return 0;
1130 }
1131 EXPORT_SYMBOL(generic_show_options);
1132
1133 /*
1134 * If filesystem uses generic_show_options(), this function should be
1135 * called from the fill_super() callback.
1136 *
1137 * The .remount_fs callback usually needs to be handled in a special
1138 * way, to make sure, that previous options are not overwritten if the
1139 * remount fails.
1140 *
1141 * Also note, that if the filesystem's .remount_fs function doesn't
1142 * reset all options to their default value, but changes only newly
1143 * given options, then the displayed options will not reflect reality
1144 * any more.
1145 */
1146 void save_mount_options(struct super_block *sb, char *options)
1147 {
1148 BUG_ON(sb->s_options);
1149 rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
1150 }
1151 EXPORT_SYMBOL(save_mount_options);
1152
1153 void replace_mount_options(struct super_block *sb, char *options)
1154 {
1155 char *old = sb->s_options;
1156 rcu_assign_pointer(sb->s_options, options);
1157 if (old) {
1158 synchronize_rcu();
1159 kfree(old);
1160 }
1161 }
1162 EXPORT_SYMBOL(replace_mount_options);
1163
1164 #ifdef CONFIG_PROC_FS
1165 /* iterator; we want it to have access to namespace_sem, thus here... */
1166 static void *m_start(struct seq_file *m, loff_t *pos)
1167 {
1168 struct proc_mounts *p = proc_mounts(m);
1169
1170 down_read(&namespace_sem);
1171 if (p->cached_event == p->ns->event) {
1172 void *v = p->cached_mount;
1173 if (*pos == p->cached_index)
1174 return v;
1175 if (*pos == p->cached_index + 1) {
1176 v = seq_list_next(v, &p->ns->list, &p->cached_index);
1177 return p->cached_mount = v;
1178 }
1179 }
1180
1181 p->cached_event = p->ns->event;
1182 p->cached_mount = seq_list_start(&p->ns->list, *pos);
1183 p->cached_index = *pos;
1184 return p->cached_mount;
1185 }
1186
1187 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1188 {
1189 struct proc_mounts *p = proc_mounts(m);
1190
1191 p->cached_mount = seq_list_next(v, &p->ns->list, pos);
1192 p->cached_index = *pos;
1193 return p->cached_mount;
1194 }
1195
1196 static void m_stop(struct seq_file *m, void *v)
1197 {
1198 up_read(&namespace_sem);
1199 }
1200
1201 static int m_show(struct seq_file *m, void *v)
1202 {
1203 struct proc_mounts *p = proc_mounts(m);
1204 struct mount *r = list_entry(v, struct mount, mnt_list);
1205 return p->show(m, &r->mnt);
1206 }
1207
1208 const struct seq_operations mounts_op = {
1209 .start = m_start,
1210 .next = m_next,
1211 .stop = m_stop,
1212 .show = m_show,
1213 };
1214 #endif /* CONFIG_PROC_FS */
1215
1216 /**
1217 * may_umount_tree - check if a mount tree is busy
1218 * @mnt: root of mount tree
1219 *
1220 * This is called to check if a tree of mounts has any
1221 * open files, pwds, chroots or sub mounts that are
1222 * busy.
1223 */
1224 int may_umount_tree(struct vfsmount *m)
1225 {
1226 struct mount *mnt = real_mount(m);
1227 int actual_refs = 0;
1228 int minimum_refs = 0;
1229 struct mount *p;
1230 BUG_ON(!m);
1231
1232 /* write lock needed for mnt_get_count */
1233 lock_mount_hash();
1234 for (p = mnt; p; p = next_mnt(p, mnt)) {
1235 actual_refs += mnt_get_count(p);
1236 minimum_refs += 2;
1237 }
1238 unlock_mount_hash();
1239
1240 if (actual_refs > minimum_refs)
1241 return 0;
1242
1243 return 1;
1244 }
1245
1246 EXPORT_SYMBOL(may_umount_tree);
1247
1248 /**
1249 * may_umount - check if a mount point is busy
1250 * @mnt: root of mount
1251 *
1252 * This is called to check if a mount point has any
1253 * open files, pwds, chroots or sub mounts. If the
1254 * mount has sub mounts this will return busy
1255 * regardless of whether the sub mounts are busy.
1256 *
1257 * Doesn't take quota and stuff into account. IOW, in some cases it will
1258 * give false negatives. The main reason why it's here is that we need
1259 * a non-destructive way to look for easily umountable filesystems.
1260 */
1261 int may_umount(struct vfsmount *mnt)
1262 {
1263 int ret = 1;
1264 down_read(&namespace_sem);
1265 lock_mount_hash();
1266 if (propagate_mount_busy(real_mount(mnt), 2))
1267 ret = 0;
1268 unlock_mount_hash();
1269 up_read(&namespace_sem);
1270 return ret;
1271 }
1272
1273 EXPORT_SYMBOL(may_umount);
1274
1275 static HLIST_HEAD(unmounted); /* protected by namespace_sem */
1276
1277 static void namespace_unlock(void)
1278 {
1279 struct mount *mnt;
1280 struct hlist_head head = unmounted;
1281
1282 if (likely(hlist_empty(&head))) {
1283 up_write(&namespace_sem);
1284 return;
1285 }
1286
1287 head.first->pprev = &head.first;
1288 INIT_HLIST_HEAD(&unmounted);
1289
1290 /* undo decrements we'd done in umount_tree() */
1291 hlist_for_each_entry(mnt, &head, mnt_hash)
1292 if (mnt->mnt_ex_mountpoint.mnt)
1293 mntget(mnt->mnt_ex_mountpoint.mnt);
1294
1295 up_write(&namespace_sem);
1296
1297 synchronize_rcu();
1298
1299 while (!hlist_empty(&head)) {
1300 mnt = hlist_entry(head.first, struct mount, mnt_hash);
1301 hlist_del_init(&mnt->mnt_hash);
1302 if (mnt->mnt_ex_mountpoint.mnt)
1303 path_put(&mnt->mnt_ex_mountpoint);
1304 mntput(&mnt->mnt);
1305 }
1306 }
1307
1308 static inline void namespace_lock(void)
1309 {
1310 down_write(&namespace_sem);
1311 }
1312
1313 /*
1314 * mount_lock must be held
1315 * namespace_sem must be held for write
1316 * how = 0 => just this tree, don't propagate
1317 * how = 1 => propagate; we know that nobody else has reference to any victims
1318 * how = 2 => lazy umount
1319 */
1320 void umount_tree(struct mount *mnt, int how)
1321 {
1322 HLIST_HEAD(tmp_list);
1323 struct mount *p;
1324 struct mount *last = NULL;
1325
1326 for (p = mnt; p; p = next_mnt(p, mnt)) {
1327 hlist_del_init_rcu(&p->mnt_hash);
1328 hlist_add_head(&p->mnt_hash, &tmp_list);
1329 }
1330
1331 hlist_for_each_entry(p, &tmp_list, mnt_hash)
1332 list_del_init(&p->mnt_child);
1333
1334 if (how)
1335 propagate_umount(&tmp_list);
1336
1337 hlist_for_each_entry(p, &tmp_list, mnt_hash) {
1338 list_del_init(&p->mnt_expire);
1339 list_del_init(&p->mnt_list);
1340 __touch_mnt_namespace(p->mnt_ns);
1341 p->mnt_ns = NULL;
1342 if (how < 2)
1343 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
1344 if (mnt_has_parent(p)) {
1345 put_mountpoint(p->mnt_mp);
1346 mnt_add_count(p->mnt_parent, -1);
1347 /* move the reference to mountpoint into ->mnt_ex_mountpoint */
1348 p->mnt_ex_mountpoint.dentry = p->mnt_mountpoint;
1349 p->mnt_ex_mountpoint.mnt = &p->mnt_parent->mnt;
1350 p->mnt_mountpoint = p->mnt.mnt_root;
1351 p->mnt_parent = p;
1352 p->mnt_mp = NULL;
1353 }
1354 change_mnt_propagation(p, MS_PRIVATE);
1355 last = p;
1356 }
1357 if (last) {
1358 last->mnt_hash.next = unmounted.first;
1359 unmounted.first = tmp_list.first;
1360 unmounted.first->pprev = &unmounted.first;
1361 }
1362 }
1363
1364 static void shrink_submounts(struct mount *mnt);
1365
1366 static int do_umount(struct mount *mnt, int flags)
1367 {
1368 struct super_block *sb = mnt->mnt.mnt_sb;
1369 int retval;
1370
1371 retval = security_sb_umount(&mnt->mnt, flags);
1372 if (retval)
1373 return retval;
1374
1375 /*
1376 * Allow userspace to request a mountpoint be expired rather than
1377 * unmounting unconditionally. Unmount only happens if:
1378 * (1) the mark is already set (the mark is cleared by mntput())
1379 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1380 */
1381 if (flags & MNT_EXPIRE) {
1382 if (&mnt->mnt == current->fs->root.mnt ||
1383 flags & (MNT_FORCE | MNT_DETACH))
1384 return -EINVAL;
1385
1386 /*
1387 * probably don't strictly need the lock here if we examined
1388 * all race cases, but it's a slowpath.
1389 */
1390 lock_mount_hash();
1391 if (mnt_get_count(mnt) != 2) {
1392 unlock_mount_hash();
1393 return -EBUSY;
1394 }
1395 unlock_mount_hash();
1396
1397 if (!xchg(&mnt->mnt_expiry_mark, 1))
1398 return -EAGAIN;
1399 }
1400
1401 /*
1402 * If we may have to abort operations to get out of this
1403 * mount, and they will themselves hold resources we must
1404 * allow the fs to do things. In the Unix tradition of
1405 * 'Gee thats tricky lets do it in userspace' the umount_begin
1406 * might fail to complete on the first run through as other tasks
1407 * must return, and the like. Thats for the mount program to worry
1408 * about for the moment.
1409 */
1410
1411 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1412 sb->s_op->umount_begin(sb);
1413 }
1414
1415 /*
1416 * No sense to grab the lock for this test, but test itself looks
1417 * somewhat bogus. Suggestions for better replacement?
1418 * Ho-hum... In principle, we might treat that as umount + switch
1419 * to rootfs. GC would eventually take care of the old vfsmount.
1420 * Actually it makes sense, especially if rootfs would contain a
1421 * /reboot - static binary that would close all descriptors and
1422 * call reboot(9). Then init(8) could umount root and exec /reboot.
1423 */
1424 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1425 /*
1426 * Special case for "unmounting" root ...
1427 * we just try to remount it readonly.
1428 */
1429 down_write(&sb->s_umount);
1430 if (!(sb->s_flags & MS_RDONLY))
1431 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1432 up_write(&sb->s_umount);
1433 return retval;
1434 }
1435
1436 namespace_lock();
1437 lock_mount_hash();
1438 event++;
1439
1440 if (flags & MNT_DETACH) {
1441 if (!list_empty(&mnt->mnt_list))
1442 umount_tree(mnt, 2);
1443 retval = 0;
1444 } else {
1445 shrink_submounts(mnt);
1446 retval = -EBUSY;
1447 if (!propagate_mount_busy(mnt, 2)) {
1448 if (!list_empty(&mnt->mnt_list))
1449 umount_tree(mnt, 1);
1450 retval = 0;
1451 }
1452 }
1453 unlock_mount_hash();
1454 namespace_unlock();
1455 return retval;
1456 }
1457
1458 /*
1459 * Is the caller allowed to modify his namespace?
1460 */
1461 static inline bool may_mount(void)
1462 {
1463 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1464 }
1465
1466 /*
1467 * Now umount can handle mount points as well as block devices.
1468 * This is important for filesystems which use unnamed block devices.
1469 *
1470 * We now support a flag for forced unmount like the other 'big iron'
1471 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1472 */
1473
1474 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1475 {
1476 struct path path;
1477 struct mount *mnt;
1478 int retval;
1479 int lookup_flags = 0;
1480
1481 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1482 return -EINVAL;
1483
1484 if (!may_mount())
1485 return -EPERM;
1486
1487 if (!(flags & UMOUNT_NOFOLLOW))
1488 lookup_flags |= LOOKUP_FOLLOW;
1489
1490 retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path);
1491 if (retval)
1492 goto out;
1493 mnt = real_mount(path.mnt);
1494 retval = -EINVAL;
1495 if (path.dentry != path.mnt->mnt_root)
1496 goto dput_and_out;
1497 if (!check_mnt(mnt))
1498 goto dput_and_out;
1499 if (mnt->mnt.mnt_flags & MNT_LOCKED)
1500 goto dput_and_out;
1501
1502 retval = do_umount(mnt, flags);
1503 dput_and_out:
1504 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
1505 dput(path.dentry);
1506 mntput_no_expire(mnt);
1507 out:
1508 return retval;
1509 }
1510
1511 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1512
1513 /*
1514 * The 2.0 compatible umount. No flags.
1515 */
1516 SYSCALL_DEFINE1(oldumount, char __user *, name)
1517 {
1518 return sys_umount(name, 0);
1519 }
1520
1521 #endif
1522
1523 static bool is_mnt_ns_file(struct dentry *dentry)
1524 {
1525 /* Is this a proxy for a mount namespace? */
1526 struct inode *inode = dentry->d_inode;
1527 struct proc_ns *ei;
1528
1529 if (!proc_ns_inode(inode))
1530 return false;
1531
1532 ei = get_proc_ns(inode);
1533 if (ei->ns_ops != &mntns_operations)
1534 return false;
1535
1536 return true;
1537 }
1538
1539 static bool mnt_ns_loop(struct dentry *dentry)
1540 {
1541 /* Could bind mounting the mount namespace inode cause a
1542 * mount namespace loop?
1543 */
1544 struct mnt_namespace *mnt_ns;
1545 if (!is_mnt_ns_file(dentry))
1546 return false;
1547
1548 mnt_ns = get_proc_ns(dentry->d_inode)->ns;
1549 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1550 }
1551
1552 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
1553 int flag)
1554 {
1555 struct mount *res, *p, *q, *r, *parent;
1556
1557 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1558 return ERR_PTR(-EINVAL);
1559
1560 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
1561 return ERR_PTR(-EINVAL);
1562
1563 res = q = clone_mnt(mnt, dentry, flag);
1564 if (IS_ERR(q))
1565 return q;
1566
1567 q->mnt.mnt_flags &= ~MNT_LOCKED;
1568 q->mnt_mountpoint = mnt->mnt_mountpoint;
1569
1570 p = mnt;
1571 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1572 struct mount *s;
1573 if (!is_subdir(r->mnt_mountpoint, dentry))
1574 continue;
1575
1576 for (s = r; s; s = next_mnt(s, r)) {
1577 struct mount *t = NULL;
1578 if (!(flag & CL_COPY_UNBINDABLE) &&
1579 IS_MNT_UNBINDABLE(s)) {
1580 s = skip_mnt_tree(s);
1581 continue;
1582 }
1583 if (!(flag & CL_COPY_MNT_NS_FILE) &&
1584 is_mnt_ns_file(s->mnt.mnt_root)) {
1585 s = skip_mnt_tree(s);
1586 continue;
1587 }
1588 while (p != s->mnt_parent) {
1589 p = p->mnt_parent;
1590 q = q->mnt_parent;
1591 }
1592 p = s;
1593 parent = q;
1594 q = clone_mnt(p, p->mnt.mnt_root, flag);
1595 if (IS_ERR(q))
1596 goto out;
1597 lock_mount_hash();
1598 list_add_tail(&q->mnt_list, &res->mnt_list);
1599 mnt_set_mountpoint(parent, p->mnt_mp, q);
1600 if (!list_empty(&parent->mnt_mounts)) {
1601 t = list_last_entry(&parent->mnt_mounts,
1602 struct mount, mnt_child);
1603 if (t->mnt_mp != p->mnt_mp)
1604 t = NULL;
1605 }
1606 attach_shadowed(q, parent, t);
1607 unlock_mount_hash();
1608 }
1609 }
1610 return res;
1611 out:
1612 if (res) {
1613 lock_mount_hash();
1614 umount_tree(res, 0);
1615 unlock_mount_hash();
1616 }
1617 return q;
1618 }
1619
1620 /* Caller should check returned pointer for errors */
1621
1622 struct vfsmount *collect_mounts(struct path *path)
1623 {
1624 struct mount *tree;
1625 namespace_lock();
1626 tree = copy_tree(real_mount(path->mnt), path->dentry,
1627 CL_COPY_ALL | CL_PRIVATE);
1628 namespace_unlock();
1629 if (IS_ERR(tree))
1630 return ERR_CAST(tree);
1631 return &tree->mnt;
1632 }
1633
1634 void drop_collected_mounts(struct vfsmount *mnt)
1635 {
1636 namespace_lock();
1637 lock_mount_hash();
1638 umount_tree(real_mount(mnt), 0);
1639 unlock_mount_hash();
1640 namespace_unlock();
1641 }
1642
1643 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1644 struct vfsmount *root)
1645 {
1646 struct mount *mnt;
1647 int res = f(root, arg);
1648 if (res)
1649 return res;
1650 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1651 res = f(&mnt->mnt, arg);
1652 if (res)
1653 return res;
1654 }
1655 return 0;
1656 }
1657
1658 static void cleanup_group_ids(struct mount *mnt, struct mount *end)
1659 {
1660 struct mount *p;
1661
1662 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1663 if (p->mnt_group_id && !IS_MNT_SHARED(p))
1664 mnt_release_group_id(p);
1665 }
1666 }
1667
1668 static int invent_group_ids(struct mount *mnt, bool recurse)
1669 {
1670 struct mount *p;
1671
1672 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1673 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1674 int err = mnt_alloc_group_id(p);
1675 if (err) {
1676 cleanup_group_ids(mnt, p);
1677 return err;
1678 }
1679 }
1680 }
1681
1682 return 0;
1683 }
1684
1685 /*
1686 * @source_mnt : mount tree to be attached
1687 * @nd : place the mount tree @source_mnt is attached
1688 * @parent_nd : if non-null, detach the source_mnt from its parent and
1689 * store the parent mount and mountpoint dentry.
1690 * (done when source_mnt is moved)
1691 *
1692 * NOTE: in the table below explains the semantics when a source mount
1693 * of a given type is attached to a destination mount of a given type.
1694 * ---------------------------------------------------------------------------
1695 * | BIND MOUNT OPERATION |
1696 * |**************************************************************************
1697 * | source-->| shared | private | slave | unbindable |
1698 * | dest | | | | |
1699 * | | | | | | |
1700 * | v | | | | |
1701 * |**************************************************************************
1702 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1703 * | | | | | |
1704 * |non-shared| shared (+) | private | slave (*) | invalid |
1705 * ***************************************************************************
1706 * A bind operation clones the source mount and mounts the clone on the
1707 * destination mount.
1708 *
1709 * (++) the cloned mount is propagated to all the mounts in the propagation
1710 * tree of the destination mount and the cloned mount is added to
1711 * the peer group of the source mount.
1712 * (+) the cloned mount is created under the destination mount and is marked
1713 * as shared. The cloned mount is added to the peer group of the source
1714 * mount.
1715 * (+++) the mount is propagated to all the mounts in the propagation tree
1716 * of the destination mount and the cloned mount is made slave
1717 * of the same master as that of the source mount. The cloned mount
1718 * is marked as 'shared and slave'.
1719 * (*) the cloned mount is made a slave of the same master as that of the
1720 * source mount.
1721 *
1722 * ---------------------------------------------------------------------------
1723 * | MOVE MOUNT OPERATION |
1724 * |**************************************************************************
1725 * | source-->| shared | private | slave | unbindable |
1726 * | dest | | | | |
1727 * | | | | | | |
1728 * | v | | | | |
1729 * |**************************************************************************
1730 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1731 * | | | | | |
1732 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1733 * ***************************************************************************
1734 *
1735 * (+) the mount is moved to the destination. And is then propagated to
1736 * all the mounts in the propagation tree of the destination mount.
1737 * (+*) the mount is moved to the destination.
1738 * (+++) the mount is moved to the destination and is then propagated to
1739 * all the mounts belonging to the destination mount's propagation tree.
1740 * the mount is marked as 'shared and slave'.
1741 * (*) the mount continues to be a slave at the new location.
1742 *
1743 * if the source mount is a tree, the operations explained above is
1744 * applied to each mount in the tree.
1745 * Must be called without spinlocks held, since this function can sleep
1746 * in allocations.
1747 */
1748 static int attach_recursive_mnt(struct mount *source_mnt,
1749 struct mount *dest_mnt,
1750 struct mountpoint *dest_mp,
1751 struct path *parent_path)
1752 {
1753 HLIST_HEAD(tree_list);
1754 struct mount *child, *p;
1755 struct hlist_node *n;
1756 int err;
1757
1758 if (IS_MNT_SHARED(dest_mnt)) {
1759 err = invent_group_ids(source_mnt, true);
1760 if (err)
1761 goto out;
1762 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
1763 lock_mount_hash();
1764 if (err)
1765 goto out_cleanup_ids;
1766 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
1767 set_mnt_shared(p);
1768 } else {
1769 lock_mount_hash();
1770 }
1771 if (parent_path) {
1772 detach_mnt(source_mnt, parent_path);
1773 attach_mnt(source_mnt, dest_mnt, dest_mp);
1774 touch_mnt_namespace(source_mnt->mnt_ns);
1775 } else {
1776 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
1777 commit_tree(source_mnt, NULL);
1778 }
1779
1780 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
1781 struct mount *q;
1782 hlist_del_init(&child->mnt_hash);
1783 q = __lookup_mnt_last(&child->mnt_parent->mnt,
1784 child->mnt_mountpoint);
1785 commit_tree(child, q);
1786 }
1787 unlock_mount_hash();
1788
1789 return 0;
1790
1791 out_cleanup_ids:
1792 while (!hlist_empty(&tree_list)) {
1793 child = hlist_entry(tree_list.first, struct mount, mnt_hash);
1794 umount_tree(child, 0);
1795 }
1796 unlock_mount_hash();
1797 cleanup_group_ids(source_mnt, NULL);
1798 out:
1799 return err;
1800 }
1801
1802 static struct mountpoint *lock_mount(struct path *path)
1803 {
1804 struct vfsmount *mnt;
1805 struct dentry *dentry = path->dentry;
1806 retry:
1807 mutex_lock(&dentry->d_inode->i_mutex);
1808 if (unlikely(cant_mount(dentry))) {
1809 mutex_unlock(&dentry->d_inode->i_mutex);
1810 return ERR_PTR(-ENOENT);
1811 }
1812 namespace_lock();
1813 mnt = lookup_mnt(path);
1814 if (likely(!mnt)) {
1815 struct mountpoint *mp = new_mountpoint(dentry);
1816 if (IS_ERR(mp)) {
1817 namespace_unlock();
1818 mutex_unlock(&dentry->d_inode->i_mutex);
1819 return mp;
1820 }
1821 return mp;
1822 }
1823 namespace_unlock();
1824 mutex_unlock(&path->dentry->d_inode->i_mutex);
1825 path_put(path);
1826 path->mnt = mnt;
1827 dentry = path->dentry = dget(mnt->mnt_root);
1828 goto retry;
1829 }
1830
1831 static void unlock_mount(struct mountpoint *where)
1832 {
1833 struct dentry *dentry = where->m_dentry;
1834 put_mountpoint(where);
1835 namespace_unlock();
1836 mutex_unlock(&dentry->d_inode->i_mutex);
1837 }
1838
1839 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
1840 {
1841 if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER)
1842 return -EINVAL;
1843
1844 if (S_ISDIR(mp->m_dentry->d_inode->i_mode) !=
1845 S_ISDIR(mnt->mnt.mnt_root->d_inode->i_mode))
1846 return -ENOTDIR;
1847
1848 return attach_recursive_mnt(mnt, p, mp, NULL);
1849 }
1850
1851 /*
1852 * Sanity check the flags to change_mnt_propagation.
1853 */
1854
1855 static int flags_to_propagation_type(int flags)
1856 {
1857 int type = flags & ~(MS_REC | MS_SILENT);
1858
1859 /* Fail if any non-propagation flags are set */
1860 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
1861 return 0;
1862 /* Only one propagation flag should be set */
1863 if (!is_power_of_2(type))
1864 return 0;
1865 return type;
1866 }
1867
1868 /*
1869 * recursively change the type of the mountpoint.
1870 */
1871 static int do_change_type(struct path *path, int flag)
1872 {
1873 struct mount *m;
1874 struct mount *mnt = real_mount(path->mnt);
1875 int recurse = flag & MS_REC;
1876 int type;
1877 int err = 0;
1878
1879 if (path->dentry != path->mnt->mnt_root)
1880 return -EINVAL;
1881
1882 type = flags_to_propagation_type(flag);
1883 if (!type)
1884 return -EINVAL;
1885
1886 namespace_lock();
1887 if (type == MS_SHARED) {
1888 err = invent_group_ids(mnt, recurse);
1889 if (err)
1890 goto out_unlock;
1891 }
1892
1893 lock_mount_hash();
1894 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
1895 change_mnt_propagation(m, type);
1896 unlock_mount_hash();
1897
1898 out_unlock:
1899 namespace_unlock();
1900 return err;
1901 }
1902
1903 static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
1904 {
1905 struct mount *child;
1906 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
1907 if (!is_subdir(child->mnt_mountpoint, dentry))
1908 continue;
1909
1910 if (child->mnt.mnt_flags & MNT_LOCKED)
1911 return true;
1912 }
1913 return false;
1914 }
1915
1916 /*
1917 * do loopback mount.
1918 */
1919 static int do_loopback(struct path *path, const char *old_name,
1920 int recurse)
1921 {
1922 struct path old_path;
1923 struct mount *mnt = NULL, *old, *parent;
1924 struct mountpoint *mp;
1925 int err;
1926 if (!old_name || !*old_name)
1927 return -EINVAL;
1928 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
1929 if (err)
1930 return err;
1931
1932 err = -EINVAL;
1933 if (mnt_ns_loop(old_path.dentry))
1934 goto out;
1935
1936 mp = lock_mount(path);
1937 err = PTR_ERR(mp);
1938 if (IS_ERR(mp))
1939 goto out;
1940
1941 old = real_mount(old_path.mnt);
1942 parent = real_mount(path->mnt);
1943
1944 err = -EINVAL;
1945 if (IS_MNT_UNBINDABLE(old))
1946 goto out2;
1947
1948 if (!check_mnt(parent) || !check_mnt(old))
1949 goto out2;
1950
1951 if (!recurse && has_locked_children(old, old_path.dentry))
1952 goto out2;
1953
1954 if (recurse)
1955 mnt = copy_tree(old, old_path.dentry, CL_COPY_MNT_NS_FILE);
1956 else
1957 mnt = clone_mnt(old, old_path.dentry, 0);
1958
1959 if (IS_ERR(mnt)) {
1960 err = PTR_ERR(mnt);
1961 goto out2;
1962 }
1963
1964 mnt->mnt.mnt_flags &= ~MNT_LOCKED;
1965
1966 err = graft_tree(mnt, parent, mp);
1967 if (err) {
1968 lock_mount_hash();
1969 umount_tree(mnt, 0);
1970 unlock_mount_hash();
1971 }
1972 out2:
1973 unlock_mount(mp);
1974 out:
1975 path_put(&old_path);
1976 return err;
1977 }
1978
1979 static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
1980 {
1981 int error = 0;
1982 int readonly_request = 0;
1983
1984 if (ms_flags & MS_RDONLY)
1985 readonly_request = 1;
1986 if (readonly_request == __mnt_is_readonly(mnt))
1987 return 0;
1988
1989 if (readonly_request)
1990 error = mnt_make_readonly(real_mount(mnt));
1991 else
1992 __mnt_unmake_readonly(real_mount(mnt));
1993 return error;
1994 }
1995
1996 /*
1997 * change filesystem flags. dir should be a physical root of filesystem.
1998 * If you've mounted a non-root directory somewhere and want to do remount
1999 * on it - tough luck.
2000 */
2001 static int do_remount(struct path *path, int flags, int mnt_flags,
2002 void *data)
2003 {
2004 int err;
2005 struct super_block *sb = path->mnt->mnt_sb;
2006 struct mount *mnt = real_mount(path->mnt);
2007
2008 if (!check_mnt(mnt))
2009 return -EINVAL;
2010
2011 if (path->dentry != path->mnt->mnt_root)
2012 return -EINVAL;
2013
2014 /* Don't allow changing of locked mnt flags.
2015 *
2016 * No locks need to be held here while testing the various
2017 * MNT_LOCK flags because those flags can never be cleared
2018 * once they are set.
2019 */
2020 if ((mnt->mnt.mnt_flags & MNT_LOCK_READONLY) &&
2021 !(mnt_flags & MNT_READONLY)) {
2022 return -EPERM;
2023 }
2024 if ((mnt->mnt.mnt_flags & MNT_LOCK_NODEV) &&
2025 !(mnt_flags & MNT_NODEV)) {
2026 return -EPERM;
2027 }
2028 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOSUID) &&
2029 !(mnt_flags & MNT_NOSUID)) {
2030 return -EPERM;
2031 }
2032 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOEXEC) &&
2033 !(mnt_flags & MNT_NOEXEC)) {
2034 return -EPERM;
2035 }
2036 if ((mnt->mnt.mnt_flags & MNT_LOCK_ATIME) &&
2037 ((mnt->mnt.mnt_flags & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) {
2038 return -EPERM;
2039 }
2040
2041 err = security_sb_remount(sb, data);
2042 if (err)
2043 return err;
2044
2045 down_write(&sb->s_umount);
2046 if (flags & MS_BIND)
2047 err = change_mount_flags(path->mnt, flags);
2048 else if (!capable(CAP_SYS_ADMIN))
2049 err = -EPERM;
2050 else
2051 err = do_remount_sb(sb, flags, data, 0);
2052 if (!err) {
2053 lock_mount_hash();
2054 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
2055 mnt->mnt.mnt_flags = mnt_flags;
2056 touch_mnt_namespace(mnt->mnt_ns);
2057 unlock_mount_hash();
2058 }
2059 up_write(&sb->s_umount);
2060 return err;
2061 }
2062
2063 static inline int tree_contains_unbindable(struct mount *mnt)
2064 {
2065 struct mount *p;
2066 for (p = mnt; p; p = next_mnt(p, mnt)) {
2067 if (IS_MNT_UNBINDABLE(p))
2068 return 1;
2069 }
2070 return 0;
2071 }
2072
2073 static int do_move_mount(struct path *path, const char *old_name)
2074 {
2075 struct path old_path, parent_path;
2076 struct mount *p;
2077 struct mount *old;
2078 struct mountpoint *mp;
2079 int err;
2080 if (!old_name || !*old_name)
2081 return -EINVAL;
2082 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
2083 if (err)
2084 return err;
2085
2086 mp = lock_mount(path);
2087 err = PTR_ERR(mp);
2088 if (IS_ERR(mp))
2089 goto out;
2090
2091 old = real_mount(old_path.mnt);
2092 p = real_mount(path->mnt);
2093
2094 err = -EINVAL;
2095 if (!check_mnt(p) || !check_mnt(old))
2096 goto out1;
2097
2098 if (old->mnt.mnt_flags & MNT_LOCKED)
2099 goto out1;
2100
2101 err = -EINVAL;
2102 if (old_path.dentry != old_path.mnt->mnt_root)
2103 goto out1;
2104
2105 if (!mnt_has_parent(old))
2106 goto out1;
2107
2108 if (S_ISDIR(path->dentry->d_inode->i_mode) !=
2109 S_ISDIR(old_path.dentry->d_inode->i_mode))
2110 goto out1;
2111 /*
2112 * Don't move a mount residing in a shared parent.
2113 */
2114 if (IS_MNT_SHARED(old->mnt_parent))
2115 goto out1;
2116 /*
2117 * Don't move a mount tree containing unbindable mounts to a destination
2118 * mount which is shared.
2119 */
2120 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
2121 goto out1;
2122 err = -ELOOP;
2123 for (; mnt_has_parent(p); p = p->mnt_parent)
2124 if (p == old)
2125 goto out1;
2126
2127 err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path);
2128 if (err)
2129 goto out1;
2130
2131 /* if the mount is moved, it should no longer be expire
2132 * automatically */
2133 list_del_init(&old->mnt_expire);
2134 out1:
2135 unlock_mount(mp);
2136 out:
2137 if (!err)
2138 path_put(&parent_path);
2139 path_put(&old_path);
2140 return err;
2141 }
2142
2143 static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
2144 {
2145 int err;
2146 const char *subtype = strchr(fstype, '.');
2147 if (subtype) {
2148 subtype++;
2149 err = -EINVAL;
2150 if (!subtype[0])
2151 goto err;
2152 } else
2153 subtype = "";
2154
2155 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
2156 err = -ENOMEM;
2157 if (!mnt->mnt_sb->s_subtype)
2158 goto err;
2159 return mnt;
2160
2161 err:
2162 mntput(mnt);
2163 return ERR_PTR(err);
2164 }
2165
2166 /*
2167 * add a mount into a namespace's mount tree
2168 */
2169 static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
2170 {
2171 struct mountpoint *mp;
2172 struct mount *parent;
2173 int err;
2174
2175 mnt_flags &= ~MNT_INTERNAL_FLAGS;
2176
2177 mp = lock_mount(path);
2178 if (IS_ERR(mp))
2179 return PTR_ERR(mp);
2180
2181 parent = real_mount(path->mnt);
2182 err = -EINVAL;
2183 if (unlikely(!check_mnt(parent))) {
2184 /* that's acceptable only for automounts done in private ns */
2185 if (!(mnt_flags & MNT_SHRINKABLE))
2186 goto unlock;
2187 /* ... and for those we'd better have mountpoint still alive */
2188 if (!parent->mnt_ns)
2189 goto unlock;
2190 }
2191
2192 /* Refuse the same filesystem on the same mount point */
2193 err = -EBUSY;
2194 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
2195 path->mnt->mnt_root == path->dentry)
2196 goto unlock;
2197
2198 err = -EINVAL;
2199 if (S_ISLNK(newmnt->mnt.mnt_root->d_inode->i_mode))
2200 goto unlock;
2201
2202 newmnt->mnt.mnt_flags = mnt_flags;
2203 err = graft_tree(newmnt, parent, mp);
2204
2205 unlock:
2206 unlock_mount(mp);
2207 return err;
2208 }
2209
2210 /*
2211 * create a new mount for userspace and request it to be added into the
2212 * namespace's tree
2213 */
2214 static int do_new_mount(struct path *path, const char *fstype, int flags,
2215 int mnt_flags, const char *name, void *data)
2216 {
2217 struct file_system_type *type;
2218 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2219 struct vfsmount *mnt;
2220 int err;
2221
2222 if (!fstype)
2223 return -EINVAL;
2224
2225 type = get_fs_type(fstype);
2226 if (!type)
2227 return -ENODEV;
2228
2229 if (user_ns != &init_user_ns) {
2230 if (!(type->fs_flags & FS_USERNS_MOUNT)) {
2231 put_filesystem(type);
2232 return -EPERM;
2233 }
2234 /* Only in special cases allow devices from mounts
2235 * created outside the initial user namespace.
2236 */
2237 if (!(type->fs_flags & FS_USERNS_DEV_MOUNT)) {
2238 flags |= MS_NODEV;
2239 mnt_flags |= MNT_NODEV | MNT_LOCK_NODEV;
2240 }
2241 }
2242
2243 mnt = vfs_kern_mount(type, flags, name, data);
2244 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
2245 !mnt->mnt_sb->s_subtype)
2246 mnt = fs_set_subtype(mnt, fstype);
2247
2248 put_filesystem(type);
2249 if (IS_ERR(mnt))
2250 return PTR_ERR(mnt);
2251
2252 err = do_add_mount(real_mount(mnt), path, mnt_flags);
2253 if (err)
2254 mntput(mnt);
2255 return err;
2256 }
2257
2258 int finish_automount(struct vfsmount *m, struct path *path)
2259 {
2260 struct mount *mnt = real_mount(m);
2261 int err;
2262 /* The new mount record should have at least 2 refs to prevent it being
2263 * expired before we get a chance to add it
2264 */
2265 BUG_ON(mnt_get_count(mnt) < 2);
2266
2267 if (m->mnt_sb == path->mnt->mnt_sb &&
2268 m->mnt_root == path->dentry) {
2269 err = -ELOOP;
2270 goto fail;
2271 }
2272
2273 err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
2274 if (!err)
2275 return 0;
2276 fail:
2277 /* remove m from any expiration list it may be on */
2278 if (!list_empty(&mnt->mnt_expire)) {
2279 namespace_lock();
2280 list_del_init(&mnt->mnt_expire);
2281 namespace_unlock();
2282 }
2283 mntput(m);
2284 mntput(m);
2285 return err;
2286 }
2287
2288 /**
2289 * mnt_set_expiry - Put a mount on an expiration list
2290 * @mnt: The mount to list.
2291 * @expiry_list: The list to add the mount to.
2292 */
2293 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2294 {
2295 namespace_lock();
2296
2297 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
2298
2299 namespace_unlock();
2300 }
2301 EXPORT_SYMBOL(mnt_set_expiry);
2302
2303 /*
2304 * process a list of expirable mountpoints with the intent of discarding any
2305 * mountpoints that aren't in use and haven't been touched since last we came
2306 * here
2307 */
2308 void mark_mounts_for_expiry(struct list_head *mounts)
2309 {
2310 struct mount *mnt, *next;
2311 LIST_HEAD(graveyard);
2312
2313 if (list_empty(mounts))
2314 return;
2315
2316 namespace_lock();
2317 lock_mount_hash();
2318
2319 /* extract from the expiration list every vfsmount that matches the
2320 * following criteria:
2321 * - only referenced by its parent vfsmount
2322 * - still marked for expiry (marked on the last call here; marks are
2323 * cleared by mntput())
2324 */
2325 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
2326 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
2327 propagate_mount_busy(mnt, 1))
2328 continue;
2329 list_move(&mnt->mnt_expire, &graveyard);
2330 }
2331 while (!list_empty(&graveyard)) {
2332 mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
2333 touch_mnt_namespace(mnt->mnt_ns);
2334 umount_tree(mnt, 1);
2335 }
2336 unlock_mount_hash();
2337 namespace_unlock();
2338 }
2339
2340 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2341
2342 /*
2343 * Ripoff of 'select_parent()'
2344 *
2345 * search the list of submounts for a given mountpoint, and move any
2346 * shrinkable submounts to the 'graveyard' list.
2347 */
2348 static int select_submounts(struct mount *parent, struct list_head *graveyard)
2349 {
2350 struct mount *this_parent = parent;
2351 struct list_head *next;
2352 int found = 0;
2353
2354 repeat:
2355 next = this_parent->mnt_mounts.next;
2356 resume:
2357 while (next != &this_parent->mnt_mounts) {
2358 struct list_head *tmp = next;
2359 struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
2360
2361 next = tmp->next;
2362 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
2363 continue;
2364 /*
2365 * Descend a level if the d_mounts list is non-empty.
2366 */
2367 if (!list_empty(&mnt->mnt_mounts)) {
2368 this_parent = mnt;
2369 goto repeat;
2370 }
2371
2372 if (!propagate_mount_busy(mnt, 1)) {
2373 list_move_tail(&mnt->mnt_expire, graveyard);
2374 found++;
2375 }
2376 }
2377 /*
2378 * All done at this level ... ascend and resume the search
2379 */
2380 if (this_parent != parent) {
2381 next = this_parent->mnt_child.next;
2382 this_parent = this_parent->mnt_parent;
2383 goto resume;
2384 }
2385 return found;
2386 }
2387
2388 /*
2389 * process a list of expirable mountpoints with the intent of discarding any
2390 * submounts of a specific parent mountpoint
2391 *
2392 * mount_lock must be held for write
2393 */
2394 static void shrink_submounts(struct mount *mnt)
2395 {
2396 LIST_HEAD(graveyard);
2397 struct mount *m;
2398
2399 /* extract submounts of 'mountpoint' from the expiration list */
2400 while (select_submounts(mnt, &graveyard)) {
2401 while (!list_empty(&graveyard)) {
2402 m = list_first_entry(&graveyard, struct mount,
2403 mnt_expire);
2404 touch_mnt_namespace(m->mnt_ns);
2405 umount_tree(m, 1);
2406 }
2407 }
2408 }
2409
2410 /*
2411 * Some copy_from_user() implementations do not return the exact number of
2412 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
2413 * Note that this function differs from copy_from_user() in that it will oops
2414 * on bad values of `to', rather than returning a short copy.
2415 */
2416 static long exact_copy_from_user(void *to, const void __user * from,
2417 unsigned long n)
2418 {
2419 char *t = to;
2420 const char __user *f = from;
2421 char c;
2422
2423 if (!access_ok(VERIFY_READ, from, n))
2424 return n;
2425
2426 while (n) {
2427 if (__get_user(c, f)) {
2428 memset(t, 0, n);
2429 break;
2430 }
2431 *t++ = c;
2432 f++;
2433 n--;
2434 }
2435 return n;
2436 }
2437
2438 int copy_mount_options(const void __user * data, unsigned long *where)
2439 {
2440 int i;
2441 unsigned long page;
2442 unsigned long size;
2443
2444 *where = 0;
2445 if (!data)
2446 return 0;
2447
2448 if (!(page = __get_free_page(GFP_KERNEL)))
2449 return -ENOMEM;
2450
2451 /* We only care that *some* data at the address the user
2452 * gave us is valid. Just in case, we'll zero
2453 * the remainder of the page.
2454 */
2455 /* copy_from_user cannot cross TASK_SIZE ! */
2456 size = TASK_SIZE - (unsigned long)data;
2457 if (size > PAGE_SIZE)
2458 size = PAGE_SIZE;
2459
2460 i = size - exact_copy_from_user((void *)page, data, size);
2461 if (!i) {
2462 free_page(page);
2463 return -EFAULT;
2464 }
2465 if (i != PAGE_SIZE)
2466 memset((char *)page + i, 0, PAGE_SIZE - i);
2467 *where = page;
2468 return 0;
2469 }
2470
2471 int copy_mount_string(const void __user *data, char **where)
2472 {
2473 char *tmp;
2474
2475 if (!data) {
2476 *where = NULL;
2477 return 0;
2478 }
2479
2480 tmp = strndup_user(data, PAGE_SIZE);
2481 if (IS_ERR(tmp))
2482 return PTR_ERR(tmp);
2483
2484 *where = tmp;
2485 return 0;
2486 }
2487
2488 /*
2489 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2490 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2491 *
2492 * data is a (void *) that can point to any structure up to
2493 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2494 * information (or be NULL).
2495 *
2496 * Pre-0.97 versions of mount() didn't have a flags word.
2497 * When the flags word was introduced its top half was required
2498 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2499 * Therefore, if this magic number is present, it carries no information
2500 * and must be discarded.
2501 */
2502 long do_mount(const char *dev_name, const char *dir_name,
2503 const char *type_page, unsigned long flags, void *data_page)
2504 {
2505 struct path path;
2506 int retval = 0;
2507 int mnt_flags = 0;
2508
2509 /* Discard magic */
2510 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2511 flags &= ~MS_MGC_MSK;
2512
2513 /* Basic sanity checks */
2514
2515 if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
2516 return -EINVAL;
2517
2518 if (data_page)
2519 ((char *)data_page)[PAGE_SIZE - 1] = 0;
2520
2521 /* ... and get the mountpoint */
2522 retval = kern_path(dir_name, LOOKUP_FOLLOW, &path);
2523 if (retval)
2524 return retval;
2525
2526 retval = security_sb_mount(dev_name, &path,
2527 type_page, flags, data_page);
2528 if (!retval && !may_mount())
2529 retval = -EPERM;
2530 if (retval)
2531 goto dput_out;
2532
2533 /* Default to relatime unless overriden */
2534 if (!(flags & MS_NOATIME))
2535 mnt_flags |= MNT_RELATIME;
2536
2537 /* Separate the per-mountpoint flags */
2538 if (flags & MS_NOSUID)
2539 mnt_flags |= MNT_NOSUID;
2540 if (flags & MS_NODEV)
2541 mnt_flags |= MNT_NODEV;
2542 if (flags & MS_NOEXEC)
2543 mnt_flags |= MNT_NOEXEC;
2544 if (flags & MS_NOATIME)
2545 mnt_flags |= MNT_NOATIME;
2546 if (flags & MS_NODIRATIME)
2547 mnt_flags |= MNT_NODIRATIME;
2548 if (flags & MS_STRICTATIME)
2549 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2550 if (flags & MS_RDONLY)
2551 mnt_flags |= MNT_READONLY;
2552
2553 /* The default atime for remount is preservation */
2554 if ((flags & MS_REMOUNT) &&
2555 ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
2556 MS_STRICTATIME)) == 0)) {
2557 mnt_flags &= ~MNT_ATIME_MASK;
2558 mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK;
2559 }
2560
2561 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
2562 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
2563 MS_STRICTATIME);
2564
2565 if (flags & MS_REMOUNT)
2566 retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
2567 data_page);
2568 else if (flags & MS_BIND)
2569 retval = do_loopback(&path, dev_name, flags & MS_REC);
2570 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2571 retval = do_change_type(&path, flags);
2572 else if (flags & MS_MOVE)
2573 retval = do_move_mount(&path, dev_name);
2574 else
2575 retval = do_new_mount(&path, type_page, flags, mnt_flags,
2576 dev_name, data_page);
2577 dput_out:
2578 path_put(&path);
2579 return retval;
2580 }
2581
2582 static void free_mnt_ns(struct mnt_namespace *ns)
2583 {
2584 proc_free_inum(ns->proc_inum);
2585 put_user_ns(ns->user_ns);
2586 kfree(ns);
2587 }
2588
2589 /*
2590 * Assign a sequence number so we can detect when we attempt to bind
2591 * mount a reference to an older mount namespace into the current
2592 * mount namespace, preventing reference counting loops. A 64bit
2593 * number incrementing at 10Ghz will take 12,427 years to wrap which
2594 * is effectively never, so we can ignore the possibility.
2595 */
2596 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
2597
2598 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
2599 {
2600 struct mnt_namespace *new_ns;
2601 int ret;
2602
2603 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2604 if (!new_ns)
2605 return ERR_PTR(-ENOMEM);
2606 ret = proc_alloc_inum(&new_ns->proc_inum);
2607 if (ret) {
2608 kfree(new_ns);
2609 return ERR_PTR(ret);
2610 }
2611 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
2612 atomic_set(&new_ns->count, 1);
2613 new_ns->root = NULL;
2614 INIT_LIST_HEAD(&new_ns->list);
2615 init_waitqueue_head(&new_ns->poll);
2616 new_ns->event = 0;
2617 new_ns->user_ns = get_user_ns(user_ns);
2618 return new_ns;
2619 }
2620
2621 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2622 struct user_namespace *user_ns, struct fs_struct *new_fs)
2623 {
2624 struct mnt_namespace *new_ns;
2625 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
2626 struct mount *p, *q;
2627 struct mount *old;
2628 struct mount *new;
2629 int copy_flags;
2630
2631 BUG_ON(!ns);
2632
2633 if (likely(!(flags & CLONE_NEWNS))) {
2634 get_mnt_ns(ns);
2635 return ns;
2636 }
2637
2638 old = ns->root;
2639
2640 new_ns = alloc_mnt_ns(user_ns);
2641 if (IS_ERR(new_ns))
2642 return new_ns;
2643
2644 namespace_lock();
2645 /* First pass: copy the tree topology */
2646 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
2647 if (user_ns != ns->user_ns)
2648 copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED;
2649 new = copy_tree(old, old->mnt.mnt_root, copy_flags);
2650 if (IS_ERR(new)) {
2651 namespace_unlock();
2652 free_mnt_ns(new_ns);
2653 return ERR_CAST(new);
2654 }
2655 new_ns->root = new;
2656 list_add_tail(&new_ns->list, &new->mnt_list);
2657
2658 /*
2659 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2660 * as belonging to new namespace. We have already acquired a private
2661 * fs_struct, so tsk->fs->lock is not needed.
2662 */
2663 p = old;
2664 q = new;
2665 while (p) {
2666 q->mnt_ns = new_ns;
2667 if (new_fs) {
2668 if (&p->mnt == new_fs->root.mnt) {
2669 new_fs->root.mnt = mntget(&q->mnt);
2670 rootmnt = &p->mnt;
2671 }
2672 if (&p->mnt == new_fs->pwd.mnt) {
2673 new_fs->pwd.mnt = mntget(&q->mnt);
2674 pwdmnt = &p->mnt;
2675 }
2676 }
2677 p = next_mnt(p, old);
2678 q = next_mnt(q, new);
2679 if (!q)
2680 break;
2681 while (p->mnt.mnt_root != q->mnt.mnt_root)
2682 p = next_mnt(p, old);
2683 }
2684 namespace_unlock();
2685
2686 if (rootmnt)
2687 mntput(rootmnt);
2688 if (pwdmnt)
2689 mntput(pwdmnt);
2690
2691 return new_ns;
2692 }
2693
2694 /**
2695 * create_mnt_ns - creates a private namespace and adds a root filesystem
2696 * @mnt: pointer to the new root filesystem mountpoint
2697 */
2698 static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
2699 {
2700 struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
2701 if (!IS_ERR(new_ns)) {
2702 struct mount *mnt = real_mount(m);
2703 mnt->mnt_ns = new_ns;
2704 new_ns->root = mnt;
2705 list_add(&mnt->mnt_list, &new_ns->list);
2706 } else {
2707 mntput(m);
2708 }
2709 return new_ns;
2710 }
2711
2712 struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
2713 {
2714 struct mnt_namespace *ns;
2715 struct super_block *s;
2716 struct path path;
2717 int err;
2718
2719 ns = create_mnt_ns(mnt);
2720 if (IS_ERR(ns))
2721 return ERR_CAST(ns);
2722
2723 err = vfs_path_lookup(mnt->mnt_root, mnt,
2724 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
2725
2726 put_mnt_ns(ns);
2727
2728 if (err)
2729 return ERR_PTR(err);
2730
2731 /* trade a vfsmount reference for active sb one */
2732 s = path.mnt->mnt_sb;
2733 atomic_inc(&s->s_active);
2734 mntput(path.mnt);
2735 /* lock the sucker */
2736 down_write(&s->s_umount);
2737 /* ... and return the root of (sub)tree on it */
2738 return path.dentry;
2739 }
2740 EXPORT_SYMBOL(mount_subtree);
2741
2742 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
2743 char __user *, type, unsigned long, flags, void __user *, data)
2744 {
2745 int ret;
2746 char *kernel_type;
2747 struct filename *kernel_dir;
2748 char *kernel_dev;
2749 unsigned long data_page;
2750
2751 ret = copy_mount_string(type, &kernel_type);
2752 if (ret < 0)
2753 goto out_type;
2754
2755 kernel_dir = getname(dir_name);
2756 if (IS_ERR(kernel_dir)) {
2757 ret = PTR_ERR(kernel_dir);
2758 goto out_dir;
2759 }
2760
2761 ret = copy_mount_string(dev_name, &kernel_dev);
2762 if (ret < 0)
2763 goto out_dev;
2764
2765 ret = copy_mount_options(data, &data_page);
2766 if (ret < 0)
2767 goto out_data;
2768
2769 ret = do_mount(kernel_dev, kernel_dir->name, kernel_type, flags,
2770 (void *) data_page);
2771
2772 free_page(data_page);
2773 out_data:
2774 kfree(kernel_dev);
2775 out_dev:
2776 putname(kernel_dir);
2777 out_dir:
2778 kfree(kernel_type);
2779 out_type:
2780 return ret;
2781 }
2782
2783 /*
2784 * Return true if path is reachable from root
2785 *
2786 * namespace_sem or mount_lock is held
2787 */
2788 bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
2789 const struct path *root)
2790 {
2791 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
2792 dentry = mnt->mnt_mountpoint;
2793 mnt = mnt->mnt_parent;
2794 }
2795 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
2796 }
2797
2798 int path_is_under(struct path *path1, struct path *path2)
2799 {
2800 int res;
2801 read_seqlock_excl(&mount_lock);
2802 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
2803 read_sequnlock_excl(&mount_lock);
2804 return res;
2805 }
2806 EXPORT_SYMBOL(path_is_under);
2807
2808 /*
2809 * pivot_root Semantics:
2810 * Moves the root file system of the current process to the directory put_old,
2811 * makes new_root as the new root file system of the current process, and sets
2812 * root/cwd of all processes which had them on the current root to new_root.
2813 *
2814 * Restrictions:
2815 * The new_root and put_old must be directories, and must not be on the
2816 * same file system as the current process root. The put_old must be
2817 * underneath new_root, i.e. adding a non-zero number of /.. to the string
2818 * pointed to by put_old must yield the same directory as new_root. No other
2819 * file system may be mounted on put_old. After all, new_root is a mountpoint.
2820 *
2821 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
2822 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
2823 * in this situation.
2824 *
2825 * Notes:
2826 * - we don't move root/cwd if they are not at the root (reason: if something
2827 * cared enough to change them, it's probably wrong to force them elsewhere)
2828 * - it's okay to pick a root that isn't the root of a file system, e.g.
2829 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
2830 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
2831 * first.
2832 */
2833 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
2834 const char __user *, put_old)
2835 {
2836 struct path new, old, parent_path, root_parent, root;
2837 struct mount *new_mnt, *root_mnt, *old_mnt;
2838 struct mountpoint *old_mp, *root_mp;
2839 int error;
2840
2841 if (!may_mount())
2842 return -EPERM;
2843
2844 error = user_path_dir(new_root, &new);
2845 if (error)
2846 goto out0;
2847
2848 error = user_path_dir(put_old, &old);
2849 if (error)
2850 goto out1;
2851
2852 error = security_sb_pivotroot(&old, &new);
2853 if (error)
2854 goto out2;
2855
2856 get_fs_root(current->fs, &root);
2857 old_mp = lock_mount(&old);
2858 error = PTR_ERR(old_mp);
2859 if (IS_ERR(old_mp))
2860 goto out3;
2861
2862 error = -EINVAL;
2863 new_mnt = real_mount(new.mnt);
2864 root_mnt = real_mount(root.mnt);
2865 old_mnt = real_mount(old.mnt);
2866 if (IS_MNT_SHARED(old_mnt) ||
2867 IS_MNT_SHARED(new_mnt->mnt_parent) ||
2868 IS_MNT_SHARED(root_mnt->mnt_parent))
2869 goto out4;
2870 if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
2871 goto out4;
2872 if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
2873 goto out4;
2874 error = -ENOENT;
2875 if (d_unlinked(new.dentry))
2876 goto out4;
2877 error = -EBUSY;
2878 if (new_mnt == root_mnt || old_mnt == root_mnt)
2879 goto out4; /* loop, on the same file system */
2880 error = -EINVAL;
2881 if (root.mnt->mnt_root != root.dentry)
2882 goto out4; /* not a mountpoint */
2883 if (!mnt_has_parent(root_mnt))
2884 goto out4; /* not attached */
2885 root_mp = root_mnt->mnt_mp;
2886 if (new.mnt->mnt_root != new.dentry)
2887 goto out4; /* not a mountpoint */
2888 if (!mnt_has_parent(new_mnt))
2889 goto out4; /* not attached */
2890 /* make sure we can reach put_old from new_root */
2891 if (!is_path_reachable(old_mnt, old.dentry, &new))
2892 goto out4;
2893 root_mp->m_count++; /* pin it so it won't go away */
2894 lock_mount_hash();
2895 detach_mnt(new_mnt, &parent_path);
2896 detach_mnt(root_mnt, &root_parent);
2897 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
2898 new_mnt->mnt.mnt_flags |= MNT_LOCKED;
2899 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2900 }
2901 /* mount old root on put_old */
2902 attach_mnt(root_mnt, old_mnt, old_mp);
2903 /* mount new_root on / */
2904 attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp);
2905 touch_mnt_namespace(current->nsproxy->mnt_ns);
2906 unlock_mount_hash();
2907 chroot_fs_refs(&root, &new);
2908 put_mountpoint(root_mp);
2909 error = 0;
2910 out4:
2911 unlock_mount(old_mp);
2912 if (!error) {
2913 path_put(&root_parent);
2914 path_put(&parent_path);
2915 }
2916 out3:
2917 path_put(&root);
2918 out2:
2919 path_put(&old);
2920 out1:
2921 path_put(&new);
2922 out0:
2923 return error;
2924 }
2925
2926 static void __init init_mount_tree(void)
2927 {
2928 struct vfsmount *mnt;
2929 struct mnt_namespace *ns;
2930 struct path root;
2931 struct file_system_type *type;
2932
2933 type = get_fs_type("rootfs");
2934 if (!type)
2935 panic("Can't find rootfs type");
2936 mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
2937 put_filesystem(type);
2938 if (IS_ERR(mnt))
2939 panic("Can't create rootfs");
2940
2941 ns = create_mnt_ns(mnt);
2942 if (IS_ERR(ns))
2943 panic("Can't allocate initial namespace");
2944
2945 init_task.nsproxy->mnt_ns = ns;
2946 get_mnt_ns(ns);
2947
2948 root.mnt = mnt;
2949 root.dentry = mnt->mnt_root;
2950
2951 set_fs_pwd(current->fs, &root);
2952 set_fs_root(current->fs, &root);
2953 }
2954
2955 void __init mnt_init(void)
2956 {
2957 unsigned u;
2958 int err;
2959
2960 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
2961 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
2962
2963 mount_hashtable = alloc_large_system_hash("Mount-cache",
2964 sizeof(struct hlist_head),
2965 mhash_entries, 19,
2966 0,
2967 &m_hash_shift, &m_hash_mask, 0, 0);
2968 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
2969 sizeof(struct hlist_head),
2970 mphash_entries, 19,
2971 0,
2972 &mp_hash_shift, &mp_hash_mask, 0, 0);
2973
2974 if (!mount_hashtable || !mountpoint_hashtable)
2975 panic("Failed to allocate mount hash table\n");
2976
2977 for (u = 0; u <= m_hash_mask; u++)
2978 INIT_HLIST_HEAD(&mount_hashtable[u]);
2979 for (u = 0; u <= mp_hash_mask; u++)
2980 INIT_HLIST_HEAD(&mountpoint_hashtable[u]);
2981
2982 kernfs_init();
2983
2984 err = sysfs_init();
2985 if (err)
2986 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
2987 __func__, err);
2988 fs_kobj = kobject_create_and_add("fs", NULL);
2989 if (!fs_kobj)
2990 printk(KERN_WARNING "%s: kobj create error\n", __func__);
2991 init_rootfs();
2992 init_mount_tree();
2993 }
2994
2995 void put_mnt_ns(struct mnt_namespace *ns)
2996 {
2997 if (!atomic_dec_and_test(&ns->count))
2998 return;
2999 drop_collected_mounts(&ns->root->mnt);
3000 free_mnt_ns(ns);
3001 }
3002
3003 struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
3004 {
3005 struct vfsmount *mnt;
3006 mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
3007 if (!IS_ERR(mnt)) {
3008 /*
3009 * it is a longterm mount, don't release mnt until
3010 * we unmount before file sys is unregistered
3011 */
3012 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
3013 }
3014 return mnt;
3015 }
3016 EXPORT_SYMBOL_GPL(kern_mount_data);
3017
3018 void kern_unmount(struct vfsmount *mnt)
3019 {
3020 /* release long term mount so mount point can be released */
3021 if (!IS_ERR_OR_NULL(mnt)) {
3022 real_mount(mnt)->mnt_ns = NULL;
3023 synchronize_rcu(); /* yecchhh... */
3024 mntput(mnt);
3025 }
3026 }
3027 EXPORT_SYMBOL(kern_unmount);
3028
3029 bool our_mnt(struct vfsmount *mnt)
3030 {
3031 return check_mnt(real_mount(mnt));
3032 }
3033
3034 bool current_chrooted(void)
3035 {
3036 /* Does the current process have a non-standard root */
3037 struct path ns_root;
3038 struct path fs_root;
3039 bool chrooted;
3040
3041 /* Find the namespace root */
3042 ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
3043 ns_root.dentry = ns_root.mnt->mnt_root;
3044 path_get(&ns_root);
3045 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
3046 ;
3047
3048 get_fs_root(current->fs, &fs_root);
3049
3050 chrooted = !path_equal(&fs_root, &ns_root);
3051
3052 path_put(&fs_root);
3053 path_put(&ns_root);
3054
3055 return chrooted;
3056 }
3057
3058 bool fs_fully_visible(struct file_system_type *type)
3059 {
3060 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
3061 struct mount *mnt;
3062 bool visible = false;
3063
3064 if (unlikely(!ns))
3065 return false;
3066
3067 down_read(&namespace_sem);
3068 list_for_each_entry(mnt, &ns->list, mnt_list) {
3069 struct mount *child;
3070 if (mnt->mnt.mnt_sb->s_type != type)
3071 continue;
3072
3073 /* This mount is not fully visible if there are any child mounts
3074 * that cover anything except for empty directories.
3075 */
3076 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
3077 struct inode *inode = child->mnt_mountpoint->d_inode;
3078 if (!S_ISDIR(inode->i_mode))
3079 goto next;
3080 if (inode->i_nlink > 2)
3081 goto next;
3082 }
3083 visible = true;
3084 goto found;
3085 next: ;
3086 }
3087 found:
3088 up_read(&namespace_sem);
3089 return visible;
3090 }
3091
3092 static void *mntns_get(struct task_struct *task)
3093 {
3094 struct mnt_namespace *ns = NULL;
3095 struct nsproxy *nsproxy;
3096
3097 task_lock(task);
3098 nsproxy = task->nsproxy;
3099 if (nsproxy) {
3100 ns = nsproxy->mnt_ns;
3101 get_mnt_ns(ns);
3102 }
3103 task_unlock(task);
3104
3105 return ns;
3106 }
3107
3108 static void mntns_put(void *ns)
3109 {
3110 put_mnt_ns(ns);
3111 }
3112
3113 static int mntns_install(struct nsproxy *nsproxy, void *ns)
3114 {
3115 struct fs_struct *fs = current->fs;
3116 struct mnt_namespace *mnt_ns = ns;
3117 struct path root;
3118
3119 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
3120 !ns_capable(current_user_ns(), CAP_SYS_CHROOT) ||
3121 !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
3122 return -EPERM;
3123
3124 if (fs->users != 1)
3125 return -EINVAL;
3126
3127 get_mnt_ns(mnt_ns);
3128 put_mnt_ns(nsproxy->mnt_ns);
3129 nsproxy->mnt_ns = mnt_ns;
3130
3131 /* Find the root */
3132 root.mnt = &mnt_ns->root->mnt;
3133 root.dentry = mnt_ns->root->mnt.mnt_root;
3134 path_get(&root);
3135 while(d_mountpoint(root.dentry) && follow_down_one(&root))
3136 ;
3137
3138 /* Update the pwd and root */
3139 set_fs_pwd(fs, &root);
3140 set_fs_root(fs, &root);
3141
3142 path_put(&root);
3143 return 0;
3144 }
3145
3146 static unsigned int mntns_inum(void *ns)
3147 {
3148 struct mnt_namespace *mnt_ns = ns;
3149 return mnt_ns->proc_inum;
3150 }
3151
3152 const struct proc_ns_operations mntns_operations = {
3153 .name = "mnt",
3154 .type = CLONE_NEWNS,
3155 .get = mntns_get,
3156 .put = mntns_put,
3157 .install = mntns_install,
3158 .inum = mntns_inum,
3159 };
This page took 0.217048 seconds and 4 git commands to generate.