Merge branch 'for-1209' of git://gitorious.org/smack-next/kernel into next
[deliverable/linux.git] / fs / nfs / dir.c
1 /*
2 * linux/fs/nfs/dir.c
3 *
4 * Copyright (C) 1992 Rick Sladkey
5 *
6 * nfs directory handling functions
7 *
8 * 10 Apr 1996 Added silly rename for unlink --okir
9 * 28 Sep 1996 Improved directory cache --okir
10 * 23 Aug 1997 Claus Heine claus@momo.math.rwth-aachen.de
11 * Re-implemented silly rename for unlink, newly implemented
12 * silly rename for nfs_rename() following the suggestions
13 * of Olaf Kirch (okir) found in this file.
14 * Following Linus comments on my original hack, this version
15 * depends only on the dcache stuff and doesn't touch the inode
16 * layer (iput() and friends).
17 * 6 Jun 1999 Cache readdir lookups in the page cache. -DaveM
18 */
19
20 #include <linux/module.h>
21 #include <linux/time.h>
22 #include <linux/errno.h>
23 #include <linux/stat.h>
24 #include <linux/fcntl.h>
25 #include <linux/string.h>
26 #include <linux/kernel.h>
27 #include <linux/slab.h>
28 #include <linux/mm.h>
29 #include <linux/sunrpc/clnt.h>
30 #include <linux/nfs_fs.h>
31 #include <linux/nfs_mount.h>
32 #include <linux/pagemap.h>
33 #include <linux/pagevec.h>
34 #include <linux/namei.h>
35 #include <linux/mount.h>
36 #include <linux/sched.h>
37 #include <linux/kmemleak.h>
38 #include <linux/xattr.h>
39
40 #include "delegation.h"
41 #include "iostat.h"
42 #include "internal.h"
43 #include "fscache.h"
44
45 /* #define NFS_DEBUG_VERBOSE 1 */
46
47 static int nfs_opendir(struct inode *, struct file *);
48 static int nfs_closedir(struct inode *, struct file *);
49 static int nfs_readdir(struct file *, void *, filldir_t);
50 static int nfs_fsync_dir(struct file *, loff_t, loff_t, int);
51 static loff_t nfs_llseek_dir(struct file *, loff_t, int);
52 static void nfs_readdir_clear_array(struct page*);
53
54 const struct file_operations nfs_dir_operations = {
55 .llseek = nfs_llseek_dir,
56 .read = generic_read_dir,
57 .readdir = nfs_readdir,
58 .open = nfs_opendir,
59 .release = nfs_closedir,
60 .fsync = nfs_fsync_dir,
61 };
62
63 const struct address_space_operations nfs_dir_aops = {
64 .freepage = nfs_readdir_clear_array,
65 };
66
67 static struct nfs_open_dir_context *alloc_nfs_open_dir_context(struct inode *dir, struct rpc_cred *cred)
68 {
69 struct nfs_open_dir_context *ctx;
70 ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
71 if (ctx != NULL) {
72 ctx->duped = 0;
73 ctx->attr_gencount = NFS_I(dir)->attr_gencount;
74 ctx->dir_cookie = 0;
75 ctx->dup_cookie = 0;
76 ctx->cred = get_rpccred(cred);
77 return ctx;
78 }
79 return ERR_PTR(-ENOMEM);
80 }
81
82 static void put_nfs_open_dir_context(struct nfs_open_dir_context *ctx)
83 {
84 put_rpccred(ctx->cred);
85 kfree(ctx);
86 }
87
88 /*
89 * Open file
90 */
91 static int
92 nfs_opendir(struct inode *inode, struct file *filp)
93 {
94 int res = 0;
95 struct nfs_open_dir_context *ctx;
96 struct rpc_cred *cred;
97
98 dfprintk(FILE, "NFS: open dir(%s/%s)\n",
99 filp->f_path.dentry->d_parent->d_name.name,
100 filp->f_path.dentry->d_name.name);
101
102 nfs_inc_stats(inode, NFSIOS_VFSOPEN);
103
104 cred = rpc_lookup_cred();
105 if (IS_ERR(cred))
106 return PTR_ERR(cred);
107 ctx = alloc_nfs_open_dir_context(inode, cred);
108 if (IS_ERR(ctx)) {
109 res = PTR_ERR(ctx);
110 goto out;
111 }
112 filp->private_data = ctx;
113 if (filp->f_path.dentry == filp->f_path.mnt->mnt_root) {
114 /* This is a mountpoint, so d_revalidate will never
115 * have been called, so we need to refresh the
116 * inode (for close-open consistency) ourselves.
117 */
118 __nfs_revalidate_inode(NFS_SERVER(inode), inode);
119 }
120 out:
121 put_rpccred(cred);
122 return res;
123 }
124
125 static int
126 nfs_closedir(struct inode *inode, struct file *filp)
127 {
128 put_nfs_open_dir_context(filp->private_data);
129 return 0;
130 }
131
132 struct nfs_cache_array_entry {
133 u64 cookie;
134 u64 ino;
135 struct qstr string;
136 unsigned char d_type;
137 };
138
139 struct nfs_cache_array {
140 int size;
141 int eof_index;
142 u64 last_cookie;
143 struct nfs_cache_array_entry array[0];
144 };
145
146 typedef int (*decode_dirent_t)(struct xdr_stream *, struct nfs_entry *, int);
147 typedef struct {
148 struct file *file;
149 struct page *page;
150 unsigned long page_index;
151 u64 *dir_cookie;
152 u64 last_cookie;
153 loff_t current_index;
154 decode_dirent_t decode;
155
156 unsigned long timestamp;
157 unsigned long gencount;
158 unsigned int cache_entry_index;
159 unsigned int plus:1;
160 unsigned int eof:1;
161 } nfs_readdir_descriptor_t;
162
163 /*
164 * The caller is responsible for calling nfs_readdir_release_array(page)
165 */
166 static
167 struct nfs_cache_array *nfs_readdir_get_array(struct page *page)
168 {
169 void *ptr;
170 if (page == NULL)
171 return ERR_PTR(-EIO);
172 ptr = kmap(page);
173 if (ptr == NULL)
174 return ERR_PTR(-ENOMEM);
175 return ptr;
176 }
177
178 static
179 void nfs_readdir_release_array(struct page *page)
180 {
181 kunmap(page);
182 }
183
184 /*
185 * we are freeing strings created by nfs_add_to_readdir_array()
186 */
187 static
188 void nfs_readdir_clear_array(struct page *page)
189 {
190 struct nfs_cache_array *array;
191 int i;
192
193 array = kmap_atomic(page);
194 for (i = 0; i < array->size; i++)
195 kfree(array->array[i].string.name);
196 kunmap_atomic(array);
197 }
198
199 /*
200 * the caller is responsible for freeing qstr.name
201 * when called by nfs_readdir_add_to_array, the strings will be freed in
202 * nfs_clear_readdir_array()
203 */
204 static
205 int nfs_readdir_make_qstr(struct qstr *string, const char *name, unsigned int len)
206 {
207 string->len = len;
208 string->name = kmemdup(name, len, GFP_KERNEL);
209 if (string->name == NULL)
210 return -ENOMEM;
211 /*
212 * Avoid a kmemleak false positive. The pointer to the name is stored
213 * in a page cache page which kmemleak does not scan.
214 */
215 kmemleak_not_leak(string->name);
216 string->hash = full_name_hash(name, len);
217 return 0;
218 }
219
220 static
221 int nfs_readdir_add_to_array(struct nfs_entry *entry, struct page *page)
222 {
223 struct nfs_cache_array *array = nfs_readdir_get_array(page);
224 struct nfs_cache_array_entry *cache_entry;
225 int ret;
226
227 if (IS_ERR(array))
228 return PTR_ERR(array);
229
230 cache_entry = &array->array[array->size];
231
232 /* Check that this entry lies within the page bounds */
233 ret = -ENOSPC;
234 if ((char *)&cache_entry[1] - (char *)page_address(page) > PAGE_SIZE)
235 goto out;
236
237 cache_entry->cookie = entry->prev_cookie;
238 cache_entry->ino = entry->ino;
239 cache_entry->d_type = entry->d_type;
240 ret = nfs_readdir_make_qstr(&cache_entry->string, entry->name, entry->len);
241 if (ret)
242 goto out;
243 array->last_cookie = entry->cookie;
244 array->size++;
245 if (entry->eof != 0)
246 array->eof_index = array->size;
247 out:
248 nfs_readdir_release_array(page);
249 return ret;
250 }
251
252 static
253 int nfs_readdir_search_for_pos(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
254 {
255 loff_t diff = desc->file->f_pos - desc->current_index;
256 unsigned int index;
257
258 if (diff < 0)
259 goto out_eof;
260 if (diff >= array->size) {
261 if (array->eof_index >= 0)
262 goto out_eof;
263 return -EAGAIN;
264 }
265
266 index = (unsigned int)diff;
267 *desc->dir_cookie = array->array[index].cookie;
268 desc->cache_entry_index = index;
269 return 0;
270 out_eof:
271 desc->eof = 1;
272 return -EBADCOOKIE;
273 }
274
275 static
276 int nfs_readdir_search_for_cookie(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
277 {
278 int i;
279 loff_t new_pos;
280 int status = -EAGAIN;
281
282 for (i = 0; i < array->size; i++) {
283 if (array->array[i].cookie == *desc->dir_cookie) {
284 struct nfs_inode *nfsi = NFS_I(desc->file->f_path.dentry->d_inode);
285 struct nfs_open_dir_context *ctx = desc->file->private_data;
286
287 new_pos = desc->current_index + i;
288 if (ctx->attr_gencount != nfsi->attr_gencount
289 || (nfsi->cache_validity & (NFS_INO_INVALID_ATTR|NFS_INO_INVALID_DATA))) {
290 ctx->duped = 0;
291 ctx->attr_gencount = nfsi->attr_gencount;
292 } else if (new_pos < desc->file->f_pos) {
293 if (ctx->duped > 0
294 && ctx->dup_cookie == *desc->dir_cookie) {
295 if (printk_ratelimit()) {
296 pr_notice("NFS: directory %s/%s contains a readdir loop."
297 "Please contact your server vendor. "
298 "The file: %s has duplicate cookie %llu\n",
299 desc->file->f_dentry->d_parent->d_name.name,
300 desc->file->f_dentry->d_name.name,
301 array->array[i].string.name,
302 *desc->dir_cookie);
303 }
304 status = -ELOOP;
305 goto out;
306 }
307 ctx->dup_cookie = *desc->dir_cookie;
308 ctx->duped = -1;
309 }
310 desc->file->f_pos = new_pos;
311 desc->cache_entry_index = i;
312 return 0;
313 }
314 }
315 if (array->eof_index >= 0) {
316 status = -EBADCOOKIE;
317 if (*desc->dir_cookie == array->last_cookie)
318 desc->eof = 1;
319 }
320 out:
321 return status;
322 }
323
324 static
325 int nfs_readdir_search_array(nfs_readdir_descriptor_t *desc)
326 {
327 struct nfs_cache_array *array;
328 int status;
329
330 array = nfs_readdir_get_array(desc->page);
331 if (IS_ERR(array)) {
332 status = PTR_ERR(array);
333 goto out;
334 }
335
336 if (*desc->dir_cookie == 0)
337 status = nfs_readdir_search_for_pos(array, desc);
338 else
339 status = nfs_readdir_search_for_cookie(array, desc);
340
341 if (status == -EAGAIN) {
342 desc->last_cookie = array->last_cookie;
343 desc->current_index += array->size;
344 desc->page_index++;
345 }
346 nfs_readdir_release_array(desc->page);
347 out:
348 return status;
349 }
350
351 /* Fill a page with xdr information before transferring to the cache page */
352 static
353 int nfs_readdir_xdr_filler(struct page **pages, nfs_readdir_descriptor_t *desc,
354 struct nfs_entry *entry, struct file *file, struct inode *inode)
355 {
356 struct nfs_open_dir_context *ctx = file->private_data;
357 struct rpc_cred *cred = ctx->cred;
358 unsigned long timestamp, gencount;
359 int error;
360
361 again:
362 timestamp = jiffies;
363 gencount = nfs_inc_attr_generation_counter();
364 error = NFS_PROTO(inode)->readdir(file->f_path.dentry, cred, entry->cookie, pages,
365 NFS_SERVER(inode)->dtsize, desc->plus);
366 if (error < 0) {
367 /* We requested READDIRPLUS, but the server doesn't grok it */
368 if (error == -ENOTSUPP && desc->plus) {
369 NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
370 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
371 desc->plus = 0;
372 goto again;
373 }
374 goto error;
375 }
376 desc->timestamp = timestamp;
377 desc->gencount = gencount;
378 error:
379 return error;
380 }
381
382 static int xdr_decode(nfs_readdir_descriptor_t *desc,
383 struct nfs_entry *entry, struct xdr_stream *xdr)
384 {
385 int error;
386
387 error = desc->decode(xdr, entry, desc->plus);
388 if (error)
389 return error;
390 entry->fattr->time_start = desc->timestamp;
391 entry->fattr->gencount = desc->gencount;
392 return 0;
393 }
394
395 static
396 int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry)
397 {
398 if (dentry->d_inode == NULL)
399 goto different;
400 if (nfs_compare_fh(entry->fh, NFS_FH(dentry->d_inode)) != 0)
401 goto different;
402 return 1;
403 different:
404 return 0;
405 }
406
407 static
408 bool nfs_use_readdirplus(struct inode *dir, struct file *filp)
409 {
410 if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS))
411 return false;
412 if (test_and_clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags))
413 return true;
414 if (filp->f_pos == 0)
415 return true;
416 return false;
417 }
418
419 /*
420 * This function is called by the lookup code to request the use of
421 * readdirplus to accelerate any future lookups in the same
422 * directory.
423 */
424 static
425 void nfs_advise_use_readdirplus(struct inode *dir)
426 {
427 set_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags);
428 }
429
430 static
431 void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry)
432 {
433 struct qstr filename = QSTR_INIT(entry->name, entry->len);
434 struct dentry *dentry;
435 struct dentry *alias;
436 struct inode *dir = parent->d_inode;
437 struct inode *inode;
438
439 if (filename.name[0] == '.') {
440 if (filename.len == 1)
441 return;
442 if (filename.len == 2 && filename.name[1] == '.')
443 return;
444 }
445 filename.hash = full_name_hash(filename.name, filename.len);
446
447 dentry = d_lookup(parent, &filename);
448 if (dentry != NULL) {
449 if (nfs_same_file(dentry, entry)) {
450 nfs_refresh_inode(dentry->d_inode, entry->fattr);
451 goto out;
452 } else {
453 d_drop(dentry);
454 dput(dentry);
455 }
456 }
457
458 dentry = d_alloc(parent, &filename);
459 if (dentry == NULL)
460 return;
461
462 inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr);
463 if (IS_ERR(inode))
464 goto out;
465
466 alias = d_materialise_unique(dentry, inode);
467 if (IS_ERR(alias))
468 goto out;
469 else if (alias) {
470 nfs_set_verifier(alias, nfs_save_change_attribute(dir));
471 dput(alias);
472 } else
473 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
474
475 out:
476 dput(dentry);
477 }
478
479 /* Perform conversion from xdr to cache array */
480 static
481 int nfs_readdir_page_filler(nfs_readdir_descriptor_t *desc, struct nfs_entry *entry,
482 struct page **xdr_pages, struct page *page, unsigned int buflen)
483 {
484 struct xdr_stream stream;
485 struct xdr_buf buf;
486 struct page *scratch;
487 struct nfs_cache_array *array;
488 unsigned int count = 0;
489 int status;
490
491 scratch = alloc_page(GFP_KERNEL);
492 if (scratch == NULL)
493 return -ENOMEM;
494
495 xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen);
496 xdr_set_scratch_buffer(&stream, page_address(scratch), PAGE_SIZE);
497
498 do {
499 status = xdr_decode(desc, entry, &stream);
500 if (status != 0) {
501 if (status == -EAGAIN)
502 status = 0;
503 break;
504 }
505
506 count++;
507
508 if (desc->plus != 0)
509 nfs_prime_dcache(desc->file->f_path.dentry, entry);
510
511 status = nfs_readdir_add_to_array(entry, page);
512 if (status != 0)
513 break;
514 } while (!entry->eof);
515
516 if (count == 0 || (status == -EBADCOOKIE && entry->eof != 0)) {
517 array = nfs_readdir_get_array(page);
518 if (!IS_ERR(array)) {
519 array->eof_index = array->size;
520 status = 0;
521 nfs_readdir_release_array(page);
522 } else
523 status = PTR_ERR(array);
524 }
525
526 put_page(scratch);
527 return status;
528 }
529
530 static
531 void nfs_readdir_free_pagearray(struct page **pages, unsigned int npages)
532 {
533 unsigned int i;
534 for (i = 0; i < npages; i++)
535 put_page(pages[i]);
536 }
537
538 static
539 void nfs_readdir_free_large_page(void *ptr, struct page **pages,
540 unsigned int npages)
541 {
542 nfs_readdir_free_pagearray(pages, npages);
543 }
544
545 /*
546 * nfs_readdir_large_page will allocate pages that must be freed with a call
547 * to nfs_readdir_free_large_page
548 */
549 static
550 int nfs_readdir_large_page(struct page **pages, unsigned int npages)
551 {
552 unsigned int i;
553
554 for (i = 0; i < npages; i++) {
555 struct page *page = alloc_page(GFP_KERNEL);
556 if (page == NULL)
557 goto out_freepages;
558 pages[i] = page;
559 }
560 return 0;
561
562 out_freepages:
563 nfs_readdir_free_pagearray(pages, i);
564 return -ENOMEM;
565 }
566
567 static
568 int nfs_readdir_xdr_to_array(nfs_readdir_descriptor_t *desc, struct page *page, struct inode *inode)
569 {
570 struct page *pages[NFS_MAX_READDIR_PAGES];
571 void *pages_ptr = NULL;
572 struct nfs_entry entry;
573 struct file *file = desc->file;
574 struct nfs_cache_array *array;
575 int status = -ENOMEM;
576 unsigned int array_size = ARRAY_SIZE(pages);
577
578 entry.prev_cookie = 0;
579 entry.cookie = desc->last_cookie;
580 entry.eof = 0;
581 entry.fh = nfs_alloc_fhandle();
582 entry.fattr = nfs_alloc_fattr();
583 entry.server = NFS_SERVER(inode);
584 if (entry.fh == NULL || entry.fattr == NULL)
585 goto out;
586
587 array = nfs_readdir_get_array(page);
588 if (IS_ERR(array)) {
589 status = PTR_ERR(array);
590 goto out;
591 }
592 memset(array, 0, sizeof(struct nfs_cache_array));
593 array->eof_index = -1;
594
595 status = nfs_readdir_large_page(pages, array_size);
596 if (status < 0)
597 goto out_release_array;
598 do {
599 unsigned int pglen;
600 status = nfs_readdir_xdr_filler(pages, desc, &entry, file, inode);
601
602 if (status < 0)
603 break;
604 pglen = status;
605 status = nfs_readdir_page_filler(desc, &entry, pages, page, pglen);
606 if (status < 0) {
607 if (status == -ENOSPC)
608 status = 0;
609 break;
610 }
611 } while (array->eof_index < 0);
612
613 nfs_readdir_free_large_page(pages_ptr, pages, array_size);
614 out_release_array:
615 nfs_readdir_release_array(page);
616 out:
617 nfs_free_fattr(entry.fattr);
618 nfs_free_fhandle(entry.fh);
619 return status;
620 }
621
622 /*
623 * Now we cache directories properly, by converting xdr information
624 * to an array that can be used for lookups later. This results in
625 * fewer cache pages, since we can store more information on each page.
626 * We only need to convert from xdr once so future lookups are much simpler
627 */
628 static
629 int nfs_readdir_filler(nfs_readdir_descriptor_t *desc, struct page* page)
630 {
631 struct inode *inode = desc->file->f_path.dentry->d_inode;
632 int ret;
633
634 ret = nfs_readdir_xdr_to_array(desc, page, inode);
635 if (ret < 0)
636 goto error;
637 SetPageUptodate(page);
638
639 if (invalidate_inode_pages2_range(inode->i_mapping, page->index + 1, -1) < 0) {
640 /* Should never happen */
641 nfs_zap_mapping(inode, inode->i_mapping);
642 }
643 unlock_page(page);
644 return 0;
645 error:
646 unlock_page(page);
647 return ret;
648 }
649
650 static
651 void cache_page_release(nfs_readdir_descriptor_t *desc)
652 {
653 if (!desc->page->mapping)
654 nfs_readdir_clear_array(desc->page);
655 page_cache_release(desc->page);
656 desc->page = NULL;
657 }
658
659 static
660 struct page *get_cache_page(nfs_readdir_descriptor_t *desc)
661 {
662 return read_cache_page(desc->file->f_path.dentry->d_inode->i_mapping,
663 desc->page_index, (filler_t *)nfs_readdir_filler, desc);
664 }
665
666 /*
667 * Returns 0 if desc->dir_cookie was found on page desc->page_index
668 */
669 static
670 int find_cache_page(nfs_readdir_descriptor_t *desc)
671 {
672 int res;
673
674 desc->page = get_cache_page(desc);
675 if (IS_ERR(desc->page))
676 return PTR_ERR(desc->page);
677
678 res = nfs_readdir_search_array(desc);
679 if (res != 0)
680 cache_page_release(desc);
681 return res;
682 }
683
684 /* Search for desc->dir_cookie from the beginning of the page cache */
685 static inline
686 int readdir_search_pagecache(nfs_readdir_descriptor_t *desc)
687 {
688 int res;
689
690 if (desc->page_index == 0) {
691 desc->current_index = 0;
692 desc->last_cookie = 0;
693 }
694 do {
695 res = find_cache_page(desc);
696 } while (res == -EAGAIN);
697 return res;
698 }
699
700 /*
701 * Once we've found the start of the dirent within a page: fill 'er up...
702 */
703 static
704 int nfs_do_filldir(nfs_readdir_descriptor_t *desc, void *dirent,
705 filldir_t filldir)
706 {
707 struct file *file = desc->file;
708 int i = 0;
709 int res = 0;
710 struct nfs_cache_array *array = NULL;
711 struct nfs_open_dir_context *ctx = file->private_data;
712
713 array = nfs_readdir_get_array(desc->page);
714 if (IS_ERR(array)) {
715 res = PTR_ERR(array);
716 goto out;
717 }
718
719 for (i = desc->cache_entry_index; i < array->size; i++) {
720 struct nfs_cache_array_entry *ent;
721
722 ent = &array->array[i];
723 if (filldir(dirent, ent->string.name, ent->string.len,
724 file->f_pos, nfs_compat_user_ino64(ent->ino),
725 ent->d_type) < 0) {
726 desc->eof = 1;
727 break;
728 }
729 file->f_pos++;
730 if (i < (array->size-1))
731 *desc->dir_cookie = array->array[i+1].cookie;
732 else
733 *desc->dir_cookie = array->last_cookie;
734 if (ctx->duped != 0)
735 ctx->duped = 1;
736 }
737 if (array->eof_index >= 0)
738 desc->eof = 1;
739
740 nfs_readdir_release_array(desc->page);
741 out:
742 cache_page_release(desc);
743 dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n",
744 (unsigned long long)*desc->dir_cookie, res);
745 return res;
746 }
747
748 /*
749 * If we cannot find a cookie in our cache, we suspect that this is
750 * because it points to a deleted file, so we ask the server to return
751 * whatever it thinks is the next entry. We then feed this to filldir.
752 * If all goes well, we should then be able to find our way round the
753 * cache on the next call to readdir_search_pagecache();
754 *
755 * NOTE: we cannot add the anonymous page to the pagecache because
756 * the data it contains might not be page aligned. Besides,
757 * we should already have a complete representation of the
758 * directory in the page cache by the time we get here.
759 */
760 static inline
761 int uncached_readdir(nfs_readdir_descriptor_t *desc, void *dirent,
762 filldir_t filldir)
763 {
764 struct page *page = NULL;
765 int status;
766 struct inode *inode = desc->file->f_path.dentry->d_inode;
767 struct nfs_open_dir_context *ctx = desc->file->private_data;
768
769 dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n",
770 (unsigned long long)*desc->dir_cookie);
771
772 page = alloc_page(GFP_HIGHUSER);
773 if (!page) {
774 status = -ENOMEM;
775 goto out;
776 }
777
778 desc->page_index = 0;
779 desc->last_cookie = *desc->dir_cookie;
780 desc->page = page;
781 ctx->duped = 0;
782
783 status = nfs_readdir_xdr_to_array(desc, page, inode);
784 if (status < 0)
785 goto out_release;
786
787 status = nfs_do_filldir(desc, dirent, filldir);
788
789 out:
790 dfprintk(DIRCACHE, "NFS: %s: returns %d\n",
791 __func__, status);
792 return status;
793 out_release:
794 cache_page_release(desc);
795 goto out;
796 }
797
798 /* The file offset position represents the dirent entry number. A
799 last cookie cache takes care of the common case of reading the
800 whole directory.
801 */
802 static int nfs_readdir(struct file *filp, void *dirent, filldir_t filldir)
803 {
804 struct dentry *dentry = filp->f_path.dentry;
805 struct inode *inode = dentry->d_inode;
806 nfs_readdir_descriptor_t my_desc,
807 *desc = &my_desc;
808 struct nfs_open_dir_context *dir_ctx = filp->private_data;
809 int res;
810
811 dfprintk(FILE, "NFS: readdir(%s/%s) starting at cookie %llu\n",
812 dentry->d_parent->d_name.name, dentry->d_name.name,
813 (long long)filp->f_pos);
814 nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
815
816 /*
817 * filp->f_pos points to the dirent entry number.
818 * *desc->dir_cookie has the cookie for the next entry. We have
819 * to either find the entry with the appropriate number or
820 * revalidate the cookie.
821 */
822 memset(desc, 0, sizeof(*desc));
823
824 desc->file = filp;
825 desc->dir_cookie = &dir_ctx->dir_cookie;
826 desc->decode = NFS_PROTO(inode)->decode_dirent;
827 desc->plus = nfs_use_readdirplus(inode, filp) ? 1 : 0;
828
829 nfs_block_sillyrename(dentry);
830 res = nfs_revalidate_mapping(inode, filp->f_mapping);
831 if (res < 0)
832 goto out;
833
834 do {
835 res = readdir_search_pagecache(desc);
836
837 if (res == -EBADCOOKIE) {
838 res = 0;
839 /* This means either end of directory */
840 if (*desc->dir_cookie && desc->eof == 0) {
841 /* Or that the server has 'lost' a cookie */
842 res = uncached_readdir(desc, dirent, filldir);
843 if (res == 0)
844 continue;
845 }
846 break;
847 }
848 if (res == -ETOOSMALL && desc->plus) {
849 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
850 nfs_zap_caches(inode);
851 desc->page_index = 0;
852 desc->plus = 0;
853 desc->eof = 0;
854 continue;
855 }
856 if (res < 0)
857 break;
858
859 res = nfs_do_filldir(desc, dirent, filldir);
860 if (res < 0)
861 break;
862 } while (!desc->eof);
863 out:
864 nfs_unblock_sillyrename(dentry);
865 if (res > 0)
866 res = 0;
867 dfprintk(FILE, "NFS: readdir(%s/%s) returns %d\n",
868 dentry->d_parent->d_name.name, dentry->d_name.name,
869 res);
870 return res;
871 }
872
873 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int origin)
874 {
875 struct dentry *dentry = filp->f_path.dentry;
876 struct inode *inode = dentry->d_inode;
877 struct nfs_open_dir_context *dir_ctx = filp->private_data;
878
879 dfprintk(FILE, "NFS: llseek dir(%s/%s, %lld, %d)\n",
880 dentry->d_parent->d_name.name,
881 dentry->d_name.name,
882 offset, origin);
883
884 mutex_lock(&inode->i_mutex);
885 switch (origin) {
886 case 1:
887 offset += filp->f_pos;
888 case 0:
889 if (offset >= 0)
890 break;
891 default:
892 offset = -EINVAL;
893 goto out;
894 }
895 if (offset != filp->f_pos) {
896 filp->f_pos = offset;
897 dir_ctx->dir_cookie = 0;
898 dir_ctx->duped = 0;
899 }
900 out:
901 mutex_unlock(&inode->i_mutex);
902 return offset;
903 }
904
905 /*
906 * All directory operations under NFS are synchronous, so fsync()
907 * is a dummy operation.
908 */
909 static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end,
910 int datasync)
911 {
912 struct dentry *dentry = filp->f_path.dentry;
913 struct inode *inode = dentry->d_inode;
914
915 dfprintk(FILE, "NFS: fsync dir(%s/%s) datasync %d\n",
916 dentry->d_parent->d_name.name, dentry->d_name.name,
917 datasync);
918
919 mutex_lock(&inode->i_mutex);
920 nfs_inc_stats(dentry->d_inode, NFSIOS_VFSFSYNC);
921 mutex_unlock(&inode->i_mutex);
922 return 0;
923 }
924
925 /**
926 * nfs_force_lookup_revalidate - Mark the directory as having changed
927 * @dir - pointer to directory inode
928 *
929 * This forces the revalidation code in nfs_lookup_revalidate() to do a
930 * full lookup on all child dentries of 'dir' whenever a change occurs
931 * on the server that might have invalidated our dcache.
932 *
933 * The caller should be holding dir->i_lock
934 */
935 void nfs_force_lookup_revalidate(struct inode *dir)
936 {
937 NFS_I(dir)->cache_change_attribute++;
938 }
939 EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate);
940
941 /*
942 * A check for whether or not the parent directory has changed.
943 * In the case it has, we assume that the dentries are untrustworthy
944 * and may need to be looked up again.
945 */
946 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry)
947 {
948 if (IS_ROOT(dentry))
949 return 1;
950 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE)
951 return 0;
952 if (!nfs_verify_change_attribute(dir, dentry->d_time))
953 return 0;
954 /* Revalidate nfsi->cache_change_attribute before we declare a match */
955 if (nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
956 return 0;
957 if (!nfs_verify_change_attribute(dir, dentry->d_time))
958 return 0;
959 return 1;
960 }
961
962 /*
963 * Use intent information to check whether or not we're going to do
964 * an O_EXCL create using this path component.
965 */
966 static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags)
967 {
968 if (NFS_PROTO(dir)->version == 2)
969 return 0;
970 return flags & LOOKUP_EXCL;
971 }
972
973 /*
974 * Inode and filehandle revalidation for lookups.
975 *
976 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
977 * or if the intent information indicates that we're about to open this
978 * particular file and the "nocto" mount flag is not set.
979 *
980 */
981 static inline
982 int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags)
983 {
984 struct nfs_server *server = NFS_SERVER(inode);
985
986 if (IS_AUTOMOUNT(inode))
987 return 0;
988 /* VFS wants an on-the-wire revalidation */
989 if (flags & LOOKUP_REVAL)
990 goto out_force;
991 /* This is an open(2) */
992 if ((flags & LOOKUP_OPEN) && !(server->flags & NFS_MOUNT_NOCTO) &&
993 (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode)))
994 goto out_force;
995 return 0;
996 out_force:
997 return __nfs_revalidate_inode(server, inode);
998 }
999
1000 /*
1001 * We judge how long we want to trust negative
1002 * dentries by looking at the parent inode mtime.
1003 *
1004 * If parent mtime has changed, we revalidate, else we wait for a
1005 * period corresponding to the parent's attribute cache timeout value.
1006 */
1007 static inline
1008 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
1009 unsigned int flags)
1010 {
1011 /* Don't revalidate a negative dentry if we're creating a new file */
1012 if (flags & LOOKUP_CREATE)
1013 return 0;
1014 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG)
1015 return 1;
1016 return !nfs_check_verifier(dir, dentry);
1017 }
1018
1019 /*
1020 * This is called every time the dcache has a lookup hit,
1021 * and we should check whether we can really trust that
1022 * lookup.
1023 *
1024 * NOTE! The hit can be a negative hit too, don't assume
1025 * we have an inode!
1026 *
1027 * If the parent directory is seen to have changed, we throw out the
1028 * cached dentry and do a new lookup.
1029 */
1030 static int nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1031 {
1032 struct inode *dir;
1033 struct inode *inode;
1034 struct dentry *parent;
1035 struct nfs_fh *fhandle = NULL;
1036 struct nfs_fattr *fattr = NULL;
1037 int error;
1038
1039 if (flags & LOOKUP_RCU)
1040 return -ECHILD;
1041
1042 parent = dget_parent(dentry);
1043 dir = parent->d_inode;
1044 nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
1045 inode = dentry->d_inode;
1046
1047 if (!inode) {
1048 if (nfs_neg_need_reval(dir, dentry, flags))
1049 goto out_bad;
1050 goto out_valid_noent;
1051 }
1052
1053 if (is_bad_inode(inode)) {
1054 dfprintk(LOOKUPCACHE, "%s: %s/%s has dud inode\n",
1055 __func__, dentry->d_parent->d_name.name,
1056 dentry->d_name.name);
1057 goto out_bad;
1058 }
1059
1060 if (NFS_PROTO(dir)->have_delegation(inode, FMODE_READ))
1061 goto out_set_verifier;
1062
1063 /* Force a full look up iff the parent directory has changed */
1064 if (!nfs_is_exclusive_create(dir, flags) && nfs_check_verifier(dir, dentry)) {
1065 if (nfs_lookup_verify_inode(inode, flags))
1066 goto out_zap_parent;
1067 goto out_valid;
1068 }
1069
1070 if (NFS_STALE(inode))
1071 goto out_bad;
1072
1073 error = -ENOMEM;
1074 fhandle = nfs_alloc_fhandle();
1075 fattr = nfs_alloc_fattr();
1076 if (fhandle == NULL || fattr == NULL)
1077 goto out_error;
1078
1079 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr);
1080 if (error)
1081 goto out_bad;
1082 if (nfs_compare_fh(NFS_FH(inode), fhandle))
1083 goto out_bad;
1084 if ((error = nfs_refresh_inode(inode, fattr)) != 0)
1085 goto out_bad;
1086
1087 nfs_free_fattr(fattr);
1088 nfs_free_fhandle(fhandle);
1089 out_set_verifier:
1090 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1091 out_valid:
1092 /* Success: notify readdir to use READDIRPLUS */
1093 nfs_advise_use_readdirplus(dir);
1094 out_valid_noent:
1095 dput(parent);
1096 dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is valid\n",
1097 __func__, dentry->d_parent->d_name.name,
1098 dentry->d_name.name);
1099 return 1;
1100 out_zap_parent:
1101 nfs_zap_caches(dir);
1102 out_bad:
1103 nfs_mark_for_revalidate(dir);
1104 if (inode && S_ISDIR(inode->i_mode)) {
1105 /* Purge readdir caches. */
1106 nfs_zap_caches(inode);
1107 /* If we have submounts, don't unhash ! */
1108 if (have_submounts(dentry))
1109 goto out_valid;
1110 if (dentry->d_flags & DCACHE_DISCONNECTED)
1111 goto out_valid;
1112 shrink_dcache_parent(dentry);
1113 }
1114 d_drop(dentry);
1115 nfs_free_fattr(fattr);
1116 nfs_free_fhandle(fhandle);
1117 dput(parent);
1118 dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is invalid\n",
1119 __func__, dentry->d_parent->d_name.name,
1120 dentry->d_name.name);
1121 return 0;
1122 out_error:
1123 nfs_free_fattr(fattr);
1124 nfs_free_fhandle(fhandle);
1125 dput(parent);
1126 dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) lookup returned error %d\n",
1127 __func__, dentry->d_parent->d_name.name,
1128 dentry->d_name.name, error);
1129 return error;
1130 }
1131
1132 /*
1133 * This is called from dput() when d_count is going to 0.
1134 */
1135 static int nfs_dentry_delete(const struct dentry *dentry)
1136 {
1137 dfprintk(VFS, "NFS: dentry_delete(%s/%s, %x)\n",
1138 dentry->d_parent->d_name.name, dentry->d_name.name,
1139 dentry->d_flags);
1140
1141 /* Unhash any dentry with a stale inode */
1142 if (dentry->d_inode != NULL && NFS_STALE(dentry->d_inode))
1143 return 1;
1144
1145 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1146 /* Unhash it, so that ->d_iput() would be called */
1147 return 1;
1148 }
1149 if (!(dentry->d_sb->s_flags & MS_ACTIVE)) {
1150 /* Unhash it, so that ancestors of killed async unlink
1151 * files will be cleaned up during umount */
1152 return 1;
1153 }
1154 return 0;
1155
1156 }
1157
1158 static void nfs_drop_nlink(struct inode *inode)
1159 {
1160 spin_lock(&inode->i_lock);
1161 if (inode->i_nlink > 0)
1162 drop_nlink(inode);
1163 spin_unlock(&inode->i_lock);
1164 }
1165
1166 /*
1167 * Called when the dentry loses inode.
1168 * We use it to clean up silly-renamed files.
1169 */
1170 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
1171 {
1172 if (S_ISDIR(inode->i_mode))
1173 /* drop any readdir cache as it could easily be old */
1174 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA;
1175
1176 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1177 drop_nlink(inode);
1178 nfs_complete_unlink(dentry, inode);
1179 }
1180 iput(inode);
1181 }
1182
1183 static void nfs_d_release(struct dentry *dentry)
1184 {
1185 /* free cached devname value, if it survived that far */
1186 if (unlikely(dentry->d_fsdata)) {
1187 if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1188 WARN_ON(1);
1189 else
1190 kfree(dentry->d_fsdata);
1191 }
1192 }
1193
1194 const struct dentry_operations nfs_dentry_operations = {
1195 .d_revalidate = nfs_lookup_revalidate,
1196 .d_delete = nfs_dentry_delete,
1197 .d_iput = nfs_dentry_iput,
1198 .d_automount = nfs_d_automount,
1199 .d_release = nfs_d_release,
1200 };
1201 EXPORT_SYMBOL_GPL(nfs_dentry_operations);
1202
1203 struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
1204 {
1205 struct dentry *res;
1206 struct dentry *parent;
1207 struct inode *inode = NULL;
1208 struct nfs_fh *fhandle = NULL;
1209 struct nfs_fattr *fattr = NULL;
1210 int error;
1211
1212 dfprintk(VFS, "NFS: lookup(%s/%s)\n",
1213 dentry->d_parent->d_name.name, dentry->d_name.name);
1214 nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
1215
1216 res = ERR_PTR(-ENAMETOOLONG);
1217 if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
1218 goto out;
1219
1220 /*
1221 * If we're doing an exclusive create, optimize away the lookup
1222 * but don't hash the dentry.
1223 */
1224 if (nfs_is_exclusive_create(dir, flags)) {
1225 d_instantiate(dentry, NULL);
1226 res = NULL;
1227 goto out;
1228 }
1229
1230 res = ERR_PTR(-ENOMEM);
1231 fhandle = nfs_alloc_fhandle();
1232 fattr = nfs_alloc_fattr();
1233 if (fhandle == NULL || fattr == NULL)
1234 goto out;
1235
1236 parent = dentry->d_parent;
1237 /* Protect against concurrent sillydeletes */
1238 nfs_block_sillyrename(parent);
1239 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr);
1240 if (error == -ENOENT)
1241 goto no_entry;
1242 if (error < 0) {
1243 res = ERR_PTR(error);
1244 goto out_unblock_sillyrename;
1245 }
1246 inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
1247 res = ERR_CAST(inode);
1248 if (IS_ERR(res))
1249 goto out_unblock_sillyrename;
1250
1251 /* Success: notify readdir to use READDIRPLUS */
1252 nfs_advise_use_readdirplus(dir);
1253
1254 no_entry:
1255 res = d_materialise_unique(dentry, inode);
1256 if (res != NULL) {
1257 if (IS_ERR(res))
1258 goto out_unblock_sillyrename;
1259 dentry = res;
1260 }
1261 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1262 out_unblock_sillyrename:
1263 nfs_unblock_sillyrename(parent);
1264 out:
1265 nfs_free_fattr(fattr);
1266 nfs_free_fhandle(fhandle);
1267 return res;
1268 }
1269 EXPORT_SYMBOL_GPL(nfs_lookup);
1270
1271 #if IS_ENABLED(CONFIG_NFS_V4)
1272 static int nfs4_lookup_revalidate(struct dentry *, unsigned int);
1273
1274 const struct dentry_operations nfs4_dentry_operations = {
1275 .d_revalidate = nfs4_lookup_revalidate,
1276 .d_delete = nfs_dentry_delete,
1277 .d_iput = nfs_dentry_iput,
1278 .d_automount = nfs_d_automount,
1279 .d_release = nfs_d_release,
1280 };
1281 EXPORT_SYMBOL_GPL(nfs4_dentry_operations);
1282
1283 static fmode_t flags_to_mode(int flags)
1284 {
1285 fmode_t res = (__force fmode_t)flags & FMODE_EXEC;
1286 if ((flags & O_ACCMODE) != O_WRONLY)
1287 res |= FMODE_READ;
1288 if ((flags & O_ACCMODE) != O_RDONLY)
1289 res |= FMODE_WRITE;
1290 return res;
1291 }
1292
1293 static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags)
1294 {
1295 return alloc_nfs_open_context(dentry, flags_to_mode(open_flags));
1296 }
1297
1298 static int do_open(struct inode *inode, struct file *filp)
1299 {
1300 nfs_fscache_set_inode_cookie(inode, filp);
1301 return 0;
1302 }
1303
1304 static int nfs_finish_open(struct nfs_open_context *ctx,
1305 struct dentry *dentry,
1306 struct file *file, unsigned open_flags,
1307 int *opened)
1308 {
1309 int err;
1310
1311 if (ctx->dentry != dentry) {
1312 dput(ctx->dentry);
1313 ctx->dentry = dget(dentry);
1314 }
1315
1316 /* If the open_intent is for execute, we have an extra check to make */
1317 if (ctx->mode & FMODE_EXEC) {
1318 err = nfs_may_open(dentry->d_inode, ctx->cred, open_flags);
1319 if (err < 0)
1320 goto out;
1321 }
1322
1323 err = finish_open(file, dentry, do_open, opened);
1324 if (err)
1325 goto out;
1326 nfs_file_set_open_context(file, ctx);
1327
1328 out:
1329 put_nfs_open_context(ctx);
1330 return err;
1331 }
1332
1333 int nfs_atomic_open(struct inode *dir, struct dentry *dentry,
1334 struct file *file, unsigned open_flags,
1335 umode_t mode, int *opened)
1336 {
1337 struct nfs_open_context *ctx;
1338 struct dentry *res;
1339 struct iattr attr = { .ia_valid = ATTR_OPEN };
1340 struct inode *inode;
1341 int err;
1342
1343 /* Expect a negative dentry */
1344 BUG_ON(dentry->d_inode);
1345
1346 dfprintk(VFS, "NFS: atomic_open(%s/%ld), %s\n",
1347 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1348
1349 /* NFS only supports OPEN on regular files */
1350 if ((open_flags & O_DIRECTORY)) {
1351 if (!d_unhashed(dentry)) {
1352 /*
1353 * Hashed negative dentry with O_DIRECTORY: dentry was
1354 * revalidated and is fine, no need to perform lookup
1355 * again
1356 */
1357 return -ENOENT;
1358 }
1359 goto no_open;
1360 }
1361
1362 if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
1363 return -ENAMETOOLONG;
1364
1365 if (open_flags & O_CREAT) {
1366 attr.ia_valid |= ATTR_MODE;
1367 attr.ia_mode = mode & ~current_umask();
1368 }
1369 if (open_flags & O_TRUNC) {
1370 attr.ia_valid |= ATTR_SIZE;
1371 attr.ia_size = 0;
1372 }
1373
1374 ctx = create_nfs_open_context(dentry, open_flags);
1375 err = PTR_ERR(ctx);
1376 if (IS_ERR(ctx))
1377 goto out;
1378
1379 nfs_block_sillyrename(dentry->d_parent);
1380 inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr);
1381 d_drop(dentry);
1382 if (IS_ERR(inode)) {
1383 nfs_unblock_sillyrename(dentry->d_parent);
1384 put_nfs_open_context(ctx);
1385 err = PTR_ERR(inode);
1386 switch (err) {
1387 case -ENOENT:
1388 d_add(dentry, NULL);
1389 break;
1390 case -EISDIR:
1391 case -ENOTDIR:
1392 goto no_open;
1393 case -ELOOP:
1394 if (!(open_flags & O_NOFOLLOW))
1395 goto no_open;
1396 break;
1397 /* case -EINVAL: */
1398 default:
1399 break;
1400 }
1401 goto out;
1402 }
1403 res = d_add_unique(dentry, inode);
1404 if (res != NULL)
1405 dentry = res;
1406
1407 nfs_unblock_sillyrename(dentry->d_parent);
1408 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1409
1410 err = nfs_finish_open(ctx, dentry, file, open_flags, opened);
1411
1412 dput(res);
1413 out:
1414 return err;
1415
1416 no_open:
1417 res = nfs_lookup(dir, dentry, 0);
1418 err = PTR_ERR(res);
1419 if (IS_ERR(res))
1420 goto out;
1421
1422 return finish_no_open(file, res);
1423 }
1424 EXPORT_SYMBOL_GPL(nfs_atomic_open);
1425
1426 static int nfs4_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1427 {
1428 struct dentry *parent = NULL;
1429 struct inode *inode;
1430 struct inode *dir;
1431 int ret = 0;
1432
1433 if (flags & LOOKUP_RCU)
1434 return -ECHILD;
1435
1436 if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY))
1437 goto no_open;
1438 if (d_mountpoint(dentry))
1439 goto no_open;
1440
1441 inode = dentry->d_inode;
1442 parent = dget_parent(dentry);
1443 dir = parent->d_inode;
1444
1445 /* We can't create new files in nfs_open_revalidate(), so we
1446 * optimize away revalidation of negative dentries.
1447 */
1448 if (inode == NULL) {
1449 if (!nfs_neg_need_reval(dir, dentry, flags))
1450 ret = 1;
1451 goto out;
1452 }
1453
1454 /* NFS only supports OPEN on regular files */
1455 if (!S_ISREG(inode->i_mode))
1456 goto no_open_dput;
1457 /* We cannot do exclusive creation on a positive dentry */
1458 if (flags & LOOKUP_EXCL)
1459 goto no_open_dput;
1460
1461 /* Let f_op->open() actually open (and revalidate) the file */
1462 ret = 1;
1463
1464 out:
1465 dput(parent);
1466 return ret;
1467
1468 no_open_dput:
1469 dput(parent);
1470 no_open:
1471 return nfs_lookup_revalidate(dentry, flags);
1472 }
1473
1474 #endif /* CONFIG_NFSV4 */
1475
1476 /*
1477 * Code common to create, mkdir, and mknod.
1478 */
1479 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
1480 struct nfs_fattr *fattr)
1481 {
1482 struct dentry *parent = dget_parent(dentry);
1483 struct inode *dir = parent->d_inode;
1484 struct inode *inode;
1485 int error = -EACCES;
1486
1487 d_drop(dentry);
1488
1489 /* We may have been initialized further down */
1490 if (dentry->d_inode)
1491 goto out;
1492 if (fhandle->size == 0) {
1493 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr);
1494 if (error)
1495 goto out_error;
1496 }
1497 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1498 if (!(fattr->valid & NFS_ATTR_FATTR)) {
1499 struct nfs_server *server = NFS_SB(dentry->d_sb);
1500 error = server->nfs_client->rpc_ops->getattr(server, fhandle, fattr);
1501 if (error < 0)
1502 goto out_error;
1503 }
1504 inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
1505 error = PTR_ERR(inode);
1506 if (IS_ERR(inode))
1507 goto out_error;
1508 d_add(dentry, inode);
1509 out:
1510 dput(parent);
1511 return 0;
1512 out_error:
1513 nfs_mark_for_revalidate(dir);
1514 dput(parent);
1515 return error;
1516 }
1517 EXPORT_SYMBOL_GPL(nfs_instantiate);
1518
1519 /*
1520 * Following a failed create operation, we drop the dentry rather
1521 * than retain a negative dentry. This avoids a problem in the event
1522 * that the operation succeeded on the server, but an error in the
1523 * reply path made it appear to have failed.
1524 */
1525 int nfs_create(struct inode *dir, struct dentry *dentry,
1526 umode_t mode, bool excl)
1527 {
1528 struct iattr attr;
1529 int open_flags = excl ? O_CREAT | O_EXCL : O_CREAT;
1530 int error;
1531
1532 dfprintk(VFS, "NFS: create(%s/%ld), %s\n",
1533 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1534
1535 attr.ia_mode = mode;
1536 attr.ia_valid = ATTR_MODE;
1537
1538 error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags);
1539 if (error != 0)
1540 goto out_err;
1541 return 0;
1542 out_err:
1543 d_drop(dentry);
1544 return error;
1545 }
1546 EXPORT_SYMBOL_GPL(nfs_create);
1547
1548 /*
1549 * See comments for nfs_proc_create regarding failed operations.
1550 */
1551 int
1552 nfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t rdev)
1553 {
1554 struct iattr attr;
1555 int status;
1556
1557 dfprintk(VFS, "NFS: mknod(%s/%ld), %s\n",
1558 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1559
1560 if (!new_valid_dev(rdev))
1561 return -EINVAL;
1562
1563 attr.ia_mode = mode;
1564 attr.ia_valid = ATTR_MODE;
1565
1566 status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
1567 if (status != 0)
1568 goto out_err;
1569 return 0;
1570 out_err:
1571 d_drop(dentry);
1572 return status;
1573 }
1574 EXPORT_SYMBOL_GPL(nfs_mknod);
1575
1576 /*
1577 * See comments for nfs_proc_create regarding failed operations.
1578 */
1579 int nfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1580 {
1581 struct iattr attr;
1582 int error;
1583
1584 dfprintk(VFS, "NFS: mkdir(%s/%ld), %s\n",
1585 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1586
1587 attr.ia_valid = ATTR_MODE;
1588 attr.ia_mode = mode | S_IFDIR;
1589
1590 error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
1591 if (error != 0)
1592 goto out_err;
1593 return 0;
1594 out_err:
1595 d_drop(dentry);
1596 return error;
1597 }
1598 EXPORT_SYMBOL_GPL(nfs_mkdir);
1599
1600 static void nfs_dentry_handle_enoent(struct dentry *dentry)
1601 {
1602 if (dentry->d_inode != NULL && !d_unhashed(dentry))
1603 d_delete(dentry);
1604 }
1605
1606 int nfs_rmdir(struct inode *dir, struct dentry *dentry)
1607 {
1608 int error;
1609
1610 dfprintk(VFS, "NFS: rmdir(%s/%ld), %s\n",
1611 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1612
1613 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1614 /* Ensure the VFS deletes this inode */
1615 if (error == 0 && dentry->d_inode != NULL)
1616 clear_nlink(dentry->d_inode);
1617 else if (error == -ENOENT)
1618 nfs_dentry_handle_enoent(dentry);
1619
1620 return error;
1621 }
1622 EXPORT_SYMBOL_GPL(nfs_rmdir);
1623
1624 /*
1625 * Remove a file after making sure there are no pending writes,
1626 * and after checking that the file has only one user.
1627 *
1628 * We invalidate the attribute cache and free the inode prior to the operation
1629 * to avoid possible races if the server reuses the inode.
1630 */
1631 static int nfs_safe_remove(struct dentry *dentry)
1632 {
1633 struct inode *dir = dentry->d_parent->d_inode;
1634 struct inode *inode = dentry->d_inode;
1635 int error = -EBUSY;
1636
1637 dfprintk(VFS, "NFS: safe_remove(%s/%s)\n",
1638 dentry->d_parent->d_name.name, dentry->d_name.name);
1639
1640 /* If the dentry was sillyrenamed, we simply call d_delete() */
1641 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1642 error = 0;
1643 goto out;
1644 }
1645
1646 if (inode != NULL) {
1647 NFS_PROTO(inode)->return_delegation(inode);
1648 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1649 /* The VFS may want to delete this inode */
1650 if (error == 0)
1651 nfs_drop_nlink(inode);
1652 nfs_mark_for_revalidate(inode);
1653 } else
1654 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1655 if (error == -ENOENT)
1656 nfs_dentry_handle_enoent(dentry);
1657 out:
1658 return error;
1659 }
1660
1661 /* We do silly rename. In case sillyrename() returns -EBUSY, the inode
1662 * belongs to an active ".nfs..." file and we return -EBUSY.
1663 *
1664 * If sillyrename() returns 0, we do nothing, otherwise we unlink.
1665 */
1666 int nfs_unlink(struct inode *dir, struct dentry *dentry)
1667 {
1668 int error;
1669 int need_rehash = 0;
1670
1671 dfprintk(VFS, "NFS: unlink(%s/%ld, %s)\n", dir->i_sb->s_id,
1672 dir->i_ino, dentry->d_name.name);
1673
1674 spin_lock(&dentry->d_lock);
1675 if (dentry->d_count > 1) {
1676 spin_unlock(&dentry->d_lock);
1677 /* Start asynchronous writeout of the inode */
1678 write_inode_now(dentry->d_inode, 0);
1679 error = nfs_sillyrename(dir, dentry);
1680 return error;
1681 }
1682 if (!d_unhashed(dentry)) {
1683 __d_drop(dentry);
1684 need_rehash = 1;
1685 }
1686 spin_unlock(&dentry->d_lock);
1687 error = nfs_safe_remove(dentry);
1688 if (!error || error == -ENOENT) {
1689 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1690 } else if (need_rehash)
1691 d_rehash(dentry);
1692 return error;
1693 }
1694 EXPORT_SYMBOL_GPL(nfs_unlink);
1695
1696 /*
1697 * To create a symbolic link, most file systems instantiate a new inode,
1698 * add a page to it containing the path, then write it out to the disk
1699 * using prepare_write/commit_write.
1700 *
1701 * Unfortunately the NFS client can't create the in-core inode first
1702 * because it needs a file handle to create an in-core inode (see
1703 * fs/nfs/inode.c:nfs_fhget). We only have a file handle *after* the
1704 * symlink request has completed on the server.
1705 *
1706 * So instead we allocate a raw page, copy the symname into it, then do
1707 * the SYMLINK request with the page as the buffer. If it succeeds, we
1708 * now have a new file handle and can instantiate an in-core NFS inode
1709 * and move the raw page into its mapping.
1710 */
1711 int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1712 {
1713 struct pagevec lru_pvec;
1714 struct page *page;
1715 char *kaddr;
1716 struct iattr attr;
1717 unsigned int pathlen = strlen(symname);
1718 int error;
1719
1720 dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s)\n", dir->i_sb->s_id,
1721 dir->i_ino, dentry->d_name.name, symname);
1722
1723 if (pathlen > PAGE_SIZE)
1724 return -ENAMETOOLONG;
1725
1726 attr.ia_mode = S_IFLNK | S_IRWXUGO;
1727 attr.ia_valid = ATTR_MODE;
1728
1729 page = alloc_page(GFP_HIGHUSER);
1730 if (!page)
1731 return -ENOMEM;
1732
1733 kaddr = kmap_atomic(page);
1734 memcpy(kaddr, symname, pathlen);
1735 if (pathlen < PAGE_SIZE)
1736 memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
1737 kunmap_atomic(kaddr);
1738
1739 error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
1740 if (error != 0) {
1741 dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s) error %d\n",
1742 dir->i_sb->s_id, dir->i_ino,
1743 dentry->d_name.name, symname, error);
1744 d_drop(dentry);
1745 __free_page(page);
1746 return error;
1747 }
1748
1749 /*
1750 * No big deal if we can't add this page to the page cache here.
1751 * READLINK will get the missing page from the server if needed.
1752 */
1753 pagevec_init(&lru_pvec, 0);
1754 if (!add_to_page_cache(page, dentry->d_inode->i_mapping, 0,
1755 GFP_KERNEL)) {
1756 pagevec_add(&lru_pvec, page);
1757 pagevec_lru_add_file(&lru_pvec);
1758 SetPageUptodate(page);
1759 unlock_page(page);
1760 } else
1761 __free_page(page);
1762
1763 return 0;
1764 }
1765 EXPORT_SYMBOL_GPL(nfs_symlink);
1766
1767 int
1768 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1769 {
1770 struct inode *inode = old_dentry->d_inode;
1771 int error;
1772
1773 dfprintk(VFS, "NFS: link(%s/%s -> %s/%s)\n",
1774 old_dentry->d_parent->d_name.name, old_dentry->d_name.name,
1775 dentry->d_parent->d_name.name, dentry->d_name.name);
1776
1777 NFS_PROTO(inode)->return_delegation(inode);
1778
1779 d_drop(dentry);
1780 error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
1781 if (error == 0) {
1782 ihold(inode);
1783 d_add(dentry, inode);
1784 }
1785 return error;
1786 }
1787 EXPORT_SYMBOL_GPL(nfs_link);
1788
1789 /*
1790 * RENAME
1791 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
1792 * different file handle for the same inode after a rename (e.g. when
1793 * moving to a different directory). A fail-safe method to do so would
1794 * be to look up old_dir/old_name, create a link to new_dir/new_name and
1795 * rename the old file using the sillyrename stuff. This way, the original
1796 * file in old_dir will go away when the last process iput()s the inode.
1797 *
1798 * FIXED.
1799 *
1800 * It actually works quite well. One needs to have the possibility for
1801 * at least one ".nfs..." file in each directory the file ever gets
1802 * moved or linked to which happens automagically with the new
1803 * implementation that only depends on the dcache stuff instead of
1804 * using the inode layer
1805 *
1806 * Unfortunately, things are a little more complicated than indicated
1807 * above. For a cross-directory move, we want to make sure we can get
1808 * rid of the old inode after the operation. This means there must be
1809 * no pending writes (if it's a file), and the use count must be 1.
1810 * If these conditions are met, we can drop the dentries before doing
1811 * the rename.
1812 */
1813 int nfs_rename(struct inode *old_dir, struct dentry *old_dentry,
1814 struct inode *new_dir, struct dentry *new_dentry)
1815 {
1816 struct inode *old_inode = old_dentry->d_inode;
1817 struct inode *new_inode = new_dentry->d_inode;
1818 struct dentry *dentry = NULL, *rehash = NULL;
1819 int error = -EBUSY;
1820
1821 dfprintk(VFS, "NFS: rename(%s/%s -> %s/%s, ct=%d)\n",
1822 old_dentry->d_parent->d_name.name, old_dentry->d_name.name,
1823 new_dentry->d_parent->d_name.name, new_dentry->d_name.name,
1824 new_dentry->d_count);
1825
1826 /*
1827 * For non-directories, check whether the target is busy and if so,
1828 * make a copy of the dentry and then do a silly-rename. If the
1829 * silly-rename succeeds, the copied dentry is hashed and becomes
1830 * the new target.
1831 */
1832 if (new_inode && !S_ISDIR(new_inode->i_mode)) {
1833 /*
1834 * To prevent any new references to the target during the
1835 * rename, we unhash the dentry in advance.
1836 */
1837 if (!d_unhashed(new_dentry)) {
1838 d_drop(new_dentry);
1839 rehash = new_dentry;
1840 }
1841
1842 if (new_dentry->d_count > 2) {
1843 int err;
1844
1845 /* copy the target dentry's name */
1846 dentry = d_alloc(new_dentry->d_parent,
1847 &new_dentry->d_name);
1848 if (!dentry)
1849 goto out;
1850
1851 /* silly-rename the existing target ... */
1852 err = nfs_sillyrename(new_dir, new_dentry);
1853 if (err)
1854 goto out;
1855
1856 new_dentry = dentry;
1857 rehash = NULL;
1858 new_inode = NULL;
1859 }
1860 }
1861
1862 NFS_PROTO(old_inode)->return_delegation(old_inode);
1863 if (new_inode != NULL)
1864 NFS_PROTO(new_inode)->return_delegation(new_inode);
1865
1866 error = NFS_PROTO(old_dir)->rename(old_dir, &old_dentry->d_name,
1867 new_dir, &new_dentry->d_name);
1868 nfs_mark_for_revalidate(old_inode);
1869 out:
1870 if (rehash)
1871 d_rehash(rehash);
1872 if (!error) {
1873 if (new_inode != NULL)
1874 nfs_drop_nlink(new_inode);
1875 d_move(old_dentry, new_dentry);
1876 nfs_set_verifier(new_dentry,
1877 nfs_save_change_attribute(new_dir));
1878 } else if (error == -ENOENT)
1879 nfs_dentry_handle_enoent(old_dentry);
1880
1881 /* new dentry created? */
1882 if (dentry)
1883 dput(dentry);
1884 return error;
1885 }
1886 EXPORT_SYMBOL_GPL(nfs_rename);
1887
1888 static DEFINE_SPINLOCK(nfs_access_lru_lock);
1889 static LIST_HEAD(nfs_access_lru_list);
1890 static atomic_long_t nfs_access_nr_entries;
1891
1892 static void nfs_access_free_entry(struct nfs_access_entry *entry)
1893 {
1894 put_rpccred(entry->cred);
1895 kfree(entry);
1896 smp_mb__before_atomic_dec();
1897 atomic_long_dec(&nfs_access_nr_entries);
1898 smp_mb__after_atomic_dec();
1899 }
1900
1901 static void nfs_access_free_list(struct list_head *head)
1902 {
1903 struct nfs_access_entry *cache;
1904
1905 while (!list_empty(head)) {
1906 cache = list_entry(head->next, struct nfs_access_entry, lru);
1907 list_del(&cache->lru);
1908 nfs_access_free_entry(cache);
1909 }
1910 }
1911
1912 int nfs_access_cache_shrinker(struct shrinker *shrink,
1913 struct shrink_control *sc)
1914 {
1915 LIST_HEAD(head);
1916 struct nfs_inode *nfsi, *next;
1917 struct nfs_access_entry *cache;
1918 int nr_to_scan = sc->nr_to_scan;
1919 gfp_t gfp_mask = sc->gfp_mask;
1920
1921 if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL)
1922 return (nr_to_scan == 0) ? 0 : -1;
1923
1924 spin_lock(&nfs_access_lru_lock);
1925 list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) {
1926 struct inode *inode;
1927
1928 if (nr_to_scan-- == 0)
1929 break;
1930 inode = &nfsi->vfs_inode;
1931 spin_lock(&inode->i_lock);
1932 if (list_empty(&nfsi->access_cache_entry_lru))
1933 goto remove_lru_entry;
1934 cache = list_entry(nfsi->access_cache_entry_lru.next,
1935 struct nfs_access_entry, lru);
1936 list_move(&cache->lru, &head);
1937 rb_erase(&cache->rb_node, &nfsi->access_cache);
1938 if (!list_empty(&nfsi->access_cache_entry_lru))
1939 list_move_tail(&nfsi->access_cache_inode_lru,
1940 &nfs_access_lru_list);
1941 else {
1942 remove_lru_entry:
1943 list_del_init(&nfsi->access_cache_inode_lru);
1944 smp_mb__before_clear_bit();
1945 clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
1946 smp_mb__after_clear_bit();
1947 }
1948 spin_unlock(&inode->i_lock);
1949 }
1950 spin_unlock(&nfs_access_lru_lock);
1951 nfs_access_free_list(&head);
1952 return (atomic_long_read(&nfs_access_nr_entries) / 100) * sysctl_vfs_cache_pressure;
1953 }
1954
1955 static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head)
1956 {
1957 struct rb_root *root_node = &nfsi->access_cache;
1958 struct rb_node *n;
1959 struct nfs_access_entry *entry;
1960
1961 /* Unhook entries from the cache */
1962 while ((n = rb_first(root_node)) != NULL) {
1963 entry = rb_entry(n, struct nfs_access_entry, rb_node);
1964 rb_erase(n, root_node);
1965 list_move(&entry->lru, head);
1966 }
1967 nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
1968 }
1969
1970 void nfs_access_zap_cache(struct inode *inode)
1971 {
1972 LIST_HEAD(head);
1973
1974 if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0)
1975 return;
1976 /* Remove from global LRU init */
1977 spin_lock(&nfs_access_lru_lock);
1978 if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
1979 list_del_init(&NFS_I(inode)->access_cache_inode_lru);
1980
1981 spin_lock(&inode->i_lock);
1982 __nfs_access_zap_cache(NFS_I(inode), &head);
1983 spin_unlock(&inode->i_lock);
1984 spin_unlock(&nfs_access_lru_lock);
1985 nfs_access_free_list(&head);
1986 }
1987 EXPORT_SYMBOL_GPL(nfs_access_zap_cache);
1988
1989 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, struct rpc_cred *cred)
1990 {
1991 struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
1992 struct nfs_access_entry *entry;
1993
1994 while (n != NULL) {
1995 entry = rb_entry(n, struct nfs_access_entry, rb_node);
1996
1997 if (cred < entry->cred)
1998 n = n->rb_left;
1999 else if (cred > entry->cred)
2000 n = n->rb_right;
2001 else
2002 return entry;
2003 }
2004 return NULL;
2005 }
2006
2007 static int nfs_access_get_cached(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res)
2008 {
2009 struct nfs_inode *nfsi = NFS_I(inode);
2010 struct nfs_access_entry *cache;
2011 int err = -ENOENT;
2012
2013 spin_lock(&inode->i_lock);
2014 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2015 goto out_zap;
2016 cache = nfs_access_search_rbtree(inode, cred);
2017 if (cache == NULL)
2018 goto out;
2019 if (!nfs_have_delegated_attributes(inode) &&
2020 !time_in_range_open(jiffies, cache->jiffies, cache->jiffies + nfsi->attrtimeo))
2021 goto out_stale;
2022 res->jiffies = cache->jiffies;
2023 res->cred = cache->cred;
2024 res->mask = cache->mask;
2025 list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
2026 err = 0;
2027 out:
2028 spin_unlock(&inode->i_lock);
2029 return err;
2030 out_stale:
2031 rb_erase(&cache->rb_node, &nfsi->access_cache);
2032 list_del(&cache->lru);
2033 spin_unlock(&inode->i_lock);
2034 nfs_access_free_entry(cache);
2035 return -ENOENT;
2036 out_zap:
2037 spin_unlock(&inode->i_lock);
2038 nfs_access_zap_cache(inode);
2039 return -ENOENT;
2040 }
2041
2042 static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set)
2043 {
2044 struct nfs_inode *nfsi = NFS_I(inode);
2045 struct rb_root *root_node = &nfsi->access_cache;
2046 struct rb_node **p = &root_node->rb_node;
2047 struct rb_node *parent = NULL;
2048 struct nfs_access_entry *entry;
2049
2050 spin_lock(&inode->i_lock);
2051 while (*p != NULL) {
2052 parent = *p;
2053 entry = rb_entry(parent, struct nfs_access_entry, rb_node);
2054
2055 if (set->cred < entry->cred)
2056 p = &parent->rb_left;
2057 else if (set->cred > entry->cred)
2058 p = &parent->rb_right;
2059 else
2060 goto found;
2061 }
2062 rb_link_node(&set->rb_node, parent, p);
2063 rb_insert_color(&set->rb_node, root_node);
2064 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2065 spin_unlock(&inode->i_lock);
2066 return;
2067 found:
2068 rb_replace_node(parent, &set->rb_node, root_node);
2069 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2070 list_del(&entry->lru);
2071 spin_unlock(&inode->i_lock);
2072 nfs_access_free_entry(entry);
2073 }
2074
2075 static void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set)
2076 {
2077 struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
2078 if (cache == NULL)
2079 return;
2080 RB_CLEAR_NODE(&cache->rb_node);
2081 cache->jiffies = set->jiffies;
2082 cache->cred = get_rpccred(set->cred);
2083 cache->mask = set->mask;
2084
2085 nfs_access_add_rbtree(inode, cache);
2086
2087 /* Update accounting */
2088 smp_mb__before_atomic_inc();
2089 atomic_long_inc(&nfs_access_nr_entries);
2090 smp_mb__after_atomic_inc();
2091
2092 /* Add inode to global LRU list */
2093 if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
2094 spin_lock(&nfs_access_lru_lock);
2095 if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2096 list_add_tail(&NFS_I(inode)->access_cache_inode_lru,
2097 &nfs_access_lru_list);
2098 spin_unlock(&nfs_access_lru_lock);
2099 }
2100 }
2101
2102 static int nfs_do_access(struct inode *inode, struct rpc_cred *cred, int mask)
2103 {
2104 struct nfs_access_entry cache;
2105 int status;
2106
2107 status = nfs_access_get_cached(inode, cred, &cache);
2108 if (status == 0)
2109 goto out;
2110
2111 /* Be clever: ask server to check for all possible rights */
2112 cache.mask = MAY_EXEC | MAY_WRITE | MAY_READ;
2113 cache.cred = cred;
2114 cache.jiffies = jiffies;
2115 status = NFS_PROTO(inode)->access(inode, &cache);
2116 if (status != 0) {
2117 if (status == -ESTALE) {
2118 nfs_zap_caches(inode);
2119 if (!S_ISDIR(inode->i_mode))
2120 set_bit(NFS_INO_STALE, &NFS_I(inode)->flags);
2121 }
2122 return status;
2123 }
2124 nfs_access_add_cache(inode, &cache);
2125 out:
2126 if ((mask & ~cache.mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
2127 return 0;
2128 return -EACCES;
2129 }
2130
2131 static int nfs_open_permission_mask(int openflags)
2132 {
2133 int mask = 0;
2134
2135 if ((openflags & O_ACCMODE) != O_WRONLY)
2136 mask |= MAY_READ;
2137 if ((openflags & O_ACCMODE) != O_RDONLY)
2138 mask |= MAY_WRITE;
2139 if (openflags & __FMODE_EXEC)
2140 mask |= MAY_EXEC;
2141 return mask;
2142 }
2143
2144 int nfs_may_open(struct inode *inode, struct rpc_cred *cred, int openflags)
2145 {
2146 return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
2147 }
2148 EXPORT_SYMBOL_GPL(nfs_may_open);
2149
2150 int nfs_permission(struct inode *inode, int mask)
2151 {
2152 struct rpc_cred *cred;
2153 int res = 0;
2154
2155 if (mask & MAY_NOT_BLOCK)
2156 return -ECHILD;
2157
2158 nfs_inc_stats(inode, NFSIOS_VFSACCESS);
2159
2160 if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
2161 goto out;
2162 /* Is this sys_access() ? */
2163 if (mask & (MAY_ACCESS | MAY_CHDIR))
2164 goto force_lookup;
2165
2166 switch (inode->i_mode & S_IFMT) {
2167 case S_IFLNK:
2168 goto out;
2169 case S_IFREG:
2170 /* NFSv4 has atomic_open... */
2171 if (nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN)
2172 && (mask & MAY_OPEN)
2173 && !(mask & MAY_EXEC))
2174 goto out;
2175 break;
2176 case S_IFDIR:
2177 /*
2178 * Optimize away all write operations, since the server
2179 * will check permissions when we perform the op.
2180 */
2181 if ((mask & MAY_WRITE) && !(mask & MAY_READ))
2182 goto out;
2183 }
2184
2185 force_lookup:
2186 if (!NFS_PROTO(inode)->access)
2187 goto out_notsup;
2188
2189 cred = rpc_lookup_cred();
2190 if (!IS_ERR(cred)) {
2191 res = nfs_do_access(inode, cred, mask);
2192 put_rpccred(cred);
2193 } else
2194 res = PTR_ERR(cred);
2195 out:
2196 if (!res && (mask & MAY_EXEC) && !execute_ok(inode))
2197 res = -EACCES;
2198
2199 dfprintk(VFS, "NFS: permission(%s/%ld), mask=0x%x, res=%d\n",
2200 inode->i_sb->s_id, inode->i_ino, mask, res);
2201 return res;
2202 out_notsup:
2203 res = nfs_revalidate_inode(NFS_SERVER(inode), inode);
2204 if (res == 0)
2205 res = generic_permission(inode, mask);
2206 goto out;
2207 }
2208 EXPORT_SYMBOL_GPL(nfs_permission);
2209
2210 /*
2211 * Local variables:
2212 * version-control: t
2213 * kept-new-versions: 5
2214 * End:
2215 */
This page took 0.101415 seconds and 5 git commands to generate.