mnt: Honor MNT_LOCKED when detaching mounts
[deliverable/linux.git] / fs / namespace.c
1 /*
2 * linux/fs/namespace.c
3 *
4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/user_namespace.h>
16 #include <linux/namei.h>
17 #include <linux/security.h>
18 #include <linux/idr.h>
19 #include <linux/init.h> /* init_rootfs */
20 #include <linux/fs_struct.h> /* get_fs_root et.al. */
21 #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
22 #include <linux/uaccess.h>
23 #include <linux/proc_ns.h>
24 #include <linux/magic.h>
25 #include <linux/bootmem.h>
26 #include <linux/task_work.h>
27 #include "pnode.h"
28 #include "internal.h"
29
30 static unsigned int m_hash_mask __read_mostly;
31 static unsigned int m_hash_shift __read_mostly;
32 static unsigned int mp_hash_mask __read_mostly;
33 static unsigned int mp_hash_shift __read_mostly;
34
35 static __initdata unsigned long mhash_entries;
36 static int __init set_mhash_entries(char *str)
37 {
38 if (!str)
39 return 0;
40 mhash_entries = simple_strtoul(str, &str, 0);
41 return 1;
42 }
43 __setup("mhash_entries=", set_mhash_entries);
44
45 static __initdata unsigned long mphash_entries;
46 static int __init set_mphash_entries(char *str)
47 {
48 if (!str)
49 return 0;
50 mphash_entries = simple_strtoul(str, &str, 0);
51 return 1;
52 }
53 __setup("mphash_entries=", set_mphash_entries);
54
55 static u64 event;
56 static DEFINE_IDA(mnt_id_ida);
57 static DEFINE_IDA(mnt_group_ida);
58 static DEFINE_SPINLOCK(mnt_id_lock);
59 static int mnt_id_start = 0;
60 static int mnt_group_start = 1;
61
62 static struct hlist_head *mount_hashtable __read_mostly;
63 static struct hlist_head *mountpoint_hashtable __read_mostly;
64 static struct kmem_cache *mnt_cache __read_mostly;
65 static DECLARE_RWSEM(namespace_sem);
66
67 /* /sys/fs */
68 struct kobject *fs_kobj;
69 EXPORT_SYMBOL_GPL(fs_kobj);
70
71 /*
72 * vfsmount lock may be taken for read to prevent changes to the
73 * vfsmount hash, ie. during mountpoint lookups or walking back
74 * up the tree.
75 *
76 * It should be taken for write in all cases where the vfsmount
77 * tree or hash is modified or when a vfsmount structure is modified.
78 */
79 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
80
81 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
82 {
83 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
84 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
85 tmp = tmp + (tmp >> m_hash_shift);
86 return &mount_hashtable[tmp & m_hash_mask];
87 }
88
89 static inline struct hlist_head *mp_hash(struct dentry *dentry)
90 {
91 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
92 tmp = tmp + (tmp >> mp_hash_shift);
93 return &mountpoint_hashtable[tmp & mp_hash_mask];
94 }
95
96 /*
97 * allocation is serialized by namespace_sem, but we need the spinlock to
98 * serialize with freeing.
99 */
100 static int mnt_alloc_id(struct mount *mnt)
101 {
102 int res;
103
104 retry:
105 ida_pre_get(&mnt_id_ida, GFP_KERNEL);
106 spin_lock(&mnt_id_lock);
107 res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
108 if (!res)
109 mnt_id_start = mnt->mnt_id + 1;
110 spin_unlock(&mnt_id_lock);
111 if (res == -EAGAIN)
112 goto retry;
113
114 return res;
115 }
116
117 static void mnt_free_id(struct mount *mnt)
118 {
119 int id = mnt->mnt_id;
120 spin_lock(&mnt_id_lock);
121 ida_remove(&mnt_id_ida, id);
122 if (mnt_id_start > id)
123 mnt_id_start = id;
124 spin_unlock(&mnt_id_lock);
125 }
126
127 /*
128 * Allocate a new peer group ID
129 *
130 * mnt_group_ida is protected by namespace_sem
131 */
132 static int mnt_alloc_group_id(struct mount *mnt)
133 {
134 int res;
135
136 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
137 return -ENOMEM;
138
139 res = ida_get_new_above(&mnt_group_ida,
140 mnt_group_start,
141 &mnt->mnt_group_id);
142 if (!res)
143 mnt_group_start = mnt->mnt_group_id + 1;
144
145 return res;
146 }
147
148 /*
149 * Release a peer group ID
150 */
151 void mnt_release_group_id(struct mount *mnt)
152 {
153 int id = mnt->mnt_group_id;
154 ida_remove(&mnt_group_ida, id);
155 if (mnt_group_start > id)
156 mnt_group_start = id;
157 mnt->mnt_group_id = 0;
158 }
159
160 /*
161 * vfsmount lock must be held for read
162 */
163 static inline void mnt_add_count(struct mount *mnt, int n)
164 {
165 #ifdef CONFIG_SMP
166 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
167 #else
168 preempt_disable();
169 mnt->mnt_count += n;
170 preempt_enable();
171 #endif
172 }
173
174 /*
175 * vfsmount lock must be held for write
176 */
177 unsigned int mnt_get_count(struct mount *mnt)
178 {
179 #ifdef CONFIG_SMP
180 unsigned int count = 0;
181 int cpu;
182
183 for_each_possible_cpu(cpu) {
184 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
185 }
186
187 return count;
188 #else
189 return mnt->mnt_count;
190 #endif
191 }
192
193 static void drop_mountpoint(struct fs_pin *p)
194 {
195 struct mount *m = container_of(p, struct mount, mnt_umount);
196 dput(m->mnt_ex_mountpoint);
197 pin_remove(p);
198 mntput(&m->mnt);
199 }
200
201 static struct mount *alloc_vfsmnt(const char *name)
202 {
203 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
204 if (mnt) {
205 int err;
206
207 err = mnt_alloc_id(mnt);
208 if (err)
209 goto out_free_cache;
210
211 if (name) {
212 mnt->mnt_devname = kstrdup_const(name, GFP_KERNEL);
213 if (!mnt->mnt_devname)
214 goto out_free_id;
215 }
216
217 #ifdef CONFIG_SMP
218 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
219 if (!mnt->mnt_pcp)
220 goto out_free_devname;
221
222 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
223 #else
224 mnt->mnt_count = 1;
225 mnt->mnt_writers = 0;
226 #endif
227
228 INIT_HLIST_NODE(&mnt->mnt_hash);
229 INIT_LIST_HEAD(&mnt->mnt_child);
230 INIT_LIST_HEAD(&mnt->mnt_mounts);
231 INIT_LIST_HEAD(&mnt->mnt_list);
232 INIT_LIST_HEAD(&mnt->mnt_expire);
233 INIT_LIST_HEAD(&mnt->mnt_share);
234 INIT_LIST_HEAD(&mnt->mnt_slave_list);
235 INIT_LIST_HEAD(&mnt->mnt_slave);
236 INIT_HLIST_NODE(&mnt->mnt_mp_list);
237 #ifdef CONFIG_FSNOTIFY
238 INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
239 #endif
240 init_fs_pin(&mnt->mnt_umount, drop_mountpoint);
241 }
242 return mnt;
243
244 #ifdef CONFIG_SMP
245 out_free_devname:
246 kfree_const(mnt->mnt_devname);
247 #endif
248 out_free_id:
249 mnt_free_id(mnt);
250 out_free_cache:
251 kmem_cache_free(mnt_cache, mnt);
252 return NULL;
253 }
254
255 /*
256 * Most r/o checks on a fs are for operations that take
257 * discrete amounts of time, like a write() or unlink().
258 * We must keep track of when those operations start
259 * (for permission checks) and when they end, so that
260 * we can determine when writes are able to occur to
261 * a filesystem.
262 */
263 /*
264 * __mnt_is_readonly: check whether a mount is read-only
265 * @mnt: the mount to check for its write status
266 *
267 * This shouldn't be used directly ouside of the VFS.
268 * It does not guarantee that the filesystem will stay
269 * r/w, just that it is right *now*. This can not and
270 * should not be used in place of IS_RDONLY(inode).
271 * mnt_want/drop_write() will _keep_ the filesystem
272 * r/w.
273 */
274 int __mnt_is_readonly(struct vfsmount *mnt)
275 {
276 if (mnt->mnt_flags & MNT_READONLY)
277 return 1;
278 if (mnt->mnt_sb->s_flags & MS_RDONLY)
279 return 1;
280 return 0;
281 }
282 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
283
284 static inline void mnt_inc_writers(struct mount *mnt)
285 {
286 #ifdef CONFIG_SMP
287 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
288 #else
289 mnt->mnt_writers++;
290 #endif
291 }
292
293 static inline void mnt_dec_writers(struct mount *mnt)
294 {
295 #ifdef CONFIG_SMP
296 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
297 #else
298 mnt->mnt_writers--;
299 #endif
300 }
301
302 static unsigned int mnt_get_writers(struct mount *mnt)
303 {
304 #ifdef CONFIG_SMP
305 unsigned int count = 0;
306 int cpu;
307
308 for_each_possible_cpu(cpu) {
309 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
310 }
311
312 return count;
313 #else
314 return mnt->mnt_writers;
315 #endif
316 }
317
318 static int mnt_is_readonly(struct vfsmount *mnt)
319 {
320 if (mnt->mnt_sb->s_readonly_remount)
321 return 1;
322 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
323 smp_rmb();
324 return __mnt_is_readonly(mnt);
325 }
326
327 /*
328 * Most r/o & frozen checks on a fs are for operations that take discrete
329 * amounts of time, like a write() or unlink(). We must keep track of when
330 * those operations start (for permission checks) and when they end, so that we
331 * can determine when writes are able to occur to a filesystem.
332 */
333 /**
334 * __mnt_want_write - get write access to a mount without freeze protection
335 * @m: the mount on which to take a write
336 *
337 * This tells the low-level filesystem that a write is about to be performed to
338 * it, and makes sure that writes are allowed (mnt it read-write) before
339 * returning success. This operation does not protect against filesystem being
340 * frozen. When the write operation is finished, __mnt_drop_write() must be
341 * called. This is effectively a refcount.
342 */
343 int __mnt_want_write(struct vfsmount *m)
344 {
345 struct mount *mnt = real_mount(m);
346 int ret = 0;
347
348 preempt_disable();
349 mnt_inc_writers(mnt);
350 /*
351 * The store to mnt_inc_writers must be visible before we pass
352 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
353 * incremented count after it has set MNT_WRITE_HOLD.
354 */
355 smp_mb();
356 while (ACCESS_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
357 cpu_relax();
358 /*
359 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
360 * be set to match its requirements. So we must not load that until
361 * MNT_WRITE_HOLD is cleared.
362 */
363 smp_rmb();
364 if (mnt_is_readonly(m)) {
365 mnt_dec_writers(mnt);
366 ret = -EROFS;
367 }
368 preempt_enable();
369
370 return ret;
371 }
372
373 /**
374 * mnt_want_write - get write access to a mount
375 * @m: the mount on which to take a write
376 *
377 * This tells the low-level filesystem that a write is about to be performed to
378 * it, and makes sure that writes are allowed (mount is read-write, filesystem
379 * is not frozen) before returning success. When the write operation is
380 * finished, mnt_drop_write() must be called. This is effectively a refcount.
381 */
382 int mnt_want_write(struct vfsmount *m)
383 {
384 int ret;
385
386 sb_start_write(m->mnt_sb);
387 ret = __mnt_want_write(m);
388 if (ret)
389 sb_end_write(m->mnt_sb);
390 return ret;
391 }
392 EXPORT_SYMBOL_GPL(mnt_want_write);
393
394 /**
395 * mnt_clone_write - get write access to a mount
396 * @mnt: the mount on which to take a write
397 *
398 * This is effectively like mnt_want_write, except
399 * it must only be used to take an extra write reference
400 * on a mountpoint that we already know has a write reference
401 * on it. This allows some optimisation.
402 *
403 * After finished, mnt_drop_write must be called as usual to
404 * drop the reference.
405 */
406 int mnt_clone_write(struct vfsmount *mnt)
407 {
408 /* superblock may be r/o */
409 if (__mnt_is_readonly(mnt))
410 return -EROFS;
411 preempt_disable();
412 mnt_inc_writers(real_mount(mnt));
413 preempt_enable();
414 return 0;
415 }
416 EXPORT_SYMBOL_GPL(mnt_clone_write);
417
418 /**
419 * __mnt_want_write_file - get write access to a file's mount
420 * @file: the file who's mount on which to take a write
421 *
422 * This is like __mnt_want_write, but it takes a file and can
423 * do some optimisations if the file is open for write already
424 */
425 int __mnt_want_write_file(struct file *file)
426 {
427 if (!(file->f_mode & FMODE_WRITER))
428 return __mnt_want_write(file->f_path.mnt);
429 else
430 return mnt_clone_write(file->f_path.mnt);
431 }
432
433 /**
434 * mnt_want_write_file - get write access to a file's mount
435 * @file: the file who's mount on which to take a write
436 *
437 * This is like mnt_want_write, but it takes a file and can
438 * do some optimisations if the file is open for write already
439 */
440 int mnt_want_write_file(struct file *file)
441 {
442 int ret;
443
444 sb_start_write(file->f_path.mnt->mnt_sb);
445 ret = __mnt_want_write_file(file);
446 if (ret)
447 sb_end_write(file->f_path.mnt->mnt_sb);
448 return ret;
449 }
450 EXPORT_SYMBOL_GPL(mnt_want_write_file);
451
452 /**
453 * __mnt_drop_write - give up write access to a mount
454 * @mnt: the mount on which to give up write access
455 *
456 * Tells the low-level filesystem that we are done
457 * performing writes to it. Must be matched with
458 * __mnt_want_write() call above.
459 */
460 void __mnt_drop_write(struct vfsmount *mnt)
461 {
462 preempt_disable();
463 mnt_dec_writers(real_mount(mnt));
464 preempt_enable();
465 }
466
467 /**
468 * mnt_drop_write - give up write access to a mount
469 * @mnt: the mount on which to give up write access
470 *
471 * Tells the low-level filesystem that we are done performing writes to it and
472 * also allows filesystem to be frozen again. Must be matched with
473 * mnt_want_write() call above.
474 */
475 void mnt_drop_write(struct vfsmount *mnt)
476 {
477 __mnt_drop_write(mnt);
478 sb_end_write(mnt->mnt_sb);
479 }
480 EXPORT_SYMBOL_GPL(mnt_drop_write);
481
482 void __mnt_drop_write_file(struct file *file)
483 {
484 __mnt_drop_write(file->f_path.mnt);
485 }
486
487 void mnt_drop_write_file(struct file *file)
488 {
489 mnt_drop_write(file->f_path.mnt);
490 }
491 EXPORT_SYMBOL(mnt_drop_write_file);
492
493 static int mnt_make_readonly(struct mount *mnt)
494 {
495 int ret = 0;
496
497 lock_mount_hash();
498 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
499 /*
500 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
501 * should be visible before we do.
502 */
503 smp_mb();
504
505 /*
506 * With writers on hold, if this value is zero, then there are
507 * definitely no active writers (although held writers may subsequently
508 * increment the count, they'll have to wait, and decrement it after
509 * seeing MNT_READONLY).
510 *
511 * It is OK to have counter incremented on one CPU and decremented on
512 * another: the sum will add up correctly. The danger would be when we
513 * sum up each counter, if we read a counter before it is incremented,
514 * but then read another CPU's count which it has been subsequently
515 * decremented from -- we would see more decrements than we should.
516 * MNT_WRITE_HOLD protects against this scenario, because
517 * mnt_want_write first increments count, then smp_mb, then spins on
518 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
519 * we're counting up here.
520 */
521 if (mnt_get_writers(mnt) > 0)
522 ret = -EBUSY;
523 else
524 mnt->mnt.mnt_flags |= MNT_READONLY;
525 /*
526 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
527 * that become unheld will see MNT_READONLY.
528 */
529 smp_wmb();
530 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
531 unlock_mount_hash();
532 return ret;
533 }
534
535 static void __mnt_unmake_readonly(struct mount *mnt)
536 {
537 lock_mount_hash();
538 mnt->mnt.mnt_flags &= ~MNT_READONLY;
539 unlock_mount_hash();
540 }
541
542 int sb_prepare_remount_readonly(struct super_block *sb)
543 {
544 struct mount *mnt;
545 int err = 0;
546
547 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
548 if (atomic_long_read(&sb->s_remove_count))
549 return -EBUSY;
550
551 lock_mount_hash();
552 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
553 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
554 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
555 smp_mb();
556 if (mnt_get_writers(mnt) > 0) {
557 err = -EBUSY;
558 break;
559 }
560 }
561 }
562 if (!err && atomic_long_read(&sb->s_remove_count))
563 err = -EBUSY;
564
565 if (!err) {
566 sb->s_readonly_remount = 1;
567 smp_wmb();
568 }
569 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
570 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
571 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
572 }
573 unlock_mount_hash();
574
575 return err;
576 }
577
578 static void free_vfsmnt(struct mount *mnt)
579 {
580 kfree_const(mnt->mnt_devname);
581 #ifdef CONFIG_SMP
582 free_percpu(mnt->mnt_pcp);
583 #endif
584 kmem_cache_free(mnt_cache, mnt);
585 }
586
587 static void delayed_free_vfsmnt(struct rcu_head *head)
588 {
589 free_vfsmnt(container_of(head, struct mount, mnt_rcu));
590 }
591
592 /* call under rcu_read_lock */
593 bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
594 {
595 struct mount *mnt;
596 if (read_seqretry(&mount_lock, seq))
597 return false;
598 if (bastard == NULL)
599 return true;
600 mnt = real_mount(bastard);
601 mnt_add_count(mnt, 1);
602 if (likely(!read_seqretry(&mount_lock, seq)))
603 return true;
604 if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
605 mnt_add_count(mnt, -1);
606 return false;
607 }
608 rcu_read_unlock();
609 mntput(bastard);
610 rcu_read_lock();
611 return false;
612 }
613
614 /*
615 * find the first mount at @dentry on vfsmount @mnt.
616 * call under rcu_read_lock()
617 */
618 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
619 {
620 struct hlist_head *head = m_hash(mnt, dentry);
621 struct mount *p;
622
623 hlist_for_each_entry_rcu(p, head, mnt_hash)
624 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
625 return p;
626 return NULL;
627 }
628
629 /*
630 * find the last mount at @dentry on vfsmount @mnt.
631 * mount_lock must be held.
632 */
633 struct mount *__lookup_mnt_last(struct vfsmount *mnt, struct dentry *dentry)
634 {
635 struct mount *p, *res = NULL;
636 p = __lookup_mnt(mnt, dentry);
637 if (!p)
638 goto out;
639 if (!(p->mnt.mnt_flags & MNT_UMOUNT))
640 res = p;
641 hlist_for_each_entry_continue(p, mnt_hash) {
642 if (&p->mnt_parent->mnt != mnt || p->mnt_mountpoint != dentry)
643 break;
644 if (!(p->mnt.mnt_flags & MNT_UMOUNT))
645 res = p;
646 }
647 out:
648 return res;
649 }
650
651 /*
652 * lookup_mnt - Return the first child mount mounted at path
653 *
654 * "First" means first mounted chronologically. If you create the
655 * following mounts:
656 *
657 * mount /dev/sda1 /mnt
658 * mount /dev/sda2 /mnt
659 * mount /dev/sda3 /mnt
660 *
661 * Then lookup_mnt() on the base /mnt dentry in the root mount will
662 * return successively the root dentry and vfsmount of /dev/sda1, then
663 * /dev/sda2, then /dev/sda3, then NULL.
664 *
665 * lookup_mnt takes a reference to the found vfsmount.
666 */
667 struct vfsmount *lookup_mnt(struct path *path)
668 {
669 struct mount *child_mnt;
670 struct vfsmount *m;
671 unsigned seq;
672
673 rcu_read_lock();
674 do {
675 seq = read_seqbegin(&mount_lock);
676 child_mnt = __lookup_mnt(path->mnt, path->dentry);
677 m = child_mnt ? &child_mnt->mnt : NULL;
678 } while (!legitimize_mnt(m, seq));
679 rcu_read_unlock();
680 return m;
681 }
682
683 /*
684 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
685 * current mount namespace.
686 *
687 * The common case is dentries are not mountpoints at all and that
688 * test is handled inline. For the slow case when we are actually
689 * dealing with a mountpoint of some kind, walk through all of the
690 * mounts in the current mount namespace and test to see if the dentry
691 * is a mountpoint.
692 *
693 * The mount_hashtable is not usable in the context because we
694 * need to identify all mounts that may be in the current mount
695 * namespace not just a mount that happens to have some specified
696 * parent mount.
697 */
698 bool __is_local_mountpoint(struct dentry *dentry)
699 {
700 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
701 struct mount *mnt;
702 bool is_covered = false;
703
704 if (!d_mountpoint(dentry))
705 goto out;
706
707 down_read(&namespace_sem);
708 list_for_each_entry(mnt, &ns->list, mnt_list) {
709 is_covered = (mnt->mnt_mountpoint == dentry);
710 if (is_covered)
711 break;
712 }
713 up_read(&namespace_sem);
714 out:
715 return is_covered;
716 }
717
718 static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
719 {
720 struct hlist_head *chain = mp_hash(dentry);
721 struct mountpoint *mp;
722
723 hlist_for_each_entry(mp, chain, m_hash) {
724 if (mp->m_dentry == dentry) {
725 /* might be worth a WARN_ON() */
726 if (d_unlinked(dentry))
727 return ERR_PTR(-ENOENT);
728 mp->m_count++;
729 return mp;
730 }
731 }
732 return NULL;
733 }
734
735 static struct mountpoint *new_mountpoint(struct dentry *dentry)
736 {
737 struct hlist_head *chain = mp_hash(dentry);
738 struct mountpoint *mp;
739 int ret;
740
741 mp = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
742 if (!mp)
743 return ERR_PTR(-ENOMEM);
744
745 ret = d_set_mounted(dentry);
746 if (ret) {
747 kfree(mp);
748 return ERR_PTR(ret);
749 }
750
751 mp->m_dentry = dentry;
752 mp->m_count = 1;
753 hlist_add_head(&mp->m_hash, chain);
754 INIT_HLIST_HEAD(&mp->m_list);
755 return mp;
756 }
757
758 static void put_mountpoint(struct mountpoint *mp)
759 {
760 if (!--mp->m_count) {
761 struct dentry *dentry = mp->m_dentry;
762 BUG_ON(!hlist_empty(&mp->m_list));
763 spin_lock(&dentry->d_lock);
764 dentry->d_flags &= ~DCACHE_MOUNTED;
765 spin_unlock(&dentry->d_lock);
766 hlist_del(&mp->m_hash);
767 kfree(mp);
768 }
769 }
770
771 static inline int check_mnt(struct mount *mnt)
772 {
773 return mnt->mnt_ns == current->nsproxy->mnt_ns;
774 }
775
776 /*
777 * vfsmount lock must be held for write
778 */
779 static void touch_mnt_namespace(struct mnt_namespace *ns)
780 {
781 if (ns) {
782 ns->event = ++event;
783 wake_up_interruptible(&ns->poll);
784 }
785 }
786
787 /*
788 * vfsmount lock must be held for write
789 */
790 static void __touch_mnt_namespace(struct mnt_namespace *ns)
791 {
792 if (ns && ns->event != event) {
793 ns->event = event;
794 wake_up_interruptible(&ns->poll);
795 }
796 }
797
798 /*
799 * vfsmount lock must be held for write
800 */
801 static void unhash_mnt(struct mount *mnt)
802 {
803 mnt->mnt_parent = mnt;
804 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
805 list_del_init(&mnt->mnt_child);
806 hlist_del_init_rcu(&mnt->mnt_hash);
807 hlist_del_init(&mnt->mnt_mp_list);
808 put_mountpoint(mnt->mnt_mp);
809 mnt->mnt_mp = NULL;
810 }
811
812 /*
813 * vfsmount lock must be held for write
814 */
815 static void detach_mnt(struct mount *mnt, struct path *old_path)
816 {
817 old_path->dentry = mnt->mnt_mountpoint;
818 old_path->mnt = &mnt->mnt_parent->mnt;
819 unhash_mnt(mnt);
820 }
821
822 /*
823 * vfsmount lock must be held for write
824 */
825 static void umount_mnt(struct mount *mnt)
826 {
827 /* old mountpoint will be dropped when we can do that */
828 mnt->mnt_ex_mountpoint = mnt->mnt_mountpoint;
829 unhash_mnt(mnt);
830 }
831
832 /*
833 * vfsmount lock must be held for write
834 */
835 void mnt_set_mountpoint(struct mount *mnt,
836 struct mountpoint *mp,
837 struct mount *child_mnt)
838 {
839 mp->m_count++;
840 mnt_add_count(mnt, 1); /* essentially, that's mntget */
841 child_mnt->mnt_mountpoint = dget(mp->m_dentry);
842 child_mnt->mnt_parent = mnt;
843 child_mnt->mnt_mp = mp;
844 hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
845 }
846
847 /*
848 * vfsmount lock must be held for write
849 */
850 static void attach_mnt(struct mount *mnt,
851 struct mount *parent,
852 struct mountpoint *mp)
853 {
854 mnt_set_mountpoint(parent, mp, mnt);
855 hlist_add_head_rcu(&mnt->mnt_hash, m_hash(&parent->mnt, mp->m_dentry));
856 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
857 }
858
859 static void attach_shadowed(struct mount *mnt,
860 struct mount *parent,
861 struct mount *shadows)
862 {
863 if (shadows) {
864 hlist_add_behind_rcu(&mnt->mnt_hash, &shadows->mnt_hash);
865 list_add(&mnt->mnt_child, &shadows->mnt_child);
866 } else {
867 hlist_add_head_rcu(&mnt->mnt_hash,
868 m_hash(&parent->mnt, mnt->mnt_mountpoint));
869 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
870 }
871 }
872
873 /*
874 * vfsmount lock must be held for write
875 */
876 static void commit_tree(struct mount *mnt, struct mount *shadows)
877 {
878 struct mount *parent = mnt->mnt_parent;
879 struct mount *m;
880 LIST_HEAD(head);
881 struct mnt_namespace *n = parent->mnt_ns;
882
883 BUG_ON(parent == mnt);
884
885 list_add_tail(&head, &mnt->mnt_list);
886 list_for_each_entry(m, &head, mnt_list)
887 m->mnt_ns = n;
888
889 list_splice(&head, n->list.prev);
890
891 attach_shadowed(mnt, parent, shadows);
892 touch_mnt_namespace(n);
893 }
894
895 static struct mount *next_mnt(struct mount *p, struct mount *root)
896 {
897 struct list_head *next = p->mnt_mounts.next;
898 if (next == &p->mnt_mounts) {
899 while (1) {
900 if (p == root)
901 return NULL;
902 next = p->mnt_child.next;
903 if (next != &p->mnt_parent->mnt_mounts)
904 break;
905 p = p->mnt_parent;
906 }
907 }
908 return list_entry(next, struct mount, mnt_child);
909 }
910
911 static struct mount *skip_mnt_tree(struct mount *p)
912 {
913 struct list_head *prev = p->mnt_mounts.prev;
914 while (prev != &p->mnt_mounts) {
915 p = list_entry(prev, struct mount, mnt_child);
916 prev = p->mnt_mounts.prev;
917 }
918 return p;
919 }
920
921 struct vfsmount *
922 vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
923 {
924 struct mount *mnt;
925 struct dentry *root;
926
927 if (!type)
928 return ERR_PTR(-ENODEV);
929
930 mnt = alloc_vfsmnt(name);
931 if (!mnt)
932 return ERR_PTR(-ENOMEM);
933
934 if (flags & MS_KERNMOUNT)
935 mnt->mnt.mnt_flags = MNT_INTERNAL;
936
937 root = mount_fs(type, flags, name, data);
938 if (IS_ERR(root)) {
939 mnt_free_id(mnt);
940 free_vfsmnt(mnt);
941 return ERR_CAST(root);
942 }
943
944 mnt->mnt.mnt_root = root;
945 mnt->mnt.mnt_sb = root->d_sb;
946 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
947 mnt->mnt_parent = mnt;
948 lock_mount_hash();
949 list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
950 unlock_mount_hash();
951 return &mnt->mnt;
952 }
953 EXPORT_SYMBOL_GPL(vfs_kern_mount);
954
955 static struct mount *clone_mnt(struct mount *old, struct dentry *root,
956 int flag)
957 {
958 struct super_block *sb = old->mnt.mnt_sb;
959 struct mount *mnt;
960 int err;
961
962 mnt = alloc_vfsmnt(old->mnt_devname);
963 if (!mnt)
964 return ERR_PTR(-ENOMEM);
965
966 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
967 mnt->mnt_group_id = 0; /* not a peer of original */
968 else
969 mnt->mnt_group_id = old->mnt_group_id;
970
971 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
972 err = mnt_alloc_group_id(mnt);
973 if (err)
974 goto out_free;
975 }
976
977 mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~(MNT_WRITE_HOLD|MNT_MARKED);
978 /* Don't allow unprivileged users to change mount flags */
979 if (flag & CL_UNPRIVILEGED) {
980 mnt->mnt.mnt_flags |= MNT_LOCK_ATIME;
981
982 if (mnt->mnt.mnt_flags & MNT_READONLY)
983 mnt->mnt.mnt_flags |= MNT_LOCK_READONLY;
984
985 if (mnt->mnt.mnt_flags & MNT_NODEV)
986 mnt->mnt.mnt_flags |= MNT_LOCK_NODEV;
987
988 if (mnt->mnt.mnt_flags & MNT_NOSUID)
989 mnt->mnt.mnt_flags |= MNT_LOCK_NOSUID;
990
991 if (mnt->mnt.mnt_flags & MNT_NOEXEC)
992 mnt->mnt.mnt_flags |= MNT_LOCK_NOEXEC;
993 }
994
995 /* Don't allow unprivileged users to reveal what is under a mount */
996 if ((flag & CL_UNPRIVILEGED) &&
997 (!(flag & CL_EXPIRE) || list_empty(&old->mnt_expire)))
998 mnt->mnt.mnt_flags |= MNT_LOCKED;
999
1000 atomic_inc(&sb->s_active);
1001 mnt->mnt.mnt_sb = sb;
1002 mnt->mnt.mnt_root = dget(root);
1003 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1004 mnt->mnt_parent = mnt;
1005 lock_mount_hash();
1006 list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
1007 unlock_mount_hash();
1008
1009 if ((flag & CL_SLAVE) ||
1010 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
1011 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
1012 mnt->mnt_master = old;
1013 CLEAR_MNT_SHARED(mnt);
1014 } else if (!(flag & CL_PRIVATE)) {
1015 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
1016 list_add(&mnt->mnt_share, &old->mnt_share);
1017 if (IS_MNT_SLAVE(old))
1018 list_add(&mnt->mnt_slave, &old->mnt_slave);
1019 mnt->mnt_master = old->mnt_master;
1020 }
1021 if (flag & CL_MAKE_SHARED)
1022 set_mnt_shared(mnt);
1023
1024 /* stick the duplicate mount on the same expiry list
1025 * as the original if that was on one */
1026 if (flag & CL_EXPIRE) {
1027 if (!list_empty(&old->mnt_expire))
1028 list_add(&mnt->mnt_expire, &old->mnt_expire);
1029 }
1030
1031 return mnt;
1032
1033 out_free:
1034 mnt_free_id(mnt);
1035 free_vfsmnt(mnt);
1036 return ERR_PTR(err);
1037 }
1038
1039 static void cleanup_mnt(struct mount *mnt)
1040 {
1041 /*
1042 * This probably indicates that somebody messed
1043 * up a mnt_want/drop_write() pair. If this
1044 * happens, the filesystem was probably unable
1045 * to make r/w->r/o transitions.
1046 */
1047 /*
1048 * The locking used to deal with mnt_count decrement provides barriers,
1049 * so mnt_get_writers() below is safe.
1050 */
1051 WARN_ON(mnt_get_writers(mnt));
1052 if (unlikely(mnt->mnt_pins.first))
1053 mnt_pin_kill(mnt);
1054 fsnotify_vfsmount_delete(&mnt->mnt);
1055 dput(mnt->mnt.mnt_root);
1056 deactivate_super(mnt->mnt.mnt_sb);
1057 mnt_free_id(mnt);
1058 call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1059 }
1060
1061 static void __cleanup_mnt(struct rcu_head *head)
1062 {
1063 cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1064 }
1065
1066 static LLIST_HEAD(delayed_mntput_list);
1067 static void delayed_mntput(struct work_struct *unused)
1068 {
1069 struct llist_node *node = llist_del_all(&delayed_mntput_list);
1070 struct llist_node *next;
1071
1072 for (; node; node = next) {
1073 next = llist_next(node);
1074 cleanup_mnt(llist_entry(node, struct mount, mnt_llist));
1075 }
1076 }
1077 static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1078
1079 static void mntput_no_expire(struct mount *mnt)
1080 {
1081 rcu_read_lock();
1082 mnt_add_count(mnt, -1);
1083 if (likely(mnt->mnt_ns)) { /* shouldn't be the last one */
1084 rcu_read_unlock();
1085 return;
1086 }
1087 lock_mount_hash();
1088 if (mnt_get_count(mnt)) {
1089 rcu_read_unlock();
1090 unlock_mount_hash();
1091 return;
1092 }
1093 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1094 rcu_read_unlock();
1095 unlock_mount_hash();
1096 return;
1097 }
1098 mnt->mnt.mnt_flags |= MNT_DOOMED;
1099 rcu_read_unlock();
1100
1101 list_del(&mnt->mnt_instance);
1102
1103 if (unlikely(!list_empty(&mnt->mnt_mounts))) {
1104 struct mount *p, *tmp;
1105 list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts, mnt_child) {
1106 umount_mnt(p);
1107 }
1108 }
1109 unlock_mount_hash();
1110
1111 if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1112 struct task_struct *task = current;
1113 if (likely(!(task->flags & PF_KTHREAD))) {
1114 init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1115 if (!task_work_add(task, &mnt->mnt_rcu, true))
1116 return;
1117 }
1118 if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1119 schedule_delayed_work(&delayed_mntput_work, 1);
1120 return;
1121 }
1122 cleanup_mnt(mnt);
1123 }
1124
1125 void mntput(struct vfsmount *mnt)
1126 {
1127 if (mnt) {
1128 struct mount *m = real_mount(mnt);
1129 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
1130 if (unlikely(m->mnt_expiry_mark))
1131 m->mnt_expiry_mark = 0;
1132 mntput_no_expire(m);
1133 }
1134 }
1135 EXPORT_SYMBOL(mntput);
1136
1137 struct vfsmount *mntget(struct vfsmount *mnt)
1138 {
1139 if (mnt)
1140 mnt_add_count(real_mount(mnt), 1);
1141 return mnt;
1142 }
1143 EXPORT_SYMBOL(mntget);
1144
1145 struct vfsmount *mnt_clone_internal(struct path *path)
1146 {
1147 struct mount *p;
1148 p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1149 if (IS_ERR(p))
1150 return ERR_CAST(p);
1151 p->mnt.mnt_flags |= MNT_INTERNAL;
1152 return &p->mnt;
1153 }
1154
1155 static inline void mangle(struct seq_file *m, const char *s)
1156 {
1157 seq_escape(m, s, " \t\n\\");
1158 }
1159
1160 /*
1161 * Simple .show_options callback for filesystems which don't want to
1162 * implement more complex mount option showing.
1163 *
1164 * See also save_mount_options().
1165 */
1166 int generic_show_options(struct seq_file *m, struct dentry *root)
1167 {
1168 const char *options;
1169
1170 rcu_read_lock();
1171 options = rcu_dereference(root->d_sb->s_options);
1172
1173 if (options != NULL && options[0]) {
1174 seq_putc(m, ',');
1175 mangle(m, options);
1176 }
1177 rcu_read_unlock();
1178
1179 return 0;
1180 }
1181 EXPORT_SYMBOL(generic_show_options);
1182
1183 /*
1184 * If filesystem uses generic_show_options(), this function should be
1185 * called from the fill_super() callback.
1186 *
1187 * The .remount_fs callback usually needs to be handled in a special
1188 * way, to make sure, that previous options are not overwritten if the
1189 * remount fails.
1190 *
1191 * Also note, that if the filesystem's .remount_fs function doesn't
1192 * reset all options to their default value, but changes only newly
1193 * given options, then the displayed options will not reflect reality
1194 * any more.
1195 */
1196 void save_mount_options(struct super_block *sb, char *options)
1197 {
1198 BUG_ON(sb->s_options);
1199 rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
1200 }
1201 EXPORT_SYMBOL(save_mount_options);
1202
1203 void replace_mount_options(struct super_block *sb, char *options)
1204 {
1205 char *old = sb->s_options;
1206 rcu_assign_pointer(sb->s_options, options);
1207 if (old) {
1208 synchronize_rcu();
1209 kfree(old);
1210 }
1211 }
1212 EXPORT_SYMBOL(replace_mount_options);
1213
1214 #ifdef CONFIG_PROC_FS
1215 /* iterator; we want it to have access to namespace_sem, thus here... */
1216 static void *m_start(struct seq_file *m, loff_t *pos)
1217 {
1218 struct proc_mounts *p = proc_mounts(m);
1219
1220 down_read(&namespace_sem);
1221 if (p->cached_event == p->ns->event) {
1222 void *v = p->cached_mount;
1223 if (*pos == p->cached_index)
1224 return v;
1225 if (*pos == p->cached_index + 1) {
1226 v = seq_list_next(v, &p->ns->list, &p->cached_index);
1227 return p->cached_mount = v;
1228 }
1229 }
1230
1231 p->cached_event = p->ns->event;
1232 p->cached_mount = seq_list_start(&p->ns->list, *pos);
1233 p->cached_index = *pos;
1234 return p->cached_mount;
1235 }
1236
1237 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1238 {
1239 struct proc_mounts *p = proc_mounts(m);
1240
1241 p->cached_mount = seq_list_next(v, &p->ns->list, pos);
1242 p->cached_index = *pos;
1243 return p->cached_mount;
1244 }
1245
1246 static void m_stop(struct seq_file *m, void *v)
1247 {
1248 up_read(&namespace_sem);
1249 }
1250
1251 static int m_show(struct seq_file *m, void *v)
1252 {
1253 struct proc_mounts *p = proc_mounts(m);
1254 struct mount *r = list_entry(v, struct mount, mnt_list);
1255 return p->show(m, &r->mnt);
1256 }
1257
1258 const struct seq_operations mounts_op = {
1259 .start = m_start,
1260 .next = m_next,
1261 .stop = m_stop,
1262 .show = m_show,
1263 };
1264 #endif /* CONFIG_PROC_FS */
1265
1266 /**
1267 * may_umount_tree - check if a mount tree is busy
1268 * @mnt: root of mount tree
1269 *
1270 * This is called to check if a tree of mounts has any
1271 * open files, pwds, chroots or sub mounts that are
1272 * busy.
1273 */
1274 int may_umount_tree(struct vfsmount *m)
1275 {
1276 struct mount *mnt = real_mount(m);
1277 int actual_refs = 0;
1278 int minimum_refs = 0;
1279 struct mount *p;
1280 BUG_ON(!m);
1281
1282 /* write lock needed for mnt_get_count */
1283 lock_mount_hash();
1284 for (p = mnt; p; p = next_mnt(p, mnt)) {
1285 actual_refs += mnt_get_count(p);
1286 minimum_refs += 2;
1287 }
1288 unlock_mount_hash();
1289
1290 if (actual_refs > minimum_refs)
1291 return 0;
1292
1293 return 1;
1294 }
1295
1296 EXPORT_SYMBOL(may_umount_tree);
1297
1298 /**
1299 * may_umount - check if a mount point is busy
1300 * @mnt: root of mount
1301 *
1302 * This is called to check if a mount point has any
1303 * open files, pwds, chroots or sub mounts. If the
1304 * mount has sub mounts this will return busy
1305 * regardless of whether the sub mounts are busy.
1306 *
1307 * Doesn't take quota and stuff into account. IOW, in some cases it will
1308 * give false negatives. The main reason why it's here is that we need
1309 * a non-destructive way to look for easily umountable filesystems.
1310 */
1311 int may_umount(struct vfsmount *mnt)
1312 {
1313 int ret = 1;
1314 down_read(&namespace_sem);
1315 lock_mount_hash();
1316 if (propagate_mount_busy(real_mount(mnt), 2))
1317 ret = 0;
1318 unlock_mount_hash();
1319 up_read(&namespace_sem);
1320 return ret;
1321 }
1322
1323 EXPORT_SYMBOL(may_umount);
1324
1325 static HLIST_HEAD(unmounted); /* protected by namespace_sem */
1326
1327 static void namespace_unlock(void)
1328 {
1329 struct hlist_head head;
1330
1331 hlist_move_list(&unmounted, &head);
1332
1333 up_write(&namespace_sem);
1334
1335 if (likely(hlist_empty(&head)))
1336 return;
1337
1338 synchronize_rcu();
1339
1340 group_pin_kill(&head);
1341 }
1342
1343 static inline void namespace_lock(void)
1344 {
1345 down_write(&namespace_sem);
1346 }
1347
1348 enum umount_tree_flags {
1349 UMOUNT_SYNC = 1,
1350 UMOUNT_PROPAGATE = 2,
1351 };
1352 /*
1353 * mount_lock must be held
1354 * namespace_sem must be held for write
1355 */
1356 static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1357 {
1358 LIST_HEAD(tmp_list);
1359 struct mount *p;
1360
1361 if (how & UMOUNT_PROPAGATE)
1362 propagate_mount_unlock(mnt);
1363
1364 /* Gather the mounts to umount */
1365 for (p = mnt; p; p = next_mnt(p, mnt)) {
1366 p->mnt.mnt_flags |= MNT_UMOUNT;
1367 list_move(&p->mnt_list, &tmp_list);
1368 }
1369
1370 /* Hide the mounts from mnt_mounts */
1371 list_for_each_entry(p, &tmp_list, mnt_list) {
1372 list_del_init(&p->mnt_child);
1373 }
1374
1375 /* Add propogated mounts to the tmp_list */
1376 if (how & UMOUNT_PROPAGATE)
1377 propagate_umount(&tmp_list);
1378
1379 while (!list_empty(&tmp_list)) {
1380 bool disconnect;
1381 p = list_first_entry(&tmp_list, struct mount, mnt_list);
1382 list_del_init(&p->mnt_expire);
1383 list_del_init(&p->mnt_list);
1384 __touch_mnt_namespace(p->mnt_ns);
1385 p->mnt_ns = NULL;
1386 if (how & UMOUNT_SYNC)
1387 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
1388
1389 disconnect = !IS_MNT_LOCKED_AND_LAZY(p);
1390
1391 pin_insert_group(&p->mnt_umount, &p->mnt_parent->mnt,
1392 disconnect ? &unmounted : NULL);
1393 if (mnt_has_parent(p)) {
1394 mnt_add_count(p->mnt_parent, -1);
1395 if (!disconnect) {
1396 /* Don't forget about p */
1397 list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
1398 } else {
1399 umount_mnt(p);
1400 }
1401 }
1402 change_mnt_propagation(p, MS_PRIVATE);
1403 }
1404 }
1405
1406 static void shrink_submounts(struct mount *mnt);
1407
1408 static int do_umount(struct mount *mnt, int flags)
1409 {
1410 struct super_block *sb = mnt->mnt.mnt_sb;
1411 int retval;
1412
1413 retval = security_sb_umount(&mnt->mnt, flags);
1414 if (retval)
1415 return retval;
1416
1417 /*
1418 * Allow userspace to request a mountpoint be expired rather than
1419 * unmounting unconditionally. Unmount only happens if:
1420 * (1) the mark is already set (the mark is cleared by mntput())
1421 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1422 */
1423 if (flags & MNT_EXPIRE) {
1424 if (&mnt->mnt == current->fs->root.mnt ||
1425 flags & (MNT_FORCE | MNT_DETACH))
1426 return -EINVAL;
1427
1428 /*
1429 * probably don't strictly need the lock here if we examined
1430 * all race cases, but it's a slowpath.
1431 */
1432 lock_mount_hash();
1433 if (mnt_get_count(mnt) != 2) {
1434 unlock_mount_hash();
1435 return -EBUSY;
1436 }
1437 unlock_mount_hash();
1438
1439 if (!xchg(&mnt->mnt_expiry_mark, 1))
1440 return -EAGAIN;
1441 }
1442
1443 /*
1444 * If we may have to abort operations to get out of this
1445 * mount, and they will themselves hold resources we must
1446 * allow the fs to do things. In the Unix tradition of
1447 * 'Gee thats tricky lets do it in userspace' the umount_begin
1448 * might fail to complete on the first run through as other tasks
1449 * must return, and the like. Thats for the mount program to worry
1450 * about for the moment.
1451 */
1452
1453 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1454 sb->s_op->umount_begin(sb);
1455 }
1456
1457 /*
1458 * No sense to grab the lock for this test, but test itself looks
1459 * somewhat bogus. Suggestions for better replacement?
1460 * Ho-hum... In principle, we might treat that as umount + switch
1461 * to rootfs. GC would eventually take care of the old vfsmount.
1462 * Actually it makes sense, especially if rootfs would contain a
1463 * /reboot - static binary that would close all descriptors and
1464 * call reboot(9). Then init(8) could umount root and exec /reboot.
1465 */
1466 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1467 /*
1468 * Special case for "unmounting" root ...
1469 * we just try to remount it readonly.
1470 */
1471 if (!capable(CAP_SYS_ADMIN))
1472 return -EPERM;
1473 down_write(&sb->s_umount);
1474 if (!(sb->s_flags & MS_RDONLY))
1475 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1476 up_write(&sb->s_umount);
1477 return retval;
1478 }
1479
1480 namespace_lock();
1481 lock_mount_hash();
1482 event++;
1483
1484 if (flags & MNT_DETACH) {
1485 if (!list_empty(&mnt->mnt_list))
1486 umount_tree(mnt, UMOUNT_PROPAGATE);
1487 retval = 0;
1488 } else {
1489 shrink_submounts(mnt);
1490 retval = -EBUSY;
1491 if (!propagate_mount_busy(mnt, 2)) {
1492 if (!list_empty(&mnt->mnt_list))
1493 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
1494 retval = 0;
1495 }
1496 }
1497 unlock_mount_hash();
1498 namespace_unlock();
1499 return retval;
1500 }
1501
1502 /*
1503 * __detach_mounts - lazily unmount all mounts on the specified dentry
1504 *
1505 * During unlink, rmdir, and d_drop it is possible to loose the path
1506 * to an existing mountpoint, and wind up leaking the mount.
1507 * detach_mounts allows lazily unmounting those mounts instead of
1508 * leaking them.
1509 *
1510 * The caller may hold dentry->d_inode->i_mutex.
1511 */
1512 void __detach_mounts(struct dentry *dentry)
1513 {
1514 struct mountpoint *mp;
1515 struct mount *mnt;
1516
1517 namespace_lock();
1518 mp = lookup_mountpoint(dentry);
1519 if (!mp)
1520 goto out_unlock;
1521
1522 lock_mount_hash();
1523 while (!hlist_empty(&mp->m_list)) {
1524 mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
1525 if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
1526 struct mount *p, *tmp;
1527 list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts, mnt_child) {
1528 hlist_add_head(&p->mnt_umount.s_list, &unmounted);
1529 umount_mnt(p);
1530 }
1531 }
1532 else umount_tree(mnt, 0);
1533 }
1534 unlock_mount_hash();
1535 put_mountpoint(mp);
1536 out_unlock:
1537 namespace_unlock();
1538 }
1539
1540 /*
1541 * Is the caller allowed to modify his namespace?
1542 */
1543 static inline bool may_mount(void)
1544 {
1545 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1546 }
1547
1548 /*
1549 * Now umount can handle mount points as well as block devices.
1550 * This is important for filesystems which use unnamed block devices.
1551 *
1552 * We now support a flag for forced unmount like the other 'big iron'
1553 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1554 */
1555
1556 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1557 {
1558 struct path path;
1559 struct mount *mnt;
1560 int retval;
1561 int lookup_flags = 0;
1562
1563 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1564 return -EINVAL;
1565
1566 if (!may_mount())
1567 return -EPERM;
1568
1569 if (!(flags & UMOUNT_NOFOLLOW))
1570 lookup_flags |= LOOKUP_FOLLOW;
1571
1572 retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path);
1573 if (retval)
1574 goto out;
1575 mnt = real_mount(path.mnt);
1576 retval = -EINVAL;
1577 if (path.dentry != path.mnt->mnt_root)
1578 goto dput_and_out;
1579 if (!check_mnt(mnt))
1580 goto dput_and_out;
1581 if (mnt->mnt.mnt_flags & MNT_LOCKED)
1582 goto dput_and_out;
1583 retval = -EPERM;
1584 if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
1585 goto dput_and_out;
1586
1587 retval = do_umount(mnt, flags);
1588 dput_and_out:
1589 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
1590 dput(path.dentry);
1591 mntput_no_expire(mnt);
1592 out:
1593 return retval;
1594 }
1595
1596 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1597
1598 /*
1599 * The 2.0 compatible umount. No flags.
1600 */
1601 SYSCALL_DEFINE1(oldumount, char __user *, name)
1602 {
1603 return sys_umount(name, 0);
1604 }
1605
1606 #endif
1607
1608 static bool is_mnt_ns_file(struct dentry *dentry)
1609 {
1610 /* Is this a proxy for a mount namespace? */
1611 return dentry->d_op == &ns_dentry_operations &&
1612 dentry->d_fsdata == &mntns_operations;
1613 }
1614
1615 struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
1616 {
1617 return container_of(ns, struct mnt_namespace, ns);
1618 }
1619
1620 static bool mnt_ns_loop(struct dentry *dentry)
1621 {
1622 /* Could bind mounting the mount namespace inode cause a
1623 * mount namespace loop?
1624 */
1625 struct mnt_namespace *mnt_ns;
1626 if (!is_mnt_ns_file(dentry))
1627 return false;
1628
1629 mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
1630 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1631 }
1632
1633 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
1634 int flag)
1635 {
1636 struct mount *res, *p, *q, *r, *parent;
1637
1638 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1639 return ERR_PTR(-EINVAL);
1640
1641 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
1642 return ERR_PTR(-EINVAL);
1643
1644 res = q = clone_mnt(mnt, dentry, flag);
1645 if (IS_ERR(q))
1646 return q;
1647
1648 q->mnt_mountpoint = mnt->mnt_mountpoint;
1649
1650 p = mnt;
1651 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1652 struct mount *s;
1653 if (!is_subdir(r->mnt_mountpoint, dentry))
1654 continue;
1655
1656 for (s = r; s; s = next_mnt(s, r)) {
1657 struct mount *t = NULL;
1658 if (!(flag & CL_COPY_UNBINDABLE) &&
1659 IS_MNT_UNBINDABLE(s)) {
1660 s = skip_mnt_tree(s);
1661 continue;
1662 }
1663 if (!(flag & CL_COPY_MNT_NS_FILE) &&
1664 is_mnt_ns_file(s->mnt.mnt_root)) {
1665 s = skip_mnt_tree(s);
1666 continue;
1667 }
1668 while (p != s->mnt_parent) {
1669 p = p->mnt_parent;
1670 q = q->mnt_parent;
1671 }
1672 p = s;
1673 parent = q;
1674 q = clone_mnt(p, p->mnt.mnt_root, flag);
1675 if (IS_ERR(q))
1676 goto out;
1677 lock_mount_hash();
1678 list_add_tail(&q->mnt_list, &res->mnt_list);
1679 mnt_set_mountpoint(parent, p->mnt_mp, q);
1680 if (!list_empty(&parent->mnt_mounts)) {
1681 t = list_last_entry(&parent->mnt_mounts,
1682 struct mount, mnt_child);
1683 if (t->mnt_mp != p->mnt_mp)
1684 t = NULL;
1685 }
1686 attach_shadowed(q, parent, t);
1687 unlock_mount_hash();
1688 }
1689 }
1690 return res;
1691 out:
1692 if (res) {
1693 lock_mount_hash();
1694 umount_tree(res, UMOUNT_SYNC);
1695 unlock_mount_hash();
1696 }
1697 return q;
1698 }
1699
1700 /* Caller should check returned pointer for errors */
1701
1702 struct vfsmount *collect_mounts(struct path *path)
1703 {
1704 struct mount *tree;
1705 namespace_lock();
1706 if (!check_mnt(real_mount(path->mnt)))
1707 tree = ERR_PTR(-EINVAL);
1708 else
1709 tree = copy_tree(real_mount(path->mnt), path->dentry,
1710 CL_COPY_ALL | CL_PRIVATE);
1711 namespace_unlock();
1712 if (IS_ERR(tree))
1713 return ERR_CAST(tree);
1714 return &tree->mnt;
1715 }
1716
1717 void drop_collected_mounts(struct vfsmount *mnt)
1718 {
1719 namespace_lock();
1720 lock_mount_hash();
1721 umount_tree(real_mount(mnt), UMOUNT_SYNC);
1722 unlock_mount_hash();
1723 namespace_unlock();
1724 }
1725
1726 /**
1727 * clone_private_mount - create a private clone of a path
1728 *
1729 * This creates a new vfsmount, which will be the clone of @path. The new will
1730 * not be attached anywhere in the namespace and will be private (i.e. changes
1731 * to the originating mount won't be propagated into this).
1732 *
1733 * Release with mntput().
1734 */
1735 struct vfsmount *clone_private_mount(struct path *path)
1736 {
1737 struct mount *old_mnt = real_mount(path->mnt);
1738 struct mount *new_mnt;
1739
1740 if (IS_MNT_UNBINDABLE(old_mnt))
1741 return ERR_PTR(-EINVAL);
1742
1743 down_read(&namespace_sem);
1744 new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
1745 up_read(&namespace_sem);
1746 if (IS_ERR(new_mnt))
1747 return ERR_CAST(new_mnt);
1748
1749 return &new_mnt->mnt;
1750 }
1751 EXPORT_SYMBOL_GPL(clone_private_mount);
1752
1753 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1754 struct vfsmount *root)
1755 {
1756 struct mount *mnt;
1757 int res = f(root, arg);
1758 if (res)
1759 return res;
1760 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1761 res = f(&mnt->mnt, arg);
1762 if (res)
1763 return res;
1764 }
1765 return 0;
1766 }
1767
1768 static void cleanup_group_ids(struct mount *mnt, struct mount *end)
1769 {
1770 struct mount *p;
1771
1772 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1773 if (p->mnt_group_id && !IS_MNT_SHARED(p))
1774 mnt_release_group_id(p);
1775 }
1776 }
1777
1778 static int invent_group_ids(struct mount *mnt, bool recurse)
1779 {
1780 struct mount *p;
1781
1782 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1783 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1784 int err = mnt_alloc_group_id(p);
1785 if (err) {
1786 cleanup_group_ids(mnt, p);
1787 return err;
1788 }
1789 }
1790 }
1791
1792 return 0;
1793 }
1794
1795 /*
1796 * @source_mnt : mount tree to be attached
1797 * @nd : place the mount tree @source_mnt is attached
1798 * @parent_nd : if non-null, detach the source_mnt from its parent and
1799 * store the parent mount and mountpoint dentry.
1800 * (done when source_mnt is moved)
1801 *
1802 * NOTE: in the table below explains the semantics when a source mount
1803 * of a given type is attached to a destination mount of a given type.
1804 * ---------------------------------------------------------------------------
1805 * | BIND MOUNT OPERATION |
1806 * |**************************************************************************
1807 * | source-->| shared | private | slave | unbindable |
1808 * | dest | | | | |
1809 * | | | | | | |
1810 * | v | | | | |
1811 * |**************************************************************************
1812 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1813 * | | | | | |
1814 * |non-shared| shared (+) | private | slave (*) | invalid |
1815 * ***************************************************************************
1816 * A bind operation clones the source mount and mounts the clone on the
1817 * destination mount.
1818 *
1819 * (++) the cloned mount is propagated to all the mounts in the propagation
1820 * tree of the destination mount and the cloned mount is added to
1821 * the peer group of the source mount.
1822 * (+) the cloned mount is created under the destination mount and is marked
1823 * as shared. The cloned mount is added to the peer group of the source
1824 * mount.
1825 * (+++) the mount is propagated to all the mounts in the propagation tree
1826 * of the destination mount and the cloned mount is made slave
1827 * of the same master as that of the source mount. The cloned mount
1828 * is marked as 'shared and slave'.
1829 * (*) the cloned mount is made a slave of the same master as that of the
1830 * source mount.
1831 *
1832 * ---------------------------------------------------------------------------
1833 * | MOVE MOUNT OPERATION |
1834 * |**************************************************************************
1835 * | source-->| shared | private | slave | unbindable |
1836 * | dest | | | | |
1837 * | | | | | | |
1838 * | v | | | | |
1839 * |**************************************************************************
1840 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1841 * | | | | | |
1842 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1843 * ***************************************************************************
1844 *
1845 * (+) the mount is moved to the destination. And is then propagated to
1846 * all the mounts in the propagation tree of the destination mount.
1847 * (+*) the mount is moved to the destination.
1848 * (+++) the mount is moved to the destination and is then propagated to
1849 * all the mounts belonging to the destination mount's propagation tree.
1850 * the mount is marked as 'shared and slave'.
1851 * (*) the mount continues to be a slave at the new location.
1852 *
1853 * if the source mount is a tree, the operations explained above is
1854 * applied to each mount in the tree.
1855 * Must be called without spinlocks held, since this function can sleep
1856 * in allocations.
1857 */
1858 static int attach_recursive_mnt(struct mount *source_mnt,
1859 struct mount *dest_mnt,
1860 struct mountpoint *dest_mp,
1861 struct path *parent_path)
1862 {
1863 HLIST_HEAD(tree_list);
1864 struct mount *child, *p;
1865 struct hlist_node *n;
1866 int err;
1867
1868 if (IS_MNT_SHARED(dest_mnt)) {
1869 err = invent_group_ids(source_mnt, true);
1870 if (err)
1871 goto out;
1872 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
1873 lock_mount_hash();
1874 if (err)
1875 goto out_cleanup_ids;
1876 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
1877 set_mnt_shared(p);
1878 } else {
1879 lock_mount_hash();
1880 }
1881 if (parent_path) {
1882 detach_mnt(source_mnt, parent_path);
1883 attach_mnt(source_mnt, dest_mnt, dest_mp);
1884 touch_mnt_namespace(source_mnt->mnt_ns);
1885 } else {
1886 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
1887 commit_tree(source_mnt, NULL);
1888 }
1889
1890 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
1891 struct mount *q;
1892 hlist_del_init(&child->mnt_hash);
1893 q = __lookup_mnt_last(&child->mnt_parent->mnt,
1894 child->mnt_mountpoint);
1895 commit_tree(child, q);
1896 }
1897 unlock_mount_hash();
1898
1899 return 0;
1900
1901 out_cleanup_ids:
1902 while (!hlist_empty(&tree_list)) {
1903 child = hlist_entry(tree_list.first, struct mount, mnt_hash);
1904 umount_tree(child, UMOUNT_SYNC);
1905 }
1906 unlock_mount_hash();
1907 cleanup_group_ids(source_mnt, NULL);
1908 out:
1909 return err;
1910 }
1911
1912 static struct mountpoint *lock_mount(struct path *path)
1913 {
1914 struct vfsmount *mnt;
1915 struct dentry *dentry = path->dentry;
1916 retry:
1917 mutex_lock(&dentry->d_inode->i_mutex);
1918 if (unlikely(cant_mount(dentry))) {
1919 mutex_unlock(&dentry->d_inode->i_mutex);
1920 return ERR_PTR(-ENOENT);
1921 }
1922 namespace_lock();
1923 mnt = lookup_mnt(path);
1924 if (likely(!mnt)) {
1925 struct mountpoint *mp = lookup_mountpoint(dentry);
1926 if (!mp)
1927 mp = new_mountpoint(dentry);
1928 if (IS_ERR(mp)) {
1929 namespace_unlock();
1930 mutex_unlock(&dentry->d_inode->i_mutex);
1931 return mp;
1932 }
1933 return mp;
1934 }
1935 namespace_unlock();
1936 mutex_unlock(&path->dentry->d_inode->i_mutex);
1937 path_put(path);
1938 path->mnt = mnt;
1939 dentry = path->dentry = dget(mnt->mnt_root);
1940 goto retry;
1941 }
1942
1943 static void unlock_mount(struct mountpoint *where)
1944 {
1945 struct dentry *dentry = where->m_dentry;
1946 put_mountpoint(where);
1947 namespace_unlock();
1948 mutex_unlock(&dentry->d_inode->i_mutex);
1949 }
1950
1951 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
1952 {
1953 if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER)
1954 return -EINVAL;
1955
1956 if (d_is_dir(mp->m_dentry) !=
1957 d_is_dir(mnt->mnt.mnt_root))
1958 return -ENOTDIR;
1959
1960 return attach_recursive_mnt(mnt, p, mp, NULL);
1961 }
1962
1963 /*
1964 * Sanity check the flags to change_mnt_propagation.
1965 */
1966
1967 static int flags_to_propagation_type(int flags)
1968 {
1969 int type = flags & ~(MS_REC | MS_SILENT);
1970
1971 /* Fail if any non-propagation flags are set */
1972 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
1973 return 0;
1974 /* Only one propagation flag should be set */
1975 if (!is_power_of_2(type))
1976 return 0;
1977 return type;
1978 }
1979
1980 /*
1981 * recursively change the type of the mountpoint.
1982 */
1983 static int do_change_type(struct path *path, int flag)
1984 {
1985 struct mount *m;
1986 struct mount *mnt = real_mount(path->mnt);
1987 int recurse = flag & MS_REC;
1988 int type;
1989 int err = 0;
1990
1991 if (path->dentry != path->mnt->mnt_root)
1992 return -EINVAL;
1993
1994 type = flags_to_propagation_type(flag);
1995 if (!type)
1996 return -EINVAL;
1997
1998 namespace_lock();
1999 if (type == MS_SHARED) {
2000 err = invent_group_ids(mnt, recurse);
2001 if (err)
2002 goto out_unlock;
2003 }
2004
2005 lock_mount_hash();
2006 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
2007 change_mnt_propagation(m, type);
2008 unlock_mount_hash();
2009
2010 out_unlock:
2011 namespace_unlock();
2012 return err;
2013 }
2014
2015 static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
2016 {
2017 struct mount *child;
2018 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
2019 if (!is_subdir(child->mnt_mountpoint, dentry))
2020 continue;
2021
2022 if (child->mnt.mnt_flags & MNT_LOCKED)
2023 return true;
2024 }
2025 return false;
2026 }
2027
2028 /*
2029 * do loopback mount.
2030 */
2031 static int do_loopback(struct path *path, const char *old_name,
2032 int recurse)
2033 {
2034 struct path old_path;
2035 struct mount *mnt = NULL, *old, *parent;
2036 struct mountpoint *mp;
2037 int err;
2038 if (!old_name || !*old_name)
2039 return -EINVAL;
2040 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
2041 if (err)
2042 return err;
2043
2044 err = -EINVAL;
2045 if (mnt_ns_loop(old_path.dentry))
2046 goto out;
2047
2048 mp = lock_mount(path);
2049 err = PTR_ERR(mp);
2050 if (IS_ERR(mp))
2051 goto out;
2052
2053 old = real_mount(old_path.mnt);
2054 parent = real_mount(path->mnt);
2055
2056 err = -EINVAL;
2057 if (IS_MNT_UNBINDABLE(old))
2058 goto out2;
2059
2060 if (!check_mnt(parent))
2061 goto out2;
2062
2063 if (!check_mnt(old) && old_path.dentry->d_op != &ns_dentry_operations)
2064 goto out2;
2065
2066 if (!recurse && has_locked_children(old, old_path.dentry))
2067 goto out2;
2068
2069 if (recurse)
2070 mnt = copy_tree(old, old_path.dentry, CL_COPY_MNT_NS_FILE);
2071 else
2072 mnt = clone_mnt(old, old_path.dentry, 0);
2073
2074 if (IS_ERR(mnt)) {
2075 err = PTR_ERR(mnt);
2076 goto out2;
2077 }
2078
2079 mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2080
2081 err = graft_tree(mnt, parent, mp);
2082 if (err) {
2083 lock_mount_hash();
2084 umount_tree(mnt, UMOUNT_SYNC);
2085 unlock_mount_hash();
2086 }
2087 out2:
2088 unlock_mount(mp);
2089 out:
2090 path_put(&old_path);
2091 return err;
2092 }
2093
2094 static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
2095 {
2096 int error = 0;
2097 int readonly_request = 0;
2098
2099 if (ms_flags & MS_RDONLY)
2100 readonly_request = 1;
2101 if (readonly_request == __mnt_is_readonly(mnt))
2102 return 0;
2103
2104 if (readonly_request)
2105 error = mnt_make_readonly(real_mount(mnt));
2106 else
2107 __mnt_unmake_readonly(real_mount(mnt));
2108 return error;
2109 }
2110
2111 /*
2112 * change filesystem flags. dir should be a physical root of filesystem.
2113 * If you've mounted a non-root directory somewhere and want to do remount
2114 * on it - tough luck.
2115 */
2116 static int do_remount(struct path *path, int flags, int mnt_flags,
2117 void *data)
2118 {
2119 int err;
2120 struct super_block *sb = path->mnt->mnt_sb;
2121 struct mount *mnt = real_mount(path->mnt);
2122
2123 if (!check_mnt(mnt))
2124 return -EINVAL;
2125
2126 if (path->dentry != path->mnt->mnt_root)
2127 return -EINVAL;
2128
2129 /* Don't allow changing of locked mnt flags.
2130 *
2131 * No locks need to be held here while testing the various
2132 * MNT_LOCK flags because those flags can never be cleared
2133 * once they are set.
2134 */
2135 if ((mnt->mnt.mnt_flags & MNT_LOCK_READONLY) &&
2136 !(mnt_flags & MNT_READONLY)) {
2137 return -EPERM;
2138 }
2139 if ((mnt->mnt.mnt_flags & MNT_LOCK_NODEV) &&
2140 !(mnt_flags & MNT_NODEV)) {
2141 /* Was the nodev implicitly added in mount? */
2142 if ((mnt->mnt_ns->user_ns != &init_user_ns) &&
2143 !(sb->s_type->fs_flags & FS_USERNS_DEV_MOUNT)) {
2144 mnt_flags |= MNT_NODEV;
2145 } else {
2146 return -EPERM;
2147 }
2148 }
2149 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOSUID) &&
2150 !(mnt_flags & MNT_NOSUID)) {
2151 return -EPERM;
2152 }
2153 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOEXEC) &&
2154 !(mnt_flags & MNT_NOEXEC)) {
2155 return -EPERM;
2156 }
2157 if ((mnt->mnt.mnt_flags & MNT_LOCK_ATIME) &&
2158 ((mnt->mnt.mnt_flags & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) {
2159 return -EPERM;
2160 }
2161
2162 err = security_sb_remount(sb, data);
2163 if (err)
2164 return err;
2165
2166 down_write(&sb->s_umount);
2167 if (flags & MS_BIND)
2168 err = change_mount_flags(path->mnt, flags);
2169 else if (!capable(CAP_SYS_ADMIN))
2170 err = -EPERM;
2171 else
2172 err = do_remount_sb(sb, flags, data, 0);
2173 if (!err) {
2174 lock_mount_hash();
2175 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
2176 mnt->mnt.mnt_flags = mnt_flags;
2177 touch_mnt_namespace(mnt->mnt_ns);
2178 unlock_mount_hash();
2179 }
2180 up_write(&sb->s_umount);
2181 return err;
2182 }
2183
2184 static inline int tree_contains_unbindable(struct mount *mnt)
2185 {
2186 struct mount *p;
2187 for (p = mnt; p; p = next_mnt(p, mnt)) {
2188 if (IS_MNT_UNBINDABLE(p))
2189 return 1;
2190 }
2191 return 0;
2192 }
2193
2194 static int do_move_mount(struct path *path, const char *old_name)
2195 {
2196 struct path old_path, parent_path;
2197 struct mount *p;
2198 struct mount *old;
2199 struct mountpoint *mp;
2200 int err;
2201 if (!old_name || !*old_name)
2202 return -EINVAL;
2203 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
2204 if (err)
2205 return err;
2206
2207 mp = lock_mount(path);
2208 err = PTR_ERR(mp);
2209 if (IS_ERR(mp))
2210 goto out;
2211
2212 old = real_mount(old_path.mnt);
2213 p = real_mount(path->mnt);
2214
2215 err = -EINVAL;
2216 if (!check_mnt(p) || !check_mnt(old))
2217 goto out1;
2218
2219 if (old->mnt.mnt_flags & MNT_LOCKED)
2220 goto out1;
2221
2222 err = -EINVAL;
2223 if (old_path.dentry != old_path.mnt->mnt_root)
2224 goto out1;
2225
2226 if (!mnt_has_parent(old))
2227 goto out1;
2228
2229 if (d_is_dir(path->dentry) !=
2230 d_is_dir(old_path.dentry))
2231 goto out1;
2232 /*
2233 * Don't move a mount residing in a shared parent.
2234 */
2235 if (IS_MNT_SHARED(old->mnt_parent))
2236 goto out1;
2237 /*
2238 * Don't move a mount tree containing unbindable mounts to a destination
2239 * mount which is shared.
2240 */
2241 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
2242 goto out1;
2243 err = -ELOOP;
2244 for (; mnt_has_parent(p); p = p->mnt_parent)
2245 if (p == old)
2246 goto out1;
2247
2248 err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path);
2249 if (err)
2250 goto out1;
2251
2252 /* if the mount is moved, it should no longer be expire
2253 * automatically */
2254 list_del_init(&old->mnt_expire);
2255 out1:
2256 unlock_mount(mp);
2257 out:
2258 if (!err)
2259 path_put(&parent_path);
2260 path_put(&old_path);
2261 return err;
2262 }
2263
2264 static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
2265 {
2266 int err;
2267 const char *subtype = strchr(fstype, '.');
2268 if (subtype) {
2269 subtype++;
2270 err = -EINVAL;
2271 if (!subtype[0])
2272 goto err;
2273 } else
2274 subtype = "";
2275
2276 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
2277 err = -ENOMEM;
2278 if (!mnt->mnt_sb->s_subtype)
2279 goto err;
2280 return mnt;
2281
2282 err:
2283 mntput(mnt);
2284 return ERR_PTR(err);
2285 }
2286
2287 /*
2288 * add a mount into a namespace's mount tree
2289 */
2290 static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
2291 {
2292 struct mountpoint *mp;
2293 struct mount *parent;
2294 int err;
2295
2296 mnt_flags &= ~MNT_INTERNAL_FLAGS;
2297
2298 mp = lock_mount(path);
2299 if (IS_ERR(mp))
2300 return PTR_ERR(mp);
2301
2302 parent = real_mount(path->mnt);
2303 err = -EINVAL;
2304 if (unlikely(!check_mnt(parent))) {
2305 /* that's acceptable only for automounts done in private ns */
2306 if (!(mnt_flags & MNT_SHRINKABLE))
2307 goto unlock;
2308 /* ... and for those we'd better have mountpoint still alive */
2309 if (!parent->mnt_ns)
2310 goto unlock;
2311 }
2312
2313 /* Refuse the same filesystem on the same mount point */
2314 err = -EBUSY;
2315 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
2316 path->mnt->mnt_root == path->dentry)
2317 goto unlock;
2318
2319 err = -EINVAL;
2320 if (d_is_symlink(newmnt->mnt.mnt_root))
2321 goto unlock;
2322
2323 newmnt->mnt.mnt_flags = mnt_flags;
2324 err = graft_tree(newmnt, parent, mp);
2325
2326 unlock:
2327 unlock_mount(mp);
2328 return err;
2329 }
2330
2331 /*
2332 * create a new mount for userspace and request it to be added into the
2333 * namespace's tree
2334 */
2335 static int do_new_mount(struct path *path, const char *fstype, int flags,
2336 int mnt_flags, const char *name, void *data)
2337 {
2338 struct file_system_type *type;
2339 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2340 struct vfsmount *mnt;
2341 int err;
2342
2343 if (!fstype)
2344 return -EINVAL;
2345
2346 type = get_fs_type(fstype);
2347 if (!type)
2348 return -ENODEV;
2349
2350 if (user_ns != &init_user_ns) {
2351 if (!(type->fs_flags & FS_USERNS_MOUNT)) {
2352 put_filesystem(type);
2353 return -EPERM;
2354 }
2355 /* Only in special cases allow devices from mounts
2356 * created outside the initial user namespace.
2357 */
2358 if (!(type->fs_flags & FS_USERNS_DEV_MOUNT)) {
2359 flags |= MS_NODEV;
2360 mnt_flags |= MNT_NODEV | MNT_LOCK_NODEV;
2361 }
2362 }
2363
2364 mnt = vfs_kern_mount(type, flags, name, data);
2365 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
2366 !mnt->mnt_sb->s_subtype)
2367 mnt = fs_set_subtype(mnt, fstype);
2368
2369 put_filesystem(type);
2370 if (IS_ERR(mnt))
2371 return PTR_ERR(mnt);
2372
2373 err = do_add_mount(real_mount(mnt), path, mnt_flags);
2374 if (err)
2375 mntput(mnt);
2376 return err;
2377 }
2378
2379 int finish_automount(struct vfsmount *m, struct path *path)
2380 {
2381 struct mount *mnt = real_mount(m);
2382 int err;
2383 /* The new mount record should have at least 2 refs to prevent it being
2384 * expired before we get a chance to add it
2385 */
2386 BUG_ON(mnt_get_count(mnt) < 2);
2387
2388 if (m->mnt_sb == path->mnt->mnt_sb &&
2389 m->mnt_root == path->dentry) {
2390 err = -ELOOP;
2391 goto fail;
2392 }
2393
2394 err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
2395 if (!err)
2396 return 0;
2397 fail:
2398 /* remove m from any expiration list it may be on */
2399 if (!list_empty(&mnt->mnt_expire)) {
2400 namespace_lock();
2401 list_del_init(&mnt->mnt_expire);
2402 namespace_unlock();
2403 }
2404 mntput(m);
2405 mntput(m);
2406 return err;
2407 }
2408
2409 /**
2410 * mnt_set_expiry - Put a mount on an expiration list
2411 * @mnt: The mount to list.
2412 * @expiry_list: The list to add the mount to.
2413 */
2414 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2415 {
2416 namespace_lock();
2417
2418 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
2419
2420 namespace_unlock();
2421 }
2422 EXPORT_SYMBOL(mnt_set_expiry);
2423
2424 /*
2425 * process a list of expirable mountpoints with the intent of discarding any
2426 * mountpoints that aren't in use and haven't been touched since last we came
2427 * here
2428 */
2429 void mark_mounts_for_expiry(struct list_head *mounts)
2430 {
2431 struct mount *mnt, *next;
2432 LIST_HEAD(graveyard);
2433
2434 if (list_empty(mounts))
2435 return;
2436
2437 namespace_lock();
2438 lock_mount_hash();
2439
2440 /* extract from the expiration list every vfsmount that matches the
2441 * following criteria:
2442 * - only referenced by its parent vfsmount
2443 * - still marked for expiry (marked on the last call here; marks are
2444 * cleared by mntput())
2445 */
2446 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
2447 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
2448 propagate_mount_busy(mnt, 1))
2449 continue;
2450 list_move(&mnt->mnt_expire, &graveyard);
2451 }
2452 while (!list_empty(&graveyard)) {
2453 mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
2454 touch_mnt_namespace(mnt->mnt_ns);
2455 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
2456 }
2457 unlock_mount_hash();
2458 namespace_unlock();
2459 }
2460
2461 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2462
2463 /*
2464 * Ripoff of 'select_parent()'
2465 *
2466 * search the list of submounts for a given mountpoint, and move any
2467 * shrinkable submounts to the 'graveyard' list.
2468 */
2469 static int select_submounts(struct mount *parent, struct list_head *graveyard)
2470 {
2471 struct mount *this_parent = parent;
2472 struct list_head *next;
2473 int found = 0;
2474
2475 repeat:
2476 next = this_parent->mnt_mounts.next;
2477 resume:
2478 while (next != &this_parent->mnt_mounts) {
2479 struct list_head *tmp = next;
2480 struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
2481
2482 next = tmp->next;
2483 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
2484 continue;
2485 /*
2486 * Descend a level if the d_mounts list is non-empty.
2487 */
2488 if (!list_empty(&mnt->mnt_mounts)) {
2489 this_parent = mnt;
2490 goto repeat;
2491 }
2492
2493 if (!propagate_mount_busy(mnt, 1)) {
2494 list_move_tail(&mnt->mnt_expire, graveyard);
2495 found++;
2496 }
2497 }
2498 /*
2499 * All done at this level ... ascend and resume the search
2500 */
2501 if (this_parent != parent) {
2502 next = this_parent->mnt_child.next;
2503 this_parent = this_parent->mnt_parent;
2504 goto resume;
2505 }
2506 return found;
2507 }
2508
2509 /*
2510 * process a list of expirable mountpoints with the intent of discarding any
2511 * submounts of a specific parent mountpoint
2512 *
2513 * mount_lock must be held for write
2514 */
2515 static void shrink_submounts(struct mount *mnt)
2516 {
2517 LIST_HEAD(graveyard);
2518 struct mount *m;
2519
2520 /* extract submounts of 'mountpoint' from the expiration list */
2521 while (select_submounts(mnt, &graveyard)) {
2522 while (!list_empty(&graveyard)) {
2523 m = list_first_entry(&graveyard, struct mount,
2524 mnt_expire);
2525 touch_mnt_namespace(m->mnt_ns);
2526 umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
2527 }
2528 }
2529 }
2530
2531 /*
2532 * Some copy_from_user() implementations do not return the exact number of
2533 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
2534 * Note that this function differs from copy_from_user() in that it will oops
2535 * on bad values of `to', rather than returning a short copy.
2536 */
2537 static long exact_copy_from_user(void *to, const void __user * from,
2538 unsigned long n)
2539 {
2540 char *t = to;
2541 const char __user *f = from;
2542 char c;
2543
2544 if (!access_ok(VERIFY_READ, from, n))
2545 return n;
2546
2547 while (n) {
2548 if (__get_user(c, f)) {
2549 memset(t, 0, n);
2550 break;
2551 }
2552 *t++ = c;
2553 f++;
2554 n--;
2555 }
2556 return n;
2557 }
2558
2559 int copy_mount_options(const void __user * data, unsigned long *where)
2560 {
2561 int i;
2562 unsigned long page;
2563 unsigned long size;
2564
2565 *where = 0;
2566 if (!data)
2567 return 0;
2568
2569 if (!(page = __get_free_page(GFP_KERNEL)))
2570 return -ENOMEM;
2571
2572 /* We only care that *some* data at the address the user
2573 * gave us is valid. Just in case, we'll zero
2574 * the remainder of the page.
2575 */
2576 /* copy_from_user cannot cross TASK_SIZE ! */
2577 size = TASK_SIZE - (unsigned long)data;
2578 if (size > PAGE_SIZE)
2579 size = PAGE_SIZE;
2580
2581 i = size - exact_copy_from_user((void *)page, data, size);
2582 if (!i) {
2583 free_page(page);
2584 return -EFAULT;
2585 }
2586 if (i != PAGE_SIZE)
2587 memset((char *)page + i, 0, PAGE_SIZE - i);
2588 *where = page;
2589 return 0;
2590 }
2591
2592 char *copy_mount_string(const void __user *data)
2593 {
2594 return data ? strndup_user(data, PAGE_SIZE) : NULL;
2595 }
2596
2597 /*
2598 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2599 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2600 *
2601 * data is a (void *) that can point to any structure up to
2602 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2603 * information (or be NULL).
2604 *
2605 * Pre-0.97 versions of mount() didn't have a flags word.
2606 * When the flags word was introduced its top half was required
2607 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2608 * Therefore, if this magic number is present, it carries no information
2609 * and must be discarded.
2610 */
2611 long do_mount(const char *dev_name, const char __user *dir_name,
2612 const char *type_page, unsigned long flags, void *data_page)
2613 {
2614 struct path path;
2615 int retval = 0;
2616 int mnt_flags = 0;
2617
2618 /* Discard magic */
2619 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2620 flags &= ~MS_MGC_MSK;
2621
2622 /* Basic sanity checks */
2623 if (data_page)
2624 ((char *)data_page)[PAGE_SIZE - 1] = 0;
2625
2626 /* ... and get the mountpoint */
2627 retval = user_path(dir_name, &path);
2628 if (retval)
2629 return retval;
2630
2631 retval = security_sb_mount(dev_name, &path,
2632 type_page, flags, data_page);
2633 if (!retval && !may_mount())
2634 retval = -EPERM;
2635 if (retval)
2636 goto dput_out;
2637
2638 /* Default to relatime unless overriden */
2639 if (!(flags & MS_NOATIME))
2640 mnt_flags |= MNT_RELATIME;
2641
2642 /* Separate the per-mountpoint flags */
2643 if (flags & MS_NOSUID)
2644 mnt_flags |= MNT_NOSUID;
2645 if (flags & MS_NODEV)
2646 mnt_flags |= MNT_NODEV;
2647 if (flags & MS_NOEXEC)
2648 mnt_flags |= MNT_NOEXEC;
2649 if (flags & MS_NOATIME)
2650 mnt_flags |= MNT_NOATIME;
2651 if (flags & MS_NODIRATIME)
2652 mnt_flags |= MNT_NODIRATIME;
2653 if (flags & MS_STRICTATIME)
2654 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2655 if (flags & MS_RDONLY)
2656 mnt_flags |= MNT_READONLY;
2657
2658 /* The default atime for remount is preservation */
2659 if ((flags & MS_REMOUNT) &&
2660 ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
2661 MS_STRICTATIME)) == 0)) {
2662 mnt_flags &= ~MNT_ATIME_MASK;
2663 mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK;
2664 }
2665
2666 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
2667 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
2668 MS_STRICTATIME);
2669
2670 if (flags & MS_REMOUNT)
2671 retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
2672 data_page);
2673 else if (flags & MS_BIND)
2674 retval = do_loopback(&path, dev_name, flags & MS_REC);
2675 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2676 retval = do_change_type(&path, flags);
2677 else if (flags & MS_MOVE)
2678 retval = do_move_mount(&path, dev_name);
2679 else
2680 retval = do_new_mount(&path, type_page, flags, mnt_flags,
2681 dev_name, data_page);
2682 dput_out:
2683 path_put(&path);
2684 return retval;
2685 }
2686
2687 static void free_mnt_ns(struct mnt_namespace *ns)
2688 {
2689 ns_free_inum(&ns->ns);
2690 put_user_ns(ns->user_ns);
2691 kfree(ns);
2692 }
2693
2694 /*
2695 * Assign a sequence number so we can detect when we attempt to bind
2696 * mount a reference to an older mount namespace into the current
2697 * mount namespace, preventing reference counting loops. A 64bit
2698 * number incrementing at 10Ghz will take 12,427 years to wrap which
2699 * is effectively never, so we can ignore the possibility.
2700 */
2701 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
2702
2703 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
2704 {
2705 struct mnt_namespace *new_ns;
2706 int ret;
2707
2708 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2709 if (!new_ns)
2710 return ERR_PTR(-ENOMEM);
2711 ret = ns_alloc_inum(&new_ns->ns);
2712 if (ret) {
2713 kfree(new_ns);
2714 return ERR_PTR(ret);
2715 }
2716 new_ns->ns.ops = &mntns_operations;
2717 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
2718 atomic_set(&new_ns->count, 1);
2719 new_ns->root = NULL;
2720 INIT_LIST_HEAD(&new_ns->list);
2721 init_waitqueue_head(&new_ns->poll);
2722 new_ns->event = 0;
2723 new_ns->user_ns = get_user_ns(user_ns);
2724 return new_ns;
2725 }
2726
2727 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2728 struct user_namespace *user_ns, struct fs_struct *new_fs)
2729 {
2730 struct mnt_namespace *new_ns;
2731 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
2732 struct mount *p, *q;
2733 struct mount *old;
2734 struct mount *new;
2735 int copy_flags;
2736
2737 BUG_ON(!ns);
2738
2739 if (likely(!(flags & CLONE_NEWNS))) {
2740 get_mnt_ns(ns);
2741 return ns;
2742 }
2743
2744 old = ns->root;
2745
2746 new_ns = alloc_mnt_ns(user_ns);
2747 if (IS_ERR(new_ns))
2748 return new_ns;
2749
2750 namespace_lock();
2751 /* First pass: copy the tree topology */
2752 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
2753 if (user_ns != ns->user_ns)
2754 copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED;
2755 new = copy_tree(old, old->mnt.mnt_root, copy_flags);
2756 if (IS_ERR(new)) {
2757 namespace_unlock();
2758 free_mnt_ns(new_ns);
2759 return ERR_CAST(new);
2760 }
2761 new_ns->root = new;
2762 list_add_tail(&new_ns->list, &new->mnt_list);
2763
2764 /*
2765 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2766 * as belonging to new namespace. We have already acquired a private
2767 * fs_struct, so tsk->fs->lock is not needed.
2768 */
2769 p = old;
2770 q = new;
2771 while (p) {
2772 q->mnt_ns = new_ns;
2773 if (new_fs) {
2774 if (&p->mnt == new_fs->root.mnt) {
2775 new_fs->root.mnt = mntget(&q->mnt);
2776 rootmnt = &p->mnt;
2777 }
2778 if (&p->mnt == new_fs->pwd.mnt) {
2779 new_fs->pwd.mnt = mntget(&q->mnt);
2780 pwdmnt = &p->mnt;
2781 }
2782 }
2783 p = next_mnt(p, old);
2784 q = next_mnt(q, new);
2785 if (!q)
2786 break;
2787 while (p->mnt.mnt_root != q->mnt.mnt_root)
2788 p = next_mnt(p, old);
2789 }
2790 namespace_unlock();
2791
2792 if (rootmnt)
2793 mntput(rootmnt);
2794 if (pwdmnt)
2795 mntput(pwdmnt);
2796
2797 return new_ns;
2798 }
2799
2800 /**
2801 * create_mnt_ns - creates a private namespace and adds a root filesystem
2802 * @mnt: pointer to the new root filesystem mountpoint
2803 */
2804 static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
2805 {
2806 struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
2807 if (!IS_ERR(new_ns)) {
2808 struct mount *mnt = real_mount(m);
2809 mnt->mnt_ns = new_ns;
2810 new_ns->root = mnt;
2811 list_add(&mnt->mnt_list, &new_ns->list);
2812 } else {
2813 mntput(m);
2814 }
2815 return new_ns;
2816 }
2817
2818 struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
2819 {
2820 struct mnt_namespace *ns;
2821 struct super_block *s;
2822 struct path path;
2823 int err;
2824
2825 ns = create_mnt_ns(mnt);
2826 if (IS_ERR(ns))
2827 return ERR_CAST(ns);
2828
2829 err = vfs_path_lookup(mnt->mnt_root, mnt,
2830 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
2831
2832 put_mnt_ns(ns);
2833
2834 if (err)
2835 return ERR_PTR(err);
2836
2837 /* trade a vfsmount reference for active sb one */
2838 s = path.mnt->mnt_sb;
2839 atomic_inc(&s->s_active);
2840 mntput(path.mnt);
2841 /* lock the sucker */
2842 down_write(&s->s_umount);
2843 /* ... and return the root of (sub)tree on it */
2844 return path.dentry;
2845 }
2846 EXPORT_SYMBOL(mount_subtree);
2847
2848 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
2849 char __user *, type, unsigned long, flags, void __user *, data)
2850 {
2851 int ret;
2852 char *kernel_type;
2853 char *kernel_dev;
2854 unsigned long data_page;
2855
2856 kernel_type = copy_mount_string(type);
2857 ret = PTR_ERR(kernel_type);
2858 if (IS_ERR(kernel_type))
2859 goto out_type;
2860
2861 kernel_dev = copy_mount_string(dev_name);
2862 ret = PTR_ERR(kernel_dev);
2863 if (IS_ERR(kernel_dev))
2864 goto out_dev;
2865
2866 ret = copy_mount_options(data, &data_page);
2867 if (ret < 0)
2868 goto out_data;
2869
2870 ret = do_mount(kernel_dev, dir_name, kernel_type, flags,
2871 (void *) data_page);
2872
2873 free_page(data_page);
2874 out_data:
2875 kfree(kernel_dev);
2876 out_dev:
2877 kfree(kernel_type);
2878 out_type:
2879 return ret;
2880 }
2881
2882 /*
2883 * Return true if path is reachable from root
2884 *
2885 * namespace_sem or mount_lock is held
2886 */
2887 bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
2888 const struct path *root)
2889 {
2890 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
2891 dentry = mnt->mnt_mountpoint;
2892 mnt = mnt->mnt_parent;
2893 }
2894 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
2895 }
2896
2897 int path_is_under(struct path *path1, struct path *path2)
2898 {
2899 int res;
2900 read_seqlock_excl(&mount_lock);
2901 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
2902 read_sequnlock_excl(&mount_lock);
2903 return res;
2904 }
2905 EXPORT_SYMBOL(path_is_under);
2906
2907 /*
2908 * pivot_root Semantics:
2909 * Moves the root file system of the current process to the directory put_old,
2910 * makes new_root as the new root file system of the current process, and sets
2911 * root/cwd of all processes which had them on the current root to new_root.
2912 *
2913 * Restrictions:
2914 * The new_root and put_old must be directories, and must not be on the
2915 * same file system as the current process root. The put_old must be
2916 * underneath new_root, i.e. adding a non-zero number of /.. to the string
2917 * pointed to by put_old must yield the same directory as new_root. No other
2918 * file system may be mounted on put_old. After all, new_root is a mountpoint.
2919 *
2920 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
2921 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
2922 * in this situation.
2923 *
2924 * Notes:
2925 * - we don't move root/cwd if they are not at the root (reason: if something
2926 * cared enough to change them, it's probably wrong to force them elsewhere)
2927 * - it's okay to pick a root that isn't the root of a file system, e.g.
2928 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
2929 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
2930 * first.
2931 */
2932 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
2933 const char __user *, put_old)
2934 {
2935 struct path new, old, parent_path, root_parent, root;
2936 struct mount *new_mnt, *root_mnt, *old_mnt;
2937 struct mountpoint *old_mp, *root_mp;
2938 int error;
2939
2940 if (!may_mount())
2941 return -EPERM;
2942
2943 error = user_path_dir(new_root, &new);
2944 if (error)
2945 goto out0;
2946
2947 error = user_path_dir(put_old, &old);
2948 if (error)
2949 goto out1;
2950
2951 error = security_sb_pivotroot(&old, &new);
2952 if (error)
2953 goto out2;
2954
2955 get_fs_root(current->fs, &root);
2956 old_mp = lock_mount(&old);
2957 error = PTR_ERR(old_mp);
2958 if (IS_ERR(old_mp))
2959 goto out3;
2960
2961 error = -EINVAL;
2962 new_mnt = real_mount(new.mnt);
2963 root_mnt = real_mount(root.mnt);
2964 old_mnt = real_mount(old.mnt);
2965 if (IS_MNT_SHARED(old_mnt) ||
2966 IS_MNT_SHARED(new_mnt->mnt_parent) ||
2967 IS_MNT_SHARED(root_mnt->mnt_parent))
2968 goto out4;
2969 if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
2970 goto out4;
2971 if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
2972 goto out4;
2973 error = -ENOENT;
2974 if (d_unlinked(new.dentry))
2975 goto out4;
2976 error = -EBUSY;
2977 if (new_mnt == root_mnt || old_mnt == root_mnt)
2978 goto out4; /* loop, on the same file system */
2979 error = -EINVAL;
2980 if (root.mnt->mnt_root != root.dentry)
2981 goto out4; /* not a mountpoint */
2982 if (!mnt_has_parent(root_mnt))
2983 goto out4; /* not attached */
2984 root_mp = root_mnt->mnt_mp;
2985 if (new.mnt->mnt_root != new.dentry)
2986 goto out4; /* not a mountpoint */
2987 if (!mnt_has_parent(new_mnt))
2988 goto out4; /* not attached */
2989 /* make sure we can reach put_old from new_root */
2990 if (!is_path_reachable(old_mnt, old.dentry, &new))
2991 goto out4;
2992 /* make certain new is below the root */
2993 if (!is_path_reachable(new_mnt, new.dentry, &root))
2994 goto out4;
2995 root_mp->m_count++; /* pin it so it won't go away */
2996 lock_mount_hash();
2997 detach_mnt(new_mnt, &parent_path);
2998 detach_mnt(root_mnt, &root_parent);
2999 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
3000 new_mnt->mnt.mnt_flags |= MNT_LOCKED;
3001 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
3002 }
3003 /* mount old root on put_old */
3004 attach_mnt(root_mnt, old_mnt, old_mp);
3005 /* mount new_root on / */
3006 attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp);
3007 touch_mnt_namespace(current->nsproxy->mnt_ns);
3008 /* A moved mount should not expire automatically */
3009 list_del_init(&new_mnt->mnt_expire);
3010 unlock_mount_hash();
3011 chroot_fs_refs(&root, &new);
3012 put_mountpoint(root_mp);
3013 error = 0;
3014 out4:
3015 unlock_mount(old_mp);
3016 if (!error) {
3017 path_put(&root_parent);
3018 path_put(&parent_path);
3019 }
3020 out3:
3021 path_put(&root);
3022 out2:
3023 path_put(&old);
3024 out1:
3025 path_put(&new);
3026 out0:
3027 return error;
3028 }
3029
3030 static void __init init_mount_tree(void)
3031 {
3032 struct vfsmount *mnt;
3033 struct mnt_namespace *ns;
3034 struct path root;
3035 struct file_system_type *type;
3036
3037 type = get_fs_type("rootfs");
3038 if (!type)
3039 panic("Can't find rootfs type");
3040 mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
3041 put_filesystem(type);
3042 if (IS_ERR(mnt))
3043 panic("Can't create rootfs");
3044
3045 ns = create_mnt_ns(mnt);
3046 if (IS_ERR(ns))
3047 panic("Can't allocate initial namespace");
3048
3049 init_task.nsproxy->mnt_ns = ns;
3050 get_mnt_ns(ns);
3051
3052 root.mnt = mnt;
3053 root.dentry = mnt->mnt_root;
3054 mnt->mnt_flags |= MNT_LOCKED;
3055
3056 set_fs_pwd(current->fs, &root);
3057 set_fs_root(current->fs, &root);
3058 }
3059
3060 void __init mnt_init(void)
3061 {
3062 unsigned u;
3063 int err;
3064
3065 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
3066 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3067
3068 mount_hashtable = alloc_large_system_hash("Mount-cache",
3069 sizeof(struct hlist_head),
3070 mhash_entries, 19,
3071 0,
3072 &m_hash_shift, &m_hash_mask, 0, 0);
3073 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
3074 sizeof(struct hlist_head),
3075 mphash_entries, 19,
3076 0,
3077 &mp_hash_shift, &mp_hash_mask, 0, 0);
3078
3079 if (!mount_hashtable || !mountpoint_hashtable)
3080 panic("Failed to allocate mount hash table\n");
3081
3082 for (u = 0; u <= m_hash_mask; u++)
3083 INIT_HLIST_HEAD(&mount_hashtable[u]);
3084 for (u = 0; u <= mp_hash_mask; u++)
3085 INIT_HLIST_HEAD(&mountpoint_hashtable[u]);
3086
3087 kernfs_init();
3088
3089 err = sysfs_init();
3090 if (err)
3091 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
3092 __func__, err);
3093 fs_kobj = kobject_create_and_add("fs", NULL);
3094 if (!fs_kobj)
3095 printk(KERN_WARNING "%s: kobj create error\n", __func__);
3096 init_rootfs();
3097 init_mount_tree();
3098 }
3099
3100 void put_mnt_ns(struct mnt_namespace *ns)
3101 {
3102 if (!atomic_dec_and_test(&ns->count))
3103 return;
3104 drop_collected_mounts(&ns->root->mnt);
3105 free_mnt_ns(ns);
3106 }
3107
3108 struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
3109 {
3110 struct vfsmount *mnt;
3111 mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
3112 if (!IS_ERR(mnt)) {
3113 /*
3114 * it is a longterm mount, don't release mnt until
3115 * we unmount before file sys is unregistered
3116 */
3117 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
3118 }
3119 return mnt;
3120 }
3121 EXPORT_SYMBOL_GPL(kern_mount_data);
3122
3123 void kern_unmount(struct vfsmount *mnt)
3124 {
3125 /* release long term mount so mount point can be released */
3126 if (!IS_ERR_OR_NULL(mnt)) {
3127 real_mount(mnt)->mnt_ns = NULL;
3128 synchronize_rcu(); /* yecchhh... */
3129 mntput(mnt);
3130 }
3131 }
3132 EXPORT_SYMBOL(kern_unmount);
3133
3134 bool our_mnt(struct vfsmount *mnt)
3135 {
3136 return check_mnt(real_mount(mnt));
3137 }
3138
3139 bool current_chrooted(void)
3140 {
3141 /* Does the current process have a non-standard root */
3142 struct path ns_root;
3143 struct path fs_root;
3144 bool chrooted;
3145
3146 /* Find the namespace root */
3147 ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
3148 ns_root.dentry = ns_root.mnt->mnt_root;
3149 path_get(&ns_root);
3150 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
3151 ;
3152
3153 get_fs_root(current->fs, &fs_root);
3154
3155 chrooted = !path_equal(&fs_root, &ns_root);
3156
3157 path_put(&fs_root);
3158 path_put(&ns_root);
3159
3160 return chrooted;
3161 }
3162
3163 bool fs_fully_visible(struct file_system_type *type)
3164 {
3165 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
3166 struct mount *mnt;
3167 bool visible = false;
3168
3169 if (unlikely(!ns))
3170 return false;
3171
3172 down_read(&namespace_sem);
3173 list_for_each_entry(mnt, &ns->list, mnt_list) {
3174 struct mount *child;
3175 if (mnt->mnt.mnt_sb->s_type != type)
3176 continue;
3177
3178 /* This mount is not fully visible if there are any child mounts
3179 * that cover anything except for empty directories.
3180 */
3181 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
3182 struct inode *inode = child->mnt_mountpoint->d_inode;
3183 if (!S_ISDIR(inode->i_mode))
3184 goto next;
3185 if (inode->i_nlink > 2)
3186 goto next;
3187 }
3188 visible = true;
3189 goto found;
3190 next: ;
3191 }
3192 found:
3193 up_read(&namespace_sem);
3194 return visible;
3195 }
3196
3197 static struct ns_common *mntns_get(struct task_struct *task)
3198 {
3199 struct ns_common *ns = NULL;
3200 struct nsproxy *nsproxy;
3201
3202 task_lock(task);
3203 nsproxy = task->nsproxy;
3204 if (nsproxy) {
3205 ns = &nsproxy->mnt_ns->ns;
3206 get_mnt_ns(to_mnt_ns(ns));
3207 }
3208 task_unlock(task);
3209
3210 return ns;
3211 }
3212
3213 static void mntns_put(struct ns_common *ns)
3214 {
3215 put_mnt_ns(to_mnt_ns(ns));
3216 }
3217
3218 static int mntns_install(struct nsproxy *nsproxy, struct ns_common *ns)
3219 {
3220 struct fs_struct *fs = current->fs;
3221 struct mnt_namespace *mnt_ns = to_mnt_ns(ns);
3222 struct path root;
3223
3224 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
3225 !ns_capable(current_user_ns(), CAP_SYS_CHROOT) ||
3226 !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
3227 return -EPERM;
3228
3229 if (fs->users != 1)
3230 return -EINVAL;
3231
3232 get_mnt_ns(mnt_ns);
3233 put_mnt_ns(nsproxy->mnt_ns);
3234 nsproxy->mnt_ns = mnt_ns;
3235
3236 /* Find the root */
3237 root.mnt = &mnt_ns->root->mnt;
3238 root.dentry = mnt_ns->root->mnt.mnt_root;
3239 path_get(&root);
3240 while(d_mountpoint(root.dentry) && follow_down_one(&root))
3241 ;
3242
3243 /* Update the pwd and root */
3244 set_fs_pwd(fs, &root);
3245 set_fs_root(fs, &root);
3246
3247 path_put(&root);
3248 return 0;
3249 }
3250
3251 const struct proc_ns_operations mntns_operations = {
3252 .name = "mnt",
3253 .type = CLONE_NEWNS,
3254 .get = mntns_get,
3255 .put = mntns_put,
3256 .install = mntns_install,
3257 };
This page took 0.133949 seconds and 6 git commands to generate.