constify seq_file stuff
[deliverable/linux.git] / fs / namespace.c
1 /*
2 * linux/fs/namespace.c
3 *
4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
11 #include <linux/syscalls.h>
12 #include <linux/slab.h>
13 #include <linux/sched.h>
14 #include <linux/spinlock.h>
15 #include <linux/percpu.h>
16 #include <linux/init.h>
17 #include <linux/kernel.h>
18 #include <linux/acct.h>
19 #include <linux/capability.h>
20 #include <linux/cpumask.h>
21 #include <linux/module.h>
22 #include <linux/sysfs.h>
23 #include <linux/seq_file.h>
24 #include <linux/mnt_namespace.h>
25 #include <linux/namei.h>
26 #include <linux/nsproxy.h>
27 #include <linux/security.h>
28 #include <linux/mount.h>
29 #include <linux/ramfs.h>
30 #include <linux/log2.h>
31 #include <linux/idr.h>
32 #include <linux/fs_struct.h>
33 #include <linux/fsnotify.h>
34 #include <asm/uaccess.h>
35 #include <asm/unistd.h>
36 #include "pnode.h"
37 #include "internal.h"
38
39 #define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head))
40 #define HASH_SIZE (1UL << HASH_SHIFT)
41
42 static int event;
43 static DEFINE_IDA(mnt_id_ida);
44 static DEFINE_IDA(mnt_group_ida);
45 static DEFINE_SPINLOCK(mnt_id_lock);
46 static int mnt_id_start = 0;
47 static int mnt_group_start = 1;
48
49 static struct list_head *mount_hashtable __read_mostly;
50 static struct kmem_cache *mnt_cache __read_mostly;
51 static struct rw_semaphore namespace_sem;
52
53 /* /sys/fs */
54 struct kobject *fs_kobj;
55 EXPORT_SYMBOL_GPL(fs_kobj);
56
57 /*
58 * vfsmount lock may be taken for read to prevent changes to the
59 * vfsmount hash, ie. during mountpoint lookups or walking back
60 * up the tree.
61 *
62 * It should be taken for write in all cases where the vfsmount
63 * tree or hash is modified or when a vfsmount structure is modified.
64 */
65 DEFINE_BRLOCK(vfsmount_lock);
66
67 static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry)
68 {
69 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
70 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
71 tmp = tmp + (tmp >> HASH_SHIFT);
72 return tmp & (HASH_SIZE - 1);
73 }
74
75 #define MNT_WRITER_UNDERFLOW_LIMIT -(1<<16)
76
77 /*
78 * allocation is serialized by namespace_sem, but we need the spinlock to
79 * serialize with freeing.
80 */
81 static int mnt_alloc_id(struct vfsmount *mnt)
82 {
83 int res;
84
85 retry:
86 ida_pre_get(&mnt_id_ida, GFP_KERNEL);
87 spin_lock(&mnt_id_lock);
88 res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
89 if (!res)
90 mnt_id_start = mnt->mnt_id + 1;
91 spin_unlock(&mnt_id_lock);
92 if (res == -EAGAIN)
93 goto retry;
94
95 return res;
96 }
97
98 static void mnt_free_id(struct vfsmount *mnt)
99 {
100 int id = mnt->mnt_id;
101 spin_lock(&mnt_id_lock);
102 ida_remove(&mnt_id_ida, id);
103 if (mnt_id_start > id)
104 mnt_id_start = id;
105 spin_unlock(&mnt_id_lock);
106 }
107
108 /*
109 * Allocate a new peer group ID
110 *
111 * mnt_group_ida is protected by namespace_sem
112 */
113 static int mnt_alloc_group_id(struct vfsmount *mnt)
114 {
115 int res;
116
117 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
118 return -ENOMEM;
119
120 res = ida_get_new_above(&mnt_group_ida,
121 mnt_group_start,
122 &mnt->mnt_group_id);
123 if (!res)
124 mnt_group_start = mnt->mnt_group_id + 1;
125
126 return res;
127 }
128
129 /*
130 * Release a peer group ID
131 */
132 void mnt_release_group_id(struct vfsmount *mnt)
133 {
134 int id = mnt->mnt_group_id;
135 ida_remove(&mnt_group_ida, id);
136 if (mnt_group_start > id)
137 mnt_group_start = id;
138 mnt->mnt_group_id = 0;
139 }
140
141 /*
142 * vfsmount lock must be held for read
143 */
144 static inline void mnt_add_count(struct vfsmount *mnt, int n)
145 {
146 #ifdef CONFIG_SMP
147 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
148 #else
149 preempt_disable();
150 mnt->mnt_count += n;
151 preempt_enable();
152 #endif
153 }
154
155 /*
156 * vfsmount lock must be held for write
157 */
158 unsigned int mnt_get_count(struct vfsmount *mnt)
159 {
160 #ifdef CONFIG_SMP
161 unsigned int count = 0;
162 int cpu;
163
164 for_each_possible_cpu(cpu) {
165 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
166 }
167
168 return count;
169 #else
170 return mnt->mnt_count;
171 #endif
172 }
173
174 static struct vfsmount *alloc_vfsmnt(const char *name)
175 {
176 struct vfsmount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
177 if (mnt) {
178 int err;
179
180 err = mnt_alloc_id(mnt);
181 if (err)
182 goto out_free_cache;
183
184 if (name) {
185 mnt->mnt_devname = kstrdup(name, GFP_KERNEL);
186 if (!mnt->mnt_devname)
187 goto out_free_id;
188 }
189
190 #ifdef CONFIG_SMP
191 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
192 if (!mnt->mnt_pcp)
193 goto out_free_devname;
194
195 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
196 #else
197 mnt->mnt_count = 1;
198 mnt->mnt_writers = 0;
199 #endif
200
201 INIT_LIST_HEAD(&mnt->mnt_hash);
202 INIT_LIST_HEAD(&mnt->mnt_child);
203 INIT_LIST_HEAD(&mnt->mnt_mounts);
204 INIT_LIST_HEAD(&mnt->mnt_list);
205 INIT_LIST_HEAD(&mnt->mnt_expire);
206 INIT_LIST_HEAD(&mnt->mnt_share);
207 INIT_LIST_HEAD(&mnt->mnt_slave_list);
208 INIT_LIST_HEAD(&mnt->mnt_slave);
209 #ifdef CONFIG_FSNOTIFY
210 INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
211 #endif
212 }
213 return mnt;
214
215 #ifdef CONFIG_SMP
216 out_free_devname:
217 kfree(mnt->mnt_devname);
218 #endif
219 out_free_id:
220 mnt_free_id(mnt);
221 out_free_cache:
222 kmem_cache_free(mnt_cache, mnt);
223 return NULL;
224 }
225
226 /*
227 * Most r/o checks on a fs are for operations that take
228 * discrete amounts of time, like a write() or unlink().
229 * We must keep track of when those operations start
230 * (for permission checks) and when they end, so that
231 * we can determine when writes are able to occur to
232 * a filesystem.
233 */
234 /*
235 * __mnt_is_readonly: check whether a mount is read-only
236 * @mnt: the mount to check for its write status
237 *
238 * This shouldn't be used directly ouside of the VFS.
239 * It does not guarantee that the filesystem will stay
240 * r/w, just that it is right *now*. This can not and
241 * should not be used in place of IS_RDONLY(inode).
242 * mnt_want/drop_write() will _keep_ the filesystem
243 * r/w.
244 */
245 int __mnt_is_readonly(struct vfsmount *mnt)
246 {
247 if (mnt->mnt_flags & MNT_READONLY)
248 return 1;
249 if (mnt->mnt_sb->s_flags & MS_RDONLY)
250 return 1;
251 return 0;
252 }
253 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
254
255 static inline void mnt_inc_writers(struct vfsmount *mnt)
256 {
257 #ifdef CONFIG_SMP
258 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
259 #else
260 mnt->mnt_writers++;
261 #endif
262 }
263
264 static inline void mnt_dec_writers(struct vfsmount *mnt)
265 {
266 #ifdef CONFIG_SMP
267 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
268 #else
269 mnt->mnt_writers--;
270 #endif
271 }
272
273 static unsigned int mnt_get_writers(struct vfsmount *mnt)
274 {
275 #ifdef CONFIG_SMP
276 unsigned int count = 0;
277 int cpu;
278
279 for_each_possible_cpu(cpu) {
280 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
281 }
282
283 return count;
284 #else
285 return mnt->mnt_writers;
286 #endif
287 }
288
289 /*
290 * Most r/o checks on a fs are for operations that take
291 * discrete amounts of time, like a write() or unlink().
292 * We must keep track of when those operations start
293 * (for permission checks) and when they end, so that
294 * we can determine when writes are able to occur to
295 * a filesystem.
296 */
297 /**
298 * mnt_want_write - get write access to a mount
299 * @mnt: the mount on which to take a write
300 *
301 * This tells the low-level filesystem that a write is
302 * about to be performed to it, and makes sure that
303 * writes are allowed before returning success. When
304 * the write operation is finished, mnt_drop_write()
305 * must be called. This is effectively a refcount.
306 */
307 int mnt_want_write(struct vfsmount *mnt)
308 {
309 int ret = 0;
310
311 preempt_disable();
312 mnt_inc_writers(mnt);
313 /*
314 * The store to mnt_inc_writers must be visible before we pass
315 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
316 * incremented count after it has set MNT_WRITE_HOLD.
317 */
318 smp_mb();
319 while (mnt->mnt_flags & MNT_WRITE_HOLD)
320 cpu_relax();
321 /*
322 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
323 * be set to match its requirements. So we must not load that until
324 * MNT_WRITE_HOLD is cleared.
325 */
326 smp_rmb();
327 if (__mnt_is_readonly(mnt)) {
328 mnt_dec_writers(mnt);
329 ret = -EROFS;
330 goto out;
331 }
332 out:
333 preempt_enable();
334 return ret;
335 }
336 EXPORT_SYMBOL_GPL(mnt_want_write);
337
338 /**
339 * mnt_clone_write - get write access to a mount
340 * @mnt: the mount on which to take a write
341 *
342 * This is effectively like mnt_want_write, except
343 * it must only be used to take an extra write reference
344 * on a mountpoint that we already know has a write reference
345 * on it. This allows some optimisation.
346 *
347 * After finished, mnt_drop_write must be called as usual to
348 * drop the reference.
349 */
350 int mnt_clone_write(struct vfsmount *mnt)
351 {
352 /* superblock may be r/o */
353 if (__mnt_is_readonly(mnt))
354 return -EROFS;
355 preempt_disable();
356 mnt_inc_writers(mnt);
357 preempt_enable();
358 return 0;
359 }
360 EXPORT_SYMBOL_GPL(mnt_clone_write);
361
362 /**
363 * mnt_want_write_file - get write access to a file's mount
364 * @file: the file who's mount on which to take a write
365 *
366 * This is like mnt_want_write, but it takes a file and can
367 * do some optimisations if the file is open for write already
368 */
369 int mnt_want_write_file(struct file *file)
370 {
371 struct inode *inode = file->f_dentry->d_inode;
372 if (!(file->f_mode & FMODE_WRITE) || special_file(inode->i_mode))
373 return mnt_want_write(file->f_path.mnt);
374 else
375 return mnt_clone_write(file->f_path.mnt);
376 }
377 EXPORT_SYMBOL_GPL(mnt_want_write_file);
378
379 /**
380 * mnt_drop_write - give up write access to a mount
381 * @mnt: the mount on which to give up write access
382 *
383 * Tells the low-level filesystem that we are done
384 * performing writes to it. Must be matched with
385 * mnt_want_write() call above.
386 */
387 void mnt_drop_write(struct vfsmount *mnt)
388 {
389 preempt_disable();
390 mnt_dec_writers(mnt);
391 preempt_enable();
392 }
393 EXPORT_SYMBOL_GPL(mnt_drop_write);
394
395 static int mnt_make_readonly(struct vfsmount *mnt)
396 {
397 int ret = 0;
398
399 br_write_lock(vfsmount_lock);
400 mnt->mnt_flags |= MNT_WRITE_HOLD;
401 /*
402 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
403 * should be visible before we do.
404 */
405 smp_mb();
406
407 /*
408 * With writers on hold, if this value is zero, then there are
409 * definitely no active writers (although held writers may subsequently
410 * increment the count, they'll have to wait, and decrement it after
411 * seeing MNT_READONLY).
412 *
413 * It is OK to have counter incremented on one CPU and decremented on
414 * another: the sum will add up correctly. The danger would be when we
415 * sum up each counter, if we read a counter before it is incremented,
416 * but then read another CPU's count which it has been subsequently
417 * decremented from -- we would see more decrements than we should.
418 * MNT_WRITE_HOLD protects against this scenario, because
419 * mnt_want_write first increments count, then smp_mb, then spins on
420 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
421 * we're counting up here.
422 */
423 if (mnt_get_writers(mnt) > 0)
424 ret = -EBUSY;
425 else
426 mnt->mnt_flags |= MNT_READONLY;
427 /*
428 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
429 * that become unheld will see MNT_READONLY.
430 */
431 smp_wmb();
432 mnt->mnt_flags &= ~MNT_WRITE_HOLD;
433 br_write_unlock(vfsmount_lock);
434 return ret;
435 }
436
437 static void __mnt_unmake_readonly(struct vfsmount *mnt)
438 {
439 br_write_lock(vfsmount_lock);
440 mnt->mnt_flags &= ~MNT_READONLY;
441 br_write_unlock(vfsmount_lock);
442 }
443
444 static void free_vfsmnt(struct vfsmount *mnt)
445 {
446 kfree(mnt->mnt_devname);
447 mnt_free_id(mnt);
448 #ifdef CONFIG_SMP
449 free_percpu(mnt->mnt_pcp);
450 #endif
451 kmem_cache_free(mnt_cache, mnt);
452 }
453
454 /*
455 * find the first or last mount at @dentry on vfsmount @mnt depending on
456 * @dir. If @dir is set return the first mount else return the last mount.
457 * vfsmount_lock must be held for read or write.
458 */
459 struct vfsmount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry,
460 int dir)
461 {
462 struct list_head *head = mount_hashtable + hash(mnt, dentry);
463 struct list_head *tmp = head;
464 struct vfsmount *p, *found = NULL;
465
466 for (;;) {
467 tmp = dir ? tmp->next : tmp->prev;
468 p = NULL;
469 if (tmp == head)
470 break;
471 p = list_entry(tmp, struct vfsmount, mnt_hash);
472 if (p->mnt_parent == mnt && p->mnt_mountpoint == dentry) {
473 found = p;
474 break;
475 }
476 }
477 return found;
478 }
479
480 /*
481 * lookup_mnt increments the ref count before returning
482 * the vfsmount struct.
483 */
484 struct vfsmount *lookup_mnt(struct path *path)
485 {
486 struct vfsmount *child_mnt;
487
488 br_read_lock(vfsmount_lock);
489 if ((child_mnt = __lookup_mnt(path->mnt, path->dentry, 1)))
490 mntget(child_mnt);
491 br_read_unlock(vfsmount_lock);
492 return child_mnt;
493 }
494
495 static inline int check_mnt(struct vfsmount *mnt)
496 {
497 return mnt->mnt_ns == current->nsproxy->mnt_ns;
498 }
499
500 /*
501 * vfsmount lock must be held for write
502 */
503 static void touch_mnt_namespace(struct mnt_namespace *ns)
504 {
505 if (ns) {
506 ns->event = ++event;
507 wake_up_interruptible(&ns->poll);
508 }
509 }
510
511 /*
512 * vfsmount lock must be held for write
513 */
514 static void __touch_mnt_namespace(struct mnt_namespace *ns)
515 {
516 if (ns && ns->event != event) {
517 ns->event = event;
518 wake_up_interruptible(&ns->poll);
519 }
520 }
521
522 /*
523 * Clear dentry's mounted state if it has no remaining mounts.
524 * vfsmount_lock must be held for write.
525 */
526 static void dentry_reset_mounted(struct dentry *dentry)
527 {
528 unsigned u;
529
530 for (u = 0; u < HASH_SIZE; u++) {
531 struct vfsmount *p;
532
533 list_for_each_entry(p, &mount_hashtable[u], mnt_hash) {
534 if (p->mnt_mountpoint == dentry)
535 return;
536 }
537 }
538 spin_lock(&dentry->d_lock);
539 dentry->d_flags &= ~DCACHE_MOUNTED;
540 spin_unlock(&dentry->d_lock);
541 }
542
543 /*
544 * vfsmount lock must be held for write
545 */
546 static void detach_mnt(struct vfsmount *mnt, struct path *old_path)
547 {
548 old_path->dentry = mnt->mnt_mountpoint;
549 old_path->mnt = mnt->mnt_parent;
550 mnt->mnt_parent = mnt;
551 mnt->mnt_mountpoint = mnt->mnt_root;
552 list_del_init(&mnt->mnt_child);
553 list_del_init(&mnt->mnt_hash);
554 dentry_reset_mounted(old_path->dentry);
555 }
556
557 /*
558 * vfsmount lock must be held for write
559 */
560 void mnt_set_mountpoint(struct vfsmount *mnt, struct dentry *dentry,
561 struct vfsmount *child_mnt)
562 {
563 child_mnt->mnt_parent = mntget(mnt);
564 child_mnt->mnt_mountpoint = dget(dentry);
565 spin_lock(&dentry->d_lock);
566 dentry->d_flags |= DCACHE_MOUNTED;
567 spin_unlock(&dentry->d_lock);
568 }
569
570 /*
571 * vfsmount lock must be held for write
572 */
573 static void attach_mnt(struct vfsmount *mnt, struct path *path)
574 {
575 mnt_set_mountpoint(path->mnt, path->dentry, mnt);
576 list_add_tail(&mnt->mnt_hash, mount_hashtable +
577 hash(path->mnt, path->dentry));
578 list_add_tail(&mnt->mnt_child, &path->mnt->mnt_mounts);
579 }
580
581 static inline void __mnt_make_longterm(struct vfsmount *mnt)
582 {
583 #ifdef CONFIG_SMP
584 atomic_inc(&mnt->mnt_longterm);
585 #endif
586 }
587
588 /* needs vfsmount lock for write */
589 static inline void __mnt_make_shortterm(struct vfsmount *mnt)
590 {
591 #ifdef CONFIG_SMP
592 atomic_dec(&mnt->mnt_longterm);
593 #endif
594 }
595
596 /*
597 * vfsmount lock must be held for write
598 */
599 static void commit_tree(struct vfsmount *mnt)
600 {
601 struct vfsmount *parent = mnt->mnt_parent;
602 struct vfsmount *m;
603 LIST_HEAD(head);
604 struct mnt_namespace *n = parent->mnt_ns;
605
606 BUG_ON(parent == mnt);
607
608 list_add_tail(&head, &mnt->mnt_list);
609 list_for_each_entry(m, &head, mnt_list) {
610 m->mnt_ns = n;
611 __mnt_make_longterm(m);
612 }
613
614 list_splice(&head, n->list.prev);
615
616 list_add_tail(&mnt->mnt_hash, mount_hashtable +
617 hash(parent, mnt->mnt_mountpoint));
618 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
619 touch_mnt_namespace(n);
620 }
621
622 static struct vfsmount *next_mnt(struct vfsmount *p, struct vfsmount *root)
623 {
624 struct list_head *next = p->mnt_mounts.next;
625 if (next == &p->mnt_mounts) {
626 while (1) {
627 if (p == root)
628 return NULL;
629 next = p->mnt_child.next;
630 if (next != &p->mnt_parent->mnt_mounts)
631 break;
632 p = p->mnt_parent;
633 }
634 }
635 return list_entry(next, struct vfsmount, mnt_child);
636 }
637
638 static struct vfsmount *skip_mnt_tree(struct vfsmount *p)
639 {
640 struct list_head *prev = p->mnt_mounts.prev;
641 while (prev != &p->mnt_mounts) {
642 p = list_entry(prev, struct vfsmount, mnt_child);
643 prev = p->mnt_mounts.prev;
644 }
645 return p;
646 }
647
648 struct vfsmount *
649 vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
650 {
651 struct vfsmount *mnt;
652 struct dentry *root;
653
654 if (!type)
655 return ERR_PTR(-ENODEV);
656
657 mnt = alloc_vfsmnt(name);
658 if (!mnt)
659 return ERR_PTR(-ENOMEM);
660
661 if (flags & MS_KERNMOUNT)
662 mnt->mnt_flags = MNT_INTERNAL;
663
664 root = mount_fs(type, flags, name, data);
665 if (IS_ERR(root)) {
666 free_vfsmnt(mnt);
667 return ERR_CAST(root);
668 }
669
670 mnt->mnt_root = root;
671 mnt->mnt_sb = root->d_sb;
672 mnt->mnt_mountpoint = mnt->mnt_root;
673 mnt->mnt_parent = mnt;
674 return mnt;
675 }
676 EXPORT_SYMBOL_GPL(vfs_kern_mount);
677
678 static struct vfsmount *clone_mnt(struct vfsmount *old, struct dentry *root,
679 int flag)
680 {
681 struct super_block *sb = old->mnt_sb;
682 struct vfsmount *mnt = alloc_vfsmnt(old->mnt_devname);
683
684 if (mnt) {
685 if (flag & (CL_SLAVE | CL_PRIVATE))
686 mnt->mnt_group_id = 0; /* not a peer of original */
687 else
688 mnt->mnt_group_id = old->mnt_group_id;
689
690 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
691 int err = mnt_alloc_group_id(mnt);
692 if (err)
693 goto out_free;
694 }
695
696 mnt->mnt_flags = old->mnt_flags & ~MNT_WRITE_HOLD;
697 atomic_inc(&sb->s_active);
698 mnt->mnt_sb = sb;
699 mnt->mnt_root = dget(root);
700 mnt->mnt_mountpoint = mnt->mnt_root;
701 mnt->mnt_parent = mnt;
702
703 if (flag & CL_SLAVE) {
704 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
705 mnt->mnt_master = old;
706 CLEAR_MNT_SHARED(mnt);
707 } else if (!(flag & CL_PRIVATE)) {
708 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
709 list_add(&mnt->mnt_share, &old->mnt_share);
710 if (IS_MNT_SLAVE(old))
711 list_add(&mnt->mnt_slave, &old->mnt_slave);
712 mnt->mnt_master = old->mnt_master;
713 }
714 if (flag & CL_MAKE_SHARED)
715 set_mnt_shared(mnt);
716
717 /* stick the duplicate mount on the same expiry list
718 * as the original if that was on one */
719 if (flag & CL_EXPIRE) {
720 if (!list_empty(&old->mnt_expire))
721 list_add(&mnt->mnt_expire, &old->mnt_expire);
722 }
723 }
724 return mnt;
725
726 out_free:
727 free_vfsmnt(mnt);
728 return NULL;
729 }
730
731 static inline void mntfree(struct vfsmount *mnt)
732 {
733 struct super_block *sb = mnt->mnt_sb;
734
735 /*
736 * This probably indicates that somebody messed
737 * up a mnt_want/drop_write() pair. If this
738 * happens, the filesystem was probably unable
739 * to make r/w->r/o transitions.
740 */
741 /*
742 * The locking used to deal with mnt_count decrement provides barriers,
743 * so mnt_get_writers() below is safe.
744 */
745 WARN_ON(mnt_get_writers(mnt));
746 fsnotify_vfsmount_delete(mnt);
747 dput(mnt->mnt_root);
748 free_vfsmnt(mnt);
749 deactivate_super(sb);
750 }
751
752 static void mntput_no_expire(struct vfsmount *mnt)
753 {
754 put_again:
755 #ifdef CONFIG_SMP
756 br_read_lock(vfsmount_lock);
757 if (likely(atomic_read(&mnt->mnt_longterm))) {
758 mnt_add_count(mnt, -1);
759 br_read_unlock(vfsmount_lock);
760 return;
761 }
762 br_read_unlock(vfsmount_lock);
763
764 br_write_lock(vfsmount_lock);
765 mnt_add_count(mnt, -1);
766 if (mnt_get_count(mnt)) {
767 br_write_unlock(vfsmount_lock);
768 return;
769 }
770 #else
771 mnt_add_count(mnt, -1);
772 if (likely(mnt_get_count(mnt)))
773 return;
774 br_write_lock(vfsmount_lock);
775 #endif
776 if (unlikely(mnt->mnt_pinned)) {
777 mnt_add_count(mnt, mnt->mnt_pinned + 1);
778 mnt->mnt_pinned = 0;
779 br_write_unlock(vfsmount_lock);
780 acct_auto_close_mnt(mnt);
781 goto put_again;
782 }
783 br_write_unlock(vfsmount_lock);
784 mntfree(mnt);
785 }
786
787 void mntput(struct vfsmount *mnt)
788 {
789 if (mnt) {
790 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
791 if (unlikely(mnt->mnt_expiry_mark))
792 mnt->mnt_expiry_mark = 0;
793 mntput_no_expire(mnt);
794 }
795 }
796 EXPORT_SYMBOL(mntput);
797
798 struct vfsmount *mntget(struct vfsmount *mnt)
799 {
800 if (mnt)
801 mnt_add_count(mnt, 1);
802 return mnt;
803 }
804 EXPORT_SYMBOL(mntget);
805
806 void mnt_pin(struct vfsmount *mnt)
807 {
808 br_write_lock(vfsmount_lock);
809 mnt->mnt_pinned++;
810 br_write_unlock(vfsmount_lock);
811 }
812 EXPORT_SYMBOL(mnt_pin);
813
814 void mnt_unpin(struct vfsmount *mnt)
815 {
816 br_write_lock(vfsmount_lock);
817 if (mnt->mnt_pinned) {
818 mnt_add_count(mnt, 1);
819 mnt->mnt_pinned--;
820 }
821 br_write_unlock(vfsmount_lock);
822 }
823 EXPORT_SYMBOL(mnt_unpin);
824
825 static inline void mangle(struct seq_file *m, const char *s)
826 {
827 seq_escape(m, s, " \t\n\\");
828 }
829
830 /*
831 * Simple .show_options callback for filesystems which don't want to
832 * implement more complex mount option showing.
833 *
834 * See also save_mount_options().
835 */
836 int generic_show_options(struct seq_file *m, struct vfsmount *mnt)
837 {
838 const char *options;
839
840 rcu_read_lock();
841 options = rcu_dereference(mnt->mnt_sb->s_options);
842
843 if (options != NULL && options[0]) {
844 seq_putc(m, ',');
845 mangle(m, options);
846 }
847 rcu_read_unlock();
848
849 return 0;
850 }
851 EXPORT_SYMBOL(generic_show_options);
852
853 /*
854 * If filesystem uses generic_show_options(), this function should be
855 * called from the fill_super() callback.
856 *
857 * The .remount_fs callback usually needs to be handled in a special
858 * way, to make sure, that previous options are not overwritten if the
859 * remount fails.
860 *
861 * Also note, that if the filesystem's .remount_fs function doesn't
862 * reset all options to their default value, but changes only newly
863 * given options, then the displayed options will not reflect reality
864 * any more.
865 */
866 void save_mount_options(struct super_block *sb, char *options)
867 {
868 BUG_ON(sb->s_options);
869 rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
870 }
871 EXPORT_SYMBOL(save_mount_options);
872
873 void replace_mount_options(struct super_block *sb, char *options)
874 {
875 char *old = sb->s_options;
876 rcu_assign_pointer(sb->s_options, options);
877 if (old) {
878 synchronize_rcu();
879 kfree(old);
880 }
881 }
882 EXPORT_SYMBOL(replace_mount_options);
883
884 #ifdef CONFIG_PROC_FS
885 /* iterator */
886 static void *m_start(struct seq_file *m, loff_t *pos)
887 {
888 struct proc_mounts *p = m->private;
889
890 down_read(&namespace_sem);
891 return seq_list_start(&p->ns->list, *pos);
892 }
893
894 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
895 {
896 struct proc_mounts *p = m->private;
897
898 return seq_list_next(v, &p->ns->list, pos);
899 }
900
901 static void m_stop(struct seq_file *m, void *v)
902 {
903 up_read(&namespace_sem);
904 }
905
906 int mnt_had_events(struct proc_mounts *p)
907 {
908 struct mnt_namespace *ns = p->ns;
909 int res = 0;
910
911 br_read_lock(vfsmount_lock);
912 if (p->m.poll_event != ns->event) {
913 p->m.poll_event = ns->event;
914 res = 1;
915 }
916 br_read_unlock(vfsmount_lock);
917
918 return res;
919 }
920
921 struct proc_fs_info {
922 int flag;
923 const char *str;
924 };
925
926 static int show_sb_opts(struct seq_file *m, struct super_block *sb)
927 {
928 static const struct proc_fs_info fs_info[] = {
929 { MS_SYNCHRONOUS, ",sync" },
930 { MS_DIRSYNC, ",dirsync" },
931 { MS_MANDLOCK, ",mand" },
932 { 0, NULL }
933 };
934 const struct proc_fs_info *fs_infop;
935
936 for (fs_infop = fs_info; fs_infop->flag; fs_infop++) {
937 if (sb->s_flags & fs_infop->flag)
938 seq_puts(m, fs_infop->str);
939 }
940
941 return security_sb_show_options(m, sb);
942 }
943
944 static void show_mnt_opts(struct seq_file *m, struct vfsmount *mnt)
945 {
946 static const struct proc_fs_info mnt_info[] = {
947 { MNT_NOSUID, ",nosuid" },
948 { MNT_NODEV, ",nodev" },
949 { MNT_NOEXEC, ",noexec" },
950 { MNT_NOATIME, ",noatime" },
951 { MNT_NODIRATIME, ",nodiratime" },
952 { MNT_RELATIME, ",relatime" },
953 { 0, NULL }
954 };
955 const struct proc_fs_info *fs_infop;
956
957 for (fs_infop = mnt_info; fs_infop->flag; fs_infop++) {
958 if (mnt->mnt_flags & fs_infop->flag)
959 seq_puts(m, fs_infop->str);
960 }
961 }
962
963 static void show_type(struct seq_file *m, struct super_block *sb)
964 {
965 mangle(m, sb->s_type->name);
966 if (sb->s_subtype && sb->s_subtype[0]) {
967 seq_putc(m, '.');
968 mangle(m, sb->s_subtype);
969 }
970 }
971
972 static int show_vfsmnt(struct seq_file *m, void *v)
973 {
974 struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
975 int err = 0;
976 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
977
978 if (mnt->mnt_sb->s_op->show_devname) {
979 err = mnt->mnt_sb->s_op->show_devname(m, mnt);
980 if (err)
981 goto out;
982 } else {
983 mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
984 }
985 seq_putc(m, ' ');
986 seq_path(m, &mnt_path, " \t\n\\");
987 seq_putc(m, ' ');
988 show_type(m, mnt->mnt_sb);
989 seq_puts(m, __mnt_is_readonly(mnt) ? " ro" : " rw");
990 err = show_sb_opts(m, mnt->mnt_sb);
991 if (err)
992 goto out;
993 show_mnt_opts(m, mnt);
994 if (mnt->mnt_sb->s_op->show_options)
995 err = mnt->mnt_sb->s_op->show_options(m, mnt);
996 seq_puts(m, " 0 0\n");
997 out:
998 return err;
999 }
1000
1001 const struct seq_operations mounts_op = {
1002 .start = m_start,
1003 .next = m_next,
1004 .stop = m_stop,
1005 .show = show_vfsmnt
1006 };
1007
1008 static int show_mountinfo(struct seq_file *m, void *v)
1009 {
1010 struct proc_mounts *p = m->private;
1011 struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
1012 struct super_block *sb = mnt->mnt_sb;
1013 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
1014 struct path root = p->root;
1015 int err = 0;
1016
1017 seq_printf(m, "%i %i %u:%u ", mnt->mnt_id, mnt->mnt_parent->mnt_id,
1018 MAJOR(sb->s_dev), MINOR(sb->s_dev));
1019 if (sb->s_op->show_path)
1020 err = sb->s_op->show_path(m, mnt);
1021 else
1022 seq_dentry(m, mnt->mnt_root, " \t\n\\");
1023 if (err)
1024 goto out;
1025 seq_putc(m, ' ');
1026
1027 /* mountpoints outside of chroot jail will give SEQ_SKIP on this */
1028 err = seq_path_root(m, &mnt_path, &root, " \t\n\\");
1029 if (err)
1030 goto out;
1031
1032 seq_puts(m, mnt->mnt_flags & MNT_READONLY ? " ro" : " rw");
1033 show_mnt_opts(m, mnt);
1034
1035 /* Tagged fields ("foo:X" or "bar") */
1036 if (IS_MNT_SHARED(mnt))
1037 seq_printf(m, " shared:%i", mnt->mnt_group_id);
1038 if (IS_MNT_SLAVE(mnt)) {
1039 int master = mnt->mnt_master->mnt_group_id;
1040 int dom = get_dominating_id(mnt, &p->root);
1041 seq_printf(m, " master:%i", master);
1042 if (dom && dom != master)
1043 seq_printf(m, " propagate_from:%i", dom);
1044 }
1045 if (IS_MNT_UNBINDABLE(mnt))
1046 seq_puts(m, " unbindable");
1047
1048 /* Filesystem specific data */
1049 seq_puts(m, " - ");
1050 show_type(m, sb);
1051 seq_putc(m, ' ');
1052 if (sb->s_op->show_devname)
1053 err = sb->s_op->show_devname(m, mnt);
1054 else
1055 mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
1056 if (err)
1057 goto out;
1058 seq_puts(m, sb->s_flags & MS_RDONLY ? " ro" : " rw");
1059 err = show_sb_opts(m, sb);
1060 if (err)
1061 goto out;
1062 if (sb->s_op->show_options)
1063 err = sb->s_op->show_options(m, mnt);
1064 seq_putc(m, '\n');
1065 out:
1066 return err;
1067 }
1068
1069 const struct seq_operations mountinfo_op = {
1070 .start = m_start,
1071 .next = m_next,
1072 .stop = m_stop,
1073 .show = show_mountinfo,
1074 };
1075
1076 static int show_vfsstat(struct seq_file *m, void *v)
1077 {
1078 struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
1079 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
1080 int err = 0;
1081
1082 /* device */
1083 if (mnt->mnt_sb->s_op->show_devname) {
1084 seq_puts(m, "device ");
1085 err = mnt->mnt_sb->s_op->show_devname(m, mnt);
1086 } else {
1087 if (mnt->mnt_devname) {
1088 seq_puts(m, "device ");
1089 mangle(m, mnt->mnt_devname);
1090 } else
1091 seq_puts(m, "no device");
1092 }
1093
1094 /* mount point */
1095 seq_puts(m, " mounted on ");
1096 seq_path(m, &mnt_path, " \t\n\\");
1097 seq_putc(m, ' ');
1098
1099 /* file system type */
1100 seq_puts(m, "with fstype ");
1101 show_type(m, mnt->mnt_sb);
1102
1103 /* optional statistics */
1104 if (mnt->mnt_sb->s_op->show_stats) {
1105 seq_putc(m, ' ');
1106 if (!err)
1107 err = mnt->mnt_sb->s_op->show_stats(m, mnt);
1108 }
1109
1110 seq_putc(m, '\n');
1111 return err;
1112 }
1113
1114 const struct seq_operations mountstats_op = {
1115 .start = m_start,
1116 .next = m_next,
1117 .stop = m_stop,
1118 .show = show_vfsstat,
1119 };
1120 #endif /* CONFIG_PROC_FS */
1121
1122 /**
1123 * may_umount_tree - check if a mount tree is busy
1124 * @mnt: root of mount tree
1125 *
1126 * This is called to check if a tree of mounts has any
1127 * open files, pwds, chroots or sub mounts that are
1128 * busy.
1129 */
1130 int may_umount_tree(struct vfsmount *mnt)
1131 {
1132 int actual_refs = 0;
1133 int minimum_refs = 0;
1134 struct vfsmount *p;
1135
1136 /* write lock needed for mnt_get_count */
1137 br_write_lock(vfsmount_lock);
1138 for (p = mnt; p; p = next_mnt(p, mnt)) {
1139 actual_refs += mnt_get_count(p);
1140 minimum_refs += 2;
1141 }
1142 br_write_unlock(vfsmount_lock);
1143
1144 if (actual_refs > minimum_refs)
1145 return 0;
1146
1147 return 1;
1148 }
1149
1150 EXPORT_SYMBOL(may_umount_tree);
1151
1152 /**
1153 * may_umount - check if a mount point is busy
1154 * @mnt: root of mount
1155 *
1156 * This is called to check if a mount point has any
1157 * open files, pwds, chroots or sub mounts. If the
1158 * mount has sub mounts this will return busy
1159 * regardless of whether the sub mounts are busy.
1160 *
1161 * Doesn't take quota and stuff into account. IOW, in some cases it will
1162 * give false negatives. The main reason why it's here is that we need
1163 * a non-destructive way to look for easily umountable filesystems.
1164 */
1165 int may_umount(struct vfsmount *mnt)
1166 {
1167 int ret = 1;
1168 down_read(&namespace_sem);
1169 br_write_lock(vfsmount_lock);
1170 if (propagate_mount_busy(mnt, 2))
1171 ret = 0;
1172 br_write_unlock(vfsmount_lock);
1173 up_read(&namespace_sem);
1174 return ret;
1175 }
1176
1177 EXPORT_SYMBOL(may_umount);
1178
1179 void release_mounts(struct list_head *head)
1180 {
1181 struct vfsmount *mnt;
1182 while (!list_empty(head)) {
1183 mnt = list_first_entry(head, struct vfsmount, mnt_hash);
1184 list_del_init(&mnt->mnt_hash);
1185 if (mnt_has_parent(mnt)) {
1186 struct dentry *dentry;
1187 struct vfsmount *m;
1188
1189 br_write_lock(vfsmount_lock);
1190 dentry = mnt->mnt_mountpoint;
1191 m = mnt->mnt_parent;
1192 mnt->mnt_mountpoint = mnt->mnt_root;
1193 mnt->mnt_parent = mnt;
1194 m->mnt_ghosts--;
1195 br_write_unlock(vfsmount_lock);
1196 dput(dentry);
1197 mntput(m);
1198 }
1199 mntput(mnt);
1200 }
1201 }
1202
1203 /*
1204 * vfsmount lock must be held for write
1205 * namespace_sem must be held for write
1206 */
1207 void umount_tree(struct vfsmount *mnt, int propagate, struct list_head *kill)
1208 {
1209 LIST_HEAD(tmp_list);
1210 struct vfsmount *p;
1211
1212 for (p = mnt; p; p = next_mnt(p, mnt))
1213 list_move(&p->mnt_hash, &tmp_list);
1214
1215 if (propagate)
1216 propagate_umount(&tmp_list);
1217
1218 list_for_each_entry(p, &tmp_list, mnt_hash) {
1219 list_del_init(&p->mnt_expire);
1220 list_del_init(&p->mnt_list);
1221 __touch_mnt_namespace(p->mnt_ns);
1222 p->mnt_ns = NULL;
1223 __mnt_make_shortterm(p);
1224 list_del_init(&p->mnt_child);
1225 if (mnt_has_parent(p)) {
1226 p->mnt_parent->mnt_ghosts++;
1227 dentry_reset_mounted(p->mnt_mountpoint);
1228 }
1229 change_mnt_propagation(p, MS_PRIVATE);
1230 }
1231 list_splice(&tmp_list, kill);
1232 }
1233
1234 static void shrink_submounts(struct vfsmount *mnt, struct list_head *umounts);
1235
1236 static int do_umount(struct vfsmount *mnt, int flags)
1237 {
1238 struct super_block *sb = mnt->mnt_sb;
1239 int retval;
1240 LIST_HEAD(umount_list);
1241
1242 retval = security_sb_umount(mnt, flags);
1243 if (retval)
1244 return retval;
1245
1246 /*
1247 * Allow userspace to request a mountpoint be expired rather than
1248 * unmounting unconditionally. Unmount only happens if:
1249 * (1) the mark is already set (the mark is cleared by mntput())
1250 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1251 */
1252 if (flags & MNT_EXPIRE) {
1253 if (mnt == current->fs->root.mnt ||
1254 flags & (MNT_FORCE | MNT_DETACH))
1255 return -EINVAL;
1256
1257 /*
1258 * probably don't strictly need the lock here if we examined
1259 * all race cases, but it's a slowpath.
1260 */
1261 br_write_lock(vfsmount_lock);
1262 if (mnt_get_count(mnt) != 2) {
1263 br_write_unlock(vfsmount_lock);
1264 return -EBUSY;
1265 }
1266 br_write_unlock(vfsmount_lock);
1267
1268 if (!xchg(&mnt->mnt_expiry_mark, 1))
1269 return -EAGAIN;
1270 }
1271
1272 /*
1273 * If we may have to abort operations to get out of this
1274 * mount, and they will themselves hold resources we must
1275 * allow the fs to do things. In the Unix tradition of
1276 * 'Gee thats tricky lets do it in userspace' the umount_begin
1277 * might fail to complete on the first run through as other tasks
1278 * must return, and the like. Thats for the mount program to worry
1279 * about for the moment.
1280 */
1281
1282 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1283 sb->s_op->umount_begin(sb);
1284 }
1285
1286 /*
1287 * No sense to grab the lock for this test, but test itself looks
1288 * somewhat bogus. Suggestions for better replacement?
1289 * Ho-hum... In principle, we might treat that as umount + switch
1290 * to rootfs. GC would eventually take care of the old vfsmount.
1291 * Actually it makes sense, especially if rootfs would contain a
1292 * /reboot - static binary that would close all descriptors and
1293 * call reboot(9). Then init(8) could umount root and exec /reboot.
1294 */
1295 if (mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1296 /*
1297 * Special case for "unmounting" root ...
1298 * we just try to remount it readonly.
1299 */
1300 down_write(&sb->s_umount);
1301 if (!(sb->s_flags & MS_RDONLY))
1302 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1303 up_write(&sb->s_umount);
1304 return retval;
1305 }
1306
1307 down_write(&namespace_sem);
1308 br_write_lock(vfsmount_lock);
1309 event++;
1310
1311 if (!(flags & MNT_DETACH))
1312 shrink_submounts(mnt, &umount_list);
1313
1314 retval = -EBUSY;
1315 if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) {
1316 if (!list_empty(&mnt->mnt_list))
1317 umount_tree(mnt, 1, &umount_list);
1318 retval = 0;
1319 }
1320 br_write_unlock(vfsmount_lock);
1321 up_write(&namespace_sem);
1322 release_mounts(&umount_list);
1323 return retval;
1324 }
1325
1326 /*
1327 * Now umount can handle mount points as well as block devices.
1328 * This is important for filesystems which use unnamed block devices.
1329 *
1330 * We now support a flag for forced unmount like the other 'big iron'
1331 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1332 */
1333
1334 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1335 {
1336 struct path path;
1337 int retval;
1338 int lookup_flags = 0;
1339
1340 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1341 return -EINVAL;
1342
1343 if (!(flags & UMOUNT_NOFOLLOW))
1344 lookup_flags |= LOOKUP_FOLLOW;
1345
1346 retval = user_path_at(AT_FDCWD, name, lookup_flags, &path);
1347 if (retval)
1348 goto out;
1349 retval = -EINVAL;
1350 if (path.dentry != path.mnt->mnt_root)
1351 goto dput_and_out;
1352 if (!check_mnt(path.mnt))
1353 goto dput_and_out;
1354
1355 retval = -EPERM;
1356 if (!capable(CAP_SYS_ADMIN))
1357 goto dput_and_out;
1358
1359 retval = do_umount(path.mnt, flags);
1360 dput_and_out:
1361 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
1362 dput(path.dentry);
1363 mntput_no_expire(path.mnt);
1364 out:
1365 return retval;
1366 }
1367
1368 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1369
1370 /*
1371 * The 2.0 compatible umount. No flags.
1372 */
1373 SYSCALL_DEFINE1(oldumount, char __user *, name)
1374 {
1375 return sys_umount(name, 0);
1376 }
1377
1378 #endif
1379
1380 static int mount_is_safe(struct path *path)
1381 {
1382 if (capable(CAP_SYS_ADMIN))
1383 return 0;
1384 return -EPERM;
1385 #ifdef notyet
1386 if (S_ISLNK(path->dentry->d_inode->i_mode))
1387 return -EPERM;
1388 if (path->dentry->d_inode->i_mode & S_ISVTX) {
1389 if (current_uid() != path->dentry->d_inode->i_uid)
1390 return -EPERM;
1391 }
1392 if (inode_permission(path->dentry->d_inode, MAY_WRITE))
1393 return -EPERM;
1394 return 0;
1395 #endif
1396 }
1397
1398 struct vfsmount *copy_tree(struct vfsmount *mnt, struct dentry *dentry,
1399 int flag)
1400 {
1401 struct vfsmount *res, *p, *q, *r, *s;
1402 struct path path;
1403
1404 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(mnt))
1405 return NULL;
1406
1407 res = q = clone_mnt(mnt, dentry, flag);
1408 if (!q)
1409 goto Enomem;
1410 q->mnt_mountpoint = mnt->mnt_mountpoint;
1411
1412 p = mnt;
1413 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1414 if (!is_subdir(r->mnt_mountpoint, dentry))
1415 continue;
1416
1417 for (s = r; s; s = next_mnt(s, r)) {
1418 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(s)) {
1419 s = skip_mnt_tree(s);
1420 continue;
1421 }
1422 while (p != s->mnt_parent) {
1423 p = p->mnt_parent;
1424 q = q->mnt_parent;
1425 }
1426 p = s;
1427 path.mnt = q;
1428 path.dentry = p->mnt_mountpoint;
1429 q = clone_mnt(p, p->mnt_root, flag);
1430 if (!q)
1431 goto Enomem;
1432 br_write_lock(vfsmount_lock);
1433 list_add_tail(&q->mnt_list, &res->mnt_list);
1434 attach_mnt(q, &path);
1435 br_write_unlock(vfsmount_lock);
1436 }
1437 }
1438 return res;
1439 Enomem:
1440 if (res) {
1441 LIST_HEAD(umount_list);
1442 br_write_lock(vfsmount_lock);
1443 umount_tree(res, 0, &umount_list);
1444 br_write_unlock(vfsmount_lock);
1445 release_mounts(&umount_list);
1446 }
1447 return NULL;
1448 }
1449
1450 struct vfsmount *collect_mounts(struct path *path)
1451 {
1452 struct vfsmount *tree;
1453 down_write(&namespace_sem);
1454 tree = copy_tree(path->mnt, path->dentry, CL_COPY_ALL | CL_PRIVATE);
1455 up_write(&namespace_sem);
1456 return tree;
1457 }
1458
1459 void drop_collected_mounts(struct vfsmount *mnt)
1460 {
1461 LIST_HEAD(umount_list);
1462 down_write(&namespace_sem);
1463 br_write_lock(vfsmount_lock);
1464 umount_tree(mnt, 0, &umount_list);
1465 br_write_unlock(vfsmount_lock);
1466 up_write(&namespace_sem);
1467 release_mounts(&umount_list);
1468 }
1469
1470 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1471 struct vfsmount *root)
1472 {
1473 struct vfsmount *mnt;
1474 int res = f(root, arg);
1475 if (res)
1476 return res;
1477 list_for_each_entry(mnt, &root->mnt_list, mnt_list) {
1478 res = f(mnt, arg);
1479 if (res)
1480 return res;
1481 }
1482 return 0;
1483 }
1484
1485 static void cleanup_group_ids(struct vfsmount *mnt, struct vfsmount *end)
1486 {
1487 struct vfsmount *p;
1488
1489 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1490 if (p->mnt_group_id && !IS_MNT_SHARED(p))
1491 mnt_release_group_id(p);
1492 }
1493 }
1494
1495 static int invent_group_ids(struct vfsmount *mnt, bool recurse)
1496 {
1497 struct vfsmount *p;
1498
1499 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1500 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1501 int err = mnt_alloc_group_id(p);
1502 if (err) {
1503 cleanup_group_ids(mnt, p);
1504 return err;
1505 }
1506 }
1507 }
1508
1509 return 0;
1510 }
1511
1512 /*
1513 * @source_mnt : mount tree to be attached
1514 * @nd : place the mount tree @source_mnt is attached
1515 * @parent_nd : if non-null, detach the source_mnt from its parent and
1516 * store the parent mount and mountpoint dentry.
1517 * (done when source_mnt is moved)
1518 *
1519 * NOTE: in the table below explains the semantics when a source mount
1520 * of a given type is attached to a destination mount of a given type.
1521 * ---------------------------------------------------------------------------
1522 * | BIND MOUNT OPERATION |
1523 * |**************************************************************************
1524 * | source-->| shared | private | slave | unbindable |
1525 * | dest | | | | |
1526 * | | | | | | |
1527 * | v | | | | |
1528 * |**************************************************************************
1529 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1530 * | | | | | |
1531 * |non-shared| shared (+) | private | slave (*) | invalid |
1532 * ***************************************************************************
1533 * A bind operation clones the source mount and mounts the clone on the
1534 * destination mount.
1535 *
1536 * (++) the cloned mount is propagated to all the mounts in the propagation
1537 * tree of the destination mount and the cloned mount is added to
1538 * the peer group of the source mount.
1539 * (+) the cloned mount is created under the destination mount and is marked
1540 * as shared. The cloned mount is added to the peer group of the source
1541 * mount.
1542 * (+++) the mount is propagated to all the mounts in the propagation tree
1543 * of the destination mount and the cloned mount is made slave
1544 * of the same master as that of the source mount. The cloned mount
1545 * is marked as 'shared and slave'.
1546 * (*) the cloned mount is made a slave of the same master as that of the
1547 * source mount.
1548 *
1549 * ---------------------------------------------------------------------------
1550 * | MOVE MOUNT OPERATION |
1551 * |**************************************************************************
1552 * | source-->| shared | private | slave | unbindable |
1553 * | dest | | | | |
1554 * | | | | | | |
1555 * | v | | | | |
1556 * |**************************************************************************
1557 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1558 * | | | | | |
1559 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1560 * ***************************************************************************
1561 *
1562 * (+) the mount is moved to the destination. And is then propagated to
1563 * all the mounts in the propagation tree of the destination mount.
1564 * (+*) the mount is moved to the destination.
1565 * (+++) the mount is moved to the destination and is then propagated to
1566 * all the mounts belonging to the destination mount's propagation tree.
1567 * the mount is marked as 'shared and slave'.
1568 * (*) the mount continues to be a slave at the new location.
1569 *
1570 * if the source mount is a tree, the operations explained above is
1571 * applied to each mount in the tree.
1572 * Must be called without spinlocks held, since this function can sleep
1573 * in allocations.
1574 */
1575 static int attach_recursive_mnt(struct vfsmount *source_mnt,
1576 struct path *path, struct path *parent_path)
1577 {
1578 LIST_HEAD(tree_list);
1579 struct vfsmount *dest_mnt = path->mnt;
1580 struct dentry *dest_dentry = path->dentry;
1581 struct vfsmount *child, *p;
1582 int err;
1583
1584 if (IS_MNT_SHARED(dest_mnt)) {
1585 err = invent_group_ids(source_mnt, true);
1586 if (err)
1587 goto out;
1588 }
1589 err = propagate_mnt(dest_mnt, dest_dentry, source_mnt, &tree_list);
1590 if (err)
1591 goto out_cleanup_ids;
1592
1593 br_write_lock(vfsmount_lock);
1594
1595 if (IS_MNT_SHARED(dest_mnt)) {
1596 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
1597 set_mnt_shared(p);
1598 }
1599 if (parent_path) {
1600 detach_mnt(source_mnt, parent_path);
1601 attach_mnt(source_mnt, path);
1602 touch_mnt_namespace(parent_path->mnt->mnt_ns);
1603 } else {
1604 mnt_set_mountpoint(dest_mnt, dest_dentry, source_mnt);
1605 commit_tree(source_mnt);
1606 }
1607
1608 list_for_each_entry_safe(child, p, &tree_list, mnt_hash) {
1609 list_del_init(&child->mnt_hash);
1610 commit_tree(child);
1611 }
1612 br_write_unlock(vfsmount_lock);
1613
1614 return 0;
1615
1616 out_cleanup_ids:
1617 if (IS_MNT_SHARED(dest_mnt))
1618 cleanup_group_ids(source_mnt, NULL);
1619 out:
1620 return err;
1621 }
1622
1623 static int lock_mount(struct path *path)
1624 {
1625 struct vfsmount *mnt;
1626 retry:
1627 mutex_lock(&path->dentry->d_inode->i_mutex);
1628 if (unlikely(cant_mount(path->dentry))) {
1629 mutex_unlock(&path->dentry->d_inode->i_mutex);
1630 return -ENOENT;
1631 }
1632 down_write(&namespace_sem);
1633 mnt = lookup_mnt(path);
1634 if (likely(!mnt))
1635 return 0;
1636 up_write(&namespace_sem);
1637 mutex_unlock(&path->dentry->d_inode->i_mutex);
1638 path_put(path);
1639 path->mnt = mnt;
1640 path->dentry = dget(mnt->mnt_root);
1641 goto retry;
1642 }
1643
1644 static void unlock_mount(struct path *path)
1645 {
1646 up_write(&namespace_sem);
1647 mutex_unlock(&path->dentry->d_inode->i_mutex);
1648 }
1649
1650 static int graft_tree(struct vfsmount *mnt, struct path *path)
1651 {
1652 if (mnt->mnt_sb->s_flags & MS_NOUSER)
1653 return -EINVAL;
1654
1655 if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1656 S_ISDIR(mnt->mnt_root->d_inode->i_mode))
1657 return -ENOTDIR;
1658
1659 if (d_unlinked(path->dentry))
1660 return -ENOENT;
1661
1662 return attach_recursive_mnt(mnt, path, NULL);
1663 }
1664
1665 /*
1666 * Sanity check the flags to change_mnt_propagation.
1667 */
1668
1669 static int flags_to_propagation_type(int flags)
1670 {
1671 int type = flags & ~(MS_REC | MS_SILENT);
1672
1673 /* Fail if any non-propagation flags are set */
1674 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
1675 return 0;
1676 /* Only one propagation flag should be set */
1677 if (!is_power_of_2(type))
1678 return 0;
1679 return type;
1680 }
1681
1682 /*
1683 * recursively change the type of the mountpoint.
1684 */
1685 static int do_change_type(struct path *path, int flag)
1686 {
1687 struct vfsmount *m, *mnt = path->mnt;
1688 int recurse = flag & MS_REC;
1689 int type;
1690 int err = 0;
1691
1692 if (!capable(CAP_SYS_ADMIN))
1693 return -EPERM;
1694
1695 if (path->dentry != path->mnt->mnt_root)
1696 return -EINVAL;
1697
1698 type = flags_to_propagation_type(flag);
1699 if (!type)
1700 return -EINVAL;
1701
1702 down_write(&namespace_sem);
1703 if (type == MS_SHARED) {
1704 err = invent_group_ids(mnt, recurse);
1705 if (err)
1706 goto out_unlock;
1707 }
1708
1709 br_write_lock(vfsmount_lock);
1710 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
1711 change_mnt_propagation(m, type);
1712 br_write_unlock(vfsmount_lock);
1713
1714 out_unlock:
1715 up_write(&namespace_sem);
1716 return err;
1717 }
1718
1719 /*
1720 * do loopback mount.
1721 */
1722 static int do_loopback(struct path *path, char *old_name,
1723 int recurse)
1724 {
1725 LIST_HEAD(umount_list);
1726 struct path old_path;
1727 struct vfsmount *mnt = NULL;
1728 int err = mount_is_safe(path);
1729 if (err)
1730 return err;
1731 if (!old_name || !*old_name)
1732 return -EINVAL;
1733 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
1734 if (err)
1735 return err;
1736
1737 err = lock_mount(path);
1738 if (err)
1739 goto out;
1740
1741 err = -EINVAL;
1742 if (IS_MNT_UNBINDABLE(old_path.mnt))
1743 goto out2;
1744
1745 if (!check_mnt(path->mnt) || !check_mnt(old_path.mnt))
1746 goto out2;
1747
1748 err = -ENOMEM;
1749 if (recurse)
1750 mnt = copy_tree(old_path.mnt, old_path.dentry, 0);
1751 else
1752 mnt = clone_mnt(old_path.mnt, old_path.dentry, 0);
1753
1754 if (!mnt)
1755 goto out2;
1756
1757 err = graft_tree(mnt, path);
1758 if (err) {
1759 br_write_lock(vfsmount_lock);
1760 umount_tree(mnt, 0, &umount_list);
1761 br_write_unlock(vfsmount_lock);
1762 }
1763 out2:
1764 unlock_mount(path);
1765 release_mounts(&umount_list);
1766 out:
1767 path_put(&old_path);
1768 return err;
1769 }
1770
1771 static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
1772 {
1773 int error = 0;
1774 int readonly_request = 0;
1775
1776 if (ms_flags & MS_RDONLY)
1777 readonly_request = 1;
1778 if (readonly_request == __mnt_is_readonly(mnt))
1779 return 0;
1780
1781 if (readonly_request)
1782 error = mnt_make_readonly(mnt);
1783 else
1784 __mnt_unmake_readonly(mnt);
1785 return error;
1786 }
1787
1788 /*
1789 * change filesystem flags. dir should be a physical root of filesystem.
1790 * If you've mounted a non-root directory somewhere and want to do remount
1791 * on it - tough luck.
1792 */
1793 static int do_remount(struct path *path, int flags, int mnt_flags,
1794 void *data)
1795 {
1796 int err;
1797 struct super_block *sb = path->mnt->mnt_sb;
1798
1799 if (!capable(CAP_SYS_ADMIN))
1800 return -EPERM;
1801
1802 if (!check_mnt(path->mnt))
1803 return -EINVAL;
1804
1805 if (path->dentry != path->mnt->mnt_root)
1806 return -EINVAL;
1807
1808 err = security_sb_remount(sb, data);
1809 if (err)
1810 return err;
1811
1812 down_write(&sb->s_umount);
1813 if (flags & MS_BIND)
1814 err = change_mount_flags(path->mnt, flags);
1815 else
1816 err = do_remount_sb(sb, flags, data, 0);
1817 if (!err) {
1818 br_write_lock(vfsmount_lock);
1819 mnt_flags |= path->mnt->mnt_flags & MNT_PROPAGATION_MASK;
1820 path->mnt->mnt_flags = mnt_flags;
1821 br_write_unlock(vfsmount_lock);
1822 }
1823 up_write(&sb->s_umount);
1824 if (!err) {
1825 br_write_lock(vfsmount_lock);
1826 touch_mnt_namespace(path->mnt->mnt_ns);
1827 br_write_unlock(vfsmount_lock);
1828 }
1829 return err;
1830 }
1831
1832 static inline int tree_contains_unbindable(struct vfsmount *mnt)
1833 {
1834 struct vfsmount *p;
1835 for (p = mnt; p; p = next_mnt(p, mnt)) {
1836 if (IS_MNT_UNBINDABLE(p))
1837 return 1;
1838 }
1839 return 0;
1840 }
1841
1842 static int do_move_mount(struct path *path, char *old_name)
1843 {
1844 struct path old_path, parent_path;
1845 struct vfsmount *p;
1846 int err = 0;
1847 if (!capable(CAP_SYS_ADMIN))
1848 return -EPERM;
1849 if (!old_name || !*old_name)
1850 return -EINVAL;
1851 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
1852 if (err)
1853 return err;
1854
1855 err = lock_mount(path);
1856 if (err < 0)
1857 goto out;
1858
1859 err = -EINVAL;
1860 if (!check_mnt(path->mnt) || !check_mnt(old_path.mnt))
1861 goto out1;
1862
1863 if (d_unlinked(path->dentry))
1864 goto out1;
1865
1866 err = -EINVAL;
1867 if (old_path.dentry != old_path.mnt->mnt_root)
1868 goto out1;
1869
1870 if (!mnt_has_parent(old_path.mnt))
1871 goto out1;
1872
1873 if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1874 S_ISDIR(old_path.dentry->d_inode->i_mode))
1875 goto out1;
1876 /*
1877 * Don't move a mount residing in a shared parent.
1878 */
1879 if (IS_MNT_SHARED(old_path.mnt->mnt_parent))
1880 goto out1;
1881 /*
1882 * Don't move a mount tree containing unbindable mounts to a destination
1883 * mount which is shared.
1884 */
1885 if (IS_MNT_SHARED(path->mnt) &&
1886 tree_contains_unbindable(old_path.mnt))
1887 goto out1;
1888 err = -ELOOP;
1889 for (p = path->mnt; mnt_has_parent(p); p = p->mnt_parent)
1890 if (p == old_path.mnt)
1891 goto out1;
1892
1893 err = attach_recursive_mnt(old_path.mnt, path, &parent_path);
1894 if (err)
1895 goto out1;
1896
1897 /* if the mount is moved, it should no longer be expire
1898 * automatically */
1899 list_del_init(&old_path.mnt->mnt_expire);
1900 out1:
1901 unlock_mount(path);
1902 out:
1903 if (!err)
1904 path_put(&parent_path);
1905 path_put(&old_path);
1906 return err;
1907 }
1908
1909 static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
1910 {
1911 int err;
1912 const char *subtype = strchr(fstype, '.');
1913 if (subtype) {
1914 subtype++;
1915 err = -EINVAL;
1916 if (!subtype[0])
1917 goto err;
1918 } else
1919 subtype = "";
1920
1921 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
1922 err = -ENOMEM;
1923 if (!mnt->mnt_sb->s_subtype)
1924 goto err;
1925 return mnt;
1926
1927 err:
1928 mntput(mnt);
1929 return ERR_PTR(err);
1930 }
1931
1932 static struct vfsmount *
1933 do_kern_mount(const char *fstype, int flags, const char *name, void *data)
1934 {
1935 struct file_system_type *type = get_fs_type(fstype);
1936 struct vfsmount *mnt;
1937 if (!type)
1938 return ERR_PTR(-ENODEV);
1939 mnt = vfs_kern_mount(type, flags, name, data);
1940 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
1941 !mnt->mnt_sb->s_subtype)
1942 mnt = fs_set_subtype(mnt, fstype);
1943 put_filesystem(type);
1944 return mnt;
1945 }
1946
1947 /*
1948 * add a mount into a namespace's mount tree
1949 */
1950 static int do_add_mount(struct vfsmount *newmnt, struct path *path, int mnt_flags)
1951 {
1952 int err;
1953
1954 mnt_flags &= ~(MNT_SHARED | MNT_WRITE_HOLD | MNT_INTERNAL);
1955
1956 err = lock_mount(path);
1957 if (err)
1958 return err;
1959
1960 err = -EINVAL;
1961 if (!(mnt_flags & MNT_SHRINKABLE) && !check_mnt(path->mnt))
1962 goto unlock;
1963
1964 /* Refuse the same filesystem on the same mount point */
1965 err = -EBUSY;
1966 if (path->mnt->mnt_sb == newmnt->mnt_sb &&
1967 path->mnt->mnt_root == path->dentry)
1968 goto unlock;
1969
1970 err = -EINVAL;
1971 if (S_ISLNK(newmnt->mnt_root->d_inode->i_mode))
1972 goto unlock;
1973
1974 newmnt->mnt_flags = mnt_flags;
1975 err = graft_tree(newmnt, path);
1976
1977 unlock:
1978 unlock_mount(path);
1979 return err;
1980 }
1981
1982 /*
1983 * create a new mount for userspace and request it to be added into the
1984 * namespace's tree
1985 */
1986 static int do_new_mount(struct path *path, char *type, int flags,
1987 int mnt_flags, char *name, void *data)
1988 {
1989 struct vfsmount *mnt;
1990 int err;
1991
1992 if (!type)
1993 return -EINVAL;
1994
1995 /* we need capabilities... */
1996 if (!capable(CAP_SYS_ADMIN))
1997 return -EPERM;
1998
1999 mnt = do_kern_mount(type, flags, name, data);
2000 if (IS_ERR(mnt))
2001 return PTR_ERR(mnt);
2002
2003 err = do_add_mount(mnt, path, mnt_flags);
2004 if (err)
2005 mntput(mnt);
2006 return err;
2007 }
2008
2009 int finish_automount(struct vfsmount *m, struct path *path)
2010 {
2011 int err;
2012 /* The new mount record should have at least 2 refs to prevent it being
2013 * expired before we get a chance to add it
2014 */
2015 BUG_ON(mnt_get_count(m) < 2);
2016
2017 if (m->mnt_sb == path->mnt->mnt_sb &&
2018 m->mnt_root == path->dentry) {
2019 err = -ELOOP;
2020 goto fail;
2021 }
2022
2023 err = do_add_mount(m, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
2024 if (!err)
2025 return 0;
2026 fail:
2027 /* remove m from any expiration list it may be on */
2028 if (!list_empty(&m->mnt_expire)) {
2029 down_write(&namespace_sem);
2030 br_write_lock(vfsmount_lock);
2031 list_del_init(&m->mnt_expire);
2032 br_write_unlock(vfsmount_lock);
2033 up_write(&namespace_sem);
2034 }
2035 mntput(m);
2036 mntput(m);
2037 return err;
2038 }
2039
2040 /**
2041 * mnt_set_expiry - Put a mount on an expiration list
2042 * @mnt: The mount to list.
2043 * @expiry_list: The list to add the mount to.
2044 */
2045 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2046 {
2047 down_write(&namespace_sem);
2048 br_write_lock(vfsmount_lock);
2049
2050 list_add_tail(&mnt->mnt_expire, expiry_list);
2051
2052 br_write_unlock(vfsmount_lock);
2053 up_write(&namespace_sem);
2054 }
2055 EXPORT_SYMBOL(mnt_set_expiry);
2056
2057 /*
2058 * process a list of expirable mountpoints with the intent of discarding any
2059 * mountpoints that aren't in use and haven't been touched since last we came
2060 * here
2061 */
2062 void mark_mounts_for_expiry(struct list_head *mounts)
2063 {
2064 struct vfsmount *mnt, *next;
2065 LIST_HEAD(graveyard);
2066 LIST_HEAD(umounts);
2067
2068 if (list_empty(mounts))
2069 return;
2070
2071 down_write(&namespace_sem);
2072 br_write_lock(vfsmount_lock);
2073
2074 /* extract from the expiration list every vfsmount that matches the
2075 * following criteria:
2076 * - only referenced by its parent vfsmount
2077 * - still marked for expiry (marked on the last call here; marks are
2078 * cleared by mntput())
2079 */
2080 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
2081 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
2082 propagate_mount_busy(mnt, 1))
2083 continue;
2084 list_move(&mnt->mnt_expire, &graveyard);
2085 }
2086 while (!list_empty(&graveyard)) {
2087 mnt = list_first_entry(&graveyard, struct vfsmount, mnt_expire);
2088 touch_mnt_namespace(mnt->mnt_ns);
2089 umount_tree(mnt, 1, &umounts);
2090 }
2091 br_write_unlock(vfsmount_lock);
2092 up_write(&namespace_sem);
2093
2094 release_mounts(&umounts);
2095 }
2096
2097 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2098
2099 /*
2100 * Ripoff of 'select_parent()'
2101 *
2102 * search the list of submounts for a given mountpoint, and move any
2103 * shrinkable submounts to the 'graveyard' list.
2104 */
2105 static int select_submounts(struct vfsmount *parent, struct list_head *graveyard)
2106 {
2107 struct vfsmount *this_parent = parent;
2108 struct list_head *next;
2109 int found = 0;
2110
2111 repeat:
2112 next = this_parent->mnt_mounts.next;
2113 resume:
2114 while (next != &this_parent->mnt_mounts) {
2115 struct list_head *tmp = next;
2116 struct vfsmount *mnt = list_entry(tmp, struct vfsmount, mnt_child);
2117
2118 next = tmp->next;
2119 if (!(mnt->mnt_flags & MNT_SHRINKABLE))
2120 continue;
2121 /*
2122 * Descend a level if the d_mounts list is non-empty.
2123 */
2124 if (!list_empty(&mnt->mnt_mounts)) {
2125 this_parent = mnt;
2126 goto repeat;
2127 }
2128
2129 if (!propagate_mount_busy(mnt, 1)) {
2130 list_move_tail(&mnt->mnt_expire, graveyard);
2131 found++;
2132 }
2133 }
2134 /*
2135 * All done at this level ... ascend and resume the search
2136 */
2137 if (this_parent != parent) {
2138 next = this_parent->mnt_child.next;
2139 this_parent = this_parent->mnt_parent;
2140 goto resume;
2141 }
2142 return found;
2143 }
2144
2145 /*
2146 * process a list of expirable mountpoints with the intent of discarding any
2147 * submounts of a specific parent mountpoint
2148 *
2149 * vfsmount_lock must be held for write
2150 */
2151 static void shrink_submounts(struct vfsmount *mnt, struct list_head *umounts)
2152 {
2153 LIST_HEAD(graveyard);
2154 struct vfsmount *m;
2155
2156 /* extract submounts of 'mountpoint' from the expiration list */
2157 while (select_submounts(mnt, &graveyard)) {
2158 while (!list_empty(&graveyard)) {
2159 m = list_first_entry(&graveyard, struct vfsmount,
2160 mnt_expire);
2161 touch_mnt_namespace(m->mnt_ns);
2162 umount_tree(m, 1, umounts);
2163 }
2164 }
2165 }
2166
2167 /*
2168 * Some copy_from_user() implementations do not return the exact number of
2169 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
2170 * Note that this function differs from copy_from_user() in that it will oops
2171 * on bad values of `to', rather than returning a short copy.
2172 */
2173 static long exact_copy_from_user(void *to, const void __user * from,
2174 unsigned long n)
2175 {
2176 char *t = to;
2177 const char __user *f = from;
2178 char c;
2179
2180 if (!access_ok(VERIFY_READ, from, n))
2181 return n;
2182
2183 while (n) {
2184 if (__get_user(c, f)) {
2185 memset(t, 0, n);
2186 break;
2187 }
2188 *t++ = c;
2189 f++;
2190 n--;
2191 }
2192 return n;
2193 }
2194
2195 int copy_mount_options(const void __user * data, unsigned long *where)
2196 {
2197 int i;
2198 unsigned long page;
2199 unsigned long size;
2200
2201 *where = 0;
2202 if (!data)
2203 return 0;
2204
2205 if (!(page = __get_free_page(GFP_KERNEL)))
2206 return -ENOMEM;
2207
2208 /* We only care that *some* data at the address the user
2209 * gave us is valid. Just in case, we'll zero
2210 * the remainder of the page.
2211 */
2212 /* copy_from_user cannot cross TASK_SIZE ! */
2213 size = TASK_SIZE - (unsigned long)data;
2214 if (size > PAGE_SIZE)
2215 size = PAGE_SIZE;
2216
2217 i = size - exact_copy_from_user((void *)page, data, size);
2218 if (!i) {
2219 free_page(page);
2220 return -EFAULT;
2221 }
2222 if (i != PAGE_SIZE)
2223 memset((char *)page + i, 0, PAGE_SIZE - i);
2224 *where = page;
2225 return 0;
2226 }
2227
2228 int copy_mount_string(const void __user *data, char **where)
2229 {
2230 char *tmp;
2231
2232 if (!data) {
2233 *where = NULL;
2234 return 0;
2235 }
2236
2237 tmp = strndup_user(data, PAGE_SIZE);
2238 if (IS_ERR(tmp))
2239 return PTR_ERR(tmp);
2240
2241 *where = tmp;
2242 return 0;
2243 }
2244
2245 /*
2246 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2247 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2248 *
2249 * data is a (void *) that can point to any structure up to
2250 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2251 * information (or be NULL).
2252 *
2253 * Pre-0.97 versions of mount() didn't have a flags word.
2254 * When the flags word was introduced its top half was required
2255 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2256 * Therefore, if this magic number is present, it carries no information
2257 * and must be discarded.
2258 */
2259 long do_mount(char *dev_name, char *dir_name, char *type_page,
2260 unsigned long flags, void *data_page)
2261 {
2262 struct path path;
2263 int retval = 0;
2264 int mnt_flags = 0;
2265
2266 /* Discard magic */
2267 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2268 flags &= ~MS_MGC_MSK;
2269
2270 /* Basic sanity checks */
2271
2272 if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
2273 return -EINVAL;
2274
2275 if (data_page)
2276 ((char *)data_page)[PAGE_SIZE - 1] = 0;
2277
2278 /* ... and get the mountpoint */
2279 retval = kern_path(dir_name, LOOKUP_FOLLOW, &path);
2280 if (retval)
2281 return retval;
2282
2283 retval = security_sb_mount(dev_name, &path,
2284 type_page, flags, data_page);
2285 if (retval)
2286 goto dput_out;
2287
2288 /* Default to relatime unless overriden */
2289 if (!(flags & MS_NOATIME))
2290 mnt_flags |= MNT_RELATIME;
2291
2292 /* Separate the per-mountpoint flags */
2293 if (flags & MS_NOSUID)
2294 mnt_flags |= MNT_NOSUID;
2295 if (flags & MS_NODEV)
2296 mnt_flags |= MNT_NODEV;
2297 if (flags & MS_NOEXEC)
2298 mnt_flags |= MNT_NOEXEC;
2299 if (flags & MS_NOATIME)
2300 mnt_flags |= MNT_NOATIME;
2301 if (flags & MS_NODIRATIME)
2302 mnt_flags |= MNT_NODIRATIME;
2303 if (flags & MS_STRICTATIME)
2304 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2305 if (flags & MS_RDONLY)
2306 mnt_flags |= MNT_READONLY;
2307
2308 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
2309 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
2310 MS_STRICTATIME);
2311
2312 if (flags & MS_REMOUNT)
2313 retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
2314 data_page);
2315 else if (flags & MS_BIND)
2316 retval = do_loopback(&path, dev_name, flags & MS_REC);
2317 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2318 retval = do_change_type(&path, flags);
2319 else if (flags & MS_MOVE)
2320 retval = do_move_mount(&path, dev_name);
2321 else
2322 retval = do_new_mount(&path, type_page, flags, mnt_flags,
2323 dev_name, data_page);
2324 dput_out:
2325 path_put(&path);
2326 return retval;
2327 }
2328
2329 static struct mnt_namespace *alloc_mnt_ns(void)
2330 {
2331 struct mnt_namespace *new_ns;
2332
2333 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2334 if (!new_ns)
2335 return ERR_PTR(-ENOMEM);
2336 atomic_set(&new_ns->count, 1);
2337 new_ns->root = NULL;
2338 INIT_LIST_HEAD(&new_ns->list);
2339 init_waitqueue_head(&new_ns->poll);
2340 new_ns->event = 0;
2341 return new_ns;
2342 }
2343
2344 void mnt_make_longterm(struct vfsmount *mnt)
2345 {
2346 __mnt_make_longterm(mnt);
2347 }
2348
2349 void mnt_make_shortterm(struct vfsmount *mnt)
2350 {
2351 #ifdef CONFIG_SMP
2352 if (atomic_add_unless(&mnt->mnt_longterm, -1, 1))
2353 return;
2354 br_write_lock(vfsmount_lock);
2355 atomic_dec(&mnt->mnt_longterm);
2356 br_write_unlock(vfsmount_lock);
2357 #endif
2358 }
2359
2360 /*
2361 * Allocate a new namespace structure and populate it with contents
2362 * copied from the namespace of the passed in task structure.
2363 */
2364 static struct mnt_namespace *dup_mnt_ns(struct mnt_namespace *mnt_ns,
2365 struct fs_struct *fs)
2366 {
2367 struct mnt_namespace *new_ns;
2368 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
2369 struct vfsmount *p, *q;
2370
2371 new_ns = alloc_mnt_ns();
2372 if (IS_ERR(new_ns))
2373 return new_ns;
2374
2375 down_write(&namespace_sem);
2376 /* First pass: copy the tree topology */
2377 new_ns->root = copy_tree(mnt_ns->root, mnt_ns->root->mnt_root,
2378 CL_COPY_ALL | CL_EXPIRE);
2379 if (!new_ns->root) {
2380 up_write(&namespace_sem);
2381 kfree(new_ns);
2382 return ERR_PTR(-ENOMEM);
2383 }
2384 br_write_lock(vfsmount_lock);
2385 list_add_tail(&new_ns->list, &new_ns->root->mnt_list);
2386 br_write_unlock(vfsmount_lock);
2387
2388 /*
2389 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2390 * as belonging to new namespace. We have already acquired a private
2391 * fs_struct, so tsk->fs->lock is not needed.
2392 */
2393 p = mnt_ns->root;
2394 q = new_ns->root;
2395 while (p) {
2396 q->mnt_ns = new_ns;
2397 __mnt_make_longterm(q);
2398 if (fs) {
2399 if (p == fs->root.mnt) {
2400 fs->root.mnt = mntget(q);
2401 __mnt_make_longterm(q);
2402 mnt_make_shortterm(p);
2403 rootmnt = p;
2404 }
2405 if (p == fs->pwd.mnt) {
2406 fs->pwd.mnt = mntget(q);
2407 __mnt_make_longterm(q);
2408 mnt_make_shortterm(p);
2409 pwdmnt = p;
2410 }
2411 }
2412 p = next_mnt(p, mnt_ns->root);
2413 q = next_mnt(q, new_ns->root);
2414 }
2415 up_write(&namespace_sem);
2416
2417 if (rootmnt)
2418 mntput(rootmnt);
2419 if (pwdmnt)
2420 mntput(pwdmnt);
2421
2422 return new_ns;
2423 }
2424
2425 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2426 struct fs_struct *new_fs)
2427 {
2428 struct mnt_namespace *new_ns;
2429
2430 BUG_ON(!ns);
2431 get_mnt_ns(ns);
2432
2433 if (!(flags & CLONE_NEWNS))
2434 return ns;
2435
2436 new_ns = dup_mnt_ns(ns, new_fs);
2437
2438 put_mnt_ns(ns);
2439 return new_ns;
2440 }
2441
2442 /**
2443 * create_mnt_ns - creates a private namespace and adds a root filesystem
2444 * @mnt: pointer to the new root filesystem mountpoint
2445 */
2446 static struct mnt_namespace *create_mnt_ns(struct vfsmount *mnt)
2447 {
2448 struct mnt_namespace *new_ns;
2449
2450 new_ns = alloc_mnt_ns();
2451 if (!IS_ERR(new_ns)) {
2452 mnt->mnt_ns = new_ns;
2453 __mnt_make_longterm(mnt);
2454 new_ns->root = mnt;
2455 list_add(&new_ns->list, &new_ns->root->mnt_list);
2456 } else {
2457 mntput(mnt);
2458 }
2459 return new_ns;
2460 }
2461
2462 struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
2463 {
2464 struct mnt_namespace *ns;
2465 struct super_block *s;
2466 struct path path;
2467 int err;
2468
2469 ns = create_mnt_ns(mnt);
2470 if (IS_ERR(ns))
2471 return ERR_CAST(ns);
2472
2473 err = vfs_path_lookup(mnt->mnt_root, mnt,
2474 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
2475
2476 put_mnt_ns(ns);
2477
2478 if (err)
2479 return ERR_PTR(err);
2480
2481 /* trade a vfsmount reference for active sb one */
2482 s = path.mnt->mnt_sb;
2483 atomic_inc(&s->s_active);
2484 mntput(path.mnt);
2485 /* lock the sucker */
2486 down_write(&s->s_umount);
2487 /* ... and return the root of (sub)tree on it */
2488 return path.dentry;
2489 }
2490 EXPORT_SYMBOL(mount_subtree);
2491
2492 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
2493 char __user *, type, unsigned long, flags, void __user *, data)
2494 {
2495 int ret;
2496 char *kernel_type;
2497 char *kernel_dir;
2498 char *kernel_dev;
2499 unsigned long data_page;
2500
2501 ret = copy_mount_string(type, &kernel_type);
2502 if (ret < 0)
2503 goto out_type;
2504
2505 kernel_dir = getname(dir_name);
2506 if (IS_ERR(kernel_dir)) {
2507 ret = PTR_ERR(kernel_dir);
2508 goto out_dir;
2509 }
2510
2511 ret = copy_mount_string(dev_name, &kernel_dev);
2512 if (ret < 0)
2513 goto out_dev;
2514
2515 ret = copy_mount_options(data, &data_page);
2516 if (ret < 0)
2517 goto out_data;
2518
2519 ret = do_mount(kernel_dev, kernel_dir, kernel_type, flags,
2520 (void *) data_page);
2521
2522 free_page(data_page);
2523 out_data:
2524 kfree(kernel_dev);
2525 out_dev:
2526 putname(kernel_dir);
2527 out_dir:
2528 kfree(kernel_type);
2529 out_type:
2530 return ret;
2531 }
2532
2533 /*
2534 * Return true if path is reachable from root
2535 *
2536 * namespace_sem or vfsmount_lock is held
2537 */
2538 bool is_path_reachable(struct vfsmount *mnt, struct dentry *dentry,
2539 const struct path *root)
2540 {
2541 while (mnt != root->mnt && mnt_has_parent(mnt)) {
2542 dentry = mnt->mnt_mountpoint;
2543 mnt = mnt->mnt_parent;
2544 }
2545 return mnt == root->mnt && is_subdir(dentry, root->dentry);
2546 }
2547
2548 int path_is_under(struct path *path1, struct path *path2)
2549 {
2550 int res;
2551 br_read_lock(vfsmount_lock);
2552 res = is_path_reachable(path1->mnt, path1->dentry, path2);
2553 br_read_unlock(vfsmount_lock);
2554 return res;
2555 }
2556 EXPORT_SYMBOL(path_is_under);
2557
2558 /*
2559 * pivot_root Semantics:
2560 * Moves the root file system of the current process to the directory put_old,
2561 * makes new_root as the new root file system of the current process, and sets
2562 * root/cwd of all processes which had them on the current root to new_root.
2563 *
2564 * Restrictions:
2565 * The new_root and put_old must be directories, and must not be on the
2566 * same file system as the current process root. The put_old must be
2567 * underneath new_root, i.e. adding a non-zero number of /.. to the string
2568 * pointed to by put_old must yield the same directory as new_root. No other
2569 * file system may be mounted on put_old. After all, new_root is a mountpoint.
2570 *
2571 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
2572 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
2573 * in this situation.
2574 *
2575 * Notes:
2576 * - we don't move root/cwd if they are not at the root (reason: if something
2577 * cared enough to change them, it's probably wrong to force them elsewhere)
2578 * - it's okay to pick a root that isn't the root of a file system, e.g.
2579 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
2580 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
2581 * first.
2582 */
2583 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
2584 const char __user *, put_old)
2585 {
2586 struct path new, old, parent_path, root_parent, root;
2587 int error;
2588
2589 if (!capable(CAP_SYS_ADMIN))
2590 return -EPERM;
2591
2592 error = user_path_dir(new_root, &new);
2593 if (error)
2594 goto out0;
2595
2596 error = user_path_dir(put_old, &old);
2597 if (error)
2598 goto out1;
2599
2600 error = security_sb_pivotroot(&old, &new);
2601 if (error)
2602 goto out2;
2603
2604 get_fs_root(current->fs, &root);
2605 error = lock_mount(&old);
2606 if (error)
2607 goto out3;
2608
2609 error = -EINVAL;
2610 if (IS_MNT_SHARED(old.mnt) ||
2611 IS_MNT_SHARED(new.mnt->mnt_parent) ||
2612 IS_MNT_SHARED(root.mnt->mnt_parent))
2613 goto out4;
2614 if (!check_mnt(root.mnt) || !check_mnt(new.mnt))
2615 goto out4;
2616 error = -ENOENT;
2617 if (d_unlinked(new.dentry))
2618 goto out4;
2619 if (d_unlinked(old.dentry))
2620 goto out4;
2621 error = -EBUSY;
2622 if (new.mnt == root.mnt ||
2623 old.mnt == root.mnt)
2624 goto out4; /* loop, on the same file system */
2625 error = -EINVAL;
2626 if (root.mnt->mnt_root != root.dentry)
2627 goto out4; /* not a mountpoint */
2628 if (!mnt_has_parent(root.mnt))
2629 goto out4; /* not attached */
2630 if (new.mnt->mnt_root != new.dentry)
2631 goto out4; /* not a mountpoint */
2632 if (!mnt_has_parent(new.mnt))
2633 goto out4; /* not attached */
2634 /* make sure we can reach put_old from new_root */
2635 if (!is_path_reachable(old.mnt, old.dentry, &new))
2636 goto out4;
2637 br_write_lock(vfsmount_lock);
2638 detach_mnt(new.mnt, &parent_path);
2639 detach_mnt(root.mnt, &root_parent);
2640 /* mount old root on put_old */
2641 attach_mnt(root.mnt, &old);
2642 /* mount new_root on / */
2643 attach_mnt(new.mnt, &root_parent);
2644 touch_mnt_namespace(current->nsproxy->mnt_ns);
2645 br_write_unlock(vfsmount_lock);
2646 chroot_fs_refs(&root, &new);
2647 error = 0;
2648 out4:
2649 unlock_mount(&old);
2650 if (!error) {
2651 path_put(&root_parent);
2652 path_put(&parent_path);
2653 }
2654 out3:
2655 path_put(&root);
2656 out2:
2657 path_put(&old);
2658 out1:
2659 path_put(&new);
2660 out0:
2661 return error;
2662 }
2663
2664 static void __init init_mount_tree(void)
2665 {
2666 struct vfsmount *mnt;
2667 struct mnt_namespace *ns;
2668 struct path root;
2669
2670 mnt = do_kern_mount("rootfs", 0, "rootfs", NULL);
2671 if (IS_ERR(mnt))
2672 panic("Can't create rootfs");
2673
2674 ns = create_mnt_ns(mnt);
2675 if (IS_ERR(ns))
2676 panic("Can't allocate initial namespace");
2677
2678 init_task.nsproxy->mnt_ns = ns;
2679 get_mnt_ns(ns);
2680
2681 root.mnt = ns->root;
2682 root.dentry = ns->root->mnt_root;
2683
2684 set_fs_pwd(current->fs, &root);
2685 set_fs_root(current->fs, &root);
2686 }
2687
2688 void __init mnt_init(void)
2689 {
2690 unsigned u;
2691 int err;
2692
2693 init_rwsem(&namespace_sem);
2694
2695 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct vfsmount),
2696 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
2697
2698 mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
2699
2700 if (!mount_hashtable)
2701 panic("Failed to allocate mount hash table\n");
2702
2703 printk(KERN_INFO "Mount-cache hash table entries: %lu\n", HASH_SIZE);
2704
2705 for (u = 0; u < HASH_SIZE; u++)
2706 INIT_LIST_HEAD(&mount_hashtable[u]);
2707
2708 br_lock_init(vfsmount_lock);
2709
2710 err = sysfs_init();
2711 if (err)
2712 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
2713 __func__, err);
2714 fs_kobj = kobject_create_and_add("fs", NULL);
2715 if (!fs_kobj)
2716 printk(KERN_WARNING "%s: kobj create error\n", __func__);
2717 init_rootfs();
2718 init_mount_tree();
2719 }
2720
2721 void put_mnt_ns(struct mnt_namespace *ns)
2722 {
2723 LIST_HEAD(umount_list);
2724
2725 if (!atomic_dec_and_test(&ns->count))
2726 return;
2727 down_write(&namespace_sem);
2728 br_write_lock(vfsmount_lock);
2729 umount_tree(ns->root, 0, &umount_list);
2730 br_write_unlock(vfsmount_lock);
2731 up_write(&namespace_sem);
2732 release_mounts(&umount_list);
2733 kfree(ns);
2734 }
2735
2736 struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
2737 {
2738 struct vfsmount *mnt;
2739 mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
2740 if (!IS_ERR(mnt)) {
2741 /*
2742 * it is a longterm mount, don't release mnt until
2743 * we unmount before file sys is unregistered
2744 */
2745 mnt_make_longterm(mnt);
2746 }
2747 return mnt;
2748 }
2749 EXPORT_SYMBOL_GPL(kern_mount_data);
2750
2751 void kern_unmount(struct vfsmount *mnt)
2752 {
2753 /* release long term mount so mount point can be released */
2754 if (!IS_ERR_OR_NULL(mnt)) {
2755 mnt_make_shortterm(mnt);
2756 mntput(mnt);
2757 }
2758 }
2759 EXPORT_SYMBOL(kern_unmount);
2760
2761 bool our_mnt(struct vfsmount *mnt)
2762 {
2763 return check_mnt(mnt);
2764 }
This page took 0.159737 seconds and 5 git commands to generate.