vfs: spread struct mount - do_umount/propagate_mount_busy
[deliverable/linux.git] / fs / namespace.c
1 /*
2 * linux/fs/namespace.c
3 *
4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
11 #include <linux/syscalls.h>
12 #include <linux/slab.h>
13 #include <linux/sched.h>
14 #include <linux/spinlock.h>
15 #include <linux/percpu.h>
16 #include <linux/init.h>
17 #include <linux/kernel.h>
18 #include <linux/acct.h>
19 #include <linux/capability.h>
20 #include <linux/cpumask.h>
21 #include <linux/module.h>
22 #include <linux/sysfs.h>
23 #include <linux/seq_file.h>
24 #include <linux/mnt_namespace.h>
25 #include <linux/namei.h>
26 #include <linux/nsproxy.h>
27 #include <linux/security.h>
28 #include <linux/mount.h>
29 #include <linux/ramfs.h>
30 #include <linux/log2.h>
31 #include <linux/idr.h>
32 #include <linux/fs_struct.h>
33 #include <linux/fsnotify.h>
34 #include <asm/uaccess.h>
35 #include <asm/unistd.h>
36 #include "pnode.h"
37 #include "internal.h"
38
39 #define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head))
40 #define HASH_SIZE (1UL << HASH_SHIFT)
41
42 static int event;
43 static DEFINE_IDA(mnt_id_ida);
44 static DEFINE_IDA(mnt_group_ida);
45 static DEFINE_SPINLOCK(mnt_id_lock);
46 static int mnt_id_start = 0;
47 static int mnt_group_start = 1;
48
49 static struct list_head *mount_hashtable __read_mostly;
50 static struct kmem_cache *mnt_cache __read_mostly;
51 static struct rw_semaphore namespace_sem;
52
53 /* /sys/fs */
54 struct kobject *fs_kobj;
55 EXPORT_SYMBOL_GPL(fs_kobj);
56
57 /*
58 * vfsmount lock may be taken for read to prevent changes to the
59 * vfsmount hash, ie. during mountpoint lookups or walking back
60 * up the tree.
61 *
62 * It should be taken for write in all cases where the vfsmount
63 * tree or hash is modified or when a vfsmount structure is modified.
64 */
65 DEFINE_BRLOCK(vfsmount_lock);
66
67 static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry)
68 {
69 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
70 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
71 tmp = tmp + (tmp >> HASH_SHIFT);
72 return tmp & (HASH_SIZE - 1);
73 }
74
75 #define MNT_WRITER_UNDERFLOW_LIMIT -(1<<16)
76
77 /*
78 * allocation is serialized by namespace_sem, but we need the spinlock to
79 * serialize with freeing.
80 */
81 static int mnt_alloc_id(struct mount *mnt)
82 {
83 int res;
84
85 retry:
86 ida_pre_get(&mnt_id_ida, GFP_KERNEL);
87 spin_lock(&mnt_id_lock);
88 res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt.mnt_id);
89 if (!res)
90 mnt_id_start = mnt->mnt.mnt_id + 1;
91 spin_unlock(&mnt_id_lock);
92 if (res == -EAGAIN)
93 goto retry;
94
95 return res;
96 }
97
98 static void mnt_free_id(struct mount *mnt)
99 {
100 int id = mnt->mnt.mnt_id;
101 spin_lock(&mnt_id_lock);
102 ida_remove(&mnt_id_ida, id);
103 if (mnt_id_start > id)
104 mnt_id_start = id;
105 spin_unlock(&mnt_id_lock);
106 }
107
108 /*
109 * Allocate a new peer group ID
110 *
111 * mnt_group_ida is protected by namespace_sem
112 */
113 static int mnt_alloc_group_id(struct mount *mnt)
114 {
115 int res;
116
117 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
118 return -ENOMEM;
119
120 res = ida_get_new_above(&mnt_group_ida,
121 mnt_group_start,
122 &mnt->mnt.mnt_group_id);
123 if (!res)
124 mnt_group_start = mnt->mnt.mnt_group_id + 1;
125
126 return res;
127 }
128
129 /*
130 * Release a peer group ID
131 */
132 void mnt_release_group_id(struct mount *mnt)
133 {
134 int id = mnt->mnt.mnt_group_id;
135 ida_remove(&mnt_group_ida, id);
136 if (mnt_group_start > id)
137 mnt_group_start = id;
138 mnt->mnt.mnt_group_id = 0;
139 }
140
141 /*
142 * vfsmount lock must be held for read
143 */
144 static inline void mnt_add_count(struct vfsmount *mnt, int n)
145 {
146 #ifdef CONFIG_SMP
147 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
148 #else
149 preempt_disable();
150 mnt->mnt_count += n;
151 preempt_enable();
152 #endif
153 }
154
155 /*
156 * vfsmount lock must be held for write
157 */
158 unsigned int mnt_get_count(struct vfsmount *mnt)
159 {
160 #ifdef CONFIG_SMP
161 unsigned int count = 0;
162 int cpu;
163
164 for_each_possible_cpu(cpu) {
165 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
166 }
167
168 return count;
169 #else
170 return mnt->mnt_count;
171 #endif
172 }
173
174 static struct mount *alloc_vfsmnt(const char *name)
175 {
176 struct mount *p = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
177 if (p) {
178 struct vfsmount *mnt = &p->mnt;
179 int err;
180
181 err = mnt_alloc_id(p);
182 if (err)
183 goto out_free_cache;
184
185 if (name) {
186 mnt->mnt_devname = kstrdup(name, GFP_KERNEL);
187 if (!mnt->mnt_devname)
188 goto out_free_id;
189 }
190
191 #ifdef CONFIG_SMP
192 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
193 if (!mnt->mnt_pcp)
194 goto out_free_devname;
195
196 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
197 #else
198 mnt->mnt_count = 1;
199 mnt->mnt_writers = 0;
200 #endif
201
202 INIT_LIST_HEAD(&p->mnt_hash);
203 INIT_LIST_HEAD(&mnt->mnt_child);
204 INIT_LIST_HEAD(&mnt->mnt_mounts);
205 INIT_LIST_HEAD(&mnt->mnt_list);
206 INIT_LIST_HEAD(&mnt->mnt_expire);
207 INIT_LIST_HEAD(&mnt->mnt_share);
208 INIT_LIST_HEAD(&mnt->mnt_slave_list);
209 INIT_LIST_HEAD(&mnt->mnt_slave);
210 #ifdef CONFIG_FSNOTIFY
211 INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
212 #endif
213 }
214 return p;
215
216 #ifdef CONFIG_SMP
217 out_free_devname:
218 kfree(p->mnt.mnt_devname);
219 #endif
220 out_free_id:
221 mnt_free_id(p);
222 out_free_cache:
223 kmem_cache_free(mnt_cache, p);
224 return NULL;
225 }
226
227 /*
228 * Most r/o checks on a fs are for operations that take
229 * discrete amounts of time, like a write() or unlink().
230 * We must keep track of when those operations start
231 * (for permission checks) and when they end, so that
232 * we can determine when writes are able to occur to
233 * a filesystem.
234 */
235 /*
236 * __mnt_is_readonly: check whether a mount is read-only
237 * @mnt: the mount to check for its write status
238 *
239 * This shouldn't be used directly ouside of the VFS.
240 * It does not guarantee that the filesystem will stay
241 * r/w, just that it is right *now*. This can not and
242 * should not be used in place of IS_RDONLY(inode).
243 * mnt_want/drop_write() will _keep_ the filesystem
244 * r/w.
245 */
246 int __mnt_is_readonly(struct vfsmount *mnt)
247 {
248 if (mnt->mnt_flags & MNT_READONLY)
249 return 1;
250 if (mnt->mnt_sb->s_flags & MS_RDONLY)
251 return 1;
252 return 0;
253 }
254 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
255
256 static inline void mnt_inc_writers(struct vfsmount *mnt)
257 {
258 #ifdef CONFIG_SMP
259 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
260 #else
261 mnt->mnt_writers++;
262 #endif
263 }
264
265 static inline void mnt_dec_writers(struct vfsmount *mnt)
266 {
267 #ifdef CONFIG_SMP
268 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
269 #else
270 mnt->mnt_writers--;
271 #endif
272 }
273
274 static unsigned int mnt_get_writers(struct vfsmount *mnt)
275 {
276 #ifdef CONFIG_SMP
277 unsigned int count = 0;
278 int cpu;
279
280 for_each_possible_cpu(cpu) {
281 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
282 }
283
284 return count;
285 #else
286 return mnt->mnt_writers;
287 #endif
288 }
289
290 /*
291 * Most r/o checks on a fs are for operations that take
292 * discrete amounts of time, like a write() or unlink().
293 * We must keep track of when those operations start
294 * (for permission checks) and when they end, so that
295 * we can determine when writes are able to occur to
296 * a filesystem.
297 */
298 /**
299 * mnt_want_write - get write access to a mount
300 * @mnt: the mount on which to take a write
301 *
302 * This tells the low-level filesystem that a write is
303 * about to be performed to it, and makes sure that
304 * writes are allowed before returning success. When
305 * the write operation is finished, mnt_drop_write()
306 * must be called. This is effectively a refcount.
307 */
308 int mnt_want_write(struct vfsmount *mnt)
309 {
310 int ret = 0;
311
312 preempt_disable();
313 mnt_inc_writers(mnt);
314 /*
315 * The store to mnt_inc_writers must be visible before we pass
316 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
317 * incremented count after it has set MNT_WRITE_HOLD.
318 */
319 smp_mb();
320 while (mnt->mnt_flags & MNT_WRITE_HOLD)
321 cpu_relax();
322 /*
323 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
324 * be set to match its requirements. So we must not load that until
325 * MNT_WRITE_HOLD is cleared.
326 */
327 smp_rmb();
328 if (__mnt_is_readonly(mnt)) {
329 mnt_dec_writers(mnt);
330 ret = -EROFS;
331 goto out;
332 }
333 out:
334 preempt_enable();
335 return ret;
336 }
337 EXPORT_SYMBOL_GPL(mnt_want_write);
338
339 /**
340 * mnt_clone_write - get write access to a mount
341 * @mnt: the mount on which to take a write
342 *
343 * This is effectively like mnt_want_write, except
344 * it must only be used to take an extra write reference
345 * on a mountpoint that we already know has a write reference
346 * on it. This allows some optimisation.
347 *
348 * After finished, mnt_drop_write must be called as usual to
349 * drop the reference.
350 */
351 int mnt_clone_write(struct vfsmount *mnt)
352 {
353 /* superblock may be r/o */
354 if (__mnt_is_readonly(mnt))
355 return -EROFS;
356 preempt_disable();
357 mnt_inc_writers(mnt);
358 preempt_enable();
359 return 0;
360 }
361 EXPORT_SYMBOL_GPL(mnt_clone_write);
362
363 /**
364 * mnt_want_write_file - get write access to a file's mount
365 * @file: the file who's mount on which to take a write
366 *
367 * This is like mnt_want_write, but it takes a file and can
368 * do some optimisations if the file is open for write already
369 */
370 int mnt_want_write_file(struct file *file)
371 {
372 struct inode *inode = file->f_dentry->d_inode;
373 if (!(file->f_mode & FMODE_WRITE) || special_file(inode->i_mode))
374 return mnt_want_write(file->f_path.mnt);
375 else
376 return mnt_clone_write(file->f_path.mnt);
377 }
378 EXPORT_SYMBOL_GPL(mnt_want_write_file);
379
380 /**
381 * mnt_drop_write - give up write access to a mount
382 * @mnt: the mount on which to give up write access
383 *
384 * Tells the low-level filesystem that we are done
385 * performing writes to it. Must be matched with
386 * mnt_want_write() call above.
387 */
388 void mnt_drop_write(struct vfsmount *mnt)
389 {
390 preempt_disable();
391 mnt_dec_writers(mnt);
392 preempt_enable();
393 }
394 EXPORT_SYMBOL_GPL(mnt_drop_write);
395
396 void mnt_drop_write_file(struct file *file)
397 {
398 mnt_drop_write(file->f_path.mnt);
399 }
400 EXPORT_SYMBOL(mnt_drop_write_file);
401
402 static int mnt_make_readonly(struct vfsmount *mnt)
403 {
404 int ret = 0;
405
406 br_write_lock(vfsmount_lock);
407 mnt->mnt_flags |= MNT_WRITE_HOLD;
408 /*
409 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
410 * should be visible before we do.
411 */
412 smp_mb();
413
414 /*
415 * With writers on hold, if this value is zero, then there are
416 * definitely no active writers (although held writers may subsequently
417 * increment the count, they'll have to wait, and decrement it after
418 * seeing MNT_READONLY).
419 *
420 * It is OK to have counter incremented on one CPU and decremented on
421 * another: the sum will add up correctly. The danger would be when we
422 * sum up each counter, if we read a counter before it is incremented,
423 * but then read another CPU's count which it has been subsequently
424 * decremented from -- we would see more decrements than we should.
425 * MNT_WRITE_HOLD protects against this scenario, because
426 * mnt_want_write first increments count, then smp_mb, then spins on
427 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
428 * we're counting up here.
429 */
430 if (mnt_get_writers(mnt) > 0)
431 ret = -EBUSY;
432 else
433 mnt->mnt_flags |= MNT_READONLY;
434 /*
435 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
436 * that become unheld will see MNT_READONLY.
437 */
438 smp_wmb();
439 mnt->mnt_flags &= ~MNT_WRITE_HOLD;
440 br_write_unlock(vfsmount_lock);
441 return ret;
442 }
443
444 static void __mnt_unmake_readonly(struct vfsmount *mnt)
445 {
446 br_write_lock(vfsmount_lock);
447 mnt->mnt_flags &= ~MNT_READONLY;
448 br_write_unlock(vfsmount_lock);
449 }
450
451 static void free_vfsmnt(struct mount *mnt)
452 {
453 kfree(mnt->mnt.mnt_devname);
454 mnt_free_id(mnt);
455 #ifdef CONFIG_SMP
456 free_percpu(mnt->mnt.mnt_pcp);
457 #endif
458 kmem_cache_free(mnt_cache, mnt);
459 }
460
461 /*
462 * find the first or last mount at @dentry on vfsmount @mnt depending on
463 * @dir. If @dir is set return the first mount else return the last mount.
464 * vfsmount_lock must be held for read or write.
465 */
466 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry,
467 int dir)
468 {
469 struct list_head *head = mount_hashtable + hash(mnt, dentry);
470 struct list_head *tmp = head;
471 struct mount *p, *found = NULL;
472
473 for (;;) {
474 tmp = dir ? tmp->next : tmp->prev;
475 p = NULL;
476 if (tmp == head)
477 break;
478 p = list_entry(tmp, struct mount, mnt_hash);
479 if (p->mnt.mnt_parent == mnt && p->mnt.mnt_mountpoint == dentry) {
480 found = p;
481 break;
482 }
483 }
484 return found;
485 }
486
487 /*
488 * lookup_mnt increments the ref count before returning
489 * the vfsmount struct.
490 */
491 struct vfsmount *lookup_mnt(struct path *path)
492 {
493 struct mount *child_mnt;
494
495 br_read_lock(vfsmount_lock);
496 child_mnt = __lookup_mnt(path->mnt, path->dentry, 1);
497 if (child_mnt) {
498 mnt_add_count(child_mnt, 1);
499 br_read_unlock(vfsmount_lock);
500 return &child_mnt->mnt;
501 } else {
502 br_read_unlock(vfsmount_lock);
503 return NULL;
504 }
505 }
506
507 static inline int check_mnt(struct vfsmount *mnt)
508 {
509 return mnt->mnt_ns == current->nsproxy->mnt_ns;
510 }
511
512 /*
513 * vfsmount lock must be held for write
514 */
515 static void touch_mnt_namespace(struct mnt_namespace *ns)
516 {
517 if (ns) {
518 ns->event = ++event;
519 wake_up_interruptible(&ns->poll);
520 }
521 }
522
523 /*
524 * vfsmount lock must be held for write
525 */
526 static void __touch_mnt_namespace(struct mnt_namespace *ns)
527 {
528 if (ns && ns->event != event) {
529 ns->event = event;
530 wake_up_interruptible(&ns->poll);
531 }
532 }
533
534 /*
535 * Clear dentry's mounted state if it has no remaining mounts.
536 * vfsmount_lock must be held for write.
537 */
538 static void dentry_reset_mounted(struct dentry *dentry)
539 {
540 unsigned u;
541
542 for (u = 0; u < HASH_SIZE; u++) {
543 struct mount *p;
544
545 list_for_each_entry(p, &mount_hashtable[u], mnt_hash) {
546 if (p->mnt.mnt_mountpoint == dentry)
547 return;
548 }
549 }
550 spin_lock(&dentry->d_lock);
551 dentry->d_flags &= ~DCACHE_MOUNTED;
552 spin_unlock(&dentry->d_lock);
553 }
554
555 /*
556 * vfsmount lock must be held for write
557 */
558 static void detach_mnt(struct mount *mnt, struct path *old_path)
559 {
560 old_path->dentry = mnt->mnt.mnt_mountpoint;
561 old_path->mnt = mnt->mnt.mnt_parent;
562 mnt->mnt.mnt_parent = &mnt->mnt;
563 mnt->mnt.mnt_mountpoint = mnt->mnt.mnt_root;
564 list_del_init(&mnt->mnt.mnt_child);
565 list_del_init(&mnt->mnt_hash);
566 dentry_reset_mounted(old_path->dentry);
567 }
568
569 /*
570 * vfsmount lock must be held for write
571 */
572 void mnt_set_mountpoint(struct vfsmount *mnt, struct dentry *dentry,
573 struct mount *child_mnt)
574 {
575 child_mnt->mnt.mnt_parent = mntget(mnt);
576 child_mnt->mnt.mnt_mountpoint = dget(dentry);
577 spin_lock(&dentry->d_lock);
578 dentry->d_flags |= DCACHE_MOUNTED;
579 spin_unlock(&dentry->d_lock);
580 }
581
582 /*
583 * vfsmount lock must be held for write
584 */
585 static void attach_mnt(struct mount *mnt, struct path *path)
586 {
587 mnt_set_mountpoint(path->mnt, path->dentry, mnt);
588 list_add_tail(&mnt->mnt_hash, mount_hashtable +
589 hash(path->mnt, path->dentry));
590 list_add_tail(&mnt->mnt.mnt_child, &path->mnt->mnt_mounts);
591 }
592
593 static inline void __mnt_make_longterm(struct vfsmount *mnt)
594 {
595 #ifdef CONFIG_SMP
596 atomic_inc(&mnt->mnt_longterm);
597 #endif
598 }
599
600 /* needs vfsmount lock for write */
601 static inline void __mnt_make_shortterm(struct vfsmount *mnt)
602 {
603 #ifdef CONFIG_SMP
604 atomic_dec(&mnt->mnt_longterm);
605 #endif
606 }
607
608 /*
609 * vfsmount lock must be held for write
610 */
611 static void commit_tree(struct mount *mnt)
612 {
613 struct vfsmount *parent = mnt->mnt.mnt_parent;
614 struct vfsmount *m;
615 LIST_HEAD(head);
616 struct mnt_namespace *n = parent->mnt_ns;
617
618 BUG_ON(parent == &mnt->mnt);
619
620 list_add_tail(&head, &mnt->mnt.mnt_list);
621 list_for_each_entry(m, &head, mnt_list) {
622 m->mnt_ns = n;
623 __mnt_make_longterm(m);
624 }
625
626 list_splice(&head, n->list.prev);
627
628 list_add_tail(&mnt->mnt_hash, mount_hashtable +
629 hash(parent, mnt->mnt.mnt_mountpoint));
630 list_add_tail(&mnt->mnt.mnt_child, &parent->mnt_mounts);
631 touch_mnt_namespace(n);
632 }
633
634 static struct mount *next_mnt(struct mount *p, struct vfsmount *root)
635 {
636 struct list_head *next = p->mnt.mnt_mounts.next;
637 if (next == &p->mnt.mnt_mounts) {
638 while (1) {
639 if (&p->mnt == root)
640 return NULL;
641 next = p->mnt.mnt_child.next;
642 if (next != &p->mnt.mnt_parent->mnt_mounts)
643 break;
644 p = real_mount(p->mnt.mnt_parent);
645 }
646 }
647 return list_entry(next, struct mount, mnt.mnt_child);
648 }
649
650 static struct mount *skip_mnt_tree(struct mount *p)
651 {
652 struct list_head *prev = p->mnt.mnt_mounts.prev;
653 while (prev != &p->mnt.mnt_mounts) {
654 p = list_entry(prev, struct mount, mnt.mnt_child);
655 prev = p->mnt.mnt_mounts.prev;
656 }
657 return p;
658 }
659
660 struct vfsmount *
661 vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
662 {
663 struct mount *mnt;
664 struct dentry *root;
665
666 if (!type)
667 return ERR_PTR(-ENODEV);
668
669 mnt = alloc_vfsmnt(name);
670 if (!mnt)
671 return ERR_PTR(-ENOMEM);
672
673 if (flags & MS_KERNMOUNT)
674 mnt->mnt.mnt_flags = MNT_INTERNAL;
675
676 root = mount_fs(type, flags, name, data);
677 if (IS_ERR(root)) {
678 free_vfsmnt(mnt);
679 return ERR_CAST(root);
680 }
681
682 mnt->mnt.mnt_root = root;
683 mnt->mnt.mnt_sb = root->d_sb;
684 mnt->mnt.mnt_mountpoint = mnt->mnt.mnt_root;
685 mnt->mnt.mnt_parent = &mnt->mnt;
686 return &mnt->mnt;
687 }
688 EXPORT_SYMBOL_GPL(vfs_kern_mount);
689
690 static struct mount *clone_mnt(struct mount *old, struct dentry *root,
691 int flag)
692 {
693 struct super_block *sb = old->mnt.mnt_sb;
694 struct mount *mnt = alloc_vfsmnt(old->mnt.mnt_devname);
695
696 if (mnt) {
697 if (flag & (CL_SLAVE | CL_PRIVATE))
698 mnt->mnt.mnt_group_id = 0; /* not a peer of original */
699 else
700 mnt->mnt.mnt_group_id = old->mnt.mnt_group_id;
701
702 if ((flag & CL_MAKE_SHARED) && !mnt->mnt.mnt_group_id) {
703 int err = mnt_alloc_group_id(mnt);
704 if (err)
705 goto out_free;
706 }
707
708 mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~MNT_WRITE_HOLD;
709 atomic_inc(&sb->s_active);
710 mnt->mnt.mnt_sb = sb;
711 mnt->mnt.mnt_root = dget(root);
712 mnt->mnt.mnt_mountpoint = mnt->mnt.mnt_root;
713 mnt->mnt.mnt_parent = &mnt->mnt;
714
715 if (flag & CL_SLAVE) {
716 list_add(&mnt->mnt.mnt_slave, &old->mnt.mnt_slave_list);
717 mnt->mnt.mnt_master = &old->mnt;
718 CLEAR_MNT_SHARED(&mnt->mnt);
719 } else if (!(flag & CL_PRIVATE)) {
720 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(&old->mnt))
721 list_add(&mnt->mnt.mnt_share, &old->mnt.mnt_share);
722 if (IS_MNT_SLAVE(&old->mnt))
723 list_add(&mnt->mnt.mnt_slave, &old->mnt.mnt_slave);
724 mnt->mnt.mnt_master = old->mnt.mnt_master;
725 }
726 if (flag & CL_MAKE_SHARED)
727 set_mnt_shared(mnt);
728
729 /* stick the duplicate mount on the same expiry list
730 * as the original if that was on one */
731 if (flag & CL_EXPIRE) {
732 if (!list_empty(&old->mnt.mnt_expire))
733 list_add(&mnt->mnt.mnt_expire, &old->mnt.mnt_expire);
734 }
735 }
736 return mnt;
737
738 out_free:
739 free_vfsmnt(mnt);
740 return NULL;
741 }
742
743 static inline void mntfree(struct vfsmount *mnt)
744 {
745 struct super_block *sb = mnt->mnt_sb;
746
747 /*
748 * This probably indicates that somebody messed
749 * up a mnt_want/drop_write() pair. If this
750 * happens, the filesystem was probably unable
751 * to make r/w->r/o transitions.
752 */
753 /*
754 * The locking used to deal with mnt_count decrement provides barriers,
755 * so mnt_get_writers() below is safe.
756 */
757 WARN_ON(mnt_get_writers(mnt));
758 fsnotify_vfsmount_delete(mnt);
759 dput(mnt->mnt_root);
760 free_vfsmnt(real_mount(mnt));
761 deactivate_super(sb);
762 }
763
764 static void mntput_no_expire(struct vfsmount *mnt)
765 {
766 put_again:
767 #ifdef CONFIG_SMP
768 br_read_lock(vfsmount_lock);
769 if (likely(atomic_read(&mnt->mnt_longterm))) {
770 mnt_add_count(mnt, -1);
771 br_read_unlock(vfsmount_lock);
772 return;
773 }
774 br_read_unlock(vfsmount_lock);
775
776 br_write_lock(vfsmount_lock);
777 mnt_add_count(mnt, -1);
778 if (mnt_get_count(mnt)) {
779 br_write_unlock(vfsmount_lock);
780 return;
781 }
782 #else
783 mnt_add_count(mnt, -1);
784 if (likely(mnt_get_count(mnt)))
785 return;
786 br_write_lock(vfsmount_lock);
787 #endif
788 if (unlikely(mnt->mnt_pinned)) {
789 mnt_add_count(mnt, mnt->mnt_pinned + 1);
790 mnt->mnt_pinned = 0;
791 br_write_unlock(vfsmount_lock);
792 acct_auto_close_mnt(mnt);
793 goto put_again;
794 }
795 br_write_unlock(vfsmount_lock);
796 mntfree(mnt);
797 }
798
799 void mntput(struct vfsmount *mnt)
800 {
801 if (mnt) {
802 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
803 if (unlikely(mnt->mnt_expiry_mark))
804 mnt->mnt_expiry_mark = 0;
805 mntput_no_expire(mnt);
806 }
807 }
808 EXPORT_SYMBOL(mntput);
809
810 struct vfsmount *mntget(struct vfsmount *mnt)
811 {
812 if (mnt)
813 mnt_add_count(mnt, 1);
814 return mnt;
815 }
816 EXPORT_SYMBOL(mntget);
817
818 void mnt_pin(struct vfsmount *mnt)
819 {
820 br_write_lock(vfsmount_lock);
821 mnt->mnt_pinned++;
822 br_write_unlock(vfsmount_lock);
823 }
824 EXPORT_SYMBOL(mnt_pin);
825
826 void mnt_unpin(struct vfsmount *mnt)
827 {
828 br_write_lock(vfsmount_lock);
829 if (mnt->mnt_pinned) {
830 mnt_add_count(mnt, 1);
831 mnt->mnt_pinned--;
832 }
833 br_write_unlock(vfsmount_lock);
834 }
835 EXPORT_SYMBOL(mnt_unpin);
836
837 static inline void mangle(struct seq_file *m, const char *s)
838 {
839 seq_escape(m, s, " \t\n\\");
840 }
841
842 /*
843 * Simple .show_options callback for filesystems which don't want to
844 * implement more complex mount option showing.
845 *
846 * See also save_mount_options().
847 */
848 int generic_show_options(struct seq_file *m, struct vfsmount *mnt)
849 {
850 const char *options;
851
852 rcu_read_lock();
853 options = rcu_dereference(mnt->mnt_sb->s_options);
854
855 if (options != NULL && options[0]) {
856 seq_putc(m, ',');
857 mangle(m, options);
858 }
859 rcu_read_unlock();
860
861 return 0;
862 }
863 EXPORT_SYMBOL(generic_show_options);
864
865 /*
866 * If filesystem uses generic_show_options(), this function should be
867 * called from the fill_super() callback.
868 *
869 * The .remount_fs callback usually needs to be handled in a special
870 * way, to make sure, that previous options are not overwritten if the
871 * remount fails.
872 *
873 * Also note, that if the filesystem's .remount_fs function doesn't
874 * reset all options to their default value, but changes only newly
875 * given options, then the displayed options will not reflect reality
876 * any more.
877 */
878 void save_mount_options(struct super_block *sb, char *options)
879 {
880 BUG_ON(sb->s_options);
881 rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
882 }
883 EXPORT_SYMBOL(save_mount_options);
884
885 void replace_mount_options(struct super_block *sb, char *options)
886 {
887 char *old = sb->s_options;
888 rcu_assign_pointer(sb->s_options, options);
889 if (old) {
890 synchronize_rcu();
891 kfree(old);
892 }
893 }
894 EXPORT_SYMBOL(replace_mount_options);
895
896 #ifdef CONFIG_PROC_FS
897 /* iterator */
898 static void *m_start(struct seq_file *m, loff_t *pos)
899 {
900 struct proc_mounts *p = m->private;
901
902 down_read(&namespace_sem);
903 return seq_list_start(&p->ns->list, *pos);
904 }
905
906 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
907 {
908 struct proc_mounts *p = m->private;
909
910 return seq_list_next(v, &p->ns->list, pos);
911 }
912
913 static void m_stop(struct seq_file *m, void *v)
914 {
915 up_read(&namespace_sem);
916 }
917
918 int mnt_had_events(struct proc_mounts *p)
919 {
920 struct mnt_namespace *ns = p->ns;
921 int res = 0;
922
923 br_read_lock(vfsmount_lock);
924 if (p->m.poll_event != ns->event) {
925 p->m.poll_event = ns->event;
926 res = 1;
927 }
928 br_read_unlock(vfsmount_lock);
929
930 return res;
931 }
932
933 struct proc_fs_info {
934 int flag;
935 const char *str;
936 };
937
938 static int show_sb_opts(struct seq_file *m, struct super_block *sb)
939 {
940 static const struct proc_fs_info fs_info[] = {
941 { MS_SYNCHRONOUS, ",sync" },
942 { MS_DIRSYNC, ",dirsync" },
943 { MS_MANDLOCK, ",mand" },
944 { 0, NULL }
945 };
946 const struct proc_fs_info *fs_infop;
947
948 for (fs_infop = fs_info; fs_infop->flag; fs_infop++) {
949 if (sb->s_flags & fs_infop->flag)
950 seq_puts(m, fs_infop->str);
951 }
952
953 return security_sb_show_options(m, sb);
954 }
955
956 static void show_mnt_opts(struct seq_file *m, struct vfsmount *mnt)
957 {
958 static const struct proc_fs_info mnt_info[] = {
959 { MNT_NOSUID, ",nosuid" },
960 { MNT_NODEV, ",nodev" },
961 { MNT_NOEXEC, ",noexec" },
962 { MNT_NOATIME, ",noatime" },
963 { MNT_NODIRATIME, ",nodiratime" },
964 { MNT_RELATIME, ",relatime" },
965 { 0, NULL }
966 };
967 const struct proc_fs_info *fs_infop;
968
969 for (fs_infop = mnt_info; fs_infop->flag; fs_infop++) {
970 if (mnt->mnt_flags & fs_infop->flag)
971 seq_puts(m, fs_infop->str);
972 }
973 }
974
975 static void show_type(struct seq_file *m, struct super_block *sb)
976 {
977 mangle(m, sb->s_type->name);
978 if (sb->s_subtype && sb->s_subtype[0]) {
979 seq_putc(m, '.');
980 mangle(m, sb->s_subtype);
981 }
982 }
983
984 static int show_vfsmnt(struct seq_file *m, void *v)
985 {
986 struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
987 int err = 0;
988 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
989
990 if (mnt->mnt_sb->s_op->show_devname) {
991 err = mnt->mnt_sb->s_op->show_devname(m, mnt);
992 if (err)
993 goto out;
994 } else {
995 mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
996 }
997 seq_putc(m, ' ');
998 seq_path(m, &mnt_path, " \t\n\\");
999 seq_putc(m, ' ');
1000 show_type(m, mnt->mnt_sb);
1001 seq_puts(m, __mnt_is_readonly(mnt) ? " ro" : " rw");
1002 err = show_sb_opts(m, mnt->mnt_sb);
1003 if (err)
1004 goto out;
1005 show_mnt_opts(m, mnt);
1006 if (mnt->mnt_sb->s_op->show_options)
1007 err = mnt->mnt_sb->s_op->show_options(m, mnt);
1008 seq_puts(m, " 0 0\n");
1009 out:
1010 return err;
1011 }
1012
1013 const struct seq_operations mounts_op = {
1014 .start = m_start,
1015 .next = m_next,
1016 .stop = m_stop,
1017 .show = show_vfsmnt
1018 };
1019
1020 static int show_mountinfo(struct seq_file *m, void *v)
1021 {
1022 struct proc_mounts *p = m->private;
1023 struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
1024 struct super_block *sb = mnt->mnt_sb;
1025 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
1026 struct path root = p->root;
1027 int err = 0;
1028
1029 seq_printf(m, "%i %i %u:%u ", mnt->mnt_id, mnt->mnt_parent->mnt_id,
1030 MAJOR(sb->s_dev), MINOR(sb->s_dev));
1031 if (sb->s_op->show_path)
1032 err = sb->s_op->show_path(m, mnt);
1033 else
1034 seq_dentry(m, mnt->mnt_root, " \t\n\\");
1035 if (err)
1036 goto out;
1037 seq_putc(m, ' ');
1038
1039 /* mountpoints outside of chroot jail will give SEQ_SKIP on this */
1040 err = seq_path_root(m, &mnt_path, &root, " \t\n\\");
1041 if (err)
1042 goto out;
1043
1044 seq_puts(m, mnt->mnt_flags & MNT_READONLY ? " ro" : " rw");
1045 show_mnt_opts(m, mnt);
1046
1047 /* Tagged fields ("foo:X" or "bar") */
1048 if (IS_MNT_SHARED(mnt))
1049 seq_printf(m, " shared:%i", mnt->mnt_group_id);
1050 if (IS_MNT_SLAVE(mnt)) {
1051 int master = mnt->mnt_master->mnt_group_id;
1052 int dom = get_dominating_id(mnt, &p->root);
1053 seq_printf(m, " master:%i", master);
1054 if (dom && dom != master)
1055 seq_printf(m, " propagate_from:%i", dom);
1056 }
1057 if (IS_MNT_UNBINDABLE(mnt))
1058 seq_puts(m, " unbindable");
1059
1060 /* Filesystem specific data */
1061 seq_puts(m, " - ");
1062 show_type(m, sb);
1063 seq_putc(m, ' ');
1064 if (sb->s_op->show_devname)
1065 err = sb->s_op->show_devname(m, mnt);
1066 else
1067 mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
1068 if (err)
1069 goto out;
1070 seq_puts(m, sb->s_flags & MS_RDONLY ? " ro" : " rw");
1071 err = show_sb_opts(m, sb);
1072 if (err)
1073 goto out;
1074 if (sb->s_op->show_options)
1075 err = sb->s_op->show_options(m, mnt);
1076 seq_putc(m, '\n');
1077 out:
1078 return err;
1079 }
1080
1081 const struct seq_operations mountinfo_op = {
1082 .start = m_start,
1083 .next = m_next,
1084 .stop = m_stop,
1085 .show = show_mountinfo,
1086 };
1087
1088 static int show_vfsstat(struct seq_file *m, void *v)
1089 {
1090 struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
1091 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
1092 int err = 0;
1093
1094 /* device */
1095 if (mnt->mnt_sb->s_op->show_devname) {
1096 seq_puts(m, "device ");
1097 err = mnt->mnt_sb->s_op->show_devname(m, mnt);
1098 } else {
1099 if (mnt->mnt_devname) {
1100 seq_puts(m, "device ");
1101 mangle(m, mnt->mnt_devname);
1102 } else
1103 seq_puts(m, "no device");
1104 }
1105
1106 /* mount point */
1107 seq_puts(m, " mounted on ");
1108 seq_path(m, &mnt_path, " \t\n\\");
1109 seq_putc(m, ' ');
1110
1111 /* file system type */
1112 seq_puts(m, "with fstype ");
1113 show_type(m, mnt->mnt_sb);
1114
1115 /* optional statistics */
1116 if (mnt->mnt_sb->s_op->show_stats) {
1117 seq_putc(m, ' ');
1118 if (!err)
1119 err = mnt->mnt_sb->s_op->show_stats(m, mnt);
1120 }
1121
1122 seq_putc(m, '\n');
1123 return err;
1124 }
1125
1126 const struct seq_operations mountstats_op = {
1127 .start = m_start,
1128 .next = m_next,
1129 .stop = m_stop,
1130 .show = show_vfsstat,
1131 };
1132 #endif /* CONFIG_PROC_FS */
1133
1134 /**
1135 * may_umount_tree - check if a mount tree is busy
1136 * @mnt: root of mount tree
1137 *
1138 * This is called to check if a tree of mounts has any
1139 * open files, pwds, chroots or sub mounts that are
1140 * busy.
1141 */
1142 int may_umount_tree(struct vfsmount *mnt)
1143 {
1144 int actual_refs = 0;
1145 int minimum_refs = 0;
1146 struct mount *p;
1147 BUG_ON(!mnt);
1148
1149 /* write lock needed for mnt_get_count */
1150 br_write_lock(vfsmount_lock);
1151 for (p = real_mount(mnt); p; p = next_mnt(p, mnt)) {
1152 actual_refs += mnt_get_count(&p->mnt);
1153 minimum_refs += 2;
1154 }
1155 br_write_unlock(vfsmount_lock);
1156
1157 if (actual_refs > minimum_refs)
1158 return 0;
1159
1160 return 1;
1161 }
1162
1163 EXPORT_SYMBOL(may_umount_tree);
1164
1165 /**
1166 * may_umount - check if a mount point is busy
1167 * @mnt: root of mount
1168 *
1169 * This is called to check if a mount point has any
1170 * open files, pwds, chroots or sub mounts. If the
1171 * mount has sub mounts this will return busy
1172 * regardless of whether the sub mounts are busy.
1173 *
1174 * Doesn't take quota and stuff into account. IOW, in some cases it will
1175 * give false negatives. The main reason why it's here is that we need
1176 * a non-destructive way to look for easily umountable filesystems.
1177 */
1178 int may_umount(struct vfsmount *mnt)
1179 {
1180 int ret = 1;
1181 down_read(&namespace_sem);
1182 br_write_lock(vfsmount_lock);
1183 if (propagate_mount_busy(real_mount(mnt), 2))
1184 ret = 0;
1185 br_write_unlock(vfsmount_lock);
1186 up_read(&namespace_sem);
1187 return ret;
1188 }
1189
1190 EXPORT_SYMBOL(may_umount);
1191
1192 void release_mounts(struct list_head *head)
1193 {
1194 struct mount *mnt;
1195 while (!list_empty(head)) {
1196 mnt = list_first_entry(head, struct mount, mnt_hash);
1197 list_del_init(&mnt->mnt_hash);
1198 if (mnt_has_parent(&mnt->mnt)) {
1199 struct dentry *dentry;
1200 struct vfsmount *m;
1201
1202 br_write_lock(vfsmount_lock);
1203 dentry = mnt->mnt.mnt_mountpoint;
1204 m = mnt->mnt.mnt_parent;
1205 mnt->mnt.mnt_mountpoint = mnt->mnt.mnt_root;
1206 mnt->mnt.mnt_parent = &mnt->mnt;
1207 m->mnt_ghosts--;
1208 br_write_unlock(vfsmount_lock);
1209 dput(dentry);
1210 mntput(m);
1211 }
1212 mntput(&mnt->mnt);
1213 }
1214 }
1215
1216 /*
1217 * vfsmount lock must be held for write
1218 * namespace_sem must be held for write
1219 */
1220 void umount_tree(struct mount *mnt, int propagate, struct list_head *kill)
1221 {
1222 LIST_HEAD(tmp_list);
1223 struct mount *p;
1224
1225 for (p = mnt; p; p = next_mnt(p, &mnt->mnt))
1226 list_move(&p->mnt_hash, &tmp_list);
1227
1228 if (propagate)
1229 propagate_umount(&tmp_list);
1230
1231 list_for_each_entry(p, &tmp_list, mnt_hash) {
1232 list_del_init(&p->mnt.mnt_expire);
1233 list_del_init(&p->mnt.mnt_list);
1234 __touch_mnt_namespace(p->mnt.mnt_ns);
1235 p->mnt.mnt_ns = NULL;
1236 __mnt_make_shortterm(&p->mnt);
1237 list_del_init(&p->mnt.mnt_child);
1238 if (mnt_has_parent(&p->mnt)) {
1239 p->mnt.mnt_parent->mnt_ghosts++;
1240 dentry_reset_mounted(p->mnt.mnt_mountpoint);
1241 }
1242 change_mnt_propagation(p, MS_PRIVATE);
1243 }
1244 list_splice(&tmp_list, kill);
1245 }
1246
1247 static void shrink_submounts(struct mount *mnt, struct list_head *umounts);
1248
1249 static int do_umount(struct mount *mnt, int flags)
1250 {
1251 struct super_block *sb = mnt->mnt.mnt_sb;
1252 int retval;
1253 LIST_HEAD(umount_list);
1254
1255 retval = security_sb_umount(&mnt->mnt, flags);
1256 if (retval)
1257 return retval;
1258
1259 /*
1260 * Allow userspace to request a mountpoint be expired rather than
1261 * unmounting unconditionally. Unmount only happens if:
1262 * (1) the mark is already set (the mark is cleared by mntput())
1263 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1264 */
1265 if (flags & MNT_EXPIRE) {
1266 if (&mnt->mnt == current->fs->root.mnt ||
1267 flags & (MNT_FORCE | MNT_DETACH))
1268 return -EINVAL;
1269
1270 /*
1271 * probably don't strictly need the lock here if we examined
1272 * all race cases, but it's a slowpath.
1273 */
1274 br_write_lock(vfsmount_lock);
1275 if (mnt_get_count(&mnt->mnt) != 2) {
1276 br_write_unlock(vfsmount_lock);
1277 return -EBUSY;
1278 }
1279 br_write_unlock(vfsmount_lock);
1280
1281 if (!xchg(&mnt->mnt.mnt_expiry_mark, 1))
1282 return -EAGAIN;
1283 }
1284
1285 /*
1286 * If we may have to abort operations to get out of this
1287 * mount, and they will themselves hold resources we must
1288 * allow the fs to do things. In the Unix tradition of
1289 * 'Gee thats tricky lets do it in userspace' the umount_begin
1290 * might fail to complete on the first run through as other tasks
1291 * must return, and the like. Thats for the mount program to worry
1292 * about for the moment.
1293 */
1294
1295 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1296 sb->s_op->umount_begin(sb);
1297 }
1298
1299 /*
1300 * No sense to grab the lock for this test, but test itself looks
1301 * somewhat bogus. Suggestions for better replacement?
1302 * Ho-hum... In principle, we might treat that as umount + switch
1303 * to rootfs. GC would eventually take care of the old vfsmount.
1304 * Actually it makes sense, especially if rootfs would contain a
1305 * /reboot - static binary that would close all descriptors and
1306 * call reboot(9). Then init(8) could umount root and exec /reboot.
1307 */
1308 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1309 /*
1310 * Special case for "unmounting" root ...
1311 * we just try to remount it readonly.
1312 */
1313 down_write(&sb->s_umount);
1314 if (!(sb->s_flags & MS_RDONLY))
1315 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1316 up_write(&sb->s_umount);
1317 return retval;
1318 }
1319
1320 down_write(&namespace_sem);
1321 br_write_lock(vfsmount_lock);
1322 event++;
1323
1324 if (!(flags & MNT_DETACH))
1325 shrink_submounts(mnt, &umount_list);
1326
1327 retval = -EBUSY;
1328 if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) {
1329 if (!list_empty(&mnt->mnt.mnt_list))
1330 umount_tree(mnt, 1, &umount_list);
1331 retval = 0;
1332 }
1333 br_write_unlock(vfsmount_lock);
1334 up_write(&namespace_sem);
1335 release_mounts(&umount_list);
1336 return retval;
1337 }
1338
1339 /*
1340 * Now umount can handle mount points as well as block devices.
1341 * This is important for filesystems which use unnamed block devices.
1342 *
1343 * We now support a flag for forced unmount like the other 'big iron'
1344 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1345 */
1346
1347 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1348 {
1349 struct path path;
1350 int retval;
1351 int lookup_flags = 0;
1352
1353 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1354 return -EINVAL;
1355
1356 if (!(flags & UMOUNT_NOFOLLOW))
1357 lookup_flags |= LOOKUP_FOLLOW;
1358
1359 retval = user_path_at(AT_FDCWD, name, lookup_flags, &path);
1360 if (retval)
1361 goto out;
1362 retval = -EINVAL;
1363 if (path.dentry != path.mnt->mnt_root)
1364 goto dput_and_out;
1365 if (!check_mnt(path.mnt))
1366 goto dput_and_out;
1367
1368 retval = -EPERM;
1369 if (!capable(CAP_SYS_ADMIN))
1370 goto dput_and_out;
1371
1372 retval = do_umount(real_mount(path.mnt), flags);
1373 dput_and_out:
1374 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
1375 dput(path.dentry);
1376 mntput_no_expire(path.mnt);
1377 out:
1378 return retval;
1379 }
1380
1381 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1382
1383 /*
1384 * The 2.0 compatible umount. No flags.
1385 */
1386 SYSCALL_DEFINE1(oldumount, char __user *, name)
1387 {
1388 return sys_umount(name, 0);
1389 }
1390
1391 #endif
1392
1393 static int mount_is_safe(struct path *path)
1394 {
1395 if (capable(CAP_SYS_ADMIN))
1396 return 0;
1397 return -EPERM;
1398 #ifdef notyet
1399 if (S_ISLNK(path->dentry->d_inode->i_mode))
1400 return -EPERM;
1401 if (path->dentry->d_inode->i_mode & S_ISVTX) {
1402 if (current_uid() != path->dentry->d_inode->i_uid)
1403 return -EPERM;
1404 }
1405 if (inode_permission(path->dentry->d_inode, MAY_WRITE))
1406 return -EPERM;
1407 return 0;
1408 #endif
1409 }
1410
1411 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
1412 int flag)
1413 {
1414 struct mount *res, *p, *q;
1415 struct vfsmount *r;
1416 struct path path;
1417
1418 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(&mnt->mnt))
1419 return NULL;
1420
1421 res = q = clone_mnt(mnt, dentry, flag);
1422 if (!q)
1423 goto Enomem;
1424 q->mnt.mnt_mountpoint = mnt->mnt.mnt_mountpoint;
1425
1426 p = mnt;
1427 list_for_each_entry(r, &mnt->mnt.mnt_mounts, mnt_child) {
1428 struct mount *s;
1429 if (!is_subdir(r->mnt_mountpoint, dentry))
1430 continue;
1431
1432 for (s = real_mount(r); s; s = next_mnt(s, r)) {
1433 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(&s->mnt)) {
1434 s = skip_mnt_tree(s);
1435 continue;
1436 }
1437 while (p != real_mount(s->mnt.mnt_parent)) {
1438 p = real_mount(p->mnt.mnt_parent);
1439 q = real_mount(q->mnt.mnt_parent);
1440 }
1441 p = s;
1442 path.mnt = &q->mnt;
1443 path.dentry = p->mnt.mnt_mountpoint;
1444 q = clone_mnt(p, p->mnt.mnt_root, flag);
1445 if (!q)
1446 goto Enomem;
1447 br_write_lock(vfsmount_lock);
1448 list_add_tail(&q->mnt.mnt_list, &res->mnt.mnt_list);
1449 attach_mnt(q, &path);
1450 br_write_unlock(vfsmount_lock);
1451 }
1452 }
1453 return res;
1454 Enomem:
1455 if (res) {
1456 LIST_HEAD(umount_list);
1457 br_write_lock(vfsmount_lock);
1458 umount_tree(res, 0, &umount_list);
1459 br_write_unlock(vfsmount_lock);
1460 release_mounts(&umount_list);
1461 }
1462 return NULL;
1463 }
1464
1465 struct vfsmount *collect_mounts(struct path *path)
1466 {
1467 struct mount *tree;
1468 down_write(&namespace_sem);
1469 tree = copy_tree(real_mount(path->mnt), path->dentry,
1470 CL_COPY_ALL | CL_PRIVATE);
1471 up_write(&namespace_sem);
1472 return tree ? &tree->mnt : NULL;
1473 }
1474
1475 void drop_collected_mounts(struct vfsmount *mnt)
1476 {
1477 LIST_HEAD(umount_list);
1478 down_write(&namespace_sem);
1479 br_write_lock(vfsmount_lock);
1480 umount_tree(real_mount(mnt), 0, &umount_list);
1481 br_write_unlock(vfsmount_lock);
1482 up_write(&namespace_sem);
1483 release_mounts(&umount_list);
1484 }
1485
1486 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1487 struct vfsmount *root)
1488 {
1489 struct vfsmount *mnt;
1490 int res = f(root, arg);
1491 if (res)
1492 return res;
1493 list_for_each_entry(mnt, &root->mnt_list, mnt_list) {
1494 res = f(mnt, arg);
1495 if (res)
1496 return res;
1497 }
1498 return 0;
1499 }
1500
1501 static void cleanup_group_ids(struct mount *mnt, struct mount *end)
1502 {
1503 struct mount *p;
1504
1505 for (p = mnt; p != end; p = next_mnt(p, &mnt->mnt)) {
1506 if (p->mnt.mnt_group_id && !IS_MNT_SHARED(&p->mnt))
1507 mnt_release_group_id(p);
1508 }
1509 }
1510
1511 static int invent_group_ids(struct mount *mnt, bool recurse)
1512 {
1513 struct mount *p;
1514
1515 for (p = mnt; p; p = recurse ? next_mnt(p, &mnt->mnt) : NULL) {
1516 if (!p->mnt.mnt_group_id && !IS_MNT_SHARED(&p->mnt)) {
1517 int err = mnt_alloc_group_id(p);
1518 if (err) {
1519 cleanup_group_ids(mnt, p);
1520 return err;
1521 }
1522 }
1523 }
1524
1525 return 0;
1526 }
1527
1528 /*
1529 * @source_mnt : mount tree to be attached
1530 * @nd : place the mount tree @source_mnt is attached
1531 * @parent_nd : if non-null, detach the source_mnt from its parent and
1532 * store the parent mount and mountpoint dentry.
1533 * (done when source_mnt is moved)
1534 *
1535 * NOTE: in the table below explains the semantics when a source mount
1536 * of a given type is attached to a destination mount of a given type.
1537 * ---------------------------------------------------------------------------
1538 * | BIND MOUNT OPERATION |
1539 * |**************************************************************************
1540 * | source-->| shared | private | slave | unbindable |
1541 * | dest | | | | |
1542 * | | | | | | |
1543 * | v | | | | |
1544 * |**************************************************************************
1545 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1546 * | | | | | |
1547 * |non-shared| shared (+) | private | slave (*) | invalid |
1548 * ***************************************************************************
1549 * A bind operation clones the source mount and mounts the clone on the
1550 * destination mount.
1551 *
1552 * (++) the cloned mount is propagated to all the mounts in the propagation
1553 * tree of the destination mount and the cloned mount is added to
1554 * the peer group of the source mount.
1555 * (+) the cloned mount is created under the destination mount and is marked
1556 * as shared. The cloned mount is added to the peer group of the source
1557 * mount.
1558 * (+++) the mount is propagated to all the mounts in the propagation tree
1559 * of the destination mount and the cloned mount is made slave
1560 * of the same master as that of the source mount. The cloned mount
1561 * is marked as 'shared and slave'.
1562 * (*) the cloned mount is made a slave of the same master as that of the
1563 * source mount.
1564 *
1565 * ---------------------------------------------------------------------------
1566 * | MOVE MOUNT OPERATION |
1567 * |**************************************************************************
1568 * | source-->| shared | private | slave | unbindable |
1569 * | dest | | | | |
1570 * | | | | | | |
1571 * | v | | | | |
1572 * |**************************************************************************
1573 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1574 * | | | | | |
1575 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1576 * ***************************************************************************
1577 *
1578 * (+) the mount is moved to the destination. And is then propagated to
1579 * all the mounts in the propagation tree of the destination mount.
1580 * (+*) the mount is moved to the destination.
1581 * (+++) the mount is moved to the destination and is then propagated to
1582 * all the mounts belonging to the destination mount's propagation tree.
1583 * the mount is marked as 'shared and slave'.
1584 * (*) the mount continues to be a slave at the new location.
1585 *
1586 * if the source mount is a tree, the operations explained above is
1587 * applied to each mount in the tree.
1588 * Must be called without spinlocks held, since this function can sleep
1589 * in allocations.
1590 */
1591 static int attach_recursive_mnt(struct mount *source_mnt,
1592 struct path *path, struct path *parent_path)
1593 {
1594 LIST_HEAD(tree_list);
1595 struct vfsmount *dest_mnt = path->mnt;
1596 struct dentry *dest_dentry = path->dentry;
1597 struct mount *child, *p;
1598 int err;
1599
1600 if (IS_MNT_SHARED(dest_mnt)) {
1601 err = invent_group_ids(source_mnt, true);
1602 if (err)
1603 goto out;
1604 }
1605 err = propagate_mnt(dest_mnt, dest_dentry, &source_mnt->mnt, &tree_list);
1606 if (err)
1607 goto out_cleanup_ids;
1608
1609 br_write_lock(vfsmount_lock);
1610
1611 if (IS_MNT_SHARED(dest_mnt)) {
1612 for (p = source_mnt; p; p = next_mnt(p, &source_mnt->mnt))
1613 set_mnt_shared(p);
1614 }
1615 if (parent_path) {
1616 detach_mnt(source_mnt, parent_path);
1617 attach_mnt(source_mnt, path);
1618 touch_mnt_namespace(parent_path->mnt->mnt_ns);
1619 } else {
1620 mnt_set_mountpoint(dest_mnt, dest_dentry, source_mnt);
1621 commit_tree(source_mnt);
1622 }
1623
1624 list_for_each_entry_safe(child, p, &tree_list, mnt_hash) {
1625 list_del_init(&child->mnt_hash);
1626 commit_tree(child);
1627 }
1628 br_write_unlock(vfsmount_lock);
1629
1630 return 0;
1631
1632 out_cleanup_ids:
1633 if (IS_MNT_SHARED(dest_mnt))
1634 cleanup_group_ids(source_mnt, NULL);
1635 out:
1636 return err;
1637 }
1638
1639 static int lock_mount(struct path *path)
1640 {
1641 struct vfsmount *mnt;
1642 retry:
1643 mutex_lock(&path->dentry->d_inode->i_mutex);
1644 if (unlikely(cant_mount(path->dentry))) {
1645 mutex_unlock(&path->dentry->d_inode->i_mutex);
1646 return -ENOENT;
1647 }
1648 down_write(&namespace_sem);
1649 mnt = lookup_mnt(path);
1650 if (likely(!mnt))
1651 return 0;
1652 up_write(&namespace_sem);
1653 mutex_unlock(&path->dentry->d_inode->i_mutex);
1654 path_put(path);
1655 path->mnt = mnt;
1656 path->dentry = dget(mnt->mnt_root);
1657 goto retry;
1658 }
1659
1660 static void unlock_mount(struct path *path)
1661 {
1662 up_write(&namespace_sem);
1663 mutex_unlock(&path->dentry->d_inode->i_mutex);
1664 }
1665
1666 static int graft_tree(struct vfsmount *mnt, struct path *path)
1667 {
1668 if (mnt->mnt_sb->s_flags & MS_NOUSER)
1669 return -EINVAL;
1670
1671 if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1672 S_ISDIR(mnt->mnt_root->d_inode->i_mode))
1673 return -ENOTDIR;
1674
1675 if (d_unlinked(path->dentry))
1676 return -ENOENT;
1677
1678 return attach_recursive_mnt(real_mount(mnt), path, NULL);
1679 }
1680
1681 /*
1682 * Sanity check the flags to change_mnt_propagation.
1683 */
1684
1685 static int flags_to_propagation_type(int flags)
1686 {
1687 int type = flags & ~(MS_REC | MS_SILENT);
1688
1689 /* Fail if any non-propagation flags are set */
1690 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
1691 return 0;
1692 /* Only one propagation flag should be set */
1693 if (!is_power_of_2(type))
1694 return 0;
1695 return type;
1696 }
1697
1698 /*
1699 * recursively change the type of the mountpoint.
1700 */
1701 static int do_change_type(struct path *path, int flag)
1702 {
1703 struct mount *m;
1704 struct mount *mnt = real_mount(path->mnt);
1705 int recurse = flag & MS_REC;
1706 int type;
1707 int err = 0;
1708
1709 if (!capable(CAP_SYS_ADMIN))
1710 return -EPERM;
1711
1712 if (path->dentry != path->mnt->mnt_root)
1713 return -EINVAL;
1714
1715 type = flags_to_propagation_type(flag);
1716 if (!type)
1717 return -EINVAL;
1718
1719 down_write(&namespace_sem);
1720 if (type == MS_SHARED) {
1721 err = invent_group_ids(mnt, recurse);
1722 if (err)
1723 goto out_unlock;
1724 }
1725
1726 br_write_lock(vfsmount_lock);
1727 for (m = mnt; m; m = (recurse ? next_mnt(m, &mnt->mnt) : NULL))
1728 change_mnt_propagation(m, type);
1729 br_write_unlock(vfsmount_lock);
1730
1731 out_unlock:
1732 up_write(&namespace_sem);
1733 return err;
1734 }
1735
1736 /*
1737 * do loopback mount.
1738 */
1739 static int do_loopback(struct path *path, char *old_name,
1740 int recurse)
1741 {
1742 LIST_HEAD(umount_list);
1743 struct path old_path;
1744 struct mount *mnt = NULL, *old;
1745 int err = mount_is_safe(path);
1746 if (err)
1747 return err;
1748 if (!old_name || !*old_name)
1749 return -EINVAL;
1750 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
1751 if (err)
1752 return err;
1753
1754 err = lock_mount(path);
1755 if (err)
1756 goto out;
1757
1758 old = real_mount(old_path.mnt);
1759
1760 err = -EINVAL;
1761 if (IS_MNT_UNBINDABLE(old_path.mnt))
1762 goto out2;
1763
1764 if (!check_mnt(path->mnt) || !check_mnt(old_path.mnt))
1765 goto out2;
1766
1767 err = -ENOMEM;
1768 if (recurse)
1769 mnt = copy_tree(old, old_path.dentry, 0);
1770 else
1771 mnt = clone_mnt(old, old_path.dentry, 0);
1772
1773 if (!mnt)
1774 goto out2;
1775
1776 err = graft_tree(&mnt->mnt, path);
1777 if (err) {
1778 br_write_lock(vfsmount_lock);
1779 umount_tree(mnt, 0, &umount_list);
1780 br_write_unlock(vfsmount_lock);
1781 }
1782 out2:
1783 unlock_mount(path);
1784 release_mounts(&umount_list);
1785 out:
1786 path_put(&old_path);
1787 return err;
1788 }
1789
1790 static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
1791 {
1792 int error = 0;
1793 int readonly_request = 0;
1794
1795 if (ms_flags & MS_RDONLY)
1796 readonly_request = 1;
1797 if (readonly_request == __mnt_is_readonly(mnt))
1798 return 0;
1799
1800 if (readonly_request)
1801 error = mnt_make_readonly(mnt);
1802 else
1803 __mnt_unmake_readonly(mnt);
1804 return error;
1805 }
1806
1807 /*
1808 * change filesystem flags. dir should be a physical root of filesystem.
1809 * If you've mounted a non-root directory somewhere and want to do remount
1810 * on it - tough luck.
1811 */
1812 static int do_remount(struct path *path, int flags, int mnt_flags,
1813 void *data)
1814 {
1815 int err;
1816 struct super_block *sb = path->mnt->mnt_sb;
1817
1818 if (!capable(CAP_SYS_ADMIN))
1819 return -EPERM;
1820
1821 if (!check_mnt(path->mnt))
1822 return -EINVAL;
1823
1824 if (path->dentry != path->mnt->mnt_root)
1825 return -EINVAL;
1826
1827 err = security_sb_remount(sb, data);
1828 if (err)
1829 return err;
1830
1831 down_write(&sb->s_umount);
1832 if (flags & MS_BIND)
1833 err = change_mount_flags(path->mnt, flags);
1834 else
1835 err = do_remount_sb(sb, flags, data, 0);
1836 if (!err) {
1837 br_write_lock(vfsmount_lock);
1838 mnt_flags |= path->mnt->mnt_flags & MNT_PROPAGATION_MASK;
1839 path->mnt->mnt_flags = mnt_flags;
1840 br_write_unlock(vfsmount_lock);
1841 }
1842 up_write(&sb->s_umount);
1843 if (!err) {
1844 br_write_lock(vfsmount_lock);
1845 touch_mnt_namespace(path->mnt->mnt_ns);
1846 br_write_unlock(vfsmount_lock);
1847 }
1848 return err;
1849 }
1850
1851 static inline int tree_contains_unbindable(struct mount *mnt)
1852 {
1853 struct mount *p;
1854 for (p = mnt; p; p = next_mnt(p, &mnt->mnt)) {
1855 if (IS_MNT_UNBINDABLE(&p->mnt))
1856 return 1;
1857 }
1858 return 0;
1859 }
1860
1861 static int do_move_mount(struct path *path, char *old_name)
1862 {
1863 struct path old_path, parent_path;
1864 struct vfsmount *p;
1865 struct mount *old;
1866 int err = 0;
1867 if (!capable(CAP_SYS_ADMIN))
1868 return -EPERM;
1869 if (!old_name || !*old_name)
1870 return -EINVAL;
1871 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
1872 if (err)
1873 return err;
1874
1875 err = lock_mount(path);
1876 if (err < 0)
1877 goto out;
1878
1879 err = -EINVAL;
1880 if (!check_mnt(path->mnt) || !check_mnt(old_path.mnt))
1881 goto out1;
1882
1883 if (d_unlinked(path->dentry))
1884 goto out1;
1885
1886 err = -EINVAL;
1887 if (old_path.dentry != old_path.mnt->mnt_root)
1888 goto out1;
1889
1890 old = real_mount(old_path.mnt);
1891
1892 if (!mnt_has_parent(old_path.mnt))
1893 goto out1;
1894
1895 if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1896 S_ISDIR(old_path.dentry->d_inode->i_mode))
1897 goto out1;
1898 /*
1899 * Don't move a mount residing in a shared parent.
1900 */
1901 if (IS_MNT_SHARED(old_path.mnt->mnt_parent))
1902 goto out1;
1903 /*
1904 * Don't move a mount tree containing unbindable mounts to a destination
1905 * mount which is shared.
1906 */
1907 if (IS_MNT_SHARED(path->mnt) &&
1908 tree_contains_unbindable(old))
1909 goto out1;
1910 err = -ELOOP;
1911 for (p = path->mnt; mnt_has_parent(p); p = p->mnt_parent)
1912 if (p == old_path.mnt)
1913 goto out1;
1914
1915 err = attach_recursive_mnt(old, path, &parent_path);
1916 if (err)
1917 goto out1;
1918
1919 /* if the mount is moved, it should no longer be expire
1920 * automatically */
1921 list_del_init(&old_path.mnt->mnt_expire);
1922 out1:
1923 unlock_mount(path);
1924 out:
1925 if (!err)
1926 path_put(&parent_path);
1927 path_put(&old_path);
1928 return err;
1929 }
1930
1931 static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
1932 {
1933 int err;
1934 const char *subtype = strchr(fstype, '.');
1935 if (subtype) {
1936 subtype++;
1937 err = -EINVAL;
1938 if (!subtype[0])
1939 goto err;
1940 } else
1941 subtype = "";
1942
1943 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
1944 err = -ENOMEM;
1945 if (!mnt->mnt_sb->s_subtype)
1946 goto err;
1947 return mnt;
1948
1949 err:
1950 mntput(mnt);
1951 return ERR_PTR(err);
1952 }
1953
1954 static struct vfsmount *
1955 do_kern_mount(const char *fstype, int flags, const char *name, void *data)
1956 {
1957 struct file_system_type *type = get_fs_type(fstype);
1958 struct vfsmount *mnt;
1959 if (!type)
1960 return ERR_PTR(-ENODEV);
1961 mnt = vfs_kern_mount(type, flags, name, data);
1962 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
1963 !mnt->mnt_sb->s_subtype)
1964 mnt = fs_set_subtype(mnt, fstype);
1965 put_filesystem(type);
1966 return mnt;
1967 }
1968
1969 /*
1970 * add a mount into a namespace's mount tree
1971 */
1972 static int do_add_mount(struct vfsmount *newmnt, struct path *path, int mnt_flags)
1973 {
1974 int err;
1975
1976 mnt_flags &= ~(MNT_SHARED | MNT_WRITE_HOLD | MNT_INTERNAL);
1977
1978 err = lock_mount(path);
1979 if (err)
1980 return err;
1981
1982 err = -EINVAL;
1983 if (!(mnt_flags & MNT_SHRINKABLE) && !check_mnt(path->mnt))
1984 goto unlock;
1985
1986 /* Refuse the same filesystem on the same mount point */
1987 err = -EBUSY;
1988 if (path->mnt->mnt_sb == newmnt->mnt_sb &&
1989 path->mnt->mnt_root == path->dentry)
1990 goto unlock;
1991
1992 err = -EINVAL;
1993 if (S_ISLNK(newmnt->mnt_root->d_inode->i_mode))
1994 goto unlock;
1995
1996 newmnt->mnt_flags = mnt_flags;
1997 err = graft_tree(newmnt, path);
1998
1999 unlock:
2000 unlock_mount(path);
2001 return err;
2002 }
2003
2004 /*
2005 * create a new mount for userspace and request it to be added into the
2006 * namespace's tree
2007 */
2008 static int do_new_mount(struct path *path, char *type, int flags,
2009 int mnt_flags, char *name, void *data)
2010 {
2011 struct vfsmount *mnt;
2012 int err;
2013
2014 if (!type)
2015 return -EINVAL;
2016
2017 /* we need capabilities... */
2018 if (!capable(CAP_SYS_ADMIN))
2019 return -EPERM;
2020
2021 mnt = do_kern_mount(type, flags, name, data);
2022 if (IS_ERR(mnt))
2023 return PTR_ERR(mnt);
2024
2025 err = do_add_mount(mnt, path, mnt_flags);
2026 if (err)
2027 mntput(mnt);
2028 return err;
2029 }
2030
2031 int finish_automount(struct vfsmount *m, struct path *path)
2032 {
2033 int err;
2034 /* The new mount record should have at least 2 refs to prevent it being
2035 * expired before we get a chance to add it
2036 */
2037 BUG_ON(mnt_get_count(m) < 2);
2038
2039 if (m->mnt_sb == path->mnt->mnt_sb &&
2040 m->mnt_root == path->dentry) {
2041 err = -ELOOP;
2042 goto fail;
2043 }
2044
2045 err = do_add_mount(m, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
2046 if (!err)
2047 return 0;
2048 fail:
2049 /* remove m from any expiration list it may be on */
2050 if (!list_empty(&m->mnt_expire)) {
2051 down_write(&namespace_sem);
2052 br_write_lock(vfsmount_lock);
2053 list_del_init(&m->mnt_expire);
2054 br_write_unlock(vfsmount_lock);
2055 up_write(&namespace_sem);
2056 }
2057 mntput(m);
2058 mntput(m);
2059 return err;
2060 }
2061
2062 /**
2063 * mnt_set_expiry - Put a mount on an expiration list
2064 * @mnt: The mount to list.
2065 * @expiry_list: The list to add the mount to.
2066 */
2067 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2068 {
2069 down_write(&namespace_sem);
2070 br_write_lock(vfsmount_lock);
2071
2072 list_add_tail(&mnt->mnt_expire, expiry_list);
2073
2074 br_write_unlock(vfsmount_lock);
2075 up_write(&namespace_sem);
2076 }
2077 EXPORT_SYMBOL(mnt_set_expiry);
2078
2079 /*
2080 * process a list of expirable mountpoints with the intent of discarding any
2081 * mountpoints that aren't in use and haven't been touched since last we came
2082 * here
2083 */
2084 void mark_mounts_for_expiry(struct list_head *mounts)
2085 {
2086 struct mount *mnt, *next;
2087 LIST_HEAD(graveyard);
2088 LIST_HEAD(umounts);
2089
2090 if (list_empty(mounts))
2091 return;
2092
2093 down_write(&namespace_sem);
2094 br_write_lock(vfsmount_lock);
2095
2096 /* extract from the expiration list every vfsmount that matches the
2097 * following criteria:
2098 * - only referenced by its parent vfsmount
2099 * - still marked for expiry (marked on the last call here; marks are
2100 * cleared by mntput())
2101 */
2102 list_for_each_entry_safe(mnt, next, mounts, mnt.mnt_expire) {
2103 if (!xchg(&mnt->mnt.mnt_expiry_mark, 1) ||
2104 propagate_mount_busy(mnt, 1))
2105 continue;
2106 list_move(&mnt->mnt.mnt_expire, &graveyard);
2107 }
2108 while (!list_empty(&graveyard)) {
2109 mnt = list_first_entry(&graveyard, struct mount, mnt.mnt_expire);
2110 touch_mnt_namespace(mnt->mnt.mnt_ns);
2111 umount_tree(mnt, 1, &umounts);
2112 }
2113 br_write_unlock(vfsmount_lock);
2114 up_write(&namespace_sem);
2115
2116 release_mounts(&umounts);
2117 }
2118
2119 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2120
2121 /*
2122 * Ripoff of 'select_parent()'
2123 *
2124 * search the list of submounts for a given mountpoint, and move any
2125 * shrinkable submounts to the 'graveyard' list.
2126 */
2127 static int select_submounts(struct mount *parent, struct list_head *graveyard)
2128 {
2129 struct mount *this_parent = parent;
2130 struct list_head *next;
2131 int found = 0;
2132
2133 repeat:
2134 next = this_parent->mnt.mnt_mounts.next;
2135 resume:
2136 while (next != &this_parent->mnt.mnt_mounts) {
2137 struct list_head *tmp = next;
2138 struct mount *mnt = list_entry(tmp, struct mount, mnt.mnt_child);
2139
2140 next = tmp->next;
2141 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
2142 continue;
2143 /*
2144 * Descend a level if the d_mounts list is non-empty.
2145 */
2146 if (!list_empty(&mnt->mnt.mnt_mounts)) {
2147 this_parent = mnt;
2148 goto repeat;
2149 }
2150
2151 if (!propagate_mount_busy(mnt, 1)) {
2152 list_move_tail(&mnt->mnt.mnt_expire, graveyard);
2153 found++;
2154 }
2155 }
2156 /*
2157 * All done at this level ... ascend and resume the search
2158 */
2159 if (this_parent != parent) {
2160 next = this_parent->mnt.mnt_child.next;
2161 this_parent = real_mount(this_parent->mnt.mnt_parent);
2162 goto resume;
2163 }
2164 return found;
2165 }
2166
2167 /*
2168 * process a list of expirable mountpoints with the intent of discarding any
2169 * submounts of a specific parent mountpoint
2170 *
2171 * vfsmount_lock must be held for write
2172 */
2173 static void shrink_submounts(struct mount *mnt, struct list_head *umounts)
2174 {
2175 LIST_HEAD(graveyard);
2176 struct mount *m;
2177
2178 /* extract submounts of 'mountpoint' from the expiration list */
2179 while (select_submounts(mnt, &graveyard)) {
2180 while (!list_empty(&graveyard)) {
2181 m = list_first_entry(&graveyard, struct mount,
2182 mnt.mnt_expire);
2183 touch_mnt_namespace(m->mnt.mnt_ns);
2184 umount_tree(m, 1, umounts);
2185 }
2186 }
2187 }
2188
2189 /*
2190 * Some copy_from_user() implementations do not return the exact number of
2191 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
2192 * Note that this function differs from copy_from_user() in that it will oops
2193 * on bad values of `to', rather than returning a short copy.
2194 */
2195 static long exact_copy_from_user(void *to, const void __user * from,
2196 unsigned long n)
2197 {
2198 char *t = to;
2199 const char __user *f = from;
2200 char c;
2201
2202 if (!access_ok(VERIFY_READ, from, n))
2203 return n;
2204
2205 while (n) {
2206 if (__get_user(c, f)) {
2207 memset(t, 0, n);
2208 break;
2209 }
2210 *t++ = c;
2211 f++;
2212 n--;
2213 }
2214 return n;
2215 }
2216
2217 int copy_mount_options(const void __user * data, unsigned long *where)
2218 {
2219 int i;
2220 unsigned long page;
2221 unsigned long size;
2222
2223 *where = 0;
2224 if (!data)
2225 return 0;
2226
2227 if (!(page = __get_free_page(GFP_KERNEL)))
2228 return -ENOMEM;
2229
2230 /* We only care that *some* data at the address the user
2231 * gave us is valid. Just in case, we'll zero
2232 * the remainder of the page.
2233 */
2234 /* copy_from_user cannot cross TASK_SIZE ! */
2235 size = TASK_SIZE - (unsigned long)data;
2236 if (size > PAGE_SIZE)
2237 size = PAGE_SIZE;
2238
2239 i = size - exact_copy_from_user((void *)page, data, size);
2240 if (!i) {
2241 free_page(page);
2242 return -EFAULT;
2243 }
2244 if (i != PAGE_SIZE)
2245 memset((char *)page + i, 0, PAGE_SIZE - i);
2246 *where = page;
2247 return 0;
2248 }
2249
2250 int copy_mount_string(const void __user *data, char **where)
2251 {
2252 char *tmp;
2253
2254 if (!data) {
2255 *where = NULL;
2256 return 0;
2257 }
2258
2259 tmp = strndup_user(data, PAGE_SIZE);
2260 if (IS_ERR(tmp))
2261 return PTR_ERR(tmp);
2262
2263 *where = tmp;
2264 return 0;
2265 }
2266
2267 /*
2268 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2269 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2270 *
2271 * data is a (void *) that can point to any structure up to
2272 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2273 * information (or be NULL).
2274 *
2275 * Pre-0.97 versions of mount() didn't have a flags word.
2276 * When the flags word was introduced its top half was required
2277 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2278 * Therefore, if this magic number is present, it carries no information
2279 * and must be discarded.
2280 */
2281 long do_mount(char *dev_name, char *dir_name, char *type_page,
2282 unsigned long flags, void *data_page)
2283 {
2284 struct path path;
2285 int retval = 0;
2286 int mnt_flags = 0;
2287
2288 /* Discard magic */
2289 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2290 flags &= ~MS_MGC_MSK;
2291
2292 /* Basic sanity checks */
2293
2294 if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
2295 return -EINVAL;
2296
2297 if (data_page)
2298 ((char *)data_page)[PAGE_SIZE - 1] = 0;
2299
2300 /* ... and get the mountpoint */
2301 retval = kern_path(dir_name, LOOKUP_FOLLOW, &path);
2302 if (retval)
2303 return retval;
2304
2305 retval = security_sb_mount(dev_name, &path,
2306 type_page, flags, data_page);
2307 if (retval)
2308 goto dput_out;
2309
2310 /* Default to relatime unless overriden */
2311 if (!(flags & MS_NOATIME))
2312 mnt_flags |= MNT_RELATIME;
2313
2314 /* Separate the per-mountpoint flags */
2315 if (flags & MS_NOSUID)
2316 mnt_flags |= MNT_NOSUID;
2317 if (flags & MS_NODEV)
2318 mnt_flags |= MNT_NODEV;
2319 if (flags & MS_NOEXEC)
2320 mnt_flags |= MNT_NOEXEC;
2321 if (flags & MS_NOATIME)
2322 mnt_flags |= MNT_NOATIME;
2323 if (flags & MS_NODIRATIME)
2324 mnt_flags |= MNT_NODIRATIME;
2325 if (flags & MS_STRICTATIME)
2326 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2327 if (flags & MS_RDONLY)
2328 mnt_flags |= MNT_READONLY;
2329
2330 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
2331 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
2332 MS_STRICTATIME);
2333
2334 if (flags & MS_REMOUNT)
2335 retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
2336 data_page);
2337 else if (flags & MS_BIND)
2338 retval = do_loopback(&path, dev_name, flags & MS_REC);
2339 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2340 retval = do_change_type(&path, flags);
2341 else if (flags & MS_MOVE)
2342 retval = do_move_mount(&path, dev_name);
2343 else
2344 retval = do_new_mount(&path, type_page, flags, mnt_flags,
2345 dev_name, data_page);
2346 dput_out:
2347 path_put(&path);
2348 return retval;
2349 }
2350
2351 static struct mnt_namespace *alloc_mnt_ns(void)
2352 {
2353 struct mnt_namespace *new_ns;
2354
2355 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2356 if (!new_ns)
2357 return ERR_PTR(-ENOMEM);
2358 atomic_set(&new_ns->count, 1);
2359 new_ns->root = NULL;
2360 INIT_LIST_HEAD(&new_ns->list);
2361 init_waitqueue_head(&new_ns->poll);
2362 new_ns->event = 0;
2363 return new_ns;
2364 }
2365
2366 void mnt_make_longterm(struct vfsmount *mnt)
2367 {
2368 __mnt_make_longterm(mnt);
2369 }
2370
2371 void mnt_make_shortterm(struct vfsmount *mnt)
2372 {
2373 #ifdef CONFIG_SMP
2374 if (atomic_add_unless(&mnt->mnt_longterm, -1, 1))
2375 return;
2376 br_write_lock(vfsmount_lock);
2377 atomic_dec(&mnt->mnt_longterm);
2378 br_write_unlock(vfsmount_lock);
2379 #endif
2380 }
2381
2382 /*
2383 * Allocate a new namespace structure and populate it with contents
2384 * copied from the namespace of the passed in task structure.
2385 */
2386 static struct mnt_namespace *dup_mnt_ns(struct mnt_namespace *mnt_ns,
2387 struct fs_struct *fs)
2388 {
2389 struct mnt_namespace *new_ns;
2390 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
2391 struct mount *p, *q;
2392 struct mount *new;
2393
2394 new_ns = alloc_mnt_ns();
2395 if (IS_ERR(new_ns))
2396 return new_ns;
2397
2398 down_write(&namespace_sem);
2399 /* First pass: copy the tree topology */
2400 new = copy_tree(real_mount(mnt_ns->root), mnt_ns->root->mnt_root,
2401 CL_COPY_ALL | CL_EXPIRE);
2402 if (!new) {
2403 up_write(&namespace_sem);
2404 kfree(new_ns);
2405 return ERR_PTR(-ENOMEM);
2406 }
2407 new_ns->root = &new->mnt;
2408 br_write_lock(vfsmount_lock);
2409 list_add_tail(&new_ns->list, &new_ns->root->mnt_list);
2410 br_write_unlock(vfsmount_lock);
2411
2412 /*
2413 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2414 * as belonging to new namespace. We have already acquired a private
2415 * fs_struct, so tsk->fs->lock is not needed.
2416 */
2417 p = real_mount(mnt_ns->root);
2418 q = new;
2419 while (p) {
2420 q->mnt.mnt_ns = new_ns;
2421 __mnt_make_longterm(&q->mnt);
2422 if (fs) {
2423 if (&p->mnt == fs->root.mnt) {
2424 fs->root.mnt = mntget(&q->mnt);
2425 __mnt_make_longterm(&q->mnt);
2426 mnt_make_shortterm(&p->mnt);
2427 rootmnt = &p->mnt;
2428 }
2429 if (&p->mnt == fs->pwd.mnt) {
2430 fs->pwd.mnt = mntget(&q->mnt);
2431 __mnt_make_longterm(&q->mnt);
2432 mnt_make_shortterm(&p->mnt);
2433 pwdmnt = &p->mnt;
2434 }
2435 }
2436 p = next_mnt(p, mnt_ns->root);
2437 q = next_mnt(q, new_ns->root);
2438 }
2439 up_write(&namespace_sem);
2440
2441 if (rootmnt)
2442 mntput(rootmnt);
2443 if (pwdmnt)
2444 mntput(pwdmnt);
2445
2446 return new_ns;
2447 }
2448
2449 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2450 struct fs_struct *new_fs)
2451 {
2452 struct mnt_namespace *new_ns;
2453
2454 BUG_ON(!ns);
2455 get_mnt_ns(ns);
2456
2457 if (!(flags & CLONE_NEWNS))
2458 return ns;
2459
2460 new_ns = dup_mnt_ns(ns, new_fs);
2461
2462 put_mnt_ns(ns);
2463 return new_ns;
2464 }
2465
2466 /**
2467 * create_mnt_ns - creates a private namespace and adds a root filesystem
2468 * @mnt: pointer to the new root filesystem mountpoint
2469 */
2470 static struct mnt_namespace *create_mnt_ns(struct vfsmount *mnt)
2471 {
2472 struct mnt_namespace *new_ns;
2473
2474 new_ns = alloc_mnt_ns();
2475 if (!IS_ERR(new_ns)) {
2476 mnt->mnt_ns = new_ns;
2477 __mnt_make_longterm(mnt);
2478 new_ns->root = mnt;
2479 list_add(&new_ns->list, &new_ns->root->mnt_list);
2480 } else {
2481 mntput(mnt);
2482 }
2483 return new_ns;
2484 }
2485
2486 struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
2487 {
2488 struct mnt_namespace *ns;
2489 struct super_block *s;
2490 struct path path;
2491 int err;
2492
2493 ns = create_mnt_ns(mnt);
2494 if (IS_ERR(ns))
2495 return ERR_CAST(ns);
2496
2497 err = vfs_path_lookup(mnt->mnt_root, mnt,
2498 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
2499
2500 put_mnt_ns(ns);
2501
2502 if (err)
2503 return ERR_PTR(err);
2504
2505 /* trade a vfsmount reference for active sb one */
2506 s = path.mnt->mnt_sb;
2507 atomic_inc(&s->s_active);
2508 mntput(path.mnt);
2509 /* lock the sucker */
2510 down_write(&s->s_umount);
2511 /* ... and return the root of (sub)tree on it */
2512 return path.dentry;
2513 }
2514 EXPORT_SYMBOL(mount_subtree);
2515
2516 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
2517 char __user *, type, unsigned long, flags, void __user *, data)
2518 {
2519 int ret;
2520 char *kernel_type;
2521 char *kernel_dir;
2522 char *kernel_dev;
2523 unsigned long data_page;
2524
2525 ret = copy_mount_string(type, &kernel_type);
2526 if (ret < 0)
2527 goto out_type;
2528
2529 kernel_dir = getname(dir_name);
2530 if (IS_ERR(kernel_dir)) {
2531 ret = PTR_ERR(kernel_dir);
2532 goto out_dir;
2533 }
2534
2535 ret = copy_mount_string(dev_name, &kernel_dev);
2536 if (ret < 0)
2537 goto out_dev;
2538
2539 ret = copy_mount_options(data, &data_page);
2540 if (ret < 0)
2541 goto out_data;
2542
2543 ret = do_mount(kernel_dev, kernel_dir, kernel_type, flags,
2544 (void *) data_page);
2545
2546 free_page(data_page);
2547 out_data:
2548 kfree(kernel_dev);
2549 out_dev:
2550 putname(kernel_dir);
2551 out_dir:
2552 kfree(kernel_type);
2553 out_type:
2554 return ret;
2555 }
2556
2557 /*
2558 * Return true if path is reachable from root
2559 *
2560 * namespace_sem or vfsmount_lock is held
2561 */
2562 bool is_path_reachable(struct vfsmount *mnt, struct dentry *dentry,
2563 const struct path *root)
2564 {
2565 while (mnt != root->mnt && mnt_has_parent(mnt)) {
2566 dentry = mnt->mnt_mountpoint;
2567 mnt = mnt->mnt_parent;
2568 }
2569 return mnt == root->mnt && is_subdir(dentry, root->dentry);
2570 }
2571
2572 int path_is_under(struct path *path1, struct path *path2)
2573 {
2574 int res;
2575 br_read_lock(vfsmount_lock);
2576 res = is_path_reachable(path1->mnt, path1->dentry, path2);
2577 br_read_unlock(vfsmount_lock);
2578 return res;
2579 }
2580 EXPORT_SYMBOL(path_is_under);
2581
2582 /*
2583 * pivot_root Semantics:
2584 * Moves the root file system of the current process to the directory put_old,
2585 * makes new_root as the new root file system of the current process, and sets
2586 * root/cwd of all processes which had them on the current root to new_root.
2587 *
2588 * Restrictions:
2589 * The new_root and put_old must be directories, and must not be on the
2590 * same file system as the current process root. The put_old must be
2591 * underneath new_root, i.e. adding a non-zero number of /.. to the string
2592 * pointed to by put_old must yield the same directory as new_root. No other
2593 * file system may be mounted on put_old. After all, new_root is a mountpoint.
2594 *
2595 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
2596 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
2597 * in this situation.
2598 *
2599 * Notes:
2600 * - we don't move root/cwd if they are not at the root (reason: if something
2601 * cared enough to change them, it's probably wrong to force them elsewhere)
2602 * - it's okay to pick a root that isn't the root of a file system, e.g.
2603 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
2604 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
2605 * first.
2606 */
2607 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
2608 const char __user *, put_old)
2609 {
2610 struct path new, old, parent_path, root_parent, root;
2611 struct mount *new_mnt, *root_mnt;
2612 int error;
2613
2614 if (!capable(CAP_SYS_ADMIN))
2615 return -EPERM;
2616
2617 error = user_path_dir(new_root, &new);
2618 if (error)
2619 goto out0;
2620
2621 error = user_path_dir(put_old, &old);
2622 if (error)
2623 goto out1;
2624
2625 error = security_sb_pivotroot(&old, &new);
2626 if (error)
2627 goto out2;
2628
2629 get_fs_root(current->fs, &root);
2630 error = lock_mount(&old);
2631 if (error)
2632 goto out3;
2633
2634 error = -EINVAL;
2635 new_mnt = real_mount(new.mnt);
2636 root_mnt = real_mount(root.mnt);
2637 if (IS_MNT_SHARED(old.mnt) ||
2638 IS_MNT_SHARED(new.mnt->mnt_parent) ||
2639 IS_MNT_SHARED(root.mnt->mnt_parent))
2640 goto out4;
2641 if (!check_mnt(root.mnt) || !check_mnt(new.mnt))
2642 goto out4;
2643 error = -ENOENT;
2644 if (d_unlinked(new.dentry))
2645 goto out4;
2646 if (d_unlinked(old.dentry))
2647 goto out4;
2648 error = -EBUSY;
2649 if (new.mnt == root.mnt ||
2650 old.mnt == root.mnt)
2651 goto out4; /* loop, on the same file system */
2652 error = -EINVAL;
2653 if (root.mnt->mnt_root != root.dentry)
2654 goto out4; /* not a mountpoint */
2655 if (!mnt_has_parent(root.mnt))
2656 goto out4; /* not attached */
2657 if (new.mnt->mnt_root != new.dentry)
2658 goto out4; /* not a mountpoint */
2659 if (!mnt_has_parent(new.mnt))
2660 goto out4; /* not attached */
2661 /* make sure we can reach put_old from new_root */
2662 if (!is_path_reachable(old.mnt, old.dentry, &new))
2663 goto out4;
2664 br_write_lock(vfsmount_lock);
2665 detach_mnt(new_mnt, &parent_path);
2666 detach_mnt(root_mnt, &root_parent);
2667 /* mount old root on put_old */
2668 attach_mnt(root_mnt, &old);
2669 /* mount new_root on / */
2670 attach_mnt(new_mnt, &root_parent);
2671 touch_mnt_namespace(current->nsproxy->mnt_ns);
2672 br_write_unlock(vfsmount_lock);
2673 chroot_fs_refs(&root, &new);
2674 error = 0;
2675 out4:
2676 unlock_mount(&old);
2677 if (!error) {
2678 path_put(&root_parent);
2679 path_put(&parent_path);
2680 }
2681 out3:
2682 path_put(&root);
2683 out2:
2684 path_put(&old);
2685 out1:
2686 path_put(&new);
2687 out0:
2688 return error;
2689 }
2690
2691 static void __init init_mount_tree(void)
2692 {
2693 struct vfsmount *mnt;
2694 struct mnt_namespace *ns;
2695 struct path root;
2696
2697 mnt = do_kern_mount("rootfs", 0, "rootfs", NULL);
2698 if (IS_ERR(mnt))
2699 panic("Can't create rootfs");
2700
2701 ns = create_mnt_ns(mnt);
2702 if (IS_ERR(ns))
2703 panic("Can't allocate initial namespace");
2704
2705 init_task.nsproxy->mnt_ns = ns;
2706 get_mnt_ns(ns);
2707
2708 root.mnt = ns->root;
2709 root.dentry = ns->root->mnt_root;
2710
2711 set_fs_pwd(current->fs, &root);
2712 set_fs_root(current->fs, &root);
2713 }
2714
2715 void __init mnt_init(void)
2716 {
2717 unsigned u;
2718 int err;
2719
2720 init_rwsem(&namespace_sem);
2721
2722 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
2723 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
2724
2725 mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
2726
2727 if (!mount_hashtable)
2728 panic("Failed to allocate mount hash table\n");
2729
2730 printk(KERN_INFO "Mount-cache hash table entries: %lu\n", HASH_SIZE);
2731
2732 for (u = 0; u < HASH_SIZE; u++)
2733 INIT_LIST_HEAD(&mount_hashtable[u]);
2734
2735 br_lock_init(vfsmount_lock);
2736
2737 err = sysfs_init();
2738 if (err)
2739 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
2740 __func__, err);
2741 fs_kobj = kobject_create_and_add("fs", NULL);
2742 if (!fs_kobj)
2743 printk(KERN_WARNING "%s: kobj create error\n", __func__);
2744 init_rootfs();
2745 init_mount_tree();
2746 }
2747
2748 void put_mnt_ns(struct mnt_namespace *ns)
2749 {
2750 LIST_HEAD(umount_list);
2751
2752 if (!atomic_dec_and_test(&ns->count))
2753 return;
2754 down_write(&namespace_sem);
2755 br_write_lock(vfsmount_lock);
2756 umount_tree(real_mount(ns->root), 0, &umount_list);
2757 br_write_unlock(vfsmount_lock);
2758 up_write(&namespace_sem);
2759 release_mounts(&umount_list);
2760 kfree(ns);
2761 }
2762
2763 struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
2764 {
2765 struct vfsmount *mnt;
2766 mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
2767 if (!IS_ERR(mnt)) {
2768 /*
2769 * it is a longterm mount, don't release mnt until
2770 * we unmount before file sys is unregistered
2771 */
2772 mnt_make_longterm(mnt);
2773 }
2774 return mnt;
2775 }
2776 EXPORT_SYMBOL_GPL(kern_mount_data);
2777
2778 void kern_unmount(struct vfsmount *mnt)
2779 {
2780 /* release long term mount so mount point can be released */
2781 if (!IS_ERR_OR_NULL(mnt)) {
2782 mnt_make_shortterm(mnt);
2783 mntput(mnt);
2784 }
2785 }
2786 EXPORT_SYMBOL(kern_unmount);
2787
2788 bool our_mnt(struct vfsmount *mnt)
2789 {
2790 return check_mnt(mnt);
2791 }
This page took 0.093982 seconds and 6 git commands to generate.