Merge branch 'master' of /home/trondmy/kernel/linux-2.6/
[deliverable/linux.git] / fs / namespace.c
1 /*
2 * linux/fs/namespace.c
3 *
4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
11 #include <linux/config.h>
12 #include <linux/syscalls.h>
13 #include <linux/slab.h>
14 #include <linux/sched.h>
15 #include <linux/smp_lock.h>
16 #include <linux/init.h>
17 #include <linux/quotaops.h>
18 #include <linux/acct.h>
19 #include <linux/capability.h>
20 #include <linux/module.h>
21 #include <linux/seq_file.h>
22 #include <linux/namespace.h>
23 #include <linux/namei.h>
24 #include <linux/security.h>
25 #include <linux/mount.h>
26 #include <asm/uaccess.h>
27 #include <asm/unistd.h>
28 #include "pnode.h"
29
30 extern int __init init_rootfs(void);
31
32 #ifdef CONFIG_SYSFS
33 extern int __init sysfs_init(void);
34 #else
35 static inline int sysfs_init(void)
36 {
37 return 0;
38 }
39 #endif
40
41 /* spinlock for vfsmount related operations, inplace of dcache_lock */
42 __cacheline_aligned_in_smp DEFINE_SPINLOCK(vfsmount_lock);
43
44 static int event;
45
46 static struct list_head *mount_hashtable __read_mostly;
47 static int hash_mask __read_mostly, hash_bits __read_mostly;
48 static kmem_cache_t *mnt_cache __read_mostly;
49 static struct rw_semaphore namespace_sem;
50
51 /* /sys/fs */
52 decl_subsys(fs, NULL, NULL);
53 EXPORT_SYMBOL_GPL(fs_subsys);
54
55 static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry)
56 {
57 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
58 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
59 tmp = tmp + (tmp >> hash_bits);
60 return tmp & hash_mask;
61 }
62
63 struct vfsmount *alloc_vfsmnt(const char *name)
64 {
65 struct vfsmount *mnt = kmem_cache_alloc(mnt_cache, GFP_KERNEL);
66 if (mnt) {
67 memset(mnt, 0, sizeof(struct vfsmount));
68 atomic_set(&mnt->mnt_count, 1);
69 INIT_LIST_HEAD(&mnt->mnt_hash);
70 INIT_LIST_HEAD(&mnt->mnt_child);
71 INIT_LIST_HEAD(&mnt->mnt_mounts);
72 INIT_LIST_HEAD(&mnt->mnt_list);
73 INIT_LIST_HEAD(&mnt->mnt_expire);
74 INIT_LIST_HEAD(&mnt->mnt_share);
75 INIT_LIST_HEAD(&mnt->mnt_slave_list);
76 INIT_LIST_HEAD(&mnt->mnt_slave);
77 if (name) {
78 int size = strlen(name) + 1;
79 char *newname = kmalloc(size, GFP_KERNEL);
80 if (newname) {
81 memcpy(newname, name, size);
82 mnt->mnt_devname = newname;
83 }
84 }
85 }
86 return mnt;
87 }
88
89 int simple_set_mnt(struct vfsmount *mnt, struct super_block *sb)
90 {
91 mnt->mnt_sb = sb;
92 mnt->mnt_root = dget(sb->s_root);
93 return 0;
94 }
95
96 EXPORT_SYMBOL(simple_set_mnt);
97
98 void free_vfsmnt(struct vfsmount *mnt)
99 {
100 kfree(mnt->mnt_devname);
101 kmem_cache_free(mnt_cache, mnt);
102 }
103
104 /*
105 * find the first or last mount at @dentry on vfsmount @mnt depending on
106 * @dir. If @dir is set return the first mount else return the last mount.
107 */
108 struct vfsmount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry,
109 int dir)
110 {
111 struct list_head *head = mount_hashtable + hash(mnt, dentry);
112 struct list_head *tmp = head;
113 struct vfsmount *p, *found = NULL;
114
115 for (;;) {
116 tmp = dir ? tmp->next : tmp->prev;
117 p = NULL;
118 if (tmp == head)
119 break;
120 p = list_entry(tmp, struct vfsmount, mnt_hash);
121 if (p->mnt_parent == mnt && p->mnt_mountpoint == dentry) {
122 found = p;
123 break;
124 }
125 }
126 return found;
127 }
128
129 /*
130 * lookup_mnt increments the ref count before returning
131 * the vfsmount struct.
132 */
133 struct vfsmount *lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
134 {
135 struct vfsmount *child_mnt;
136 spin_lock(&vfsmount_lock);
137 if ((child_mnt = __lookup_mnt(mnt, dentry, 1)))
138 mntget(child_mnt);
139 spin_unlock(&vfsmount_lock);
140 return child_mnt;
141 }
142
143 static inline int check_mnt(struct vfsmount *mnt)
144 {
145 return mnt->mnt_namespace == current->namespace;
146 }
147
148 static void touch_namespace(struct namespace *ns)
149 {
150 if (ns) {
151 ns->event = ++event;
152 wake_up_interruptible(&ns->poll);
153 }
154 }
155
156 static void __touch_namespace(struct namespace *ns)
157 {
158 if (ns && ns->event != event) {
159 ns->event = event;
160 wake_up_interruptible(&ns->poll);
161 }
162 }
163
164 static void detach_mnt(struct vfsmount *mnt, struct nameidata *old_nd)
165 {
166 old_nd->dentry = mnt->mnt_mountpoint;
167 old_nd->mnt = mnt->mnt_parent;
168 mnt->mnt_parent = mnt;
169 mnt->mnt_mountpoint = mnt->mnt_root;
170 list_del_init(&mnt->mnt_child);
171 list_del_init(&mnt->mnt_hash);
172 old_nd->dentry->d_mounted--;
173 }
174
175 void mnt_set_mountpoint(struct vfsmount *mnt, struct dentry *dentry,
176 struct vfsmount *child_mnt)
177 {
178 child_mnt->mnt_parent = mntget(mnt);
179 child_mnt->mnt_mountpoint = dget(dentry);
180 dentry->d_mounted++;
181 }
182
183 static void attach_mnt(struct vfsmount *mnt, struct nameidata *nd)
184 {
185 mnt_set_mountpoint(nd->mnt, nd->dentry, mnt);
186 list_add_tail(&mnt->mnt_hash, mount_hashtable +
187 hash(nd->mnt, nd->dentry));
188 list_add_tail(&mnt->mnt_child, &nd->mnt->mnt_mounts);
189 }
190
191 /*
192 * the caller must hold vfsmount_lock
193 */
194 static void commit_tree(struct vfsmount *mnt)
195 {
196 struct vfsmount *parent = mnt->mnt_parent;
197 struct vfsmount *m;
198 LIST_HEAD(head);
199 struct namespace *n = parent->mnt_namespace;
200
201 BUG_ON(parent == mnt);
202
203 list_add_tail(&head, &mnt->mnt_list);
204 list_for_each_entry(m, &head, mnt_list)
205 m->mnt_namespace = n;
206 list_splice(&head, n->list.prev);
207
208 list_add_tail(&mnt->mnt_hash, mount_hashtable +
209 hash(parent, mnt->mnt_mountpoint));
210 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
211 touch_namespace(n);
212 }
213
214 static struct vfsmount *next_mnt(struct vfsmount *p, struct vfsmount *root)
215 {
216 struct list_head *next = p->mnt_mounts.next;
217 if (next == &p->mnt_mounts) {
218 while (1) {
219 if (p == root)
220 return NULL;
221 next = p->mnt_child.next;
222 if (next != &p->mnt_parent->mnt_mounts)
223 break;
224 p = p->mnt_parent;
225 }
226 }
227 return list_entry(next, struct vfsmount, mnt_child);
228 }
229
230 static struct vfsmount *skip_mnt_tree(struct vfsmount *p)
231 {
232 struct list_head *prev = p->mnt_mounts.prev;
233 while (prev != &p->mnt_mounts) {
234 p = list_entry(prev, struct vfsmount, mnt_child);
235 prev = p->mnt_mounts.prev;
236 }
237 return p;
238 }
239
240 static struct vfsmount *clone_mnt(struct vfsmount *old, struct dentry *root,
241 int flag)
242 {
243 struct super_block *sb = old->mnt_sb;
244 struct vfsmount *mnt = alloc_vfsmnt(old->mnt_devname);
245
246 if (mnt) {
247 mnt->mnt_flags = old->mnt_flags;
248 atomic_inc(&sb->s_active);
249 mnt->mnt_sb = sb;
250 mnt->mnt_root = dget(root);
251 mnt->mnt_mountpoint = mnt->mnt_root;
252 mnt->mnt_parent = mnt;
253
254 if (flag & CL_SLAVE) {
255 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
256 mnt->mnt_master = old;
257 CLEAR_MNT_SHARED(mnt);
258 } else {
259 if ((flag & CL_PROPAGATION) || IS_MNT_SHARED(old))
260 list_add(&mnt->mnt_share, &old->mnt_share);
261 if (IS_MNT_SLAVE(old))
262 list_add(&mnt->mnt_slave, &old->mnt_slave);
263 mnt->mnt_master = old->mnt_master;
264 }
265 if (flag & CL_MAKE_SHARED)
266 set_mnt_shared(mnt);
267
268 /* stick the duplicate mount on the same expiry list
269 * as the original if that was on one */
270 if (flag & CL_EXPIRE) {
271 spin_lock(&vfsmount_lock);
272 if (!list_empty(&old->mnt_expire))
273 list_add(&mnt->mnt_expire, &old->mnt_expire);
274 spin_unlock(&vfsmount_lock);
275 }
276 }
277 return mnt;
278 }
279
280 static inline void __mntput(struct vfsmount *mnt)
281 {
282 struct super_block *sb = mnt->mnt_sb;
283 dput(mnt->mnt_root);
284 free_vfsmnt(mnt);
285 deactivate_super(sb);
286 }
287
288 void mntput_no_expire(struct vfsmount *mnt)
289 {
290 repeat:
291 if (atomic_dec_and_lock(&mnt->mnt_count, &vfsmount_lock)) {
292 if (likely(!mnt->mnt_pinned)) {
293 spin_unlock(&vfsmount_lock);
294 __mntput(mnt);
295 return;
296 }
297 atomic_add(mnt->mnt_pinned + 1, &mnt->mnt_count);
298 mnt->mnt_pinned = 0;
299 spin_unlock(&vfsmount_lock);
300 acct_auto_close_mnt(mnt);
301 security_sb_umount_close(mnt);
302 goto repeat;
303 }
304 }
305
306 EXPORT_SYMBOL(mntput_no_expire);
307
308 void mnt_pin(struct vfsmount *mnt)
309 {
310 spin_lock(&vfsmount_lock);
311 mnt->mnt_pinned++;
312 spin_unlock(&vfsmount_lock);
313 }
314
315 EXPORT_SYMBOL(mnt_pin);
316
317 void mnt_unpin(struct vfsmount *mnt)
318 {
319 spin_lock(&vfsmount_lock);
320 if (mnt->mnt_pinned) {
321 atomic_inc(&mnt->mnt_count);
322 mnt->mnt_pinned--;
323 }
324 spin_unlock(&vfsmount_lock);
325 }
326
327 EXPORT_SYMBOL(mnt_unpin);
328
329 /* iterator */
330 static void *m_start(struct seq_file *m, loff_t *pos)
331 {
332 struct namespace *n = m->private;
333 struct list_head *p;
334 loff_t l = *pos;
335
336 down_read(&namespace_sem);
337 list_for_each(p, &n->list)
338 if (!l--)
339 return list_entry(p, struct vfsmount, mnt_list);
340 return NULL;
341 }
342
343 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
344 {
345 struct namespace *n = m->private;
346 struct list_head *p = ((struct vfsmount *)v)->mnt_list.next;
347 (*pos)++;
348 return p == &n->list ? NULL : list_entry(p, struct vfsmount, mnt_list);
349 }
350
351 static void m_stop(struct seq_file *m, void *v)
352 {
353 up_read(&namespace_sem);
354 }
355
356 static inline void mangle(struct seq_file *m, const char *s)
357 {
358 seq_escape(m, s, " \t\n\\");
359 }
360
361 static int show_vfsmnt(struct seq_file *m, void *v)
362 {
363 struct vfsmount *mnt = v;
364 int err = 0;
365 static struct proc_fs_info {
366 int flag;
367 char *str;
368 } fs_info[] = {
369 { MS_SYNCHRONOUS, ",sync" },
370 { MS_DIRSYNC, ",dirsync" },
371 { MS_MANDLOCK, ",mand" },
372 { 0, NULL }
373 };
374 static struct proc_fs_info mnt_info[] = {
375 { MNT_NOSUID, ",nosuid" },
376 { MNT_NODEV, ",nodev" },
377 { MNT_NOEXEC, ",noexec" },
378 { MNT_NOATIME, ",noatime" },
379 { MNT_NODIRATIME, ",nodiratime" },
380 { 0, NULL }
381 };
382 struct proc_fs_info *fs_infop;
383
384 mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
385 seq_putc(m, ' ');
386 seq_path(m, mnt, mnt->mnt_root, " \t\n\\");
387 seq_putc(m, ' ');
388 mangle(m, mnt->mnt_sb->s_type->name);
389 seq_puts(m, mnt->mnt_sb->s_flags & MS_RDONLY ? " ro" : " rw");
390 for (fs_infop = fs_info; fs_infop->flag; fs_infop++) {
391 if (mnt->mnt_sb->s_flags & fs_infop->flag)
392 seq_puts(m, fs_infop->str);
393 }
394 for (fs_infop = mnt_info; fs_infop->flag; fs_infop++) {
395 if (mnt->mnt_flags & fs_infop->flag)
396 seq_puts(m, fs_infop->str);
397 }
398 if (mnt->mnt_sb->s_op->show_options)
399 err = mnt->mnt_sb->s_op->show_options(m, mnt);
400 seq_puts(m, " 0 0\n");
401 return err;
402 }
403
404 struct seq_operations mounts_op = {
405 .start = m_start,
406 .next = m_next,
407 .stop = m_stop,
408 .show = show_vfsmnt
409 };
410
411 static int show_vfsstat(struct seq_file *m, void *v)
412 {
413 struct vfsmount *mnt = v;
414 int err = 0;
415
416 /* device */
417 if (mnt->mnt_devname) {
418 seq_puts(m, "device ");
419 mangle(m, mnt->mnt_devname);
420 } else
421 seq_puts(m, "no device");
422
423 /* mount point */
424 seq_puts(m, " mounted on ");
425 seq_path(m, mnt, mnt->mnt_root, " \t\n\\");
426 seq_putc(m, ' ');
427
428 /* file system type */
429 seq_puts(m, "with fstype ");
430 mangle(m, mnt->mnt_sb->s_type->name);
431
432 /* optional statistics */
433 if (mnt->mnt_sb->s_op->show_stats) {
434 seq_putc(m, ' ');
435 err = mnt->mnt_sb->s_op->show_stats(m, mnt);
436 }
437
438 seq_putc(m, '\n');
439 return err;
440 }
441
442 struct seq_operations mountstats_op = {
443 .start = m_start,
444 .next = m_next,
445 .stop = m_stop,
446 .show = show_vfsstat,
447 };
448
449 /**
450 * may_umount_tree - check if a mount tree is busy
451 * @mnt: root of mount tree
452 *
453 * This is called to check if a tree of mounts has any
454 * open files, pwds, chroots or sub mounts that are
455 * busy.
456 */
457 int may_umount_tree(struct vfsmount *mnt)
458 {
459 int actual_refs = 0;
460 int minimum_refs = 0;
461 struct vfsmount *p;
462
463 spin_lock(&vfsmount_lock);
464 for (p = mnt; p; p = next_mnt(p, mnt)) {
465 actual_refs += atomic_read(&p->mnt_count);
466 minimum_refs += 2;
467 }
468 spin_unlock(&vfsmount_lock);
469
470 if (actual_refs > minimum_refs)
471 return 0;
472
473 return 1;
474 }
475
476 EXPORT_SYMBOL(may_umount_tree);
477
478 /**
479 * may_umount - check if a mount point is busy
480 * @mnt: root of mount
481 *
482 * This is called to check if a mount point has any
483 * open files, pwds, chroots or sub mounts. If the
484 * mount has sub mounts this will return busy
485 * regardless of whether the sub mounts are busy.
486 *
487 * Doesn't take quota and stuff into account. IOW, in some cases it will
488 * give false negatives. The main reason why it's here is that we need
489 * a non-destructive way to look for easily umountable filesystems.
490 */
491 int may_umount(struct vfsmount *mnt)
492 {
493 int ret = 1;
494 spin_lock(&vfsmount_lock);
495 if (propagate_mount_busy(mnt, 2))
496 ret = 0;
497 spin_unlock(&vfsmount_lock);
498 return ret;
499 }
500
501 EXPORT_SYMBOL(may_umount);
502
503 void release_mounts(struct list_head *head)
504 {
505 struct vfsmount *mnt;
506 while (!list_empty(head)) {
507 mnt = list_entry(head->next, struct vfsmount, mnt_hash);
508 list_del_init(&mnt->mnt_hash);
509 if (mnt->mnt_parent != mnt) {
510 struct dentry *dentry;
511 struct vfsmount *m;
512 spin_lock(&vfsmount_lock);
513 dentry = mnt->mnt_mountpoint;
514 m = mnt->mnt_parent;
515 mnt->mnt_mountpoint = mnt->mnt_root;
516 mnt->mnt_parent = mnt;
517 spin_unlock(&vfsmount_lock);
518 dput(dentry);
519 mntput(m);
520 }
521 mntput(mnt);
522 }
523 }
524
525 void umount_tree(struct vfsmount *mnt, int propagate, struct list_head *kill)
526 {
527 struct vfsmount *p;
528
529 for (p = mnt; p; p = next_mnt(p, mnt)) {
530 list_del(&p->mnt_hash);
531 list_add(&p->mnt_hash, kill);
532 }
533
534 if (propagate)
535 propagate_umount(kill);
536
537 list_for_each_entry(p, kill, mnt_hash) {
538 list_del_init(&p->mnt_expire);
539 list_del_init(&p->mnt_list);
540 __touch_namespace(p->mnt_namespace);
541 p->mnt_namespace = NULL;
542 list_del_init(&p->mnt_child);
543 if (p->mnt_parent != p)
544 p->mnt_mountpoint->d_mounted--;
545 change_mnt_propagation(p, MS_PRIVATE);
546 }
547 }
548
549 static int do_umount(struct vfsmount *mnt, int flags)
550 {
551 struct super_block *sb = mnt->mnt_sb;
552 int retval;
553 LIST_HEAD(umount_list);
554
555 retval = security_sb_umount(mnt, flags);
556 if (retval)
557 return retval;
558
559 /*
560 * Allow userspace to request a mountpoint be expired rather than
561 * unmounting unconditionally. Unmount only happens if:
562 * (1) the mark is already set (the mark is cleared by mntput())
563 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
564 */
565 if (flags & MNT_EXPIRE) {
566 if (mnt == current->fs->rootmnt ||
567 flags & (MNT_FORCE | MNT_DETACH))
568 return -EINVAL;
569
570 if (atomic_read(&mnt->mnt_count) != 2)
571 return -EBUSY;
572
573 if (!xchg(&mnt->mnt_expiry_mark, 1))
574 return -EAGAIN;
575 }
576
577 /*
578 * If we may have to abort operations to get out of this
579 * mount, and they will themselves hold resources we must
580 * allow the fs to do things. In the Unix tradition of
581 * 'Gee thats tricky lets do it in userspace' the umount_begin
582 * might fail to complete on the first run through as other tasks
583 * must return, and the like. Thats for the mount program to worry
584 * about for the moment.
585 */
586
587 lock_kernel();
588 if (sb->s_op->umount_begin)
589 sb->s_op->umount_begin(mnt, flags);
590 unlock_kernel();
591
592 /*
593 * No sense to grab the lock for this test, but test itself looks
594 * somewhat bogus. Suggestions for better replacement?
595 * Ho-hum... In principle, we might treat that as umount + switch
596 * to rootfs. GC would eventually take care of the old vfsmount.
597 * Actually it makes sense, especially if rootfs would contain a
598 * /reboot - static binary that would close all descriptors and
599 * call reboot(9). Then init(8) could umount root and exec /reboot.
600 */
601 if (mnt == current->fs->rootmnt && !(flags & MNT_DETACH)) {
602 /*
603 * Special case for "unmounting" root ...
604 * we just try to remount it readonly.
605 */
606 down_write(&sb->s_umount);
607 if (!(sb->s_flags & MS_RDONLY)) {
608 lock_kernel();
609 DQUOT_OFF(sb);
610 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
611 unlock_kernel();
612 }
613 up_write(&sb->s_umount);
614 return retval;
615 }
616
617 down_write(&namespace_sem);
618 spin_lock(&vfsmount_lock);
619 event++;
620
621 retval = -EBUSY;
622 if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) {
623 if (!list_empty(&mnt->mnt_list))
624 umount_tree(mnt, 1, &umount_list);
625 retval = 0;
626 }
627 spin_unlock(&vfsmount_lock);
628 if (retval)
629 security_sb_umount_busy(mnt);
630 up_write(&namespace_sem);
631 release_mounts(&umount_list);
632 return retval;
633 }
634
635 /*
636 * Now umount can handle mount points as well as block devices.
637 * This is important for filesystems which use unnamed block devices.
638 *
639 * We now support a flag for forced unmount like the other 'big iron'
640 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
641 */
642
643 asmlinkage long sys_umount(char __user * name, int flags)
644 {
645 struct nameidata nd;
646 int retval;
647
648 retval = __user_walk(name, LOOKUP_FOLLOW, &nd);
649 if (retval)
650 goto out;
651 retval = -EINVAL;
652 if (nd.dentry != nd.mnt->mnt_root)
653 goto dput_and_out;
654 if (!check_mnt(nd.mnt))
655 goto dput_and_out;
656
657 retval = -EPERM;
658 if (!capable(CAP_SYS_ADMIN))
659 goto dput_and_out;
660
661 retval = do_umount(nd.mnt, flags);
662 dput_and_out:
663 path_release_on_umount(&nd);
664 out:
665 return retval;
666 }
667
668 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
669
670 /*
671 * The 2.0 compatible umount. No flags.
672 */
673 asmlinkage long sys_oldumount(char __user * name)
674 {
675 return sys_umount(name, 0);
676 }
677
678 #endif
679
680 static int mount_is_safe(struct nameidata *nd)
681 {
682 if (capable(CAP_SYS_ADMIN))
683 return 0;
684 return -EPERM;
685 #ifdef notyet
686 if (S_ISLNK(nd->dentry->d_inode->i_mode))
687 return -EPERM;
688 if (nd->dentry->d_inode->i_mode & S_ISVTX) {
689 if (current->uid != nd->dentry->d_inode->i_uid)
690 return -EPERM;
691 }
692 if (vfs_permission(nd, MAY_WRITE))
693 return -EPERM;
694 return 0;
695 #endif
696 }
697
698 static int lives_below_in_same_fs(struct dentry *d, struct dentry *dentry)
699 {
700 while (1) {
701 if (d == dentry)
702 return 1;
703 if (d == NULL || d == d->d_parent)
704 return 0;
705 d = d->d_parent;
706 }
707 }
708
709 struct vfsmount *copy_tree(struct vfsmount *mnt, struct dentry *dentry,
710 int flag)
711 {
712 struct vfsmount *res, *p, *q, *r, *s;
713 struct nameidata nd;
714
715 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(mnt))
716 return NULL;
717
718 res = q = clone_mnt(mnt, dentry, flag);
719 if (!q)
720 goto Enomem;
721 q->mnt_mountpoint = mnt->mnt_mountpoint;
722
723 p = mnt;
724 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
725 if (!lives_below_in_same_fs(r->mnt_mountpoint, dentry))
726 continue;
727
728 for (s = r; s; s = next_mnt(s, r)) {
729 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(s)) {
730 s = skip_mnt_tree(s);
731 continue;
732 }
733 while (p != s->mnt_parent) {
734 p = p->mnt_parent;
735 q = q->mnt_parent;
736 }
737 p = s;
738 nd.mnt = q;
739 nd.dentry = p->mnt_mountpoint;
740 q = clone_mnt(p, p->mnt_root, flag);
741 if (!q)
742 goto Enomem;
743 spin_lock(&vfsmount_lock);
744 list_add_tail(&q->mnt_list, &res->mnt_list);
745 attach_mnt(q, &nd);
746 spin_unlock(&vfsmount_lock);
747 }
748 }
749 return res;
750 Enomem:
751 if (res) {
752 LIST_HEAD(umount_list);
753 spin_lock(&vfsmount_lock);
754 umount_tree(res, 0, &umount_list);
755 spin_unlock(&vfsmount_lock);
756 release_mounts(&umount_list);
757 }
758 return NULL;
759 }
760
761 /*
762 * @source_mnt : mount tree to be attached
763 * @nd : place the mount tree @source_mnt is attached
764 * @parent_nd : if non-null, detach the source_mnt from its parent and
765 * store the parent mount and mountpoint dentry.
766 * (done when source_mnt is moved)
767 *
768 * NOTE: in the table below explains the semantics when a source mount
769 * of a given type is attached to a destination mount of a given type.
770 * ---------------------------------------------------------------------------
771 * | BIND MOUNT OPERATION |
772 * |**************************************************************************
773 * | source-->| shared | private | slave | unbindable |
774 * | dest | | | | |
775 * | | | | | | |
776 * | v | | | | |
777 * |**************************************************************************
778 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
779 * | | | | | |
780 * |non-shared| shared (+) | private | slave (*) | invalid |
781 * ***************************************************************************
782 * A bind operation clones the source mount and mounts the clone on the
783 * destination mount.
784 *
785 * (++) the cloned mount is propagated to all the mounts in the propagation
786 * tree of the destination mount and the cloned mount is added to
787 * the peer group of the source mount.
788 * (+) the cloned mount is created under the destination mount and is marked
789 * as shared. The cloned mount is added to the peer group of the source
790 * mount.
791 * (+++) the mount is propagated to all the mounts in the propagation tree
792 * of the destination mount and the cloned mount is made slave
793 * of the same master as that of the source mount. The cloned mount
794 * is marked as 'shared and slave'.
795 * (*) the cloned mount is made a slave of the same master as that of the
796 * source mount.
797 *
798 * ---------------------------------------------------------------------------
799 * | MOVE MOUNT OPERATION |
800 * |**************************************************************************
801 * | source-->| shared | private | slave | unbindable |
802 * | dest | | | | |
803 * | | | | | | |
804 * | v | | | | |
805 * |**************************************************************************
806 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
807 * | | | | | |
808 * |non-shared| shared (+*) | private | slave (*) | unbindable |
809 * ***************************************************************************
810 *
811 * (+) the mount is moved to the destination. And is then propagated to
812 * all the mounts in the propagation tree of the destination mount.
813 * (+*) the mount is moved to the destination.
814 * (+++) the mount is moved to the destination and is then propagated to
815 * all the mounts belonging to the destination mount's propagation tree.
816 * the mount is marked as 'shared and slave'.
817 * (*) the mount continues to be a slave at the new location.
818 *
819 * if the source mount is a tree, the operations explained above is
820 * applied to each mount in the tree.
821 * Must be called without spinlocks held, since this function can sleep
822 * in allocations.
823 */
824 static int attach_recursive_mnt(struct vfsmount *source_mnt,
825 struct nameidata *nd, struct nameidata *parent_nd)
826 {
827 LIST_HEAD(tree_list);
828 struct vfsmount *dest_mnt = nd->mnt;
829 struct dentry *dest_dentry = nd->dentry;
830 struct vfsmount *child, *p;
831
832 if (propagate_mnt(dest_mnt, dest_dentry, source_mnt, &tree_list))
833 return -EINVAL;
834
835 if (IS_MNT_SHARED(dest_mnt)) {
836 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
837 set_mnt_shared(p);
838 }
839
840 spin_lock(&vfsmount_lock);
841 if (parent_nd) {
842 detach_mnt(source_mnt, parent_nd);
843 attach_mnt(source_mnt, nd);
844 touch_namespace(current->namespace);
845 } else {
846 mnt_set_mountpoint(dest_mnt, dest_dentry, source_mnt);
847 commit_tree(source_mnt);
848 }
849
850 list_for_each_entry_safe(child, p, &tree_list, mnt_hash) {
851 list_del_init(&child->mnt_hash);
852 commit_tree(child);
853 }
854 spin_unlock(&vfsmount_lock);
855 return 0;
856 }
857
858 static int graft_tree(struct vfsmount *mnt, struct nameidata *nd)
859 {
860 int err;
861 if (mnt->mnt_sb->s_flags & MS_NOUSER)
862 return -EINVAL;
863
864 if (S_ISDIR(nd->dentry->d_inode->i_mode) !=
865 S_ISDIR(mnt->mnt_root->d_inode->i_mode))
866 return -ENOTDIR;
867
868 err = -ENOENT;
869 mutex_lock(&nd->dentry->d_inode->i_mutex);
870 if (IS_DEADDIR(nd->dentry->d_inode))
871 goto out_unlock;
872
873 err = security_sb_check_sb(mnt, nd);
874 if (err)
875 goto out_unlock;
876
877 err = -ENOENT;
878 if (IS_ROOT(nd->dentry) || !d_unhashed(nd->dentry))
879 err = attach_recursive_mnt(mnt, nd, NULL);
880 out_unlock:
881 mutex_unlock(&nd->dentry->d_inode->i_mutex);
882 if (!err)
883 security_sb_post_addmount(mnt, nd);
884 return err;
885 }
886
887 /*
888 * recursively change the type of the mountpoint.
889 */
890 static int do_change_type(struct nameidata *nd, int flag)
891 {
892 struct vfsmount *m, *mnt = nd->mnt;
893 int recurse = flag & MS_REC;
894 int type = flag & ~MS_REC;
895
896 if (nd->dentry != nd->mnt->mnt_root)
897 return -EINVAL;
898
899 down_write(&namespace_sem);
900 spin_lock(&vfsmount_lock);
901 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
902 change_mnt_propagation(m, type);
903 spin_unlock(&vfsmount_lock);
904 up_write(&namespace_sem);
905 return 0;
906 }
907
908 /*
909 * do loopback mount.
910 */
911 static int do_loopback(struct nameidata *nd, char *old_name, int recurse)
912 {
913 struct nameidata old_nd;
914 struct vfsmount *mnt = NULL;
915 int err = mount_is_safe(nd);
916 if (err)
917 return err;
918 if (!old_name || !*old_name)
919 return -EINVAL;
920 err = path_lookup(old_name, LOOKUP_FOLLOW, &old_nd);
921 if (err)
922 return err;
923
924 down_write(&namespace_sem);
925 err = -EINVAL;
926 if (IS_MNT_UNBINDABLE(old_nd.mnt))
927 goto out;
928
929 if (!check_mnt(nd->mnt) || !check_mnt(old_nd.mnt))
930 goto out;
931
932 err = -ENOMEM;
933 if (recurse)
934 mnt = copy_tree(old_nd.mnt, old_nd.dentry, 0);
935 else
936 mnt = clone_mnt(old_nd.mnt, old_nd.dentry, 0);
937
938 if (!mnt)
939 goto out;
940
941 err = graft_tree(mnt, nd);
942 if (err) {
943 LIST_HEAD(umount_list);
944 spin_lock(&vfsmount_lock);
945 umount_tree(mnt, 0, &umount_list);
946 spin_unlock(&vfsmount_lock);
947 release_mounts(&umount_list);
948 }
949
950 out:
951 up_write(&namespace_sem);
952 path_release(&old_nd);
953 return err;
954 }
955
956 /*
957 * change filesystem flags. dir should be a physical root of filesystem.
958 * If you've mounted a non-root directory somewhere and want to do remount
959 * on it - tough luck.
960 */
961 static int do_remount(struct nameidata *nd, int flags, int mnt_flags,
962 void *data)
963 {
964 int err;
965 struct super_block *sb = nd->mnt->mnt_sb;
966
967 if (!capable(CAP_SYS_ADMIN))
968 return -EPERM;
969
970 if (!check_mnt(nd->mnt))
971 return -EINVAL;
972
973 if (nd->dentry != nd->mnt->mnt_root)
974 return -EINVAL;
975
976 down_write(&sb->s_umount);
977 err = do_remount_sb(sb, flags, data, 0);
978 if (!err)
979 nd->mnt->mnt_flags = mnt_flags;
980 up_write(&sb->s_umount);
981 if (!err)
982 security_sb_post_remount(nd->mnt, flags, data);
983 return err;
984 }
985
986 static inline int tree_contains_unbindable(struct vfsmount *mnt)
987 {
988 struct vfsmount *p;
989 for (p = mnt; p; p = next_mnt(p, mnt)) {
990 if (IS_MNT_UNBINDABLE(p))
991 return 1;
992 }
993 return 0;
994 }
995
996 static int do_move_mount(struct nameidata *nd, char *old_name)
997 {
998 struct nameidata old_nd, parent_nd;
999 struct vfsmount *p;
1000 int err = 0;
1001 if (!capable(CAP_SYS_ADMIN))
1002 return -EPERM;
1003 if (!old_name || !*old_name)
1004 return -EINVAL;
1005 err = path_lookup(old_name, LOOKUP_FOLLOW, &old_nd);
1006 if (err)
1007 return err;
1008
1009 down_write(&namespace_sem);
1010 while (d_mountpoint(nd->dentry) && follow_down(&nd->mnt, &nd->dentry))
1011 ;
1012 err = -EINVAL;
1013 if (!check_mnt(nd->mnt) || !check_mnt(old_nd.mnt))
1014 goto out;
1015
1016 err = -ENOENT;
1017 mutex_lock(&nd->dentry->d_inode->i_mutex);
1018 if (IS_DEADDIR(nd->dentry->d_inode))
1019 goto out1;
1020
1021 if (!IS_ROOT(nd->dentry) && d_unhashed(nd->dentry))
1022 goto out1;
1023
1024 err = -EINVAL;
1025 if (old_nd.dentry != old_nd.mnt->mnt_root)
1026 goto out1;
1027
1028 if (old_nd.mnt == old_nd.mnt->mnt_parent)
1029 goto out1;
1030
1031 if (S_ISDIR(nd->dentry->d_inode->i_mode) !=
1032 S_ISDIR(old_nd.dentry->d_inode->i_mode))
1033 goto out1;
1034 /*
1035 * Don't move a mount residing in a shared parent.
1036 */
1037 if (old_nd.mnt->mnt_parent && IS_MNT_SHARED(old_nd.mnt->mnt_parent))
1038 goto out1;
1039 /*
1040 * Don't move a mount tree containing unbindable mounts to a destination
1041 * mount which is shared.
1042 */
1043 if (IS_MNT_SHARED(nd->mnt) && tree_contains_unbindable(old_nd.mnt))
1044 goto out1;
1045 err = -ELOOP;
1046 for (p = nd->mnt; p->mnt_parent != p; p = p->mnt_parent)
1047 if (p == old_nd.mnt)
1048 goto out1;
1049
1050 if ((err = attach_recursive_mnt(old_nd.mnt, nd, &parent_nd)))
1051 goto out1;
1052
1053 spin_lock(&vfsmount_lock);
1054 /* if the mount is moved, it should no longer be expire
1055 * automatically */
1056 list_del_init(&old_nd.mnt->mnt_expire);
1057 spin_unlock(&vfsmount_lock);
1058 out1:
1059 mutex_unlock(&nd->dentry->d_inode->i_mutex);
1060 out:
1061 up_write(&namespace_sem);
1062 if (!err)
1063 path_release(&parent_nd);
1064 path_release(&old_nd);
1065 return err;
1066 }
1067
1068 /*
1069 * create a new mount for userspace and request it to be added into the
1070 * namespace's tree
1071 */
1072 static int do_new_mount(struct nameidata *nd, char *type, int flags,
1073 int mnt_flags, char *name, void *data)
1074 {
1075 struct vfsmount *mnt;
1076
1077 if (!type || !memchr(type, 0, PAGE_SIZE))
1078 return -EINVAL;
1079
1080 /* we need capabilities... */
1081 if (!capable(CAP_SYS_ADMIN))
1082 return -EPERM;
1083
1084 mnt = do_kern_mount(type, flags, name, data);
1085 if (IS_ERR(mnt))
1086 return PTR_ERR(mnt);
1087
1088 return do_add_mount(mnt, nd, mnt_flags, NULL);
1089 }
1090
1091 /*
1092 * add a mount into a namespace's mount tree
1093 * - provide the option of adding the new mount to an expiration list
1094 */
1095 int do_add_mount(struct vfsmount *newmnt, struct nameidata *nd,
1096 int mnt_flags, struct list_head *fslist)
1097 {
1098 int err;
1099
1100 down_write(&namespace_sem);
1101 /* Something was mounted here while we slept */
1102 while (d_mountpoint(nd->dentry) && follow_down(&nd->mnt, &nd->dentry))
1103 ;
1104 err = -EINVAL;
1105 if (!check_mnt(nd->mnt))
1106 goto unlock;
1107
1108 /* Refuse the same filesystem on the same mount point */
1109 err = -EBUSY;
1110 if (nd->mnt->mnt_sb == newmnt->mnt_sb &&
1111 nd->mnt->mnt_root == nd->dentry)
1112 goto unlock;
1113
1114 err = -EINVAL;
1115 if (S_ISLNK(newmnt->mnt_root->d_inode->i_mode))
1116 goto unlock;
1117
1118 newmnt->mnt_flags = mnt_flags;
1119 if ((err = graft_tree(newmnt, nd)))
1120 goto unlock;
1121
1122 if (fslist) {
1123 /* add to the specified expiration list */
1124 spin_lock(&vfsmount_lock);
1125 list_add_tail(&newmnt->mnt_expire, fslist);
1126 spin_unlock(&vfsmount_lock);
1127 }
1128 up_write(&namespace_sem);
1129 return 0;
1130
1131 unlock:
1132 up_write(&namespace_sem);
1133 mntput(newmnt);
1134 return err;
1135 }
1136
1137 EXPORT_SYMBOL_GPL(do_add_mount);
1138
1139 static void expire_mount(struct vfsmount *mnt, struct list_head *mounts,
1140 struct list_head *umounts)
1141 {
1142 spin_lock(&vfsmount_lock);
1143
1144 /*
1145 * Check if mount is still attached, if not, let whoever holds it deal
1146 * with the sucker
1147 */
1148 if (mnt->mnt_parent == mnt) {
1149 spin_unlock(&vfsmount_lock);
1150 return;
1151 }
1152
1153 /*
1154 * Check that it is still dead: the count should now be 2 - as
1155 * contributed by the vfsmount parent and the mntget above
1156 */
1157 if (!propagate_mount_busy(mnt, 2)) {
1158 /* delete from the namespace */
1159 touch_namespace(mnt->mnt_namespace);
1160 list_del_init(&mnt->mnt_list);
1161 mnt->mnt_namespace = NULL;
1162 umount_tree(mnt, 1, umounts);
1163 spin_unlock(&vfsmount_lock);
1164 } else {
1165 /*
1166 * Someone brought it back to life whilst we didn't have any
1167 * locks held so return it to the expiration list
1168 */
1169 list_add_tail(&mnt->mnt_expire, mounts);
1170 spin_unlock(&vfsmount_lock);
1171 }
1172 }
1173
1174 /*
1175 * go through the vfsmounts we've just consigned to the graveyard to
1176 * - check that they're still dead
1177 * - delete the vfsmount from the appropriate namespace under lock
1178 * - dispose of the corpse
1179 */
1180 static void expire_mount_list(struct list_head *graveyard, struct list_head *mounts)
1181 {
1182 struct namespace *namespace;
1183 struct vfsmount *mnt;
1184
1185 while (!list_empty(graveyard)) {
1186 LIST_HEAD(umounts);
1187 mnt = list_entry(graveyard->next, struct vfsmount, mnt_expire);
1188 list_del_init(&mnt->mnt_expire);
1189
1190 /* don't do anything if the namespace is dead - all the
1191 * vfsmounts from it are going away anyway */
1192 namespace = mnt->mnt_namespace;
1193 if (!namespace || !namespace->root)
1194 continue;
1195 get_namespace(namespace);
1196
1197 spin_unlock(&vfsmount_lock);
1198 down_write(&namespace_sem);
1199 expire_mount(mnt, mounts, &umounts);
1200 up_write(&namespace_sem);
1201 release_mounts(&umounts);
1202 mntput(mnt);
1203 put_namespace(namespace);
1204 spin_lock(&vfsmount_lock);
1205 }
1206 }
1207
1208 /*
1209 * process a list of expirable mountpoints with the intent of discarding any
1210 * mountpoints that aren't in use and haven't been touched since last we came
1211 * here
1212 */
1213 void mark_mounts_for_expiry(struct list_head *mounts)
1214 {
1215 struct vfsmount *mnt, *next;
1216 LIST_HEAD(graveyard);
1217
1218 if (list_empty(mounts))
1219 return;
1220
1221 spin_lock(&vfsmount_lock);
1222
1223 /* extract from the expiration list every vfsmount that matches the
1224 * following criteria:
1225 * - only referenced by its parent vfsmount
1226 * - still marked for expiry (marked on the last call here; marks are
1227 * cleared by mntput())
1228 */
1229 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
1230 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
1231 atomic_read(&mnt->mnt_count) != 1)
1232 continue;
1233
1234 mntget(mnt);
1235 list_move(&mnt->mnt_expire, &graveyard);
1236 }
1237
1238 expire_mount_list(&graveyard, mounts);
1239
1240 spin_unlock(&vfsmount_lock);
1241 }
1242
1243 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
1244
1245 /*
1246 * Ripoff of 'select_parent()'
1247 *
1248 * search the list of submounts for a given mountpoint, and move any
1249 * shrinkable submounts to the 'graveyard' list.
1250 */
1251 static int select_submounts(struct vfsmount *parent, struct list_head *graveyard)
1252 {
1253 struct vfsmount *this_parent = parent;
1254 struct list_head *next;
1255 int found = 0;
1256
1257 repeat:
1258 next = this_parent->mnt_mounts.next;
1259 resume:
1260 while (next != &this_parent->mnt_mounts) {
1261 struct list_head *tmp = next;
1262 struct vfsmount *mnt = list_entry(tmp, struct vfsmount, mnt_child);
1263
1264 next = tmp->next;
1265 if (!(mnt->mnt_flags & MNT_SHRINKABLE))
1266 continue;
1267 /*
1268 * Descend a level if the d_mounts list is non-empty.
1269 */
1270 if (!list_empty(&mnt->mnt_mounts)) {
1271 this_parent = mnt;
1272 goto repeat;
1273 }
1274
1275 if (!propagate_mount_busy(mnt, 1)) {
1276 mntget(mnt);
1277 list_move_tail(&mnt->mnt_expire, graveyard);
1278 found++;
1279 }
1280 }
1281 /*
1282 * All done at this level ... ascend and resume the search
1283 */
1284 if (this_parent != parent) {
1285 next = this_parent->mnt_child.next;
1286 this_parent = this_parent->mnt_parent;
1287 goto resume;
1288 }
1289 return found;
1290 }
1291
1292 /*
1293 * process a list of expirable mountpoints with the intent of discarding any
1294 * submounts of a specific parent mountpoint
1295 */
1296 void shrink_submounts(struct vfsmount *mountpoint, struct list_head *mounts)
1297 {
1298 LIST_HEAD(graveyard);
1299 int found;
1300
1301 spin_lock(&vfsmount_lock);
1302
1303 /* extract submounts of 'mountpoint' from the expiration list */
1304 while ((found = select_submounts(mountpoint, &graveyard)) != 0)
1305 expire_mount_list(&graveyard, mounts);
1306
1307 spin_unlock(&vfsmount_lock);
1308 }
1309
1310 EXPORT_SYMBOL_GPL(shrink_submounts);
1311
1312 /*
1313 * Some copy_from_user() implementations do not return the exact number of
1314 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
1315 * Note that this function differs from copy_from_user() in that it will oops
1316 * on bad values of `to', rather than returning a short copy.
1317 */
1318 static long exact_copy_from_user(void *to, const void __user * from,
1319 unsigned long n)
1320 {
1321 char *t = to;
1322 const char __user *f = from;
1323 char c;
1324
1325 if (!access_ok(VERIFY_READ, from, n))
1326 return n;
1327
1328 while (n) {
1329 if (__get_user(c, f)) {
1330 memset(t, 0, n);
1331 break;
1332 }
1333 *t++ = c;
1334 f++;
1335 n--;
1336 }
1337 return n;
1338 }
1339
1340 int copy_mount_options(const void __user * data, unsigned long *where)
1341 {
1342 int i;
1343 unsigned long page;
1344 unsigned long size;
1345
1346 *where = 0;
1347 if (!data)
1348 return 0;
1349
1350 if (!(page = __get_free_page(GFP_KERNEL)))
1351 return -ENOMEM;
1352
1353 /* We only care that *some* data at the address the user
1354 * gave us is valid. Just in case, we'll zero
1355 * the remainder of the page.
1356 */
1357 /* copy_from_user cannot cross TASK_SIZE ! */
1358 size = TASK_SIZE - (unsigned long)data;
1359 if (size > PAGE_SIZE)
1360 size = PAGE_SIZE;
1361
1362 i = size - exact_copy_from_user((void *)page, data, size);
1363 if (!i) {
1364 free_page(page);
1365 return -EFAULT;
1366 }
1367 if (i != PAGE_SIZE)
1368 memset((char *)page + i, 0, PAGE_SIZE - i);
1369 *where = page;
1370 return 0;
1371 }
1372
1373 /*
1374 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
1375 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
1376 *
1377 * data is a (void *) that can point to any structure up to
1378 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
1379 * information (or be NULL).
1380 *
1381 * Pre-0.97 versions of mount() didn't have a flags word.
1382 * When the flags word was introduced its top half was required
1383 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
1384 * Therefore, if this magic number is present, it carries no information
1385 * and must be discarded.
1386 */
1387 long do_mount(char *dev_name, char *dir_name, char *type_page,
1388 unsigned long flags, void *data_page)
1389 {
1390 struct nameidata nd;
1391 int retval = 0;
1392 int mnt_flags = 0;
1393
1394 /* Discard magic */
1395 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
1396 flags &= ~MS_MGC_MSK;
1397
1398 /* Basic sanity checks */
1399
1400 if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
1401 return -EINVAL;
1402 if (dev_name && !memchr(dev_name, 0, PAGE_SIZE))
1403 return -EINVAL;
1404
1405 if (data_page)
1406 ((char *)data_page)[PAGE_SIZE - 1] = 0;
1407
1408 /* Separate the per-mountpoint flags */
1409 if (flags & MS_NOSUID)
1410 mnt_flags |= MNT_NOSUID;
1411 if (flags & MS_NODEV)
1412 mnt_flags |= MNT_NODEV;
1413 if (flags & MS_NOEXEC)
1414 mnt_flags |= MNT_NOEXEC;
1415 if (flags & MS_NOATIME)
1416 mnt_flags |= MNT_NOATIME;
1417 if (flags & MS_NODIRATIME)
1418 mnt_flags |= MNT_NODIRATIME;
1419
1420 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE |
1421 MS_NOATIME | MS_NODIRATIME);
1422
1423 /* ... and get the mountpoint */
1424 retval = path_lookup(dir_name, LOOKUP_FOLLOW, &nd);
1425 if (retval)
1426 return retval;
1427
1428 retval = security_sb_mount(dev_name, &nd, type_page, flags, data_page);
1429 if (retval)
1430 goto dput_out;
1431
1432 if (flags & MS_REMOUNT)
1433 retval = do_remount(&nd, flags & ~MS_REMOUNT, mnt_flags,
1434 data_page);
1435 else if (flags & MS_BIND)
1436 retval = do_loopback(&nd, dev_name, flags & MS_REC);
1437 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
1438 retval = do_change_type(&nd, flags);
1439 else if (flags & MS_MOVE)
1440 retval = do_move_mount(&nd, dev_name);
1441 else
1442 retval = do_new_mount(&nd, type_page, flags, mnt_flags,
1443 dev_name, data_page);
1444 dput_out:
1445 path_release(&nd);
1446 return retval;
1447 }
1448
1449 /*
1450 * Allocate a new namespace structure and populate it with contents
1451 * copied from the namespace of the passed in task structure.
1452 */
1453 struct namespace *dup_namespace(struct task_struct *tsk, struct fs_struct *fs)
1454 {
1455 struct namespace *namespace = tsk->namespace;
1456 struct namespace *new_ns;
1457 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL, *altrootmnt = NULL;
1458 struct vfsmount *p, *q;
1459
1460 new_ns = kmalloc(sizeof(struct namespace), GFP_KERNEL);
1461 if (!new_ns)
1462 return NULL;
1463
1464 atomic_set(&new_ns->count, 1);
1465 INIT_LIST_HEAD(&new_ns->list);
1466 init_waitqueue_head(&new_ns->poll);
1467 new_ns->event = 0;
1468
1469 down_write(&namespace_sem);
1470 /* First pass: copy the tree topology */
1471 new_ns->root = copy_tree(namespace->root, namespace->root->mnt_root,
1472 CL_COPY_ALL | CL_EXPIRE);
1473 if (!new_ns->root) {
1474 up_write(&namespace_sem);
1475 kfree(new_ns);
1476 return NULL;
1477 }
1478 spin_lock(&vfsmount_lock);
1479 list_add_tail(&new_ns->list, &new_ns->root->mnt_list);
1480 spin_unlock(&vfsmount_lock);
1481
1482 /*
1483 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
1484 * as belonging to new namespace. We have already acquired a private
1485 * fs_struct, so tsk->fs->lock is not needed.
1486 */
1487 p = namespace->root;
1488 q = new_ns->root;
1489 while (p) {
1490 q->mnt_namespace = new_ns;
1491 if (fs) {
1492 if (p == fs->rootmnt) {
1493 rootmnt = p;
1494 fs->rootmnt = mntget(q);
1495 }
1496 if (p == fs->pwdmnt) {
1497 pwdmnt = p;
1498 fs->pwdmnt = mntget(q);
1499 }
1500 if (p == fs->altrootmnt) {
1501 altrootmnt = p;
1502 fs->altrootmnt = mntget(q);
1503 }
1504 }
1505 p = next_mnt(p, namespace->root);
1506 q = next_mnt(q, new_ns->root);
1507 }
1508 up_write(&namespace_sem);
1509
1510 if (rootmnt)
1511 mntput(rootmnt);
1512 if (pwdmnt)
1513 mntput(pwdmnt);
1514 if (altrootmnt)
1515 mntput(altrootmnt);
1516
1517 return new_ns;
1518 }
1519
1520 int copy_namespace(int flags, struct task_struct *tsk)
1521 {
1522 struct namespace *namespace = tsk->namespace;
1523 struct namespace *new_ns;
1524 int err = 0;
1525
1526 if (!namespace)
1527 return 0;
1528
1529 get_namespace(namespace);
1530
1531 if (!(flags & CLONE_NEWNS))
1532 return 0;
1533
1534 if (!capable(CAP_SYS_ADMIN)) {
1535 err = -EPERM;
1536 goto out;
1537 }
1538
1539 new_ns = dup_namespace(tsk, tsk->fs);
1540 if (!new_ns) {
1541 err = -ENOMEM;
1542 goto out;
1543 }
1544
1545 tsk->namespace = new_ns;
1546
1547 out:
1548 put_namespace(namespace);
1549 return err;
1550 }
1551
1552 asmlinkage long sys_mount(char __user * dev_name, char __user * dir_name,
1553 char __user * type, unsigned long flags,
1554 void __user * data)
1555 {
1556 int retval;
1557 unsigned long data_page;
1558 unsigned long type_page;
1559 unsigned long dev_page;
1560 char *dir_page;
1561
1562 retval = copy_mount_options(type, &type_page);
1563 if (retval < 0)
1564 return retval;
1565
1566 dir_page = getname(dir_name);
1567 retval = PTR_ERR(dir_page);
1568 if (IS_ERR(dir_page))
1569 goto out1;
1570
1571 retval = copy_mount_options(dev_name, &dev_page);
1572 if (retval < 0)
1573 goto out2;
1574
1575 retval = copy_mount_options(data, &data_page);
1576 if (retval < 0)
1577 goto out3;
1578
1579 lock_kernel();
1580 retval = do_mount((char *)dev_page, dir_page, (char *)type_page,
1581 flags, (void *)data_page);
1582 unlock_kernel();
1583 free_page(data_page);
1584
1585 out3:
1586 free_page(dev_page);
1587 out2:
1588 putname(dir_page);
1589 out1:
1590 free_page(type_page);
1591 return retval;
1592 }
1593
1594 /*
1595 * Replace the fs->{rootmnt,root} with {mnt,dentry}. Put the old values.
1596 * It can block. Requires the big lock held.
1597 */
1598 void set_fs_root(struct fs_struct *fs, struct vfsmount *mnt,
1599 struct dentry *dentry)
1600 {
1601 struct dentry *old_root;
1602 struct vfsmount *old_rootmnt;
1603 write_lock(&fs->lock);
1604 old_root = fs->root;
1605 old_rootmnt = fs->rootmnt;
1606 fs->rootmnt = mntget(mnt);
1607 fs->root = dget(dentry);
1608 write_unlock(&fs->lock);
1609 if (old_root) {
1610 dput(old_root);
1611 mntput(old_rootmnt);
1612 }
1613 }
1614
1615 /*
1616 * Replace the fs->{pwdmnt,pwd} with {mnt,dentry}. Put the old values.
1617 * It can block. Requires the big lock held.
1618 */
1619 void set_fs_pwd(struct fs_struct *fs, struct vfsmount *mnt,
1620 struct dentry *dentry)
1621 {
1622 struct dentry *old_pwd;
1623 struct vfsmount *old_pwdmnt;
1624
1625 write_lock(&fs->lock);
1626 old_pwd = fs->pwd;
1627 old_pwdmnt = fs->pwdmnt;
1628 fs->pwdmnt = mntget(mnt);
1629 fs->pwd = dget(dentry);
1630 write_unlock(&fs->lock);
1631
1632 if (old_pwd) {
1633 dput(old_pwd);
1634 mntput(old_pwdmnt);
1635 }
1636 }
1637
1638 static void chroot_fs_refs(struct nameidata *old_nd, struct nameidata *new_nd)
1639 {
1640 struct task_struct *g, *p;
1641 struct fs_struct *fs;
1642
1643 read_lock(&tasklist_lock);
1644 do_each_thread(g, p) {
1645 task_lock(p);
1646 fs = p->fs;
1647 if (fs) {
1648 atomic_inc(&fs->count);
1649 task_unlock(p);
1650 if (fs->root == old_nd->dentry
1651 && fs->rootmnt == old_nd->mnt)
1652 set_fs_root(fs, new_nd->mnt, new_nd->dentry);
1653 if (fs->pwd == old_nd->dentry
1654 && fs->pwdmnt == old_nd->mnt)
1655 set_fs_pwd(fs, new_nd->mnt, new_nd->dentry);
1656 put_fs_struct(fs);
1657 } else
1658 task_unlock(p);
1659 } while_each_thread(g, p);
1660 read_unlock(&tasklist_lock);
1661 }
1662
1663 /*
1664 * pivot_root Semantics:
1665 * Moves the root file system of the current process to the directory put_old,
1666 * makes new_root as the new root file system of the current process, and sets
1667 * root/cwd of all processes which had them on the current root to new_root.
1668 *
1669 * Restrictions:
1670 * The new_root and put_old must be directories, and must not be on the
1671 * same file system as the current process root. The put_old must be
1672 * underneath new_root, i.e. adding a non-zero number of /.. to the string
1673 * pointed to by put_old must yield the same directory as new_root. No other
1674 * file system may be mounted on put_old. After all, new_root is a mountpoint.
1675 *
1676 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
1677 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
1678 * in this situation.
1679 *
1680 * Notes:
1681 * - we don't move root/cwd if they are not at the root (reason: if something
1682 * cared enough to change them, it's probably wrong to force them elsewhere)
1683 * - it's okay to pick a root that isn't the root of a file system, e.g.
1684 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
1685 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
1686 * first.
1687 */
1688 asmlinkage long sys_pivot_root(const char __user * new_root,
1689 const char __user * put_old)
1690 {
1691 struct vfsmount *tmp;
1692 struct nameidata new_nd, old_nd, parent_nd, root_parent, user_nd;
1693 int error;
1694
1695 if (!capable(CAP_SYS_ADMIN))
1696 return -EPERM;
1697
1698 lock_kernel();
1699
1700 error = __user_walk(new_root, LOOKUP_FOLLOW | LOOKUP_DIRECTORY,
1701 &new_nd);
1702 if (error)
1703 goto out0;
1704 error = -EINVAL;
1705 if (!check_mnt(new_nd.mnt))
1706 goto out1;
1707
1708 error = __user_walk(put_old, LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &old_nd);
1709 if (error)
1710 goto out1;
1711
1712 error = security_sb_pivotroot(&old_nd, &new_nd);
1713 if (error) {
1714 path_release(&old_nd);
1715 goto out1;
1716 }
1717
1718 read_lock(&current->fs->lock);
1719 user_nd.mnt = mntget(current->fs->rootmnt);
1720 user_nd.dentry = dget(current->fs->root);
1721 read_unlock(&current->fs->lock);
1722 down_write(&namespace_sem);
1723 mutex_lock(&old_nd.dentry->d_inode->i_mutex);
1724 error = -EINVAL;
1725 if (IS_MNT_SHARED(old_nd.mnt) ||
1726 IS_MNT_SHARED(new_nd.mnt->mnt_parent) ||
1727 IS_MNT_SHARED(user_nd.mnt->mnt_parent))
1728 goto out2;
1729 if (!check_mnt(user_nd.mnt))
1730 goto out2;
1731 error = -ENOENT;
1732 if (IS_DEADDIR(new_nd.dentry->d_inode))
1733 goto out2;
1734 if (d_unhashed(new_nd.dentry) && !IS_ROOT(new_nd.dentry))
1735 goto out2;
1736 if (d_unhashed(old_nd.dentry) && !IS_ROOT(old_nd.dentry))
1737 goto out2;
1738 error = -EBUSY;
1739 if (new_nd.mnt == user_nd.mnt || old_nd.mnt == user_nd.mnt)
1740 goto out2; /* loop, on the same file system */
1741 error = -EINVAL;
1742 if (user_nd.mnt->mnt_root != user_nd.dentry)
1743 goto out2; /* not a mountpoint */
1744 if (user_nd.mnt->mnt_parent == user_nd.mnt)
1745 goto out2; /* not attached */
1746 if (new_nd.mnt->mnt_root != new_nd.dentry)
1747 goto out2; /* not a mountpoint */
1748 if (new_nd.mnt->mnt_parent == new_nd.mnt)
1749 goto out2; /* not attached */
1750 tmp = old_nd.mnt; /* make sure we can reach put_old from new_root */
1751 spin_lock(&vfsmount_lock);
1752 if (tmp != new_nd.mnt) {
1753 for (;;) {
1754 if (tmp->mnt_parent == tmp)
1755 goto out3; /* already mounted on put_old */
1756 if (tmp->mnt_parent == new_nd.mnt)
1757 break;
1758 tmp = tmp->mnt_parent;
1759 }
1760 if (!is_subdir(tmp->mnt_mountpoint, new_nd.dentry))
1761 goto out3;
1762 } else if (!is_subdir(old_nd.dentry, new_nd.dentry))
1763 goto out3;
1764 detach_mnt(new_nd.mnt, &parent_nd);
1765 detach_mnt(user_nd.mnt, &root_parent);
1766 attach_mnt(user_nd.mnt, &old_nd); /* mount old root on put_old */
1767 attach_mnt(new_nd.mnt, &root_parent); /* mount new_root on / */
1768 touch_namespace(current->namespace);
1769 spin_unlock(&vfsmount_lock);
1770 chroot_fs_refs(&user_nd, &new_nd);
1771 security_sb_post_pivotroot(&user_nd, &new_nd);
1772 error = 0;
1773 path_release(&root_parent);
1774 path_release(&parent_nd);
1775 out2:
1776 mutex_unlock(&old_nd.dentry->d_inode->i_mutex);
1777 up_write(&namespace_sem);
1778 path_release(&user_nd);
1779 path_release(&old_nd);
1780 out1:
1781 path_release(&new_nd);
1782 out0:
1783 unlock_kernel();
1784 return error;
1785 out3:
1786 spin_unlock(&vfsmount_lock);
1787 goto out2;
1788 }
1789
1790 static void __init init_mount_tree(void)
1791 {
1792 struct vfsmount *mnt;
1793 struct namespace *namespace;
1794 struct task_struct *g, *p;
1795
1796 mnt = do_kern_mount("rootfs", 0, "rootfs", NULL);
1797 if (IS_ERR(mnt))
1798 panic("Can't create rootfs");
1799 namespace = kmalloc(sizeof(*namespace), GFP_KERNEL);
1800 if (!namespace)
1801 panic("Can't allocate initial namespace");
1802 atomic_set(&namespace->count, 1);
1803 INIT_LIST_HEAD(&namespace->list);
1804 init_waitqueue_head(&namespace->poll);
1805 namespace->event = 0;
1806 list_add(&mnt->mnt_list, &namespace->list);
1807 namespace->root = mnt;
1808 mnt->mnt_namespace = namespace;
1809
1810 init_task.namespace = namespace;
1811 read_lock(&tasklist_lock);
1812 do_each_thread(g, p) {
1813 get_namespace(namespace);
1814 p->namespace = namespace;
1815 } while_each_thread(g, p);
1816 read_unlock(&tasklist_lock);
1817
1818 set_fs_pwd(current->fs, namespace->root, namespace->root->mnt_root);
1819 set_fs_root(current->fs, namespace->root, namespace->root->mnt_root);
1820 }
1821
1822 void __init mnt_init(unsigned long mempages)
1823 {
1824 struct list_head *d;
1825 unsigned int nr_hash;
1826 int i;
1827
1828 init_rwsem(&namespace_sem);
1829
1830 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct vfsmount),
1831 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL, NULL);
1832
1833 mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
1834
1835 if (!mount_hashtable)
1836 panic("Failed to allocate mount hash table\n");
1837
1838 /*
1839 * Find the power-of-two list-heads that can fit into the allocation..
1840 * We don't guarantee that "sizeof(struct list_head)" is necessarily
1841 * a power-of-two.
1842 */
1843 nr_hash = PAGE_SIZE / sizeof(struct list_head);
1844 hash_bits = 0;
1845 do {
1846 hash_bits++;
1847 } while ((nr_hash >> hash_bits) != 0);
1848 hash_bits--;
1849
1850 /*
1851 * Re-calculate the actual number of entries and the mask
1852 * from the number of bits we can fit.
1853 */
1854 nr_hash = 1UL << hash_bits;
1855 hash_mask = nr_hash - 1;
1856
1857 printk("Mount-cache hash table entries: %d\n", nr_hash);
1858
1859 /* And initialize the newly allocated array */
1860 d = mount_hashtable;
1861 i = nr_hash;
1862 do {
1863 INIT_LIST_HEAD(d);
1864 d++;
1865 i--;
1866 } while (i);
1867 sysfs_init();
1868 subsystem_register(&fs_subsys);
1869 init_rootfs();
1870 init_mount_tree();
1871 }
1872
1873 void __put_namespace(struct namespace *namespace)
1874 {
1875 struct vfsmount *root = namespace->root;
1876 LIST_HEAD(umount_list);
1877 namespace->root = NULL;
1878 spin_unlock(&vfsmount_lock);
1879 down_write(&namespace_sem);
1880 spin_lock(&vfsmount_lock);
1881 umount_tree(root, 0, &umount_list);
1882 spin_unlock(&vfsmount_lock);
1883 up_write(&namespace_sem);
1884 release_mounts(&umount_list);
1885 kfree(namespace);
1886 }
This page took 0.069993 seconds and 6 git commands to generate.