NFS: Share NFS superblocks per-protocol per-server per-FSID
[deliverable/linux.git] / fs / nfs / dir.c
1 /*
2 * linux/fs/nfs/dir.c
3 *
4 * Copyright (C) 1992 Rick Sladkey
5 *
6 * nfs directory handling functions
7 *
8 * 10 Apr 1996 Added silly rename for unlink --okir
9 * 28 Sep 1996 Improved directory cache --okir
10 * 23 Aug 1997 Claus Heine claus@momo.math.rwth-aachen.de
11 * Re-implemented silly rename for unlink, newly implemented
12 * silly rename for nfs_rename() following the suggestions
13 * of Olaf Kirch (okir) found in this file.
14 * Following Linus comments on my original hack, this version
15 * depends only on the dcache stuff and doesn't touch the inode
16 * layer (iput() and friends).
17 * 6 Jun 1999 Cache readdir lookups in the page cache. -DaveM
18 */
19
20 #include <linux/time.h>
21 #include <linux/errno.h>
22 #include <linux/stat.h>
23 #include <linux/fcntl.h>
24 #include <linux/string.h>
25 #include <linux/kernel.h>
26 #include <linux/slab.h>
27 #include <linux/mm.h>
28 #include <linux/sunrpc/clnt.h>
29 #include <linux/nfs_fs.h>
30 #include <linux/nfs_mount.h>
31 #include <linux/pagemap.h>
32 #include <linux/smp_lock.h>
33 #include <linux/namei.h>
34 #include <linux/mount.h>
35
36 #include "nfs4_fs.h"
37 #include "delegation.h"
38 #include "iostat.h"
39
40 #define NFS_PARANOIA 1
41 /* #define NFS_DEBUG_VERBOSE 1 */
42
43 static int nfs_opendir(struct inode *, struct file *);
44 static int nfs_readdir(struct file *, void *, filldir_t);
45 static struct dentry *nfs_lookup(struct inode *, struct dentry *, struct nameidata *);
46 static int nfs_create(struct inode *, struct dentry *, int, struct nameidata *);
47 static int nfs_mkdir(struct inode *, struct dentry *, int);
48 static int nfs_rmdir(struct inode *, struct dentry *);
49 static int nfs_unlink(struct inode *, struct dentry *);
50 static int nfs_symlink(struct inode *, struct dentry *, const char *);
51 static int nfs_link(struct dentry *, struct inode *, struct dentry *);
52 static int nfs_mknod(struct inode *, struct dentry *, int, dev_t);
53 static int nfs_rename(struct inode *, struct dentry *,
54 struct inode *, struct dentry *);
55 static int nfs_fsync_dir(struct file *, struct dentry *, int);
56 static loff_t nfs_llseek_dir(struct file *, loff_t, int);
57
58 const struct file_operations nfs_dir_operations = {
59 .llseek = nfs_llseek_dir,
60 .read = generic_read_dir,
61 .readdir = nfs_readdir,
62 .open = nfs_opendir,
63 .release = nfs_release,
64 .fsync = nfs_fsync_dir,
65 };
66
67 struct inode_operations nfs_dir_inode_operations = {
68 .create = nfs_create,
69 .lookup = nfs_lookup,
70 .link = nfs_link,
71 .unlink = nfs_unlink,
72 .symlink = nfs_symlink,
73 .mkdir = nfs_mkdir,
74 .rmdir = nfs_rmdir,
75 .mknod = nfs_mknod,
76 .rename = nfs_rename,
77 .permission = nfs_permission,
78 .getattr = nfs_getattr,
79 .setattr = nfs_setattr,
80 };
81
82 #ifdef CONFIG_NFS_V3
83 struct inode_operations nfs3_dir_inode_operations = {
84 .create = nfs_create,
85 .lookup = nfs_lookup,
86 .link = nfs_link,
87 .unlink = nfs_unlink,
88 .symlink = nfs_symlink,
89 .mkdir = nfs_mkdir,
90 .rmdir = nfs_rmdir,
91 .mknod = nfs_mknod,
92 .rename = nfs_rename,
93 .permission = nfs_permission,
94 .getattr = nfs_getattr,
95 .setattr = nfs_setattr,
96 .listxattr = nfs3_listxattr,
97 .getxattr = nfs3_getxattr,
98 .setxattr = nfs3_setxattr,
99 .removexattr = nfs3_removexattr,
100 };
101 #endif /* CONFIG_NFS_V3 */
102
103 #ifdef CONFIG_NFS_V4
104
105 static struct dentry *nfs_atomic_lookup(struct inode *, struct dentry *, struct nameidata *);
106 struct inode_operations nfs4_dir_inode_operations = {
107 .create = nfs_create,
108 .lookup = nfs_atomic_lookup,
109 .link = nfs_link,
110 .unlink = nfs_unlink,
111 .symlink = nfs_symlink,
112 .mkdir = nfs_mkdir,
113 .rmdir = nfs_rmdir,
114 .mknod = nfs_mknod,
115 .rename = nfs_rename,
116 .permission = nfs_permission,
117 .getattr = nfs_getattr,
118 .setattr = nfs_setattr,
119 .getxattr = nfs4_getxattr,
120 .setxattr = nfs4_setxattr,
121 .listxattr = nfs4_listxattr,
122 };
123
124 #endif /* CONFIG_NFS_V4 */
125
126 /*
127 * Open file
128 */
129 static int
130 nfs_opendir(struct inode *inode, struct file *filp)
131 {
132 int res;
133
134 dfprintk(VFS, "NFS: opendir(%s/%ld)\n",
135 inode->i_sb->s_id, inode->i_ino);
136
137 lock_kernel();
138 /* Call generic open code in order to cache credentials */
139 res = nfs_open(inode, filp);
140 unlock_kernel();
141 return res;
142 }
143
144 typedef u32 * (*decode_dirent_t)(u32 *, struct nfs_entry *, int);
145 typedef struct {
146 struct file *file;
147 struct page *page;
148 unsigned long page_index;
149 u32 *ptr;
150 u64 *dir_cookie;
151 loff_t current_index;
152 struct nfs_entry *entry;
153 decode_dirent_t decode;
154 int plus;
155 int error;
156 } nfs_readdir_descriptor_t;
157
158 /* Now we cache directories properly, by stuffing the dirent
159 * data directly in the page cache.
160 *
161 * Inode invalidation due to refresh etc. takes care of
162 * _everything_, no sloppy entry flushing logic, no extraneous
163 * copying, network direct to page cache, the way it was meant
164 * to be.
165 *
166 * NOTE: Dirent information verification is done always by the
167 * page-in of the RPC reply, nowhere else, this simplies
168 * things substantially.
169 */
170 static
171 int nfs_readdir_filler(nfs_readdir_descriptor_t *desc, struct page *page)
172 {
173 struct file *file = desc->file;
174 struct inode *inode = file->f_dentry->d_inode;
175 struct rpc_cred *cred = nfs_file_cred(file);
176 unsigned long timestamp;
177 int error;
178
179 dfprintk(DIRCACHE, "NFS: %s: reading cookie %Lu into page %lu\n",
180 __FUNCTION__, (long long)desc->entry->cookie,
181 page->index);
182
183 again:
184 timestamp = jiffies;
185 error = NFS_PROTO(inode)->readdir(file->f_dentry, cred, desc->entry->cookie, page,
186 NFS_SERVER(inode)->dtsize, desc->plus);
187 if (error < 0) {
188 /* We requested READDIRPLUS, but the server doesn't grok it */
189 if (error == -ENOTSUPP && desc->plus) {
190 NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
191 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_FLAGS(inode));
192 desc->plus = 0;
193 goto again;
194 }
195 goto error;
196 }
197 SetPageUptodate(page);
198 spin_lock(&inode->i_lock);
199 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_ATIME;
200 spin_unlock(&inode->i_lock);
201 /* Ensure consistent page alignment of the data.
202 * Note: assumes we have exclusive access to this mapping either
203 * through inode->i_mutex or some other mechanism.
204 */
205 if (page->index == 0)
206 invalidate_inode_pages2_range(inode->i_mapping, PAGE_CACHE_SIZE, -1);
207 unlock_page(page);
208 return 0;
209 error:
210 SetPageError(page);
211 unlock_page(page);
212 nfs_zap_caches(inode);
213 desc->error = error;
214 return -EIO;
215 }
216
217 static inline
218 int dir_decode(nfs_readdir_descriptor_t *desc)
219 {
220 u32 *p = desc->ptr;
221 p = desc->decode(p, desc->entry, desc->plus);
222 if (IS_ERR(p))
223 return PTR_ERR(p);
224 desc->ptr = p;
225 return 0;
226 }
227
228 static inline
229 void dir_page_release(nfs_readdir_descriptor_t *desc)
230 {
231 kunmap(desc->page);
232 page_cache_release(desc->page);
233 desc->page = NULL;
234 desc->ptr = NULL;
235 }
236
237 /*
238 * Given a pointer to a buffer that has already been filled by a call
239 * to readdir, find the next entry with cookie '*desc->dir_cookie'.
240 *
241 * If the end of the buffer has been reached, return -EAGAIN, if not,
242 * return the offset within the buffer of the next entry to be
243 * read.
244 */
245 static inline
246 int find_dirent(nfs_readdir_descriptor_t *desc)
247 {
248 struct nfs_entry *entry = desc->entry;
249 int loop_count = 0,
250 status;
251
252 while((status = dir_decode(desc)) == 0) {
253 dfprintk(DIRCACHE, "NFS: %s: examining cookie %Lu\n",
254 __FUNCTION__, (unsigned long long)entry->cookie);
255 if (entry->prev_cookie == *desc->dir_cookie)
256 break;
257 if (loop_count++ > 200) {
258 loop_count = 0;
259 schedule();
260 }
261 }
262 return status;
263 }
264
265 /*
266 * Given a pointer to a buffer that has already been filled by a call
267 * to readdir, find the entry at offset 'desc->file->f_pos'.
268 *
269 * If the end of the buffer has been reached, return -EAGAIN, if not,
270 * return the offset within the buffer of the next entry to be
271 * read.
272 */
273 static inline
274 int find_dirent_index(nfs_readdir_descriptor_t *desc)
275 {
276 struct nfs_entry *entry = desc->entry;
277 int loop_count = 0,
278 status;
279
280 for(;;) {
281 status = dir_decode(desc);
282 if (status)
283 break;
284
285 dfprintk(DIRCACHE, "NFS: found cookie %Lu at index %Ld\n",
286 (unsigned long long)entry->cookie, desc->current_index);
287
288 if (desc->file->f_pos == desc->current_index) {
289 *desc->dir_cookie = entry->cookie;
290 break;
291 }
292 desc->current_index++;
293 if (loop_count++ > 200) {
294 loop_count = 0;
295 schedule();
296 }
297 }
298 return status;
299 }
300
301 /*
302 * Find the given page, and call find_dirent() or find_dirent_index in
303 * order to try to return the next entry.
304 */
305 static inline
306 int find_dirent_page(nfs_readdir_descriptor_t *desc)
307 {
308 struct inode *inode = desc->file->f_dentry->d_inode;
309 struct page *page;
310 int status;
311
312 dfprintk(DIRCACHE, "NFS: %s: searching page %ld for target %Lu\n",
313 __FUNCTION__, desc->page_index,
314 (long long) *desc->dir_cookie);
315
316 page = read_cache_page(inode->i_mapping, desc->page_index,
317 (filler_t *)nfs_readdir_filler, desc);
318 if (IS_ERR(page)) {
319 status = PTR_ERR(page);
320 goto out;
321 }
322 if (!PageUptodate(page))
323 goto read_error;
324
325 /* NOTE: Someone else may have changed the READDIRPLUS flag */
326 desc->page = page;
327 desc->ptr = kmap(page); /* matching kunmap in nfs_do_filldir */
328 if (*desc->dir_cookie != 0)
329 status = find_dirent(desc);
330 else
331 status = find_dirent_index(desc);
332 if (status < 0)
333 dir_page_release(desc);
334 out:
335 dfprintk(DIRCACHE, "NFS: %s: returns %d\n", __FUNCTION__, status);
336 return status;
337 read_error:
338 page_cache_release(page);
339 return -EIO;
340 }
341
342 /*
343 * Recurse through the page cache pages, and return a
344 * filled nfs_entry structure of the next directory entry if possible.
345 *
346 * The target for the search is '*desc->dir_cookie' if non-0,
347 * 'desc->file->f_pos' otherwise
348 */
349 static inline
350 int readdir_search_pagecache(nfs_readdir_descriptor_t *desc)
351 {
352 int loop_count = 0;
353 int res;
354
355 /* Always search-by-index from the beginning of the cache */
356 if (*desc->dir_cookie == 0) {
357 dfprintk(DIRCACHE, "NFS: readdir_search_pagecache() searching for offset %Ld\n",
358 (long long)desc->file->f_pos);
359 desc->page_index = 0;
360 desc->entry->cookie = desc->entry->prev_cookie = 0;
361 desc->entry->eof = 0;
362 desc->current_index = 0;
363 } else
364 dfprintk(DIRCACHE, "NFS: readdir_search_pagecache() searching for cookie %Lu\n",
365 (unsigned long long)*desc->dir_cookie);
366
367 for (;;) {
368 res = find_dirent_page(desc);
369 if (res != -EAGAIN)
370 break;
371 /* Align to beginning of next page */
372 desc->page_index ++;
373 if (loop_count++ > 200) {
374 loop_count = 0;
375 schedule();
376 }
377 }
378
379 dfprintk(DIRCACHE, "NFS: %s: returns %d\n", __FUNCTION__, res);
380 return res;
381 }
382
383 static inline unsigned int dt_type(struct inode *inode)
384 {
385 return (inode->i_mode >> 12) & 15;
386 }
387
388 static struct dentry *nfs_readdir_lookup(nfs_readdir_descriptor_t *desc);
389
390 /*
391 * Once we've found the start of the dirent within a page: fill 'er up...
392 */
393 static
394 int nfs_do_filldir(nfs_readdir_descriptor_t *desc, void *dirent,
395 filldir_t filldir)
396 {
397 struct file *file = desc->file;
398 struct nfs_entry *entry = desc->entry;
399 struct dentry *dentry = NULL;
400 unsigned long fileid;
401 int loop_count = 0,
402 res;
403
404 dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling starting @ cookie %Lu\n",
405 (unsigned long long)entry->cookie);
406
407 for(;;) {
408 unsigned d_type = DT_UNKNOWN;
409 /* Note: entry->prev_cookie contains the cookie for
410 * retrieving the current dirent on the server */
411 fileid = nfs_fileid_to_ino_t(entry->ino);
412
413 /* Get a dentry if we have one */
414 if (dentry != NULL)
415 dput(dentry);
416 dentry = nfs_readdir_lookup(desc);
417
418 /* Use readdirplus info */
419 if (dentry != NULL && dentry->d_inode != NULL) {
420 d_type = dt_type(dentry->d_inode);
421 fileid = dentry->d_inode->i_ino;
422 }
423
424 res = filldir(dirent, entry->name, entry->len,
425 file->f_pos, fileid, d_type);
426 if (res < 0)
427 break;
428 file->f_pos++;
429 *desc->dir_cookie = entry->cookie;
430 if (dir_decode(desc) != 0) {
431 desc->page_index ++;
432 break;
433 }
434 if (loop_count++ > 200) {
435 loop_count = 0;
436 schedule();
437 }
438 }
439 dir_page_release(desc);
440 if (dentry != NULL)
441 dput(dentry);
442 dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n",
443 (unsigned long long)*desc->dir_cookie, res);
444 return res;
445 }
446
447 /*
448 * If we cannot find a cookie in our cache, we suspect that this is
449 * because it points to a deleted file, so we ask the server to return
450 * whatever it thinks is the next entry. We then feed this to filldir.
451 * If all goes well, we should then be able to find our way round the
452 * cache on the next call to readdir_search_pagecache();
453 *
454 * NOTE: we cannot add the anonymous page to the pagecache because
455 * the data it contains might not be page aligned. Besides,
456 * we should already have a complete representation of the
457 * directory in the page cache by the time we get here.
458 */
459 static inline
460 int uncached_readdir(nfs_readdir_descriptor_t *desc, void *dirent,
461 filldir_t filldir)
462 {
463 struct file *file = desc->file;
464 struct inode *inode = file->f_dentry->d_inode;
465 struct rpc_cred *cred = nfs_file_cred(file);
466 struct page *page = NULL;
467 int status;
468
469 dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n",
470 (unsigned long long)*desc->dir_cookie);
471
472 page = alloc_page(GFP_HIGHUSER);
473 if (!page) {
474 status = -ENOMEM;
475 goto out;
476 }
477 desc->error = NFS_PROTO(inode)->readdir(file->f_dentry, cred, *desc->dir_cookie,
478 page,
479 NFS_SERVER(inode)->dtsize,
480 desc->plus);
481 spin_lock(&inode->i_lock);
482 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_ATIME;
483 spin_unlock(&inode->i_lock);
484 desc->page = page;
485 desc->ptr = kmap(page); /* matching kunmap in nfs_do_filldir */
486 if (desc->error >= 0) {
487 if ((status = dir_decode(desc)) == 0)
488 desc->entry->prev_cookie = *desc->dir_cookie;
489 } else
490 status = -EIO;
491 if (status < 0)
492 goto out_release;
493
494 status = nfs_do_filldir(desc, dirent, filldir);
495
496 /* Reset read descriptor so it searches the page cache from
497 * the start upon the next call to readdir_search_pagecache() */
498 desc->page_index = 0;
499 desc->entry->cookie = desc->entry->prev_cookie = 0;
500 desc->entry->eof = 0;
501 out:
502 dfprintk(DIRCACHE, "NFS: %s: returns %d\n",
503 __FUNCTION__, status);
504 return status;
505 out_release:
506 dir_page_release(desc);
507 goto out;
508 }
509
510 /* The file offset position represents the dirent entry number. A
511 last cookie cache takes care of the common case of reading the
512 whole directory.
513 */
514 static int nfs_readdir(struct file *filp, void *dirent, filldir_t filldir)
515 {
516 struct dentry *dentry = filp->f_dentry;
517 struct inode *inode = dentry->d_inode;
518 nfs_readdir_descriptor_t my_desc,
519 *desc = &my_desc;
520 struct nfs_entry my_entry;
521 struct nfs_fh fh;
522 struct nfs_fattr fattr;
523 long res;
524
525 dfprintk(VFS, "NFS: readdir(%s/%s) starting at cookie %Lu\n",
526 dentry->d_parent->d_name.name, dentry->d_name.name,
527 (long long)filp->f_pos);
528 nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
529
530 lock_kernel();
531
532 res = nfs_revalidate_mapping(inode, filp->f_mapping);
533 if (res < 0) {
534 unlock_kernel();
535 return res;
536 }
537
538 /*
539 * filp->f_pos points to the dirent entry number.
540 * *desc->dir_cookie has the cookie for the next entry. We have
541 * to either find the entry with the appropriate number or
542 * revalidate the cookie.
543 */
544 memset(desc, 0, sizeof(*desc));
545
546 desc->file = filp;
547 desc->dir_cookie = &((struct nfs_open_context *)filp->private_data)->dir_cookie;
548 desc->decode = NFS_PROTO(inode)->decode_dirent;
549 desc->plus = NFS_USE_READDIRPLUS(inode);
550
551 my_entry.cookie = my_entry.prev_cookie = 0;
552 my_entry.eof = 0;
553 my_entry.fh = &fh;
554 my_entry.fattr = &fattr;
555 nfs_fattr_init(&fattr);
556 desc->entry = &my_entry;
557
558 while(!desc->entry->eof) {
559 res = readdir_search_pagecache(desc);
560
561 if (res == -EBADCOOKIE) {
562 /* This means either end of directory */
563 if (*desc->dir_cookie && desc->entry->cookie != *desc->dir_cookie) {
564 /* Or that the server has 'lost' a cookie */
565 res = uncached_readdir(desc, dirent, filldir);
566 if (res >= 0)
567 continue;
568 }
569 res = 0;
570 break;
571 }
572 if (res == -ETOOSMALL && desc->plus) {
573 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_FLAGS(inode));
574 nfs_zap_caches(inode);
575 desc->plus = 0;
576 desc->entry->eof = 0;
577 continue;
578 }
579 if (res < 0)
580 break;
581
582 res = nfs_do_filldir(desc, dirent, filldir);
583 if (res < 0) {
584 res = 0;
585 break;
586 }
587 }
588 unlock_kernel();
589 if (res > 0)
590 res = 0;
591 dfprintk(VFS, "NFS: readdir(%s/%s) returns %ld\n",
592 dentry->d_parent->d_name.name, dentry->d_name.name,
593 res);
594 return res;
595 }
596
597 loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int origin)
598 {
599 mutex_lock(&filp->f_dentry->d_inode->i_mutex);
600 switch (origin) {
601 case 1:
602 offset += filp->f_pos;
603 case 0:
604 if (offset >= 0)
605 break;
606 default:
607 offset = -EINVAL;
608 goto out;
609 }
610 if (offset != filp->f_pos) {
611 filp->f_pos = offset;
612 ((struct nfs_open_context *)filp->private_data)->dir_cookie = 0;
613 }
614 out:
615 mutex_unlock(&filp->f_dentry->d_inode->i_mutex);
616 return offset;
617 }
618
619 /*
620 * All directory operations under NFS are synchronous, so fsync()
621 * is a dummy operation.
622 */
623 int nfs_fsync_dir(struct file *filp, struct dentry *dentry, int datasync)
624 {
625 dfprintk(VFS, "NFS: fsync_dir(%s/%s) datasync %d\n",
626 dentry->d_parent->d_name.name, dentry->d_name.name,
627 datasync);
628
629 return 0;
630 }
631
632 /*
633 * A check for whether or not the parent directory has changed.
634 * In the case it has, we assume that the dentries are untrustworthy
635 * and may need to be looked up again.
636 */
637 static inline int nfs_check_verifier(struct inode *dir, struct dentry *dentry)
638 {
639 if (IS_ROOT(dentry))
640 return 1;
641 if ((NFS_I(dir)->cache_validity & NFS_INO_INVALID_ATTR) != 0
642 || nfs_attribute_timeout(dir))
643 return 0;
644 return nfs_verify_change_attribute(dir, (unsigned long)dentry->d_fsdata);
645 }
646
647 static inline void nfs_set_verifier(struct dentry * dentry, unsigned long verf)
648 {
649 dentry->d_fsdata = (void *)verf;
650 }
651
652 /*
653 * Whenever an NFS operation succeeds, we know that the dentry
654 * is valid, so we update the revalidation timestamp.
655 */
656 static inline void nfs_renew_times(struct dentry * dentry)
657 {
658 dentry->d_time = jiffies;
659 }
660
661 /*
662 * Return the intent data that applies to this particular path component
663 *
664 * Note that the current set of intents only apply to the very last
665 * component of the path.
666 * We check for this using LOOKUP_CONTINUE and LOOKUP_PARENT.
667 */
668 static inline unsigned int nfs_lookup_check_intent(struct nameidata *nd, unsigned int mask)
669 {
670 if (nd->flags & (LOOKUP_CONTINUE|LOOKUP_PARENT))
671 return 0;
672 return nd->flags & mask;
673 }
674
675 /*
676 * Inode and filehandle revalidation for lookups.
677 *
678 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
679 * or if the intent information indicates that we're about to open this
680 * particular file and the "nocto" mount flag is not set.
681 *
682 */
683 static inline
684 int nfs_lookup_verify_inode(struct inode *inode, struct nameidata *nd)
685 {
686 struct nfs_server *server = NFS_SERVER(inode);
687
688 if (nd != NULL) {
689 /* VFS wants an on-the-wire revalidation */
690 if (nd->flags & LOOKUP_REVAL)
691 goto out_force;
692 /* This is an open(2) */
693 if (nfs_lookup_check_intent(nd, LOOKUP_OPEN) != 0 &&
694 !(server->flags & NFS_MOUNT_NOCTO) &&
695 (S_ISREG(inode->i_mode) ||
696 S_ISDIR(inode->i_mode)))
697 goto out_force;
698 }
699 return nfs_revalidate_inode(server, inode);
700 out_force:
701 return __nfs_revalidate_inode(server, inode);
702 }
703
704 /*
705 * We judge how long we want to trust negative
706 * dentries by looking at the parent inode mtime.
707 *
708 * If parent mtime has changed, we revalidate, else we wait for a
709 * period corresponding to the parent's attribute cache timeout value.
710 */
711 static inline
712 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
713 struct nameidata *nd)
714 {
715 /* Don't revalidate a negative dentry if we're creating a new file */
716 if (nd != NULL && nfs_lookup_check_intent(nd, LOOKUP_CREATE) != 0)
717 return 0;
718 return !nfs_check_verifier(dir, dentry);
719 }
720
721 /*
722 * This is called every time the dcache has a lookup hit,
723 * and we should check whether we can really trust that
724 * lookup.
725 *
726 * NOTE! The hit can be a negative hit too, don't assume
727 * we have an inode!
728 *
729 * If the parent directory is seen to have changed, we throw out the
730 * cached dentry and do a new lookup.
731 */
732 static int nfs_lookup_revalidate(struct dentry * dentry, struct nameidata *nd)
733 {
734 struct inode *dir;
735 struct inode *inode;
736 struct dentry *parent;
737 int error;
738 struct nfs_fh fhandle;
739 struct nfs_fattr fattr;
740 unsigned long verifier;
741
742 parent = dget_parent(dentry);
743 lock_kernel();
744 dir = parent->d_inode;
745 nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
746 inode = dentry->d_inode;
747
748 if (!inode) {
749 if (nfs_neg_need_reval(dir, dentry, nd))
750 goto out_bad;
751 goto out_valid;
752 }
753
754 if (is_bad_inode(inode)) {
755 dfprintk(LOOKUPCACHE, "%s: %s/%s has dud inode\n",
756 __FUNCTION__, dentry->d_parent->d_name.name,
757 dentry->d_name.name);
758 goto out_bad;
759 }
760
761 /* Revalidate parent directory attribute cache */
762 if (nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
763 goto out_zap_parent;
764
765 /* Force a full look up iff the parent directory has changed */
766 if (nfs_check_verifier(dir, dentry)) {
767 if (nfs_lookup_verify_inode(inode, nd))
768 goto out_zap_parent;
769 goto out_valid;
770 }
771
772 if (NFS_STALE(inode))
773 goto out_bad;
774
775 verifier = nfs_save_change_attribute(dir);
776 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, &fhandle, &fattr);
777 if (error)
778 goto out_bad;
779 if (nfs_compare_fh(NFS_FH(inode), &fhandle))
780 goto out_bad;
781 if ((error = nfs_refresh_inode(inode, &fattr)) != 0)
782 goto out_bad;
783
784 nfs_renew_times(dentry);
785 nfs_set_verifier(dentry, verifier);
786 out_valid:
787 unlock_kernel();
788 dput(parent);
789 dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is valid\n",
790 __FUNCTION__, dentry->d_parent->d_name.name,
791 dentry->d_name.name);
792 return 1;
793 out_zap_parent:
794 nfs_zap_caches(dir);
795 out_bad:
796 NFS_CACHEINV(dir);
797 if (inode && S_ISDIR(inode->i_mode)) {
798 /* Purge readdir caches. */
799 nfs_zap_caches(inode);
800 /* If we have submounts, don't unhash ! */
801 if (have_submounts(dentry))
802 goto out_valid;
803 shrink_dcache_parent(dentry);
804 }
805 d_drop(dentry);
806 unlock_kernel();
807 dput(parent);
808 dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is invalid\n",
809 __FUNCTION__, dentry->d_parent->d_name.name,
810 dentry->d_name.name);
811 return 0;
812 }
813
814 /*
815 * This is called from dput() when d_count is going to 0.
816 */
817 static int nfs_dentry_delete(struct dentry *dentry)
818 {
819 dfprintk(VFS, "NFS: dentry_delete(%s/%s, %x)\n",
820 dentry->d_parent->d_name.name, dentry->d_name.name,
821 dentry->d_flags);
822
823 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
824 /* Unhash it, so that ->d_iput() would be called */
825 return 1;
826 }
827 if (!(dentry->d_sb->s_flags & MS_ACTIVE)) {
828 /* Unhash it, so that ancestors of killed async unlink
829 * files will be cleaned up during umount */
830 return 1;
831 }
832 return 0;
833
834 }
835
836 /*
837 * Called when the dentry loses inode.
838 * We use it to clean up silly-renamed files.
839 */
840 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
841 {
842 nfs_inode_return_delegation(inode);
843 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
844 lock_kernel();
845 inode->i_nlink--;
846 nfs_complete_unlink(dentry);
847 unlock_kernel();
848 }
849 /* When creating a negative dentry, we want to renew d_time */
850 nfs_renew_times(dentry);
851 iput(inode);
852 }
853
854 struct dentry_operations nfs_dentry_operations = {
855 .d_revalidate = nfs_lookup_revalidate,
856 .d_delete = nfs_dentry_delete,
857 .d_iput = nfs_dentry_iput,
858 };
859
860 /*
861 * Use intent information to check whether or not we're going to do
862 * an O_EXCL create using this path component.
863 */
864 static inline
865 int nfs_is_exclusive_create(struct inode *dir, struct nameidata *nd)
866 {
867 if (NFS_PROTO(dir)->version == 2)
868 return 0;
869 if (nd == NULL || nfs_lookup_check_intent(nd, LOOKUP_CREATE) == 0)
870 return 0;
871 return (nd->intent.open.flags & O_EXCL) != 0;
872 }
873
874 static inline int nfs_reval_fsid(struct vfsmount *mnt, struct inode *dir,
875 struct nfs_fh *fh, struct nfs_fattr *fattr)
876 {
877 struct nfs_server *server = NFS_SERVER(dir);
878
879 if (!nfs_fsid_equal(&server->fsid, &fattr->fsid))
880 /* Revalidate fsid on root dir */
881 return __nfs_revalidate_inode(server, mnt->mnt_root->d_inode);
882 return 0;
883 }
884
885 static struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
886 {
887 struct dentry *res;
888 struct inode *inode = NULL;
889 int error;
890 struct nfs_fh fhandle;
891 struct nfs_fattr fattr;
892
893 dfprintk(VFS, "NFS: lookup(%s/%s)\n",
894 dentry->d_parent->d_name.name, dentry->d_name.name);
895 nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
896
897 res = ERR_PTR(-ENAMETOOLONG);
898 if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
899 goto out;
900
901 res = ERR_PTR(-ENOMEM);
902 dentry->d_op = NFS_PROTO(dir)->dentry_ops;
903
904 lock_kernel();
905
906 /* If we're doing an exclusive create, optimize away the lookup */
907 if (nfs_is_exclusive_create(dir, nd))
908 goto no_entry;
909
910 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, &fhandle, &fattr);
911 if (error == -ENOENT)
912 goto no_entry;
913 if (error < 0) {
914 res = ERR_PTR(error);
915 goto out_unlock;
916 }
917 error = nfs_reval_fsid(nd->mnt, dir, &fhandle, &fattr);
918 if (error < 0) {
919 res = ERR_PTR(error);
920 goto out_unlock;
921 }
922 inode = nfs_fhget(dentry->d_sb, &fhandle, &fattr);
923 res = (struct dentry *)inode;
924 if (IS_ERR(res))
925 goto out_unlock;
926
927 no_entry:
928 res = d_materialise_unique(dentry, inode);
929 if (res != NULL)
930 dentry = res;
931 nfs_renew_times(dentry);
932 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
933 out_unlock:
934 unlock_kernel();
935 out:
936 return res;
937 }
938
939 #ifdef CONFIG_NFS_V4
940 static int nfs_open_revalidate(struct dentry *, struct nameidata *);
941
942 struct dentry_operations nfs4_dentry_operations = {
943 .d_revalidate = nfs_open_revalidate,
944 .d_delete = nfs_dentry_delete,
945 .d_iput = nfs_dentry_iput,
946 };
947
948 /*
949 * Use intent information to determine whether we need to substitute
950 * the NFSv4-style stateful OPEN for the LOOKUP call
951 */
952 static int is_atomic_open(struct inode *dir, struct nameidata *nd)
953 {
954 if (nd == NULL || nfs_lookup_check_intent(nd, LOOKUP_OPEN) == 0)
955 return 0;
956 /* NFS does not (yet) have a stateful open for directories */
957 if (nd->flags & LOOKUP_DIRECTORY)
958 return 0;
959 /* Are we trying to write to a read only partition? */
960 if (IS_RDONLY(dir) && (nd->intent.open.flags & (O_CREAT|O_TRUNC|FMODE_WRITE)))
961 return 0;
962 return 1;
963 }
964
965 static struct dentry *nfs_atomic_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd)
966 {
967 struct dentry *res = NULL;
968 int error;
969
970 dfprintk(VFS, "NFS: atomic_lookup(%s/%ld), %s\n",
971 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
972
973 /* Check that we are indeed trying to open this file */
974 if (!is_atomic_open(dir, nd))
975 goto no_open;
976
977 if (dentry->d_name.len > NFS_SERVER(dir)->namelen) {
978 res = ERR_PTR(-ENAMETOOLONG);
979 goto out;
980 }
981 dentry->d_op = NFS_PROTO(dir)->dentry_ops;
982
983 /* Let vfs_create() deal with O_EXCL */
984 if (nd->intent.open.flags & O_EXCL) {
985 d_add(dentry, NULL);
986 goto out;
987 }
988
989 /* Open the file on the server */
990 lock_kernel();
991 /* Revalidate parent directory attribute cache */
992 error = nfs_revalidate_inode(NFS_SERVER(dir), dir);
993 if (error < 0) {
994 res = ERR_PTR(error);
995 unlock_kernel();
996 goto out;
997 }
998
999 if (nd->intent.open.flags & O_CREAT) {
1000 nfs_begin_data_update(dir);
1001 res = nfs4_atomic_open(dir, dentry, nd);
1002 nfs_end_data_update(dir);
1003 } else
1004 res = nfs4_atomic_open(dir, dentry, nd);
1005 unlock_kernel();
1006 if (IS_ERR(res)) {
1007 error = PTR_ERR(res);
1008 switch (error) {
1009 /* Make a negative dentry */
1010 case -ENOENT:
1011 res = NULL;
1012 goto out;
1013 /* This turned out not to be a regular file */
1014 case -EISDIR:
1015 case -ENOTDIR:
1016 goto no_open;
1017 case -ELOOP:
1018 if (!(nd->intent.open.flags & O_NOFOLLOW))
1019 goto no_open;
1020 /* case -EINVAL: */
1021 default:
1022 goto out;
1023 }
1024 } else if (res != NULL)
1025 dentry = res;
1026 nfs_renew_times(dentry);
1027 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1028 out:
1029 return res;
1030 no_open:
1031 return nfs_lookup(dir, dentry, nd);
1032 }
1033
1034 static int nfs_open_revalidate(struct dentry *dentry, struct nameidata *nd)
1035 {
1036 struct dentry *parent = NULL;
1037 struct inode *inode = dentry->d_inode;
1038 struct inode *dir;
1039 unsigned long verifier;
1040 int openflags, ret = 0;
1041
1042 parent = dget_parent(dentry);
1043 dir = parent->d_inode;
1044 if (!is_atomic_open(dir, nd))
1045 goto no_open;
1046 /* We can't create new files in nfs_open_revalidate(), so we
1047 * optimize away revalidation of negative dentries.
1048 */
1049 if (inode == NULL)
1050 goto out;
1051 /* NFS only supports OPEN on regular files */
1052 if (!S_ISREG(inode->i_mode))
1053 goto no_open;
1054 openflags = nd->intent.open.flags;
1055 /* We cannot do exclusive creation on a positive dentry */
1056 if ((openflags & (O_CREAT|O_EXCL)) == (O_CREAT|O_EXCL))
1057 goto no_open;
1058 /* We can't create new files, or truncate existing ones here */
1059 openflags &= ~(O_CREAT|O_TRUNC);
1060
1061 /*
1062 * Note: we're not holding inode->i_mutex and so may be racing with
1063 * operations that change the directory. We therefore save the
1064 * change attribute *before* we do the RPC call.
1065 */
1066 lock_kernel();
1067 verifier = nfs_save_change_attribute(dir);
1068 ret = nfs4_open_revalidate(dir, dentry, openflags, nd);
1069 if (!ret)
1070 nfs_set_verifier(dentry, verifier);
1071 unlock_kernel();
1072 out:
1073 dput(parent);
1074 if (!ret)
1075 d_drop(dentry);
1076 return ret;
1077 no_open:
1078 dput(parent);
1079 if (inode != NULL && nfs_have_delegation(inode, FMODE_READ))
1080 return 1;
1081 return nfs_lookup_revalidate(dentry, nd);
1082 }
1083 #endif /* CONFIG_NFSV4 */
1084
1085 static struct dentry *nfs_readdir_lookup(nfs_readdir_descriptor_t *desc)
1086 {
1087 struct dentry *parent = desc->file->f_dentry;
1088 struct inode *dir = parent->d_inode;
1089 struct nfs_entry *entry = desc->entry;
1090 struct dentry *dentry, *alias;
1091 struct qstr name = {
1092 .name = entry->name,
1093 .len = entry->len,
1094 };
1095 struct inode *inode;
1096
1097 switch (name.len) {
1098 case 2:
1099 if (name.name[0] == '.' && name.name[1] == '.')
1100 return dget_parent(parent);
1101 break;
1102 case 1:
1103 if (name.name[0] == '.')
1104 return dget(parent);
1105 }
1106 name.hash = full_name_hash(name.name, name.len);
1107 dentry = d_lookup(parent, &name);
1108 if (dentry != NULL)
1109 return dentry;
1110 if (!desc->plus || !(entry->fattr->valid & NFS_ATTR_FATTR))
1111 return NULL;
1112 /* Note: caller is already holding the dir->i_mutex! */
1113 dentry = d_alloc(parent, &name);
1114 if (dentry == NULL)
1115 return NULL;
1116 dentry->d_op = NFS_PROTO(dir)->dentry_ops;
1117 inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr);
1118 if (IS_ERR(inode)) {
1119 dput(dentry);
1120 return NULL;
1121 }
1122
1123 alias = d_materialise_unique(dentry, inode);
1124 if (alias != NULL) {
1125 dput(dentry);
1126 dentry = alias;
1127 }
1128
1129 nfs_renew_times(dentry);
1130 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1131 return dentry;
1132 }
1133
1134 /*
1135 * Code common to create, mkdir, and mknod.
1136 */
1137 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
1138 struct nfs_fattr *fattr)
1139 {
1140 struct inode *inode;
1141 int error = -EACCES;
1142
1143 /* We may have been initialized further down */
1144 if (dentry->d_inode)
1145 return 0;
1146 if (fhandle->size == 0) {
1147 struct inode *dir = dentry->d_parent->d_inode;
1148 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr);
1149 if (error)
1150 goto out_err;
1151 }
1152 if (!(fattr->valid & NFS_ATTR_FATTR)) {
1153 struct nfs_server *server = NFS_SB(dentry->d_sb);
1154 error = server->nfs_client->rpc_ops->getattr(server, fhandle, fattr);
1155 if (error < 0)
1156 goto out_err;
1157 }
1158 inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
1159 error = PTR_ERR(inode);
1160 if (IS_ERR(inode))
1161 goto out_err;
1162 d_instantiate(dentry, inode);
1163 return 0;
1164 out_err:
1165 d_drop(dentry);
1166 return error;
1167 }
1168
1169 /*
1170 * Following a failed create operation, we drop the dentry rather
1171 * than retain a negative dentry. This avoids a problem in the event
1172 * that the operation succeeded on the server, but an error in the
1173 * reply path made it appear to have failed.
1174 */
1175 static int nfs_create(struct inode *dir, struct dentry *dentry, int mode,
1176 struct nameidata *nd)
1177 {
1178 struct iattr attr;
1179 int error;
1180 int open_flags = 0;
1181
1182 dfprintk(VFS, "NFS: create(%s/%ld), %s\n",
1183 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1184
1185 attr.ia_mode = mode;
1186 attr.ia_valid = ATTR_MODE;
1187
1188 if (nd && (nd->flags & LOOKUP_CREATE))
1189 open_flags = nd->intent.open.flags;
1190
1191 lock_kernel();
1192 nfs_begin_data_update(dir);
1193 error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags, nd);
1194 nfs_end_data_update(dir);
1195 if (error != 0)
1196 goto out_err;
1197 nfs_renew_times(dentry);
1198 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1199 unlock_kernel();
1200 return 0;
1201 out_err:
1202 unlock_kernel();
1203 d_drop(dentry);
1204 return error;
1205 }
1206
1207 /*
1208 * See comments for nfs_proc_create regarding failed operations.
1209 */
1210 static int
1211 nfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t rdev)
1212 {
1213 struct iattr attr;
1214 int status;
1215
1216 dfprintk(VFS, "NFS: mknod(%s/%ld), %s\n",
1217 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1218
1219 if (!new_valid_dev(rdev))
1220 return -EINVAL;
1221
1222 attr.ia_mode = mode;
1223 attr.ia_valid = ATTR_MODE;
1224
1225 lock_kernel();
1226 nfs_begin_data_update(dir);
1227 status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
1228 nfs_end_data_update(dir);
1229 if (status != 0)
1230 goto out_err;
1231 nfs_renew_times(dentry);
1232 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1233 unlock_kernel();
1234 return 0;
1235 out_err:
1236 unlock_kernel();
1237 d_drop(dentry);
1238 return status;
1239 }
1240
1241 /*
1242 * See comments for nfs_proc_create regarding failed operations.
1243 */
1244 static int nfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1245 {
1246 struct iattr attr;
1247 int error;
1248
1249 dfprintk(VFS, "NFS: mkdir(%s/%ld), %s\n",
1250 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1251
1252 attr.ia_valid = ATTR_MODE;
1253 attr.ia_mode = mode | S_IFDIR;
1254
1255 lock_kernel();
1256 nfs_begin_data_update(dir);
1257 error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
1258 nfs_end_data_update(dir);
1259 if (error != 0)
1260 goto out_err;
1261 nfs_renew_times(dentry);
1262 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1263 unlock_kernel();
1264 return 0;
1265 out_err:
1266 d_drop(dentry);
1267 unlock_kernel();
1268 return error;
1269 }
1270
1271 static int nfs_rmdir(struct inode *dir, struct dentry *dentry)
1272 {
1273 int error;
1274
1275 dfprintk(VFS, "NFS: rmdir(%s/%ld), %s\n",
1276 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1277
1278 lock_kernel();
1279 nfs_begin_data_update(dir);
1280 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1281 /* Ensure the VFS deletes this inode */
1282 if (error == 0 && dentry->d_inode != NULL)
1283 dentry->d_inode->i_nlink = 0;
1284 nfs_end_data_update(dir);
1285 unlock_kernel();
1286
1287 return error;
1288 }
1289
1290 static int nfs_sillyrename(struct inode *dir, struct dentry *dentry)
1291 {
1292 static unsigned int sillycounter;
1293 const int i_inosize = sizeof(dir->i_ino)*2;
1294 const int countersize = sizeof(sillycounter)*2;
1295 const int slen = sizeof(".nfs") + i_inosize + countersize - 1;
1296 char silly[slen+1];
1297 struct qstr qsilly;
1298 struct dentry *sdentry;
1299 int error = -EIO;
1300
1301 dfprintk(VFS, "NFS: silly-rename(%s/%s, ct=%d)\n",
1302 dentry->d_parent->d_name.name, dentry->d_name.name,
1303 atomic_read(&dentry->d_count));
1304 nfs_inc_stats(dir, NFSIOS_SILLYRENAME);
1305
1306 #ifdef NFS_PARANOIA
1307 if (!dentry->d_inode)
1308 printk("NFS: silly-renaming %s/%s, negative dentry??\n",
1309 dentry->d_parent->d_name.name, dentry->d_name.name);
1310 #endif
1311 /*
1312 * We don't allow a dentry to be silly-renamed twice.
1313 */
1314 error = -EBUSY;
1315 if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1316 goto out;
1317
1318 sprintf(silly, ".nfs%*.*lx",
1319 i_inosize, i_inosize, dentry->d_inode->i_ino);
1320
1321 /* Return delegation in anticipation of the rename */
1322 nfs_inode_return_delegation(dentry->d_inode);
1323
1324 sdentry = NULL;
1325 do {
1326 char *suffix = silly + slen - countersize;
1327
1328 dput(sdentry);
1329 sillycounter++;
1330 sprintf(suffix, "%*.*x", countersize, countersize, sillycounter);
1331
1332 dfprintk(VFS, "NFS: trying to rename %s to %s\n",
1333 dentry->d_name.name, silly);
1334
1335 sdentry = lookup_one_len(silly, dentry->d_parent, slen);
1336 /*
1337 * N.B. Better to return EBUSY here ... it could be
1338 * dangerous to delete the file while it's in use.
1339 */
1340 if (IS_ERR(sdentry))
1341 goto out;
1342 } while(sdentry->d_inode != NULL); /* need negative lookup */
1343
1344 qsilly.name = silly;
1345 qsilly.len = strlen(silly);
1346 nfs_begin_data_update(dir);
1347 if (dentry->d_inode) {
1348 nfs_begin_data_update(dentry->d_inode);
1349 error = NFS_PROTO(dir)->rename(dir, &dentry->d_name,
1350 dir, &qsilly);
1351 nfs_mark_for_revalidate(dentry->d_inode);
1352 nfs_end_data_update(dentry->d_inode);
1353 } else
1354 error = NFS_PROTO(dir)->rename(dir, &dentry->d_name,
1355 dir, &qsilly);
1356 nfs_end_data_update(dir);
1357 if (!error) {
1358 nfs_renew_times(dentry);
1359 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1360 d_move(dentry, sdentry);
1361 error = nfs_async_unlink(dentry);
1362 /* If we return 0 we don't unlink */
1363 }
1364 dput(sdentry);
1365 out:
1366 return error;
1367 }
1368
1369 /*
1370 * Remove a file after making sure there are no pending writes,
1371 * and after checking that the file has only one user.
1372 *
1373 * We invalidate the attribute cache and free the inode prior to the operation
1374 * to avoid possible races if the server reuses the inode.
1375 */
1376 static int nfs_safe_remove(struct dentry *dentry)
1377 {
1378 struct inode *dir = dentry->d_parent->d_inode;
1379 struct inode *inode = dentry->d_inode;
1380 int error = -EBUSY;
1381
1382 dfprintk(VFS, "NFS: safe_remove(%s/%s)\n",
1383 dentry->d_parent->d_name.name, dentry->d_name.name);
1384
1385 /* If the dentry was sillyrenamed, we simply call d_delete() */
1386 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1387 error = 0;
1388 goto out;
1389 }
1390
1391 nfs_begin_data_update(dir);
1392 if (inode != NULL) {
1393 nfs_inode_return_delegation(inode);
1394 nfs_begin_data_update(inode);
1395 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1396 /* The VFS may want to delete this inode */
1397 if (error == 0)
1398 inode->i_nlink--;
1399 nfs_mark_for_revalidate(inode);
1400 nfs_end_data_update(inode);
1401 } else
1402 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1403 nfs_end_data_update(dir);
1404 out:
1405 return error;
1406 }
1407
1408 /* We do silly rename. In case sillyrename() returns -EBUSY, the inode
1409 * belongs to an active ".nfs..." file and we return -EBUSY.
1410 *
1411 * If sillyrename() returns 0, we do nothing, otherwise we unlink.
1412 */
1413 static int nfs_unlink(struct inode *dir, struct dentry *dentry)
1414 {
1415 int error;
1416 int need_rehash = 0;
1417
1418 dfprintk(VFS, "NFS: unlink(%s/%ld, %s)\n", dir->i_sb->s_id,
1419 dir->i_ino, dentry->d_name.name);
1420
1421 lock_kernel();
1422 spin_lock(&dcache_lock);
1423 spin_lock(&dentry->d_lock);
1424 if (atomic_read(&dentry->d_count) > 1) {
1425 spin_unlock(&dentry->d_lock);
1426 spin_unlock(&dcache_lock);
1427 error = nfs_sillyrename(dir, dentry);
1428 unlock_kernel();
1429 return error;
1430 }
1431 if (!d_unhashed(dentry)) {
1432 __d_drop(dentry);
1433 need_rehash = 1;
1434 }
1435 spin_unlock(&dentry->d_lock);
1436 spin_unlock(&dcache_lock);
1437 error = nfs_safe_remove(dentry);
1438 if (!error) {
1439 nfs_renew_times(dentry);
1440 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1441 } else if (need_rehash)
1442 d_rehash(dentry);
1443 unlock_kernel();
1444 return error;
1445 }
1446
1447 static int
1448 nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1449 {
1450 struct iattr attr;
1451 struct nfs_fattr sym_attr;
1452 struct nfs_fh sym_fh;
1453 struct qstr qsymname;
1454 int error;
1455
1456 dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s)\n", dir->i_sb->s_id,
1457 dir->i_ino, dentry->d_name.name, symname);
1458
1459 #ifdef NFS_PARANOIA
1460 if (dentry->d_inode)
1461 printk("nfs_proc_symlink: %s/%s not negative!\n",
1462 dentry->d_parent->d_name.name, dentry->d_name.name);
1463 #endif
1464 /*
1465 * Fill in the sattr for the call.
1466 * Note: SunOS 4.1.2 crashes if the mode isn't initialized!
1467 */
1468 attr.ia_valid = ATTR_MODE;
1469 attr.ia_mode = S_IFLNK | S_IRWXUGO;
1470
1471 qsymname.name = symname;
1472 qsymname.len = strlen(symname);
1473
1474 lock_kernel();
1475 nfs_begin_data_update(dir);
1476 error = NFS_PROTO(dir)->symlink(dir, &dentry->d_name, &qsymname,
1477 &attr, &sym_fh, &sym_attr);
1478 nfs_end_data_update(dir);
1479 if (!error) {
1480 error = nfs_instantiate(dentry, &sym_fh, &sym_attr);
1481 } else {
1482 if (error == -EEXIST)
1483 printk("nfs_proc_symlink: %s/%s already exists??\n",
1484 dentry->d_parent->d_name.name, dentry->d_name.name);
1485 d_drop(dentry);
1486 }
1487 unlock_kernel();
1488 return error;
1489 }
1490
1491 static int
1492 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1493 {
1494 struct inode *inode = old_dentry->d_inode;
1495 int error;
1496
1497 dfprintk(VFS, "NFS: link(%s/%s -> %s/%s)\n",
1498 old_dentry->d_parent->d_name.name, old_dentry->d_name.name,
1499 dentry->d_parent->d_name.name, dentry->d_name.name);
1500
1501 lock_kernel();
1502 nfs_begin_data_update(dir);
1503 nfs_begin_data_update(inode);
1504 error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
1505 if (error == 0) {
1506 atomic_inc(&inode->i_count);
1507 d_instantiate(dentry, inode);
1508 }
1509 nfs_end_data_update(inode);
1510 nfs_end_data_update(dir);
1511 unlock_kernel();
1512 return error;
1513 }
1514
1515 /*
1516 * RENAME
1517 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
1518 * different file handle for the same inode after a rename (e.g. when
1519 * moving to a different directory). A fail-safe method to do so would
1520 * be to look up old_dir/old_name, create a link to new_dir/new_name and
1521 * rename the old file using the sillyrename stuff. This way, the original
1522 * file in old_dir will go away when the last process iput()s the inode.
1523 *
1524 * FIXED.
1525 *
1526 * It actually works quite well. One needs to have the possibility for
1527 * at least one ".nfs..." file in each directory the file ever gets
1528 * moved or linked to which happens automagically with the new
1529 * implementation that only depends on the dcache stuff instead of
1530 * using the inode layer
1531 *
1532 * Unfortunately, things are a little more complicated than indicated
1533 * above. For a cross-directory move, we want to make sure we can get
1534 * rid of the old inode after the operation. This means there must be
1535 * no pending writes (if it's a file), and the use count must be 1.
1536 * If these conditions are met, we can drop the dentries before doing
1537 * the rename.
1538 */
1539 static int nfs_rename(struct inode *old_dir, struct dentry *old_dentry,
1540 struct inode *new_dir, struct dentry *new_dentry)
1541 {
1542 struct inode *old_inode = old_dentry->d_inode;
1543 struct inode *new_inode = new_dentry->d_inode;
1544 struct dentry *dentry = NULL, *rehash = NULL;
1545 int error = -EBUSY;
1546
1547 /*
1548 * To prevent any new references to the target during the rename,
1549 * we unhash the dentry and free the inode in advance.
1550 */
1551 lock_kernel();
1552 if (!d_unhashed(new_dentry)) {
1553 d_drop(new_dentry);
1554 rehash = new_dentry;
1555 }
1556
1557 dfprintk(VFS, "NFS: rename(%s/%s -> %s/%s, ct=%d)\n",
1558 old_dentry->d_parent->d_name.name, old_dentry->d_name.name,
1559 new_dentry->d_parent->d_name.name, new_dentry->d_name.name,
1560 atomic_read(&new_dentry->d_count));
1561
1562 /*
1563 * First check whether the target is busy ... we can't
1564 * safely do _any_ rename if the target is in use.
1565 *
1566 * For files, make a copy of the dentry and then do a
1567 * silly-rename. If the silly-rename succeeds, the
1568 * copied dentry is hashed and becomes the new target.
1569 */
1570 if (!new_inode)
1571 goto go_ahead;
1572 if (S_ISDIR(new_inode->i_mode)) {
1573 error = -EISDIR;
1574 if (!S_ISDIR(old_inode->i_mode))
1575 goto out;
1576 } else if (atomic_read(&new_dentry->d_count) > 2) {
1577 int err;
1578 /* copy the target dentry's name */
1579 dentry = d_alloc(new_dentry->d_parent,
1580 &new_dentry->d_name);
1581 if (!dentry)
1582 goto out;
1583
1584 /* silly-rename the existing target ... */
1585 err = nfs_sillyrename(new_dir, new_dentry);
1586 if (!err) {
1587 new_dentry = rehash = dentry;
1588 new_inode = NULL;
1589 /* instantiate the replacement target */
1590 d_instantiate(new_dentry, NULL);
1591 } else if (atomic_read(&new_dentry->d_count) > 1) {
1592 /* dentry still busy? */
1593 #ifdef NFS_PARANOIA
1594 printk("nfs_rename: target %s/%s busy, d_count=%d\n",
1595 new_dentry->d_parent->d_name.name,
1596 new_dentry->d_name.name,
1597 atomic_read(&new_dentry->d_count));
1598 #endif
1599 goto out;
1600 }
1601 } else
1602 new_inode->i_nlink--;
1603
1604 go_ahead:
1605 /*
1606 * ... prune child dentries and writebacks if needed.
1607 */
1608 if (atomic_read(&old_dentry->d_count) > 1) {
1609 nfs_wb_all(old_inode);
1610 shrink_dcache_parent(old_dentry);
1611 }
1612 nfs_inode_return_delegation(old_inode);
1613
1614 if (new_inode != NULL) {
1615 nfs_inode_return_delegation(new_inode);
1616 d_delete(new_dentry);
1617 }
1618
1619 nfs_begin_data_update(old_dir);
1620 nfs_begin_data_update(new_dir);
1621 nfs_begin_data_update(old_inode);
1622 error = NFS_PROTO(old_dir)->rename(old_dir, &old_dentry->d_name,
1623 new_dir, &new_dentry->d_name);
1624 nfs_mark_for_revalidate(old_inode);
1625 nfs_end_data_update(old_inode);
1626 nfs_end_data_update(new_dir);
1627 nfs_end_data_update(old_dir);
1628 out:
1629 if (rehash)
1630 d_rehash(rehash);
1631 if (!error) {
1632 if (!S_ISDIR(old_inode->i_mode))
1633 d_move(old_dentry, new_dentry);
1634 nfs_renew_times(new_dentry);
1635 nfs_set_verifier(new_dentry, nfs_save_change_attribute(new_dir));
1636 }
1637
1638 /* new dentry created? */
1639 if (dentry)
1640 dput(dentry);
1641 unlock_kernel();
1642 return error;
1643 }
1644
1645 static DEFINE_SPINLOCK(nfs_access_lru_lock);
1646 static LIST_HEAD(nfs_access_lru_list);
1647 static atomic_long_t nfs_access_nr_entries;
1648
1649 static void nfs_access_free_entry(struct nfs_access_entry *entry)
1650 {
1651 put_rpccred(entry->cred);
1652 kfree(entry);
1653 smp_mb__before_atomic_dec();
1654 atomic_long_dec(&nfs_access_nr_entries);
1655 smp_mb__after_atomic_dec();
1656 }
1657
1658 int nfs_access_cache_shrinker(int nr_to_scan, gfp_t gfp_mask)
1659 {
1660 LIST_HEAD(head);
1661 struct nfs_inode *nfsi;
1662 struct nfs_access_entry *cache;
1663
1664 spin_lock(&nfs_access_lru_lock);
1665 restart:
1666 list_for_each_entry(nfsi, &nfs_access_lru_list, access_cache_inode_lru) {
1667 struct inode *inode;
1668
1669 if (nr_to_scan-- == 0)
1670 break;
1671 inode = igrab(&nfsi->vfs_inode);
1672 if (inode == NULL)
1673 continue;
1674 spin_lock(&inode->i_lock);
1675 if (list_empty(&nfsi->access_cache_entry_lru))
1676 goto remove_lru_entry;
1677 cache = list_entry(nfsi->access_cache_entry_lru.next,
1678 struct nfs_access_entry, lru);
1679 list_move(&cache->lru, &head);
1680 rb_erase(&cache->rb_node, &nfsi->access_cache);
1681 if (!list_empty(&nfsi->access_cache_entry_lru))
1682 list_move_tail(&nfsi->access_cache_inode_lru,
1683 &nfs_access_lru_list);
1684 else {
1685 remove_lru_entry:
1686 list_del_init(&nfsi->access_cache_inode_lru);
1687 clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
1688 }
1689 spin_unlock(&inode->i_lock);
1690 iput(inode);
1691 goto restart;
1692 }
1693 spin_unlock(&nfs_access_lru_lock);
1694 while (!list_empty(&head)) {
1695 cache = list_entry(head.next, struct nfs_access_entry, lru);
1696 list_del(&cache->lru);
1697 nfs_access_free_entry(cache);
1698 }
1699 return (atomic_long_read(&nfs_access_nr_entries) / 100) * sysctl_vfs_cache_pressure;
1700 }
1701
1702 static void __nfs_access_zap_cache(struct inode *inode)
1703 {
1704 struct nfs_inode *nfsi = NFS_I(inode);
1705 struct rb_root *root_node = &nfsi->access_cache;
1706 struct rb_node *n, *dispose = NULL;
1707 struct nfs_access_entry *entry;
1708
1709 /* Unhook entries from the cache */
1710 while ((n = rb_first(root_node)) != NULL) {
1711 entry = rb_entry(n, struct nfs_access_entry, rb_node);
1712 rb_erase(n, root_node);
1713 list_del(&entry->lru);
1714 n->rb_left = dispose;
1715 dispose = n;
1716 }
1717 nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
1718 spin_unlock(&inode->i_lock);
1719
1720 /* Now kill them all! */
1721 while (dispose != NULL) {
1722 n = dispose;
1723 dispose = n->rb_left;
1724 nfs_access_free_entry(rb_entry(n, struct nfs_access_entry, rb_node));
1725 }
1726 }
1727
1728 void nfs_access_zap_cache(struct inode *inode)
1729 {
1730 /* Remove from global LRU init */
1731 if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_FLAGS(inode))) {
1732 spin_lock(&nfs_access_lru_lock);
1733 list_del_init(&NFS_I(inode)->access_cache_inode_lru);
1734 spin_unlock(&nfs_access_lru_lock);
1735 }
1736
1737 spin_lock(&inode->i_lock);
1738 /* This will release the spinlock */
1739 __nfs_access_zap_cache(inode);
1740 }
1741
1742 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, struct rpc_cred *cred)
1743 {
1744 struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
1745 struct nfs_access_entry *entry;
1746
1747 while (n != NULL) {
1748 entry = rb_entry(n, struct nfs_access_entry, rb_node);
1749
1750 if (cred < entry->cred)
1751 n = n->rb_left;
1752 else if (cred > entry->cred)
1753 n = n->rb_right;
1754 else
1755 return entry;
1756 }
1757 return NULL;
1758 }
1759
1760 int nfs_access_get_cached(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res)
1761 {
1762 struct nfs_inode *nfsi = NFS_I(inode);
1763 struct nfs_access_entry *cache;
1764 int err = -ENOENT;
1765
1766 spin_lock(&inode->i_lock);
1767 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
1768 goto out_zap;
1769 cache = nfs_access_search_rbtree(inode, cred);
1770 if (cache == NULL)
1771 goto out;
1772 if (time_after(jiffies, cache->jiffies + NFS_ATTRTIMEO(inode)))
1773 goto out_stale;
1774 res->jiffies = cache->jiffies;
1775 res->cred = cache->cred;
1776 res->mask = cache->mask;
1777 list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
1778 err = 0;
1779 out:
1780 spin_unlock(&inode->i_lock);
1781 return err;
1782 out_stale:
1783 rb_erase(&cache->rb_node, &nfsi->access_cache);
1784 list_del(&cache->lru);
1785 spin_unlock(&inode->i_lock);
1786 nfs_access_free_entry(cache);
1787 return -ENOENT;
1788 out_zap:
1789 /* This will release the spinlock */
1790 __nfs_access_zap_cache(inode);
1791 return -ENOENT;
1792 }
1793
1794 static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set)
1795 {
1796 struct nfs_inode *nfsi = NFS_I(inode);
1797 struct rb_root *root_node = &nfsi->access_cache;
1798 struct rb_node **p = &root_node->rb_node;
1799 struct rb_node *parent = NULL;
1800 struct nfs_access_entry *entry;
1801
1802 spin_lock(&inode->i_lock);
1803 while (*p != NULL) {
1804 parent = *p;
1805 entry = rb_entry(parent, struct nfs_access_entry, rb_node);
1806
1807 if (set->cred < entry->cred)
1808 p = &parent->rb_left;
1809 else if (set->cred > entry->cred)
1810 p = &parent->rb_right;
1811 else
1812 goto found;
1813 }
1814 rb_link_node(&set->rb_node, parent, p);
1815 rb_insert_color(&set->rb_node, root_node);
1816 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
1817 spin_unlock(&inode->i_lock);
1818 return;
1819 found:
1820 rb_replace_node(parent, &set->rb_node, root_node);
1821 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
1822 list_del(&entry->lru);
1823 spin_unlock(&inode->i_lock);
1824 nfs_access_free_entry(entry);
1825 }
1826
1827 void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set)
1828 {
1829 struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
1830 if (cache == NULL)
1831 return;
1832 RB_CLEAR_NODE(&cache->rb_node);
1833 cache->jiffies = set->jiffies;
1834 cache->cred = get_rpccred(set->cred);
1835 cache->mask = set->mask;
1836
1837 nfs_access_add_rbtree(inode, cache);
1838
1839 /* Update accounting */
1840 smp_mb__before_atomic_inc();
1841 atomic_long_inc(&nfs_access_nr_entries);
1842 smp_mb__after_atomic_inc();
1843
1844 /* Add inode to global LRU list */
1845 if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_FLAGS(inode))) {
1846 spin_lock(&nfs_access_lru_lock);
1847 list_add_tail(&NFS_I(inode)->access_cache_inode_lru, &nfs_access_lru_list);
1848 spin_unlock(&nfs_access_lru_lock);
1849 }
1850 }
1851
1852 static int nfs_do_access(struct inode *inode, struct rpc_cred *cred, int mask)
1853 {
1854 struct nfs_access_entry cache;
1855 int status;
1856
1857 status = nfs_access_get_cached(inode, cred, &cache);
1858 if (status == 0)
1859 goto out;
1860
1861 /* Be clever: ask server to check for all possible rights */
1862 cache.mask = MAY_EXEC | MAY_WRITE | MAY_READ;
1863 cache.cred = cred;
1864 cache.jiffies = jiffies;
1865 status = NFS_PROTO(inode)->access(inode, &cache);
1866 if (status != 0)
1867 return status;
1868 nfs_access_add_cache(inode, &cache);
1869 out:
1870 if ((cache.mask & mask) == mask)
1871 return 0;
1872 return -EACCES;
1873 }
1874
1875 int nfs_permission(struct inode *inode, int mask, struct nameidata *nd)
1876 {
1877 struct rpc_cred *cred;
1878 int res = 0;
1879
1880 nfs_inc_stats(inode, NFSIOS_VFSACCESS);
1881
1882 if (mask == 0)
1883 goto out;
1884 /* Is this sys_access() ? */
1885 if (nd != NULL && (nd->flags & LOOKUP_ACCESS))
1886 goto force_lookup;
1887
1888 switch (inode->i_mode & S_IFMT) {
1889 case S_IFLNK:
1890 goto out;
1891 case S_IFREG:
1892 /* NFSv4 has atomic_open... */
1893 if (nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN)
1894 && nd != NULL
1895 && (nd->flags & LOOKUP_OPEN))
1896 goto out;
1897 break;
1898 case S_IFDIR:
1899 /*
1900 * Optimize away all write operations, since the server
1901 * will check permissions when we perform the op.
1902 */
1903 if ((mask & MAY_WRITE) && !(mask & MAY_READ))
1904 goto out;
1905 }
1906
1907 force_lookup:
1908 lock_kernel();
1909
1910 if (!NFS_PROTO(inode)->access)
1911 goto out_notsup;
1912
1913 cred = rpcauth_lookupcred(NFS_CLIENT(inode)->cl_auth, 0);
1914 if (!IS_ERR(cred)) {
1915 res = nfs_do_access(inode, cred, mask);
1916 put_rpccred(cred);
1917 } else
1918 res = PTR_ERR(cred);
1919 unlock_kernel();
1920 out:
1921 dfprintk(VFS, "NFS: permission(%s/%ld), mask=0x%x, res=%d\n",
1922 inode->i_sb->s_id, inode->i_ino, mask, res);
1923 return res;
1924 out_notsup:
1925 res = nfs_revalidate_inode(NFS_SERVER(inode), inode);
1926 if (res == 0)
1927 res = generic_permission(inode, mask, NULL);
1928 unlock_kernel();
1929 goto out;
1930 }
1931
1932 /*
1933 * Local variables:
1934 * version-control: t
1935 * kept-new-versions: 5
1936 * End:
1937 */
This page took 0.098375 seconds and 5 git commands to generate.