NFS: Don't use vm_map_ram() in readdir
[deliverable/linux.git] / fs / nfs / dir.c
1 /*
2 * linux/fs/nfs/dir.c
3 *
4 * Copyright (C) 1992 Rick Sladkey
5 *
6 * nfs directory handling functions
7 *
8 * 10 Apr 1996 Added silly rename for unlink --okir
9 * 28 Sep 1996 Improved directory cache --okir
10 * 23 Aug 1997 Claus Heine claus@momo.math.rwth-aachen.de
11 * Re-implemented silly rename for unlink, newly implemented
12 * silly rename for nfs_rename() following the suggestions
13 * of Olaf Kirch (okir) found in this file.
14 * Following Linus comments on my original hack, this version
15 * depends only on the dcache stuff and doesn't touch the inode
16 * layer (iput() and friends).
17 * 6 Jun 1999 Cache readdir lookups in the page cache. -DaveM
18 */
19
20 #include <linux/time.h>
21 #include <linux/errno.h>
22 #include <linux/stat.h>
23 #include <linux/fcntl.h>
24 #include <linux/string.h>
25 #include <linux/kernel.h>
26 #include <linux/slab.h>
27 #include <linux/mm.h>
28 #include <linux/sunrpc/clnt.h>
29 #include <linux/nfs_fs.h>
30 #include <linux/nfs_mount.h>
31 #include <linux/pagemap.h>
32 #include <linux/pagevec.h>
33 #include <linux/namei.h>
34 #include <linux/mount.h>
35 #include <linux/sched.h>
36 #include <linux/kmemleak.h>
37
38 #include "delegation.h"
39 #include "iostat.h"
40 #include "internal.h"
41 #include "fscache.h"
42
43 /* #define NFS_DEBUG_VERBOSE 1 */
44
45 static int nfs_opendir(struct inode *, struct file *);
46 static int nfs_readdir(struct file *, void *, filldir_t);
47 static struct dentry *nfs_lookup(struct inode *, struct dentry *, struct nameidata *);
48 static int nfs_create(struct inode *, struct dentry *, int, struct nameidata *);
49 static int nfs_mkdir(struct inode *, struct dentry *, int);
50 static int nfs_rmdir(struct inode *, struct dentry *);
51 static int nfs_unlink(struct inode *, struct dentry *);
52 static int nfs_symlink(struct inode *, struct dentry *, const char *);
53 static int nfs_link(struct dentry *, struct inode *, struct dentry *);
54 static int nfs_mknod(struct inode *, struct dentry *, int, dev_t);
55 static int nfs_rename(struct inode *, struct dentry *,
56 struct inode *, struct dentry *);
57 static int nfs_fsync_dir(struct file *, int);
58 static loff_t nfs_llseek_dir(struct file *, loff_t, int);
59 static void nfs_readdir_clear_array(struct page*);
60
61 const struct file_operations nfs_dir_operations = {
62 .llseek = nfs_llseek_dir,
63 .read = generic_read_dir,
64 .readdir = nfs_readdir,
65 .open = nfs_opendir,
66 .release = nfs_release,
67 .fsync = nfs_fsync_dir,
68 };
69
70 const struct inode_operations nfs_dir_inode_operations = {
71 .create = nfs_create,
72 .lookup = nfs_lookup,
73 .link = nfs_link,
74 .unlink = nfs_unlink,
75 .symlink = nfs_symlink,
76 .mkdir = nfs_mkdir,
77 .rmdir = nfs_rmdir,
78 .mknod = nfs_mknod,
79 .rename = nfs_rename,
80 .permission = nfs_permission,
81 .getattr = nfs_getattr,
82 .setattr = nfs_setattr,
83 };
84
85 const struct address_space_operations nfs_dir_aops = {
86 .freepage = nfs_readdir_clear_array,
87 };
88
89 #ifdef CONFIG_NFS_V3
90 const struct inode_operations nfs3_dir_inode_operations = {
91 .create = nfs_create,
92 .lookup = nfs_lookup,
93 .link = nfs_link,
94 .unlink = nfs_unlink,
95 .symlink = nfs_symlink,
96 .mkdir = nfs_mkdir,
97 .rmdir = nfs_rmdir,
98 .mknod = nfs_mknod,
99 .rename = nfs_rename,
100 .permission = nfs_permission,
101 .getattr = nfs_getattr,
102 .setattr = nfs_setattr,
103 .listxattr = nfs3_listxattr,
104 .getxattr = nfs3_getxattr,
105 .setxattr = nfs3_setxattr,
106 .removexattr = nfs3_removexattr,
107 };
108 #endif /* CONFIG_NFS_V3 */
109
110 #ifdef CONFIG_NFS_V4
111
112 static struct dentry *nfs_atomic_lookup(struct inode *, struct dentry *, struct nameidata *);
113 static int nfs_open_create(struct inode *dir, struct dentry *dentry, int mode, struct nameidata *nd);
114 const struct inode_operations nfs4_dir_inode_operations = {
115 .create = nfs_open_create,
116 .lookup = nfs_atomic_lookup,
117 .link = nfs_link,
118 .unlink = nfs_unlink,
119 .symlink = nfs_symlink,
120 .mkdir = nfs_mkdir,
121 .rmdir = nfs_rmdir,
122 .mknod = nfs_mknod,
123 .rename = nfs_rename,
124 .permission = nfs_permission,
125 .getattr = nfs_getattr,
126 .setattr = nfs_setattr,
127 .getxattr = nfs4_getxattr,
128 .setxattr = nfs4_setxattr,
129 .listxattr = nfs4_listxattr,
130 };
131
132 #endif /* CONFIG_NFS_V4 */
133
134 /*
135 * Open file
136 */
137 static int
138 nfs_opendir(struct inode *inode, struct file *filp)
139 {
140 int res;
141
142 dfprintk(FILE, "NFS: open dir(%s/%s)\n",
143 filp->f_path.dentry->d_parent->d_name.name,
144 filp->f_path.dentry->d_name.name);
145
146 nfs_inc_stats(inode, NFSIOS_VFSOPEN);
147
148 /* Call generic open code in order to cache credentials */
149 res = nfs_open(inode, filp);
150 if (filp->f_path.dentry == filp->f_path.mnt->mnt_root) {
151 /* This is a mountpoint, so d_revalidate will never
152 * have been called, so we need to refresh the
153 * inode (for close-open consistency) ourselves.
154 */
155 __nfs_revalidate_inode(NFS_SERVER(inode), inode);
156 }
157 return res;
158 }
159
160 struct nfs_cache_array_entry {
161 u64 cookie;
162 u64 ino;
163 struct qstr string;
164 unsigned char d_type;
165 };
166
167 struct nfs_cache_array {
168 unsigned int size;
169 int eof_index;
170 u64 last_cookie;
171 struct nfs_cache_array_entry array[0];
172 };
173
174 typedef __be32 * (*decode_dirent_t)(struct xdr_stream *, struct nfs_entry *, struct nfs_server *, int);
175 typedef struct {
176 struct file *file;
177 struct page *page;
178 unsigned long page_index;
179 u64 *dir_cookie;
180 u64 last_cookie;
181 loff_t current_index;
182 decode_dirent_t decode;
183
184 unsigned long timestamp;
185 unsigned long gencount;
186 unsigned int cache_entry_index;
187 unsigned int plus:1;
188 unsigned int eof:1;
189 } nfs_readdir_descriptor_t;
190
191 /*
192 * The caller is responsible for calling nfs_readdir_release_array(page)
193 */
194 static
195 struct nfs_cache_array *nfs_readdir_get_array(struct page *page)
196 {
197 void *ptr;
198 if (page == NULL)
199 return ERR_PTR(-EIO);
200 ptr = kmap(page);
201 if (ptr == NULL)
202 return ERR_PTR(-ENOMEM);
203 return ptr;
204 }
205
206 static
207 void nfs_readdir_release_array(struct page *page)
208 {
209 kunmap(page);
210 }
211
212 /*
213 * we are freeing strings created by nfs_add_to_readdir_array()
214 */
215 static
216 void nfs_readdir_clear_array(struct page *page)
217 {
218 struct nfs_cache_array *array;
219 int i;
220
221 array = kmap_atomic(page, KM_USER0);
222 for (i = 0; i < array->size; i++)
223 kfree(array->array[i].string.name);
224 kunmap_atomic(array, KM_USER0);
225 }
226
227 /*
228 * the caller is responsible for freeing qstr.name
229 * when called by nfs_readdir_add_to_array, the strings will be freed in
230 * nfs_clear_readdir_array()
231 */
232 static
233 int nfs_readdir_make_qstr(struct qstr *string, const char *name, unsigned int len)
234 {
235 string->len = len;
236 string->name = kmemdup(name, len, GFP_KERNEL);
237 if (string->name == NULL)
238 return -ENOMEM;
239 /*
240 * Avoid a kmemleak false positive. The pointer to the name is stored
241 * in a page cache page which kmemleak does not scan.
242 */
243 kmemleak_not_leak(string->name);
244 string->hash = full_name_hash(name, len);
245 return 0;
246 }
247
248 static
249 int nfs_readdir_add_to_array(struct nfs_entry *entry, struct page *page)
250 {
251 struct nfs_cache_array *array = nfs_readdir_get_array(page);
252 struct nfs_cache_array_entry *cache_entry;
253 int ret;
254
255 if (IS_ERR(array))
256 return PTR_ERR(array);
257
258 cache_entry = &array->array[array->size];
259
260 /* Check that this entry lies within the page bounds */
261 ret = -ENOSPC;
262 if ((char *)&cache_entry[1] - (char *)page_address(page) > PAGE_SIZE)
263 goto out;
264
265 cache_entry->cookie = entry->prev_cookie;
266 cache_entry->ino = entry->ino;
267 cache_entry->d_type = entry->d_type;
268 ret = nfs_readdir_make_qstr(&cache_entry->string, entry->name, entry->len);
269 if (ret)
270 goto out;
271 array->last_cookie = entry->cookie;
272 array->size++;
273 if (entry->eof != 0)
274 array->eof_index = array->size;
275 out:
276 nfs_readdir_release_array(page);
277 return ret;
278 }
279
280 static
281 int nfs_readdir_search_for_pos(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
282 {
283 loff_t diff = desc->file->f_pos - desc->current_index;
284 unsigned int index;
285
286 if (diff < 0)
287 goto out_eof;
288 if (diff >= array->size) {
289 if (array->eof_index >= 0)
290 goto out_eof;
291 desc->current_index += array->size;
292 return -EAGAIN;
293 }
294
295 index = (unsigned int)diff;
296 *desc->dir_cookie = array->array[index].cookie;
297 desc->cache_entry_index = index;
298 return 0;
299 out_eof:
300 desc->eof = 1;
301 return -EBADCOOKIE;
302 }
303
304 static
305 int nfs_readdir_search_for_cookie(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
306 {
307 int i;
308 int status = -EAGAIN;
309
310 for (i = 0; i < array->size; i++) {
311 if (array->array[i].cookie == *desc->dir_cookie) {
312 desc->cache_entry_index = i;
313 return 0;
314 }
315 }
316 if (array->eof_index >= 0) {
317 status = -EBADCOOKIE;
318 if (*desc->dir_cookie == array->last_cookie)
319 desc->eof = 1;
320 }
321 return status;
322 }
323
324 static
325 int nfs_readdir_search_array(nfs_readdir_descriptor_t *desc)
326 {
327 struct nfs_cache_array *array;
328 int status;
329
330 array = nfs_readdir_get_array(desc->page);
331 if (IS_ERR(array)) {
332 status = PTR_ERR(array);
333 goto out;
334 }
335
336 if (*desc->dir_cookie == 0)
337 status = nfs_readdir_search_for_pos(array, desc);
338 else
339 status = nfs_readdir_search_for_cookie(array, desc);
340
341 if (status == -EAGAIN) {
342 desc->last_cookie = array->last_cookie;
343 desc->page_index++;
344 }
345 nfs_readdir_release_array(desc->page);
346 out:
347 return status;
348 }
349
350 /* Fill a page with xdr information before transferring to the cache page */
351 static
352 int nfs_readdir_xdr_filler(struct page **pages, nfs_readdir_descriptor_t *desc,
353 struct nfs_entry *entry, struct file *file, struct inode *inode)
354 {
355 struct rpc_cred *cred = nfs_file_cred(file);
356 unsigned long timestamp, gencount;
357 int error;
358
359 again:
360 timestamp = jiffies;
361 gencount = nfs_inc_attr_generation_counter();
362 error = NFS_PROTO(inode)->readdir(file->f_path.dentry, cred, entry->cookie, pages,
363 NFS_SERVER(inode)->dtsize, desc->plus);
364 if (error < 0) {
365 /* We requested READDIRPLUS, but the server doesn't grok it */
366 if (error == -ENOTSUPP && desc->plus) {
367 NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
368 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
369 desc->plus = 0;
370 goto again;
371 }
372 goto error;
373 }
374 desc->timestamp = timestamp;
375 desc->gencount = gencount;
376 error:
377 return error;
378 }
379
380 /* Fill in an entry based on the xdr code stored in desc->page */
381 static
382 int xdr_decode(nfs_readdir_descriptor_t *desc, struct nfs_entry *entry, struct xdr_stream *stream)
383 {
384 __be32 *p = desc->decode(stream, entry, NFS_SERVER(desc->file->f_path.dentry->d_inode), desc->plus);
385 if (IS_ERR(p))
386 return PTR_ERR(p);
387
388 entry->fattr->time_start = desc->timestamp;
389 entry->fattr->gencount = desc->gencount;
390 return 0;
391 }
392
393 static
394 int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry)
395 {
396 if (dentry->d_inode == NULL)
397 goto different;
398 if (nfs_compare_fh(entry->fh, NFS_FH(dentry->d_inode)) != 0)
399 goto different;
400 return 1;
401 different:
402 return 0;
403 }
404
405 static
406 void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry)
407 {
408 struct qstr filename = {
409 .len = entry->len,
410 .name = entry->name,
411 };
412 struct dentry *dentry;
413 struct dentry *alias;
414 struct inode *dir = parent->d_inode;
415 struct inode *inode;
416
417 if (filename.name[0] == '.') {
418 if (filename.len == 1)
419 return;
420 if (filename.len == 2 && filename.name[1] == '.')
421 return;
422 }
423 filename.hash = full_name_hash(filename.name, filename.len);
424
425 dentry = d_lookup(parent, &filename);
426 if (dentry != NULL) {
427 if (nfs_same_file(dentry, entry)) {
428 nfs_refresh_inode(dentry->d_inode, entry->fattr);
429 goto out;
430 } else {
431 d_drop(dentry);
432 dput(dentry);
433 }
434 }
435
436 dentry = d_alloc(parent, &filename);
437 if (dentry == NULL)
438 return;
439
440 dentry->d_op = NFS_PROTO(dir)->dentry_ops;
441 inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr);
442 if (IS_ERR(inode))
443 goto out;
444
445 alias = d_materialise_unique(dentry, inode);
446 if (IS_ERR(alias))
447 goto out;
448 else if (alias) {
449 nfs_set_verifier(alias, nfs_save_change_attribute(dir));
450 dput(alias);
451 } else
452 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
453
454 out:
455 dput(dentry);
456 }
457
458 /* Perform conversion from xdr to cache array */
459 static
460 int nfs_readdir_page_filler(nfs_readdir_descriptor_t *desc, struct nfs_entry *entry,
461 struct page **xdr_pages, struct page *page, unsigned int buflen)
462 {
463 struct xdr_stream stream;
464 struct xdr_buf buf = {
465 .pages = xdr_pages,
466 .page_len = buflen,
467 .buflen = buflen,
468 .len = buflen,
469 };
470 struct page *scratch;
471 struct nfs_cache_array *array;
472 unsigned int count = 0;
473 int status;
474
475 scratch = alloc_page(GFP_KERNEL);
476 if (scratch == NULL)
477 return -ENOMEM;
478
479 xdr_init_decode(&stream, &buf, NULL);
480 xdr_set_scratch_buffer(&stream, page_address(scratch), PAGE_SIZE);
481
482 do {
483 status = xdr_decode(desc, entry, &stream);
484 if (status != 0) {
485 if (status == -EAGAIN)
486 status = 0;
487 break;
488 }
489
490 count++;
491
492 if (desc->plus != 0)
493 nfs_prime_dcache(desc->file->f_path.dentry, entry);
494
495 status = nfs_readdir_add_to_array(entry, page);
496 if (status != 0)
497 break;
498 } while (!entry->eof);
499
500 if (count == 0 || (status == -EBADCOOKIE && entry->eof != 0)) {
501 array = nfs_readdir_get_array(page);
502 if (!IS_ERR(array)) {
503 array->eof_index = array->size;
504 status = 0;
505 nfs_readdir_release_array(page);
506 } else
507 status = PTR_ERR(array);
508 }
509
510 put_page(scratch);
511 return status;
512 }
513
514 static
515 void nfs_readdir_free_pagearray(struct page **pages, unsigned int npages)
516 {
517 unsigned int i;
518 for (i = 0; i < npages; i++)
519 put_page(pages[i]);
520 }
521
522 static
523 void nfs_readdir_free_large_page(void *ptr, struct page **pages,
524 unsigned int npages)
525 {
526 nfs_readdir_free_pagearray(pages, npages);
527 }
528
529 /*
530 * nfs_readdir_large_page will allocate pages that must be freed with a call
531 * to nfs_readdir_free_large_page
532 */
533 static
534 int nfs_readdir_large_page(struct page **pages, unsigned int npages)
535 {
536 unsigned int i;
537
538 for (i = 0; i < npages; i++) {
539 struct page *page = alloc_page(GFP_KERNEL);
540 if (page == NULL)
541 goto out_freepages;
542 pages[i] = page;
543 }
544 return 0;
545
546 out_freepages:
547 nfs_readdir_free_pagearray(pages, i);
548 return -ENOMEM;
549 }
550
551 static
552 int nfs_readdir_xdr_to_array(nfs_readdir_descriptor_t *desc, struct page *page, struct inode *inode)
553 {
554 struct page *pages[NFS_MAX_READDIR_PAGES];
555 void *pages_ptr = NULL;
556 struct nfs_entry entry;
557 struct file *file = desc->file;
558 struct nfs_cache_array *array;
559 int status = -ENOMEM;
560 unsigned int array_size = ARRAY_SIZE(pages);
561
562 entry.prev_cookie = 0;
563 entry.cookie = desc->last_cookie;
564 entry.eof = 0;
565 entry.fh = nfs_alloc_fhandle();
566 entry.fattr = nfs_alloc_fattr();
567 if (entry.fh == NULL || entry.fattr == NULL)
568 goto out;
569
570 array = nfs_readdir_get_array(page);
571 if (IS_ERR(array)) {
572 status = PTR_ERR(array);
573 goto out;
574 }
575 memset(array, 0, sizeof(struct nfs_cache_array));
576 array->eof_index = -1;
577
578 status = nfs_readdir_large_page(pages, array_size);
579 if (status < 0)
580 goto out_release_array;
581 do {
582 unsigned int pglen;
583 status = nfs_readdir_xdr_filler(pages, desc, &entry, file, inode);
584
585 if (status < 0)
586 break;
587 pglen = status;
588 status = nfs_readdir_page_filler(desc, &entry, pages, page, pglen);
589 if (status < 0) {
590 if (status == -ENOSPC)
591 status = 0;
592 break;
593 }
594 } while (array->eof_index < 0);
595
596 nfs_readdir_free_large_page(pages_ptr, pages, array_size);
597 out_release_array:
598 nfs_readdir_release_array(page);
599 out:
600 nfs_free_fattr(entry.fattr);
601 nfs_free_fhandle(entry.fh);
602 return status;
603 }
604
605 /*
606 * Now we cache directories properly, by converting xdr information
607 * to an array that can be used for lookups later. This results in
608 * fewer cache pages, since we can store more information on each page.
609 * We only need to convert from xdr once so future lookups are much simpler
610 */
611 static
612 int nfs_readdir_filler(nfs_readdir_descriptor_t *desc, struct page* page)
613 {
614 struct inode *inode = desc->file->f_path.dentry->d_inode;
615 int ret;
616
617 ret = nfs_readdir_xdr_to_array(desc, page, inode);
618 if (ret < 0)
619 goto error;
620 SetPageUptodate(page);
621
622 if (invalidate_inode_pages2_range(inode->i_mapping, page->index + 1, -1) < 0) {
623 /* Should never happen */
624 nfs_zap_mapping(inode, inode->i_mapping);
625 }
626 unlock_page(page);
627 return 0;
628 error:
629 unlock_page(page);
630 return ret;
631 }
632
633 static
634 void cache_page_release(nfs_readdir_descriptor_t *desc)
635 {
636 if (!desc->page->mapping)
637 nfs_readdir_clear_array(desc->page);
638 page_cache_release(desc->page);
639 desc->page = NULL;
640 }
641
642 static
643 struct page *get_cache_page(nfs_readdir_descriptor_t *desc)
644 {
645 return read_cache_page(desc->file->f_path.dentry->d_inode->i_mapping,
646 desc->page_index, (filler_t *)nfs_readdir_filler, desc);
647 }
648
649 /*
650 * Returns 0 if desc->dir_cookie was found on page desc->page_index
651 */
652 static
653 int find_cache_page(nfs_readdir_descriptor_t *desc)
654 {
655 int res;
656
657 desc->page = get_cache_page(desc);
658 if (IS_ERR(desc->page))
659 return PTR_ERR(desc->page);
660
661 res = nfs_readdir_search_array(desc);
662 if (res != 0)
663 cache_page_release(desc);
664 return res;
665 }
666
667 /* Search for desc->dir_cookie from the beginning of the page cache */
668 static inline
669 int readdir_search_pagecache(nfs_readdir_descriptor_t *desc)
670 {
671 int res;
672
673 if (desc->page_index == 0) {
674 desc->current_index = 0;
675 desc->last_cookie = 0;
676 }
677 do {
678 res = find_cache_page(desc);
679 } while (res == -EAGAIN);
680 return res;
681 }
682
683 /*
684 * Once we've found the start of the dirent within a page: fill 'er up...
685 */
686 static
687 int nfs_do_filldir(nfs_readdir_descriptor_t *desc, void *dirent,
688 filldir_t filldir)
689 {
690 struct file *file = desc->file;
691 int i = 0;
692 int res = 0;
693 struct nfs_cache_array *array = NULL;
694
695 array = nfs_readdir_get_array(desc->page);
696 if (IS_ERR(array)) {
697 res = PTR_ERR(array);
698 goto out;
699 }
700
701 for (i = desc->cache_entry_index; i < array->size; i++) {
702 struct nfs_cache_array_entry *ent;
703
704 ent = &array->array[i];
705 if (filldir(dirent, ent->string.name, ent->string.len,
706 file->f_pos, nfs_compat_user_ino64(ent->ino),
707 ent->d_type) < 0) {
708 desc->eof = 1;
709 break;
710 }
711 file->f_pos++;
712 if (i < (array->size-1))
713 *desc->dir_cookie = array->array[i+1].cookie;
714 else
715 *desc->dir_cookie = array->last_cookie;
716 }
717 if (array->eof_index >= 0)
718 desc->eof = 1;
719
720 nfs_readdir_release_array(desc->page);
721 out:
722 cache_page_release(desc);
723 dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n",
724 (unsigned long long)*desc->dir_cookie, res);
725 return res;
726 }
727
728 /*
729 * If we cannot find a cookie in our cache, we suspect that this is
730 * because it points to a deleted file, so we ask the server to return
731 * whatever it thinks is the next entry. We then feed this to filldir.
732 * If all goes well, we should then be able to find our way round the
733 * cache on the next call to readdir_search_pagecache();
734 *
735 * NOTE: we cannot add the anonymous page to the pagecache because
736 * the data it contains might not be page aligned. Besides,
737 * we should already have a complete representation of the
738 * directory in the page cache by the time we get here.
739 */
740 static inline
741 int uncached_readdir(nfs_readdir_descriptor_t *desc, void *dirent,
742 filldir_t filldir)
743 {
744 struct page *page = NULL;
745 int status;
746 struct inode *inode = desc->file->f_path.dentry->d_inode;
747
748 dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n",
749 (unsigned long long)*desc->dir_cookie);
750
751 page = alloc_page(GFP_HIGHUSER);
752 if (!page) {
753 status = -ENOMEM;
754 goto out;
755 }
756
757 desc->page_index = 0;
758 desc->last_cookie = *desc->dir_cookie;
759 desc->page = page;
760
761 status = nfs_readdir_xdr_to_array(desc, page, inode);
762 if (status < 0)
763 goto out_release;
764
765 status = nfs_do_filldir(desc, dirent, filldir);
766
767 out:
768 dfprintk(DIRCACHE, "NFS: %s: returns %d\n",
769 __func__, status);
770 return status;
771 out_release:
772 cache_page_release(desc);
773 goto out;
774 }
775
776 /* The file offset position represents the dirent entry number. A
777 last cookie cache takes care of the common case of reading the
778 whole directory.
779 */
780 static int nfs_readdir(struct file *filp, void *dirent, filldir_t filldir)
781 {
782 struct dentry *dentry = filp->f_path.dentry;
783 struct inode *inode = dentry->d_inode;
784 nfs_readdir_descriptor_t my_desc,
785 *desc = &my_desc;
786 int res;
787
788 dfprintk(FILE, "NFS: readdir(%s/%s) starting at cookie %llu\n",
789 dentry->d_parent->d_name.name, dentry->d_name.name,
790 (long long)filp->f_pos);
791 nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
792
793 /*
794 * filp->f_pos points to the dirent entry number.
795 * *desc->dir_cookie has the cookie for the next entry. We have
796 * to either find the entry with the appropriate number or
797 * revalidate the cookie.
798 */
799 memset(desc, 0, sizeof(*desc));
800
801 desc->file = filp;
802 desc->dir_cookie = &nfs_file_open_context(filp)->dir_cookie;
803 desc->decode = NFS_PROTO(inode)->decode_dirent;
804 desc->plus = NFS_USE_READDIRPLUS(inode);
805
806 nfs_block_sillyrename(dentry);
807 res = nfs_revalidate_mapping(inode, filp->f_mapping);
808 if (res < 0)
809 goto out;
810
811 do {
812 res = readdir_search_pagecache(desc);
813
814 if (res == -EBADCOOKIE) {
815 res = 0;
816 /* This means either end of directory */
817 if (*desc->dir_cookie && desc->eof == 0) {
818 /* Or that the server has 'lost' a cookie */
819 res = uncached_readdir(desc, dirent, filldir);
820 if (res == 0)
821 continue;
822 }
823 break;
824 }
825 if (res == -ETOOSMALL && desc->plus) {
826 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
827 nfs_zap_caches(inode);
828 desc->page_index = 0;
829 desc->plus = 0;
830 desc->eof = 0;
831 continue;
832 }
833 if (res < 0)
834 break;
835
836 res = nfs_do_filldir(desc, dirent, filldir);
837 if (res < 0)
838 break;
839 } while (!desc->eof);
840 out:
841 nfs_unblock_sillyrename(dentry);
842 if (res > 0)
843 res = 0;
844 dfprintk(FILE, "NFS: readdir(%s/%s) returns %d\n",
845 dentry->d_parent->d_name.name, dentry->d_name.name,
846 res);
847 return res;
848 }
849
850 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int origin)
851 {
852 struct dentry *dentry = filp->f_path.dentry;
853 struct inode *inode = dentry->d_inode;
854
855 dfprintk(FILE, "NFS: llseek dir(%s/%s, %lld, %d)\n",
856 dentry->d_parent->d_name.name,
857 dentry->d_name.name,
858 offset, origin);
859
860 mutex_lock(&inode->i_mutex);
861 switch (origin) {
862 case 1:
863 offset += filp->f_pos;
864 case 0:
865 if (offset >= 0)
866 break;
867 default:
868 offset = -EINVAL;
869 goto out;
870 }
871 if (offset != filp->f_pos) {
872 filp->f_pos = offset;
873 nfs_file_open_context(filp)->dir_cookie = 0;
874 }
875 out:
876 mutex_unlock(&inode->i_mutex);
877 return offset;
878 }
879
880 /*
881 * All directory operations under NFS are synchronous, so fsync()
882 * is a dummy operation.
883 */
884 static int nfs_fsync_dir(struct file *filp, int datasync)
885 {
886 struct dentry *dentry = filp->f_path.dentry;
887
888 dfprintk(FILE, "NFS: fsync dir(%s/%s) datasync %d\n",
889 dentry->d_parent->d_name.name, dentry->d_name.name,
890 datasync);
891
892 nfs_inc_stats(dentry->d_inode, NFSIOS_VFSFSYNC);
893 return 0;
894 }
895
896 /**
897 * nfs_force_lookup_revalidate - Mark the directory as having changed
898 * @dir - pointer to directory inode
899 *
900 * This forces the revalidation code in nfs_lookup_revalidate() to do a
901 * full lookup on all child dentries of 'dir' whenever a change occurs
902 * on the server that might have invalidated our dcache.
903 *
904 * The caller should be holding dir->i_lock
905 */
906 void nfs_force_lookup_revalidate(struct inode *dir)
907 {
908 NFS_I(dir)->cache_change_attribute++;
909 }
910
911 /*
912 * A check for whether or not the parent directory has changed.
913 * In the case it has, we assume that the dentries are untrustworthy
914 * and may need to be looked up again.
915 */
916 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry)
917 {
918 if (IS_ROOT(dentry))
919 return 1;
920 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE)
921 return 0;
922 if (!nfs_verify_change_attribute(dir, dentry->d_time))
923 return 0;
924 /* Revalidate nfsi->cache_change_attribute before we declare a match */
925 if (nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
926 return 0;
927 if (!nfs_verify_change_attribute(dir, dentry->d_time))
928 return 0;
929 return 1;
930 }
931
932 /*
933 * Return the intent data that applies to this particular path component
934 *
935 * Note that the current set of intents only apply to the very last
936 * component of the path.
937 * We check for this using LOOKUP_CONTINUE and LOOKUP_PARENT.
938 */
939 static inline unsigned int nfs_lookup_check_intent(struct nameidata *nd, unsigned int mask)
940 {
941 if (nd->flags & (LOOKUP_CONTINUE|LOOKUP_PARENT))
942 return 0;
943 return nd->flags & mask;
944 }
945
946 /*
947 * Use intent information to check whether or not we're going to do
948 * an O_EXCL create using this path component.
949 */
950 static int nfs_is_exclusive_create(struct inode *dir, struct nameidata *nd)
951 {
952 if (NFS_PROTO(dir)->version == 2)
953 return 0;
954 return nd && nfs_lookup_check_intent(nd, LOOKUP_EXCL);
955 }
956
957 /*
958 * Inode and filehandle revalidation for lookups.
959 *
960 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
961 * or if the intent information indicates that we're about to open this
962 * particular file and the "nocto" mount flag is not set.
963 *
964 */
965 static inline
966 int nfs_lookup_verify_inode(struct inode *inode, struct nameidata *nd)
967 {
968 struct nfs_server *server = NFS_SERVER(inode);
969
970 if (test_bit(NFS_INO_MOUNTPOINT, &NFS_I(inode)->flags))
971 return 0;
972 if (nd != NULL) {
973 /* VFS wants an on-the-wire revalidation */
974 if (nd->flags & LOOKUP_REVAL)
975 goto out_force;
976 /* This is an open(2) */
977 if (nfs_lookup_check_intent(nd, LOOKUP_OPEN) != 0 &&
978 !(server->flags & NFS_MOUNT_NOCTO) &&
979 (S_ISREG(inode->i_mode) ||
980 S_ISDIR(inode->i_mode)))
981 goto out_force;
982 return 0;
983 }
984 return nfs_revalidate_inode(server, inode);
985 out_force:
986 return __nfs_revalidate_inode(server, inode);
987 }
988
989 /*
990 * We judge how long we want to trust negative
991 * dentries by looking at the parent inode mtime.
992 *
993 * If parent mtime has changed, we revalidate, else we wait for a
994 * period corresponding to the parent's attribute cache timeout value.
995 */
996 static inline
997 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
998 struct nameidata *nd)
999 {
1000 /* Don't revalidate a negative dentry if we're creating a new file */
1001 if (nd != NULL && nfs_lookup_check_intent(nd, LOOKUP_CREATE) != 0)
1002 return 0;
1003 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG)
1004 return 1;
1005 return !nfs_check_verifier(dir, dentry);
1006 }
1007
1008 /*
1009 * This is called every time the dcache has a lookup hit,
1010 * and we should check whether we can really trust that
1011 * lookup.
1012 *
1013 * NOTE! The hit can be a negative hit too, don't assume
1014 * we have an inode!
1015 *
1016 * If the parent directory is seen to have changed, we throw out the
1017 * cached dentry and do a new lookup.
1018 */
1019 static int nfs_lookup_revalidate(struct dentry * dentry, struct nameidata *nd)
1020 {
1021 struct inode *dir;
1022 struct inode *inode;
1023 struct dentry *parent;
1024 struct nfs_fh *fhandle = NULL;
1025 struct nfs_fattr *fattr = NULL;
1026 int error;
1027
1028 parent = dget_parent(dentry);
1029 dir = parent->d_inode;
1030 nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
1031 inode = dentry->d_inode;
1032
1033 if (!inode) {
1034 if (nfs_neg_need_reval(dir, dentry, nd))
1035 goto out_bad;
1036 goto out_valid;
1037 }
1038
1039 if (is_bad_inode(inode)) {
1040 dfprintk(LOOKUPCACHE, "%s: %s/%s has dud inode\n",
1041 __func__, dentry->d_parent->d_name.name,
1042 dentry->d_name.name);
1043 goto out_bad;
1044 }
1045
1046 if (nfs_have_delegation(inode, FMODE_READ))
1047 goto out_set_verifier;
1048
1049 /* Force a full look up iff the parent directory has changed */
1050 if (!nfs_is_exclusive_create(dir, nd) && nfs_check_verifier(dir, dentry)) {
1051 if (nfs_lookup_verify_inode(inode, nd))
1052 goto out_zap_parent;
1053 goto out_valid;
1054 }
1055
1056 if (NFS_STALE(inode))
1057 goto out_bad;
1058
1059 error = -ENOMEM;
1060 fhandle = nfs_alloc_fhandle();
1061 fattr = nfs_alloc_fattr();
1062 if (fhandle == NULL || fattr == NULL)
1063 goto out_error;
1064
1065 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr);
1066 if (error)
1067 goto out_bad;
1068 if (nfs_compare_fh(NFS_FH(inode), fhandle))
1069 goto out_bad;
1070 if ((error = nfs_refresh_inode(inode, fattr)) != 0)
1071 goto out_bad;
1072
1073 nfs_free_fattr(fattr);
1074 nfs_free_fhandle(fhandle);
1075 out_set_verifier:
1076 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1077 out_valid:
1078 dput(parent);
1079 dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is valid\n",
1080 __func__, dentry->d_parent->d_name.name,
1081 dentry->d_name.name);
1082 return 1;
1083 out_zap_parent:
1084 nfs_zap_caches(dir);
1085 out_bad:
1086 nfs_mark_for_revalidate(dir);
1087 if (inode && S_ISDIR(inode->i_mode)) {
1088 /* Purge readdir caches. */
1089 nfs_zap_caches(inode);
1090 /* If we have submounts, don't unhash ! */
1091 if (have_submounts(dentry))
1092 goto out_valid;
1093 if (dentry->d_flags & DCACHE_DISCONNECTED)
1094 goto out_valid;
1095 shrink_dcache_parent(dentry);
1096 }
1097 d_drop(dentry);
1098 nfs_free_fattr(fattr);
1099 nfs_free_fhandle(fhandle);
1100 dput(parent);
1101 dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is invalid\n",
1102 __func__, dentry->d_parent->d_name.name,
1103 dentry->d_name.name);
1104 return 0;
1105 out_error:
1106 nfs_free_fattr(fattr);
1107 nfs_free_fhandle(fhandle);
1108 dput(parent);
1109 dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) lookup returned error %d\n",
1110 __func__, dentry->d_parent->d_name.name,
1111 dentry->d_name.name, error);
1112 return error;
1113 }
1114
1115 /*
1116 * This is called from dput() when d_count is going to 0.
1117 */
1118 static int nfs_dentry_delete(struct dentry *dentry)
1119 {
1120 dfprintk(VFS, "NFS: dentry_delete(%s/%s, %x)\n",
1121 dentry->d_parent->d_name.name, dentry->d_name.name,
1122 dentry->d_flags);
1123
1124 /* Unhash any dentry with a stale inode */
1125 if (dentry->d_inode != NULL && NFS_STALE(dentry->d_inode))
1126 return 1;
1127
1128 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1129 /* Unhash it, so that ->d_iput() would be called */
1130 return 1;
1131 }
1132 if (!(dentry->d_sb->s_flags & MS_ACTIVE)) {
1133 /* Unhash it, so that ancestors of killed async unlink
1134 * files will be cleaned up during umount */
1135 return 1;
1136 }
1137 return 0;
1138
1139 }
1140
1141 static void nfs_drop_nlink(struct inode *inode)
1142 {
1143 spin_lock(&inode->i_lock);
1144 if (inode->i_nlink > 0)
1145 drop_nlink(inode);
1146 spin_unlock(&inode->i_lock);
1147 }
1148
1149 /*
1150 * Called when the dentry loses inode.
1151 * We use it to clean up silly-renamed files.
1152 */
1153 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
1154 {
1155 if (S_ISDIR(inode->i_mode))
1156 /* drop any readdir cache as it could easily be old */
1157 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA;
1158
1159 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1160 drop_nlink(inode);
1161 nfs_complete_unlink(dentry, inode);
1162 }
1163 iput(inode);
1164 }
1165
1166 const struct dentry_operations nfs_dentry_operations = {
1167 .d_revalidate = nfs_lookup_revalidate,
1168 .d_delete = nfs_dentry_delete,
1169 .d_iput = nfs_dentry_iput,
1170 };
1171
1172 static struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
1173 {
1174 struct dentry *res;
1175 struct dentry *parent;
1176 struct inode *inode = NULL;
1177 struct nfs_fh *fhandle = NULL;
1178 struct nfs_fattr *fattr = NULL;
1179 int error;
1180
1181 dfprintk(VFS, "NFS: lookup(%s/%s)\n",
1182 dentry->d_parent->d_name.name, dentry->d_name.name);
1183 nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
1184
1185 res = ERR_PTR(-ENAMETOOLONG);
1186 if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
1187 goto out;
1188
1189 dentry->d_op = NFS_PROTO(dir)->dentry_ops;
1190
1191 /*
1192 * If we're doing an exclusive create, optimize away the lookup
1193 * but don't hash the dentry.
1194 */
1195 if (nfs_is_exclusive_create(dir, nd)) {
1196 d_instantiate(dentry, NULL);
1197 res = NULL;
1198 goto out;
1199 }
1200
1201 res = ERR_PTR(-ENOMEM);
1202 fhandle = nfs_alloc_fhandle();
1203 fattr = nfs_alloc_fattr();
1204 if (fhandle == NULL || fattr == NULL)
1205 goto out;
1206
1207 parent = dentry->d_parent;
1208 /* Protect against concurrent sillydeletes */
1209 nfs_block_sillyrename(parent);
1210 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr);
1211 if (error == -ENOENT)
1212 goto no_entry;
1213 if (error < 0) {
1214 res = ERR_PTR(error);
1215 goto out_unblock_sillyrename;
1216 }
1217 inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
1218 res = (struct dentry *)inode;
1219 if (IS_ERR(res))
1220 goto out_unblock_sillyrename;
1221
1222 no_entry:
1223 res = d_materialise_unique(dentry, inode);
1224 if (res != NULL) {
1225 if (IS_ERR(res))
1226 goto out_unblock_sillyrename;
1227 dentry = res;
1228 }
1229 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1230 out_unblock_sillyrename:
1231 nfs_unblock_sillyrename(parent);
1232 out:
1233 nfs_free_fattr(fattr);
1234 nfs_free_fhandle(fhandle);
1235 return res;
1236 }
1237
1238 #ifdef CONFIG_NFS_V4
1239 static int nfs_open_revalidate(struct dentry *, struct nameidata *);
1240
1241 const struct dentry_operations nfs4_dentry_operations = {
1242 .d_revalidate = nfs_open_revalidate,
1243 .d_delete = nfs_dentry_delete,
1244 .d_iput = nfs_dentry_iput,
1245 };
1246
1247 /*
1248 * Use intent information to determine whether we need to substitute
1249 * the NFSv4-style stateful OPEN for the LOOKUP call
1250 */
1251 static int is_atomic_open(struct nameidata *nd)
1252 {
1253 if (nd == NULL || nfs_lookup_check_intent(nd, LOOKUP_OPEN) == 0)
1254 return 0;
1255 /* NFS does not (yet) have a stateful open for directories */
1256 if (nd->flags & LOOKUP_DIRECTORY)
1257 return 0;
1258 /* Are we trying to write to a read only partition? */
1259 if (__mnt_is_readonly(nd->path.mnt) &&
1260 (nd->intent.open.flags & (O_CREAT|O_TRUNC|FMODE_WRITE)))
1261 return 0;
1262 return 1;
1263 }
1264
1265 static struct nfs_open_context *nameidata_to_nfs_open_context(struct dentry *dentry, struct nameidata *nd)
1266 {
1267 struct path path = {
1268 .mnt = nd->path.mnt,
1269 .dentry = dentry,
1270 };
1271 struct nfs_open_context *ctx;
1272 struct rpc_cred *cred;
1273 fmode_t fmode = nd->intent.open.flags & (FMODE_READ | FMODE_WRITE | FMODE_EXEC);
1274
1275 cred = rpc_lookup_cred();
1276 if (IS_ERR(cred))
1277 return ERR_CAST(cred);
1278 ctx = alloc_nfs_open_context(&path, cred, fmode);
1279 put_rpccred(cred);
1280 if (ctx == NULL)
1281 return ERR_PTR(-ENOMEM);
1282 return ctx;
1283 }
1284
1285 static int do_open(struct inode *inode, struct file *filp)
1286 {
1287 nfs_fscache_set_inode_cookie(inode, filp);
1288 return 0;
1289 }
1290
1291 static int nfs_intent_set_file(struct nameidata *nd, struct nfs_open_context *ctx)
1292 {
1293 struct file *filp;
1294 int ret = 0;
1295
1296 /* If the open_intent is for execute, we have an extra check to make */
1297 if (ctx->mode & FMODE_EXEC) {
1298 ret = nfs_may_open(ctx->path.dentry->d_inode,
1299 ctx->cred,
1300 nd->intent.open.flags);
1301 if (ret < 0)
1302 goto out;
1303 }
1304 filp = lookup_instantiate_filp(nd, ctx->path.dentry, do_open);
1305 if (IS_ERR(filp))
1306 ret = PTR_ERR(filp);
1307 else
1308 nfs_file_set_open_context(filp, ctx);
1309 out:
1310 put_nfs_open_context(ctx);
1311 return ret;
1312 }
1313
1314 static struct dentry *nfs_atomic_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd)
1315 {
1316 struct nfs_open_context *ctx;
1317 struct iattr attr;
1318 struct dentry *res = NULL;
1319 struct inode *inode;
1320 int open_flags;
1321 int err;
1322
1323 dfprintk(VFS, "NFS: atomic_lookup(%s/%ld), %s\n",
1324 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1325
1326 /* Check that we are indeed trying to open this file */
1327 if (!is_atomic_open(nd))
1328 goto no_open;
1329
1330 if (dentry->d_name.len > NFS_SERVER(dir)->namelen) {
1331 res = ERR_PTR(-ENAMETOOLONG);
1332 goto out;
1333 }
1334 dentry->d_op = NFS_PROTO(dir)->dentry_ops;
1335
1336 /* Let vfs_create() deal with O_EXCL. Instantiate, but don't hash
1337 * the dentry. */
1338 if (nd->flags & LOOKUP_EXCL) {
1339 d_instantiate(dentry, NULL);
1340 goto out;
1341 }
1342
1343 ctx = nameidata_to_nfs_open_context(dentry, nd);
1344 res = ERR_CAST(ctx);
1345 if (IS_ERR(ctx))
1346 goto out;
1347
1348 open_flags = nd->intent.open.flags;
1349 if (nd->flags & LOOKUP_CREATE) {
1350 attr.ia_mode = nd->intent.open.create_mode;
1351 attr.ia_valid = ATTR_MODE;
1352 if (!IS_POSIXACL(dir))
1353 attr.ia_mode &= ~current_umask();
1354 } else {
1355 open_flags &= ~(O_EXCL | O_CREAT);
1356 attr.ia_valid = 0;
1357 }
1358
1359 /* Open the file on the server */
1360 nfs_block_sillyrename(dentry->d_parent);
1361 inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr);
1362 if (IS_ERR(inode)) {
1363 nfs_unblock_sillyrename(dentry->d_parent);
1364 put_nfs_open_context(ctx);
1365 switch (PTR_ERR(inode)) {
1366 /* Make a negative dentry */
1367 case -ENOENT:
1368 d_add(dentry, NULL);
1369 res = NULL;
1370 goto out;
1371 /* This turned out not to be a regular file */
1372 case -ENOTDIR:
1373 goto no_open;
1374 case -ELOOP:
1375 if (!(nd->intent.open.flags & O_NOFOLLOW))
1376 goto no_open;
1377 /* case -EISDIR: */
1378 /* case -EINVAL: */
1379 default:
1380 res = ERR_CAST(inode);
1381 goto out;
1382 }
1383 }
1384 res = d_add_unique(dentry, inode);
1385 nfs_unblock_sillyrename(dentry->d_parent);
1386 if (res != NULL) {
1387 dput(ctx->path.dentry);
1388 ctx->path.dentry = dget(res);
1389 dentry = res;
1390 }
1391 err = nfs_intent_set_file(nd, ctx);
1392 if (err < 0) {
1393 if (res != NULL)
1394 dput(res);
1395 return ERR_PTR(err);
1396 }
1397 out:
1398 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1399 return res;
1400 no_open:
1401 return nfs_lookup(dir, dentry, nd);
1402 }
1403
1404 static int nfs_open_revalidate(struct dentry *dentry, struct nameidata *nd)
1405 {
1406 struct dentry *parent = NULL;
1407 struct inode *inode = dentry->d_inode;
1408 struct inode *dir;
1409 struct nfs_open_context *ctx;
1410 int openflags, ret = 0;
1411
1412 if (!is_atomic_open(nd) || d_mountpoint(dentry))
1413 goto no_open;
1414
1415 parent = dget_parent(dentry);
1416 dir = parent->d_inode;
1417
1418 /* We can't create new files in nfs_open_revalidate(), so we
1419 * optimize away revalidation of negative dentries.
1420 */
1421 if (inode == NULL) {
1422 if (!nfs_neg_need_reval(dir, dentry, nd))
1423 ret = 1;
1424 goto out;
1425 }
1426
1427 /* NFS only supports OPEN on regular files */
1428 if (!S_ISREG(inode->i_mode))
1429 goto no_open_dput;
1430 openflags = nd->intent.open.flags;
1431 /* We cannot do exclusive creation on a positive dentry */
1432 if ((openflags & (O_CREAT|O_EXCL)) == (O_CREAT|O_EXCL))
1433 goto no_open_dput;
1434 /* We can't create new files, or truncate existing ones here */
1435 openflags &= ~(O_CREAT|O_EXCL|O_TRUNC);
1436
1437 ctx = nameidata_to_nfs_open_context(dentry, nd);
1438 ret = PTR_ERR(ctx);
1439 if (IS_ERR(ctx))
1440 goto out;
1441 /*
1442 * Note: we're not holding inode->i_mutex and so may be racing with
1443 * operations that change the directory. We therefore save the
1444 * change attribute *before* we do the RPC call.
1445 */
1446 inode = NFS_PROTO(dir)->open_context(dir, ctx, openflags, NULL);
1447 if (IS_ERR(inode)) {
1448 ret = PTR_ERR(inode);
1449 switch (ret) {
1450 case -EPERM:
1451 case -EACCES:
1452 case -EDQUOT:
1453 case -ENOSPC:
1454 case -EROFS:
1455 goto out_put_ctx;
1456 default:
1457 goto out_drop;
1458 }
1459 }
1460 iput(inode);
1461 if (inode != dentry->d_inode)
1462 goto out_drop;
1463
1464 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1465 ret = nfs_intent_set_file(nd, ctx);
1466 if (ret >= 0)
1467 ret = 1;
1468 out:
1469 dput(parent);
1470 return ret;
1471 out_drop:
1472 d_drop(dentry);
1473 ret = 0;
1474 out_put_ctx:
1475 put_nfs_open_context(ctx);
1476 goto out;
1477
1478 no_open_dput:
1479 dput(parent);
1480 no_open:
1481 return nfs_lookup_revalidate(dentry, nd);
1482 }
1483
1484 static int nfs_open_create(struct inode *dir, struct dentry *dentry, int mode,
1485 struct nameidata *nd)
1486 {
1487 struct nfs_open_context *ctx = NULL;
1488 struct iattr attr;
1489 int error;
1490 int open_flags = 0;
1491
1492 dfprintk(VFS, "NFS: create(%s/%ld), %s\n",
1493 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1494
1495 attr.ia_mode = mode;
1496 attr.ia_valid = ATTR_MODE;
1497
1498 if ((nd->flags & LOOKUP_CREATE) != 0) {
1499 open_flags = nd->intent.open.flags;
1500
1501 ctx = nameidata_to_nfs_open_context(dentry, nd);
1502 error = PTR_ERR(ctx);
1503 if (IS_ERR(ctx))
1504 goto out_err_drop;
1505 }
1506
1507 error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags, ctx);
1508 if (error != 0)
1509 goto out_put_ctx;
1510 if (ctx != NULL) {
1511 error = nfs_intent_set_file(nd, ctx);
1512 if (error < 0)
1513 goto out_err;
1514 }
1515 return 0;
1516 out_put_ctx:
1517 if (ctx != NULL)
1518 put_nfs_open_context(ctx);
1519 out_err_drop:
1520 d_drop(dentry);
1521 out_err:
1522 return error;
1523 }
1524
1525 #endif /* CONFIG_NFSV4 */
1526
1527 /*
1528 * Code common to create, mkdir, and mknod.
1529 */
1530 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
1531 struct nfs_fattr *fattr)
1532 {
1533 struct dentry *parent = dget_parent(dentry);
1534 struct inode *dir = parent->d_inode;
1535 struct inode *inode;
1536 int error = -EACCES;
1537
1538 d_drop(dentry);
1539
1540 /* We may have been initialized further down */
1541 if (dentry->d_inode)
1542 goto out;
1543 if (fhandle->size == 0) {
1544 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr);
1545 if (error)
1546 goto out_error;
1547 }
1548 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1549 if (!(fattr->valid & NFS_ATTR_FATTR)) {
1550 struct nfs_server *server = NFS_SB(dentry->d_sb);
1551 error = server->nfs_client->rpc_ops->getattr(server, fhandle, fattr);
1552 if (error < 0)
1553 goto out_error;
1554 }
1555 inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
1556 error = PTR_ERR(inode);
1557 if (IS_ERR(inode))
1558 goto out_error;
1559 d_add(dentry, inode);
1560 out:
1561 dput(parent);
1562 return 0;
1563 out_error:
1564 nfs_mark_for_revalidate(dir);
1565 dput(parent);
1566 return error;
1567 }
1568
1569 /*
1570 * Following a failed create operation, we drop the dentry rather
1571 * than retain a negative dentry. This avoids a problem in the event
1572 * that the operation succeeded on the server, but an error in the
1573 * reply path made it appear to have failed.
1574 */
1575 static int nfs_create(struct inode *dir, struct dentry *dentry, int mode,
1576 struct nameidata *nd)
1577 {
1578 struct iattr attr;
1579 int error;
1580
1581 dfprintk(VFS, "NFS: create(%s/%ld), %s\n",
1582 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1583
1584 attr.ia_mode = mode;
1585 attr.ia_valid = ATTR_MODE;
1586
1587 error = NFS_PROTO(dir)->create(dir, dentry, &attr, 0, NULL);
1588 if (error != 0)
1589 goto out_err;
1590 return 0;
1591 out_err:
1592 d_drop(dentry);
1593 return error;
1594 }
1595
1596 /*
1597 * See comments for nfs_proc_create regarding failed operations.
1598 */
1599 static int
1600 nfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t rdev)
1601 {
1602 struct iattr attr;
1603 int status;
1604
1605 dfprintk(VFS, "NFS: mknod(%s/%ld), %s\n",
1606 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1607
1608 if (!new_valid_dev(rdev))
1609 return -EINVAL;
1610
1611 attr.ia_mode = mode;
1612 attr.ia_valid = ATTR_MODE;
1613
1614 status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
1615 if (status != 0)
1616 goto out_err;
1617 return 0;
1618 out_err:
1619 d_drop(dentry);
1620 return status;
1621 }
1622
1623 /*
1624 * See comments for nfs_proc_create regarding failed operations.
1625 */
1626 static int nfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1627 {
1628 struct iattr attr;
1629 int error;
1630
1631 dfprintk(VFS, "NFS: mkdir(%s/%ld), %s\n",
1632 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1633
1634 attr.ia_valid = ATTR_MODE;
1635 attr.ia_mode = mode | S_IFDIR;
1636
1637 error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
1638 if (error != 0)
1639 goto out_err;
1640 return 0;
1641 out_err:
1642 d_drop(dentry);
1643 return error;
1644 }
1645
1646 static void nfs_dentry_handle_enoent(struct dentry *dentry)
1647 {
1648 if (dentry->d_inode != NULL && !d_unhashed(dentry))
1649 d_delete(dentry);
1650 }
1651
1652 static int nfs_rmdir(struct inode *dir, struct dentry *dentry)
1653 {
1654 int error;
1655
1656 dfprintk(VFS, "NFS: rmdir(%s/%ld), %s\n",
1657 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1658
1659 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1660 /* Ensure the VFS deletes this inode */
1661 if (error == 0 && dentry->d_inode != NULL)
1662 clear_nlink(dentry->d_inode);
1663 else if (error == -ENOENT)
1664 nfs_dentry_handle_enoent(dentry);
1665
1666 return error;
1667 }
1668
1669 /*
1670 * Remove a file after making sure there are no pending writes,
1671 * and after checking that the file has only one user.
1672 *
1673 * We invalidate the attribute cache and free the inode prior to the operation
1674 * to avoid possible races if the server reuses the inode.
1675 */
1676 static int nfs_safe_remove(struct dentry *dentry)
1677 {
1678 struct inode *dir = dentry->d_parent->d_inode;
1679 struct inode *inode = dentry->d_inode;
1680 int error = -EBUSY;
1681
1682 dfprintk(VFS, "NFS: safe_remove(%s/%s)\n",
1683 dentry->d_parent->d_name.name, dentry->d_name.name);
1684
1685 /* If the dentry was sillyrenamed, we simply call d_delete() */
1686 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1687 error = 0;
1688 goto out;
1689 }
1690
1691 if (inode != NULL) {
1692 nfs_inode_return_delegation(inode);
1693 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1694 /* The VFS may want to delete this inode */
1695 if (error == 0)
1696 nfs_drop_nlink(inode);
1697 nfs_mark_for_revalidate(inode);
1698 } else
1699 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1700 if (error == -ENOENT)
1701 nfs_dentry_handle_enoent(dentry);
1702 out:
1703 return error;
1704 }
1705
1706 /* We do silly rename. In case sillyrename() returns -EBUSY, the inode
1707 * belongs to an active ".nfs..." file and we return -EBUSY.
1708 *
1709 * If sillyrename() returns 0, we do nothing, otherwise we unlink.
1710 */
1711 static int nfs_unlink(struct inode *dir, struct dentry *dentry)
1712 {
1713 int error;
1714 int need_rehash = 0;
1715
1716 dfprintk(VFS, "NFS: unlink(%s/%ld, %s)\n", dir->i_sb->s_id,
1717 dir->i_ino, dentry->d_name.name);
1718
1719 spin_lock(&dcache_lock);
1720 spin_lock(&dentry->d_lock);
1721 if (atomic_read(&dentry->d_count) > 1) {
1722 spin_unlock(&dentry->d_lock);
1723 spin_unlock(&dcache_lock);
1724 /* Start asynchronous writeout of the inode */
1725 write_inode_now(dentry->d_inode, 0);
1726 error = nfs_sillyrename(dir, dentry);
1727 return error;
1728 }
1729 if (!d_unhashed(dentry)) {
1730 __d_drop(dentry);
1731 need_rehash = 1;
1732 }
1733 spin_unlock(&dentry->d_lock);
1734 spin_unlock(&dcache_lock);
1735 error = nfs_safe_remove(dentry);
1736 if (!error || error == -ENOENT) {
1737 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1738 } else if (need_rehash)
1739 d_rehash(dentry);
1740 return error;
1741 }
1742
1743 /*
1744 * To create a symbolic link, most file systems instantiate a new inode,
1745 * add a page to it containing the path, then write it out to the disk
1746 * using prepare_write/commit_write.
1747 *
1748 * Unfortunately the NFS client can't create the in-core inode first
1749 * because it needs a file handle to create an in-core inode (see
1750 * fs/nfs/inode.c:nfs_fhget). We only have a file handle *after* the
1751 * symlink request has completed on the server.
1752 *
1753 * So instead we allocate a raw page, copy the symname into it, then do
1754 * the SYMLINK request with the page as the buffer. If it succeeds, we
1755 * now have a new file handle and can instantiate an in-core NFS inode
1756 * and move the raw page into its mapping.
1757 */
1758 static int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1759 {
1760 struct pagevec lru_pvec;
1761 struct page *page;
1762 char *kaddr;
1763 struct iattr attr;
1764 unsigned int pathlen = strlen(symname);
1765 int error;
1766
1767 dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s)\n", dir->i_sb->s_id,
1768 dir->i_ino, dentry->d_name.name, symname);
1769
1770 if (pathlen > PAGE_SIZE)
1771 return -ENAMETOOLONG;
1772
1773 attr.ia_mode = S_IFLNK | S_IRWXUGO;
1774 attr.ia_valid = ATTR_MODE;
1775
1776 page = alloc_page(GFP_HIGHUSER);
1777 if (!page)
1778 return -ENOMEM;
1779
1780 kaddr = kmap_atomic(page, KM_USER0);
1781 memcpy(kaddr, symname, pathlen);
1782 if (pathlen < PAGE_SIZE)
1783 memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
1784 kunmap_atomic(kaddr, KM_USER0);
1785
1786 error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
1787 if (error != 0) {
1788 dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s) error %d\n",
1789 dir->i_sb->s_id, dir->i_ino,
1790 dentry->d_name.name, symname, error);
1791 d_drop(dentry);
1792 __free_page(page);
1793 return error;
1794 }
1795
1796 /*
1797 * No big deal if we can't add this page to the page cache here.
1798 * READLINK will get the missing page from the server if needed.
1799 */
1800 pagevec_init(&lru_pvec, 0);
1801 if (!add_to_page_cache(page, dentry->d_inode->i_mapping, 0,
1802 GFP_KERNEL)) {
1803 pagevec_add(&lru_pvec, page);
1804 pagevec_lru_add_file(&lru_pvec);
1805 SetPageUptodate(page);
1806 unlock_page(page);
1807 } else
1808 __free_page(page);
1809
1810 return 0;
1811 }
1812
1813 static int
1814 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1815 {
1816 struct inode *inode = old_dentry->d_inode;
1817 int error;
1818
1819 dfprintk(VFS, "NFS: link(%s/%s -> %s/%s)\n",
1820 old_dentry->d_parent->d_name.name, old_dentry->d_name.name,
1821 dentry->d_parent->d_name.name, dentry->d_name.name);
1822
1823 nfs_inode_return_delegation(inode);
1824
1825 d_drop(dentry);
1826 error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
1827 if (error == 0) {
1828 ihold(inode);
1829 d_add(dentry, inode);
1830 }
1831 return error;
1832 }
1833
1834 /*
1835 * RENAME
1836 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
1837 * different file handle for the same inode after a rename (e.g. when
1838 * moving to a different directory). A fail-safe method to do so would
1839 * be to look up old_dir/old_name, create a link to new_dir/new_name and
1840 * rename the old file using the sillyrename stuff. This way, the original
1841 * file in old_dir will go away when the last process iput()s the inode.
1842 *
1843 * FIXED.
1844 *
1845 * It actually works quite well. One needs to have the possibility for
1846 * at least one ".nfs..." file in each directory the file ever gets
1847 * moved or linked to which happens automagically with the new
1848 * implementation that only depends on the dcache stuff instead of
1849 * using the inode layer
1850 *
1851 * Unfortunately, things are a little more complicated than indicated
1852 * above. For a cross-directory move, we want to make sure we can get
1853 * rid of the old inode after the operation. This means there must be
1854 * no pending writes (if it's a file), and the use count must be 1.
1855 * If these conditions are met, we can drop the dentries before doing
1856 * the rename.
1857 */
1858 static int nfs_rename(struct inode *old_dir, struct dentry *old_dentry,
1859 struct inode *new_dir, struct dentry *new_dentry)
1860 {
1861 struct inode *old_inode = old_dentry->d_inode;
1862 struct inode *new_inode = new_dentry->d_inode;
1863 struct dentry *dentry = NULL, *rehash = NULL;
1864 int error = -EBUSY;
1865
1866 dfprintk(VFS, "NFS: rename(%s/%s -> %s/%s, ct=%d)\n",
1867 old_dentry->d_parent->d_name.name, old_dentry->d_name.name,
1868 new_dentry->d_parent->d_name.name, new_dentry->d_name.name,
1869 atomic_read(&new_dentry->d_count));
1870
1871 /*
1872 * For non-directories, check whether the target is busy and if so,
1873 * make a copy of the dentry and then do a silly-rename. If the
1874 * silly-rename succeeds, the copied dentry is hashed and becomes
1875 * the new target.
1876 */
1877 if (new_inode && !S_ISDIR(new_inode->i_mode)) {
1878 /*
1879 * To prevent any new references to the target during the
1880 * rename, we unhash the dentry in advance.
1881 */
1882 if (!d_unhashed(new_dentry)) {
1883 d_drop(new_dentry);
1884 rehash = new_dentry;
1885 }
1886
1887 if (atomic_read(&new_dentry->d_count) > 2) {
1888 int err;
1889
1890 /* copy the target dentry's name */
1891 dentry = d_alloc(new_dentry->d_parent,
1892 &new_dentry->d_name);
1893 if (!dentry)
1894 goto out;
1895
1896 /* silly-rename the existing target ... */
1897 err = nfs_sillyrename(new_dir, new_dentry);
1898 if (err)
1899 goto out;
1900
1901 new_dentry = dentry;
1902 rehash = NULL;
1903 new_inode = NULL;
1904 }
1905 }
1906
1907 nfs_inode_return_delegation(old_inode);
1908 if (new_inode != NULL)
1909 nfs_inode_return_delegation(new_inode);
1910
1911 error = NFS_PROTO(old_dir)->rename(old_dir, &old_dentry->d_name,
1912 new_dir, &new_dentry->d_name);
1913 nfs_mark_for_revalidate(old_inode);
1914 out:
1915 if (rehash)
1916 d_rehash(rehash);
1917 if (!error) {
1918 if (new_inode != NULL)
1919 nfs_drop_nlink(new_inode);
1920 d_move(old_dentry, new_dentry);
1921 nfs_set_verifier(new_dentry,
1922 nfs_save_change_attribute(new_dir));
1923 } else if (error == -ENOENT)
1924 nfs_dentry_handle_enoent(old_dentry);
1925
1926 /* new dentry created? */
1927 if (dentry)
1928 dput(dentry);
1929 return error;
1930 }
1931
1932 static DEFINE_SPINLOCK(nfs_access_lru_lock);
1933 static LIST_HEAD(nfs_access_lru_list);
1934 static atomic_long_t nfs_access_nr_entries;
1935
1936 static void nfs_access_free_entry(struct nfs_access_entry *entry)
1937 {
1938 put_rpccred(entry->cred);
1939 kfree(entry);
1940 smp_mb__before_atomic_dec();
1941 atomic_long_dec(&nfs_access_nr_entries);
1942 smp_mb__after_atomic_dec();
1943 }
1944
1945 static void nfs_access_free_list(struct list_head *head)
1946 {
1947 struct nfs_access_entry *cache;
1948
1949 while (!list_empty(head)) {
1950 cache = list_entry(head->next, struct nfs_access_entry, lru);
1951 list_del(&cache->lru);
1952 nfs_access_free_entry(cache);
1953 }
1954 }
1955
1956 int nfs_access_cache_shrinker(struct shrinker *shrink, int nr_to_scan, gfp_t gfp_mask)
1957 {
1958 LIST_HEAD(head);
1959 struct nfs_inode *nfsi, *next;
1960 struct nfs_access_entry *cache;
1961
1962 if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL)
1963 return (nr_to_scan == 0) ? 0 : -1;
1964
1965 spin_lock(&nfs_access_lru_lock);
1966 list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) {
1967 struct inode *inode;
1968
1969 if (nr_to_scan-- == 0)
1970 break;
1971 inode = &nfsi->vfs_inode;
1972 spin_lock(&inode->i_lock);
1973 if (list_empty(&nfsi->access_cache_entry_lru))
1974 goto remove_lru_entry;
1975 cache = list_entry(nfsi->access_cache_entry_lru.next,
1976 struct nfs_access_entry, lru);
1977 list_move(&cache->lru, &head);
1978 rb_erase(&cache->rb_node, &nfsi->access_cache);
1979 if (!list_empty(&nfsi->access_cache_entry_lru))
1980 list_move_tail(&nfsi->access_cache_inode_lru,
1981 &nfs_access_lru_list);
1982 else {
1983 remove_lru_entry:
1984 list_del_init(&nfsi->access_cache_inode_lru);
1985 smp_mb__before_clear_bit();
1986 clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
1987 smp_mb__after_clear_bit();
1988 }
1989 spin_unlock(&inode->i_lock);
1990 }
1991 spin_unlock(&nfs_access_lru_lock);
1992 nfs_access_free_list(&head);
1993 return (atomic_long_read(&nfs_access_nr_entries) / 100) * sysctl_vfs_cache_pressure;
1994 }
1995
1996 static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head)
1997 {
1998 struct rb_root *root_node = &nfsi->access_cache;
1999 struct rb_node *n;
2000 struct nfs_access_entry *entry;
2001
2002 /* Unhook entries from the cache */
2003 while ((n = rb_first(root_node)) != NULL) {
2004 entry = rb_entry(n, struct nfs_access_entry, rb_node);
2005 rb_erase(n, root_node);
2006 list_move(&entry->lru, head);
2007 }
2008 nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
2009 }
2010
2011 void nfs_access_zap_cache(struct inode *inode)
2012 {
2013 LIST_HEAD(head);
2014
2015 if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0)
2016 return;
2017 /* Remove from global LRU init */
2018 spin_lock(&nfs_access_lru_lock);
2019 if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2020 list_del_init(&NFS_I(inode)->access_cache_inode_lru);
2021
2022 spin_lock(&inode->i_lock);
2023 __nfs_access_zap_cache(NFS_I(inode), &head);
2024 spin_unlock(&inode->i_lock);
2025 spin_unlock(&nfs_access_lru_lock);
2026 nfs_access_free_list(&head);
2027 }
2028
2029 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, struct rpc_cred *cred)
2030 {
2031 struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
2032 struct nfs_access_entry *entry;
2033
2034 while (n != NULL) {
2035 entry = rb_entry(n, struct nfs_access_entry, rb_node);
2036
2037 if (cred < entry->cred)
2038 n = n->rb_left;
2039 else if (cred > entry->cred)
2040 n = n->rb_right;
2041 else
2042 return entry;
2043 }
2044 return NULL;
2045 }
2046
2047 static int nfs_access_get_cached(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res)
2048 {
2049 struct nfs_inode *nfsi = NFS_I(inode);
2050 struct nfs_access_entry *cache;
2051 int err = -ENOENT;
2052
2053 spin_lock(&inode->i_lock);
2054 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2055 goto out_zap;
2056 cache = nfs_access_search_rbtree(inode, cred);
2057 if (cache == NULL)
2058 goto out;
2059 if (!nfs_have_delegated_attributes(inode) &&
2060 !time_in_range_open(jiffies, cache->jiffies, cache->jiffies + nfsi->attrtimeo))
2061 goto out_stale;
2062 res->jiffies = cache->jiffies;
2063 res->cred = cache->cred;
2064 res->mask = cache->mask;
2065 list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
2066 err = 0;
2067 out:
2068 spin_unlock(&inode->i_lock);
2069 return err;
2070 out_stale:
2071 rb_erase(&cache->rb_node, &nfsi->access_cache);
2072 list_del(&cache->lru);
2073 spin_unlock(&inode->i_lock);
2074 nfs_access_free_entry(cache);
2075 return -ENOENT;
2076 out_zap:
2077 spin_unlock(&inode->i_lock);
2078 nfs_access_zap_cache(inode);
2079 return -ENOENT;
2080 }
2081
2082 static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set)
2083 {
2084 struct nfs_inode *nfsi = NFS_I(inode);
2085 struct rb_root *root_node = &nfsi->access_cache;
2086 struct rb_node **p = &root_node->rb_node;
2087 struct rb_node *parent = NULL;
2088 struct nfs_access_entry *entry;
2089
2090 spin_lock(&inode->i_lock);
2091 while (*p != NULL) {
2092 parent = *p;
2093 entry = rb_entry(parent, struct nfs_access_entry, rb_node);
2094
2095 if (set->cred < entry->cred)
2096 p = &parent->rb_left;
2097 else if (set->cred > entry->cred)
2098 p = &parent->rb_right;
2099 else
2100 goto found;
2101 }
2102 rb_link_node(&set->rb_node, parent, p);
2103 rb_insert_color(&set->rb_node, root_node);
2104 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2105 spin_unlock(&inode->i_lock);
2106 return;
2107 found:
2108 rb_replace_node(parent, &set->rb_node, root_node);
2109 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2110 list_del(&entry->lru);
2111 spin_unlock(&inode->i_lock);
2112 nfs_access_free_entry(entry);
2113 }
2114
2115 static void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set)
2116 {
2117 struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
2118 if (cache == NULL)
2119 return;
2120 RB_CLEAR_NODE(&cache->rb_node);
2121 cache->jiffies = set->jiffies;
2122 cache->cred = get_rpccred(set->cred);
2123 cache->mask = set->mask;
2124
2125 nfs_access_add_rbtree(inode, cache);
2126
2127 /* Update accounting */
2128 smp_mb__before_atomic_inc();
2129 atomic_long_inc(&nfs_access_nr_entries);
2130 smp_mb__after_atomic_inc();
2131
2132 /* Add inode to global LRU list */
2133 if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
2134 spin_lock(&nfs_access_lru_lock);
2135 if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2136 list_add_tail(&NFS_I(inode)->access_cache_inode_lru,
2137 &nfs_access_lru_list);
2138 spin_unlock(&nfs_access_lru_lock);
2139 }
2140 }
2141
2142 static int nfs_do_access(struct inode *inode, struct rpc_cred *cred, int mask)
2143 {
2144 struct nfs_access_entry cache;
2145 int status;
2146
2147 status = nfs_access_get_cached(inode, cred, &cache);
2148 if (status == 0)
2149 goto out;
2150
2151 /* Be clever: ask server to check for all possible rights */
2152 cache.mask = MAY_EXEC | MAY_WRITE | MAY_READ;
2153 cache.cred = cred;
2154 cache.jiffies = jiffies;
2155 status = NFS_PROTO(inode)->access(inode, &cache);
2156 if (status != 0) {
2157 if (status == -ESTALE) {
2158 nfs_zap_caches(inode);
2159 if (!S_ISDIR(inode->i_mode))
2160 set_bit(NFS_INO_STALE, &NFS_I(inode)->flags);
2161 }
2162 return status;
2163 }
2164 nfs_access_add_cache(inode, &cache);
2165 out:
2166 if ((mask & ~cache.mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
2167 return 0;
2168 return -EACCES;
2169 }
2170
2171 static int nfs_open_permission_mask(int openflags)
2172 {
2173 int mask = 0;
2174
2175 if (openflags & FMODE_READ)
2176 mask |= MAY_READ;
2177 if (openflags & FMODE_WRITE)
2178 mask |= MAY_WRITE;
2179 if (openflags & FMODE_EXEC)
2180 mask |= MAY_EXEC;
2181 return mask;
2182 }
2183
2184 int nfs_may_open(struct inode *inode, struct rpc_cred *cred, int openflags)
2185 {
2186 return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
2187 }
2188
2189 int nfs_permission(struct inode *inode, int mask)
2190 {
2191 struct rpc_cred *cred;
2192 int res = 0;
2193
2194 nfs_inc_stats(inode, NFSIOS_VFSACCESS);
2195
2196 if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
2197 goto out;
2198 /* Is this sys_access() ? */
2199 if (mask & (MAY_ACCESS | MAY_CHDIR))
2200 goto force_lookup;
2201
2202 switch (inode->i_mode & S_IFMT) {
2203 case S_IFLNK:
2204 goto out;
2205 case S_IFREG:
2206 /* NFSv4 has atomic_open... */
2207 if (nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN)
2208 && (mask & MAY_OPEN)
2209 && !(mask & MAY_EXEC))
2210 goto out;
2211 break;
2212 case S_IFDIR:
2213 /*
2214 * Optimize away all write operations, since the server
2215 * will check permissions when we perform the op.
2216 */
2217 if ((mask & MAY_WRITE) && !(mask & MAY_READ))
2218 goto out;
2219 }
2220
2221 force_lookup:
2222 if (!NFS_PROTO(inode)->access)
2223 goto out_notsup;
2224
2225 cred = rpc_lookup_cred();
2226 if (!IS_ERR(cred)) {
2227 res = nfs_do_access(inode, cred, mask);
2228 put_rpccred(cred);
2229 } else
2230 res = PTR_ERR(cred);
2231 out:
2232 if (!res && (mask & MAY_EXEC) && !execute_ok(inode))
2233 res = -EACCES;
2234
2235 dfprintk(VFS, "NFS: permission(%s/%ld), mask=0x%x, res=%d\n",
2236 inode->i_sb->s_id, inode->i_ino, mask, res);
2237 return res;
2238 out_notsup:
2239 res = nfs_revalidate_inode(NFS_SERVER(inode), inode);
2240 if (res == 0)
2241 res = generic_permission(inode, mask, NULL);
2242 goto out;
2243 }
2244
2245 /*
2246 * Local variables:
2247 * version-control: t
2248 * kept-new-versions: 5
2249 * End:
2250 */
This page took 0.127852 seconds and 5 git commands to generate.