do_remount(): pull touch_mnt_namespace() up
[deliverable/linux.git] / fs / namespace.c
1 /*
2 * linux/fs/namespace.c
3 *
4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/user_namespace.h>
16 #include <linux/namei.h>
17 #include <linux/security.h>
18 #include <linux/idr.h>
19 #include <linux/acct.h> /* acct_auto_close_mnt */
20 #include <linux/init.h> /* init_rootfs */
21 #include <linux/fs_struct.h> /* get_fs_root et.al. */
22 #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
23 #include <linux/uaccess.h>
24 #include <linux/proc_ns.h>
25 #include <linux/magic.h>
26 #include "pnode.h"
27 #include "internal.h"
28
29 #define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head))
30 #define HASH_SIZE (1UL << HASH_SHIFT)
31
32 static int event;
33 static DEFINE_IDA(mnt_id_ida);
34 static DEFINE_IDA(mnt_group_ida);
35 static DEFINE_SPINLOCK(mnt_id_lock);
36 static int mnt_id_start = 0;
37 static int mnt_group_start = 1;
38
39 static struct list_head *mount_hashtable __read_mostly;
40 static struct list_head *mountpoint_hashtable __read_mostly;
41 static struct kmem_cache *mnt_cache __read_mostly;
42 static DECLARE_RWSEM(namespace_sem);
43
44 /* /sys/fs */
45 struct kobject *fs_kobj;
46 EXPORT_SYMBOL_GPL(fs_kobj);
47
48 /*
49 * vfsmount lock may be taken for read to prevent changes to the
50 * vfsmount hash, ie. during mountpoint lookups or walking back
51 * up the tree.
52 *
53 * It should be taken for write in all cases where the vfsmount
54 * tree or hash is modified or when a vfsmount structure is modified.
55 */
56 DEFINE_BRLOCK(vfsmount_lock);
57
58 static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry)
59 {
60 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
61 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
62 tmp = tmp + (tmp >> HASH_SHIFT);
63 return tmp & (HASH_SIZE - 1);
64 }
65
66 #define MNT_WRITER_UNDERFLOW_LIMIT -(1<<16)
67
68 /*
69 * allocation is serialized by namespace_sem, but we need the spinlock to
70 * serialize with freeing.
71 */
72 static int mnt_alloc_id(struct mount *mnt)
73 {
74 int res;
75
76 retry:
77 ida_pre_get(&mnt_id_ida, GFP_KERNEL);
78 spin_lock(&mnt_id_lock);
79 res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
80 if (!res)
81 mnt_id_start = mnt->mnt_id + 1;
82 spin_unlock(&mnt_id_lock);
83 if (res == -EAGAIN)
84 goto retry;
85
86 return res;
87 }
88
89 static void mnt_free_id(struct mount *mnt)
90 {
91 int id = mnt->mnt_id;
92 spin_lock(&mnt_id_lock);
93 ida_remove(&mnt_id_ida, id);
94 if (mnt_id_start > id)
95 mnt_id_start = id;
96 spin_unlock(&mnt_id_lock);
97 }
98
99 /*
100 * Allocate a new peer group ID
101 *
102 * mnt_group_ida is protected by namespace_sem
103 */
104 static int mnt_alloc_group_id(struct mount *mnt)
105 {
106 int res;
107
108 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
109 return -ENOMEM;
110
111 res = ida_get_new_above(&mnt_group_ida,
112 mnt_group_start,
113 &mnt->mnt_group_id);
114 if (!res)
115 mnt_group_start = mnt->mnt_group_id + 1;
116
117 return res;
118 }
119
120 /*
121 * Release a peer group ID
122 */
123 void mnt_release_group_id(struct mount *mnt)
124 {
125 int id = mnt->mnt_group_id;
126 ida_remove(&mnt_group_ida, id);
127 if (mnt_group_start > id)
128 mnt_group_start = id;
129 mnt->mnt_group_id = 0;
130 }
131
132 /*
133 * vfsmount lock must be held for read
134 */
135 static inline void mnt_add_count(struct mount *mnt, int n)
136 {
137 #ifdef CONFIG_SMP
138 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
139 #else
140 preempt_disable();
141 mnt->mnt_count += n;
142 preempt_enable();
143 #endif
144 }
145
146 /*
147 * vfsmount lock must be held for write
148 */
149 unsigned int mnt_get_count(struct mount *mnt)
150 {
151 #ifdef CONFIG_SMP
152 unsigned int count = 0;
153 int cpu;
154
155 for_each_possible_cpu(cpu) {
156 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
157 }
158
159 return count;
160 #else
161 return mnt->mnt_count;
162 #endif
163 }
164
165 static struct mount *alloc_vfsmnt(const char *name)
166 {
167 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
168 if (mnt) {
169 int err;
170
171 err = mnt_alloc_id(mnt);
172 if (err)
173 goto out_free_cache;
174
175 if (name) {
176 mnt->mnt_devname = kstrdup(name, GFP_KERNEL);
177 if (!mnt->mnt_devname)
178 goto out_free_id;
179 }
180
181 #ifdef CONFIG_SMP
182 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
183 if (!mnt->mnt_pcp)
184 goto out_free_devname;
185
186 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
187 #else
188 mnt->mnt_count = 1;
189 mnt->mnt_writers = 0;
190 #endif
191
192 INIT_LIST_HEAD(&mnt->mnt_hash);
193 INIT_LIST_HEAD(&mnt->mnt_child);
194 INIT_LIST_HEAD(&mnt->mnt_mounts);
195 INIT_LIST_HEAD(&mnt->mnt_list);
196 INIT_LIST_HEAD(&mnt->mnt_expire);
197 INIT_LIST_HEAD(&mnt->mnt_share);
198 INIT_LIST_HEAD(&mnt->mnt_slave_list);
199 INIT_LIST_HEAD(&mnt->mnt_slave);
200 #ifdef CONFIG_FSNOTIFY
201 INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
202 #endif
203 }
204 return mnt;
205
206 #ifdef CONFIG_SMP
207 out_free_devname:
208 kfree(mnt->mnt_devname);
209 #endif
210 out_free_id:
211 mnt_free_id(mnt);
212 out_free_cache:
213 kmem_cache_free(mnt_cache, mnt);
214 return NULL;
215 }
216
217 /*
218 * Most r/o checks on a fs are for operations that take
219 * discrete amounts of time, like a write() or unlink().
220 * We must keep track of when those operations start
221 * (for permission checks) and when they end, so that
222 * we can determine when writes are able to occur to
223 * a filesystem.
224 */
225 /*
226 * __mnt_is_readonly: check whether a mount is read-only
227 * @mnt: the mount to check for its write status
228 *
229 * This shouldn't be used directly ouside of the VFS.
230 * It does not guarantee that the filesystem will stay
231 * r/w, just that it is right *now*. This can not and
232 * should not be used in place of IS_RDONLY(inode).
233 * mnt_want/drop_write() will _keep_ the filesystem
234 * r/w.
235 */
236 int __mnt_is_readonly(struct vfsmount *mnt)
237 {
238 if (mnt->mnt_flags & MNT_READONLY)
239 return 1;
240 if (mnt->mnt_sb->s_flags & MS_RDONLY)
241 return 1;
242 return 0;
243 }
244 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
245
246 static inline void mnt_inc_writers(struct mount *mnt)
247 {
248 #ifdef CONFIG_SMP
249 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
250 #else
251 mnt->mnt_writers++;
252 #endif
253 }
254
255 static inline void mnt_dec_writers(struct mount *mnt)
256 {
257 #ifdef CONFIG_SMP
258 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
259 #else
260 mnt->mnt_writers--;
261 #endif
262 }
263
264 static unsigned int mnt_get_writers(struct mount *mnt)
265 {
266 #ifdef CONFIG_SMP
267 unsigned int count = 0;
268 int cpu;
269
270 for_each_possible_cpu(cpu) {
271 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
272 }
273
274 return count;
275 #else
276 return mnt->mnt_writers;
277 #endif
278 }
279
280 static int mnt_is_readonly(struct vfsmount *mnt)
281 {
282 if (mnt->mnt_sb->s_readonly_remount)
283 return 1;
284 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
285 smp_rmb();
286 return __mnt_is_readonly(mnt);
287 }
288
289 /*
290 * Most r/o & frozen checks on a fs are for operations that take discrete
291 * amounts of time, like a write() or unlink(). We must keep track of when
292 * those operations start (for permission checks) and when they end, so that we
293 * can determine when writes are able to occur to a filesystem.
294 */
295 /**
296 * __mnt_want_write - get write access to a mount without freeze protection
297 * @m: the mount on which to take a write
298 *
299 * This tells the low-level filesystem that a write is about to be performed to
300 * it, and makes sure that writes are allowed (mnt it read-write) before
301 * returning success. This operation does not protect against filesystem being
302 * frozen. When the write operation is finished, __mnt_drop_write() must be
303 * called. This is effectively a refcount.
304 */
305 int __mnt_want_write(struct vfsmount *m)
306 {
307 struct mount *mnt = real_mount(m);
308 int ret = 0;
309
310 preempt_disable();
311 mnt_inc_writers(mnt);
312 /*
313 * The store to mnt_inc_writers must be visible before we pass
314 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
315 * incremented count after it has set MNT_WRITE_HOLD.
316 */
317 smp_mb();
318 while (ACCESS_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
319 cpu_relax();
320 /*
321 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
322 * be set to match its requirements. So we must not load that until
323 * MNT_WRITE_HOLD is cleared.
324 */
325 smp_rmb();
326 if (mnt_is_readonly(m)) {
327 mnt_dec_writers(mnt);
328 ret = -EROFS;
329 }
330 preempt_enable();
331
332 return ret;
333 }
334
335 /**
336 * mnt_want_write - get write access to a mount
337 * @m: the mount on which to take a write
338 *
339 * This tells the low-level filesystem that a write is about to be performed to
340 * it, and makes sure that writes are allowed (mount is read-write, filesystem
341 * is not frozen) before returning success. When the write operation is
342 * finished, mnt_drop_write() must be called. This is effectively a refcount.
343 */
344 int mnt_want_write(struct vfsmount *m)
345 {
346 int ret;
347
348 sb_start_write(m->mnt_sb);
349 ret = __mnt_want_write(m);
350 if (ret)
351 sb_end_write(m->mnt_sb);
352 return ret;
353 }
354 EXPORT_SYMBOL_GPL(mnt_want_write);
355
356 /**
357 * mnt_clone_write - get write access to a mount
358 * @mnt: the mount on which to take a write
359 *
360 * This is effectively like mnt_want_write, except
361 * it must only be used to take an extra write reference
362 * on a mountpoint that we already know has a write reference
363 * on it. This allows some optimisation.
364 *
365 * After finished, mnt_drop_write must be called as usual to
366 * drop the reference.
367 */
368 int mnt_clone_write(struct vfsmount *mnt)
369 {
370 /* superblock may be r/o */
371 if (__mnt_is_readonly(mnt))
372 return -EROFS;
373 preempt_disable();
374 mnt_inc_writers(real_mount(mnt));
375 preempt_enable();
376 return 0;
377 }
378 EXPORT_SYMBOL_GPL(mnt_clone_write);
379
380 /**
381 * __mnt_want_write_file - get write access to a file's mount
382 * @file: the file who's mount on which to take a write
383 *
384 * This is like __mnt_want_write, but it takes a file and can
385 * do some optimisations if the file is open for write already
386 */
387 int __mnt_want_write_file(struct file *file)
388 {
389 struct inode *inode = file_inode(file);
390
391 if (!(file->f_mode & FMODE_WRITE) || special_file(inode->i_mode))
392 return __mnt_want_write(file->f_path.mnt);
393 else
394 return mnt_clone_write(file->f_path.mnt);
395 }
396
397 /**
398 * mnt_want_write_file - get write access to a file's mount
399 * @file: the file who's mount on which to take a write
400 *
401 * This is like mnt_want_write, but it takes a file and can
402 * do some optimisations if the file is open for write already
403 */
404 int mnt_want_write_file(struct file *file)
405 {
406 int ret;
407
408 sb_start_write(file->f_path.mnt->mnt_sb);
409 ret = __mnt_want_write_file(file);
410 if (ret)
411 sb_end_write(file->f_path.mnt->mnt_sb);
412 return ret;
413 }
414 EXPORT_SYMBOL_GPL(mnt_want_write_file);
415
416 /**
417 * __mnt_drop_write - give up write access to a mount
418 * @mnt: the mount on which to give up write access
419 *
420 * Tells the low-level filesystem that we are done
421 * performing writes to it. Must be matched with
422 * __mnt_want_write() call above.
423 */
424 void __mnt_drop_write(struct vfsmount *mnt)
425 {
426 preempt_disable();
427 mnt_dec_writers(real_mount(mnt));
428 preempt_enable();
429 }
430
431 /**
432 * mnt_drop_write - give up write access to a mount
433 * @mnt: the mount on which to give up write access
434 *
435 * Tells the low-level filesystem that we are done performing writes to it and
436 * also allows filesystem to be frozen again. Must be matched with
437 * mnt_want_write() call above.
438 */
439 void mnt_drop_write(struct vfsmount *mnt)
440 {
441 __mnt_drop_write(mnt);
442 sb_end_write(mnt->mnt_sb);
443 }
444 EXPORT_SYMBOL_GPL(mnt_drop_write);
445
446 void __mnt_drop_write_file(struct file *file)
447 {
448 __mnt_drop_write(file->f_path.mnt);
449 }
450
451 void mnt_drop_write_file(struct file *file)
452 {
453 mnt_drop_write(file->f_path.mnt);
454 }
455 EXPORT_SYMBOL(mnt_drop_write_file);
456
457 static int mnt_make_readonly(struct mount *mnt)
458 {
459 int ret = 0;
460
461 br_write_lock(&vfsmount_lock);
462 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
463 /*
464 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
465 * should be visible before we do.
466 */
467 smp_mb();
468
469 /*
470 * With writers on hold, if this value is zero, then there are
471 * definitely no active writers (although held writers may subsequently
472 * increment the count, they'll have to wait, and decrement it after
473 * seeing MNT_READONLY).
474 *
475 * It is OK to have counter incremented on one CPU and decremented on
476 * another: the sum will add up correctly. The danger would be when we
477 * sum up each counter, if we read a counter before it is incremented,
478 * but then read another CPU's count which it has been subsequently
479 * decremented from -- we would see more decrements than we should.
480 * MNT_WRITE_HOLD protects against this scenario, because
481 * mnt_want_write first increments count, then smp_mb, then spins on
482 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
483 * we're counting up here.
484 */
485 if (mnt_get_writers(mnt) > 0)
486 ret = -EBUSY;
487 else
488 mnt->mnt.mnt_flags |= MNT_READONLY;
489 /*
490 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
491 * that become unheld will see MNT_READONLY.
492 */
493 smp_wmb();
494 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
495 br_write_unlock(&vfsmount_lock);
496 return ret;
497 }
498
499 static void __mnt_unmake_readonly(struct mount *mnt)
500 {
501 br_write_lock(&vfsmount_lock);
502 mnt->mnt.mnt_flags &= ~MNT_READONLY;
503 br_write_unlock(&vfsmount_lock);
504 }
505
506 int sb_prepare_remount_readonly(struct super_block *sb)
507 {
508 struct mount *mnt;
509 int err = 0;
510
511 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
512 if (atomic_long_read(&sb->s_remove_count))
513 return -EBUSY;
514
515 br_write_lock(&vfsmount_lock);
516 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
517 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
518 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
519 smp_mb();
520 if (mnt_get_writers(mnt) > 0) {
521 err = -EBUSY;
522 break;
523 }
524 }
525 }
526 if (!err && atomic_long_read(&sb->s_remove_count))
527 err = -EBUSY;
528
529 if (!err) {
530 sb->s_readonly_remount = 1;
531 smp_wmb();
532 }
533 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
534 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
535 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
536 }
537 br_write_unlock(&vfsmount_lock);
538
539 return err;
540 }
541
542 static void free_vfsmnt(struct mount *mnt)
543 {
544 kfree(mnt->mnt_devname);
545 mnt_free_id(mnt);
546 #ifdef CONFIG_SMP
547 free_percpu(mnt->mnt_pcp);
548 #endif
549 kmem_cache_free(mnt_cache, mnt);
550 }
551
552 /*
553 * find the first or last mount at @dentry on vfsmount @mnt depending on
554 * @dir. If @dir is set return the first mount else return the last mount.
555 * vfsmount_lock must be held for read or write.
556 */
557 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry,
558 int dir)
559 {
560 struct list_head *head = mount_hashtable + hash(mnt, dentry);
561 struct list_head *tmp = head;
562 struct mount *p, *found = NULL;
563
564 for (;;) {
565 tmp = dir ? tmp->next : tmp->prev;
566 p = NULL;
567 if (tmp == head)
568 break;
569 p = list_entry(tmp, struct mount, mnt_hash);
570 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry) {
571 found = p;
572 break;
573 }
574 }
575 return found;
576 }
577
578 /*
579 * lookup_mnt - Return the first child mount mounted at path
580 *
581 * "First" means first mounted chronologically. If you create the
582 * following mounts:
583 *
584 * mount /dev/sda1 /mnt
585 * mount /dev/sda2 /mnt
586 * mount /dev/sda3 /mnt
587 *
588 * Then lookup_mnt() on the base /mnt dentry in the root mount will
589 * return successively the root dentry and vfsmount of /dev/sda1, then
590 * /dev/sda2, then /dev/sda3, then NULL.
591 *
592 * lookup_mnt takes a reference to the found vfsmount.
593 */
594 struct vfsmount *lookup_mnt(struct path *path)
595 {
596 struct mount *child_mnt;
597
598 br_read_lock(&vfsmount_lock);
599 child_mnt = __lookup_mnt(path->mnt, path->dentry, 1);
600 if (child_mnt) {
601 mnt_add_count(child_mnt, 1);
602 br_read_unlock(&vfsmount_lock);
603 return &child_mnt->mnt;
604 } else {
605 br_read_unlock(&vfsmount_lock);
606 return NULL;
607 }
608 }
609
610 static struct mountpoint *new_mountpoint(struct dentry *dentry)
611 {
612 struct list_head *chain = mountpoint_hashtable + hash(NULL, dentry);
613 struct mountpoint *mp;
614 int ret;
615
616 list_for_each_entry(mp, chain, m_hash) {
617 if (mp->m_dentry == dentry) {
618 /* might be worth a WARN_ON() */
619 if (d_unlinked(dentry))
620 return ERR_PTR(-ENOENT);
621 mp->m_count++;
622 return mp;
623 }
624 }
625
626 mp = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
627 if (!mp)
628 return ERR_PTR(-ENOMEM);
629
630 ret = d_set_mounted(dentry);
631 if (ret) {
632 kfree(mp);
633 return ERR_PTR(ret);
634 }
635
636 mp->m_dentry = dentry;
637 mp->m_count = 1;
638 list_add(&mp->m_hash, chain);
639 return mp;
640 }
641
642 static void put_mountpoint(struct mountpoint *mp)
643 {
644 if (!--mp->m_count) {
645 struct dentry *dentry = mp->m_dentry;
646 spin_lock(&dentry->d_lock);
647 dentry->d_flags &= ~DCACHE_MOUNTED;
648 spin_unlock(&dentry->d_lock);
649 list_del(&mp->m_hash);
650 kfree(mp);
651 }
652 }
653
654 static inline int check_mnt(struct mount *mnt)
655 {
656 return mnt->mnt_ns == current->nsproxy->mnt_ns;
657 }
658
659 /*
660 * vfsmount lock must be held for write
661 */
662 static void touch_mnt_namespace(struct mnt_namespace *ns)
663 {
664 if (ns) {
665 ns->event = ++event;
666 wake_up_interruptible(&ns->poll);
667 }
668 }
669
670 /*
671 * vfsmount lock must be held for write
672 */
673 static void __touch_mnt_namespace(struct mnt_namespace *ns)
674 {
675 if (ns && ns->event != event) {
676 ns->event = event;
677 wake_up_interruptible(&ns->poll);
678 }
679 }
680
681 /*
682 * vfsmount lock must be held for write
683 */
684 static void detach_mnt(struct mount *mnt, struct path *old_path)
685 {
686 old_path->dentry = mnt->mnt_mountpoint;
687 old_path->mnt = &mnt->mnt_parent->mnt;
688 mnt->mnt_parent = mnt;
689 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
690 list_del_init(&mnt->mnt_child);
691 list_del_init(&mnt->mnt_hash);
692 put_mountpoint(mnt->mnt_mp);
693 mnt->mnt_mp = NULL;
694 }
695
696 /*
697 * vfsmount lock must be held for write
698 */
699 void mnt_set_mountpoint(struct mount *mnt,
700 struct mountpoint *mp,
701 struct mount *child_mnt)
702 {
703 mp->m_count++;
704 mnt_add_count(mnt, 1); /* essentially, that's mntget */
705 child_mnt->mnt_mountpoint = dget(mp->m_dentry);
706 child_mnt->mnt_parent = mnt;
707 child_mnt->mnt_mp = mp;
708 }
709
710 /*
711 * vfsmount lock must be held for write
712 */
713 static void attach_mnt(struct mount *mnt,
714 struct mount *parent,
715 struct mountpoint *mp)
716 {
717 mnt_set_mountpoint(parent, mp, mnt);
718 list_add_tail(&mnt->mnt_hash, mount_hashtable +
719 hash(&parent->mnt, mp->m_dentry));
720 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
721 }
722
723 /*
724 * vfsmount lock must be held for write
725 */
726 static void commit_tree(struct mount *mnt)
727 {
728 struct mount *parent = mnt->mnt_parent;
729 struct mount *m;
730 LIST_HEAD(head);
731 struct mnt_namespace *n = parent->mnt_ns;
732
733 BUG_ON(parent == mnt);
734
735 list_add_tail(&head, &mnt->mnt_list);
736 list_for_each_entry(m, &head, mnt_list)
737 m->mnt_ns = n;
738
739 list_splice(&head, n->list.prev);
740
741 list_add_tail(&mnt->mnt_hash, mount_hashtable +
742 hash(&parent->mnt, mnt->mnt_mountpoint));
743 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
744 touch_mnt_namespace(n);
745 }
746
747 static struct mount *next_mnt(struct mount *p, struct mount *root)
748 {
749 struct list_head *next = p->mnt_mounts.next;
750 if (next == &p->mnt_mounts) {
751 while (1) {
752 if (p == root)
753 return NULL;
754 next = p->mnt_child.next;
755 if (next != &p->mnt_parent->mnt_mounts)
756 break;
757 p = p->mnt_parent;
758 }
759 }
760 return list_entry(next, struct mount, mnt_child);
761 }
762
763 static struct mount *skip_mnt_tree(struct mount *p)
764 {
765 struct list_head *prev = p->mnt_mounts.prev;
766 while (prev != &p->mnt_mounts) {
767 p = list_entry(prev, struct mount, mnt_child);
768 prev = p->mnt_mounts.prev;
769 }
770 return p;
771 }
772
773 struct vfsmount *
774 vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
775 {
776 struct mount *mnt;
777 struct dentry *root;
778
779 if (!type)
780 return ERR_PTR(-ENODEV);
781
782 mnt = alloc_vfsmnt(name);
783 if (!mnt)
784 return ERR_PTR(-ENOMEM);
785
786 if (flags & MS_KERNMOUNT)
787 mnt->mnt.mnt_flags = MNT_INTERNAL;
788
789 root = mount_fs(type, flags, name, data);
790 if (IS_ERR(root)) {
791 free_vfsmnt(mnt);
792 return ERR_CAST(root);
793 }
794
795 mnt->mnt.mnt_root = root;
796 mnt->mnt.mnt_sb = root->d_sb;
797 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
798 mnt->mnt_parent = mnt;
799 br_write_lock(&vfsmount_lock);
800 list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
801 br_write_unlock(&vfsmount_lock);
802 return &mnt->mnt;
803 }
804 EXPORT_SYMBOL_GPL(vfs_kern_mount);
805
806 static struct mount *clone_mnt(struct mount *old, struct dentry *root,
807 int flag)
808 {
809 struct super_block *sb = old->mnt.mnt_sb;
810 struct mount *mnt;
811 int err;
812
813 mnt = alloc_vfsmnt(old->mnt_devname);
814 if (!mnt)
815 return ERR_PTR(-ENOMEM);
816
817 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
818 mnt->mnt_group_id = 0; /* not a peer of original */
819 else
820 mnt->mnt_group_id = old->mnt_group_id;
821
822 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
823 err = mnt_alloc_group_id(mnt);
824 if (err)
825 goto out_free;
826 }
827
828 mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~MNT_WRITE_HOLD;
829 /* Don't allow unprivileged users to change mount flags */
830 if ((flag & CL_UNPRIVILEGED) && (mnt->mnt.mnt_flags & MNT_READONLY))
831 mnt->mnt.mnt_flags |= MNT_LOCK_READONLY;
832
833 /* Don't allow unprivileged users to reveal what is under a mount */
834 if ((flag & CL_UNPRIVILEGED) && list_empty(&old->mnt_expire))
835 mnt->mnt.mnt_flags |= MNT_LOCKED;
836
837 atomic_inc(&sb->s_active);
838 mnt->mnt.mnt_sb = sb;
839 mnt->mnt.mnt_root = dget(root);
840 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
841 mnt->mnt_parent = mnt;
842 br_write_lock(&vfsmount_lock);
843 list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
844 br_write_unlock(&vfsmount_lock);
845
846 if ((flag & CL_SLAVE) ||
847 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
848 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
849 mnt->mnt_master = old;
850 CLEAR_MNT_SHARED(mnt);
851 } else if (!(flag & CL_PRIVATE)) {
852 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
853 list_add(&mnt->mnt_share, &old->mnt_share);
854 if (IS_MNT_SLAVE(old))
855 list_add(&mnt->mnt_slave, &old->mnt_slave);
856 mnt->mnt_master = old->mnt_master;
857 }
858 if (flag & CL_MAKE_SHARED)
859 set_mnt_shared(mnt);
860
861 /* stick the duplicate mount on the same expiry list
862 * as the original if that was on one */
863 if (flag & CL_EXPIRE) {
864 if (!list_empty(&old->mnt_expire))
865 list_add(&mnt->mnt_expire, &old->mnt_expire);
866 }
867
868 return mnt;
869
870 out_free:
871 free_vfsmnt(mnt);
872 return ERR_PTR(err);
873 }
874
875 static inline void mntfree(struct mount *mnt)
876 {
877 struct vfsmount *m = &mnt->mnt;
878 struct super_block *sb = m->mnt_sb;
879
880 /*
881 * This probably indicates that somebody messed
882 * up a mnt_want/drop_write() pair. If this
883 * happens, the filesystem was probably unable
884 * to make r/w->r/o transitions.
885 */
886 /*
887 * The locking used to deal with mnt_count decrement provides barriers,
888 * so mnt_get_writers() below is safe.
889 */
890 WARN_ON(mnt_get_writers(mnt));
891 fsnotify_vfsmount_delete(m);
892 dput(m->mnt_root);
893 free_vfsmnt(mnt);
894 deactivate_super(sb);
895 }
896
897 static void mntput_no_expire(struct mount *mnt)
898 {
899 put_again:
900 #ifdef CONFIG_SMP
901 br_read_lock(&vfsmount_lock);
902 if (likely(mnt->mnt_ns)) {
903 /* shouldn't be the last one */
904 mnt_add_count(mnt, -1);
905 br_read_unlock(&vfsmount_lock);
906 return;
907 }
908 br_read_unlock(&vfsmount_lock);
909
910 br_write_lock(&vfsmount_lock);
911 mnt_add_count(mnt, -1);
912 if (mnt_get_count(mnt)) {
913 br_write_unlock(&vfsmount_lock);
914 return;
915 }
916 #else
917 mnt_add_count(mnt, -1);
918 if (likely(mnt_get_count(mnt)))
919 return;
920 br_write_lock(&vfsmount_lock);
921 #endif
922 if (unlikely(mnt->mnt_pinned)) {
923 mnt_add_count(mnt, mnt->mnt_pinned + 1);
924 mnt->mnt_pinned = 0;
925 br_write_unlock(&vfsmount_lock);
926 acct_auto_close_mnt(&mnt->mnt);
927 goto put_again;
928 }
929
930 list_del(&mnt->mnt_instance);
931 br_write_unlock(&vfsmount_lock);
932 mntfree(mnt);
933 }
934
935 void mntput(struct vfsmount *mnt)
936 {
937 if (mnt) {
938 struct mount *m = real_mount(mnt);
939 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
940 if (unlikely(m->mnt_expiry_mark))
941 m->mnt_expiry_mark = 0;
942 mntput_no_expire(m);
943 }
944 }
945 EXPORT_SYMBOL(mntput);
946
947 struct vfsmount *mntget(struct vfsmount *mnt)
948 {
949 if (mnt)
950 mnt_add_count(real_mount(mnt), 1);
951 return mnt;
952 }
953 EXPORT_SYMBOL(mntget);
954
955 void mnt_pin(struct vfsmount *mnt)
956 {
957 br_write_lock(&vfsmount_lock);
958 real_mount(mnt)->mnt_pinned++;
959 br_write_unlock(&vfsmount_lock);
960 }
961 EXPORT_SYMBOL(mnt_pin);
962
963 void mnt_unpin(struct vfsmount *m)
964 {
965 struct mount *mnt = real_mount(m);
966 br_write_lock(&vfsmount_lock);
967 if (mnt->mnt_pinned) {
968 mnt_add_count(mnt, 1);
969 mnt->mnt_pinned--;
970 }
971 br_write_unlock(&vfsmount_lock);
972 }
973 EXPORT_SYMBOL(mnt_unpin);
974
975 static inline void mangle(struct seq_file *m, const char *s)
976 {
977 seq_escape(m, s, " \t\n\\");
978 }
979
980 /*
981 * Simple .show_options callback for filesystems which don't want to
982 * implement more complex mount option showing.
983 *
984 * See also save_mount_options().
985 */
986 int generic_show_options(struct seq_file *m, struct dentry *root)
987 {
988 const char *options;
989
990 rcu_read_lock();
991 options = rcu_dereference(root->d_sb->s_options);
992
993 if (options != NULL && options[0]) {
994 seq_putc(m, ',');
995 mangle(m, options);
996 }
997 rcu_read_unlock();
998
999 return 0;
1000 }
1001 EXPORT_SYMBOL(generic_show_options);
1002
1003 /*
1004 * If filesystem uses generic_show_options(), this function should be
1005 * called from the fill_super() callback.
1006 *
1007 * The .remount_fs callback usually needs to be handled in a special
1008 * way, to make sure, that previous options are not overwritten if the
1009 * remount fails.
1010 *
1011 * Also note, that if the filesystem's .remount_fs function doesn't
1012 * reset all options to their default value, but changes only newly
1013 * given options, then the displayed options will not reflect reality
1014 * any more.
1015 */
1016 void save_mount_options(struct super_block *sb, char *options)
1017 {
1018 BUG_ON(sb->s_options);
1019 rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
1020 }
1021 EXPORT_SYMBOL(save_mount_options);
1022
1023 void replace_mount_options(struct super_block *sb, char *options)
1024 {
1025 char *old = sb->s_options;
1026 rcu_assign_pointer(sb->s_options, options);
1027 if (old) {
1028 synchronize_rcu();
1029 kfree(old);
1030 }
1031 }
1032 EXPORT_SYMBOL(replace_mount_options);
1033
1034 #ifdef CONFIG_PROC_FS
1035 /* iterator; we want it to have access to namespace_sem, thus here... */
1036 static void *m_start(struct seq_file *m, loff_t *pos)
1037 {
1038 struct proc_mounts *p = proc_mounts(m);
1039
1040 down_read(&namespace_sem);
1041 return seq_list_start(&p->ns->list, *pos);
1042 }
1043
1044 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1045 {
1046 struct proc_mounts *p = proc_mounts(m);
1047
1048 return seq_list_next(v, &p->ns->list, pos);
1049 }
1050
1051 static void m_stop(struct seq_file *m, void *v)
1052 {
1053 up_read(&namespace_sem);
1054 }
1055
1056 static int m_show(struct seq_file *m, void *v)
1057 {
1058 struct proc_mounts *p = proc_mounts(m);
1059 struct mount *r = list_entry(v, struct mount, mnt_list);
1060 return p->show(m, &r->mnt);
1061 }
1062
1063 const struct seq_operations mounts_op = {
1064 .start = m_start,
1065 .next = m_next,
1066 .stop = m_stop,
1067 .show = m_show,
1068 };
1069 #endif /* CONFIG_PROC_FS */
1070
1071 /**
1072 * may_umount_tree - check if a mount tree is busy
1073 * @mnt: root of mount tree
1074 *
1075 * This is called to check if a tree of mounts has any
1076 * open files, pwds, chroots or sub mounts that are
1077 * busy.
1078 */
1079 int may_umount_tree(struct vfsmount *m)
1080 {
1081 struct mount *mnt = real_mount(m);
1082 int actual_refs = 0;
1083 int minimum_refs = 0;
1084 struct mount *p;
1085 BUG_ON(!m);
1086
1087 /* write lock needed for mnt_get_count */
1088 br_write_lock(&vfsmount_lock);
1089 for (p = mnt; p; p = next_mnt(p, mnt)) {
1090 actual_refs += mnt_get_count(p);
1091 minimum_refs += 2;
1092 }
1093 br_write_unlock(&vfsmount_lock);
1094
1095 if (actual_refs > minimum_refs)
1096 return 0;
1097
1098 return 1;
1099 }
1100
1101 EXPORT_SYMBOL(may_umount_tree);
1102
1103 /**
1104 * may_umount - check if a mount point is busy
1105 * @mnt: root of mount
1106 *
1107 * This is called to check if a mount point has any
1108 * open files, pwds, chroots or sub mounts. If the
1109 * mount has sub mounts this will return busy
1110 * regardless of whether the sub mounts are busy.
1111 *
1112 * Doesn't take quota and stuff into account. IOW, in some cases it will
1113 * give false negatives. The main reason why it's here is that we need
1114 * a non-destructive way to look for easily umountable filesystems.
1115 */
1116 int may_umount(struct vfsmount *mnt)
1117 {
1118 int ret = 1;
1119 down_read(&namespace_sem);
1120 br_write_lock(&vfsmount_lock);
1121 if (propagate_mount_busy(real_mount(mnt), 2))
1122 ret = 0;
1123 br_write_unlock(&vfsmount_lock);
1124 up_read(&namespace_sem);
1125 return ret;
1126 }
1127
1128 EXPORT_SYMBOL(may_umount);
1129
1130 static LIST_HEAD(unmounted); /* protected by namespace_sem */
1131
1132 static void namespace_unlock(void)
1133 {
1134 struct mount *mnt;
1135 LIST_HEAD(head);
1136
1137 if (likely(list_empty(&unmounted))) {
1138 up_write(&namespace_sem);
1139 return;
1140 }
1141
1142 list_splice_init(&unmounted, &head);
1143 up_write(&namespace_sem);
1144
1145 while (!list_empty(&head)) {
1146 mnt = list_first_entry(&head, struct mount, mnt_hash);
1147 list_del_init(&mnt->mnt_hash);
1148 if (mnt_has_parent(mnt)) {
1149 struct dentry *dentry;
1150 struct mount *m;
1151
1152 br_write_lock(&vfsmount_lock);
1153 dentry = mnt->mnt_mountpoint;
1154 m = mnt->mnt_parent;
1155 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1156 mnt->mnt_parent = mnt;
1157 m->mnt_ghosts--;
1158 br_write_unlock(&vfsmount_lock);
1159 dput(dentry);
1160 mntput(&m->mnt);
1161 }
1162 mntput(&mnt->mnt);
1163 }
1164 }
1165
1166 static inline void namespace_lock(void)
1167 {
1168 down_write(&namespace_sem);
1169 }
1170
1171 /*
1172 * vfsmount lock must be held for write
1173 * namespace_sem must be held for write
1174 */
1175 void umount_tree(struct mount *mnt, int propagate)
1176 {
1177 LIST_HEAD(tmp_list);
1178 struct mount *p;
1179
1180 for (p = mnt; p; p = next_mnt(p, mnt))
1181 list_move(&p->mnt_hash, &tmp_list);
1182
1183 if (propagate)
1184 propagate_umount(&tmp_list);
1185
1186 list_for_each_entry(p, &tmp_list, mnt_hash) {
1187 list_del_init(&p->mnt_expire);
1188 list_del_init(&p->mnt_list);
1189 __touch_mnt_namespace(p->mnt_ns);
1190 p->mnt_ns = NULL;
1191 list_del_init(&p->mnt_child);
1192 if (mnt_has_parent(p)) {
1193 p->mnt_parent->mnt_ghosts++;
1194 put_mountpoint(p->mnt_mp);
1195 p->mnt_mp = NULL;
1196 }
1197 change_mnt_propagation(p, MS_PRIVATE);
1198 }
1199 list_splice(&tmp_list, &unmounted);
1200 }
1201
1202 static void shrink_submounts(struct mount *mnt);
1203
1204 static int do_umount(struct mount *mnt, int flags)
1205 {
1206 struct super_block *sb = mnt->mnt.mnt_sb;
1207 int retval;
1208
1209 retval = security_sb_umount(&mnt->mnt, flags);
1210 if (retval)
1211 return retval;
1212
1213 /*
1214 * Allow userspace to request a mountpoint be expired rather than
1215 * unmounting unconditionally. Unmount only happens if:
1216 * (1) the mark is already set (the mark is cleared by mntput())
1217 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1218 */
1219 if (flags & MNT_EXPIRE) {
1220 if (&mnt->mnt == current->fs->root.mnt ||
1221 flags & (MNT_FORCE | MNT_DETACH))
1222 return -EINVAL;
1223
1224 /*
1225 * probably don't strictly need the lock here if we examined
1226 * all race cases, but it's a slowpath.
1227 */
1228 br_write_lock(&vfsmount_lock);
1229 if (mnt_get_count(mnt) != 2) {
1230 br_write_unlock(&vfsmount_lock);
1231 return -EBUSY;
1232 }
1233 br_write_unlock(&vfsmount_lock);
1234
1235 if (!xchg(&mnt->mnt_expiry_mark, 1))
1236 return -EAGAIN;
1237 }
1238
1239 /*
1240 * If we may have to abort operations to get out of this
1241 * mount, and they will themselves hold resources we must
1242 * allow the fs to do things. In the Unix tradition of
1243 * 'Gee thats tricky lets do it in userspace' the umount_begin
1244 * might fail to complete on the first run through as other tasks
1245 * must return, and the like. Thats for the mount program to worry
1246 * about for the moment.
1247 */
1248
1249 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1250 sb->s_op->umount_begin(sb);
1251 }
1252
1253 /*
1254 * No sense to grab the lock for this test, but test itself looks
1255 * somewhat bogus. Suggestions for better replacement?
1256 * Ho-hum... In principle, we might treat that as umount + switch
1257 * to rootfs. GC would eventually take care of the old vfsmount.
1258 * Actually it makes sense, especially if rootfs would contain a
1259 * /reboot - static binary that would close all descriptors and
1260 * call reboot(9). Then init(8) could umount root and exec /reboot.
1261 */
1262 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1263 /*
1264 * Special case for "unmounting" root ...
1265 * we just try to remount it readonly.
1266 */
1267 down_write(&sb->s_umount);
1268 if (!(sb->s_flags & MS_RDONLY))
1269 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1270 up_write(&sb->s_umount);
1271 return retval;
1272 }
1273
1274 namespace_lock();
1275 br_write_lock(&vfsmount_lock);
1276 event++;
1277
1278 if (!(flags & MNT_DETACH))
1279 shrink_submounts(mnt);
1280
1281 retval = -EBUSY;
1282 if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) {
1283 if (!list_empty(&mnt->mnt_list))
1284 umount_tree(mnt, 1);
1285 retval = 0;
1286 }
1287 br_write_unlock(&vfsmount_lock);
1288 namespace_unlock();
1289 return retval;
1290 }
1291
1292 /*
1293 * Is the caller allowed to modify his namespace?
1294 */
1295 static inline bool may_mount(void)
1296 {
1297 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1298 }
1299
1300 /*
1301 * Now umount can handle mount points as well as block devices.
1302 * This is important for filesystems which use unnamed block devices.
1303 *
1304 * We now support a flag for forced unmount like the other 'big iron'
1305 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1306 */
1307
1308 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1309 {
1310 struct path path;
1311 struct mount *mnt;
1312 int retval;
1313 int lookup_flags = 0;
1314
1315 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1316 return -EINVAL;
1317
1318 if (!may_mount())
1319 return -EPERM;
1320
1321 if (!(flags & UMOUNT_NOFOLLOW))
1322 lookup_flags |= LOOKUP_FOLLOW;
1323
1324 retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path);
1325 if (retval)
1326 goto out;
1327 mnt = real_mount(path.mnt);
1328 retval = -EINVAL;
1329 if (path.dentry != path.mnt->mnt_root)
1330 goto dput_and_out;
1331 if (!check_mnt(mnt))
1332 goto dput_and_out;
1333 if (mnt->mnt.mnt_flags & MNT_LOCKED)
1334 goto dput_and_out;
1335
1336 retval = do_umount(mnt, flags);
1337 dput_and_out:
1338 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
1339 dput(path.dentry);
1340 mntput_no_expire(mnt);
1341 out:
1342 return retval;
1343 }
1344
1345 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1346
1347 /*
1348 * The 2.0 compatible umount. No flags.
1349 */
1350 SYSCALL_DEFINE1(oldumount, char __user *, name)
1351 {
1352 return sys_umount(name, 0);
1353 }
1354
1355 #endif
1356
1357 static bool is_mnt_ns_file(struct dentry *dentry)
1358 {
1359 /* Is this a proxy for a mount namespace? */
1360 struct inode *inode = dentry->d_inode;
1361 struct proc_ns *ei;
1362
1363 if (!proc_ns_inode(inode))
1364 return false;
1365
1366 ei = get_proc_ns(inode);
1367 if (ei->ns_ops != &mntns_operations)
1368 return false;
1369
1370 return true;
1371 }
1372
1373 static bool mnt_ns_loop(struct dentry *dentry)
1374 {
1375 /* Could bind mounting the mount namespace inode cause a
1376 * mount namespace loop?
1377 */
1378 struct mnt_namespace *mnt_ns;
1379 if (!is_mnt_ns_file(dentry))
1380 return false;
1381
1382 mnt_ns = get_proc_ns(dentry->d_inode)->ns;
1383 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1384 }
1385
1386 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
1387 int flag)
1388 {
1389 struct mount *res, *p, *q, *r, *parent;
1390
1391 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1392 return ERR_PTR(-EINVAL);
1393
1394 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
1395 return ERR_PTR(-EINVAL);
1396
1397 res = q = clone_mnt(mnt, dentry, flag);
1398 if (IS_ERR(q))
1399 return q;
1400
1401 q->mnt.mnt_flags &= ~MNT_LOCKED;
1402 q->mnt_mountpoint = mnt->mnt_mountpoint;
1403
1404 p = mnt;
1405 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1406 struct mount *s;
1407 if (!is_subdir(r->mnt_mountpoint, dentry))
1408 continue;
1409
1410 for (s = r; s; s = next_mnt(s, r)) {
1411 if (!(flag & CL_COPY_UNBINDABLE) &&
1412 IS_MNT_UNBINDABLE(s)) {
1413 s = skip_mnt_tree(s);
1414 continue;
1415 }
1416 if (!(flag & CL_COPY_MNT_NS_FILE) &&
1417 is_mnt_ns_file(s->mnt.mnt_root)) {
1418 s = skip_mnt_tree(s);
1419 continue;
1420 }
1421 while (p != s->mnt_parent) {
1422 p = p->mnt_parent;
1423 q = q->mnt_parent;
1424 }
1425 p = s;
1426 parent = q;
1427 q = clone_mnt(p, p->mnt.mnt_root, flag);
1428 if (IS_ERR(q))
1429 goto out;
1430 br_write_lock(&vfsmount_lock);
1431 list_add_tail(&q->mnt_list, &res->mnt_list);
1432 attach_mnt(q, parent, p->mnt_mp);
1433 br_write_unlock(&vfsmount_lock);
1434 }
1435 }
1436 return res;
1437 out:
1438 if (res) {
1439 br_write_lock(&vfsmount_lock);
1440 umount_tree(res, 0);
1441 br_write_unlock(&vfsmount_lock);
1442 }
1443 return q;
1444 }
1445
1446 /* Caller should check returned pointer for errors */
1447
1448 struct vfsmount *collect_mounts(struct path *path)
1449 {
1450 struct mount *tree;
1451 namespace_lock();
1452 tree = copy_tree(real_mount(path->mnt), path->dentry,
1453 CL_COPY_ALL | CL_PRIVATE);
1454 namespace_unlock();
1455 if (IS_ERR(tree))
1456 return ERR_CAST(tree);
1457 return &tree->mnt;
1458 }
1459
1460 void drop_collected_mounts(struct vfsmount *mnt)
1461 {
1462 namespace_lock();
1463 br_write_lock(&vfsmount_lock);
1464 umount_tree(real_mount(mnt), 0);
1465 br_write_unlock(&vfsmount_lock);
1466 namespace_unlock();
1467 }
1468
1469 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1470 struct vfsmount *root)
1471 {
1472 struct mount *mnt;
1473 int res = f(root, arg);
1474 if (res)
1475 return res;
1476 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1477 res = f(&mnt->mnt, arg);
1478 if (res)
1479 return res;
1480 }
1481 return 0;
1482 }
1483
1484 static void cleanup_group_ids(struct mount *mnt, struct mount *end)
1485 {
1486 struct mount *p;
1487
1488 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1489 if (p->mnt_group_id && !IS_MNT_SHARED(p))
1490 mnt_release_group_id(p);
1491 }
1492 }
1493
1494 static int invent_group_ids(struct mount *mnt, bool recurse)
1495 {
1496 struct mount *p;
1497
1498 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1499 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1500 int err = mnt_alloc_group_id(p);
1501 if (err) {
1502 cleanup_group_ids(mnt, p);
1503 return err;
1504 }
1505 }
1506 }
1507
1508 return 0;
1509 }
1510
1511 /*
1512 * @source_mnt : mount tree to be attached
1513 * @nd : place the mount tree @source_mnt is attached
1514 * @parent_nd : if non-null, detach the source_mnt from its parent and
1515 * store the parent mount and mountpoint dentry.
1516 * (done when source_mnt is moved)
1517 *
1518 * NOTE: in the table below explains the semantics when a source mount
1519 * of a given type is attached to a destination mount of a given type.
1520 * ---------------------------------------------------------------------------
1521 * | BIND MOUNT OPERATION |
1522 * |**************************************************************************
1523 * | source-->| shared | private | slave | unbindable |
1524 * | dest | | | | |
1525 * | | | | | | |
1526 * | v | | | | |
1527 * |**************************************************************************
1528 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1529 * | | | | | |
1530 * |non-shared| shared (+) | private | slave (*) | invalid |
1531 * ***************************************************************************
1532 * A bind operation clones the source mount and mounts the clone on the
1533 * destination mount.
1534 *
1535 * (++) the cloned mount is propagated to all the mounts in the propagation
1536 * tree of the destination mount and the cloned mount is added to
1537 * the peer group of the source mount.
1538 * (+) the cloned mount is created under the destination mount and is marked
1539 * as shared. The cloned mount is added to the peer group of the source
1540 * mount.
1541 * (+++) the mount is propagated to all the mounts in the propagation tree
1542 * of the destination mount and the cloned mount is made slave
1543 * of the same master as that of the source mount. The cloned mount
1544 * is marked as 'shared and slave'.
1545 * (*) the cloned mount is made a slave of the same master as that of the
1546 * source mount.
1547 *
1548 * ---------------------------------------------------------------------------
1549 * | MOVE MOUNT OPERATION |
1550 * |**************************************************************************
1551 * | source-->| shared | private | slave | unbindable |
1552 * | dest | | | | |
1553 * | | | | | | |
1554 * | v | | | | |
1555 * |**************************************************************************
1556 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1557 * | | | | | |
1558 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1559 * ***************************************************************************
1560 *
1561 * (+) the mount is moved to the destination. And is then propagated to
1562 * all the mounts in the propagation tree of the destination mount.
1563 * (+*) the mount is moved to the destination.
1564 * (+++) the mount is moved to the destination and is then propagated to
1565 * all the mounts belonging to the destination mount's propagation tree.
1566 * the mount is marked as 'shared and slave'.
1567 * (*) the mount continues to be a slave at the new location.
1568 *
1569 * if the source mount is a tree, the operations explained above is
1570 * applied to each mount in the tree.
1571 * Must be called without spinlocks held, since this function can sleep
1572 * in allocations.
1573 */
1574 static int attach_recursive_mnt(struct mount *source_mnt,
1575 struct mount *dest_mnt,
1576 struct mountpoint *dest_mp,
1577 struct path *parent_path)
1578 {
1579 LIST_HEAD(tree_list);
1580 struct mount *child, *p;
1581 int err;
1582
1583 if (IS_MNT_SHARED(dest_mnt)) {
1584 err = invent_group_ids(source_mnt, true);
1585 if (err)
1586 goto out;
1587 }
1588 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
1589 if (err)
1590 goto out_cleanup_ids;
1591
1592 br_write_lock(&vfsmount_lock);
1593
1594 if (IS_MNT_SHARED(dest_mnt)) {
1595 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
1596 set_mnt_shared(p);
1597 }
1598 if (parent_path) {
1599 detach_mnt(source_mnt, parent_path);
1600 attach_mnt(source_mnt, dest_mnt, dest_mp);
1601 touch_mnt_namespace(source_mnt->mnt_ns);
1602 } else {
1603 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
1604 commit_tree(source_mnt);
1605 }
1606
1607 list_for_each_entry_safe(child, p, &tree_list, mnt_hash) {
1608 list_del_init(&child->mnt_hash);
1609 commit_tree(child);
1610 }
1611 br_write_unlock(&vfsmount_lock);
1612
1613 return 0;
1614
1615 out_cleanup_ids:
1616 if (IS_MNT_SHARED(dest_mnt))
1617 cleanup_group_ids(source_mnt, NULL);
1618 out:
1619 return err;
1620 }
1621
1622 static struct mountpoint *lock_mount(struct path *path)
1623 {
1624 struct vfsmount *mnt;
1625 struct dentry *dentry = path->dentry;
1626 retry:
1627 mutex_lock(&dentry->d_inode->i_mutex);
1628 if (unlikely(cant_mount(dentry))) {
1629 mutex_unlock(&dentry->d_inode->i_mutex);
1630 return ERR_PTR(-ENOENT);
1631 }
1632 namespace_lock();
1633 mnt = lookup_mnt(path);
1634 if (likely(!mnt)) {
1635 struct mountpoint *mp = new_mountpoint(dentry);
1636 if (IS_ERR(mp)) {
1637 namespace_unlock();
1638 mutex_unlock(&dentry->d_inode->i_mutex);
1639 return mp;
1640 }
1641 return mp;
1642 }
1643 namespace_unlock();
1644 mutex_unlock(&path->dentry->d_inode->i_mutex);
1645 path_put(path);
1646 path->mnt = mnt;
1647 dentry = path->dentry = dget(mnt->mnt_root);
1648 goto retry;
1649 }
1650
1651 static void unlock_mount(struct mountpoint *where)
1652 {
1653 struct dentry *dentry = where->m_dentry;
1654 put_mountpoint(where);
1655 namespace_unlock();
1656 mutex_unlock(&dentry->d_inode->i_mutex);
1657 }
1658
1659 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
1660 {
1661 if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER)
1662 return -EINVAL;
1663
1664 if (S_ISDIR(mp->m_dentry->d_inode->i_mode) !=
1665 S_ISDIR(mnt->mnt.mnt_root->d_inode->i_mode))
1666 return -ENOTDIR;
1667
1668 return attach_recursive_mnt(mnt, p, mp, NULL);
1669 }
1670
1671 /*
1672 * Sanity check the flags to change_mnt_propagation.
1673 */
1674
1675 static int flags_to_propagation_type(int flags)
1676 {
1677 int type = flags & ~(MS_REC | MS_SILENT);
1678
1679 /* Fail if any non-propagation flags are set */
1680 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
1681 return 0;
1682 /* Only one propagation flag should be set */
1683 if (!is_power_of_2(type))
1684 return 0;
1685 return type;
1686 }
1687
1688 /*
1689 * recursively change the type of the mountpoint.
1690 */
1691 static int do_change_type(struct path *path, int flag)
1692 {
1693 struct mount *m;
1694 struct mount *mnt = real_mount(path->mnt);
1695 int recurse = flag & MS_REC;
1696 int type;
1697 int err = 0;
1698
1699 if (path->dentry != path->mnt->mnt_root)
1700 return -EINVAL;
1701
1702 type = flags_to_propagation_type(flag);
1703 if (!type)
1704 return -EINVAL;
1705
1706 namespace_lock();
1707 if (type == MS_SHARED) {
1708 err = invent_group_ids(mnt, recurse);
1709 if (err)
1710 goto out_unlock;
1711 }
1712
1713 br_write_lock(&vfsmount_lock);
1714 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
1715 change_mnt_propagation(m, type);
1716 br_write_unlock(&vfsmount_lock);
1717
1718 out_unlock:
1719 namespace_unlock();
1720 return err;
1721 }
1722
1723 static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
1724 {
1725 struct mount *child;
1726 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
1727 if (!is_subdir(child->mnt_mountpoint, dentry))
1728 continue;
1729
1730 if (child->mnt.mnt_flags & MNT_LOCKED)
1731 return true;
1732 }
1733 return false;
1734 }
1735
1736 /*
1737 * do loopback mount.
1738 */
1739 static int do_loopback(struct path *path, const char *old_name,
1740 int recurse)
1741 {
1742 struct path old_path;
1743 struct mount *mnt = NULL, *old, *parent;
1744 struct mountpoint *mp;
1745 int err;
1746 if (!old_name || !*old_name)
1747 return -EINVAL;
1748 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
1749 if (err)
1750 return err;
1751
1752 err = -EINVAL;
1753 if (mnt_ns_loop(old_path.dentry))
1754 goto out;
1755
1756 mp = lock_mount(path);
1757 err = PTR_ERR(mp);
1758 if (IS_ERR(mp))
1759 goto out;
1760
1761 old = real_mount(old_path.mnt);
1762 parent = real_mount(path->mnt);
1763
1764 err = -EINVAL;
1765 if (IS_MNT_UNBINDABLE(old))
1766 goto out2;
1767
1768 if (!check_mnt(parent) || !check_mnt(old))
1769 goto out2;
1770
1771 if (!recurse && has_locked_children(old, old_path.dentry))
1772 goto out2;
1773
1774 if (recurse)
1775 mnt = copy_tree(old, old_path.dentry, CL_COPY_MNT_NS_FILE);
1776 else
1777 mnt = clone_mnt(old, old_path.dentry, 0);
1778
1779 if (IS_ERR(mnt)) {
1780 err = PTR_ERR(mnt);
1781 goto out2;
1782 }
1783
1784 mnt->mnt.mnt_flags &= ~MNT_LOCKED;
1785
1786 err = graft_tree(mnt, parent, mp);
1787 if (err) {
1788 br_write_lock(&vfsmount_lock);
1789 umount_tree(mnt, 0);
1790 br_write_unlock(&vfsmount_lock);
1791 }
1792 out2:
1793 unlock_mount(mp);
1794 out:
1795 path_put(&old_path);
1796 return err;
1797 }
1798
1799 static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
1800 {
1801 int error = 0;
1802 int readonly_request = 0;
1803
1804 if (ms_flags & MS_RDONLY)
1805 readonly_request = 1;
1806 if (readonly_request == __mnt_is_readonly(mnt))
1807 return 0;
1808
1809 if (mnt->mnt_flags & MNT_LOCK_READONLY)
1810 return -EPERM;
1811
1812 if (readonly_request)
1813 error = mnt_make_readonly(real_mount(mnt));
1814 else
1815 __mnt_unmake_readonly(real_mount(mnt));
1816 return error;
1817 }
1818
1819 /*
1820 * change filesystem flags. dir should be a physical root of filesystem.
1821 * If you've mounted a non-root directory somewhere and want to do remount
1822 * on it - tough luck.
1823 */
1824 static int do_remount(struct path *path, int flags, int mnt_flags,
1825 void *data)
1826 {
1827 int err;
1828 struct super_block *sb = path->mnt->mnt_sb;
1829 struct mount *mnt = real_mount(path->mnt);
1830
1831 if (!check_mnt(mnt))
1832 return -EINVAL;
1833
1834 if (path->dentry != path->mnt->mnt_root)
1835 return -EINVAL;
1836
1837 err = security_sb_remount(sb, data);
1838 if (err)
1839 return err;
1840
1841 down_write(&sb->s_umount);
1842 if (flags & MS_BIND)
1843 err = change_mount_flags(path->mnt, flags);
1844 else if (!capable(CAP_SYS_ADMIN))
1845 err = -EPERM;
1846 else
1847 err = do_remount_sb(sb, flags, data, 0);
1848 if (!err) {
1849 br_write_lock(&vfsmount_lock);
1850 mnt_flags |= mnt->mnt.mnt_flags & MNT_PROPAGATION_MASK;
1851 mnt->mnt.mnt_flags = mnt_flags;
1852 touch_mnt_namespace(mnt->mnt_ns);
1853 br_write_unlock(&vfsmount_lock);
1854 }
1855 up_write(&sb->s_umount);
1856 return err;
1857 }
1858
1859 static inline int tree_contains_unbindable(struct mount *mnt)
1860 {
1861 struct mount *p;
1862 for (p = mnt; p; p = next_mnt(p, mnt)) {
1863 if (IS_MNT_UNBINDABLE(p))
1864 return 1;
1865 }
1866 return 0;
1867 }
1868
1869 static int do_move_mount(struct path *path, const char *old_name)
1870 {
1871 struct path old_path, parent_path;
1872 struct mount *p;
1873 struct mount *old;
1874 struct mountpoint *mp;
1875 int err;
1876 if (!old_name || !*old_name)
1877 return -EINVAL;
1878 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
1879 if (err)
1880 return err;
1881
1882 mp = lock_mount(path);
1883 err = PTR_ERR(mp);
1884 if (IS_ERR(mp))
1885 goto out;
1886
1887 old = real_mount(old_path.mnt);
1888 p = real_mount(path->mnt);
1889
1890 err = -EINVAL;
1891 if (!check_mnt(p) || !check_mnt(old))
1892 goto out1;
1893
1894 if (old->mnt.mnt_flags & MNT_LOCKED)
1895 goto out1;
1896
1897 err = -EINVAL;
1898 if (old_path.dentry != old_path.mnt->mnt_root)
1899 goto out1;
1900
1901 if (!mnt_has_parent(old))
1902 goto out1;
1903
1904 if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1905 S_ISDIR(old_path.dentry->d_inode->i_mode))
1906 goto out1;
1907 /*
1908 * Don't move a mount residing in a shared parent.
1909 */
1910 if (IS_MNT_SHARED(old->mnt_parent))
1911 goto out1;
1912 /*
1913 * Don't move a mount tree containing unbindable mounts to a destination
1914 * mount which is shared.
1915 */
1916 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
1917 goto out1;
1918 err = -ELOOP;
1919 for (; mnt_has_parent(p); p = p->mnt_parent)
1920 if (p == old)
1921 goto out1;
1922
1923 err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path);
1924 if (err)
1925 goto out1;
1926
1927 /* if the mount is moved, it should no longer be expire
1928 * automatically */
1929 list_del_init(&old->mnt_expire);
1930 out1:
1931 unlock_mount(mp);
1932 out:
1933 if (!err)
1934 path_put(&parent_path);
1935 path_put(&old_path);
1936 return err;
1937 }
1938
1939 static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
1940 {
1941 int err;
1942 const char *subtype = strchr(fstype, '.');
1943 if (subtype) {
1944 subtype++;
1945 err = -EINVAL;
1946 if (!subtype[0])
1947 goto err;
1948 } else
1949 subtype = "";
1950
1951 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
1952 err = -ENOMEM;
1953 if (!mnt->mnt_sb->s_subtype)
1954 goto err;
1955 return mnt;
1956
1957 err:
1958 mntput(mnt);
1959 return ERR_PTR(err);
1960 }
1961
1962 /*
1963 * add a mount into a namespace's mount tree
1964 */
1965 static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
1966 {
1967 struct mountpoint *mp;
1968 struct mount *parent;
1969 int err;
1970
1971 mnt_flags &= ~(MNT_SHARED | MNT_WRITE_HOLD | MNT_INTERNAL);
1972
1973 mp = lock_mount(path);
1974 if (IS_ERR(mp))
1975 return PTR_ERR(mp);
1976
1977 parent = real_mount(path->mnt);
1978 err = -EINVAL;
1979 if (unlikely(!check_mnt(parent))) {
1980 /* that's acceptable only for automounts done in private ns */
1981 if (!(mnt_flags & MNT_SHRINKABLE))
1982 goto unlock;
1983 /* ... and for those we'd better have mountpoint still alive */
1984 if (!parent->mnt_ns)
1985 goto unlock;
1986 }
1987
1988 /* Refuse the same filesystem on the same mount point */
1989 err = -EBUSY;
1990 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
1991 path->mnt->mnt_root == path->dentry)
1992 goto unlock;
1993
1994 err = -EINVAL;
1995 if (S_ISLNK(newmnt->mnt.mnt_root->d_inode->i_mode))
1996 goto unlock;
1997
1998 newmnt->mnt.mnt_flags = mnt_flags;
1999 err = graft_tree(newmnt, parent, mp);
2000
2001 unlock:
2002 unlock_mount(mp);
2003 return err;
2004 }
2005
2006 /*
2007 * create a new mount for userspace and request it to be added into the
2008 * namespace's tree
2009 */
2010 static int do_new_mount(struct path *path, const char *fstype, int flags,
2011 int mnt_flags, const char *name, void *data)
2012 {
2013 struct file_system_type *type;
2014 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2015 struct vfsmount *mnt;
2016 int err;
2017
2018 if (!fstype)
2019 return -EINVAL;
2020
2021 type = get_fs_type(fstype);
2022 if (!type)
2023 return -ENODEV;
2024
2025 if (user_ns != &init_user_ns) {
2026 if (!(type->fs_flags & FS_USERNS_MOUNT)) {
2027 put_filesystem(type);
2028 return -EPERM;
2029 }
2030 /* Only in special cases allow devices from mounts
2031 * created outside the initial user namespace.
2032 */
2033 if (!(type->fs_flags & FS_USERNS_DEV_MOUNT)) {
2034 flags |= MS_NODEV;
2035 mnt_flags |= MNT_NODEV;
2036 }
2037 }
2038
2039 mnt = vfs_kern_mount(type, flags, name, data);
2040 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
2041 !mnt->mnt_sb->s_subtype)
2042 mnt = fs_set_subtype(mnt, fstype);
2043
2044 put_filesystem(type);
2045 if (IS_ERR(mnt))
2046 return PTR_ERR(mnt);
2047
2048 err = do_add_mount(real_mount(mnt), path, mnt_flags);
2049 if (err)
2050 mntput(mnt);
2051 return err;
2052 }
2053
2054 int finish_automount(struct vfsmount *m, struct path *path)
2055 {
2056 struct mount *mnt = real_mount(m);
2057 int err;
2058 /* The new mount record should have at least 2 refs to prevent it being
2059 * expired before we get a chance to add it
2060 */
2061 BUG_ON(mnt_get_count(mnt) < 2);
2062
2063 if (m->mnt_sb == path->mnt->mnt_sb &&
2064 m->mnt_root == path->dentry) {
2065 err = -ELOOP;
2066 goto fail;
2067 }
2068
2069 err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
2070 if (!err)
2071 return 0;
2072 fail:
2073 /* remove m from any expiration list it may be on */
2074 if (!list_empty(&mnt->mnt_expire)) {
2075 namespace_lock();
2076 br_write_lock(&vfsmount_lock);
2077 list_del_init(&mnt->mnt_expire);
2078 br_write_unlock(&vfsmount_lock);
2079 namespace_unlock();
2080 }
2081 mntput(m);
2082 mntput(m);
2083 return err;
2084 }
2085
2086 /**
2087 * mnt_set_expiry - Put a mount on an expiration list
2088 * @mnt: The mount to list.
2089 * @expiry_list: The list to add the mount to.
2090 */
2091 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2092 {
2093 namespace_lock();
2094 br_write_lock(&vfsmount_lock);
2095
2096 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
2097
2098 br_write_unlock(&vfsmount_lock);
2099 namespace_unlock();
2100 }
2101 EXPORT_SYMBOL(mnt_set_expiry);
2102
2103 /*
2104 * process a list of expirable mountpoints with the intent of discarding any
2105 * mountpoints that aren't in use and haven't been touched since last we came
2106 * here
2107 */
2108 void mark_mounts_for_expiry(struct list_head *mounts)
2109 {
2110 struct mount *mnt, *next;
2111 LIST_HEAD(graveyard);
2112
2113 if (list_empty(mounts))
2114 return;
2115
2116 namespace_lock();
2117 br_write_lock(&vfsmount_lock);
2118
2119 /* extract from the expiration list every vfsmount that matches the
2120 * following criteria:
2121 * - only referenced by its parent vfsmount
2122 * - still marked for expiry (marked on the last call here; marks are
2123 * cleared by mntput())
2124 */
2125 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
2126 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
2127 propagate_mount_busy(mnt, 1))
2128 continue;
2129 list_move(&mnt->mnt_expire, &graveyard);
2130 }
2131 while (!list_empty(&graveyard)) {
2132 mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
2133 touch_mnt_namespace(mnt->mnt_ns);
2134 umount_tree(mnt, 1);
2135 }
2136 br_write_unlock(&vfsmount_lock);
2137 namespace_unlock();
2138 }
2139
2140 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2141
2142 /*
2143 * Ripoff of 'select_parent()'
2144 *
2145 * search the list of submounts for a given mountpoint, and move any
2146 * shrinkable submounts to the 'graveyard' list.
2147 */
2148 static int select_submounts(struct mount *parent, struct list_head *graveyard)
2149 {
2150 struct mount *this_parent = parent;
2151 struct list_head *next;
2152 int found = 0;
2153
2154 repeat:
2155 next = this_parent->mnt_mounts.next;
2156 resume:
2157 while (next != &this_parent->mnt_mounts) {
2158 struct list_head *tmp = next;
2159 struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
2160
2161 next = tmp->next;
2162 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
2163 continue;
2164 /*
2165 * Descend a level if the d_mounts list is non-empty.
2166 */
2167 if (!list_empty(&mnt->mnt_mounts)) {
2168 this_parent = mnt;
2169 goto repeat;
2170 }
2171
2172 if (!propagate_mount_busy(mnt, 1)) {
2173 list_move_tail(&mnt->mnt_expire, graveyard);
2174 found++;
2175 }
2176 }
2177 /*
2178 * All done at this level ... ascend and resume the search
2179 */
2180 if (this_parent != parent) {
2181 next = this_parent->mnt_child.next;
2182 this_parent = this_parent->mnt_parent;
2183 goto resume;
2184 }
2185 return found;
2186 }
2187
2188 /*
2189 * process a list of expirable mountpoints with the intent of discarding any
2190 * submounts of a specific parent mountpoint
2191 *
2192 * vfsmount_lock must be held for write
2193 */
2194 static void shrink_submounts(struct mount *mnt)
2195 {
2196 LIST_HEAD(graveyard);
2197 struct mount *m;
2198
2199 /* extract submounts of 'mountpoint' from the expiration list */
2200 while (select_submounts(mnt, &graveyard)) {
2201 while (!list_empty(&graveyard)) {
2202 m = list_first_entry(&graveyard, struct mount,
2203 mnt_expire);
2204 touch_mnt_namespace(m->mnt_ns);
2205 umount_tree(m, 1);
2206 }
2207 }
2208 }
2209
2210 /*
2211 * Some copy_from_user() implementations do not return the exact number of
2212 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
2213 * Note that this function differs from copy_from_user() in that it will oops
2214 * on bad values of `to', rather than returning a short copy.
2215 */
2216 static long exact_copy_from_user(void *to, const void __user * from,
2217 unsigned long n)
2218 {
2219 char *t = to;
2220 const char __user *f = from;
2221 char c;
2222
2223 if (!access_ok(VERIFY_READ, from, n))
2224 return n;
2225
2226 while (n) {
2227 if (__get_user(c, f)) {
2228 memset(t, 0, n);
2229 break;
2230 }
2231 *t++ = c;
2232 f++;
2233 n--;
2234 }
2235 return n;
2236 }
2237
2238 int copy_mount_options(const void __user * data, unsigned long *where)
2239 {
2240 int i;
2241 unsigned long page;
2242 unsigned long size;
2243
2244 *where = 0;
2245 if (!data)
2246 return 0;
2247
2248 if (!(page = __get_free_page(GFP_KERNEL)))
2249 return -ENOMEM;
2250
2251 /* We only care that *some* data at the address the user
2252 * gave us is valid. Just in case, we'll zero
2253 * the remainder of the page.
2254 */
2255 /* copy_from_user cannot cross TASK_SIZE ! */
2256 size = TASK_SIZE - (unsigned long)data;
2257 if (size > PAGE_SIZE)
2258 size = PAGE_SIZE;
2259
2260 i = size - exact_copy_from_user((void *)page, data, size);
2261 if (!i) {
2262 free_page(page);
2263 return -EFAULT;
2264 }
2265 if (i != PAGE_SIZE)
2266 memset((char *)page + i, 0, PAGE_SIZE - i);
2267 *where = page;
2268 return 0;
2269 }
2270
2271 int copy_mount_string(const void __user *data, char **where)
2272 {
2273 char *tmp;
2274
2275 if (!data) {
2276 *where = NULL;
2277 return 0;
2278 }
2279
2280 tmp = strndup_user(data, PAGE_SIZE);
2281 if (IS_ERR(tmp))
2282 return PTR_ERR(tmp);
2283
2284 *where = tmp;
2285 return 0;
2286 }
2287
2288 /*
2289 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2290 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2291 *
2292 * data is a (void *) that can point to any structure up to
2293 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2294 * information (or be NULL).
2295 *
2296 * Pre-0.97 versions of mount() didn't have a flags word.
2297 * When the flags word was introduced its top half was required
2298 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2299 * Therefore, if this magic number is present, it carries no information
2300 * and must be discarded.
2301 */
2302 long do_mount(const char *dev_name, const char *dir_name,
2303 const char *type_page, unsigned long flags, void *data_page)
2304 {
2305 struct path path;
2306 int retval = 0;
2307 int mnt_flags = 0;
2308
2309 /* Discard magic */
2310 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2311 flags &= ~MS_MGC_MSK;
2312
2313 /* Basic sanity checks */
2314
2315 if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
2316 return -EINVAL;
2317
2318 if (data_page)
2319 ((char *)data_page)[PAGE_SIZE - 1] = 0;
2320
2321 /* ... and get the mountpoint */
2322 retval = kern_path(dir_name, LOOKUP_FOLLOW, &path);
2323 if (retval)
2324 return retval;
2325
2326 retval = security_sb_mount(dev_name, &path,
2327 type_page, flags, data_page);
2328 if (!retval && !may_mount())
2329 retval = -EPERM;
2330 if (retval)
2331 goto dput_out;
2332
2333 /* Default to relatime unless overriden */
2334 if (!(flags & MS_NOATIME))
2335 mnt_flags |= MNT_RELATIME;
2336
2337 /* Separate the per-mountpoint flags */
2338 if (flags & MS_NOSUID)
2339 mnt_flags |= MNT_NOSUID;
2340 if (flags & MS_NODEV)
2341 mnt_flags |= MNT_NODEV;
2342 if (flags & MS_NOEXEC)
2343 mnt_flags |= MNT_NOEXEC;
2344 if (flags & MS_NOATIME)
2345 mnt_flags |= MNT_NOATIME;
2346 if (flags & MS_NODIRATIME)
2347 mnt_flags |= MNT_NODIRATIME;
2348 if (flags & MS_STRICTATIME)
2349 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2350 if (flags & MS_RDONLY)
2351 mnt_flags |= MNT_READONLY;
2352
2353 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
2354 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
2355 MS_STRICTATIME);
2356
2357 if (flags & MS_REMOUNT)
2358 retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
2359 data_page);
2360 else if (flags & MS_BIND)
2361 retval = do_loopback(&path, dev_name, flags & MS_REC);
2362 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2363 retval = do_change_type(&path, flags);
2364 else if (flags & MS_MOVE)
2365 retval = do_move_mount(&path, dev_name);
2366 else
2367 retval = do_new_mount(&path, type_page, flags, mnt_flags,
2368 dev_name, data_page);
2369 dput_out:
2370 path_put(&path);
2371 return retval;
2372 }
2373
2374 static void free_mnt_ns(struct mnt_namespace *ns)
2375 {
2376 proc_free_inum(ns->proc_inum);
2377 put_user_ns(ns->user_ns);
2378 kfree(ns);
2379 }
2380
2381 /*
2382 * Assign a sequence number so we can detect when we attempt to bind
2383 * mount a reference to an older mount namespace into the current
2384 * mount namespace, preventing reference counting loops. A 64bit
2385 * number incrementing at 10Ghz will take 12,427 years to wrap which
2386 * is effectively never, so we can ignore the possibility.
2387 */
2388 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
2389
2390 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
2391 {
2392 struct mnt_namespace *new_ns;
2393 int ret;
2394
2395 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2396 if (!new_ns)
2397 return ERR_PTR(-ENOMEM);
2398 ret = proc_alloc_inum(&new_ns->proc_inum);
2399 if (ret) {
2400 kfree(new_ns);
2401 return ERR_PTR(ret);
2402 }
2403 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
2404 atomic_set(&new_ns->count, 1);
2405 new_ns->root = NULL;
2406 INIT_LIST_HEAD(&new_ns->list);
2407 init_waitqueue_head(&new_ns->poll);
2408 new_ns->event = 0;
2409 new_ns->user_ns = get_user_ns(user_ns);
2410 return new_ns;
2411 }
2412
2413 /*
2414 * Allocate a new namespace structure and populate it with contents
2415 * copied from the namespace of the passed in task structure.
2416 */
2417 static struct mnt_namespace *dup_mnt_ns(struct mnt_namespace *mnt_ns,
2418 struct user_namespace *user_ns, struct fs_struct *fs)
2419 {
2420 struct mnt_namespace *new_ns;
2421 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
2422 struct mount *p, *q;
2423 struct mount *old = mnt_ns->root;
2424 struct mount *new;
2425 int copy_flags;
2426
2427 new_ns = alloc_mnt_ns(user_ns);
2428 if (IS_ERR(new_ns))
2429 return new_ns;
2430
2431 namespace_lock();
2432 /* First pass: copy the tree topology */
2433 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
2434 if (user_ns != mnt_ns->user_ns)
2435 copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED;
2436 new = copy_tree(old, old->mnt.mnt_root, copy_flags);
2437 if (IS_ERR(new)) {
2438 namespace_unlock();
2439 free_mnt_ns(new_ns);
2440 return ERR_CAST(new);
2441 }
2442 new_ns->root = new;
2443 list_add_tail(&new_ns->list, &new->mnt_list);
2444
2445 /*
2446 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2447 * as belonging to new namespace. We have already acquired a private
2448 * fs_struct, so tsk->fs->lock is not needed.
2449 */
2450 p = old;
2451 q = new;
2452 while (p) {
2453 q->mnt_ns = new_ns;
2454 if (fs) {
2455 if (&p->mnt == fs->root.mnt) {
2456 fs->root.mnt = mntget(&q->mnt);
2457 rootmnt = &p->mnt;
2458 }
2459 if (&p->mnt == fs->pwd.mnt) {
2460 fs->pwd.mnt = mntget(&q->mnt);
2461 pwdmnt = &p->mnt;
2462 }
2463 }
2464 p = next_mnt(p, old);
2465 q = next_mnt(q, new);
2466 if (!q)
2467 break;
2468 while (p->mnt.mnt_root != q->mnt.mnt_root)
2469 p = next_mnt(p, old);
2470 }
2471 namespace_unlock();
2472
2473 if (rootmnt)
2474 mntput(rootmnt);
2475 if (pwdmnt)
2476 mntput(pwdmnt);
2477
2478 return new_ns;
2479 }
2480
2481 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2482 struct user_namespace *user_ns, struct fs_struct *new_fs)
2483 {
2484 struct mnt_namespace *new_ns;
2485
2486 BUG_ON(!ns);
2487 get_mnt_ns(ns);
2488
2489 if (!(flags & CLONE_NEWNS))
2490 return ns;
2491
2492 new_ns = dup_mnt_ns(ns, user_ns, new_fs);
2493
2494 put_mnt_ns(ns);
2495 return new_ns;
2496 }
2497
2498 /**
2499 * create_mnt_ns - creates a private namespace and adds a root filesystem
2500 * @mnt: pointer to the new root filesystem mountpoint
2501 */
2502 static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
2503 {
2504 struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
2505 if (!IS_ERR(new_ns)) {
2506 struct mount *mnt = real_mount(m);
2507 mnt->mnt_ns = new_ns;
2508 new_ns->root = mnt;
2509 list_add(&mnt->mnt_list, &new_ns->list);
2510 } else {
2511 mntput(m);
2512 }
2513 return new_ns;
2514 }
2515
2516 struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
2517 {
2518 struct mnt_namespace *ns;
2519 struct super_block *s;
2520 struct path path;
2521 int err;
2522
2523 ns = create_mnt_ns(mnt);
2524 if (IS_ERR(ns))
2525 return ERR_CAST(ns);
2526
2527 err = vfs_path_lookup(mnt->mnt_root, mnt,
2528 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
2529
2530 put_mnt_ns(ns);
2531
2532 if (err)
2533 return ERR_PTR(err);
2534
2535 /* trade a vfsmount reference for active sb one */
2536 s = path.mnt->mnt_sb;
2537 atomic_inc(&s->s_active);
2538 mntput(path.mnt);
2539 /* lock the sucker */
2540 down_write(&s->s_umount);
2541 /* ... and return the root of (sub)tree on it */
2542 return path.dentry;
2543 }
2544 EXPORT_SYMBOL(mount_subtree);
2545
2546 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
2547 char __user *, type, unsigned long, flags, void __user *, data)
2548 {
2549 int ret;
2550 char *kernel_type;
2551 struct filename *kernel_dir;
2552 char *kernel_dev;
2553 unsigned long data_page;
2554
2555 ret = copy_mount_string(type, &kernel_type);
2556 if (ret < 0)
2557 goto out_type;
2558
2559 kernel_dir = getname(dir_name);
2560 if (IS_ERR(kernel_dir)) {
2561 ret = PTR_ERR(kernel_dir);
2562 goto out_dir;
2563 }
2564
2565 ret = copy_mount_string(dev_name, &kernel_dev);
2566 if (ret < 0)
2567 goto out_dev;
2568
2569 ret = copy_mount_options(data, &data_page);
2570 if (ret < 0)
2571 goto out_data;
2572
2573 ret = do_mount(kernel_dev, kernel_dir->name, kernel_type, flags,
2574 (void *) data_page);
2575
2576 free_page(data_page);
2577 out_data:
2578 kfree(kernel_dev);
2579 out_dev:
2580 putname(kernel_dir);
2581 out_dir:
2582 kfree(kernel_type);
2583 out_type:
2584 return ret;
2585 }
2586
2587 /*
2588 * Return true if path is reachable from root
2589 *
2590 * namespace_sem or vfsmount_lock is held
2591 */
2592 bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
2593 const struct path *root)
2594 {
2595 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
2596 dentry = mnt->mnt_mountpoint;
2597 mnt = mnt->mnt_parent;
2598 }
2599 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
2600 }
2601
2602 int path_is_under(struct path *path1, struct path *path2)
2603 {
2604 int res;
2605 br_read_lock(&vfsmount_lock);
2606 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
2607 br_read_unlock(&vfsmount_lock);
2608 return res;
2609 }
2610 EXPORT_SYMBOL(path_is_under);
2611
2612 /*
2613 * pivot_root Semantics:
2614 * Moves the root file system of the current process to the directory put_old,
2615 * makes new_root as the new root file system of the current process, and sets
2616 * root/cwd of all processes which had them on the current root to new_root.
2617 *
2618 * Restrictions:
2619 * The new_root and put_old must be directories, and must not be on the
2620 * same file system as the current process root. The put_old must be
2621 * underneath new_root, i.e. adding a non-zero number of /.. to the string
2622 * pointed to by put_old must yield the same directory as new_root. No other
2623 * file system may be mounted on put_old. After all, new_root is a mountpoint.
2624 *
2625 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
2626 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
2627 * in this situation.
2628 *
2629 * Notes:
2630 * - we don't move root/cwd if they are not at the root (reason: if something
2631 * cared enough to change them, it's probably wrong to force them elsewhere)
2632 * - it's okay to pick a root that isn't the root of a file system, e.g.
2633 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
2634 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
2635 * first.
2636 */
2637 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
2638 const char __user *, put_old)
2639 {
2640 struct path new, old, parent_path, root_parent, root;
2641 struct mount *new_mnt, *root_mnt, *old_mnt;
2642 struct mountpoint *old_mp, *root_mp;
2643 int error;
2644
2645 if (!may_mount())
2646 return -EPERM;
2647
2648 error = user_path_dir(new_root, &new);
2649 if (error)
2650 goto out0;
2651
2652 error = user_path_dir(put_old, &old);
2653 if (error)
2654 goto out1;
2655
2656 error = security_sb_pivotroot(&old, &new);
2657 if (error)
2658 goto out2;
2659
2660 get_fs_root(current->fs, &root);
2661 old_mp = lock_mount(&old);
2662 error = PTR_ERR(old_mp);
2663 if (IS_ERR(old_mp))
2664 goto out3;
2665
2666 error = -EINVAL;
2667 new_mnt = real_mount(new.mnt);
2668 root_mnt = real_mount(root.mnt);
2669 old_mnt = real_mount(old.mnt);
2670 if (IS_MNT_SHARED(old_mnt) ||
2671 IS_MNT_SHARED(new_mnt->mnt_parent) ||
2672 IS_MNT_SHARED(root_mnt->mnt_parent))
2673 goto out4;
2674 if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
2675 goto out4;
2676 if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
2677 goto out4;
2678 error = -ENOENT;
2679 if (d_unlinked(new.dentry))
2680 goto out4;
2681 error = -EBUSY;
2682 if (new_mnt == root_mnt || old_mnt == root_mnt)
2683 goto out4; /* loop, on the same file system */
2684 error = -EINVAL;
2685 if (root.mnt->mnt_root != root.dentry)
2686 goto out4; /* not a mountpoint */
2687 if (!mnt_has_parent(root_mnt))
2688 goto out4; /* not attached */
2689 root_mp = root_mnt->mnt_mp;
2690 if (new.mnt->mnt_root != new.dentry)
2691 goto out4; /* not a mountpoint */
2692 if (!mnt_has_parent(new_mnt))
2693 goto out4; /* not attached */
2694 /* make sure we can reach put_old from new_root */
2695 if (!is_path_reachable(old_mnt, old.dentry, &new))
2696 goto out4;
2697 root_mp->m_count++; /* pin it so it won't go away */
2698 br_write_lock(&vfsmount_lock);
2699 detach_mnt(new_mnt, &parent_path);
2700 detach_mnt(root_mnt, &root_parent);
2701 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
2702 new_mnt->mnt.mnt_flags |= MNT_LOCKED;
2703 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2704 }
2705 /* mount old root on put_old */
2706 attach_mnt(root_mnt, old_mnt, old_mp);
2707 /* mount new_root on / */
2708 attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp);
2709 touch_mnt_namespace(current->nsproxy->mnt_ns);
2710 br_write_unlock(&vfsmount_lock);
2711 chroot_fs_refs(&root, &new);
2712 put_mountpoint(root_mp);
2713 error = 0;
2714 out4:
2715 unlock_mount(old_mp);
2716 if (!error) {
2717 path_put(&root_parent);
2718 path_put(&parent_path);
2719 }
2720 out3:
2721 path_put(&root);
2722 out2:
2723 path_put(&old);
2724 out1:
2725 path_put(&new);
2726 out0:
2727 return error;
2728 }
2729
2730 static void __init init_mount_tree(void)
2731 {
2732 struct vfsmount *mnt;
2733 struct mnt_namespace *ns;
2734 struct path root;
2735 struct file_system_type *type;
2736
2737 type = get_fs_type("rootfs");
2738 if (!type)
2739 panic("Can't find rootfs type");
2740 mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
2741 put_filesystem(type);
2742 if (IS_ERR(mnt))
2743 panic("Can't create rootfs");
2744
2745 ns = create_mnt_ns(mnt);
2746 if (IS_ERR(ns))
2747 panic("Can't allocate initial namespace");
2748
2749 init_task.nsproxy->mnt_ns = ns;
2750 get_mnt_ns(ns);
2751
2752 root.mnt = mnt;
2753 root.dentry = mnt->mnt_root;
2754
2755 set_fs_pwd(current->fs, &root);
2756 set_fs_root(current->fs, &root);
2757 }
2758
2759 void __init mnt_init(void)
2760 {
2761 unsigned u;
2762 int err;
2763
2764 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
2765 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
2766
2767 mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
2768 mountpoint_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
2769
2770 if (!mount_hashtable || !mountpoint_hashtable)
2771 panic("Failed to allocate mount hash table\n");
2772
2773 printk(KERN_INFO "Mount-cache hash table entries: %lu\n", HASH_SIZE);
2774
2775 for (u = 0; u < HASH_SIZE; u++)
2776 INIT_LIST_HEAD(&mount_hashtable[u]);
2777 for (u = 0; u < HASH_SIZE; u++)
2778 INIT_LIST_HEAD(&mountpoint_hashtable[u]);
2779
2780 br_lock_init(&vfsmount_lock);
2781
2782 err = sysfs_init();
2783 if (err)
2784 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
2785 __func__, err);
2786 fs_kobj = kobject_create_and_add("fs", NULL);
2787 if (!fs_kobj)
2788 printk(KERN_WARNING "%s: kobj create error\n", __func__);
2789 init_rootfs();
2790 init_mount_tree();
2791 }
2792
2793 void put_mnt_ns(struct mnt_namespace *ns)
2794 {
2795 if (!atomic_dec_and_test(&ns->count))
2796 return;
2797 drop_collected_mounts(&ns->root->mnt);
2798 free_mnt_ns(ns);
2799 }
2800
2801 struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
2802 {
2803 struct vfsmount *mnt;
2804 mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
2805 if (!IS_ERR(mnt)) {
2806 /*
2807 * it is a longterm mount, don't release mnt until
2808 * we unmount before file sys is unregistered
2809 */
2810 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
2811 }
2812 return mnt;
2813 }
2814 EXPORT_SYMBOL_GPL(kern_mount_data);
2815
2816 void kern_unmount(struct vfsmount *mnt)
2817 {
2818 /* release long term mount so mount point can be released */
2819 if (!IS_ERR_OR_NULL(mnt)) {
2820 br_write_lock(&vfsmount_lock);
2821 real_mount(mnt)->mnt_ns = NULL;
2822 br_write_unlock(&vfsmount_lock);
2823 mntput(mnt);
2824 }
2825 }
2826 EXPORT_SYMBOL(kern_unmount);
2827
2828 bool our_mnt(struct vfsmount *mnt)
2829 {
2830 return check_mnt(real_mount(mnt));
2831 }
2832
2833 bool current_chrooted(void)
2834 {
2835 /* Does the current process have a non-standard root */
2836 struct path ns_root;
2837 struct path fs_root;
2838 bool chrooted;
2839
2840 /* Find the namespace root */
2841 ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
2842 ns_root.dentry = ns_root.mnt->mnt_root;
2843 path_get(&ns_root);
2844 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
2845 ;
2846
2847 get_fs_root(current->fs, &fs_root);
2848
2849 chrooted = !path_equal(&fs_root, &ns_root);
2850
2851 path_put(&fs_root);
2852 path_put(&ns_root);
2853
2854 return chrooted;
2855 }
2856
2857 bool fs_fully_visible(struct file_system_type *type)
2858 {
2859 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
2860 struct mount *mnt;
2861 bool visible = false;
2862
2863 if (unlikely(!ns))
2864 return false;
2865
2866 down_read(&namespace_sem);
2867 list_for_each_entry(mnt, &ns->list, mnt_list) {
2868 struct mount *child;
2869 if (mnt->mnt.mnt_sb->s_type != type)
2870 continue;
2871
2872 /* This mount is not fully visible if there are any child mounts
2873 * that cover anything except for empty directories.
2874 */
2875 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
2876 struct inode *inode = child->mnt_mountpoint->d_inode;
2877 if (!S_ISDIR(inode->i_mode))
2878 goto next;
2879 if (inode->i_nlink != 2)
2880 goto next;
2881 }
2882 visible = true;
2883 goto found;
2884 next: ;
2885 }
2886 found:
2887 up_read(&namespace_sem);
2888 return visible;
2889 }
2890
2891 static void *mntns_get(struct task_struct *task)
2892 {
2893 struct mnt_namespace *ns = NULL;
2894 struct nsproxy *nsproxy;
2895
2896 rcu_read_lock();
2897 nsproxy = task_nsproxy(task);
2898 if (nsproxy) {
2899 ns = nsproxy->mnt_ns;
2900 get_mnt_ns(ns);
2901 }
2902 rcu_read_unlock();
2903
2904 return ns;
2905 }
2906
2907 static void mntns_put(void *ns)
2908 {
2909 put_mnt_ns(ns);
2910 }
2911
2912 static int mntns_install(struct nsproxy *nsproxy, void *ns)
2913 {
2914 struct fs_struct *fs = current->fs;
2915 struct mnt_namespace *mnt_ns = ns;
2916 struct path root;
2917
2918 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
2919 !ns_capable(current_user_ns(), CAP_SYS_CHROOT) ||
2920 !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
2921 return -EPERM;
2922
2923 if (fs->users != 1)
2924 return -EINVAL;
2925
2926 get_mnt_ns(mnt_ns);
2927 put_mnt_ns(nsproxy->mnt_ns);
2928 nsproxy->mnt_ns = mnt_ns;
2929
2930 /* Find the root */
2931 root.mnt = &mnt_ns->root->mnt;
2932 root.dentry = mnt_ns->root->mnt.mnt_root;
2933 path_get(&root);
2934 while(d_mountpoint(root.dentry) && follow_down_one(&root))
2935 ;
2936
2937 /* Update the pwd and root */
2938 set_fs_pwd(fs, &root);
2939 set_fs_root(fs, &root);
2940
2941 path_put(&root);
2942 return 0;
2943 }
2944
2945 static unsigned int mntns_inum(void *ns)
2946 {
2947 struct mnt_namespace *mnt_ns = ns;
2948 return mnt_ns->proc_inum;
2949 }
2950
2951 const struct proc_ns_operations mntns_operations = {
2952 .name = "mnt",
2953 .type = CLONE_NEWNS,
2954 .get = mntns_get,
2955 .put = mntns_put,
2956 .install = mntns_install,
2957 .inum = mntns_inum,
2958 };
This page took 0.094134 seconds and 6 git commands to generate.