rtlwifi: Change order in device startup
[deliverable/linux.git] / fs / nfs / dir.c
1 /*
2 * linux/fs/nfs/dir.c
3 *
4 * Copyright (C) 1992 Rick Sladkey
5 *
6 * nfs directory handling functions
7 *
8 * 10 Apr 1996 Added silly rename for unlink --okir
9 * 28 Sep 1996 Improved directory cache --okir
10 * 23 Aug 1997 Claus Heine claus@momo.math.rwth-aachen.de
11 * Re-implemented silly rename for unlink, newly implemented
12 * silly rename for nfs_rename() following the suggestions
13 * of Olaf Kirch (okir) found in this file.
14 * Following Linus comments on my original hack, this version
15 * depends only on the dcache stuff and doesn't touch the inode
16 * layer (iput() and friends).
17 * 6 Jun 1999 Cache readdir lookups in the page cache. -DaveM
18 */
19
20 #include <linux/module.h>
21 #include <linux/time.h>
22 #include <linux/errno.h>
23 #include <linux/stat.h>
24 #include <linux/fcntl.h>
25 #include <linux/string.h>
26 #include <linux/kernel.h>
27 #include <linux/slab.h>
28 #include <linux/mm.h>
29 #include <linux/sunrpc/clnt.h>
30 #include <linux/nfs_fs.h>
31 #include <linux/nfs_mount.h>
32 #include <linux/pagemap.h>
33 #include <linux/pagevec.h>
34 #include <linux/namei.h>
35 #include <linux/mount.h>
36 #include <linux/swap.h>
37 #include <linux/sched.h>
38 #include <linux/kmemleak.h>
39 #include <linux/xattr.h>
40
41 #include "delegation.h"
42 #include "iostat.h"
43 #include "internal.h"
44 #include "fscache.h"
45
46 #include "nfstrace.h"
47
48 /* #define NFS_DEBUG_VERBOSE 1 */
49
50 static int nfs_opendir(struct inode *, struct file *);
51 static int nfs_closedir(struct inode *, struct file *);
52 static int nfs_readdir(struct file *, struct dir_context *);
53 static int nfs_fsync_dir(struct file *, loff_t, loff_t, int);
54 static loff_t nfs_llseek_dir(struct file *, loff_t, int);
55 static void nfs_readdir_clear_array(struct page*);
56
57 const struct file_operations nfs_dir_operations = {
58 .llseek = nfs_llseek_dir,
59 .read = generic_read_dir,
60 .iterate = nfs_readdir,
61 .open = nfs_opendir,
62 .release = nfs_closedir,
63 .fsync = nfs_fsync_dir,
64 };
65
66 const struct address_space_operations nfs_dir_aops = {
67 .freepage = nfs_readdir_clear_array,
68 };
69
70 static struct nfs_open_dir_context *alloc_nfs_open_dir_context(struct inode *dir, struct rpc_cred *cred)
71 {
72 struct nfs_inode *nfsi = NFS_I(dir);
73 struct nfs_open_dir_context *ctx;
74 ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
75 if (ctx != NULL) {
76 ctx->duped = 0;
77 ctx->attr_gencount = nfsi->attr_gencount;
78 ctx->dir_cookie = 0;
79 ctx->dup_cookie = 0;
80 ctx->cred = get_rpccred(cred);
81 spin_lock(&dir->i_lock);
82 list_add(&ctx->list, &nfsi->open_files);
83 spin_unlock(&dir->i_lock);
84 return ctx;
85 }
86 return ERR_PTR(-ENOMEM);
87 }
88
89 static void put_nfs_open_dir_context(struct inode *dir, struct nfs_open_dir_context *ctx)
90 {
91 spin_lock(&dir->i_lock);
92 list_del(&ctx->list);
93 spin_unlock(&dir->i_lock);
94 put_rpccred(ctx->cred);
95 kfree(ctx);
96 }
97
98 /*
99 * Open file
100 */
101 static int
102 nfs_opendir(struct inode *inode, struct file *filp)
103 {
104 int res = 0;
105 struct nfs_open_dir_context *ctx;
106 struct rpc_cred *cred;
107
108 dfprintk(FILE, "NFS: open dir(%pD2)\n", filp);
109
110 nfs_inc_stats(inode, NFSIOS_VFSOPEN);
111
112 cred = rpc_lookup_cred();
113 if (IS_ERR(cred))
114 return PTR_ERR(cred);
115 ctx = alloc_nfs_open_dir_context(inode, cred);
116 if (IS_ERR(ctx)) {
117 res = PTR_ERR(ctx);
118 goto out;
119 }
120 filp->private_data = ctx;
121 if (filp->f_path.dentry == filp->f_path.mnt->mnt_root) {
122 /* This is a mountpoint, so d_revalidate will never
123 * have been called, so we need to refresh the
124 * inode (for close-open consistency) ourselves.
125 */
126 __nfs_revalidate_inode(NFS_SERVER(inode), inode);
127 }
128 out:
129 put_rpccred(cred);
130 return res;
131 }
132
133 static int
134 nfs_closedir(struct inode *inode, struct file *filp)
135 {
136 put_nfs_open_dir_context(filp->f_path.dentry->d_inode, filp->private_data);
137 return 0;
138 }
139
140 struct nfs_cache_array_entry {
141 u64 cookie;
142 u64 ino;
143 struct qstr string;
144 unsigned char d_type;
145 };
146
147 struct nfs_cache_array {
148 int size;
149 int eof_index;
150 u64 last_cookie;
151 struct nfs_cache_array_entry array[0];
152 };
153
154 typedef int (*decode_dirent_t)(struct xdr_stream *, struct nfs_entry *, int);
155 typedef struct {
156 struct file *file;
157 struct page *page;
158 struct dir_context *ctx;
159 unsigned long page_index;
160 u64 *dir_cookie;
161 u64 last_cookie;
162 loff_t current_index;
163 decode_dirent_t decode;
164
165 unsigned long timestamp;
166 unsigned long gencount;
167 unsigned int cache_entry_index;
168 unsigned int plus:1;
169 unsigned int eof:1;
170 } nfs_readdir_descriptor_t;
171
172 /*
173 * The caller is responsible for calling nfs_readdir_release_array(page)
174 */
175 static
176 struct nfs_cache_array *nfs_readdir_get_array(struct page *page)
177 {
178 void *ptr;
179 if (page == NULL)
180 return ERR_PTR(-EIO);
181 ptr = kmap(page);
182 if (ptr == NULL)
183 return ERR_PTR(-ENOMEM);
184 return ptr;
185 }
186
187 static
188 void nfs_readdir_release_array(struct page *page)
189 {
190 kunmap(page);
191 }
192
193 /*
194 * we are freeing strings created by nfs_add_to_readdir_array()
195 */
196 static
197 void nfs_readdir_clear_array(struct page *page)
198 {
199 struct nfs_cache_array *array;
200 int i;
201
202 array = kmap_atomic(page);
203 for (i = 0; i < array->size; i++)
204 kfree(array->array[i].string.name);
205 kunmap_atomic(array);
206 }
207
208 /*
209 * the caller is responsible for freeing qstr.name
210 * when called by nfs_readdir_add_to_array, the strings will be freed in
211 * nfs_clear_readdir_array()
212 */
213 static
214 int nfs_readdir_make_qstr(struct qstr *string, const char *name, unsigned int len)
215 {
216 string->len = len;
217 string->name = kmemdup(name, len, GFP_KERNEL);
218 if (string->name == NULL)
219 return -ENOMEM;
220 /*
221 * Avoid a kmemleak false positive. The pointer to the name is stored
222 * in a page cache page which kmemleak does not scan.
223 */
224 kmemleak_not_leak(string->name);
225 string->hash = full_name_hash(name, len);
226 return 0;
227 }
228
229 static
230 int nfs_readdir_add_to_array(struct nfs_entry *entry, struct page *page)
231 {
232 struct nfs_cache_array *array = nfs_readdir_get_array(page);
233 struct nfs_cache_array_entry *cache_entry;
234 int ret;
235
236 if (IS_ERR(array))
237 return PTR_ERR(array);
238
239 cache_entry = &array->array[array->size];
240
241 /* Check that this entry lies within the page bounds */
242 ret = -ENOSPC;
243 if ((char *)&cache_entry[1] - (char *)page_address(page) > PAGE_SIZE)
244 goto out;
245
246 cache_entry->cookie = entry->prev_cookie;
247 cache_entry->ino = entry->ino;
248 cache_entry->d_type = entry->d_type;
249 ret = nfs_readdir_make_qstr(&cache_entry->string, entry->name, entry->len);
250 if (ret)
251 goto out;
252 array->last_cookie = entry->cookie;
253 array->size++;
254 if (entry->eof != 0)
255 array->eof_index = array->size;
256 out:
257 nfs_readdir_release_array(page);
258 return ret;
259 }
260
261 static
262 int nfs_readdir_search_for_pos(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
263 {
264 loff_t diff = desc->ctx->pos - desc->current_index;
265 unsigned int index;
266
267 if (diff < 0)
268 goto out_eof;
269 if (diff >= array->size) {
270 if (array->eof_index >= 0)
271 goto out_eof;
272 return -EAGAIN;
273 }
274
275 index = (unsigned int)diff;
276 *desc->dir_cookie = array->array[index].cookie;
277 desc->cache_entry_index = index;
278 return 0;
279 out_eof:
280 desc->eof = 1;
281 return -EBADCOOKIE;
282 }
283
284 static bool
285 nfs_readdir_inode_mapping_valid(struct nfs_inode *nfsi)
286 {
287 if (nfsi->cache_validity & (NFS_INO_INVALID_ATTR|NFS_INO_INVALID_DATA))
288 return false;
289 smp_rmb();
290 return !test_bit(NFS_INO_INVALIDATING, &nfsi->flags);
291 }
292
293 static
294 int nfs_readdir_search_for_cookie(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
295 {
296 int i;
297 loff_t new_pos;
298 int status = -EAGAIN;
299
300 for (i = 0; i < array->size; i++) {
301 if (array->array[i].cookie == *desc->dir_cookie) {
302 struct nfs_inode *nfsi = NFS_I(file_inode(desc->file));
303 struct nfs_open_dir_context *ctx = desc->file->private_data;
304
305 new_pos = desc->current_index + i;
306 if (ctx->attr_gencount != nfsi->attr_gencount ||
307 !nfs_readdir_inode_mapping_valid(nfsi)) {
308 ctx->duped = 0;
309 ctx->attr_gencount = nfsi->attr_gencount;
310 } else if (new_pos < desc->ctx->pos) {
311 if (ctx->duped > 0
312 && ctx->dup_cookie == *desc->dir_cookie) {
313 if (printk_ratelimit()) {
314 pr_notice("NFS: directory %pD2 contains a readdir loop."
315 "Please contact your server vendor. "
316 "The file: %.*s has duplicate cookie %llu\n",
317 desc->file, array->array[i].string.len,
318 array->array[i].string.name, *desc->dir_cookie);
319 }
320 status = -ELOOP;
321 goto out;
322 }
323 ctx->dup_cookie = *desc->dir_cookie;
324 ctx->duped = -1;
325 }
326 desc->ctx->pos = new_pos;
327 desc->cache_entry_index = i;
328 return 0;
329 }
330 }
331 if (array->eof_index >= 0) {
332 status = -EBADCOOKIE;
333 if (*desc->dir_cookie == array->last_cookie)
334 desc->eof = 1;
335 }
336 out:
337 return status;
338 }
339
340 static
341 int nfs_readdir_search_array(nfs_readdir_descriptor_t *desc)
342 {
343 struct nfs_cache_array *array;
344 int status;
345
346 array = nfs_readdir_get_array(desc->page);
347 if (IS_ERR(array)) {
348 status = PTR_ERR(array);
349 goto out;
350 }
351
352 if (*desc->dir_cookie == 0)
353 status = nfs_readdir_search_for_pos(array, desc);
354 else
355 status = nfs_readdir_search_for_cookie(array, desc);
356
357 if (status == -EAGAIN) {
358 desc->last_cookie = array->last_cookie;
359 desc->current_index += array->size;
360 desc->page_index++;
361 }
362 nfs_readdir_release_array(desc->page);
363 out:
364 return status;
365 }
366
367 /* Fill a page with xdr information before transferring to the cache page */
368 static
369 int nfs_readdir_xdr_filler(struct page **pages, nfs_readdir_descriptor_t *desc,
370 struct nfs_entry *entry, struct file *file, struct inode *inode)
371 {
372 struct nfs_open_dir_context *ctx = file->private_data;
373 struct rpc_cred *cred = ctx->cred;
374 unsigned long timestamp, gencount;
375 int error;
376
377 again:
378 timestamp = jiffies;
379 gencount = nfs_inc_attr_generation_counter();
380 error = NFS_PROTO(inode)->readdir(file->f_path.dentry, cred, entry->cookie, pages,
381 NFS_SERVER(inode)->dtsize, desc->plus);
382 if (error < 0) {
383 /* We requested READDIRPLUS, but the server doesn't grok it */
384 if (error == -ENOTSUPP && desc->plus) {
385 NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
386 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
387 desc->plus = 0;
388 goto again;
389 }
390 goto error;
391 }
392 desc->timestamp = timestamp;
393 desc->gencount = gencount;
394 error:
395 return error;
396 }
397
398 static int xdr_decode(nfs_readdir_descriptor_t *desc,
399 struct nfs_entry *entry, struct xdr_stream *xdr)
400 {
401 int error;
402
403 error = desc->decode(xdr, entry, desc->plus);
404 if (error)
405 return error;
406 entry->fattr->time_start = desc->timestamp;
407 entry->fattr->gencount = desc->gencount;
408 return 0;
409 }
410
411 static
412 int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry)
413 {
414 if (dentry->d_inode == NULL)
415 goto different;
416 if (nfs_compare_fh(entry->fh, NFS_FH(dentry->d_inode)) != 0)
417 goto different;
418 return 1;
419 different:
420 return 0;
421 }
422
423 static
424 bool nfs_use_readdirplus(struct inode *dir, struct dir_context *ctx)
425 {
426 if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS))
427 return false;
428 if (test_and_clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags))
429 return true;
430 if (ctx->pos == 0)
431 return true;
432 return false;
433 }
434
435 /*
436 * This function is called by the lookup code to request the use of
437 * readdirplus to accelerate any future lookups in the same
438 * directory.
439 */
440 static
441 void nfs_advise_use_readdirplus(struct inode *dir)
442 {
443 set_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags);
444 }
445
446 /*
447 * This function is mainly for use by nfs_getattr().
448 *
449 * If this is an 'ls -l', we want to force use of readdirplus.
450 * Do this by checking if there is an active file descriptor
451 * and calling nfs_advise_use_readdirplus, then forcing a
452 * cache flush.
453 */
454 void nfs_force_use_readdirplus(struct inode *dir)
455 {
456 if (!list_empty(&NFS_I(dir)->open_files)) {
457 nfs_advise_use_readdirplus(dir);
458 nfs_zap_mapping(dir, dir->i_mapping);
459 }
460 }
461
462 static
463 void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry)
464 {
465 struct qstr filename = QSTR_INIT(entry->name, entry->len);
466 struct dentry *dentry;
467 struct dentry *alias;
468 struct inode *dir = parent->d_inode;
469 struct inode *inode;
470 int status;
471
472 if (filename.name[0] == '.') {
473 if (filename.len == 1)
474 return;
475 if (filename.len == 2 && filename.name[1] == '.')
476 return;
477 }
478 filename.hash = full_name_hash(filename.name, filename.len);
479
480 dentry = d_lookup(parent, &filename);
481 if (dentry != NULL) {
482 if (nfs_same_file(dentry, entry)) {
483 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
484 status = nfs_refresh_inode(dentry->d_inode, entry->fattr);
485 if (!status)
486 nfs_setsecurity(dentry->d_inode, entry->fattr, entry->label);
487 goto out;
488 } else {
489 d_invalidate(dentry);
490 dput(dentry);
491 }
492 }
493
494 dentry = d_alloc(parent, &filename);
495 if (dentry == NULL)
496 return;
497
498 inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr, entry->label);
499 if (IS_ERR(inode))
500 goto out;
501
502 alias = d_materialise_unique(dentry, inode);
503 if (IS_ERR(alias))
504 goto out;
505 else if (alias) {
506 nfs_set_verifier(alias, nfs_save_change_attribute(dir));
507 dput(alias);
508 } else
509 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
510
511 out:
512 dput(dentry);
513 }
514
515 /* Perform conversion from xdr to cache array */
516 static
517 int nfs_readdir_page_filler(nfs_readdir_descriptor_t *desc, struct nfs_entry *entry,
518 struct page **xdr_pages, struct page *page, unsigned int buflen)
519 {
520 struct xdr_stream stream;
521 struct xdr_buf buf;
522 struct page *scratch;
523 struct nfs_cache_array *array;
524 unsigned int count = 0;
525 int status;
526
527 scratch = alloc_page(GFP_KERNEL);
528 if (scratch == NULL)
529 return -ENOMEM;
530
531 xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen);
532 xdr_set_scratch_buffer(&stream, page_address(scratch), PAGE_SIZE);
533
534 do {
535 status = xdr_decode(desc, entry, &stream);
536 if (status != 0) {
537 if (status == -EAGAIN)
538 status = 0;
539 break;
540 }
541
542 count++;
543
544 if (desc->plus != 0)
545 nfs_prime_dcache(desc->file->f_path.dentry, entry);
546
547 status = nfs_readdir_add_to_array(entry, page);
548 if (status != 0)
549 break;
550 } while (!entry->eof);
551
552 if (count == 0 || (status == -EBADCOOKIE && entry->eof != 0)) {
553 array = nfs_readdir_get_array(page);
554 if (!IS_ERR(array)) {
555 array->eof_index = array->size;
556 status = 0;
557 nfs_readdir_release_array(page);
558 } else
559 status = PTR_ERR(array);
560 }
561
562 put_page(scratch);
563 return status;
564 }
565
566 static
567 void nfs_readdir_free_pagearray(struct page **pages, unsigned int npages)
568 {
569 unsigned int i;
570 for (i = 0; i < npages; i++)
571 put_page(pages[i]);
572 }
573
574 static
575 void nfs_readdir_free_large_page(void *ptr, struct page **pages,
576 unsigned int npages)
577 {
578 nfs_readdir_free_pagearray(pages, npages);
579 }
580
581 /*
582 * nfs_readdir_large_page will allocate pages that must be freed with a call
583 * to nfs_readdir_free_large_page
584 */
585 static
586 int nfs_readdir_large_page(struct page **pages, unsigned int npages)
587 {
588 unsigned int i;
589
590 for (i = 0; i < npages; i++) {
591 struct page *page = alloc_page(GFP_KERNEL);
592 if (page == NULL)
593 goto out_freepages;
594 pages[i] = page;
595 }
596 return 0;
597
598 out_freepages:
599 nfs_readdir_free_pagearray(pages, i);
600 return -ENOMEM;
601 }
602
603 static
604 int nfs_readdir_xdr_to_array(nfs_readdir_descriptor_t *desc, struct page *page, struct inode *inode)
605 {
606 struct page *pages[NFS_MAX_READDIR_PAGES];
607 void *pages_ptr = NULL;
608 struct nfs_entry entry;
609 struct file *file = desc->file;
610 struct nfs_cache_array *array;
611 int status = -ENOMEM;
612 unsigned int array_size = ARRAY_SIZE(pages);
613
614 entry.prev_cookie = 0;
615 entry.cookie = desc->last_cookie;
616 entry.eof = 0;
617 entry.fh = nfs_alloc_fhandle();
618 entry.fattr = nfs_alloc_fattr();
619 entry.server = NFS_SERVER(inode);
620 if (entry.fh == NULL || entry.fattr == NULL)
621 goto out;
622
623 entry.label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT);
624 if (IS_ERR(entry.label)) {
625 status = PTR_ERR(entry.label);
626 goto out;
627 }
628
629 array = nfs_readdir_get_array(page);
630 if (IS_ERR(array)) {
631 status = PTR_ERR(array);
632 goto out_label_free;
633 }
634 memset(array, 0, sizeof(struct nfs_cache_array));
635 array->eof_index = -1;
636
637 status = nfs_readdir_large_page(pages, array_size);
638 if (status < 0)
639 goto out_release_array;
640 do {
641 unsigned int pglen;
642 status = nfs_readdir_xdr_filler(pages, desc, &entry, file, inode);
643
644 if (status < 0)
645 break;
646 pglen = status;
647 status = nfs_readdir_page_filler(desc, &entry, pages, page, pglen);
648 if (status < 0) {
649 if (status == -ENOSPC)
650 status = 0;
651 break;
652 }
653 } while (array->eof_index < 0);
654
655 nfs_readdir_free_large_page(pages_ptr, pages, array_size);
656 out_release_array:
657 nfs_readdir_release_array(page);
658 out_label_free:
659 nfs4_label_free(entry.label);
660 out:
661 nfs_free_fattr(entry.fattr);
662 nfs_free_fhandle(entry.fh);
663 return status;
664 }
665
666 /*
667 * Now we cache directories properly, by converting xdr information
668 * to an array that can be used for lookups later. This results in
669 * fewer cache pages, since we can store more information on each page.
670 * We only need to convert from xdr once so future lookups are much simpler
671 */
672 static
673 int nfs_readdir_filler(nfs_readdir_descriptor_t *desc, struct page* page)
674 {
675 struct inode *inode = file_inode(desc->file);
676 int ret;
677
678 ret = nfs_readdir_xdr_to_array(desc, page, inode);
679 if (ret < 0)
680 goto error;
681 SetPageUptodate(page);
682
683 if (invalidate_inode_pages2_range(inode->i_mapping, page->index + 1, -1) < 0) {
684 /* Should never happen */
685 nfs_zap_mapping(inode, inode->i_mapping);
686 }
687 unlock_page(page);
688 return 0;
689 error:
690 unlock_page(page);
691 return ret;
692 }
693
694 static
695 void cache_page_release(nfs_readdir_descriptor_t *desc)
696 {
697 if (!desc->page->mapping)
698 nfs_readdir_clear_array(desc->page);
699 page_cache_release(desc->page);
700 desc->page = NULL;
701 }
702
703 static
704 struct page *get_cache_page(nfs_readdir_descriptor_t *desc)
705 {
706 return read_cache_page(file_inode(desc->file)->i_mapping,
707 desc->page_index, (filler_t *)nfs_readdir_filler, desc);
708 }
709
710 /*
711 * Returns 0 if desc->dir_cookie was found on page desc->page_index
712 */
713 static
714 int find_cache_page(nfs_readdir_descriptor_t *desc)
715 {
716 int res;
717
718 desc->page = get_cache_page(desc);
719 if (IS_ERR(desc->page))
720 return PTR_ERR(desc->page);
721
722 res = nfs_readdir_search_array(desc);
723 if (res != 0)
724 cache_page_release(desc);
725 return res;
726 }
727
728 /* Search for desc->dir_cookie from the beginning of the page cache */
729 static inline
730 int readdir_search_pagecache(nfs_readdir_descriptor_t *desc)
731 {
732 int res;
733
734 if (desc->page_index == 0) {
735 desc->current_index = 0;
736 desc->last_cookie = 0;
737 }
738 do {
739 res = find_cache_page(desc);
740 } while (res == -EAGAIN);
741 return res;
742 }
743
744 /*
745 * Once we've found the start of the dirent within a page: fill 'er up...
746 */
747 static
748 int nfs_do_filldir(nfs_readdir_descriptor_t *desc)
749 {
750 struct file *file = desc->file;
751 int i = 0;
752 int res = 0;
753 struct nfs_cache_array *array = NULL;
754 struct nfs_open_dir_context *ctx = file->private_data;
755
756 array = nfs_readdir_get_array(desc->page);
757 if (IS_ERR(array)) {
758 res = PTR_ERR(array);
759 goto out;
760 }
761
762 for (i = desc->cache_entry_index; i < array->size; i++) {
763 struct nfs_cache_array_entry *ent;
764
765 ent = &array->array[i];
766 if (!dir_emit(desc->ctx, ent->string.name, ent->string.len,
767 nfs_compat_user_ino64(ent->ino), ent->d_type)) {
768 desc->eof = 1;
769 break;
770 }
771 desc->ctx->pos++;
772 if (i < (array->size-1))
773 *desc->dir_cookie = array->array[i+1].cookie;
774 else
775 *desc->dir_cookie = array->last_cookie;
776 if (ctx->duped != 0)
777 ctx->duped = 1;
778 }
779 if (array->eof_index >= 0)
780 desc->eof = 1;
781
782 nfs_readdir_release_array(desc->page);
783 out:
784 cache_page_release(desc);
785 dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n",
786 (unsigned long long)*desc->dir_cookie, res);
787 return res;
788 }
789
790 /*
791 * If we cannot find a cookie in our cache, we suspect that this is
792 * because it points to a deleted file, so we ask the server to return
793 * whatever it thinks is the next entry. We then feed this to filldir.
794 * If all goes well, we should then be able to find our way round the
795 * cache on the next call to readdir_search_pagecache();
796 *
797 * NOTE: we cannot add the anonymous page to the pagecache because
798 * the data it contains might not be page aligned. Besides,
799 * we should already have a complete representation of the
800 * directory in the page cache by the time we get here.
801 */
802 static inline
803 int uncached_readdir(nfs_readdir_descriptor_t *desc)
804 {
805 struct page *page = NULL;
806 int status;
807 struct inode *inode = file_inode(desc->file);
808 struct nfs_open_dir_context *ctx = desc->file->private_data;
809
810 dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n",
811 (unsigned long long)*desc->dir_cookie);
812
813 page = alloc_page(GFP_HIGHUSER);
814 if (!page) {
815 status = -ENOMEM;
816 goto out;
817 }
818
819 desc->page_index = 0;
820 desc->last_cookie = *desc->dir_cookie;
821 desc->page = page;
822 ctx->duped = 0;
823
824 status = nfs_readdir_xdr_to_array(desc, page, inode);
825 if (status < 0)
826 goto out_release;
827
828 status = nfs_do_filldir(desc);
829
830 out:
831 dfprintk(DIRCACHE, "NFS: %s: returns %d\n",
832 __func__, status);
833 return status;
834 out_release:
835 cache_page_release(desc);
836 goto out;
837 }
838
839 static bool nfs_dir_mapping_need_revalidate(struct inode *dir)
840 {
841 struct nfs_inode *nfsi = NFS_I(dir);
842
843 if (nfs_attribute_cache_expired(dir))
844 return true;
845 if (nfsi->cache_validity & NFS_INO_INVALID_DATA)
846 return true;
847 return false;
848 }
849
850 /* The file offset position represents the dirent entry number. A
851 last cookie cache takes care of the common case of reading the
852 whole directory.
853 */
854 static int nfs_readdir(struct file *file, struct dir_context *ctx)
855 {
856 struct dentry *dentry = file->f_path.dentry;
857 struct inode *inode = dentry->d_inode;
858 nfs_readdir_descriptor_t my_desc,
859 *desc = &my_desc;
860 struct nfs_open_dir_context *dir_ctx = file->private_data;
861 int res = 0;
862
863 dfprintk(FILE, "NFS: readdir(%pD2) starting at cookie %llu\n",
864 file, (long long)ctx->pos);
865 nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
866
867 /*
868 * ctx->pos points to the dirent entry number.
869 * *desc->dir_cookie has the cookie for the next entry. We have
870 * to either find the entry with the appropriate number or
871 * revalidate the cookie.
872 */
873 memset(desc, 0, sizeof(*desc));
874
875 desc->file = file;
876 desc->ctx = ctx;
877 desc->dir_cookie = &dir_ctx->dir_cookie;
878 desc->decode = NFS_PROTO(inode)->decode_dirent;
879 desc->plus = nfs_use_readdirplus(inode, ctx) ? 1 : 0;
880
881 nfs_block_sillyrename(dentry);
882 if (ctx->pos == 0 || nfs_dir_mapping_need_revalidate(inode))
883 res = nfs_revalidate_mapping(inode, file->f_mapping);
884 if (res < 0)
885 goto out;
886
887 do {
888 res = readdir_search_pagecache(desc);
889
890 if (res == -EBADCOOKIE) {
891 res = 0;
892 /* This means either end of directory */
893 if (*desc->dir_cookie && desc->eof == 0) {
894 /* Or that the server has 'lost' a cookie */
895 res = uncached_readdir(desc);
896 if (res == 0)
897 continue;
898 }
899 break;
900 }
901 if (res == -ETOOSMALL && desc->plus) {
902 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
903 nfs_zap_caches(inode);
904 desc->page_index = 0;
905 desc->plus = 0;
906 desc->eof = 0;
907 continue;
908 }
909 if (res < 0)
910 break;
911
912 res = nfs_do_filldir(desc);
913 if (res < 0)
914 break;
915 } while (!desc->eof);
916 out:
917 nfs_unblock_sillyrename(dentry);
918 if (res > 0)
919 res = 0;
920 dfprintk(FILE, "NFS: readdir(%pD2) returns %d\n", file, res);
921 return res;
922 }
923
924 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int whence)
925 {
926 struct inode *inode = file_inode(filp);
927 struct nfs_open_dir_context *dir_ctx = filp->private_data;
928
929 dfprintk(FILE, "NFS: llseek dir(%pD2, %lld, %d)\n",
930 filp, offset, whence);
931
932 mutex_lock(&inode->i_mutex);
933 switch (whence) {
934 case 1:
935 offset += filp->f_pos;
936 case 0:
937 if (offset >= 0)
938 break;
939 default:
940 offset = -EINVAL;
941 goto out;
942 }
943 if (offset != filp->f_pos) {
944 filp->f_pos = offset;
945 dir_ctx->dir_cookie = 0;
946 dir_ctx->duped = 0;
947 }
948 out:
949 mutex_unlock(&inode->i_mutex);
950 return offset;
951 }
952
953 /*
954 * All directory operations under NFS are synchronous, so fsync()
955 * is a dummy operation.
956 */
957 static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end,
958 int datasync)
959 {
960 struct inode *inode = file_inode(filp);
961
962 dfprintk(FILE, "NFS: fsync dir(%pD2) datasync %d\n", filp, datasync);
963
964 mutex_lock(&inode->i_mutex);
965 nfs_inc_stats(inode, NFSIOS_VFSFSYNC);
966 mutex_unlock(&inode->i_mutex);
967 return 0;
968 }
969
970 /**
971 * nfs_force_lookup_revalidate - Mark the directory as having changed
972 * @dir - pointer to directory inode
973 *
974 * This forces the revalidation code in nfs_lookup_revalidate() to do a
975 * full lookup on all child dentries of 'dir' whenever a change occurs
976 * on the server that might have invalidated our dcache.
977 *
978 * The caller should be holding dir->i_lock
979 */
980 void nfs_force_lookup_revalidate(struct inode *dir)
981 {
982 NFS_I(dir)->cache_change_attribute++;
983 }
984 EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate);
985
986 /*
987 * A check for whether or not the parent directory has changed.
988 * In the case it has, we assume that the dentries are untrustworthy
989 * and may need to be looked up again.
990 * If rcu_walk prevents us from performing a full check, return 0.
991 */
992 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry,
993 int rcu_walk)
994 {
995 int ret;
996
997 if (IS_ROOT(dentry))
998 return 1;
999 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE)
1000 return 0;
1001 if (!nfs_verify_change_attribute(dir, dentry->d_time))
1002 return 0;
1003 /* Revalidate nfsi->cache_change_attribute before we declare a match */
1004 if (rcu_walk)
1005 ret = nfs_revalidate_inode_rcu(NFS_SERVER(dir), dir);
1006 else
1007 ret = nfs_revalidate_inode(NFS_SERVER(dir), dir);
1008 if (ret < 0)
1009 return 0;
1010 if (!nfs_verify_change_attribute(dir, dentry->d_time))
1011 return 0;
1012 return 1;
1013 }
1014
1015 /*
1016 * Use intent information to check whether or not we're going to do
1017 * an O_EXCL create using this path component.
1018 */
1019 static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags)
1020 {
1021 if (NFS_PROTO(dir)->version == 2)
1022 return 0;
1023 return flags & LOOKUP_EXCL;
1024 }
1025
1026 /*
1027 * Inode and filehandle revalidation for lookups.
1028 *
1029 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
1030 * or if the intent information indicates that we're about to open this
1031 * particular file and the "nocto" mount flag is not set.
1032 *
1033 */
1034 static
1035 int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags)
1036 {
1037 struct nfs_server *server = NFS_SERVER(inode);
1038 int ret;
1039
1040 if (IS_AUTOMOUNT(inode))
1041 return 0;
1042 /* VFS wants an on-the-wire revalidation */
1043 if (flags & LOOKUP_REVAL)
1044 goto out_force;
1045 /* This is an open(2) */
1046 if ((flags & LOOKUP_OPEN) && !(server->flags & NFS_MOUNT_NOCTO) &&
1047 (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode)))
1048 goto out_force;
1049 out:
1050 return (inode->i_nlink == 0) ? -ENOENT : 0;
1051 out_force:
1052 if (flags & LOOKUP_RCU)
1053 return -ECHILD;
1054 ret = __nfs_revalidate_inode(server, inode);
1055 if (ret != 0)
1056 return ret;
1057 goto out;
1058 }
1059
1060 /*
1061 * We judge how long we want to trust negative
1062 * dentries by looking at the parent inode mtime.
1063 *
1064 * If parent mtime has changed, we revalidate, else we wait for a
1065 * period corresponding to the parent's attribute cache timeout value.
1066 *
1067 * If LOOKUP_RCU prevents us from performing a full check, return 1
1068 * suggesting a reval is needed.
1069 */
1070 static inline
1071 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
1072 unsigned int flags)
1073 {
1074 /* Don't revalidate a negative dentry if we're creating a new file */
1075 if (flags & LOOKUP_CREATE)
1076 return 0;
1077 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG)
1078 return 1;
1079 return !nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU);
1080 }
1081
1082 /*
1083 * This is called every time the dcache has a lookup hit,
1084 * and we should check whether we can really trust that
1085 * lookup.
1086 *
1087 * NOTE! The hit can be a negative hit too, don't assume
1088 * we have an inode!
1089 *
1090 * If the parent directory is seen to have changed, we throw out the
1091 * cached dentry and do a new lookup.
1092 */
1093 static int nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1094 {
1095 struct inode *dir;
1096 struct inode *inode;
1097 struct dentry *parent;
1098 struct nfs_fh *fhandle = NULL;
1099 struct nfs_fattr *fattr = NULL;
1100 struct nfs4_label *label = NULL;
1101 int error;
1102
1103 if (flags & LOOKUP_RCU) {
1104 parent = ACCESS_ONCE(dentry->d_parent);
1105 dir = ACCESS_ONCE(parent->d_inode);
1106 if (!dir)
1107 return -ECHILD;
1108 } else {
1109 parent = dget_parent(dentry);
1110 dir = parent->d_inode;
1111 }
1112 nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
1113 inode = dentry->d_inode;
1114
1115 if (!inode) {
1116 if (nfs_neg_need_reval(dir, dentry, flags)) {
1117 if (flags & LOOKUP_RCU)
1118 return -ECHILD;
1119 goto out_bad;
1120 }
1121 goto out_valid_noent;
1122 }
1123
1124 if (is_bad_inode(inode)) {
1125 if (flags & LOOKUP_RCU)
1126 return -ECHILD;
1127 dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1128 __func__, dentry);
1129 goto out_bad;
1130 }
1131
1132 if (NFS_PROTO(dir)->have_delegation(inode, FMODE_READ))
1133 goto out_set_verifier;
1134
1135 /* Force a full look up iff the parent directory has changed */
1136 if (!nfs_is_exclusive_create(dir, flags) &&
1137 nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) {
1138
1139 if (nfs_lookup_verify_inode(inode, flags)) {
1140 if (flags & LOOKUP_RCU)
1141 return -ECHILD;
1142 goto out_zap_parent;
1143 }
1144 goto out_valid;
1145 }
1146
1147 if (flags & LOOKUP_RCU)
1148 return -ECHILD;
1149
1150 if (NFS_STALE(inode))
1151 goto out_bad;
1152
1153 error = -ENOMEM;
1154 fhandle = nfs_alloc_fhandle();
1155 fattr = nfs_alloc_fattr();
1156 if (fhandle == NULL || fattr == NULL)
1157 goto out_error;
1158
1159 label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT);
1160 if (IS_ERR(label))
1161 goto out_error;
1162
1163 trace_nfs_lookup_revalidate_enter(dir, dentry, flags);
1164 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, label);
1165 trace_nfs_lookup_revalidate_exit(dir, dentry, flags, error);
1166 if (error)
1167 goto out_bad;
1168 if (nfs_compare_fh(NFS_FH(inode), fhandle))
1169 goto out_bad;
1170 if ((error = nfs_refresh_inode(inode, fattr)) != 0)
1171 goto out_bad;
1172
1173 nfs_setsecurity(inode, fattr, label);
1174
1175 nfs_free_fattr(fattr);
1176 nfs_free_fhandle(fhandle);
1177 nfs4_label_free(label);
1178
1179 out_set_verifier:
1180 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1181 out_valid:
1182 /* Success: notify readdir to use READDIRPLUS */
1183 nfs_advise_use_readdirplus(dir);
1184 out_valid_noent:
1185 if (flags & LOOKUP_RCU) {
1186 if (parent != ACCESS_ONCE(dentry->d_parent))
1187 return -ECHILD;
1188 } else
1189 dput(parent);
1190 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is valid\n",
1191 __func__, dentry);
1192 return 1;
1193 out_zap_parent:
1194 nfs_zap_caches(dir);
1195 out_bad:
1196 WARN_ON(flags & LOOKUP_RCU);
1197 nfs_free_fattr(fattr);
1198 nfs_free_fhandle(fhandle);
1199 nfs4_label_free(label);
1200 nfs_mark_for_revalidate(dir);
1201 if (inode && S_ISDIR(inode->i_mode)) {
1202 /* Purge readdir caches. */
1203 nfs_zap_caches(inode);
1204 /*
1205 * We can't d_drop the root of a disconnected tree:
1206 * its d_hash is on the s_anon list and d_drop() would hide
1207 * it from shrink_dcache_for_unmount(), leading to busy
1208 * inodes on unmount and further oopses.
1209 */
1210 if (IS_ROOT(dentry))
1211 goto out_valid;
1212 }
1213 dput(parent);
1214 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is invalid\n",
1215 __func__, dentry);
1216 return 0;
1217 out_error:
1218 WARN_ON(flags & LOOKUP_RCU);
1219 nfs_free_fattr(fattr);
1220 nfs_free_fhandle(fhandle);
1221 nfs4_label_free(label);
1222 dput(parent);
1223 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) lookup returned error %d\n",
1224 __func__, dentry, error);
1225 return error;
1226 }
1227
1228 /*
1229 * A weaker form of d_revalidate for revalidating just the dentry->d_inode
1230 * when we don't really care about the dentry name. This is called when a
1231 * pathwalk ends on a dentry that was not found via a normal lookup in the
1232 * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals).
1233 *
1234 * In this situation, we just want to verify that the inode itself is OK
1235 * since the dentry might have changed on the server.
1236 */
1237 static int nfs_weak_revalidate(struct dentry *dentry, unsigned int flags)
1238 {
1239 int error;
1240 struct inode *inode = dentry->d_inode;
1241
1242 /*
1243 * I believe we can only get a negative dentry here in the case of a
1244 * procfs-style symlink. Just assume it's correct for now, but we may
1245 * eventually need to do something more here.
1246 */
1247 if (!inode) {
1248 dfprintk(LOOKUPCACHE, "%s: %pd2 has negative inode\n",
1249 __func__, dentry);
1250 return 1;
1251 }
1252
1253 if (is_bad_inode(inode)) {
1254 dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1255 __func__, dentry);
1256 return 0;
1257 }
1258
1259 error = nfs_revalidate_inode(NFS_SERVER(inode), inode);
1260 dfprintk(LOOKUPCACHE, "NFS: %s: inode %lu is %s\n",
1261 __func__, inode->i_ino, error ? "invalid" : "valid");
1262 return !error;
1263 }
1264
1265 /*
1266 * This is called from dput() when d_count is going to 0.
1267 */
1268 static int nfs_dentry_delete(const struct dentry *dentry)
1269 {
1270 dfprintk(VFS, "NFS: dentry_delete(%pd2, %x)\n",
1271 dentry, dentry->d_flags);
1272
1273 /* Unhash any dentry with a stale inode */
1274 if (dentry->d_inode != NULL && NFS_STALE(dentry->d_inode))
1275 return 1;
1276
1277 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1278 /* Unhash it, so that ->d_iput() would be called */
1279 return 1;
1280 }
1281 if (!(dentry->d_sb->s_flags & MS_ACTIVE)) {
1282 /* Unhash it, so that ancestors of killed async unlink
1283 * files will be cleaned up during umount */
1284 return 1;
1285 }
1286 return 0;
1287
1288 }
1289
1290 /* Ensure that we revalidate inode->i_nlink */
1291 static void nfs_drop_nlink(struct inode *inode)
1292 {
1293 spin_lock(&inode->i_lock);
1294 /* drop the inode if we're reasonably sure this is the last link */
1295 if (inode->i_nlink == 1)
1296 clear_nlink(inode);
1297 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_ATTR;
1298 spin_unlock(&inode->i_lock);
1299 }
1300
1301 /*
1302 * Called when the dentry loses inode.
1303 * We use it to clean up silly-renamed files.
1304 */
1305 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
1306 {
1307 if (S_ISDIR(inode->i_mode))
1308 /* drop any readdir cache as it could easily be old */
1309 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA;
1310
1311 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1312 nfs_complete_unlink(dentry, inode);
1313 nfs_drop_nlink(inode);
1314 }
1315 iput(inode);
1316 }
1317
1318 static void nfs_d_release(struct dentry *dentry)
1319 {
1320 /* free cached devname value, if it survived that far */
1321 if (unlikely(dentry->d_fsdata)) {
1322 if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1323 WARN_ON(1);
1324 else
1325 kfree(dentry->d_fsdata);
1326 }
1327 }
1328
1329 const struct dentry_operations nfs_dentry_operations = {
1330 .d_revalidate = nfs_lookup_revalidate,
1331 .d_weak_revalidate = nfs_weak_revalidate,
1332 .d_delete = nfs_dentry_delete,
1333 .d_iput = nfs_dentry_iput,
1334 .d_automount = nfs_d_automount,
1335 .d_release = nfs_d_release,
1336 };
1337 EXPORT_SYMBOL_GPL(nfs_dentry_operations);
1338
1339 struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
1340 {
1341 struct dentry *res;
1342 struct dentry *parent;
1343 struct inode *inode = NULL;
1344 struct nfs_fh *fhandle = NULL;
1345 struct nfs_fattr *fattr = NULL;
1346 struct nfs4_label *label = NULL;
1347 int error;
1348
1349 dfprintk(VFS, "NFS: lookup(%pd2)\n", dentry);
1350 nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
1351
1352 res = ERR_PTR(-ENAMETOOLONG);
1353 if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
1354 goto out;
1355
1356 /*
1357 * If we're doing an exclusive create, optimize away the lookup
1358 * but don't hash the dentry.
1359 */
1360 if (nfs_is_exclusive_create(dir, flags)) {
1361 d_instantiate(dentry, NULL);
1362 res = NULL;
1363 goto out;
1364 }
1365
1366 res = ERR_PTR(-ENOMEM);
1367 fhandle = nfs_alloc_fhandle();
1368 fattr = nfs_alloc_fattr();
1369 if (fhandle == NULL || fattr == NULL)
1370 goto out;
1371
1372 label = nfs4_label_alloc(NFS_SERVER(dir), GFP_NOWAIT);
1373 if (IS_ERR(label))
1374 goto out;
1375
1376 parent = dentry->d_parent;
1377 /* Protect against concurrent sillydeletes */
1378 trace_nfs_lookup_enter(dir, dentry, flags);
1379 nfs_block_sillyrename(parent);
1380 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, label);
1381 if (error == -ENOENT)
1382 goto no_entry;
1383 if (error < 0) {
1384 res = ERR_PTR(error);
1385 goto out_unblock_sillyrename;
1386 }
1387 inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
1388 res = ERR_CAST(inode);
1389 if (IS_ERR(res))
1390 goto out_unblock_sillyrename;
1391
1392 /* Success: notify readdir to use READDIRPLUS */
1393 nfs_advise_use_readdirplus(dir);
1394
1395 no_entry:
1396 res = d_materialise_unique(dentry, inode);
1397 if (res != NULL) {
1398 if (IS_ERR(res))
1399 goto out_unblock_sillyrename;
1400 dentry = res;
1401 }
1402 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1403 out_unblock_sillyrename:
1404 nfs_unblock_sillyrename(parent);
1405 trace_nfs_lookup_exit(dir, dentry, flags, error);
1406 nfs4_label_free(label);
1407 out:
1408 nfs_free_fattr(fattr);
1409 nfs_free_fhandle(fhandle);
1410 return res;
1411 }
1412 EXPORT_SYMBOL_GPL(nfs_lookup);
1413
1414 #if IS_ENABLED(CONFIG_NFS_V4)
1415 static int nfs4_lookup_revalidate(struct dentry *, unsigned int);
1416
1417 const struct dentry_operations nfs4_dentry_operations = {
1418 .d_revalidate = nfs4_lookup_revalidate,
1419 .d_delete = nfs_dentry_delete,
1420 .d_iput = nfs_dentry_iput,
1421 .d_automount = nfs_d_automount,
1422 .d_release = nfs_d_release,
1423 };
1424 EXPORT_SYMBOL_GPL(nfs4_dentry_operations);
1425
1426 static fmode_t flags_to_mode(int flags)
1427 {
1428 fmode_t res = (__force fmode_t)flags & FMODE_EXEC;
1429 if ((flags & O_ACCMODE) != O_WRONLY)
1430 res |= FMODE_READ;
1431 if ((flags & O_ACCMODE) != O_RDONLY)
1432 res |= FMODE_WRITE;
1433 return res;
1434 }
1435
1436 static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags)
1437 {
1438 return alloc_nfs_open_context(dentry, flags_to_mode(open_flags));
1439 }
1440
1441 static int do_open(struct inode *inode, struct file *filp)
1442 {
1443 nfs_fscache_open_file(inode, filp);
1444 return 0;
1445 }
1446
1447 static int nfs_finish_open(struct nfs_open_context *ctx,
1448 struct dentry *dentry,
1449 struct file *file, unsigned open_flags,
1450 int *opened)
1451 {
1452 int err;
1453
1454 if ((open_flags & (O_CREAT | O_EXCL)) == (O_CREAT | O_EXCL))
1455 *opened |= FILE_CREATED;
1456
1457 err = finish_open(file, dentry, do_open, opened);
1458 if (err)
1459 goto out;
1460 nfs_file_set_open_context(file, ctx);
1461
1462 out:
1463 return err;
1464 }
1465
1466 int nfs_atomic_open(struct inode *dir, struct dentry *dentry,
1467 struct file *file, unsigned open_flags,
1468 umode_t mode, int *opened)
1469 {
1470 struct nfs_open_context *ctx;
1471 struct dentry *res;
1472 struct iattr attr = { .ia_valid = ATTR_OPEN };
1473 struct inode *inode;
1474 unsigned int lookup_flags = 0;
1475 int err;
1476
1477 /* Expect a negative dentry */
1478 BUG_ON(dentry->d_inode);
1479
1480 dfprintk(VFS, "NFS: atomic_open(%s/%lu), %pd\n",
1481 dir->i_sb->s_id, dir->i_ino, dentry);
1482
1483 err = nfs_check_flags(open_flags);
1484 if (err)
1485 return err;
1486
1487 /* NFS only supports OPEN on regular files */
1488 if ((open_flags & O_DIRECTORY)) {
1489 if (!d_unhashed(dentry)) {
1490 /*
1491 * Hashed negative dentry with O_DIRECTORY: dentry was
1492 * revalidated and is fine, no need to perform lookup
1493 * again
1494 */
1495 return -ENOENT;
1496 }
1497 lookup_flags = LOOKUP_OPEN|LOOKUP_DIRECTORY;
1498 goto no_open;
1499 }
1500
1501 if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
1502 return -ENAMETOOLONG;
1503
1504 if (open_flags & O_CREAT) {
1505 attr.ia_valid |= ATTR_MODE;
1506 attr.ia_mode = mode & ~current_umask();
1507 }
1508 if (open_flags & O_TRUNC) {
1509 attr.ia_valid |= ATTR_SIZE;
1510 attr.ia_size = 0;
1511 }
1512
1513 ctx = create_nfs_open_context(dentry, open_flags);
1514 err = PTR_ERR(ctx);
1515 if (IS_ERR(ctx))
1516 goto out;
1517
1518 trace_nfs_atomic_open_enter(dir, ctx, open_flags);
1519 nfs_block_sillyrename(dentry->d_parent);
1520 inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr, opened);
1521 nfs_unblock_sillyrename(dentry->d_parent);
1522 if (IS_ERR(inode)) {
1523 err = PTR_ERR(inode);
1524 trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1525 put_nfs_open_context(ctx);
1526 switch (err) {
1527 case -ENOENT:
1528 d_drop(dentry);
1529 d_add(dentry, NULL);
1530 break;
1531 case -EISDIR:
1532 case -ENOTDIR:
1533 goto no_open;
1534 case -ELOOP:
1535 if (!(open_flags & O_NOFOLLOW))
1536 goto no_open;
1537 break;
1538 /* case -EINVAL: */
1539 default:
1540 break;
1541 }
1542 goto out;
1543 }
1544
1545 err = nfs_finish_open(ctx, ctx->dentry, file, open_flags, opened);
1546 trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1547 put_nfs_open_context(ctx);
1548 out:
1549 return err;
1550
1551 no_open:
1552 res = nfs_lookup(dir, dentry, lookup_flags);
1553 err = PTR_ERR(res);
1554 if (IS_ERR(res))
1555 goto out;
1556
1557 return finish_no_open(file, res);
1558 }
1559 EXPORT_SYMBOL_GPL(nfs_atomic_open);
1560
1561 static int nfs4_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1562 {
1563 struct inode *inode;
1564 int ret = 0;
1565
1566 if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY))
1567 goto no_open;
1568 if (d_mountpoint(dentry))
1569 goto no_open;
1570 if (NFS_SB(dentry->d_sb)->caps & NFS_CAP_ATOMIC_OPEN_V1)
1571 goto no_open;
1572
1573 inode = dentry->d_inode;
1574
1575 /* We can't create new files in nfs_open_revalidate(), so we
1576 * optimize away revalidation of negative dentries.
1577 */
1578 if (inode == NULL) {
1579 struct dentry *parent;
1580 struct inode *dir;
1581
1582 if (flags & LOOKUP_RCU) {
1583 parent = ACCESS_ONCE(dentry->d_parent);
1584 dir = ACCESS_ONCE(parent->d_inode);
1585 if (!dir)
1586 return -ECHILD;
1587 } else {
1588 parent = dget_parent(dentry);
1589 dir = parent->d_inode;
1590 }
1591 if (!nfs_neg_need_reval(dir, dentry, flags))
1592 ret = 1;
1593 else if (flags & LOOKUP_RCU)
1594 ret = -ECHILD;
1595 if (!(flags & LOOKUP_RCU))
1596 dput(parent);
1597 else if (parent != ACCESS_ONCE(dentry->d_parent))
1598 return -ECHILD;
1599 goto out;
1600 }
1601
1602 /* NFS only supports OPEN on regular files */
1603 if (!S_ISREG(inode->i_mode))
1604 goto no_open;
1605 /* We cannot do exclusive creation on a positive dentry */
1606 if (flags & LOOKUP_EXCL)
1607 goto no_open;
1608
1609 /* Let f_op->open() actually open (and revalidate) the file */
1610 ret = 1;
1611
1612 out:
1613 return ret;
1614
1615 no_open:
1616 return nfs_lookup_revalidate(dentry, flags);
1617 }
1618
1619 #endif /* CONFIG_NFSV4 */
1620
1621 /*
1622 * Code common to create, mkdir, and mknod.
1623 */
1624 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
1625 struct nfs_fattr *fattr,
1626 struct nfs4_label *label)
1627 {
1628 struct dentry *parent = dget_parent(dentry);
1629 struct inode *dir = parent->d_inode;
1630 struct inode *inode;
1631 int error = -EACCES;
1632
1633 d_drop(dentry);
1634
1635 /* We may have been initialized further down */
1636 if (dentry->d_inode)
1637 goto out;
1638 if (fhandle->size == 0) {
1639 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, NULL);
1640 if (error)
1641 goto out_error;
1642 }
1643 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1644 if (!(fattr->valid & NFS_ATTR_FATTR)) {
1645 struct nfs_server *server = NFS_SB(dentry->d_sb);
1646 error = server->nfs_client->rpc_ops->getattr(server, fhandle, fattr, NULL);
1647 if (error < 0)
1648 goto out_error;
1649 }
1650 inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
1651 error = PTR_ERR(inode);
1652 if (IS_ERR(inode))
1653 goto out_error;
1654 d_add(dentry, inode);
1655 out:
1656 dput(parent);
1657 return 0;
1658 out_error:
1659 nfs_mark_for_revalidate(dir);
1660 dput(parent);
1661 return error;
1662 }
1663 EXPORT_SYMBOL_GPL(nfs_instantiate);
1664
1665 /*
1666 * Following a failed create operation, we drop the dentry rather
1667 * than retain a negative dentry. This avoids a problem in the event
1668 * that the operation succeeded on the server, but an error in the
1669 * reply path made it appear to have failed.
1670 */
1671 int nfs_create(struct inode *dir, struct dentry *dentry,
1672 umode_t mode, bool excl)
1673 {
1674 struct iattr attr;
1675 int open_flags = excl ? O_CREAT | O_EXCL : O_CREAT;
1676 int error;
1677
1678 dfprintk(VFS, "NFS: create(%s/%lu), %pd\n",
1679 dir->i_sb->s_id, dir->i_ino, dentry);
1680
1681 attr.ia_mode = mode;
1682 attr.ia_valid = ATTR_MODE;
1683
1684 trace_nfs_create_enter(dir, dentry, open_flags);
1685 error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags);
1686 trace_nfs_create_exit(dir, dentry, open_flags, error);
1687 if (error != 0)
1688 goto out_err;
1689 return 0;
1690 out_err:
1691 d_drop(dentry);
1692 return error;
1693 }
1694 EXPORT_SYMBOL_GPL(nfs_create);
1695
1696 /*
1697 * See comments for nfs_proc_create regarding failed operations.
1698 */
1699 int
1700 nfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t rdev)
1701 {
1702 struct iattr attr;
1703 int status;
1704
1705 dfprintk(VFS, "NFS: mknod(%s/%lu), %pd\n",
1706 dir->i_sb->s_id, dir->i_ino, dentry);
1707
1708 if (!new_valid_dev(rdev))
1709 return -EINVAL;
1710
1711 attr.ia_mode = mode;
1712 attr.ia_valid = ATTR_MODE;
1713
1714 trace_nfs_mknod_enter(dir, dentry);
1715 status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
1716 trace_nfs_mknod_exit(dir, dentry, status);
1717 if (status != 0)
1718 goto out_err;
1719 return 0;
1720 out_err:
1721 d_drop(dentry);
1722 return status;
1723 }
1724 EXPORT_SYMBOL_GPL(nfs_mknod);
1725
1726 /*
1727 * See comments for nfs_proc_create regarding failed operations.
1728 */
1729 int nfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1730 {
1731 struct iattr attr;
1732 int error;
1733
1734 dfprintk(VFS, "NFS: mkdir(%s/%lu), %pd\n",
1735 dir->i_sb->s_id, dir->i_ino, dentry);
1736
1737 attr.ia_valid = ATTR_MODE;
1738 attr.ia_mode = mode | S_IFDIR;
1739
1740 trace_nfs_mkdir_enter(dir, dentry);
1741 error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
1742 trace_nfs_mkdir_exit(dir, dentry, error);
1743 if (error != 0)
1744 goto out_err;
1745 return 0;
1746 out_err:
1747 d_drop(dentry);
1748 return error;
1749 }
1750 EXPORT_SYMBOL_GPL(nfs_mkdir);
1751
1752 static void nfs_dentry_handle_enoent(struct dentry *dentry)
1753 {
1754 if (dentry->d_inode != NULL && !d_unhashed(dentry))
1755 d_delete(dentry);
1756 }
1757
1758 int nfs_rmdir(struct inode *dir, struct dentry *dentry)
1759 {
1760 int error;
1761
1762 dfprintk(VFS, "NFS: rmdir(%s/%lu), %pd\n",
1763 dir->i_sb->s_id, dir->i_ino, dentry);
1764
1765 trace_nfs_rmdir_enter(dir, dentry);
1766 if (dentry->d_inode) {
1767 nfs_wait_on_sillyrename(dentry);
1768 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1769 /* Ensure the VFS deletes this inode */
1770 switch (error) {
1771 case 0:
1772 clear_nlink(dentry->d_inode);
1773 break;
1774 case -ENOENT:
1775 nfs_dentry_handle_enoent(dentry);
1776 }
1777 } else
1778 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1779 trace_nfs_rmdir_exit(dir, dentry, error);
1780
1781 return error;
1782 }
1783 EXPORT_SYMBOL_GPL(nfs_rmdir);
1784
1785 /*
1786 * Remove a file after making sure there are no pending writes,
1787 * and after checking that the file has only one user.
1788 *
1789 * We invalidate the attribute cache and free the inode prior to the operation
1790 * to avoid possible races if the server reuses the inode.
1791 */
1792 static int nfs_safe_remove(struct dentry *dentry)
1793 {
1794 struct inode *dir = dentry->d_parent->d_inode;
1795 struct inode *inode = dentry->d_inode;
1796 int error = -EBUSY;
1797
1798 dfprintk(VFS, "NFS: safe_remove(%pd2)\n", dentry);
1799
1800 /* If the dentry was sillyrenamed, we simply call d_delete() */
1801 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1802 error = 0;
1803 goto out;
1804 }
1805
1806 trace_nfs_remove_enter(dir, dentry);
1807 if (inode != NULL) {
1808 NFS_PROTO(inode)->return_delegation(inode);
1809 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1810 if (error == 0)
1811 nfs_drop_nlink(inode);
1812 } else
1813 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1814 if (error == -ENOENT)
1815 nfs_dentry_handle_enoent(dentry);
1816 trace_nfs_remove_exit(dir, dentry, error);
1817 out:
1818 return error;
1819 }
1820
1821 /* We do silly rename. In case sillyrename() returns -EBUSY, the inode
1822 * belongs to an active ".nfs..." file and we return -EBUSY.
1823 *
1824 * If sillyrename() returns 0, we do nothing, otherwise we unlink.
1825 */
1826 int nfs_unlink(struct inode *dir, struct dentry *dentry)
1827 {
1828 int error;
1829 int need_rehash = 0;
1830
1831 dfprintk(VFS, "NFS: unlink(%s/%lu, %pd)\n", dir->i_sb->s_id,
1832 dir->i_ino, dentry);
1833
1834 trace_nfs_unlink_enter(dir, dentry);
1835 spin_lock(&dentry->d_lock);
1836 if (d_count(dentry) > 1) {
1837 spin_unlock(&dentry->d_lock);
1838 /* Start asynchronous writeout of the inode */
1839 write_inode_now(dentry->d_inode, 0);
1840 error = nfs_sillyrename(dir, dentry);
1841 goto out;
1842 }
1843 if (!d_unhashed(dentry)) {
1844 __d_drop(dentry);
1845 need_rehash = 1;
1846 }
1847 spin_unlock(&dentry->d_lock);
1848 error = nfs_safe_remove(dentry);
1849 if (!error || error == -ENOENT) {
1850 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1851 } else if (need_rehash)
1852 d_rehash(dentry);
1853 out:
1854 trace_nfs_unlink_exit(dir, dentry, error);
1855 return error;
1856 }
1857 EXPORT_SYMBOL_GPL(nfs_unlink);
1858
1859 /*
1860 * To create a symbolic link, most file systems instantiate a new inode,
1861 * add a page to it containing the path, then write it out to the disk
1862 * using prepare_write/commit_write.
1863 *
1864 * Unfortunately the NFS client can't create the in-core inode first
1865 * because it needs a file handle to create an in-core inode (see
1866 * fs/nfs/inode.c:nfs_fhget). We only have a file handle *after* the
1867 * symlink request has completed on the server.
1868 *
1869 * So instead we allocate a raw page, copy the symname into it, then do
1870 * the SYMLINK request with the page as the buffer. If it succeeds, we
1871 * now have a new file handle and can instantiate an in-core NFS inode
1872 * and move the raw page into its mapping.
1873 */
1874 int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1875 {
1876 struct page *page;
1877 char *kaddr;
1878 struct iattr attr;
1879 unsigned int pathlen = strlen(symname);
1880 int error;
1881
1882 dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s)\n", dir->i_sb->s_id,
1883 dir->i_ino, dentry, symname);
1884
1885 if (pathlen > PAGE_SIZE)
1886 return -ENAMETOOLONG;
1887
1888 attr.ia_mode = S_IFLNK | S_IRWXUGO;
1889 attr.ia_valid = ATTR_MODE;
1890
1891 page = alloc_page(GFP_HIGHUSER);
1892 if (!page)
1893 return -ENOMEM;
1894
1895 kaddr = kmap_atomic(page);
1896 memcpy(kaddr, symname, pathlen);
1897 if (pathlen < PAGE_SIZE)
1898 memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
1899 kunmap_atomic(kaddr);
1900
1901 trace_nfs_symlink_enter(dir, dentry);
1902 error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
1903 trace_nfs_symlink_exit(dir, dentry, error);
1904 if (error != 0) {
1905 dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s) error %d\n",
1906 dir->i_sb->s_id, dir->i_ino,
1907 dentry, symname, error);
1908 d_drop(dentry);
1909 __free_page(page);
1910 return error;
1911 }
1912
1913 /*
1914 * No big deal if we can't add this page to the page cache here.
1915 * READLINK will get the missing page from the server if needed.
1916 */
1917 if (!add_to_page_cache_lru(page, dentry->d_inode->i_mapping, 0,
1918 GFP_KERNEL)) {
1919 SetPageUptodate(page);
1920 unlock_page(page);
1921 /*
1922 * add_to_page_cache_lru() grabs an extra page refcount.
1923 * Drop it here to avoid leaking this page later.
1924 */
1925 page_cache_release(page);
1926 } else
1927 __free_page(page);
1928
1929 return 0;
1930 }
1931 EXPORT_SYMBOL_GPL(nfs_symlink);
1932
1933 int
1934 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1935 {
1936 struct inode *inode = old_dentry->d_inode;
1937 int error;
1938
1939 dfprintk(VFS, "NFS: link(%pd2 -> %pd2)\n",
1940 old_dentry, dentry);
1941
1942 trace_nfs_link_enter(inode, dir, dentry);
1943 NFS_PROTO(inode)->return_delegation(inode);
1944
1945 d_drop(dentry);
1946 error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
1947 if (error == 0) {
1948 ihold(inode);
1949 d_add(dentry, inode);
1950 }
1951 trace_nfs_link_exit(inode, dir, dentry, error);
1952 return error;
1953 }
1954 EXPORT_SYMBOL_GPL(nfs_link);
1955
1956 /*
1957 * RENAME
1958 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
1959 * different file handle for the same inode after a rename (e.g. when
1960 * moving to a different directory). A fail-safe method to do so would
1961 * be to look up old_dir/old_name, create a link to new_dir/new_name and
1962 * rename the old file using the sillyrename stuff. This way, the original
1963 * file in old_dir will go away when the last process iput()s the inode.
1964 *
1965 * FIXED.
1966 *
1967 * It actually works quite well. One needs to have the possibility for
1968 * at least one ".nfs..." file in each directory the file ever gets
1969 * moved or linked to which happens automagically with the new
1970 * implementation that only depends on the dcache stuff instead of
1971 * using the inode layer
1972 *
1973 * Unfortunately, things are a little more complicated than indicated
1974 * above. For a cross-directory move, we want to make sure we can get
1975 * rid of the old inode after the operation. This means there must be
1976 * no pending writes (if it's a file), and the use count must be 1.
1977 * If these conditions are met, we can drop the dentries before doing
1978 * the rename.
1979 */
1980 int nfs_rename(struct inode *old_dir, struct dentry *old_dentry,
1981 struct inode *new_dir, struct dentry *new_dentry)
1982 {
1983 struct inode *old_inode = old_dentry->d_inode;
1984 struct inode *new_inode = new_dentry->d_inode;
1985 struct dentry *dentry = NULL, *rehash = NULL;
1986 struct rpc_task *task;
1987 int error = -EBUSY;
1988
1989 dfprintk(VFS, "NFS: rename(%pd2 -> %pd2, ct=%d)\n",
1990 old_dentry, new_dentry,
1991 d_count(new_dentry));
1992
1993 trace_nfs_rename_enter(old_dir, old_dentry, new_dir, new_dentry);
1994 /*
1995 * For non-directories, check whether the target is busy and if so,
1996 * make a copy of the dentry and then do a silly-rename. If the
1997 * silly-rename succeeds, the copied dentry is hashed and becomes
1998 * the new target.
1999 */
2000 if (new_inode && !S_ISDIR(new_inode->i_mode)) {
2001 /*
2002 * To prevent any new references to the target during the
2003 * rename, we unhash the dentry in advance.
2004 */
2005 if (!d_unhashed(new_dentry)) {
2006 d_drop(new_dentry);
2007 rehash = new_dentry;
2008 }
2009
2010 if (d_count(new_dentry) > 2) {
2011 int err;
2012
2013 /* copy the target dentry's name */
2014 dentry = d_alloc(new_dentry->d_parent,
2015 &new_dentry->d_name);
2016 if (!dentry)
2017 goto out;
2018
2019 /* silly-rename the existing target ... */
2020 err = nfs_sillyrename(new_dir, new_dentry);
2021 if (err)
2022 goto out;
2023
2024 new_dentry = dentry;
2025 rehash = NULL;
2026 new_inode = NULL;
2027 }
2028 }
2029
2030 NFS_PROTO(old_inode)->return_delegation(old_inode);
2031 if (new_inode != NULL)
2032 NFS_PROTO(new_inode)->return_delegation(new_inode);
2033
2034 task = nfs_async_rename(old_dir, new_dir, old_dentry, new_dentry, NULL);
2035 if (IS_ERR(task)) {
2036 error = PTR_ERR(task);
2037 goto out;
2038 }
2039
2040 error = rpc_wait_for_completion_task(task);
2041 if (error == 0)
2042 error = task->tk_status;
2043 rpc_put_task(task);
2044 nfs_mark_for_revalidate(old_inode);
2045 out:
2046 if (rehash)
2047 d_rehash(rehash);
2048 trace_nfs_rename_exit(old_dir, old_dentry,
2049 new_dir, new_dentry, error);
2050 if (!error) {
2051 if (new_inode != NULL)
2052 nfs_drop_nlink(new_inode);
2053 d_move(old_dentry, new_dentry);
2054 nfs_set_verifier(new_dentry,
2055 nfs_save_change_attribute(new_dir));
2056 } else if (error == -ENOENT)
2057 nfs_dentry_handle_enoent(old_dentry);
2058
2059 /* new dentry created? */
2060 if (dentry)
2061 dput(dentry);
2062 return error;
2063 }
2064 EXPORT_SYMBOL_GPL(nfs_rename);
2065
2066 static DEFINE_SPINLOCK(nfs_access_lru_lock);
2067 static LIST_HEAD(nfs_access_lru_list);
2068 static atomic_long_t nfs_access_nr_entries;
2069
2070 static unsigned long nfs_access_max_cachesize = ULONG_MAX;
2071 module_param(nfs_access_max_cachesize, ulong, 0644);
2072 MODULE_PARM_DESC(nfs_access_max_cachesize, "NFS access maximum total cache length");
2073
2074 static void nfs_access_free_entry(struct nfs_access_entry *entry)
2075 {
2076 put_rpccred(entry->cred);
2077 kfree_rcu(entry, rcu_head);
2078 smp_mb__before_atomic();
2079 atomic_long_dec(&nfs_access_nr_entries);
2080 smp_mb__after_atomic();
2081 }
2082
2083 static void nfs_access_free_list(struct list_head *head)
2084 {
2085 struct nfs_access_entry *cache;
2086
2087 while (!list_empty(head)) {
2088 cache = list_entry(head->next, struct nfs_access_entry, lru);
2089 list_del(&cache->lru);
2090 nfs_access_free_entry(cache);
2091 }
2092 }
2093
2094 static unsigned long
2095 nfs_do_access_cache_scan(unsigned int nr_to_scan)
2096 {
2097 LIST_HEAD(head);
2098 struct nfs_inode *nfsi, *next;
2099 struct nfs_access_entry *cache;
2100 long freed = 0;
2101
2102 spin_lock(&nfs_access_lru_lock);
2103 list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) {
2104 struct inode *inode;
2105
2106 if (nr_to_scan-- == 0)
2107 break;
2108 inode = &nfsi->vfs_inode;
2109 spin_lock(&inode->i_lock);
2110 if (list_empty(&nfsi->access_cache_entry_lru))
2111 goto remove_lru_entry;
2112 cache = list_entry(nfsi->access_cache_entry_lru.next,
2113 struct nfs_access_entry, lru);
2114 list_move(&cache->lru, &head);
2115 rb_erase(&cache->rb_node, &nfsi->access_cache);
2116 freed++;
2117 if (!list_empty(&nfsi->access_cache_entry_lru))
2118 list_move_tail(&nfsi->access_cache_inode_lru,
2119 &nfs_access_lru_list);
2120 else {
2121 remove_lru_entry:
2122 list_del_init(&nfsi->access_cache_inode_lru);
2123 smp_mb__before_atomic();
2124 clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
2125 smp_mb__after_atomic();
2126 }
2127 spin_unlock(&inode->i_lock);
2128 }
2129 spin_unlock(&nfs_access_lru_lock);
2130 nfs_access_free_list(&head);
2131 return freed;
2132 }
2133
2134 unsigned long
2135 nfs_access_cache_scan(struct shrinker *shrink, struct shrink_control *sc)
2136 {
2137 int nr_to_scan = sc->nr_to_scan;
2138 gfp_t gfp_mask = sc->gfp_mask;
2139
2140 if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL)
2141 return SHRINK_STOP;
2142 return nfs_do_access_cache_scan(nr_to_scan);
2143 }
2144
2145
2146 unsigned long
2147 nfs_access_cache_count(struct shrinker *shrink, struct shrink_control *sc)
2148 {
2149 return vfs_pressure_ratio(atomic_long_read(&nfs_access_nr_entries));
2150 }
2151
2152 static void
2153 nfs_access_cache_enforce_limit(void)
2154 {
2155 long nr_entries = atomic_long_read(&nfs_access_nr_entries);
2156 unsigned long diff;
2157 unsigned int nr_to_scan;
2158
2159 if (nr_entries < 0 || nr_entries <= nfs_access_max_cachesize)
2160 return;
2161 nr_to_scan = 100;
2162 diff = nr_entries - nfs_access_max_cachesize;
2163 if (diff < nr_to_scan)
2164 nr_to_scan = diff;
2165 nfs_do_access_cache_scan(nr_to_scan);
2166 }
2167
2168 static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head)
2169 {
2170 struct rb_root *root_node = &nfsi->access_cache;
2171 struct rb_node *n;
2172 struct nfs_access_entry *entry;
2173
2174 /* Unhook entries from the cache */
2175 while ((n = rb_first(root_node)) != NULL) {
2176 entry = rb_entry(n, struct nfs_access_entry, rb_node);
2177 rb_erase(n, root_node);
2178 list_move(&entry->lru, head);
2179 }
2180 nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
2181 }
2182
2183 void nfs_access_zap_cache(struct inode *inode)
2184 {
2185 LIST_HEAD(head);
2186
2187 if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0)
2188 return;
2189 /* Remove from global LRU init */
2190 spin_lock(&nfs_access_lru_lock);
2191 if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2192 list_del_init(&NFS_I(inode)->access_cache_inode_lru);
2193
2194 spin_lock(&inode->i_lock);
2195 __nfs_access_zap_cache(NFS_I(inode), &head);
2196 spin_unlock(&inode->i_lock);
2197 spin_unlock(&nfs_access_lru_lock);
2198 nfs_access_free_list(&head);
2199 }
2200 EXPORT_SYMBOL_GPL(nfs_access_zap_cache);
2201
2202 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, struct rpc_cred *cred)
2203 {
2204 struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
2205 struct nfs_access_entry *entry;
2206
2207 while (n != NULL) {
2208 entry = rb_entry(n, struct nfs_access_entry, rb_node);
2209
2210 if (cred < entry->cred)
2211 n = n->rb_left;
2212 else if (cred > entry->cred)
2213 n = n->rb_right;
2214 else
2215 return entry;
2216 }
2217 return NULL;
2218 }
2219
2220 static int nfs_access_get_cached(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res)
2221 {
2222 struct nfs_inode *nfsi = NFS_I(inode);
2223 struct nfs_access_entry *cache;
2224 int err = -ENOENT;
2225
2226 spin_lock(&inode->i_lock);
2227 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2228 goto out_zap;
2229 cache = nfs_access_search_rbtree(inode, cred);
2230 if (cache == NULL)
2231 goto out;
2232 if (!nfs_have_delegated_attributes(inode) &&
2233 !time_in_range_open(jiffies, cache->jiffies, cache->jiffies + nfsi->attrtimeo))
2234 goto out_stale;
2235 res->jiffies = cache->jiffies;
2236 res->cred = cache->cred;
2237 res->mask = cache->mask;
2238 list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
2239 err = 0;
2240 out:
2241 spin_unlock(&inode->i_lock);
2242 return err;
2243 out_stale:
2244 rb_erase(&cache->rb_node, &nfsi->access_cache);
2245 list_del(&cache->lru);
2246 spin_unlock(&inode->i_lock);
2247 nfs_access_free_entry(cache);
2248 return -ENOENT;
2249 out_zap:
2250 spin_unlock(&inode->i_lock);
2251 nfs_access_zap_cache(inode);
2252 return -ENOENT;
2253 }
2254
2255 static int nfs_access_get_cached_rcu(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res)
2256 {
2257 /* Only check the most recently returned cache entry,
2258 * but do it without locking.
2259 */
2260 struct nfs_inode *nfsi = NFS_I(inode);
2261 struct nfs_access_entry *cache;
2262 int err = -ECHILD;
2263 struct list_head *lh;
2264
2265 rcu_read_lock();
2266 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2267 goto out;
2268 lh = rcu_dereference(nfsi->access_cache_entry_lru.prev);
2269 cache = list_entry(lh, struct nfs_access_entry, lru);
2270 if (lh == &nfsi->access_cache_entry_lru ||
2271 cred != cache->cred)
2272 cache = NULL;
2273 if (cache == NULL)
2274 goto out;
2275 if (!nfs_have_delegated_attributes(inode) &&
2276 !time_in_range_open(jiffies, cache->jiffies, cache->jiffies + nfsi->attrtimeo))
2277 goto out;
2278 res->jiffies = cache->jiffies;
2279 res->cred = cache->cred;
2280 res->mask = cache->mask;
2281 err = 0;
2282 out:
2283 rcu_read_unlock();
2284 return err;
2285 }
2286
2287 static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set)
2288 {
2289 struct nfs_inode *nfsi = NFS_I(inode);
2290 struct rb_root *root_node = &nfsi->access_cache;
2291 struct rb_node **p = &root_node->rb_node;
2292 struct rb_node *parent = NULL;
2293 struct nfs_access_entry *entry;
2294
2295 spin_lock(&inode->i_lock);
2296 while (*p != NULL) {
2297 parent = *p;
2298 entry = rb_entry(parent, struct nfs_access_entry, rb_node);
2299
2300 if (set->cred < entry->cred)
2301 p = &parent->rb_left;
2302 else if (set->cred > entry->cred)
2303 p = &parent->rb_right;
2304 else
2305 goto found;
2306 }
2307 rb_link_node(&set->rb_node, parent, p);
2308 rb_insert_color(&set->rb_node, root_node);
2309 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2310 spin_unlock(&inode->i_lock);
2311 return;
2312 found:
2313 rb_replace_node(parent, &set->rb_node, root_node);
2314 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2315 list_del(&entry->lru);
2316 spin_unlock(&inode->i_lock);
2317 nfs_access_free_entry(entry);
2318 }
2319
2320 void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set)
2321 {
2322 struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
2323 if (cache == NULL)
2324 return;
2325 RB_CLEAR_NODE(&cache->rb_node);
2326 cache->jiffies = set->jiffies;
2327 cache->cred = get_rpccred(set->cred);
2328 cache->mask = set->mask;
2329
2330 /* The above field assignments must be visible
2331 * before this item appears on the lru. We cannot easily
2332 * use rcu_assign_pointer, so just force the memory barrier.
2333 */
2334 smp_wmb();
2335 nfs_access_add_rbtree(inode, cache);
2336
2337 /* Update accounting */
2338 smp_mb__before_atomic();
2339 atomic_long_inc(&nfs_access_nr_entries);
2340 smp_mb__after_atomic();
2341
2342 /* Add inode to global LRU list */
2343 if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
2344 spin_lock(&nfs_access_lru_lock);
2345 if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2346 list_add_tail(&NFS_I(inode)->access_cache_inode_lru,
2347 &nfs_access_lru_list);
2348 spin_unlock(&nfs_access_lru_lock);
2349 }
2350 nfs_access_cache_enforce_limit();
2351 }
2352 EXPORT_SYMBOL_GPL(nfs_access_add_cache);
2353
2354 void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result)
2355 {
2356 entry->mask = 0;
2357 if (access_result & NFS4_ACCESS_READ)
2358 entry->mask |= MAY_READ;
2359 if (access_result &
2360 (NFS4_ACCESS_MODIFY | NFS4_ACCESS_EXTEND | NFS4_ACCESS_DELETE))
2361 entry->mask |= MAY_WRITE;
2362 if (access_result & (NFS4_ACCESS_LOOKUP|NFS4_ACCESS_EXECUTE))
2363 entry->mask |= MAY_EXEC;
2364 }
2365 EXPORT_SYMBOL_GPL(nfs_access_set_mask);
2366
2367 static int nfs_do_access(struct inode *inode, struct rpc_cred *cred, int mask)
2368 {
2369 struct nfs_access_entry cache;
2370 int status;
2371
2372 trace_nfs_access_enter(inode);
2373
2374 status = nfs_access_get_cached_rcu(inode, cred, &cache);
2375 if (status != 0)
2376 status = nfs_access_get_cached(inode, cred, &cache);
2377 if (status == 0)
2378 goto out_cached;
2379
2380 status = -ECHILD;
2381 if (mask & MAY_NOT_BLOCK)
2382 goto out;
2383
2384 /* Be clever: ask server to check for all possible rights */
2385 cache.mask = MAY_EXEC | MAY_WRITE | MAY_READ;
2386 cache.cred = cred;
2387 cache.jiffies = jiffies;
2388 status = NFS_PROTO(inode)->access(inode, &cache);
2389 if (status != 0) {
2390 if (status == -ESTALE) {
2391 nfs_zap_caches(inode);
2392 if (!S_ISDIR(inode->i_mode))
2393 set_bit(NFS_INO_STALE, &NFS_I(inode)->flags);
2394 }
2395 goto out;
2396 }
2397 nfs_access_add_cache(inode, &cache);
2398 out_cached:
2399 if ((mask & ~cache.mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) != 0)
2400 status = -EACCES;
2401 out:
2402 trace_nfs_access_exit(inode, status);
2403 return status;
2404 }
2405
2406 static int nfs_open_permission_mask(int openflags)
2407 {
2408 int mask = 0;
2409
2410 if (openflags & __FMODE_EXEC) {
2411 /* ONLY check exec rights */
2412 mask = MAY_EXEC;
2413 } else {
2414 if ((openflags & O_ACCMODE) != O_WRONLY)
2415 mask |= MAY_READ;
2416 if ((openflags & O_ACCMODE) != O_RDONLY)
2417 mask |= MAY_WRITE;
2418 }
2419
2420 return mask;
2421 }
2422
2423 int nfs_may_open(struct inode *inode, struct rpc_cred *cred, int openflags)
2424 {
2425 return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
2426 }
2427 EXPORT_SYMBOL_GPL(nfs_may_open);
2428
2429 int nfs_permission(struct inode *inode, int mask)
2430 {
2431 struct rpc_cred *cred;
2432 int res = 0;
2433
2434 nfs_inc_stats(inode, NFSIOS_VFSACCESS);
2435
2436 if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
2437 goto out;
2438 /* Is this sys_access() ? */
2439 if (mask & (MAY_ACCESS | MAY_CHDIR))
2440 goto force_lookup;
2441
2442 switch (inode->i_mode & S_IFMT) {
2443 case S_IFLNK:
2444 goto out;
2445 case S_IFREG:
2446 break;
2447 case S_IFDIR:
2448 /*
2449 * Optimize away all write operations, since the server
2450 * will check permissions when we perform the op.
2451 */
2452 if ((mask & MAY_WRITE) && !(mask & MAY_READ))
2453 goto out;
2454 }
2455
2456 force_lookup:
2457 if (!NFS_PROTO(inode)->access)
2458 goto out_notsup;
2459
2460 /* Always try fast lookups first */
2461 rcu_read_lock();
2462 cred = rpc_lookup_cred_nonblock();
2463 if (!IS_ERR(cred))
2464 res = nfs_do_access(inode, cred, mask|MAY_NOT_BLOCK);
2465 else
2466 res = PTR_ERR(cred);
2467 rcu_read_unlock();
2468 if (res == -ECHILD && !(mask & MAY_NOT_BLOCK)) {
2469 /* Fast lookup failed, try the slow way */
2470 cred = rpc_lookup_cred();
2471 if (!IS_ERR(cred)) {
2472 res = nfs_do_access(inode, cred, mask);
2473 put_rpccred(cred);
2474 } else
2475 res = PTR_ERR(cred);
2476 }
2477 out:
2478 if (!res && (mask & MAY_EXEC) && !execute_ok(inode))
2479 res = -EACCES;
2480
2481 dfprintk(VFS, "NFS: permission(%s/%lu), mask=0x%x, res=%d\n",
2482 inode->i_sb->s_id, inode->i_ino, mask, res);
2483 return res;
2484 out_notsup:
2485 if (mask & MAY_NOT_BLOCK)
2486 return -ECHILD;
2487
2488 res = nfs_revalidate_inode(NFS_SERVER(inode), inode);
2489 if (res == 0)
2490 res = generic_permission(inode, mask);
2491 goto out;
2492 }
2493 EXPORT_SYMBOL_GPL(nfs_permission);
2494
2495 /*
2496 * Local variables:
2497 * version-control: t
2498 * kept-new-versions: 5
2499 * End:
2500 */
This page took 0.086681 seconds and 5 git commands to generate.