Merge branch 'core-rcu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[deliverable/linux.git] / fs / namespace.c
1 /*
2 * linux/fs/namespace.c
3 *
4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
11 #include <linux/syscalls.h>
12 #include <linux/slab.h>
13 #include <linux/sched.h>
14 #include <linux/spinlock.h>
15 #include <linux/percpu.h>
16 #include <linux/init.h>
17 #include <linux/kernel.h>
18 #include <linux/acct.h>
19 #include <linux/capability.h>
20 #include <linux/cpumask.h>
21 #include <linux/module.h>
22 #include <linux/sysfs.h>
23 #include <linux/seq_file.h>
24 #include <linux/mnt_namespace.h>
25 #include <linux/namei.h>
26 #include <linux/nsproxy.h>
27 #include <linux/security.h>
28 #include <linux/mount.h>
29 #include <linux/ramfs.h>
30 #include <linux/log2.h>
31 #include <linux/idr.h>
32 #include <linux/fs_struct.h>
33 #include <linux/fsnotify.h>
34 #include <asm/uaccess.h>
35 #include <asm/unistd.h>
36 #include "pnode.h"
37 #include "internal.h"
38
39 #define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head))
40 #define HASH_SIZE (1UL << HASH_SHIFT)
41
42 static int event;
43 static DEFINE_IDA(mnt_id_ida);
44 static DEFINE_IDA(mnt_group_ida);
45 static DEFINE_SPINLOCK(mnt_id_lock);
46 static int mnt_id_start = 0;
47 static int mnt_group_start = 1;
48
49 static struct list_head *mount_hashtable __read_mostly;
50 static struct kmem_cache *mnt_cache __read_mostly;
51 static struct rw_semaphore namespace_sem;
52
53 /* /sys/fs */
54 struct kobject *fs_kobj;
55 EXPORT_SYMBOL_GPL(fs_kobj);
56
57 /*
58 * vfsmount lock may be taken for read to prevent changes to the
59 * vfsmount hash, ie. during mountpoint lookups or walking back
60 * up the tree.
61 *
62 * It should be taken for write in all cases where the vfsmount
63 * tree or hash is modified or when a vfsmount structure is modified.
64 */
65 DEFINE_BRLOCK(vfsmount_lock);
66
67 static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry)
68 {
69 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
70 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
71 tmp = tmp + (tmp >> HASH_SHIFT);
72 return tmp & (HASH_SIZE - 1);
73 }
74
75 #define MNT_WRITER_UNDERFLOW_LIMIT -(1<<16)
76
77 /*
78 * allocation is serialized by namespace_sem, but we need the spinlock to
79 * serialize with freeing.
80 */
81 static int mnt_alloc_id(struct vfsmount *mnt)
82 {
83 int res;
84
85 retry:
86 ida_pre_get(&mnt_id_ida, GFP_KERNEL);
87 spin_lock(&mnt_id_lock);
88 res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
89 if (!res)
90 mnt_id_start = mnt->mnt_id + 1;
91 spin_unlock(&mnt_id_lock);
92 if (res == -EAGAIN)
93 goto retry;
94
95 return res;
96 }
97
98 static void mnt_free_id(struct vfsmount *mnt)
99 {
100 int id = mnt->mnt_id;
101 spin_lock(&mnt_id_lock);
102 ida_remove(&mnt_id_ida, id);
103 if (mnt_id_start > id)
104 mnt_id_start = id;
105 spin_unlock(&mnt_id_lock);
106 }
107
108 /*
109 * Allocate a new peer group ID
110 *
111 * mnt_group_ida is protected by namespace_sem
112 */
113 static int mnt_alloc_group_id(struct vfsmount *mnt)
114 {
115 int res;
116
117 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
118 return -ENOMEM;
119
120 res = ida_get_new_above(&mnt_group_ida,
121 mnt_group_start,
122 &mnt->mnt_group_id);
123 if (!res)
124 mnt_group_start = mnt->mnt_group_id + 1;
125
126 return res;
127 }
128
129 /*
130 * Release a peer group ID
131 */
132 void mnt_release_group_id(struct vfsmount *mnt)
133 {
134 int id = mnt->mnt_group_id;
135 ida_remove(&mnt_group_ida, id);
136 if (mnt_group_start > id)
137 mnt_group_start = id;
138 mnt->mnt_group_id = 0;
139 }
140
141 /*
142 * vfsmount lock must be held for read
143 */
144 static inline void mnt_add_count(struct vfsmount *mnt, int n)
145 {
146 #ifdef CONFIG_SMP
147 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
148 #else
149 preempt_disable();
150 mnt->mnt_count += n;
151 preempt_enable();
152 #endif
153 }
154
155 static inline void mnt_set_count(struct vfsmount *mnt, int n)
156 {
157 #ifdef CONFIG_SMP
158 this_cpu_write(mnt->mnt_pcp->mnt_count, n);
159 #else
160 mnt->mnt_count = n;
161 #endif
162 }
163
164 /*
165 * vfsmount lock must be held for read
166 */
167 static inline void mnt_inc_count(struct vfsmount *mnt)
168 {
169 mnt_add_count(mnt, 1);
170 }
171
172 /*
173 * vfsmount lock must be held for read
174 */
175 static inline void mnt_dec_count(struct vfsmount *mnt)
176 {
177 mnt_add_count(mnt, -1);
178 }
179
180 /*
181 * vfsmount lock must be held for write
182 */
183 unsigned int mnt_get_count(struct vfsmount *mnt)
184 {
185 #ifdef CONFIG_SMP
186 unsigned int count = 0;
187 int cpu;
188
189 for_each_possible_cpu(cpu) {
190 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
191 }
192
193 return count;
194 #else
195 return mnt->mnt_count;
196 #endif
197 }
198
199 struct vfsmount *alloc_vfsmnt(const char *name)
200 {
201 struct vfsmount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
202 if (mnt) {
203 int err;
204
205 err = mnt_alloc_id(mnt);
206 if (err)
207 goto out_free_cache;
208
209 if (name) {
210 mnt->mnt_devname = kstrdup(name, GFP_KERNEL);
211 if (!mnt->mnt_devname)
212 goto out_free_id;
213 }
214
215 #ifdef CONFIG_SMP
216 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
217 if (!mnt->mnt_pcp)
218 goto out_free_devname;
219
220 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
221 #else
222 mnt->mnt_count = 1;
223 mnt->mnt_writers = 0;
224 #endif
225
226 INIT_LIST_HEAD(&mnt->mnt_hash);
227 INIT_LIST_HEAD(&mnt->mnt_child);
228 INIT_LIST_HEAD(&mnt->mnt_mounts);
229 INIT_LIST_HEAD(&mnt->mnt_list);
230 INIT_LIST_HEAD(&mnt->mnt_expire);
231 INIT_LIST_HEAD(&mnt->mnt_share);
232 INIT_LIST_HEAD(&mnt->mnt_slave_list);
233 INIT_LIST_HEAD(&mnt->mnt_slave);
234 #ifdef CONFIG_FSNOTIFY
235 INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
236 #endif
237 }
238 return mnt;
239
240 #ifdef CONFIG_SMP
241 out_free_devname:
242 kfree(mnt->mnt_devname);
243 #endif
244 out_free_id:
245 mnt_free_id(mnt);
246 out_free_cache:
247 kmem_cache_free(mnt_cache, mnt);
248 return NULL;
249 }
250
251 /*
252 * Most r/o checks on a fs are for operations that take
253 * discrete amounts of time, like a write() or unlink().
254 * We must keep track of when those operations start
255 * (for permission checks) and when they end, so that
256 * we can determine when writes are able to occur to
257 * a filesystem.
258 */
259 /*
260 * __mnt_is_readonly: check whether a mount is read-only
261 * @mnt: the mount to check for its write status
262 *
263 * This shouldn't be used directly ouside of the VFS.
264 * It does not guarantee that the filesystem will stay
265 * r/w, just that it is right *now*. This can not and
266 * should not be used in place of IS_RDONLY(inode).
267 * mnt_want/drop_write() will _keep_ the filesystem
268 * r/w.
269 */
270 int __mnt_is_readonly(struct vfsmount *mnt)
271 {
272 if (mnt->mnt_flags & MNT_READONLY)
273 return 1;
274 if (mnt->mnt_sb->s_flags & MS_RDONLY)
275 return 1;
276 return 0;
277 }
278 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
279
280 static inline void mnt_inc_writers(struct vfsmount *mnt)
281 {
282 #ifdef CONFIG_SMP
283 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
284 #else
285 mnt->mnt_writers++;
286 #endif
287 }
288
289 static inline void mnt_dec_writers(struct vfsmount *mnt)
290 {
291 #ifdef CONFIG_SMP
292 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
293 #else
294 mnt->mnt_writers--;
295 #endif
296 }
297
298 static unsigned int mnt_get_writers(struct vfsmount *mnt)
299 {
300 #ifdef CONFIG_SMP
301 unsigned int count = 0;
302 int cpu;
303
304 for_each_possible_cpu(cpu) {
305 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
306 }
307
308 return count;
309 #else
310 return mnt->mnt_writers;
311 #endif
312 }
313
314 /*
315 * Most r/o checks on a fs are for operations that take
316 * discrete amounts of time, like a write() or unlink().
317 * We must keep track of when those operations start
318 * (for permission checks) and when they end, so that
319 * we can determine when writes are able to occur to
320 * a filesystem.
321 */
322 /**
323 * mnt_want_write - get write access to a mount
324 * @mnt: the mount on which to take a write
325 *
326 * This tells the low-level filesystem that a write is
327 * about to be performed to it, and makes sure that
328 * writes are allowed before returning success. When
329 * the write operation is finished, mnt_drop_write()
330 * must be called. This is effectively a refcount.
331 */
332 int mnt_want_write(struct vfsmount *mnt)
333 {
334 int ret = 0;
335
336 preempt_disable();
337 mnt_inc_writers(mnt);
338 /*
339 * The store to mnt_inc_writers must be visible before we pass
340 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
341 * incremented count after it has set MNT_WRITE_HOLD.
342 */
343 smp_mb();
344 while (mnt->mnt_flags & MNT_WRITE_HOLD)
345 cpu_relax();
346 /*
347 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
348 * be set to match its requirements. So we must not load that until
349 * MNT_WRITE_HOLD is cleared.
350 */
351 smp_rmb();
352 if (__mnt_is_readonly(mnt)) {
353 mnt_dec_writers(mnt);
354 ret = -EROFS;
355 goto out;
356 }
357 out:
358 preempt_enable();
359 return ret;
360 }
361 EXPORT_SYMBOL_GPL(mnt_want_write);
362
363 /**
364 * mnt_clone_write - get write access to a mount
365 * @mnt: the mount on which to take a write
366 *
367 * This is effectively like mnt_want_write, except
368 * it must only be used to take an extra write reference
369 * on a mountpoint that we already know has a write reference
370 * on it. This allows some optimisation.
371 *
372 * After finished, mnt_drop_write must be called as usual to
373 * drop the reference.
374 */
375 int mnt_clone_write(struct vfsmount *mnt)
376 {
377 /* superblock may be r/o */
378 if (__mnt_is_readonly(mnt))
379 return -EROFS;
380 preempt_disable();
381 mnt_inc_writers(mnt);
382 preempt_enable();
383 return 0;
384 }
385 EXPORT_SYMBOL_GPL(mnt_clone_write);
386
387 /**
388 * mnt_want_write_file - get write access to a file's mount
389 * @file: the file who's mount on which to take a write
390 *
391 * This is like mnt_want_write, but it takes a file and can
392 * do some optimisations if the file is open for write already
393 */
394 int mnt_want_write_file(struct file *file)
395 {
396 struct inode *inode = file->f_dentry->d_inode;
397 if (!(file->f_mode & FMODE_WRITE) || special_file(inode->i_mode))
398 return mnt_want_write(file->f_path.mnt);
399 else
400 return mnt_clone_write(file->f_path.mnt);
401 }
402 EXPORT_SYMBOL_GPL(mnt_want_write_file);
403
404 /**
405 * mnt_drop_write - give up write access to a mount
406 * @mnt: the mount on which to give up write access
407 *
408 * Tells the low-level filesystem that we are done
409 * performing writes to it. Must be matched with
410 * mnt_want_write() call above.
411 */
412 void mnt_drop_write(struct vfsmount *mnt)
413 {
414 preempt_disable();
415 mnt_dec_writers(mnt);
416 preempt_enable();
417 }
418 EXPORT_SYMBOL_GPL(mnt_drop_write);
419
420 static int mnt_make_readonly(struct vfsmount *mnt)
421 {
422 int ret = 0;
423
424 br_write_lock(vfsmount_lock);
425 mnt->mnt_flags |= MNT_WRITE_HOLD;
426 /*
427 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
428 * should be visible before we do.
429 */
430 smp_mb();
431
432 /*
433 * With writers on hold, if this value is zero, then there are
434 * definitely no active writers (although held writers may subsequently
435 * increment the count, they'll have to wait, and decrement it after
436 * seeing MNT_READONLY).
437 *
438 * It is OK to have counter incremented on one CPU and decremented on
439 * another: the sum will add up correctly. The danger would be when we
440 * sum up each counter, if we read a counter before it is incremented,
441 * but then read another CPU's count which it has been subsequently
442 * decremented from -- we would see more decrements than we should.
443 * MNT_WRITE_HOLD protects against this scenario, because
444 * mnt_want_write first increments count, then smp_mb, then spins on
445 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
446 * we're counting up here.
447 */
448 if (mnt_get_writers(mnt) > 0)
449 ret = -EBUSY;
450 else
451 mnt->mnt_flags |= MNT_READONLY;
452 /*
453 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
454 * that become unheld will see MNT_READONLY.
455 */
456 smp_wmb();
457 mnt->mnt_flags &= ~MNT_WRITE_HOLD;
458 br_write_unlock(vfsmount_lock);
459 return ret;
460 }
461
462 static void __mnt_unmake_readonly(struct vfsmount *mnt)
463 {
464 br_write_lock(vfsmount_lock);
465 mnt->mnt_flags &= ~MNT_READONLY;
466 br_write_unlock(vfsmount_lock);
467 }
468
469 void simple_set_mnt(struct vfsmount *mnt, struct super_block *sb)
470 {
471 mnt->mnt_sb = sb;
472 mnt->mnt_root = dget(sb->s_root);
473 }
474
475 EXPORT_SYMBOL(simple_set_mnt);
476
477 void free_vfsmnt(struct vfsmount *mnt)
478 {
479 kfree(mnt->mnt_devname);
480 mnt_free_id(mnt);
481 #ifdef CONFIG_SMP
482 free_percpu(mnt->mnt_pcp);
483 #endif
484 kmem_cache_free(mnt_cache, mnt);
485 }
486
487 /*
488 * find the first or last mount at @dentry on vfsmount @mnt depending on
489 * @dir. If @dir is set return the first mount else return the last mount.
490 * vfsmount_lock must be held for read or write.
491 */
492 struct vfsmount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry,
493 int dir)
494 {
495 struct list_head *head = mount_hashtable + hash(mnt, dentry);
496 struct list_head *tmp = head;
497 struct vfsmount *p, *found = NULL;
498
499 for (;;) {
500 tmp = dir ? tmp->next : tmp->prev;
501 p = NULL;
502 if (tmp == head)
503 break;
504 p = list_entry(tmp, struct vfsmount, mnt_hash);
505 if (p->mnt_parent == mnt && p->mnt_mountpoint == dentry) {
506 found = p;
507 break;
508 }
509 }
510 return found;
511 }
512
513 /*
514 * lookup_mnt increments the ref count before returning
515 * the vfsmount struct.
516 */
517 struct vfsmount *lookup_mnt(struct path *path)
518 {
519 struct vfsmount *child_mnt;
520
521 br_read_lock(vfsmount_lock);
522 if ((child_mnt = __lookup_mnt(path->mnt, path->dentry, 1)))
523 mntget(child_mnt);
524 br_read_unlock(vfsmount_lock);
525 return child_mnt;
526 }
527
528 static inline int check_mnt(struct vfsmount *mnt)
529 {
530 return mnt->mnt_ns == current->nsproxy->mnt_ns;
531 }
532
533 /*
534 * vfsmount lock must be held for write
535 */
536 static void touch_mnt_namespace(struct mnt_namespace *ns)
537 {
538 if (ns) {
539 ns->event = ++event;
540 wake_up_interruptible(&ns->poll);
541 }
542 }
543
544 /*
545 * vfsmount lock must be held for write
546 */
547 static void __touch_mnt_namespace(struct mnt_namespace *ns)
548 {
549 if (ns && ns->event != event) {
550 ns->event = event;
551 wake_up_interruptible(&ns->poll);
552 }
553 }
554
555 /*
556 * Clear dentry's mounted state if it has no remaining mounts.
557 * vfsmount_lock must be held for write.
558 */
559 static void dentry_reset_mounted(struct vfsmount *mnt, struct dentry *dentry)
560 {
561 unsigned u;
562
563 for (u = 0; u < HASH_SIZE; u++) {
564 struct vfsmount *p;
565
566 list_for_each_entry(p, &mount_hashtable[u], mnt_hash) {
567 if (p->mnt_mountpoint == dentry)
568 return;
569 }
570 }
571 spin_lock(&dentry->d_lock);
572 dentry->d_flags &= ~DCACHE_MOUNTED;
573 spin_unlock(&dentry->d_lock);
574 }
575
576 /*
577 * vfsmount lock must be held for write
578 */
579 static void detach_mnt(struct vfsmount *mnt, struct path *old_path)
580 {
581 old_path->dentry = mnt->mnt_mountpoint;
582 old_path->mnt = mnt->mnt_parent;
583 mnt->mnt_parent = mnt;
584 mnt->mnt_mountpoint = mnt->mnt_root;
585 list_del_init(&mnt->mnt_child);
586 list_del_init(&mnt->mnt_hash);
587 dentry_reset_mounted(old_path->mnt, old_path->dentry);
588 }
589
590 /*
591 * vfsmount lock must be held for write
592 */
593 void mnt_set_mountpoint(struct vfsmount *mnt, struct dentry *dentry,
594 struct vfsmount *child_mnt)
595 {
596 child_mnt->mnt_parent = mntget(mnt);
597 child_mnt->mnt_mountpoint = dget(dentry);
598 spin_lock(&dentry->d_lock);
599 dentry->d_flags |= DCACHE_MOUNTED;
600 spin_unlock(&dentry->d_lock);
601 }
602
603 /*
604 * vfsmount lock must be held for write
605 */
606 static void attach_mnt(struct vfsmount *mnt, struct path *path)
607 {
608 mnt_set_mountpoint(path->mnt, path->dentry, mnt);
609 list_add_tail(&mnt->mnt_hash, mount_hashtable +
610 hash(path->mnt, path->dentry));
611 list_add_tail(&mnt->mnt_child, &path->mnt->mnt_mounts);
612 }
613
614 static inline void __mnt_make_longterm(struct vfsmount *mnt)
615 {
616 #ifdef CONFIG_SMP
617 atomic_inc(&mnt->mnt_longterm);
618 #endif
619 }
620
621 /* needs vfsmount lock for write */
622 static inline void __mnt_make_shortterm(struct vfsmount *mnt)
623 {
624 #ifdef CONFIG_SMP
625 atomic_dec(&mnt->mnt_longterm);
626 #endif
627 }
628
629 /*
630 * vfsmount lock must be held for write
631 */
632 static void commit_tree(struct vfsmount *mnt)
633 {
634 struct vfsmount *parent = mnt->mnt_parent;
635 struct vfsmount *m;
636 LIST_HEAD(head);
637 struct mnt_namespace *n = parent->mnt_ns;
638
639 BUG_ON(parent == mnt);
640
641 list_add_tail(&head, &mnt->mnt_list);
642 list_for_each_entry(m, &head, mnt_list) {
643 m->mnt_ns = n;
644 __mnt_make_longterm(m);
645 }
646
647 list_splice(&head, n->list.prev);
648
649 list_add_tail(&mnt->mnt_hash, mount_hashtable +
650 hash(parent, mnt->mnt_mountpoint));
651 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
652 touch_mnt_namespace(n);
653 }
654
655 static struct vfsmount *next_mnt(struct vfsmount *p, struct vfsmount *root)
656 {
657 struct list_head *next = p->mnt_mounts.next;
658 if (next == &p->mnt_mounts) {
659 while (1) {
660 if (p == root)
661 return NULL;
662 next = p->mnt_child.next;
663 if (next != &p->mnt_parent->mnt_mounts)
664 break;
665 p = p->mnt_parent;
666 }
667 }
668 return list_entry(next, struct vfsmount, mnt_child);
669 }
670
671 static struct vfsmount *skip_mnt_tree(struct vfsmount *p)
672 {
673 struct list_head *prev = p->mnt_mounts.prev;
674 while (prev != &p->mnt_mounts) {
675 p = list_entry(prev, struct vfsmount, mnt_child);
676 prev = p->mnt_mounts.prev;
677 }
678 return p;
679 }
680
681 static struct vfsmount *clone_mnt(struct vfsmount *old, struct dentry *root,
682 int flag)
683 {
684 struct super_block *sb = old->mnt_sb;
685 struct vfsmount *mnt = alloc_vfsmnt(old->mnt_devname);
686
687 if (mnt) {
688 if (flag & (CL_SLAVE | CL_PRIVATE))
689 mnt->mnt_group_id = 0; /* not a peer of original */
690 else
691 mnt->mnt_group_id = old->mnt_group_id;
692
693 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
694 int err = mnt_alloc_group_id(mnt);
695 if (err)
696 goto out_free;
697 }
698
699 mnt->mnt_flags = old->mnt_flags & ~MNT_WRITE_HOLD;
700 atomic_inc(&sb->s_active);
701 mnt->mnt_sb = sb;
702 mnt->mnt_root = dget(root);
703 mnt->mnt_mountpoint = mnt->mnt_root;
704 mnt->mnt_parent = mnt;
705
706 if (flag & CL_SLAVE) {
707 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
708 mnt->mnt_master = old;
709 CLEAR_MNT_SHARED(mnt);
710 } else if (!(flag & CL_PRIVATE)) {
711 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
712 list_add(&mnt->mnt_share, &old->mnt_share);
713 if (IS_MNT_SLAVE(old))
714 list_add(&mnt->mnt_slave, &old->mnt_slave);
715 mnt->mnt_master = old->mnt_master;
716 }
717 if (flag & CL_MAKE_SHARED)
718 set_mnt_shared(mnt);
719
720 /* stick the duplicate mount on the same expiry list
721 * as the original if that was on one */
722 if (flag & CL_EXPIRE) {
723 if (!list_empty(&old->mnt_expire))
724 list_add(&mnt->mnt_expire, &old->mnt_expire);
725 }
726 }
727 return mnt;
728
729 out_free:
730 free_vfsmnt(mnt);
731 return NULL;
732 }
733
734 static inline void mntfree(struct vfsmount *mnt)
735 {
736 struct super_block *sb = mnt->mnt_sb;
737
738 /*
739 * This probably indicates that somebody messed
740 * up a mnt_want/drop_write() pair. If this
741 * happens, the filesystem was probably unable
742 * to make r/w->r/o transitions.
743 */
744 /*
745 * The locking used to deal with mnt_count decrement provides barriers,
746 * so mnt_get_writers() below is safe.
747 */
748 WARN_ON(mnt_get_writers(mnt));
749 fsnotify_vfsmount_delete(mnt);
750 dput(mnt->mnt_root);
751 free_vfsmnt(mnt);
752 deactivate_super(sb);
753 }
754
755 static void mntput_no_expire(struct vfsmount *mnt)
756 {
757 put_again:
758 #ifdef CONFIG_SMP
759 br_read_lock(vfsmount_lock);
760 if (likely(atomic_read(&mnt->mnt_longterm))) {
761 mnt_dec_count(mnt);
762 br_read_unlock(vfsmount_lock);
763 return;
764 }
765 br_read_unlock(vfsmount_lock);
766
767 br_write_lock(vfsmount_lock);
768 mnt_dec_count(mnt);
769 if (mnt_get_count(mnt)) {
770 br_write_unlock(vfsmount_lock);
771 return;
772 }
773 #else
774 mnt_dec_count(mnt);
775 if (likely(mnt_get_count(mnt)))
776 return;
777 br_write_lock(vfsmount_lock);
778 #endif
779 if (unlikely(mnt->mnt_pinned)) {
780 mnt_add_count(mnt, mnt->mnt_pinned + 1);
781 mnt->mnt_pinned = 0;
782 br_write_unlock(vfsmount_lock);
783 acct_auto_close_mnt(mnt);
784 goto put_again;
785 }
786 br_write_unlock(vfsmount_lock);
787 mntfree(mnt);
788 }
789
790 void mntput(struct vfsmount *mnt)
791 {
792 if (mnt) {
793 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
794 if (unlikely(mnt->mnt_expiry_mark))
795 mnt->mnt_expiry_mark = 0;
796 mntput_no_expire(mnt);
797 }
798 }
799 EXPORT_SYMBOL(mntput);
800
801 struct vfsmount *mntget(struct vfsmount *mnt)
802 {
803 if (mnt)
804 mnt_inc_count(mnt);
805 return mnt;
806 }
807 EXPORT_SYMBOL(mntget);
808
809 void mnt_pin(struct vfsmount *mnt)
810 {
811 br_write_lock(vfsmount_lock);
812 mnt->mnt_pinned++;
813 br_write_unlock(vfsmount_lock);
814 }
815 EXPORT_SYMBOL(mnt_pin);
816
817 void mnt_unpin(struct vfsmount *mnt)
818 {
819 br_write_lock(vfsmount_lock);
820 if (mnt->mnt_pinned) {
821 mnt_inc_count(mnt);
822 mnt->mnt_pinned--;
823 }
824 br_write_unlock(vfsmount_lock);
825 }
826 EXPORT_SYMBOL(mnt_unpin);
827
828 static inline void mangle(struct seq_file *m, const char *s)
829 {
830 seq_escape(m, s, " \t\n\\");
831 }
832
833 /*
834 * Simple .show_options callback for filesystems which don't want to
835 * implement more complex mount option showing.
836 *
837 * See also save_mount_options().
838 */
839 int generic_show_options(struct seq_file *m, struct vfsmount *mnt)
840 {
841 const char *options;
842
843 rcu_read_lock();
844 options = rcu_dereference(mnt->mnt_sb->s_options);
845
846 if (options != NULL && options[0]) {
847 seq_putc(m, ',');
848 mangle(m, options);
849 }
850 rcu_read_unlock();
851
852 return 0;
853 }
854 EXPORT_SYMBOL(generic_show_options);
855
856 /*
857 * If filesystem uses generic_show_options(), this function should be
858 * called from the fill_super() callback.
859 *
860 * The .remount_fs callback usually needs to be handled in a special
861 * way, to make sure, that previous options are not overwritten if the
862 * remount fails.
863 *
864 * Also note, that if the filesystem's .remount_fs function doesn't
865 * reset all options to their default value, but changes only newly
866 * given options, then the displayed options will not reflect reality
867 * any more.
868 */
869 void save_mount_options(struct super_block *sb, char *options)
870 {
871 BUG_ON(sb->s_options);
872 rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
873 }
874 EXPORT_SYMBOL(save_mount_options);
875
876 void replace_mount_options(struct super_block *sb, char *options)
877 {
878 char *old = sb->s_options;
879 rcu_assign_pointer(sb->s_options, options);
880 if (old) {
881 synchronize_rcu();
882 kfree(old);
883 }
884 }
885 EXPORT_SYMBOL(replace_mount_options);
886
887 #ifdef CONFIG_PROC_FS
888 /* iterator */
889 static void *m_start(struct seq_file *m, loff_t *pos)
890 {
891 struct proc_mounts *p = m->private;
892
893 down_read(&namespace_sem);
894 return seq_list_start(&p->ns->list, *pos);
895 }
896
897 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
898 {
899 struct proc_mounts *p = m->private;
900
901 return seq_list_next(v, &p->ns->list, pos);
902 }
903
904 static void m_stop(struct seq_file *m, void *v)
905 {
906 up_read(&namespace_sem);
907 }
908
909 int mnt_had_events(struct proc_mounts *p)
910 {
911 struct mnt_namespace *ns = p->ns;
912 int res = 0;
913
914 br_read_lock(vfsmount_lock);
915 if (p->event != ns->event) {
916 p->event = ns->event;
917 res = 1;
918 }
919 br_read_unlock(vfsmount_lock);
920
921 return res;
922 }
923
924 struct proc_fs_info {
925 int flag;
926 const char *str;
927 };
928
929 static int show_sb_opts(struct seq_file *m, struct super_block *sb)
930 {
931 static const struct proc_fs_info fs_info[] = {
932 { MS_SYNCHRONOUS, ",sync" },
933 { MS_DIRSYNC, ",dirsync" },
934 { MS_MANDLOCK, ",mand" },
935 { 0, NULL }
936 };
937 const struct proc_fs_info *fs_infop;
938
939 for (fs_infop = fs_info; fs_infop->flag; fs_infop++) {
940 if (sb->s_flags & fs_infop->flag)
941 seq_puts(m, fs_infop->str);
942 }
943
944 return security_sb_show_options(m, sb);
945 }
946
947 static void show_mnt_opts(struct seq_file *m, struct vfsmount *mnt)
948 {
949 static const struct proc_fs_info mnt_info[] = {
950 { MNT_NOSUID, ",nosuid" },
951 { MNT_NODEV, ",nodev" },
952 { MNT_NOEXEC, ",noexec" },
953 { MNT_NOATIME, ",noatime" },
954 { MNT_NODIRATIME, ",nodiratime" },
955 { MNT_RELATIME, ",relatime" },
956 { 0, NULL }
957 };
958 const struct proc_fs_info *fs_infop;
959
960 for (fs_infop = mnt_info; fs_infop->flag; fs_infop++) {
961 if (mnt->mnt_flags & fs_infop->flag)
962 seq_puts(m, fs_infop->str);
963 }
964 }
965
966 static void show_type(struct seq_file *m, struct super_block *sb)
967 {
968 mangle(m, sb->s_type->name);
969 if (sb->s_subtype && sb->s_subtype[0]) {
970 seq_putc(m, '.');
971 mangle(m, sb->s_subtype);
972 }
973 }
974
975 static int show_vfsmnt(struct seq_file *m, void *v)
976 {
977 struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
978 int err = 0;
979 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
980
981 mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
982 seq_putc(m, ' ');
983 seq_path(m, &mnt_path, " \t\n\\");
984 seq_putc(m, ' ');
985 show_type(m, mnt->mnt_sb);
986 seq_puts(m, __mnt_is_readonly(mnt) ? " ro" : " rw");
987 err = show_sb_opts(m, mnt->mnt_sb);
988 if (err)
989 goto out;
990 show_mnt_opts(m, mnt);
991 if (mnt->mnt_sb->s_op->show_options)
992 err = mnt->mnt_sb->s_op->show_options(m, mnt);
993 seq_puts(m, " 0 0\n");
994 out:
995 return err;
996 }
997
998 const struct seq_operations mounts_op = {
999 .start = m_start,
1000 .next = m_next,
1001 .stop = m_stop,
1002 .show = show_vfsmnt
1003 };
1004
1005 static int uuid_is_nil(u8 *uuid)
1006 {
1007 int i;
1008 u8 *cp = (u8 *)uuid;
1009
1010 for (i = 0; i < 16; i++) {
1011 if (*cp++)
1012 return 0;
1013 }
1014 return 1;
1015 }
1016
1017 static int show_mountinfo(struct seq_file *m, void *v)
1018 {
1019 struct proc_mounts *p = m->private;
1020 struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
1021 struct super_block *sb = mnt->mnt_sb;
1022 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
1023 struct path root = p->root;
1024 int err = 0;
1025
1026 seq_printf(m, "%i %i %u:%u ", mnt->mnt_id, mnt->mnt_parent->mnt_id,
1027 MAJOR(sb->s_dev), MINOR(sb->s_dev));
1028 seq_dentry(m, mnt->mnt_root, " \t\n\\");
1029 seq_putc(m, ' ');
1030 seq_path_root(m, &mnt_path, &root, " \t\n\\");
1031 if (root.mnt != p->root.mnt || root.dentry != p->root.dentry) {
1032 /*
1033 * Mountpoint is outside root, discard that one. Ugly,
1034 * but less so than trying to do that in iterator in a
1035 * race-free way (due to renames).
1036 */
1037 return SEQ_SKIP;
1038 }
1039 seq_puts(m, mnt->mnt_flags & MNT_READONLY ? " ro" : " rw");
1040 show_mnt_opts(m, mnt);
1041
1042 /* Tagged fields ("foo:X" or "bar") */
1043 if (IS_MNT_SHARED(mnt))
1044 seq_printf(m, " shared:%i", mnt->mnt_group_id);
1045 if (IS_MNT_SLAVE(mnt)) {
1046 int master = mnt->mnt_master->mnt_group_id;
1047 int dom = get_dominating_id(mnt, &p->root);
1048 seq_printf(m, " master:%i", master);
1049 if (dom && dom != master)
1050 seq_printf(m, " propagate_from:%i", dom);
1051 }
1052 if (IS_MNT_UNBINDABLE(mnt))
1053 seq_puts(m, " unbindable");
1054
1055 if (!uuid_is_nil(mnt->mnt_sb->s_uuid))
1056 /* print the uuid */
1057 seq_printf(m, " uuid:%pU", mnt->mnt_sb->s_uuid);
1058
1059 /* Filesystem specific data */
1060 seq_puts(m, " - ");
1061 show_type(m, sb);
1062 seq_putc(m, ' ');
1063 mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
1064 seq_puts(m, sb->s_flags & MS_RDONLY ? " ro" : " rw");
1065 err = show_sb_opts(m, sb);
1066 if (err)
1067 goto out;
1068 if (sb->s_op->show_options)
1069 err = sb->s_op->show_options(m, mnt);
1070 seq_putc(m, '\n');
1071 out:
1072 return err;
1073 }
1074
1075 const struct seq_operations mountinfo_op = {
1076 .start = m_start,
1077 .next = m_next,
1078 .stop = m_stop,
1079 .show = show_mountinfo,
1080 };
1081
1082 static int show_vfsstat(struct seq_file *m, void *v)
1083 {
1084 struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
1085 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
1086 int err = 0;
1087
1088 /* device */
1089 if (mnt->mnt_devname) {
1090 seq_puts(m, "device ");
1091 mangle(m, mnt->mnt_devname);
1092 } else
1093 seq_puts(m, "no device");
1094
1095 /* mount point */
1096 seq_puts(m, " mounted on ");
1097 seq_path(m, &mnt_path, " \t\n\\");
1098 seq_putc(m, ' ');
1099
1100 /* file system type */
1101 seq_puts(m, "with fstype ");
1102 show_type(m, mnt->mnt_sb);
1103
1104 /* optional statistics */
1105 if (mnt->mnt_sb->s_op->show_stats) {
1106 seq_putc(m, ' ');
1107 err = mnt->mnt_sb->s_op->show_stats(m, mnt);
1108 }
1109
1110 seq_putc(m, '\n');
1111 return err;
1112 }
1113
1114 const struct seq_operations mountstats_op = {
1115 .start = m_start,
1116 .next = m_next,
1117 .stop = m_stop,
1118 .show = show_vfsstat,
1119 };
1120 #endif /* CONFIG_PROC_FS */
1121
1122 /**
1123 * may_umount_tree - check if a mount tree is busy
1124 * @mnt: root of mount tree
1125 *
1126 * This is called to check if a tree of mounts has any
1127 * open files, pwds, chroots or sub mounts that are
1128 * busy.
1129 */
1130 int may_umount_tree(struct vfsmount *mnt)
1131 {
1132 int actual_refs = 0;
1133 int minimum_refs = 0;
1134 struct vfsmount *p;
1135
1136 /* write lock needed for mnt_get_count */
1137 br_write_lock(vfsmount_lock);
1138 for (p = mnt; p; p = next_mnt(p, mnt)) {
1139 actual_refs += mnt_get_count(p);
1140 minimum_refs += 2;
1141 }
1142 br_write_unlock(vfsmount_lock);
1143
1144 if (actual_refs > minimum_refs)
1145 return 0;
1146
1147 return 1;
1148 }
1149
1150 EXPORT_SYMBOL(may_umount_tree);
1151
1152 /**
1153 * may_umount - check if a mount point is busy
1154 * @mnt: root of mount
1155 *
1156 * This is called to check if a mount point has any
1157 * open files, pwds, chroots or sub mounts. If the
1158 * mount has sub mounts this will return busy
1159 * regardless of whether the sub mounts are busy.
1160 *
1161 * Doesn't take quota and stuff into account. IOW, in some cases it will
1162 * give false negatives. The main reason why it's here is that we need
1163 * a non-destructive way to look for easily umountable filesystems.
1164 */
1165 int may_umount(struct vfsmount *mnt)
1166 {
1167 int ret = 1;
1168 down_read(&namespace_sem);
1169 br_write_lock(vfsmount_lock);
1170 if (propagate_mount_busy(mnt, 2))
1171 ret = 0;
1172 br_write_unlock(vfsmount_lock);
1173 up_read(&namespace_sem);
1174 return ret;
1175 }
1176
1177 EXPORT_SYMBOL(may_umount);
1178
1179 void release_mounts(struct list_head *head)
1180 {
1181 struct vfsmount *mnt;
1182 while (!list_empty(head)) {
1183 mnt = list_first_entry(head, struct vfsmount, mnt_hash);
1184 list_del_init(&mnt->mnt_hash);
1185 if (mnt->mnt_parent != mnt) {
1186 struct dentry *dentry;
1187 struct vfsmount *m;
1188
1189 br_write_lock(vfsmount_lock);
1190 dentry = mnt->mnt_mountpoint;
1191 m = mnt->mnt_parent;
1192 mnt->mnt_mountpoint = mnt->mnt_root;
1193 mnt->mnt_parent = mnt;
1194 m->mnt_ghosts--;
1195 br_write_unlock(vfsmount_lock);
1196 dput(dentry);
1197 mntput(m);
1198 }
1199 mntput(mnt);
1200 }
1201 }
1202
1203 /*
1204 * vfsmount lock must be held for write
1205 * namespace_sem must be held for write
1206 */
1207 void umount_tree(struct vfsmount *mnt, int propagate, struct list_head *kill)
1208 {
1209 LIST_HEAD(tmp_list);
1210 struct vfsmount *p;
1211
1212 for (p = mnt; p; p = next_mnt(p, mnt))
1213 list_move(&p->mnt_hash, &tmp_list);
1214
1215 if (propagate)
1216 propagate_umount(&tmp_list);
1217
1218 list_for_each_entry(p, &tmp_list, mnt_hash) {
1219 list_del_init(&p->mnt_expire);
1220 list_del_init(&p->mnt_list);
1221 __touch_mnt_namespace(p->mnt_ns);
1222 p->mnt_ns = NULL;
1223 __mnt_make_shortterm(p);
1224 list_del_init(&p->mnt_child);
1225 if (p->mnt_parent != p) {
1226 p->mnt_parent->mnt_ghosts++;
1227 dentry_reset_mounted(p->mnt_parent, p->mnt_mountpoint);
1228 }
1229 change_mnt_propagation(p, MS_PRIVATE);
1230 }
1231 list_splice(&tmp_list, kill);
1232 }
1233
1234 static void shrink_submounts(struct vfsmount *mnt, struct list_head *umounts);
1235
1236 static int do_umount(struct vfsmount *mnt, int flags)
1237 {
1238 struct super_block *sb = mnt->mnt_sb;
1239 int retval;
1240 LIST_HEAD(umount_list);
1241
1242 retval = security_sb_umount(mnt, flags);
1243 if (retval)
1244 return retval;
1245
1246 /*
1247 * Allow userspace to request a mountpoint be expired rather than
1248 * unmounting unconditionally. Unmount only happens if:
1249 * (1) the mark is already set (the mark is cleared by mntput())
1250 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1251 */
1252 if (flags & MNT_EXPIRE) {
1253 if (mnt == current->fs->root.mnt ||
1254 flags & (MNT_FORCE | MNT_DETACH))
1255 return -EINVAL;
1256
1257 /*
1258 * probably don't strictly need the lock here if we examined
1259 * all race cases, but it's a slowpath.
1260 */
1261 br_write_lock(vfsmount_lock);
1262 if (mnt_get_count(mnt) != 2) {
1263 br_write_unlock(vfsmount_lock);
1264 return -EBUSY;
1265 }
1266 br_write_unlock(vfsmount_lock);
1267
1268 if (!xchg(&mnt->mnt_expiry_mark, 1))
1269 return -EAGAIN;
1270 }
1271
1272 /*
1273 * If we may have to abort operations to get out of this
1274 * mount, and they will themselves hold resources we must
1275 * allow the fs to do things. In the Unix tradition of
1276 * 'Gee thats tricky lets do it in userspace' the umount_begin
1277 * might fail to complete on the first run through as other tasks
1278 * must return, and the like. Thats for the mount program to worry
1279 * about for the moment.
1280 */
1281
1282 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1283 sb->s_op->umount_begin(sb);
1284 }
1285
1286 /*
1287 * No sense to grab the lock for this test, but test itself looks
1288 * somewhat bogus. Suggestions for better replacement?
1289 * Ho-hum... In principle, we might treat that as umount + switch
1290 * to rootfs. GC would eventually take care of the old vfsmount.
1291 * Actually it makes sense, especially if rootfs would contain a
1292 * /reboot - static binary that would close all descriptors and
1293 * call reboot(9). Then init(8) could umount root and exec /reboot.
1294 */
1295 if (mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1296 /*
1297 * Special case for "unmounting" root ...
1298 * we just try to remount it readonly.
1299 */
1300 down_write(&sb->s_umount);
1301 if (!(sb->s_flags & MS_RDONLY))
1302 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1303 up_write(&sb->s_umount);
1304 return retval;
1305 }
1306
1307 down_write(&namespace_sem);
1308 br_write_lock(vfsmount_lock);
1309 event++;
1310
1311 if (!(flags & MNT_DETACH))
1312 shrink_submounts(mnt, &umount_list);
1313
1314 retval = -EBUSY;
1315 if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) {
1316 if (!list_empty(&mnt->mnt_list))
1317 umount_tree(mnt, 1, &umount_list);
1318 retval = 0;
1319 }
1320 br_write_unlock(vfsmount_lock);
1321 up_write(&namespace_sem);
1322 release_mounts(&umount_list);
1323 return retval;
1324 }
1325
1326 /*
1327 * Now umount can handle mount points as well as block devices.
1328 * This is important for filesystems which use unnamed block devices.
1329 *
1330 * We now support a flag for forced unmount like the other 'big iron'
1331 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1332 */
1333
1334 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1335 {
1336 struct path path;
1337 int retval;
1338 int lookup_flags = 0;
1339
1340 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1341 return -EINVAL;
1342
1343 if (!(flags & UMOUNT_NOFOLLOW))
1344 lookup_flags |= LOOKUP_FOLLOW;
1345
1346 retval = user_path_at(AT_FDCWD, name, lookup_flags, &path);
1347 if (retval)
1348 goto out;
1349 retval = -EINVAL;
1350 if (path.dentry != path.mnt->mnt_root)
1351 goto dput_and_out;
1352 if (!check_mnt(path.mnt))
1353 goto dput_and_out;
1354
1355 retval = -EPERM;
1356 if (!capable(CAP_SYS_ADMIN))
1357 goto dput_and_out;
1358
1359 retval = do_umount(path.mnt, flags);
1360 dput_and_out:
1361 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
1362 dput(path.dentry);
1363 mntput_no_expire(path.mnt);
1364 out:
1365 return retval;
1366 }
1367
1368 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1369
1370 /*
1371 * The 2.0 compatible umount. No flags.
1372 */
1373 SYSCALL_DEFINE1(oldumount, char __user *, name)
1374 {
1375 return sys_umount(name, 0);
1376 }
1377
1378 #endif
1379
1380 static int mount_is_safe(struct path *path)
1381 {
1382 if (capable(CAP_SYS_ADMIN))
1383 return 0;
1384 return -EPERM;
1385 #ifdef notyet
1386 if (S_ISLNK(path->dentry->d_inode->i_mode))
1387 return -EPERM;
1388 if (path->dentry->d_inode->i_mode & S_ISVTX) {
1389 if (current_uid() != path->dentry->d_inode->i_uid)
1390 return -EPERM;
1391 }
1392 if (inode_permission(path->dentry->d_inode, MAY_WRITE))
1393 return -EPERM;
1394 return 0;
1395 #endif
1396 }
1397
1398 struct vfsmount *copy_tree(struct vfsmount *mnt, struct dentry *dentry,
1399 int flag)
1400 {
1401 struct vfsmount *res, *p, *q, *r, *s;
1402 struct path path;
1403
1404 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(mnt))
1405 return NULL;
1406
1407 res = q = clone_mnt(mnt, dentry, flag);
1408 if (!q)
1409 goto Enomem;
1410 q->mnt_mountpoint = mnt->mnt_mountpoint;
1411
1412 p = mnt;
1413 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1414 if (!is_subdir(r->mnt_mountpoint, dentry))
1415 continue;
1416
1417 for (s = r; s; s = next_mnt(s, r)) {
1418 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(s)) {
1419 s = skip_mnt_tree(s);
1420 continue;
1421 }
1422 while (p != s->mnt_parent) {
1423 p = p->mnt_parent;
1424 q = q->mnt_parent;
1425 }
1426 p = s;
1427 path.mnt = q;
1428 path.dentry = p->mnt_mountpoint;
1429 q = clone_mnt(p, p->mnt_root, flag);
1430 if (!q)
1431 goto Enomem;
1432 br_write_lock(vfsmount_lock);
1433 list_add_tail(&q->mnt_list, &res->mnt_list);
1434 attach_mnt(q, &path);
1435 br_write_unlock(vfsmount_lock);
1436 }
1437 }
1438 return res;
1439 Enomem:
1440 if (res) {
1441 LIST_HEAD(umount_list);
1442 br_write_lock(vfsmount_lock);
1443 umount_tree(res, 0, &umount_list);
1444 br_write_unlock(vfsmount_lock);
1445 release_mounts(&umount_list);
1446 }
1447 return NULL;
1448 }
1449
1450 struct vfsmount *collect_mounts(struct path *path)
1451 {
1452 struct vfsmount *tree;
1453 down_write(&namespace_sem);
1454 tree = copy_tree(path->mnt, path->dentry, CL_COPY_ALL | CL_PRIVATE);
1455 up_write(&namespace_sem);
1456 return tree;
1457 }
1458
1459 void drop_collected_mounts(struct vfsmount *mnt)
1460 {
1461 LIST_HEAD(umount_list);
1462 down_write(&namespace_sem);
1463 br_write_lock(vfsmount_lock);
1464 umount_tree(mnt, 0, &umount_list);
1465 br_write_unlock(vfsmount_lock);
1466 up_write(&namespace_sem);
1467 release_mounts(&umount_list);
1468 }
1469
1470 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1471 struct vfsmount *root)
1472 {
1473 struct vfsmount *mnt;
1474 int res = f(root, arg);
1475 if (res)
1476 return res;
1477 list_for_each_entry(mnt, &root->mnt_list, mnt_list) {
1478 res = f(mnt, arg);
1479 if (res)
1480 return res;
1481 }
1482 return 0;
1483 }
1484
1485 static void cleanup_group_ids(struct vfsmount *mnt, struct vfsmount *end)
1486 {
1487 struct vfsmount *p;
1488
1489 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1490 if (p->mnt_group_id && !IS_MNT_SHARED(p))
1491 mnt_release_group_id(p);
1492 }
1493 }
1494
1495 static int invent_group_ids(struct vfsmount *mnt, bool recurse)
1496 {
1497 struct vfsmount *p;
1498
1499 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1500 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1501 int err = mnt_alloc_group_id(p);
1502 if (err) {
1503 cleanup_group_ids(mnt, p);
1504 return err;
1505 }
1506 }
1507 }
1508
1509 return 0;
1510 }
1511
1512 /*
1513 * @source_mnt : mount tree to be attached
1514 * @nd : place the mount tree @source_mnt is attached
1515 * @parent_nd : if non-null, detach the source_mnt from its parent and
1516 * store the parent mount and mountpoint dentry.
1517 * (done when source_mnt is moved)
1518 *
1519 * NOTE: in the table below explains the semantics when a source mount
1520 * of a given type is attached to a destination mount of a given type.
1521 * ---------------------------------------------------------------------------
1522 * | BIND MOUNT OPERATION |
1523 * |**************************************************************************
1524 * | source-->| shared | private | slave | unbindable |
1525 * | dest | | | | |
1526 * | | | | | | |
1527 * | v | | | | |
1528 * |**************************************************************************
1529 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1530 * | | | | | |
1531 * |non-shared| shared (+) | private | slave (*) | invalid |
1532 * ***************************************************************************
1533 * A bind operation clones the source mount and mounts the clone on the
1534 * destination mount.
1535 *
1536 * (++) the cloned mount is propagated to all the mounts in the propagation
1537 * tree of the destination mount and the cloned mount is added to
1538 * the peer group of the source mount.
1539 * (+) the cloned mount is created under the destination mount and is marked
1540 * as shared. The cloned mount is added to the peer group of the source
1541 * mount.
1542 * (+++) the mount is propagated to all the mounts in the propagation tree
1543 * of the destination mount and the cloned mount is made slave
1544 * of the same master as that of the source mount. The cloned mount
1545 * is marked as 'shared and slave'.
1546 * (*) the cloned mount is made a slave of the same master as that of the
1547 * source mount.
1548 *
1549 * ---------------------------------------------------------------------------
1550 * | MOVE MOUNT OPERATION |
1551 * |**************************************************************************
1552 * | source-->| shared | private | slave | unbindable |
1553 * | dest | | | | |
1554 * | | | | | | |
1555 * | v | | | | |
1556 * |**************************************************************************
1557 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1558 * | | | | | |
1559 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1560 * ***************************************************************************
1561 *
1562 * (+) the mount is moved to the destination. And is then propagated to
1563 * all the mounts in the propagation tree of the destination mount.
1564 * (+*) the mount is moved to the destination.
1565 * (+++) the mount is moved to the destination and is then propagated to
1566 * all the mounts belonging to the destination mount's propagation tree.
1567 * the mount is marked as 'shared and slave'.
1568 * (*) the mount continues to be a slave at the new location.
1569 *
1570 * if the source mount is a tree, the operations explained above is
1571 * applied to each mount in the tree.
1572 * Must be called without spinlocks held, since this function can sleep
1573 * in allocations.
1574 */
1575 static int attach_recursive_mnt(struct vfsmount *source_mnt,
1576 struct path *path, struct path *parent_path)
1577 {
1578 LIST_HEAD(tree_list);
1579 struct vfsmount *dest_mnt = path->mnt;
1580 struct dentry *dest_dentry = path->dentry;
1581 struct vfsmount *child, *p;
1582 int err;
1583
1584 if (IS_MNT_SHARED(dest_mnt)) {
1585 err = invent_group_ids(source_mnt, true);
1586 if (err)
1587 goto out;
1588 }
1589 err = propagate_mnt(dest_mnt, dest_dentry, source_mnt, &tree_list);
1590 if (err)
1591 goto out_cleanup_ids;
1592
1593 br_write_lock(vfsmount_lock);
1594
1595 if (IS_MNT_SHARED(dest_mnt)) {
1596 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
1597 set_mnt_shared(p);
1598 }
1599 if (parent_path) {
1600 detach_mnt(source_mnt, parent_path);
1601 attach_mnt(source_mnt, path);
1602 touch_mnt_namespace(parent_path->mnt->mnt_ns);
1603 } else {
1604 mnt_set_mountpoint(dest_mnt, dest_dentry, source_mnt);
1605 commit_tree(source_mnt);
1606 }
1607
1608 list_for_each_entry_safe(child, p, &tree_list, mnt_hash) {
1609 list_del_init(&child->mnt_hash);
1610 commit_tree(child);
1611 }
1612 br_write_unlock(vfsmount_lock);
1613
1614 return 0;
1615
1616 out_cleanup_ids:
1617 if (IS_MNT_SHARED(dest_mnt))
1618 cleanup_group_ids(source_mnt, NULL);
1619 out:
1620 return err;
1621 }
1622
1623 static int graft_tree(struct vfsmount *mnt, struct path *path)
1624 {
1625 int err;
1626 if (mnt->mnt_sb->s_flags & MS_NOUSER)
1627 return -EINVAL;
1628
1629 if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1630 S_ISDIR(mnt->mnt_root->d_inode->i_mode))
1631 return -ENOTDIR;
1632
1633 err = -ENOENT;
1634 mutex_lock(&path->dentry->d_inode->i_mutex);
1635 if (cant_mount(path->dentry))
1636 goto out_unlock;
1637
1638 if (!d_unlinked(path->dentry))
1639 err = attach_recursive_mnt(mnt, path, NULL);
1640 out_unlock:
1641 mutex_unlock(&path->dentry->d_inode->i_mutex);
1642 return err;
1643 }
1644
1645 /*
1646 * Sanity check the flags to change_mnt_propagation.
1647 */
1648
1649 static int flags_to_propagation_type(int flags)
1650 {
1651 int type = flags & ~MS_REC;
1652
1653 /* Fail if any non-propagation flags are set */
1654 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
1655 return 0;
1656 /* Only one propagation flag should be set */
1657 if (!is_power_of_2(type))
1658 return 0;
1659 return type;
1660 }
1661
1662 /*
1663 * recursively change the type of the mountpoint.
1664 */
1665 static int do_change_type(struct path *path, int flag)
1666 {
1667 struct vfsmount *m, *mnt = path->mnt;
1668 int recurse = flag & MS_REC;
1669 int type;
1670 int err = 0;
1671
1672 if (!capable(CAP_SYS_ADMIN))
1673 return -EPERM;
1674
1675 if (path->dentry != path->mnt->mnt_root)
1676 return -EINVAL;
1677
1678 type = flags_to_propagation_type(flag);
1679 if (!type)
1680 return -EINVAL;
1681
1682 down_write(&namespace_sem);
1683 if (type == MS_SHARED) {
1684 err = invent_group_ids(mnt, recurse);
1685 if (err)
1686 goto out_unlock;
1687 }
1688
1689 br_write_lock(vfsmount_lock);
1690 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
1691 change_mnt_propagation(m, type);
1692 br_write_unlock(vfsmount_lock);
1693
1694 out_unlock:
1695 up_write(&namespace_sem);
1696 return err;
1697 }
1698
1699 /*
1700 * do loopback mount.
1701 */
1702 static int do_loopback(struct path *path, char *old_name,
1703 int recurse)
1704 {
1705 struct path old_path;
1706 struct vfsmount *mnt = NULL;
1707 int err = mount_is_safe(path);
1708 if (err)
1709 return err;
1710 if (!old_name || !*old_name)
1711 return -EINVAL;
1712 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
1713 if (err)
1714 return err;
1715
1716 down_write(&namespace_sem);
1717 err = -EINVAL;
1718 if (IS_MNT_UNBINDABLE(old_path.mnt))
1719 goto out;
1720
1721 if (!check_mnt(path->mnt) || !check_mnt(old_path.mnt))
1722 goto out;
1723
1724 err = -ENOMEM;
1725 if (recurse)
1726 mnt = copy_tree(old_path.mnt, old_path.dentry, 0);
1727 else
1728 mnt = clone_mnt(old_path.mnt, old_path.dentry, 0);
1729
1730 if (!mnt)
1731 goto out;
1732
1733 err = graft_tree(mnt, path);
1734 if (err) {
1735 LIST_HEAD(umount_list);
1736
1737 br_write_lock(vfsmount_lock);
1738 umount_tree(mnt, 0, &umount_list);
1739 br_write_unlock(vfsmount_lock);
1740 release_mounts(&umount_list);
1741 }
1742
1743 out:
1744 up_write(&namespace_sem);
1745 path_put(&old_path);
1746 return err;
1747 }
1748
1749 static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
1750 {
1751 int error = 0;
1752 int readonly_request = 0;
1753
1754 if (ms_flags & MS_RDONLY)
1755 readonly_request = 1;
1756 if (readonly_request == __mnt_is_readonly(mnt))
1757 return 0;
1758
1759 if (readonly_request)
1760 error = mnt_make_readonly(mnt);
1761 else
1762 __mnt_unmake_readonly(mnt);
1763 return error;
1764 }
1765
1766 /*
1767 * change filesystem flags. dir should be a physical root of filesystem.
1768 * If you've mounted a non-root directory somewhere and want to do remount
1769 * on it - tough luck.
1770 */
1771 static int do_remount(struct path *path, int flags, int mnt_flags,
1772 void *data)
1773 {
1774 int err;
1775 struct super_block *sb = path->mnt->mnt_sb;
1776
1777 if (!capable(CAP_SYS_ADMIN))
1778 return -EPERM;
1779
1780 if (!check_mnt(path->mnt))
1781 return -EINVAL;
1782
1783 if (path->dentry != path->mnt->mnt_root)
1784 return -EINVAL;
1785
1786 down_write(&sb->s_umount);
1787 if (flags & MS_BIND)
1788 err = change_mount_flags(path->mnt, flags);
1789 else
1790 err = do_remount_sb(sb, flags, data, 0);
1791 if (!err) {
1792 br_write_lock(vfsmount_lock);
1793 mnt_flags |= path->mnt->mnt_flags & MNT_PROPAGATION_MASK;
1794 path->mnt->mnt_flags = mnt_flags;
1795 br_write_unlock(vfsmount_lock);
1796 }
1797 up_write(&sb->s_umount);
1798 if (!err) {
1799 br_write_lock(vfsmount_lock);
1800 touch_mnt_namespace(path->mnt->mnt_ns);
1801 br_write_unlock(vfsmount_lock);
1802 }
1803 return err;
1804 }
1805
1806 static inline int tree_contains_unbindable(struct vfsmount *mnt)
1807 {
1808 struct vfsmount *p;
1809 for (p = mnt; p; p = next_mnt(p, mnt)) {
1810 if (IS_MNT_UNBINDABLE(p))
1811 return 1;
1812 }
1813 return 0;
1814 }
1815
1816 static int do_move_mount(struct path *path, char *old_name)
1817 {
1818 struct path old_path, parent_path;
1819 struct vfsmount *p;
1820 int err = 0;
1821 if (!capable(CAP_SYS_ADMIN))
1822 return -EPERM;
1823 if (!old_name || !*old_name)
1824 return -EINVAL;
1825 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
1826 if (err)
1827 return err;
1828
1829 down_write(&namespace_sem);
1830 err = follow_down(path, true);
1831 if (err < 0)
1832 goto out;
1833
1834 err = -EINVAL;
1835 if (!check_mnt(path->mnt) || !check_mnt(old_path.mnt))
1836 goto out;
1837
1838 err = -ENOENT;
1839 mutex_lock(&path->dentry->d_inode->i_mutex);
1840 if (cant_mount(path->dentry))
1841 goto out1;
1842
1843 if (d_unlinked(path->dentry))
1844 goto out1;
1845
1846 err = -EINVAL;
1847 if (old_path.dentry != old_path.mnt->mnt_root)
1848 goto out1;
1849
1850 if (old_path.mnt == old_path.mnt->mnt_parent)
1851 goto out1;
1852
1853 if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1854 S_ISDIR(old_path.dentry->d_inode->i_mode))
1855 goto out1;
1856 /*
1857 * Don't move a mount residing in a shared parent.
1858 */
1859 if (old_path.mnt->mnt_parent &&
1860 IS_MNT_SHARED(old_path.mnt->mnt_parent))
1861 goto out1;
1862 /*
1863 * Don't move a mount tree containing unbindable mounts to a destination
1864 * mount which is shared.
1865 */
1866 if (IS_MNT_SHARED(path->mnt) &&
1867 tree_contains_unbindable(old_path.mnt))
1868 goto out1;
1869 err = -ELOOP;
1870 for (p = path->mnt; p->mnt_parent != p; p = p->mnt_parent)
1871 if (p == old_path.mnt)
1872 goto out1;
1873
1874 err = attach_recursive_mnt(old_path.mnt, path, &parent_path);
1875 if (err)
1876 goto out1;
1877
1878 /* if the mount is moved, it should no longer be expire
1879 * automatically */
1880 list_del_init(&old_path.mnt->mnt_expire);
1881 out1:
1882 mutex_unlock(&path->dentry->d_inode->i_mutex);
1883 out:
1884 up_write(&namespace_sem);
1885 if (!err)
1886 path_put(&parent_path);
1887 path_put(&old_path);
1888 return err;
1889 }
1890
1891 static int do_add_mount(struct vfsmount *, struct path *, int);
1892
1893 /*
1894 * create a new mount for userspace and request it to be added into the
1895 * namespace's tree
1896 */
1897 static int do_new_mount(struct path *path, char *type, int flags,
1898 int mnt_flags, char *name, void *data)
1899 {
1900 struct vfsmount *mnt;
1901 int err;
1902
1903 if (!type)
1904 return -EINVAL;
1905
1906 /* we need capabilities... */
1907 if (!capable(CAP_SYS_ADMIN))
1908 return -EPERM;
1909
1910 mnt = do_kern_mount(type, flags, name, data);
1911 if (IS_ERR(mnt))
1912 return PTR_ERR(mnt);
1913
1914 err = do_add_mount(mnt, path, mnt_flags);
1915 if (err)
1916 mntput(mnt);
1917 return err;
1918 }
1919
1920 int finish_automount(struct vfsmount *m, struct path *path)
1921 {
1922 int err;
1923 /* The new mount record should have at least 2 refs to prevent it being
1924 * expired before we get a chance to add it
1925 */
1926 BUG_ON(mnt_get_count(m) < 2);
1927
1928 if (m->mnt_sb == path->mnt->mnt_sb &&
1929 m->mnt_root == path->dentry) {
1930 err = -ELOOP;
1931 goto fail;
1932 }
1933
1934 err = do_add_mount(m, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
1935 if (!err)
1936 return 0;
1937 fail:
1938 /* remove m from any expiration list it may be on */
1939 if (!list_empty(&m->mnt_expire)) {
1940 down_write(&namespace_sem);
1941 br_write_lock(vfsmount_lock);
1942 list_del_init(&m->mnt_expire);
1943 br_write_unlock(vfsmount_lock);
1944 up_write(&namespace_sem);
1945 }
1946 mntput(m);
1947 mntput(m);
1948 return err;
1949 }
1950
1951 /*
1952 * add a mount into a namespace's mount tree
1953 */
1954 static int do_add_mount(struct vfsmount *newmnt, struct path *path, int mnt_flags)
1955 {
1956 int err;
1957
1958 mnt_flags &= ~(MNT_SHARED | MNT_WRITE_HOLD | MNT_INTERNAL);
1959
1960 down_write(&namespace_sem);
1961 /* Something was mounted here while we slept */
1962 err = follow_down(path, true);
1963 if (err < 0)
1964 goto unlock;
1965
1966 err = -EINVAL;
1967 if (!(mnt_flags & MNT_SHRINKABLE) && !check_mnt(path->mnt))
1968 goto unlock;
1969
1970 /* Refuse the same filesystem on the same mount point */
1971 err = -EBUSY;
1972 if (path->mnt->mnt_sb == newmnt->mnt_sb &&
1973 path->mnt->mnt_root == path->dentry)
1974 goto unlock;
1975
1976 err = -EINVAL;
1977 if (S_ISLNK(newmnt->mnt_root->d_inode->i_mode))
1978 goto unlock;
1979
1980 newmnt->mnt_flags = mnt_flags;
1981 err = graft_tree(newmnt, path);
1982
1983 unlock:
1984 up_write(&namespace_sem);
1985 return err;
1986 }
1987
1988 /**
1989 * mnt_set_expiry - Put a mount on an expiration list
1990 * @mnt: The mount to list.
1991 * @expiry_list: The list to add the mount to.
1992 */
1993 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
1994 {
1995 down_write(&namespace_sem);
1996 br_write_lock(vfsmount_lock);
1997
1998 list_add_tail(&mnt->mnt_expire, expiry_list);
1999
2000 br_write_unlock(vfsmount_lock);
2001 up_write(&namespace_sem);
2002 }
2003 EXPORT_SYMBOL(mnt_set_expiry);
2004
2005 /*
2006 * process a list of expirable mountpoints with the intent of discarding any
2007 * mountpoints that aren't in use and haven't been touched since last we came
2008 * here
2009 */
2010 void mark_mounts_for_expiry(struct list_head *mounts)
2011 {
2012 struct vfsmount *mnt, *next;
2013 LIST_HEAD(graveyard);
2014 LIST_HEAD(umounts);
2015
2016 if (list_empty(mounts))
2017 return;
2018
2019 down_write(&namespace_sem);
2020 br_write_lock(vfsmount_lock);
2021
2022 /* extract from the expiration list every vfsmount that matches the
2023 * following criteria:
2024 * - only referenced by its parent vfsmount
2025 * - still marked for expiry (marked on the last call here; marks are
2026 * cleared by mntput())
2027 */
2028 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
2029 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
2030 propagate_mount_busy(mnt, 1))
2031 continue;
2032 list_move(&mnt->mnt_expire, &graveyard);
2033 }
2034 while (!list_empty(&graveyard)) {
2035 mnt = list_first_entry(&graveyard, struct vfsmount, mnt_expire);
2036 touch_mnt_namespace(mnt->mnt_ns);
2037 umount_tree(mnt, 1, &umounts);
2038 }
2039 br_write_unlock(vfsmount_lock);
2040 up_write(&namespace_sem);
2041
2042 release_mounts(&umounts);
2043 }
2044
2045 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2046
2047 /*
2048 * Ripoff of 'select_parent()'
2049 *
2050 * search the list of submounts for a given mountpoint, and move any
2051 * shrinkable submounts to the 'graveyard' list.
2052 */
2053 static int select_submounts(struct vfsmount *parent, struct list_head *graveyard)
2054 {
2055 struct vfsmount *this_parent = parent;
2056 struct list_head *next;
2057 int found = 0;
2058
2059 repeat:
2060 next = this_parent->mnt_mounts.next;
2061 resume:
2062 while (next != &this_parent->mnt_mounts) {
2063 struct list_head *tmp = next;
2064 struct vfsmount *mnt = list_entry(tmp, struct vfsmount, mnt_child);
2065
2066 next = tmp->next;
2067 if (!(mnt->mnt_flags & MNT_SHRINKABLE))
2068 continue;
2069 /*
2070 * Descend a level if the d_mounts list is non-empty.
2071 */
2072 if (!list_empty(&mnt->mnt_mounts)) {
2073 this_parent = mnt;
2074 goto repeat;
2075 }
2076
2077 if (!propagate_mount_busy(mnt, 1)) {
2078 list_move_tail(&mnt->mnt_expire, graveyard);
2079 found++;
2080 }
2081 }
2082 /*
2083 * All done at this level ... ascend and resume the search
2084 */
2085 if (this_parent != parent) {
2086 next = this_parent->mnt_child.next;
2087 this_parent = this_parent->mnt_parent;
2088 goto resume;
2089 }
2090 return found;
2091 }
2092
2093 /*
2094 * process a list of expirable mountpoints with the intent of discarding any
2095 * submounts of a specific parent mountpoint
2096 *
2097 * vfsmount_lock must be held for write
2098 */
2099 static void shrink_submounts(struct vfsmount *mnt, struct list_head *umounts)
2100 {
2101 LIST_HEAD(graveyard);
2102 struct vfsmount *m;
2103
2104 /* extract submounts of 'mountpoint' from the expiration list */
2105 while (select_submounts(mnt, &graveyard)) {
2106 while (!list_empty(&graveyard)) {
2107 m = list_first_entry(&graveyard, struct vfsmount,
2108 mnt_expire);
2109 touch_mnt_namespace(m->mnt_ns);
2110 umount_tree(m, 1, umounts);
2111 }
2112 }
2113 }
2114
2115 /*
2116 * Some copy_from_user() implementations do not return the exact number of
2117 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
2118 * Note that this function differs from copy_from_user() in that it will oops
2119 * on bad values of `to', rather than returning a short copy.
2120 */
2121 static long exact_copy_from_user(void *to, const void __user * from,
2122 unsigned long n)
2123 {
2124 char *t = to;
2125 const char __user *f = from;
2126 char c;
2127
2128 if (!access_ok(VERIFY_READ, from, n))
2129 return n;
2130
2131 while (n) {
2132 if (__get_user(c, f)) {
2133 memset(t, 0, n);
2134 break;
2135 }
2136 *t++ = c;
2137 f++;
2138 n--;
2139 }
2140 return n;
2141 }
2142
2143 int copy_mount_options(const void __user * data, unsigned long *where)
2144 {
2145 int i;
2146 unsigned long page;
2147 unsigned long size;
2148
2149 *where = 0;
2150 if (!data)
2151 return 0;
2152
2153 if (!(page = __get_free_page(GFP_KERNEL)))
2154 return -ENOMEM;
2155
2156 /* We only care that *some* data at the address the user
2157 * gave us is valid. Just in case, we'll zero
2158 * the remainder of the page.
2159 */
2160 /* copy_from_user cannot cross TASK_SIZE ! */
2161 size = TASK_SIZE - (unsigned long)data;
2162 if (size > PAGE_SIZE)
2163 size = PAGE_SIZE;
2164
2165 i = size - exact_copy_from_user((void *)page, data, size);
2166 if (!i) {
2167 free_page(page);
2168 return -EFAULT;
2169 }
2170 if (i != PAGE_SIZE)
2171 memset((char *)page + i, 0, PAGE_SIZE - i);
2172 *where = page;
2173 return 0;
2174 }
2175
2176 int copy_mount_string(const void __user *data, char **where)
2177 {
2178 char *tmp;
2179
2180 if (!data) {
2181 *where = NULL;
2182 return 0;
2183 }
2184
2185 tmp = strndup_user(data, PAGE_SIZE);
2186 if (IS_ERR(tmp))
2187 return PTR_ERR(tmp);
2188
2189 *where = tmp;
2190 return 0;
2191 }
2192
2193 /*
2194 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2195 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2196 *
2197 * data is a (void *) that can point to any structure up to
2198 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2199 * information (or be NULL).
2200 *
2201 * Pre-0.97 versions of mount() didn't have a flags word.
2202 * When the flags word was introduced its top half was required
2203 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2204 * Therefore, if this magic number is present, it carries no information
2205 * and must be discarded.
2206 */
2207 long do_mount(char *dev_name, char *dir_name, char *type_page,
2208 unsigned long flags, void *data_page)
2209 {
2210 struct path path;
2211 int retval = 0;
2212 int mnt_flags = 0;
2213
2214 /* Discard magic */
2215 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2216 flags &= ~MS_MGC_MSK;
2217
2218 /* Basic sanity checks */
2219
2220 if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
2221 return -EINVAL;
2222
2223 if (data_page)
2224 ((char *)data_page)[PAGE_SIZE - 1] = 0;
2225
2226 /* ... and get the mountpoint */
2227 retval = kern_path(dir_name, LOOKUP_FOLLOW, &path);
2228 if (retval)
2229 return retval;
2230
2231 retval = security_sb_mount(dev_name, &path,
2232 type_page, flags, data_page);
2233 if (retval)
2234 goto dput_out;
2235
2236 /* Default to relatime unless overriden */
2237 if (!(flags & MS_NOATIME))
2238 mnt_flags |= MNT_RELATIME;
2239
2240 /* Separate the per-mountpoint flags */
2241 if (flags & MS_NOSUID)
2242 mnt_flags |= MNT_NOSUID;
2243 if (flags & MS_NODEV)
2244 mnt_flags |= MNT_NODEV;
2245 if (flags & MS_NOEXEC)
2246 mnt_flags |= MNT_NOEXEC;
2247 if (flags & MS_NOATIME)
2248 mnt_flags |= MNT_NOATIME;
2249 if (flags & MS_NODIRATIME)
2250 mnt_flags |= MNT_NODIRATIME;
2251 if (flags & MS_STRICTATIME)
2252 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2253 if (flags & MS_RDONLY)
2254 mnt_flags |= MNT_READONLY;
2255
2256 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
2257 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
2258 MS_STRICTATIME);
2259
2260 if (flags & MS_REMOUNT)
2261 retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
2262 data_page);
2263 else if (flags & MS_BIND)
2264 retval = do_loopback(&path, dev_name, flags & MS_REC);
2265 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2266 retval = do_change_type(&path, flags);
2267 else if (flags & MS_MOVE)
2268 retval = do_move_mount(&path, dev_name);
2269 else
2270 retval = do_new_mount(&path, type_page, flags, mnt_flags,
2271 dev_name, data_page);
2272 dput_out:
2273 path_put(&path);
2274 return retval;
2275 }
2276
2277 static struct mnt_namespace *alloc_mnt_ns(void)
2278 {
2279 struct mnt_namespace *new_ns;
2280
2281 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2282 if (!new_ns)
2283 return ERR_PTR(-ENOMEM);
2284 atomic_set(&new_ns->count, 1);
2285 new_ns->root = NULL;
2286 INIT_LIST_HEAD(&new_ns->list);
2287 init_waitqueue_head(&new_ns->poll);
2288 new_ns->event = 0;
2289 return new_ns;
2290 }
2291
2292 void mnt_make_longterm(struct vfsmount *mnt)
2293 {
2294 __mnt_make_longterm(mnt);
2295 }
2296
2297 void mnt_make_shortterm(struct vfsmount *mnt)
2298 {
2299 #ifdef CONFIG_SMP
2300 if (atomic_add_unless(&mnt->mnt_longterm, -1, 1))
2301 return;
2302 br_write_lock(vfsmount_lock);
2303 atomic_dec(&mnt->mnt_longterm);
2304 br_write_unlock(vfsmount_lock);
2305 #endif
2306 }
2307
2308 /*
2309 * Allocate a new namespace structure and populate it with contents
2310 * copied from the namespace of the passed in task structure.
2311 */
2312 static struct mnt_namespace *dup_mnt_ns(struct mnt_namespace *mnt_ns,
2313 struct fs_struct *fs)
2314 {
2315 struct mnt_namespace *new_ns;
2316 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
2317 struct vfsmount *p, *q;
2318
2319 new_ns = alloc_mnt_ns();
2320 if (IS_ERR(new_ns))
2321 return new_ns;
2322
2323 down_write(&namespace_sem);
2324 /* First pass: copy the tree topology */
2325 new_ns->root = copy_tree(mnt_ns->root, mnt_ns->root->mnt_root,
2326 CL_COPY_ALL | CL_EXPIRE);
2327 if (!new_ns->root) {
2328 up_write(&namespace_sem);
2329 kfree(new_ns);
2330 return ERR_PTR(-ENOMEM);
2331 }
2332 br_write_lock(vfsmount_lock);
2333 list_add_tail(&new_ns->list, &new_ns->root->mnt_list);
2334 br_write_unlock(vfsmount_lock);
2335
2336 /*
2337 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2338 * as belonging to new namespace. We have already acquired a private
2339 * fs_struct, so tsk->fs->lock is not needed.
2340 */
2341 p = mnt_ns->root;
2342 q = new_ns->root;
2343 while (p) {
2344 q->mnt_ns = new_ns;
2345 __mnt_make_longterm(q);
2346 if (fs) {
2347 if (p == fs->root.mnt) {
2348 fs->root.mnt = mntget(q);
2349 __mnt_make_longterm(q);
2350 mnt_make_shortterm(p);
2351 rootmnt = p;
2352 }
2353 if (p == fs->pwd.mnt) {
2354 fs->pwd.mnt = mntget(q);
2355 __mnt_make_longterm(q);
2356 mnt_make_shortterm(p);
2357 pwdmnt = p;
2358 }
2359 }
2360 p = next_mnt(p, mnt_ns->root);
2361 q = next_mnt(q, new_ns->root);
2362 }
2363 up_write(&namespace_sem);
2364
2365 if (rootmnt)
2366 mntput(rootmnt);
2367 if (pwdmnt)
2368 mntput(pwdmnt);
2369
2370 return new_ns;
2371 }
2372
2373 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2374 struct fs_struct *new_fs)
2375 {
2376 struct mnt_namespace *new_ns;
2377
2378 BUG_ON(!ns);
2379 get_mnt_ns(ns);
2380
2381 if (!(flags & CLONE_NEWNS))
2382 return ns;
2383
2384 new_ns = dup_mnt_ns(ns, new_fs);
2385
2386 put_mnt_ns(ns);
2387 return new_ns;
2388 }
2389
2390 /**
2391 * create_mnt_ns - creates a private namespace and adds a root filesystem
2392 * @mnt: pointer to the new root filesystem mountpoint
2393 */
2394 struct mnt_namespace *create_mnt_ns(struct vfsmount *mnt)
2395 {
2396 struct mnt_namespace *new_ns;
2397
2398 new_ns = alloc_mnt_ns();
2399 if (!IS_ERR(new_ns)) {
2400 mnt->mnt_ns = new_ns;
2401 __mnt_make_longterm(mnt);
2402 new_ns->root = mnt;
2403 list_add(&new_ns->list, &new_ns->root->mnt_list);
2404 }
2405 return new_ns;
2406 }
2407 EXPORT_SYMBOL(create_mnt_ns);
2408
2409 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
2410 char __user *, type, unsigned long, flags, void __user *, data)
2411 {
2412 int ret;
2413 char *kernel_type;
2414 char *kernel_dir;
2415 char *kernel_dev;
2416 unsigned long data_page;
2417
2418 ret = copy_mount_string(type, &kernel_type);
2419 if (ret < 0)
2420 goto out_type;
2421
2422 kernel_dir = getname(dir_name);
2423 if (IS_ERR(kernel_dir)) {
2424 ret = PTR_ERR(kernel_dir);
2425 goto out_dir;
2426 }
2427
2428 ret = copy_mount_string(dev_name, &kernel_dev);
2429 if (ret < 0)
2430 goto out_dev;
2431
2432 ret = copy_mount_options(data, &data_page);
2433 if (ret < 0)
2434 goto out_data;
2435
2436 ret = do_mount(kernel_dev, kernel_dir, kernel_type, flags,
2437 (void *) data_page);
2438
2439 free_page(data_page);
2440 out_data:
2441 kfree(kernel_dev);
2442 out_dev:
2443 putname(kernel_dir);
2444 out_dir:
2445 kfree(kernel_type);
2446 out_type:
2447 return ret;
2448 }
2449
2450 /*
2451 * pivot_root Semantics:
2452 * Moves the root file system of the current process to the directory put_old,
2453 * makes new_root as the new root file system of the current process, and sets
2454 * root/cwd of all processes which had them on the current root to new_root.
2455 *
2456 * Restrictions:
2457 * The new_root and put_old must be directories, and must not be on the
2458 * same file system as the current process root. The put_old must be
2459 * underneath new_root, i.e. adding a non-zero number of /.. to the string
2460 * pointed to by put_old must yield the same directory as new_root. No other
2461 * file system may be mounted on put_old. After all, new_root is a mountpoint.
2462 *
2463 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
2464 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
2465 * in this situation.
2466 *
2467 * Notes:
2468 * - we don't move root/cwd if they are not at the root (reason: if something
2469 * cared enough to change them, it's probably wrong to force them elsewhere)
2470 * - it's okay to pick a root that isn't the root of a file system, e.g.
2471 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
2472 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
2473 * first.
2474 */
2475 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
2476 const char __user *, put_old)
2477 {
2478 struct vfsmount *tmp;
2479 struct path new, old, parent_path, root_parent, root;
2480 int error;
2481
2482 if (!capable(CAP_SYS_ADMIN))
2483 return -EPERM;
2484
2485 error = user_path_dir(new_root, &new);
2486 if (error)
2487 goto out0;
2488 error = -EINVAL;
2489 if (!check_mnt(new.mnt))
2490 goto out1;
2491
2492 error = user_path_dir(put_old, &old);
2493 if (error)
2494 goto out1;
2495
2496 error = security_sb_pivotroot(&old, &new);
2497 if (error) {
2498 path_put(&old);
2499 goto out1;
2500 }
2501
2502 get_fs_root(current->fs, &root);
2503 down_write(&namespace_sem);
2504 mutex_lock(&old.dentry->d_inode->i_mutex);
2505 error = -EINVAL;
2506 if (IS_MNT_SHARED(old.mnt) ||
2507 IS_MNT_SHARED(new.mnt->mnt_parent) ||
2508 IS_MNT_SHARED(root.mnt->mnt_parent))
2509 goto out2;
2510 if (!check_mnt(root.mnt))
2511 goto out2;
2512 error = -ENOENT;
2513 if (cant_mount(old.dentry))
2514 goto out2;
2515 if (d_unlinked(new.dentry))
2516 goto out2;
2517 if (d_unlinked(old.dentry))
2518 goto out2;
2519 error = -EBUSY;
2520 if (new.mnt == root.mnt ||
2521 old.mnt == root.mnt)
2522 goto out2; /* loop, on the same file system */
2523 error = -EINVAL;
2524 if (root.mnt->mnt_root != root.dentry)
2525 goto out2; /* not a mountpoint */
2526 if (root.mnt->mnt_parent == root.mnt)
2527 goto out2; /* not attached */
2528 if (new.mnt->mnt_root != new.dentry)
2529 goto out2; /* not a mountpoint */
2530 if (new.mnt->mnt_parent == new.mnt)
2531 goto out2; /* not attached */
2532 /* make sure we can reach put_old from new_root */
2533 tmp = old.mnt;
2534 br_write_lock(vfsmount_lock);
2535 if (tmp != new.mnt) {
2536 for (;;) {
2537 if (tmp->mnt_parent == tmp)
2538 goto out3; /* already mounted on put_old */
2539 if (tmp->mnt_parent == new.mnt)
2540 break;
2541 tmp = tmp->mnt_parent;
2542 }
2543 if (!is_subdir(tmp->mnt_mountpoint, new.dentry))
2544 goto out3;
2545 } else if (!is_subdir(old.dentry, new.dentry))
2546 goto out3;
2547 detach_mnt(new.mnt, &parent_path);
2548 detach_mnt(root.mnt, &root_parent);
2549 /* mount old root on put_old */
2550 attach_mnt(root.mnt, &old);
2551 /* mount new_root on / */
2552 attach_mnt(new.mnt, &root_parent);
2553 touch_mnt_namespace(current->nsproxy->mnt_ns);
2554 br_write_unlock(vfsmount_lock);
2555 chroot_fs_refs(&root, &new);
2556
2557 error = 0;
2558 path_put(&root_parent);
2559 path_put(&parent_path);
2560 out2:
2561 mutex_unlock(&old.dentry->d_inode->i_mutex);
2562 up_write(&namespace_sem);
2563 path_put(&root);
2564 path_put(&old);
2565 out1:
2566 path_put(&new);
2567 out0:
2568 return error;
2569 out3:
2570 br_write_unlock(vfsmount_lock);
2571 goto out2;
2572 }
2573
2574 static void __init init_mount_tree(void)
2575 {
2576 struct vfsmount *mnt;
2577 struct mnt_namespace *ns;
2578 struct path root;
2579
2580 mnt = do_kern_mount("rootfs", 0, "rootfs", NULL);
2581 if (IS_ERR(mnt))
2582 panic("Can't create rootfs");
2583
2584 ns = create_mnt_ns(mnt);
2585 if (IS_ERR(ns))
2586 panic("Can't allocate initial namespace");
2587
2588 init_task.nsproxy->mnt_ns = ns;
2589 get_mnt_ns(ns);
2590
2591 root.mnt = ns->root;
2592 root.dentry = ns->root->mnt_root;
2593
2594 set_fs_pwd(current->fs, &root);
2595 set_fs_root(current->fs, &root);
2596 }
2597
2598 void __init mnt_init(void)
2599 {
2600 unsigned u;
2601 int err;
2602
2603 init_rwsem(&namespace_sem);
2604
2605 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct vfsmount),
2606 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
2607
2608 mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
2609
2610 if (!mount_hashtable)
2611 panic("Failed to allocate mount hash table\n");
2612
2613 printk("Mount-cache hash table entries: %lu\n", HASH_SIZE);
2614
2615 for (u = 0; u < HASH_SIZE; u++)
2616 INIT_LIST_HEAD(&mount_hashtable[u]);
2617
2618 br_lock_init(vfsmount_lock);
2619
2620 err = sysfs_init();
2621 if (err)
2622 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
2623 __func__, err);
2624 fs_kobj = kobject_create_and_add("fs", NULL);
2625 if (!fs_kobj)
2626 printk(KERN_WARNING "%s: kobj create error\n", __func__);
2627 init_rootfs();
2628 init_mount_tree();
2629 }
2630
2631 void put_mnt_ns(struct mnt_namespace *ns)
2632 {
2633 LIST_HEAD(umount_list);
2634
2635 if (!atomic_dec_and_test(&ns->count))
2636 return;
2637 down_write(&namespace_sem);
2638 br_write_lock(vfsmount_lock);
2639 umount_tree(ns->root, 0, &umount_list);
2640 br_write_unlock(vfsmount_lock);
2641 up_write(&namespace_sem);
2642 release_mounts(&umount_list);
2643 kfree(ns);
2644 }
2645 EXPORT_SYMBOL(put_mnt_ns);
This page took 0.122506 seconds and 6 git commands to generate.