68e0688904ea428853cf626140bb0deed9d72423
[deliverable/linux.git] / fs / nfs / dir.c
1 /*
2 * linux/fs/nfs/dir.c
3 *
4 * Copyright (C) 1992 Rick Sladkey
5 *
6 * nfs directory handling functions
7 *
8 * 10 Apr 1996 Added silly rename for unlink --okir
9 * 28 Sep 1996 Improved directory cache --okir
10 * 23 Aug 1997 Claus Heine claus@momo.math.rwth-aachen.de
11 * Re-implemented silly rename for unlink, newly implemented
12 * silly rename for nfs_rename() following the suggestions
13 * of Olaf Kirch (okir) found in this file.
14 * Following Linus comments on my original hack, this version
15 * depends only on the dcache stuff and doesn't touch the inode
16 * layer (iput() and friends).
17 * 6 Jun 1999 Cache readdir lookups in the page cache. -DaveM
18 */
19
20 #include <linux/time.h>
21 #include <linux/errno.h>
22 #include <linux/stat.h>
23 #include <linux/fcntl.h>
24 #include <linux/string.h>
25 #include <linux/kernel.h>
26 #include <linux/slab.h>
27 #include <linux/mm.h>
28 #include <linux/sunrpc/clnt.h>
29 #include <linux/nfs_fs.h>
30 #include <linux/nfs_mount.h>
31 #include <linux/pagemap.h>
32 #include <linux/smp_lock.h>
33 #include <linux/pagevec.h>
34 #include <linux/namei.h>
35 #include <linux/mount.h>
36 #include <linux/sched.h>
37
38 #include "nfs4_fs.h"
39 #include "delegation.h"
40 #include "iostat.h"
41 #include "internal.h"
42
43 /* #define NFS_DEBUG_VERBOSE 1 */
44
45 static int nfs_opendir(struct inode *, struct file *);
46 static int nfs_readdir(struct file *, void *, filldir_t);
47 static struct dentry *nfs_lookup(struct inode *, struct dentry *, struct nameidata *);
48 static int nfs_create(struct inode *, struct dentry *, int, struct nameidata *);
49 static int nfs_mkdir(struct inode *, struct dentry *, int);
50 static int nfs_rmdir(struct inode *, struct dentry *);
51 static int nfs_unlink(struct inode *, struct dentry *);
52 static int nfs_symlink(struct inode *, struct dentry *, const char *);
53 static int nfs_link(struct dentry *, struct inode *, struct dentry *);
54 static int nfs_mknod(struct inode *, struct dentry *, int, dev_t);
55 static int nfs_rename(struct inode *, struct dentry *,
56 struct inode *, struct dentry *);
57 static int nfs_fsync_dir(struct file *, struct dentry *, int);
58 static loff_t nfs_llseek_dir(struct file *, loff_t, int);
59
60 const struct file_operations nfs_dir_operations = {
61 .llseek = nfs_llseek_dir,
62 .read = generic_read_dir,
63 .readdir = nfs_readdir,
64 .open = nfs_opendir,
65 .release = nfs_release,
66 .fsync = nfs_fsync_dir,
67 };
68
69 const struct inode_operations nfs_dir_inode_operations = {
70 .create = nfs_create,
71 .lookup = nfs_lookup,
72 .link = nfs_link,
73 .unlink = nfs_unlink,
74 .symlink = nfs_symlink,
75 .mkdir = nfs_mkdir,
76 .rmdir = nfs_rmdir,
77 .mknod = nfs_mknod,
78 .rename = nfs_rename,
79 .permission = nfs_permission,
80 .getattr = nfs_getattr,
81 .setattr = nfs_setattr,
82 };
83
84 #ifdef CONFIG_NFS_V3
85 const struct inode_operations nfs3_dir_inode_operations = {
86 .create = nfs_create,
87 .lookup = nfs_lookup,
88 .link = nfs_link,
89 .unlink = nfs_unlink,
90 .symlink = nfs_symlink,
91 .mkdir = nfs_mkdir,
92 .rmdir = nfs_rmdir,
93 .mknod = nfs_mknod,
94 .rename = nfs_rename,
95 .permission = nfs_permission,
96 .getattr = nfs_getattr,
97 .setattr = nfs_setattr,
98 .listxattr = nfs3_listxattr,
99 .getxattr = nfs3_getxattr,
100 .setxattr = nfs3_setxattr,
101 .removexattr = nfs3_removexattr,
102 };
103 #endif /* CONFIG_NFS_V3 */
104
105 #ifdef CONFIG_NFS_V4
106
107 static struct dentry *nfs_atomic_lookup(struct inode *, struct dentry *, struct nameidata *);
108 const struct inode_operations nfs4_dir_inode_operations = {
109 .create = nfs_create,
110 .lookup = nfs_atomic_lookup,
111 .link = nfs_link,
112 .unlink = nfs_unlink,
113 .symlink = nfs_symlink,
114 .mkdir = nfs_mkdir,
115 .rmdir = nfs_rmdir,
116 .mknod = nfs_mknod,
117 .rename = nfs_rename,
118 .permission = nfs_permission,
119 .getattr = nfs_getattr,
120 .setattr = nfs_setattr,
121 .getxattr = nfs4_getxattr,
122 .setxattr = nfs4_setxattr,
123 .listxattr = nfs4_listxattr,
124 };
125
126 #endif /* CONFIG_NFS_V4 */
127
128 /*
129 * Open file
130 */
131 static int
132 nfs_opendir(struct inode *inode, struct file *filp)
133 {
134 int res;
135
136 dfprintk(FILE, "NFS: open dir(%s/%s)\n",
137 filp->f_path.dentry->d_parent->d_name.name,
138 filp->f_path.dentry->d_name.name);
139
140 nfs_inc_stats(inode, NFSIOS_VFSOPEN);
141
142 /* Call generic open code in order to cache credentials */
143 res = nfs_open(inode, filp);
144 return res;
145 }
146
147 typedef __be32 * (*decode_dirent_t)(__be32 *, struct nfs_entry *, int);
148 typedef struct {
149 struct file *file;
150 struct page *page;
151 unsigned long page_index;
152 __be32 *ptr;
153 u64 *dir_cookie;
154 loff_t current_index;
155 struct nfs_entry *entry;
156 decode_dirent_t decode;
157 int plus;
158 unsigned long timestamp;
159 int timestamp_valid;
160 } nfs_readdir_descriptor_t;
161
162 /* Now we cache directories properly, by stuffing the dirent
163 * data directly in the page cache.
164 *
165 * Inode invalidation due to refresh etc. takes care of
166 * _everything_, no sloppy entry flushing logic, no extraneous
167 * copying, network direct to page cache, the way it was meant
168 * to be.
169 *
170 * NOTE: Dirent information verification is done always by the
171 * page-in of the RPC reply, nowhere else, this simplies
172 * things substantially.
173 */
174 static
175 int nfs_readdir_filler(nfs_readdir_descriptor_t *desc, struct page *page)
176 {
177 struct file *file = desc->file;
178 struct inode *inode = file->f_path.dentry->d_inode;
179 struct rpc_cred *cred = nfs_file_cred(file);
180 unsigned long timestamp;
181 int error;
182
183 dfprintk(DIRCACHE, "NFS: %s: reading cookie %Lu into page %lu\n",
184 __func__, (long long)desc->entry->cookie,
185 page->index);
186
187 again:
188 timestamp = jiffies;
189 error = NFS_PROTO(inode)->readdir(file->f_path.dentry, cred, desc->entry->cookie, page,
190 NFS_SERVER(inode)->dtsize, desc->plus);
191 if (error < 0) {
192 /* We requested READDIRPLUS, but the server doesn't grok it */
193 if (error == -ENOTSUPP && desc->plus) {
194 NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
195 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
196 desc->plus = 0;
197 goto again;
198 }
199 goto error;
200 }
201 desc->timestamp = timestamp;
202 desc->timestamp_valid = 1;
203 SetPageUptodate(page);
204 /* Ensure consistent page alignment of the data.
205 * Note: assumes we have exclusive access to this mapping either
206 * through inode->i_mutex or some other mechanism.
207 */
208 if (invalidate_inode_pages2_range(inode->i_mapping, page->index + 1, -1) < 0) {
209 /* Should never happen */
210 nfs_zap_mapping(inode, inode->i_mapping);
211 }
212 unlock_page(page);
213 return 0;
214 error:
215 unlock_page(page);
216 return -EIO;
217 }
218
219 static inline
220 int dir_decode(nfs_readdir_descriptor_t *desc)
221 {
222 __be32 *p = desc->ptr;
223 p = desc->decode(p, desc->entry, desc->plus);
224 if (IS_ERR(p))
225 return PTR_ERR(p);
226 desc->ptr = p;
227 if (desc->timestamp_valid)
228 desc->entry->fattr->time_start = desc->timestamp;
229 else
230 desc->entry->fattr->valid &= ~NFS_ATTR_FATTR;
231 return 0;
232 }
233
234 static inline
235 void dir_page_release(nfs_readdir_descriptor_t *desc)
236 {
237 kunmap(desc->page);
238 page_cache_release(desc->page);
239 desc->page = NULL;
240 desc->ptr = NULL;
241 }
242
243 /*
244 * Given a pointer to a buffer that has already been filled by a call
245 * to readdir, find the next entry with cookie '*desc->dir_cookie'.
246 *
247 * If the end of the buffer has been reached, return -EAGAIN, if not,
248 * return the offset within the buffer of the next entry to be
249 * read.
250 */
251 static inline
252 int find_dirent(nfs_readdir_descriptor_t *desc)
253 {
254 struct nfs_entry *entry = desc->entry;
255 int loop_count = 0,
256 status;
257
258 while((status = dir_decode(desc)) == 0) {
259 dfprintk(DIRCACHE, "NFS: %s: examining cookie %Lu\n",
260 __func__, (unsigned long long)entry->cookie);
261 if (entry->prev_cookie == *desc->dir_cookie)
262 break;
263 if (loop_count++ > 200) {
264 loop_count = 0;
265 schedule();
266 }
267 }
268 return status;
269 }
270
271 /*
272 * Given a pointer to a buffer that has already been filled by a call
273 * to readdir, find the entry at offset 'desc->file->f_pos'.
274 *
275 * If the end of the buffer has been reached, return -EAGAIN, if not,
276 * return the offset within the buffer of the next entry to be
277 * read.
278 */
279 static inline
280 int find_dirent_index(nfs_readdir_descriptor_t *desc)
281 {
282 struct nfs_entry *entry = desc->entry;
283 int loop_count = 0,
284 status;
285
286 for(;;) {
287 status = dir_decode(desc);
288 if (status)
289 break;
290
291 dfprintk(DIRCACHE, "NFS: found cookie %Lu at index %Ld\n",
292 (unsigned long long)entry->cookie, desc->current_index);
293
294 if (desc->file->f_pos == desc->current_index) {
295 *desc->dir_cookie = entry->cookie;
296 break;
297 }
298 desc->current_index++;
299 if (loop_count++ > 200) {
300 loop_count = 0;
301 schedule();
302 }
303 }
304 return status;
305 }
306
307 /*
308 * Find the given page, and call find_dirent() or find_dirent_index in
309 * order to try to return the next entry.
310 */
311 static inline
312 int find_dirent_page(nfs_readdir_descriptor_t *desc)
313 {
314 struct inode *inode = desc->file->f_path.dentry->d_inode;
315 struct page *page;
316 int status;
317
318 dfprintk(DIRCACHE, "NFS: %s: searching page %ld for target %Lu\n",
319 __func__, desc->page_index,
320 (long long) *desc->dir_cookie);
321
322 /* If we find the page in the page_cache, we cannot be sure
323 * how fresh the data is, so we will ignore readdir_plus attributes.
324 */
325 desc->timestamp_valid = 0;
326 page = read_cache_page(inode->i_mapping, desc->page_index,
327 (filler_t *)nfs_readdir_filler, desc);
328 if (IS_ERR(page)) {
329 status = PTR_ERR(page);
330 goto out;
331 }
332
333 /* NOTE: Someone else may have changed the READDIRPLUS flag */
334 desc->page = page;
335 desc->ptr = kmap(page); /* matching kunmap in nfs_do_filldir */
336 if (*desc->dir_cookie != 0)
337 status = find_dirent(desc);
338 else
339 status = find_dirent_index(desc);
340 if (status < 0)
341 dir_page_release(desc);
342 out:
343 dfprintk(DIRCACHE, "NFS: %s: returns %d\n", __func__, status);
344 return status;
345 }
346
347 /*
348 * Recurse through the page cache pages, and return a
349 * filled nfs_entry structure of the next directory entry if possible.
350 *
351 * The target for the search is '*desc->dir_cookie' if non-0,
352 * 'desc->file->f_pos' otherwise
353 */
354 static inline
355 int readdir_search_pagecache(nfs_readdir_descriptor_t *desc)
356 {
357 int loop_count = 0;
358 int res;
359
360 /* Always search-by-index from the beginning of the cache */
361 if (*desc->dir_cookie == 0) {
362 dfprintk(DIRCACHE, "NFS: readdir_search_pagecache() searching for offset %Ld\n",
363 (long long)desc->file->f_pos);
364 desc->page_index = 0;
365 desc->entry->cookie = desc->entry->prev_cookie = 0;
366 desc->entry->eof = 0;
367 desc->current_index = 0;
368 } else
369 dfprintk(DIRCACHE, "NFS: readdir_search_pagecache() searching for cookie %Lu\n",
370 (unsigned long long)*desc->dir_cookie);
371
372 for (;;) {
373 res = find_dirent_page(desc);
374 if (res != -EAGAIN)
375 break;
376 /* Align to beginning of next page */
377 desc->page_index ++;
378 if (loop_count++ > 200) {
379 loop_count = 0;
380 schedule();
381 }
382 }
383
384 dfprintk(DIRCACHE, "NFS: %s: returns %d\n", __func__, res);
385 return res;
386 }
387
388 static inline unsigned int dt_type(struct inode *inode)
389 {
390 return (inode->i_mode >> 12) & 15;
391 }
392
393 static struct dentry *nfs_readdir_lookup(nfs_readdir_descriptor_t *desc);
394
395 /*
396 * Once we've found the start of the dirent within a page: fill 'er up...
397 */
398 static
399 int nfs_do_filldir(nfs_readdir_descriptor_t *desc, void *dirent,
400 filldir_t filldir)
401 {
402 struct file *file = desc->file;
403 struct nfs_entry *entry = desc->entry;
404 struct dentry *dentry = NULL;
405 u64 fileid;
406 int loop_count = 0,
407 res;
408
409 dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling starting @ cookie %Lu\n",
410 (unsigned long long)entry->cookie);
411
412 for(;;) {
413 unsigned d_type = DT_UNKNOWN;
414 /* Note: entry->prev_cookie contains the cookie for
415 * retrieving the current dirent on the server */
416 fileid = entry->ino;
417
418 /* Get a dentry if we have one */
419 if (dentry != NULL)
420 dput(dentry);
421 dentry = nfs_readdir_lookup(desc);
422
423 /* Use readdirplus info */
424 if (dentry != NULL && dentry->d_inode != NULL) {
425 d_type = dt_type(dentry->d_inode);
426 fileid = NFS_FILEID(dentry->d_inode);
427 }
428
429 res = filldir(dirent, entry->name, entry->len,
430 file->f_pos, nfs_compat_user_ino64(fileid),
431 d_type);
432 if (res < 0)
433 break;
434 file->f_pos++;
435 *desc->dir_cookie = entry->cookie;
436 if (dir_decode(desc) != 0) {
437 desc->page_index ++;
438 break;
439 }
440 if (loop_count++ > 200) {
441 loop_count = 0;
442 schedule();
443 }
444 }
445 dir_page_release(desc);
446 if (dentry != NULL)
447 dput(dentry);
448 dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n",
449 (unsigned long long)*desc->dir_cookie, res);
450 return res;
451 }
452
453 /*
454 * If we cannot find a cookie in our cache, we suspect that this is
455 * because it points to a deleted file, so we ask the server to return
456 * whatever it thinks is the next entry. We then feed this to filldir.
457 * If all goes well, we should then be able to find our way round the
458 * cache on the next call to readdir_search_pagecache();
459 *
460 * NOTE: we cannot add the anonymous page to the pagecache because
461 * the data it contains might not be page aligned. Besides,
462 * we should already have a complete representation of the
463 * directory in the page cache by the time we get here.
464 */
465 static inline
466 int uncached_readdir(nfs_readdir_descriptor_t *desc, void *dirent,
467 filldir_t filldir)
468 {
469 struct file *file = desc->file;
470 struct inode *inode = file->f_path.dentry->d_inode;
471 struct rpc_cred *cred = nfs_file_cred(file);
472 struct page *page = NULL;
473 int status;
474 unsigned long timestamp;
475
476 dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n",
477 (unsigned long long)*desc->dir_cookie);
478
479 page = alloc_page(GFP_HIGHUSER);
480 if (!page) {
481 status = -ENOMEM;
482 goto out;
483 }
484 timestamp = jiffies;
485 status = NFS_PROTO(inode)->readdir(file->f_path.dentry, cred,
486 *desc->dir_cookie, page,
487 NFS_SERVER(inode)->dtsize,
488 desc->plus);
489 desc->page = page;
490 desc->ptr = kmap(page); /* matching kunmap in nfs_do_filldir */
491 if (status >= 0) {
492 desc->timestamp = timestamp;
493 desc->timestamp_valid = 1;
494 if ((status = dir_decode(desc)) == 0)
495 desc->entry->prev_cookie = *desc->dir_cookie;
496 } else
497 status = -EIO;
498 if (status < 0)
499 goto out_release;
500
501 status = nfs_do_filldir(desc, dirent, filldir);
502
503 /* Reset read descriptor so it searches the page cache from
504 * the start upon the next call to readdir_search_pagecache() */
505 desc->page_index = 0;
506 desc->entry->cookie = desc->entry->prev_cookie = 0;
507 desc->entry->eof = 0;
508 out:
509 dfprintk(DIRCACHE, "NFS: %s: returns %d\n",
510 __func__, status);
511 return status;
512 out_release:
513 dir_page_release(desc);
514 goto out;
515 }
516
517 /* The file offset position represents the dirent entry number. A
518 last cookie cache takes care of the common case of reading the
519 whole directory.
520 */
521 static int nfs_readdir(struct file *filp, void *dirent, filldir_t filldir)
522 {
523 struct dentry *dentry = filp->f_path.dentry;
524 struct inode *inode = dentry->d_inode;
525 nfs_readdir_descriptor_t my_desc,
526 *desc = &my_desc;
527 struct nfs_entry my_entry;
528 struct nfs_fh fh;
529 struct nfs_fattr fattr;
530 long res;
531
532 dfprintk(FILE, "NFS: readdir(%s/%s) starting at cookie %llu\n",
533 dentry->d_parent->d_name.name, dentry->d_name.name,
534 (long long)filp->f_pos);
535 nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
536
537 lock_kernel();
538
539 /*
540 * filp->f_pos points to the dirent entry number.
541 * *desc->dir_cookie has the cookie for the next entry. We have
542 * to either find the entry with the appropriate number or
543 * revalidate the cookie.
544 */
545 memset(desc, 0, sizeof(*desc));
546
547 desc->file = filp;
548 desc->dir_cookie = &nfs_file_open_context(filp)->dir_cookie;
549 desc->decode = NFS_PROTO(inode)->decode_dirent;
550 desc->plus = NFS_USE_READDIRPLUS(inode);
551
552 my_entry.cookie = my_entry.prev_cookie = 0;
553 my_entry.eof = 0;
554 my_entry.fh = &fh;
555 my_entry.fattr = &fattr;
556 nfs_fattr_init(&fattr);
557 desc->entry = &my_entry;
558
559 nfs_block_sillyrename(dentry);
560 res = nfs_revalidate_mapping_nolock(inode, filp->f_mapping);
561 if (res < 0)
562 goto out;
563
564 while(!desc->entry->eof) {
565 res = readdir_search_pagecache(desc);
566
567 if (res == -EBADCOOKIE) {
568 /* This means either end of directory */
569 if (*desc->dir_cookie && desc->entry->cookie != *desc->dir_cookie) {
570 /* Or that the server has 'lost' a cookie */
571 res = uncached_readdir(desc, dirent, filldir);
572 if (res >= 0)
573 continue;
574 }
575 res = 0;
576 break;
577 }
578 if (res == -ETOOSMALL && desc->plus) {
579 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
580 nfs_zap_caches(inode);
581 desc->plus = 0;
582 desc->entry->eof = 0;
583 continue;
584 }
585 if (res < 0)
586 break;
587
588 res = nfs_do_filldir(desc, dirent, filldir);
589 if (res < 0) {
590 res = 0;
591 break;
592 }
593 }
594 out:
595 nfs_unblock_sillyrename(dentry);
596 unlock_kernel();
597 if (res > 0)
598 res = 0;
599 dfprintk(FILE, "NFS: readdir(%s/%s) returns %ld\n",
600 dentry->d_parent->d_name.name, dentry->d_name.name,
601 res);
602 return res;
603 }
604
605 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int origin)
606 {
607 struct dentry *dentry = filp->f_path.dentry;
608 struct inode *inode = dentry->d_inode;
609
610 dfprintk(FILE, "NFS: llseek dir(%s/%s, %lld, %d)\n",
611 dentry->d_parent->d_name.name,
612 dentry->d_name.name,
613 offset, origin);
614
615 mutex_lock(&inode->i_mutex);
616 switch (origin) {
617 case 1:
618 offset += filp->f_pos;
619 case 0:
620 if (offset >= 0)
621 break;
622 default:
623 offset = -EINVAL;
624 goto out;
625 }
626 if (offset != filp->f_pos) {
627 filp->f_pos = offset;
628 nfs_file_open_context(filp)->dir_cookie = 0;
629 }
630 out:
631 mutex_unlock(&inode->i_mutex);
632 return offset;
633 }
634
635 /*
636 * All directory operations under NFS are synchronous, so fsync()
637 * is a dummy operation.
638 */
639 static int nfs_fsync_dir(struct file *filp, struct dentry *dentry, int datasync)
640 {
641 dfprintk(FILE, "NFS: fsync dir(%s/%s) datasync %d\n",
642 dentry->d_parent->d_name.name, dentry->d_name.name,
643 datasync);
644
645 nfs_inc_stats(dentry->d_inode, NFSIOS_VFSFSYNC);
646 return 0;
647 }
648
649 /**
650 * nfs_force_lookup_revalidate - Mark the directory as having changed
651 * @dir - pointer to directory inode
652 *
653 * This forces the revalidation code in nfs_lookup_revalidate() to do a
654 * full lookup on all child dentries of 'dir' whenever a change occurs
655 * on the server that might have invalidated our dcache.
656 *
657 * The caller should be holding dir->i_lock
658 */
659 void nfs_force_lookup_revalidate(struct inode *dir)
660 {
661 NFS_I(dir)->cache_change_attribute = jiffies;
662 }
663
664 /*
665 * A check for whether or not the parent directory has changed.
666 * In the case it has, we assume that the dentries are untrustworthy
667 * and may need to be looked up again.
668 */
669 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry)
670 {
671 if (IS_ROOT(dentry))
672 return 1;
673 if (!nfs_verify_change_attribute(dir, dentry->d_time))
674 return 0;
675 /* Revalidate nfsi->cache_change_attribute before we declare a match */
676 if (nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
677 return 0;
678 if (!nfs_verify_change_attribute(dir, dentry->d_time))
679 return 0;
680 return 1;
681 }
682
683 /*
684 * Return the intent data that applies to this particular path component
685 *
686 * Note that the current set of intents only apply to the very last
687 * component of the path.
688 * We check for this using LOOKUP_CONTINUE and LOOKUP_PARENT.
689 */
690 static inline unsigned int nfs_lookup_check_intent(struct nameidata *nd, unsigned int mask)
691 {
692 if (nd->flags & (LOOKUP_CONTINUE|LOOKUP_PARENT))
693 return 0;
694 return nd->flags & mask;
695 }
696
697 /*
698 * Use intent information to check whether or not we're going to do
699 * an O_EXCL create using this path component.
700 */
701 static int nfs_is_exclusive_create(struct inode *dir, struct nameidata *nd)
702 {
703 if (NFS_PROTO(dir)->version == 2)
704 return 0;
705 if (nd == NULL || nfs_lookup_check_intent(nd, LOOKUP_CREATE) == 0)
706 return 0;
707 return (nd->intent.open.flags & O_EXCL) != 0;
708 }
709
710 /*
711 * Inode and filehandle revalidation for lookups.
712 *
713 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
714 * or if the intent information indicates that we're about to open this
715 * particular file and the "nocto" mount flag is not set.
716 *
717 */
718 static inline
719 int nfs_lookup_verify_inode(struct inode *inode, struct nameidata *nd)
720 {
721 struct nfs_server *server = NFS_SERVER(inode);
722
723 if (test_bit(NFS_INO_MOUNTPOINT, &NFS_I(inode)->flags))
724 return 0;
725 if (nd != NULL) {
726 /* VFS wants an on-the-wire revalidation */
727 if (nd->flags & LOOKUP_REVAL)
728 goto out_force;
729 /* This is an open(2) */
730 if (nfs_lookup_check_intent(nd, LOOKUP_OPEN) != 0 &&
731 !(server->flags & NFS_MOUNT_NOCTO) &&
732 (S_ISREG(inode->i_mode) ||
733 S_ISDIR(inode->i_mode)))
734 goto out_force;
735 return 0;
736 }
737 return nfs_revalidate_inode(server, inode);
738 out_force:
739 return __nfs_revalidate_inode(server, inode);
740 }
741
742 /*
743 * We judge how long we want to trust negative
744 * dentries by looking at the parent inode mtime.
745 *
746 * If parent mtime has changed, we revalidate, else we wait for a
747 * period corresponding to the parent's attribute cache timeout value.
748 */
749 static inline
750 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
751 struct nameidata *nd)
752 {
753 /* Don't revalidate a negative dentry if we're creating a new file */
754 if (nd != NULL && nfs_lookup_check_intent(nd, LOOKUP_CREATE) != 0)
755 return 0;
756 return !nfs_check_verifier(dir, dentry);
757 }
758
759 /*
760 * This is called every time the dcache has a lookup hit,
761 * and we should check whether we can really trust that
762 * lookup.
763 *
764 * NOTE! The hit can be a negative hit too, don't assume
765 * we have an inode!
766 *
767 * If the parent directory is seen to have changed, we throw out the
768 * cached dentry and do a new lookup.
769 */
770 static int nfs_lookup_revalidate(struct dentry * dentry, struct nameidata *nd)
771 {
772 struct inode *dir;
773 struct inode *inode;
774 struct dentry *parent;
775 int error;
776 struct nfs_fh fhandle;
777 struct nfs_fattr fattr;
778
779 parent = dget_parent(dentry);
780 dir = parent->d_inode;
781 nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
782 inode = dentry->d_inode;
783
784 if (!inode) {
785 if (nfs_neg_need_reval(dir, dentry, nd))
786 goto out_bad;
787 goto out_valid;
788 }
789
790 if (is_bad_inode(inode)) {
791 dfprintk(LOOKUPCACHE, "%s: %s/%s has dud inode\n",
792 __func__, dentry->d_parent->d_name.name,
793 dentry->d_name.name);
794 goto out_bad;
795 }
796
797 /* Force a full look up iff the parent directory has changed */
798 if (!nfs_is_exclusive_create(dir, nd) && nfs_check_verifier(dir, dentry)) {
799 if (nfs_lookup_verify_inode(inode, nd))
800 goto out_zap_parent;
801 goto out_valid;
802 }
803
804 if (NFS_STALE(inode))
805 goto out_bad;
806
807 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, &fhandle, &fattr);
808 if (error)
809 goto out_bad;
810 if (nfs_compare_fh(NFS_FH(inode), &fhandle))
811 goto out_bad;
812 if ((error = nfs_refresh_inode(inode, &fattr)) != 0)
813 goto out_bad;
814
815 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
816 out_valid:
817 dput(parent);
818 dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is valid\n",
819 __func__, dentry->d_parent->d_name.name,
820 dentry->d_name.name);
821 return 1;
822 out_zap_parent:
823 nfs_zap_caches(dir);
824 out_bad:
825 nfs_mark_for_revalidate(dir);
826 if (inode && S_ISDIR(inode->i_mode)) {
827 /* Purge readdir caches. */
828 nfs_zap_caches(inode);
829 /* If we have submounts, don't unhash ! */
830 if (have_submounts(dentry))
831 goto out_valid;
832 shrink_dcache_parent(dentry);
833 }
834 d_drop(dentry);
835 dput(parent);
836 dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is invalid\n",
837 __func__, dentry->d_parent->d_name.name,
838 dentry->d_name.name);
839 return 0;
840 }
841
842 /*
843 * This is called from dput() when d_count is going to 0.
844 */
845 static int nfs_dentry_delete(struct dentry *dentry)
846 {
847 dfprintk(VFS, "NFS: dentry_delete(%s/%s, %x)\n",
848 dentry->d_parent->d_name.name, dentry->d_name.name,
849 dentry->d_flags);
850
851 /* Unhash any dentry with a stale inode */
852 if (dentry->d_inode != NULL && NFS_STALE(dentry->d_inode))
853 return 1;
854
855 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
856 /* Unhash it, so that ->d_iput() would be called */
857 return 1;
858 }
859 if (!(dentry->d_sb->s_flags & MS_ACTIVE)) {
860 /* Unhash it, so that ancestors of killed async unlink
861 * files will be cleaned up during umount */
862 return 1;
863 }
864 return 0;
865
866 }
867
868 static void nfs_drop_nlink(struct inode *inode)
869 {
870 spin_lock(&inode->i_lock);
871 if (inode->i_nlink > 0)
872 drop_nlink(inode);
873 spin_unlock(&inode->i_lock);
874 }
875
876 /*
877 * Called when the dentry loses inode.
878 * We use it to clean up silly-renamed files.
879 */
880 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
881 {
882 if (S_ISDIR(inode->i_mode))
883 /* drop any readdir cache as it could easily be old */
884 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA;
885
886 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
887 lock_kernel();
888 drop_nlink(inode);
889 nfs_complete_unlink(dentry, inode);
890 unlock_kernel();
891 }
892 iput(inode);
893 }
894
895 struct dentry_operations nfs_dentry_operations = {
896 .d_revalidate = nfs_lookup_revalidate,
897 .d_delete = nfs_dentry_delete,
898 .d_iput = nfs_dentry_iput,
899 };
900
901 static struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
902 {
903 struct dentry *res;
904 struct dentry *parent;
905 struct inode *inode = NULL;
906 int error;
907 struct nfs_fh fhandle;
908 struct nfs_fattr fattr;
909
910 dfprintk(VFS, "NFS: lookup(%s/%s)\n",
911 dentry->d_parent->d_name.name, dentry->d_name.name);
912 nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
913
914 res = ERR_PTR(-ENAMETOOLONG);
915 if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
916 goto out;
917
918 res = ERR_PTR(-ENOMEM);
919 dentry->d_op = NFS_PROTO(dir)->dentry_ops;
920
921 /*
922 * If we're doing an exclusive create, optimize away the lookup
923 * but don't hash the dentry.
924 */
925 if (nfs_is_exclusive_create(dir, nd)) {
926 d_instantiate(dentry, NULL);
927 res = NULL;
928 goto out;
929 }
930
931 parent = dentry->d_parent;
932 /* Protect against concurrent sillydeletes */
933 nfs_block_sillyrename(parent);
934 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, &fhandle, &fattr);
935 if (error == -ENOENT)
936 goto no_entry;
937 if (error < 0) {
938 res = ERR_PTR(error);
939 goto out_unblock_sillyrename;
940 }
941 inode = nfs_fhget(dentry->d_sb, &fhandle, &fattr);
942 res = (struct dentry *)inode;
943 if (IS_ERR(res))
944 goto out_unblock_sillyrename;
945
946 no_entry:
947 res = d_materialise_unique(dentry, inode);
948 if (res != NULL) {
949 if (IS_ERR(res))
950 goto out_unblock_sillyrename;
951 dentry = res;
952 }
953 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
954 out_unblock_sillyrename:
955 nfs_unblock_sillyrename(parent);
956 out:
957 return res;
958 }
959
960 #ifdef CONFIG_NFS_V4
961 static int nfs_open_revalidate(struct dentry *, struct nameidata *);
962
963 struct dentry_operations nfs4_dentry_operations = {
964 .d_revalidate = nfs_open_revalidate,
965 .d_delete = nfs_dentry_delete,
966 .d_iput = nfs_dentry_iput,
967 };
968
969 /*
970 * Use intent information to determine whether we need to substitute
971 * the NFSv4-style stateful OPEN for the LOOKUP call
972 */
973 static int is_atomic_open(struct inode *dir, struct nameidata *nd)
974 {
975 if (nd == NULL || nfs_lookup_check_intent(nd, LOOKUP_OPEN) == 0)
976 return 0;
977 /* NFS does not (yet) have a stateful open for directories */
978 if (nd->flags & LOOKUP_DIRECTORY)
979 return 0;
980 /* Are we trying to write to a read only partition? */
981 if (__mnt_is_readonly(nd->path.mnt) &&
982 (nd->intent.open.flags & (O_CREAT|O_TRUNC|FMODE_WRITE)))
983 return 0;
984 return 1;
985 }
986
987 static struct dentry *nfs_atomic_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd)
988 {
989 struct dentry *res = NULL;
990 int error;
991
992 dfprintk(VFS, "NFS: atomic_lookup(%s/%ld), %s\n",
993 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
994
995 /* Check that we are indeed trying to open this file */
996 if (!is_atomic_open(dir, nd))
997 goto no_open;
998
999 if (dentry->d_name.len > NFS_SERVER(dir)->namelen) {
1000 res = ERR_PTR(-ENAMETOOLONG);
1001 goto out;
1002 }
1003 dentry->d_op = NFS_PROTO(dir)->dentry_ops;
1004
1005 /* Let vfs_create() deal with O_EXCL. Instantiate, but don't hash
1006 * the dentry. */
1007 if (nd->intent.open.flags & O_EXCL) {
1008 d_instantiate(dentry, NULL);
1009 goto out;
1010 }
1011
1012 /* Open the file on the server */
1013 res = nfs4_atomic_open(dir, dentry, nd);
1014 if (IS_ERR(res)) {
1015 error = PTR_ERR(res);
1016 switch (error) {
1017 /* Make a negative dentry */
1018 case -ENOENT:
1019 res = NULL;
1020 goto out;
1021 /* This turned out not to be a regular file */
1022 case -EISDIR:
1023 case -ENOTDIR:
1024 goto no_open;
1025 case -ELOOP:
1026 if (!(nd->intent.open.flags & O_NOFOLLOW))
1027 goto no_open;
1028 /* case -EINVAL: */
1029 default:
1030 goto out;
1031 }
1032 } else if (res != NULL)
1033 dentry = res;
1034 out:
1035 return res;
1036 no_open:
1037 return nfs_lookup(dir, dentry, nd);
1038 }
1039
1040 static int nfs_open_revalidate(struct dentry *dentry, struct nameidata *nd)
1041 {
1042 struct dentry *parent = NULL;
1043 struct inode *inode = dentry->d_inode;
1044 struct inode *dir;
1045 int openflags, ret = 0;
1046
1047 parent = dget_parent(dentry);
1048 dir = parent->d_inode;
1049 if (!is_atomic_open(dir, nd))
1050 goto no_open;
1051 /* We can't create new files in nfs_open_revalidate(), so we
1052 * optimize away revalidation of negative dentries.
1053 */
1054 if (inode == NULL) {
1055 if (!nfs_neg_need_reval(dir, dentry, nd))
1056 ret = 1;
1057 goto out;
1058 }
1059
1060 /* NFS only supports OPEN on regular files */
1061 if (!S_ISREG(inode->i_mode))
1062 goto no_open;
1063 openflags = nd->intent.open.flags;
1064 /* We cannot do exclusive creation on a positive dentry */
1065 if ((openflags & (O_CREAT|O_EXCL)) == (O_CREAT|O_EXCL))
1066 goto no_open;
1067 /* We can't create new files, or truncate existing ones here */
1068 openflags &= ~(O_CREAT|O_TRUNC);
1069
1070 /*
1071 * Note: we're not holding inode->i_mutex and so may be racing with
1072 * operations that change the directory. We therefore save the
1073 * change attribute *before* we do the RPC call.
1074 */
1075 ret = nfs4_open_revalidate(dir, dentry, openflags, nd);
1076 out:
1077 dput(parent);
1078 if (!ret)
1079 d_drop(dentry);
1080 return ret;
1081 no_open:
1082 dput(parent);
1083 if (inode != NULL && nfs_have_delegation(inode, FMODE_READ))
1084 return 1;
1085 return nfs_lookup_revalidate(dentry, nd);
1086 }
1087 #endif /* CONFIG_NFSV4 */
1088
1089 static struct dentry *nfs_readdir_lookup(nfs_readdir_descriptor_t *desc)
1090 {
1091 struct dentry *parent = desc->file->f_path.dentry;
1092 struct inode *dir = parent->d_inode;
1093 struct nfs_entry *entry = desc->entry;
1094 struct dentry *dentry, *alias;
1095 struct qstr name = {
1096 .name = entry->name,
1097 .len = entry->len,
1098 };
1099 struct inode *inode;
1100 unsigned long verf = nfs_save_change_attribute(dir);
1101
1102 switch (name.len) {
1103 case 2:
1104 if (name.name[0] == '.' && name.name[1] == '.')
1105 return dget_parent(parent);
1106 break;
1107 case 1:
1108 if (name.name[0] == '.')
1109 return dget(parent);
1110 }
1111
1112 spin_lock(&dir->i_lock);
1113 if (NFS_I(dir)->cache_validity & NFS_INO_INVALID_DATA) {
1114 spin_unlock(&dir->i_lock);
1115 return NULL;
1116 }
1117 spin_unlock(&dir->i_lock);
1118
1119 name.hash = full_name_hash(name.name, name.len);
1120 dentry = d_lookup(parent, &name);
1121 if (dentry != NULL) {
1122 /* Is this a positive dentry that matches the readdir info? */
1123 if (dentry->d_inode != NULL &&
1124 (NFS_FILEID(dentry->d_inode) == entry->ino ||
1125 d_mountpoint(dentry))) {
1126 if (!desc->plus || entry->fh->size == 0)
1127 return dentry;
1128 if (nfs_compare_fh(NFS_FH(dentry->d_inode),
1129 entry->fh) == 0)
1130 goto out_renew;
1131 }
1132 /* No, so d_drop to allow one to be created */
1133 d_drop(dentry);
1134 dput(dentry);
1135 }
1136 if (!desc->plus || !(entry->fattr->valid & NFS_ATTR_FATTR))
1137 return NULL;
1138 if (name.len > NFS_SERVER(dir)->namelen)
1139 return NULL;
1140 /* Note: caller is already holding the dir->i_mutex! */
1141 dentry = d_alloc(parent, &name);
1142 if (dentry == NULL)
1143 return NULL;
1144 dentry->d_op = NFS_PROTO(dir)->dentry_ops;
1145 inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr);
1146 if (IS_ERR(inode)) {
1147 dput(dentry);
1148 return NULL;
1149 }
1150
1151 alias = d_materialise_unique(dentry, inode);
1152 if (alias != NULL) {
1153 dput(dentry);
1154 if (IS_ERR(alias))
1155 return NULL;
1156 dentry = alias;
1157 }
1158
1159 out_renew:
1160 nfs_set_verifier(dentry, verf);
1161 return dentry;
1162 }
1163
1164 /*
1165 * Code common to create, mkdir, and mknod.
1166 */
1167 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
1168 struct nfs_fattr *fattr)
1169 {
1170 struct dentry *parent = dget_parent(dentry);
1171 struct inode *dir = parent->d_inode;
1172 struct inode *inode;
1173 int error = -EACCES;
1174
1175 d_drop(dentry);
1176
1177 /* We may have been initialized further down */
1178 if (dentry->d_inode)
1179 goto out;
1180 if (fhandle->size == 0) {
1181 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr);
1182 if (error)
1183 goto out_error;
1184 }
1185 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1186 if (!(fattr->valid & NFS_ATTR_FATTR)) {
1187 struct nfs_server *server = NFS_SB(dentry->d_sb);
1188 error = server->nfs_client->rpc_ops->getattr(server, fhandle, fattr);
1189 if (error < 0)
1190 goto out_error;
1191 }
1192 inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
1193 error = PTR_ERR(inode);
1194 if (IS_ERR(inode))
1195 goto out_error;
1196 d_add(dentry, inode);
1197 out:
1198 dput(parent);
1199 return 0;
1200 out_error:
1201 nfs_mark_for_revalidate(dir);
1202 dput(parent);
1203 return error;
1204 }
1205
1206 /*
1207 * Following a failed create operation, we drop the dentry rather
1208 * than retain a negative dentry. This avoids a problem in the event
1209 * that the operation succeeded on the server, but an error in the
1210 * reply path made it appear to have failed.
1211 */
1212 static int nfs_create(struct inode *dir, struct dentry *dentry, int mode,
1213 struct nameidata *nd)
1214 {
1215 struct iattr attr;
1216 int error;
1217 int open_flags = 0;
1218
1219 dfprintk(VFS, "NFS: create(%s/%ld), %s\n",
1220 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1221
1222 attr.ia_mode = mode;
1223 attr.ia_valid = ATTR_MODE;
1224
1225 if ((nd->flags & LOOKUP_CREATE) != 0)
1226 open_flags = nd->intent.open.flags;
1227
1228 error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags, nd);
1229 if (error != 0)
1230 goto out_err;
1231 return 0;
1232 out_err:
1233 d_drop(dentry);
1234 return error;
1235 }
1236
1237 /*
1238 * See comments for nfs_proc_create regarding failed operations.
1239 */
1240 static int
1241 nfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t rdev)
1242 {
1243 struct iattr attr;
1244 int status;
1245
1246 dfprintk(VFS, "NFS: mknod(%s/%ld), %s\n",
1247 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1248
1249 if (!new_valid_dev(rdev))
1250 return -EINVAL;
1251
1252 attr.ia_mode = mode;
1253 attr.ia_valid = ATTR_MODE;
1254
1255 status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
1256 if (status != 0)
1257 goto out_err;
1258 return 0;
1259 out_err:
1260 d_drop(dentry);
1261 return status;
1262 }
1263
1264 /*
1265 * See comments for nfs_proc_create regarding failed operations.
1266 */
1267 static int nfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1268 {
1269 struct iattr attr;
1270 int error;
1271
1272 dfprintk(VFS, "NFS: mkdir(%s/%ld), %s\n",
1273 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1274
1275 attr.ia_valid = ATTR_MODE;
1276 attr.ia_mode = mode | S_IFDIR;
1277
1278 error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
1279 if (error != 0)
1280 goto out_err;
1281 return 0;
1282 out_err:
1283 d_drop(dentry);
1284 return error;
1285 }
1286
1287 static void nfs_dentry_handle_enoent(struct dentry *dentry)
1288 {
1289 if (dentry->d_inode != NULL && !d_unhashed(dentry))
1290 d_delete(dentry);
1291 }
1292
1293 static int nfs_rmdir(struct inode *dir, struct dentry *dentry)
1294 {
1295 int error;
1296
1297 dfprintk(VFS, "NFS: rmdir(%s/%ld), %s\n",
1298 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1299
1300 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1301 /* Ensure the VFS deletes this inode */
1302 if (error == 0 && dentry->d_inode != NULL)
1303 clear_nlink(dentry->d_inode);
1304 else if (error == -ENOENT)
1305 nfs_dentry_handle_enoent(dentry);
1306
1307 return error;
1308 }
1309
1310 static int nfs_sillyrename(struct inode *dir, struct dentry *dentry)
1311 {
1312 static unsigned int sillycounter;
1313 const int fileidsize = sizeof(NFS_FILEID(dentry->d_inode))*2;
1314 const int countersize = sizeof(sillycounter)*2;
1315 const int slen = sizeof(".nfs")+fileidsize+countersize-1;
1316 char silly[slen+1];
1317 struct qstr qsilly;
1318 struct dentry *sdentry;
1319 int error = -EIO;
1320
1321 dfprintk(VFS, "NFS: silly-rename(%s/%s, ct=%d)\n",
1322 dentry->d_parent->d_name.name, dentry->d_name.name,
1323 atomic_read(&dentry->d_count));
1324 nfs_inc_stats(dir, NFSIOS_SILLYRENAME);
1325
1326 /*
1327 * We don't allow a dentry to be silly-renamed twice.
1328 */
1329 error = -EBUSY;
1330 if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1331 goto out;
1332
1333 sprintf(silly, ".nfs%*.*Lx",
1334 fileidsize, fileidsize,
1335 (unsigned long long)NFS_FILEID(dentry->d_inode));
1336
1337 /* Return delegation in anticipation of the rename */
1338 nfs_inode_return_delegation(dentry->d_inode);
1339
1340 sdentry = NULL;
1341 do {
1342 char *suffix = silly + slen - countersize;
1343
1344 dput(sdentry);
1345 sillycounter++;
1346 sprintf(suffix, "%*.*x", countersize, countersize, sillycounter);
1347
1348 dfprintk(VFS, "NFS: trying to rename %s to %s\n",
1349 dentry->d_name.name, silly);
1350
1351 sdentry = lookup_one_len(silly, dentry->d_parent, slen);
1352 /*
1353 * N.B. Better to return EBUSY here ... it could be
1354 * dangerous to delete the file while it's in use.
1355 */
1356 if (IS_ERR(sdentry))
1357 goto out;
1358 } while(sdentry->d_inode != NULL); /* need negative lookup */
1359
1360 qsilly.name = silly;
1361 qsilly.len = strlen(silly);
1362 if (dentry->d_inode) {
1363 error = NFS_PROTO(dir)->rename(dir, &dentry->d_name,
1364 dir, &qsilly);
1365 nfs_mark_for_revalidate(dentry->d_inode);
1366 } else
1367 error = NFS_PROTO(dir)->rename(dir, &dentry->d_name,
1368 dir, &qsilly);
1369 if (!error) {
1370 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1371 d_move(dentry, sdentry);
1372 error = nfs_async_unlink(dir, dentry);
1373 /* If we return 0 we don't unlink */
1374 }
1375 dput(sdentry);
1376 out:
1377 return error;
1378 }
1379
1380 /*
1381 * Remove a file after making sure there are no pending writes,
1382 * and after checking that the file has only one user.
1383 *
1384 * We invalidate the attribute cache and free the inode prior to the operation
1385 * to avoid possible races if the server reuses the inode.
1386 */
1387 static int nfs_safe_remove(struct dentry *dentry)
1388 {
1389 struct inode *dir = dentry->d_parent->d_inode;
1390 struct inode *inode = dentry->d_inode;
1391 int error = -EBUSY;
1392
1393 dfprintk(VFS, "NFS: safe_remove(%s/%s)\n",
1394 dentry->d_parent->d_name.name, dentry->d_name.name);
1395
1396 /* If the dentry was sillyrenamed, we simply call d_delete() */
1397 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1398 error = 0;
1399 goto out;
1400 }
1401
1402 if (inode != NULL) {
1403 nfs_inode_return_delegation(inode);
1404 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1405 /* The VFS may want to delete this inode */
1406 if (error == 0)
1407 nfs_drop_nlink(inode);
1408 nfs_mark_for_revalidate(inode);
1409 } else
1410 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1411 if (error == -ENOENT)
1412 nfs_dentry_handle_enoent(dentry);
1413 out:
1414 return error;
1415 }
1416
1417 /* We do silly rename. In case sillyrename() returns -EBUSY, the inode
1418 * belongs to an active ".nfs..." file and we return -EBUSY.
1419 *
1420 * If sillyrename() returns 0, we do nothing, otherwise we unlink.
1421 */
1422 static int nfs_unlink(struct inode *dir, struct dentry *dentry)
1423 {
1424 int error;
1425 int need_rehash = 0;
1426
1427 dfprintk(VFS, "NFS: unlink(%s/%ld, %s)\n", dir->i_sb->s_id,
1428 dir->i_ino, dentry->d_name.name);
1429
1430 spin_lock(&dcache_lock);
1431 spin_lock(&dentry->d_lock);
1432 if (atomic_read(&dentry->d_count) > 1) {
1433 spin_unlock(&dentry->d_lock);
1434 spin_unlock(&dcache_lock);
1435 /* Start asynchronous writeout of the inode */
1436 write_inode_now(dentry->d_inode, 0);
1437 lock_kernel();
1438 error = nfs_sillyrename(dir, dentry);
1439 unlock_kernel();
1440 return error;
1441 }
1442 if (!d_unhashed(dentry)) {
1443 __d_drop(dentry);
1444 need_rehash = 1;
1445 }
1446 spin_unlock(&dentry->d_lock);
1447 spin_unlock(&dcache_lock);
1448 error = nfs_safe_remove(dentry);
1449 if (!error || error == -ENOENT) {
1450 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1451 } else if (need_rehash)
1452 d_rehash(dentry);
1453 return error;
1454 }
1455
1456 /*
1457 * To create a symbolic link, most file systems instantiate a new inode,
1458 * add a page to it containing the path, then write it out to the disk
1459 * using prepare_write/commit_write.
1460 *
1461 * Unfortunately the NFS client can't create the in-core inode first
1462 * because it needs a file handle to create an in-core inode (see
1463 * fs/nfs/inode.c:nfs_fhget). We only have a file handle *after* the
1464 * symlink request has completed on the server.
1465 *
1466 * So instead we allocate a raw page, copy the symname into it, then do
1467 * the SYMLINK request with the page as the buffer. If it succeeds, we
1468 * now have a new file handle and can instantiate an in-core NFS inode
1469 * and move the raw page into its mapping.
1470 */
1471 static int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1472 {
1473 struct pagevec lru_pvec;
1474 struct page *page;
1475 char *kaddr;
1476 struct iattr attr;
1477 unsigned int pathlen = strlen(symname);
1478 int error;
1479
1480 dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s)\n", dir->i_sb->s_id,
1481 dir->i_ino, dentry->d_name.name, symname);
1482
1483 if (pathlen > PAGE_SIZE)
1484 return -ENAMETOOLONG;
1485
1486 attr.ia_mode = S_IFLNK | S_IRWXUGO;
1487 attr.ia_valid = ATTR_MODE;
1488
1489 lock_kernel();
1490
1491 page = alloc_page(GFP_HIGHUSER);
1492 if (!page) {
1493 unlock_kernel();
1494 return -ENOMEM;
1495 }
1496
1497 kaddr = kmap_atomic(page, KM_USER0);
1498 memcpy(kaddr, symname, pathlen);
1499 if (pathlen < PAGE_SIZE)
1500 memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
1501 kunmap_atomic(kaddr, KM_USER0);
1502
1503 error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
1504 if (error != 0) {
1505 dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s) error %d\n",
1506 dir->i_sb->s_id, dir->i_ino,
1507 dentry->d_name.name, symname, error);
1508 d_drop(dentry);
1509 __free_page(page);
1510 unlock_kernel();
1511 return error;
1512 }
1513
1514 /*
1515 * No big deal if we can't add this page to the page cache here.
1516 * READLINK will get the missing page from the server if needed.
1517 */
1518 pagevec_init(&lru_pvec, 0);
1519 if (!add_to_page_cache(page, dentry->d_inode->i_mapping, 0,
1520 GFP_KERNEL)) {
1521 pagevec_add(&lru_pvec, page);
1522 pagevec_lru_add(&lru_pvec);
1523 SetPageUptodate(page);
1524 unlock_page(page);
1525 } else
1526 __free_page(page);
1527
1528 unlock_kernel();
1529 return 0;
1530 }
1531
1532 static int
1533 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1534 {
1535 struct inode *inode = old_dentry->d_inode;
1536 int error;
1537
1538 dfprintk(VFS, "NFS: link(%s/%s -> %s/%s)\n",
1539 old_dentry->d_parent->d_name.name, old_dentry->d_name.name,
1540 dentry->d_parent->d_name.name, dentry->d_name.name);
1541
1542 d_drop(dentry);
1543 error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
1544 if (error == 0) {
1545 atomic_inc(&inode->i_count);
1546 d_add(dentry, inode);
1547 }
1548 return error;
1549 }
1550
1551 /*
1552 * RENAME
1553 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
1554 * different file handle for the same inode after a rename (e.g. when
1555 * moving to a different directory). A fail-safe method to do so would
1556 * be to look up old_dir/old_name, create a link to new_dir/new_name and
1557 * rename the old file using the sillyrename stuff. This way, the original
1558 * file in old_dir will go away when the last process iput()s the inode.
1559 *
1560 * FIXED.
1561 *
1562 * It actually works quite well. One needs to have the possibility for
1563 * at least one ".nfs..." file in each directory the file ever gets
1564 * moved or linked to which happens automagically with the new
1565 * implementation that only depends on the dcache stuff instead of
1566 * using the inode layer
1567 *
1568 * Unfortunately, things are a little more complicated than indicated
1569 * above. For a cross-directory move, we want to make sure we can get
1570 * rid of the old inode after the operation. This means there must be
1571 * no pending writes (if it's a file), and the use count must be 1.
1572 * If these conditions are met, we can drop the dentries before doing
1573 * the rename.
1574 */
1575 static int nfs_rename(struct inode *old_dir, struct dentry *old_dentry,
1576 struct inode *new_dir, struct dentry *new_dentry)
1577 {
1578 struct inode *old_inode = old_dentry->d_inode;
1579 struct inode *new_inode = new_dentry->d_inode;
1580 struct dentry *dentry = NULL, *rehash = NULL;
1581 int error = -EBUSY;
1582
1583 /*
1584 * To prevent any new references to the target during the rename,
1585 * we unhash the dentry and free the inode in advance.
1586 */
1587 if (!d_unhashed(new_dentry)) {
1588 d_drop(new_dentry);
1589 rehash = new_dentry;
1590 }
1591
1592 dfprintk(VFS, "NFS: rename(%s/%s -> %s/%s, ct=%d)\n",
1593 old_dentry->d_parent->d_name.name, old_dentry->d_name.name,
1594 new_dentry->d_parent->d_name.name, new_dentry->d_name.name,
1595 atomic_read(&new_dentry->d_count));
1596
1597 /*
1598 * First check whether the target is busy ... we can't
1599 * safely do _any_ rename if the target is in use.
1600 *
1601 * For files, make a copy of the dentry and then do a
1602 * silly-rename. If the silly-rename succeeds, the
1603 * copied dentry is hashed and becomes the new target.
1604 */
1605 if (!new_inode)
1606 goto go_ahead;
1607 if (S_ISDIR(new_inode->i_mode)) {
1608 error = -EISDIR;
1609 if (!S_ISDIR(old_inode->i_mode))
1610 goto out;
1611 } else if (atomic_read(&new_dentry->d_count) > 2) {
1612 int err;
1613 /* copy the target dentry's name */
1614 dentry = d_alloc(new_dentry->d_parent,
1615 &new_dentry->d_name);
1616 if (!dentry)
1617 goto out;
1618
1619 /* silly-rename the existing target ... */
1620 lock_kernel();
1621 err = nfs_sillyrename(new_dir, new_dentry);
1622 unlock_kernel();
1623 if (!err) {
1624 new_dentry = rehash = dentry;
1625 new_inode = NULL;
1626 /* instantiate the replacement target */
1627 d_instantiate(new_dentry, NULL);
1628 } else if (atomic_read(&new_dentry->d_count) > 1)
1629 /* dentry still busy? */
1630 goto out;
1631 } else
1632 nfs_drop_nlink(new_inode);
1633
1634 go_ahead:
1635 /*
1636 * ... prune child dentries and writebacks if needed.
1637 */
1638 if (atomic_read(&old_dentry->d_count) > 1) {
1639 if (S_ISREG(old_inode->i_mode))
1640 nfs_wb_all(old_inode);
1641 shrink_dcache_parent(old_dentry);
1642 }
1643 nfs_inode_return_delegation(old_inode);
1644
1645 if (new_inode != NULL) {
1646 nfs_inode_return_delegation(new_inode);
1647 d_delete(new_dentry);
1648 }
1649
1650 error = NFS_PROTO(old_dir)->rename(old_dir, &old_dentry->d_name,
1651 new_dir, &new_dentry->d_name);
1652 nfs_mark_for_revalidate(old_inode);
1653 out:
1654 if (rehash)
1655 d_rehash(rehash);
1656 if (!error) {
1657 d_move(old_dentry, new_dentry);
1658 nfs_set_verifier(new_dentry,
1659 nfs_save_change_attribute(new_dir));
1660 } else if (error == -ENOENT)
1661 nfs_dentry_handle_enoent(old_dentry);
1662
1663 /* new dentry created? */
1664 if (dentry)
1665 dput(dentry);
1666 return error;
1667 }
1668
1669 static DEFINE_SPINLOCK(nfs_access_lru_lock);
1670 static LIST_HEAD(nfs_access_lru_list);
1671 static atomic_long_t nfs_access_nr_entries;
1672
1673 static void nfs_access_free_entry(struct nfs_access_entry *entry)
1674 {
1675 put_rpccred(entry->cred);
1676 kfree(entry);
1677 smp_mb__before_atomic_dec();
1678 atomic_long_dec(&nfs_access_nr_entries);
1679 smp_mb__after_atomic_dec();
1680 }
1681
1682 int nfs_access_cache_shrinker(int nr_to_scan, gfp_t gfp_mask)
1683 {
1684 LIST_HEAD(head);
1685 struct nfs_inode *nfsi;
1686 struct nfs_access_entry *cache;
1687
1688 restart:
1689 spin_lock(&nfs_access_lru_lock);
1690 list_for_each_entry(nfsi, &nfs_access_lru_list, access_cache_inode_lru) {
1691 struct rw_semaphore *s_umount;
1692 struct inode *inode;
1693
1694 if (nr_to_scan-- == 0)
1695 break;
1696 s_umount = &nfsi->vfs_inode.i_sb->s_umount;
1697 if (!down_read_trylock(s_umount))
1698 continue;
1699 inode = igrab(&nfsi->vfs_inode);
1700 if (inode == NULL) {
1701 up_read(s_umount);
1702 continue;
1703 }
1704 spin_lock(&inode->i_lock);
1705 if (list_empty(&nfsi->access_cache_entry_lru))
1706 goto remove_lru_entry;
1707 cache = list_entry(nfsi->access_cache_entry_lru.next,
1708 struct nfs_access_entry, lru);
1709 list_move(&cache->lru, &head);
1710 rb_erase(&cache->rb_node, &nfsi->access_cache);
1711 if (!list_empty(&nfsi->access_cache_entry_lru))
1712 list_move_tail(&nfsi->access_cache_inode_lru,
1713 &nfs_access_lru_list);
1714 else {
1715 remove_lru_entry:
1716 list_del_init(&nfsi->access_cache_inode_lru);
1717 clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
1718 }
1719 spin_unlock(&inode->i_lock);
1720 spin_unlock(&nfs_access_lru_lock);
1721 iput(inode);
1722 up_read(s_umount);
1723 goto restart;
1724 }
1725 spin_unlock(&nfs_access_lru_lock);
1726 while (!list_empty(&head)) {
1727 cache = list_entry(head.next, struct nfs_access_entry, lru);
1728 list_del(&cache->lru);
1729 nfs_access_free_entry(cache);
1730 }
1731 return (atomic_long_read(&nfs_access_nr_entries) / 100) * sysctl_vfs_cache_pressure;
1732 }
1733
1734 static void __nfs_access_zap_cache(struct inode *inode)
1735 {
1736 struct nfs_inode *nfsi = NFS_I(inode);
1737 struct rb_root *root_node = &nfsi->access_cache;
1738 struct rb_node *n, *dispose = NULL;
1739 struct nfs_access_entry *entry;
1740
1741 /* Unhook entries from the cache */
1742 while ((n = rb_first(root_node)) != NULL) {
1743 entry = rb_entry(n, struct nfs_access_entry, rb_node);
1744 rb_erase(n, root_node);
1745 list_del(&entry->lru);
1746 n->rb_left = dispose;
1747 dispose = n;
1748 }
1749 nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
1750 spin_unlock(&inode->i_lock);
1751
1752 /* Now kill them all! */
1753 while (dispose != NULL) {
1754 n = dispose;
1755 dispose = n->rb_left;
1756 nfs_access_free_entry(rb_entry(n, struct nfs_access_entry, rb_node));
1757 }
1758 }
1759
1760 void nfs_access_zap_cache(struct inode *inode)
1761 {
1762 /* Remove from global LRU init */
1763 if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
1764 spin_lock(&nfs_access_lru_lock);
1765 list_del_init(&NFS_I(inode)->access_cache_inode_lru);
1766 spin_unlock(&nfs_access_lru_lock);
1767 }
1768
1769 spin_lock(&inode->i_lock);
1770 /* This will release the spinlock */
1771 __nfs_access_zap_cache(inode);
1772 }
1773
1774 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, struct rpc_cred *cred)
1775 {
1776 struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
1777 struct nfs_access_entry *entry;
1778
1779 while (n != NULL) {
1780 entry = rb_entry(n, struct nfs_access_entry, rb_node);
1781
1782 if (cred < entry->cred)
1783 n = n->rb_left;
1784 else if (cred > entry->cred)
1785 n = n->rb_right;
1786 else
1787 return entry;
1788 }
1789 return NULL;
1790 }
1791
1792 static int nfs_access_get_cached(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res)
1793 {
1794 struct nfs_inode *nfsi = NFS_I(inode);
1795 struct nfs_access_entry *cache;
1796 int err = -ENOENT;
1797
1798 spin_lock(&inode->i_lock);
1799 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
1800 goto out_zap;
1801 cache = nfs_access_search_rbtree(inode, cred);
1802 if (cache == NULL)
1803 goto out;
1804 if (!time_in_range(jiffies, cache->jiffies, cache->jiffies + nfsi->attrtimeo))
1805 goto out_stale;
1806 res->jiffies = cache->jiffies;
1807 res->cred = cache->cred;
1808 res->mask = cache->mask;
1809 list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
1810 err = 0;
1811 out:
1812 spin_unlock(&inode->i_lock);
1813 return err;
1814 out_stale:
1815 rb_erase(&cache->rb_node, &nfsi->access_cache);
1816 list_del(&cache->lru);
1817 spin_unlock(&inode->i_lock);
1818 nfs_access_free_entry(cache);
1819 return -ENOENT;
1820 out_zap:
1821 /* This will release the spinlock */
1822 __nfs_access_zap_cache(inode);
1823 return -ENOENT;
1824 }
1825
1826 static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set)
1827 {
1828 struct nfs_inode *nfsi = NFS_I(inode);
1829 struct rb_root *root_node = &nfsi->access_cache;
1830 struct rb_node **p = &root_node->rb_node;
1831 struct rb_node *parent = NULL;
1832 struct nfs_access_entry *entry;
1833
1834 spin_lock(&inode->i_lock);
1835 while (*p != NULL) {
1836 parent = *p;
1837 entry = rb_entry(parent, struct nfs_access_entry, rb_node);
1838
1839 if (set->cred < entry->cred)
1840 p = &parent->rb_left;
1841 else if (set->cred > entry->cred)
1842 p = &parent->rb_right;
1843 else
1844 goto found;
1845 }
1846 rb_link_node(&set->rb_node, parent, p);
1847 rb_insert_color(&set->rb_node, root_node);
1848 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
1849 spin_unlock(&inode->i_lock);
1850 return;
1851 found:
1852 rb_replace_node(parent, &set->rb_node, root_node);
1853 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
1854 list_del(&entry->lru);
1855 spin_unlock(&inode->i_lock);
1856 nfs_access_free_entry(entry);
1857 }
1858
1859 static void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set)
1860 {
1861 struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
1862 if (cache == NULL)
1863 return;
1864 RB_CLEAR_NODE(&cache->rb_node);
1865 cache->jiffies = set->jiffies;
1866 cache->cred = get_rpccred(set->cred);
1867 cache->mask = set->mask;
1868
1869 nfs_access_add_rbtree(inode, cache);
1870
1871 /* Update accounting */
1872 smp_mb__before_atomic_inc();
1873 atomic_long_inc(&nfs_access_nr_entries);
1874 smp_mb__after_atomic_inc();
1875
1876 /* Add inode to global LRU list */
1877 if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
1878 spin_lock(&nfs_access_lru_lock);
1879 list_add_tail(&NFS_I(inode)->access_cache_inode_lru, &nfs_access_lru_list);
1880 spin_unlock(&nfs_access_lru_lock);
1881 }
1882 }
1883
1884 static int nfs_do_access(struct inode *inode, struct rpc_cred *cred, int mask)
1885 {
1886 struct nfs_access_entry cache;
1887 int status;
1888
1889 status = nfs_access_get_cached(inode, cred, &cache);
1890 if (status == 0)
1891 goto out;
1892
1893 /* Be clever: ask server to check for all possible rights */
1894 cache.mask = MAY_EXEC | MAY_WRITE | MAY_READ;
1895 cache.cred = cred;
1896 cache.jiffies = jiffies;
1897 status = NFS_PROTO(inode)->access(inode, &cache);
1898 if (status != 0)
1899 return status;
1900 nfs_access_add_cache(inode, &cache);
1901 out:
1902 if ((cache.mask & mask) == mask)
1903 return 0;
1904 return -EACCES;
1905 }
1906
1907 static int nfs_open_permission_mask(int openflags)
1908 {
1909 int mask = 0;
1910
1911 if (openflags & FMODE_READ)
1912 mask |= MAY_READ;
1913 if (openflags & FMODE_WRITE)
1914 mask |= MAY_WRITE;
1915 if (openflags & FMODE_EXEC)
1916 mask |= MAY_EXEC;
1917 return mask;
1918 }
1919
1920 int nfs_may_open(struct inode *inode, struct rpc_cred *cred, int openflags)
1921 {
1922 return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
1923 }
1924
1925 int nfs_permission(struct inode *inode, int mask, struct nameidata *nd)
1926 {
1927 struct rpc_cred *cred;
1928 int res = 0;
1929
1930 nfs_inc_stats(inode, NFSIOS_VFSACCESS);
1931
1932 if (mask == 0)
1933 goto out;
1934 /* Is this sys_access() ? */
1935 if (nd != NULL && (nd->flags & LOOKUP_ACCESS))
1936 goto force_lookup;
1937
1938 switch (inode->i_mode & S_IFMT) {
1939 case S_IFLNK:
1940 goto out;
1941 case S_IFREG:
1942 /* NFSv4 has atomic_open... */
1943 if (nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN)
1944 && nd != NULL
1945 && (nd->flags & LOOKUP_OPEN))
1946 goto out;
1947 break;
1948 case S_IFDIR:
1949 /*
1950 * Optimize away all write operations, since the server
1951 * will check permissions when we perform the op.
1952 */
1953 if ((mask & MAY_WRITE) && !(mask & MAY_READ))
1954 goto out;
1955 }
1956
1957 force_lookup:
1958 if (!NFS_PROTO(inode)->access)
1959 goto out_notsup;
1960
1961 cred = rpc_lookup_cred();
1962 if (!IS_ERR(cred)) {
1963 res = nfs_do_access(inode, cred, mask);
1964 put_rpccred(cred);
1965 } else
1966 res = PTR_ERR(cred);
1967 out:
1968 dfprintk(VFS, "NFS: permission(%s/%ld), mask=0x%x, res=%d\n",
1969 inode->i_sb->s_id, inode->i_ino, mask, res);
1970 return res;
1971 out_notsup:
1972 res = nfs_revalidate_inode(NFS_SERVER(inode), inode);
1973 if (res == 0)
1974 res = generic_permission(inode, mask, NULL);
1975 goto out;
1976 }
1977
1978 /*
1979 * Local variables:
1980 * version-control: t
1981 * kept-new-versions: 5
1982 * End:
1983 */
This page took 0.098252 seconds and 4 git commands to generate.