NFS: Be strict about dentry revalidation when doing exclusive create
[deliverable/linux.git] / fs / nfs / dir.c
1 /*
2 * linux/fs/nfs/dir.c
3 *
4 * Copyright (C) 1992 Rick Sladkey
5 *
6 * nfs directory handling functions
7 *
8 * 10 Apr 1996 Added silly rename for unlink --okir
9 * 28 Sep 1996 Improved directory cache --okir
10 * 23 Aug 1997 Claus Heine claus@momo.math.rwth-aachen.de
11 * Re-implemented silly rename for unlink, newly implemented
12 * silly rename for nfs_rename() following the suggestions
13 * of Olaf Kirch (okir) found in this file.
14 * Following Linus comments on my original hack, this version
15 * depends only on the dcache stuff and doesn't touch the inode
16 * layer (iput() and friends).
17 * 6 Jun 1999 Cache readdir lookups in the page cache. -DaveM
18 */
19
20 #include <linux/time.h>
21 #include <linux/errno.h>
22 #include <linux/stat.h>
23 #include <linux/fcntl.h>
24 #include <linux/string.h>
25 #include <linux/kernel.h>
26 #include <linux/slab.h>
27 #include <linux/mm.h>
28 #include <linux/sunrpc/clnt.h>
29 #include <linux/nfs_fs.h>
30 #include <linux/nfs_mount.h>
31 #include <linux/pagemap.h>
32 #include <linux/smp_lock.h>
33 #include <linux/pagevec.h>
34 #include <linux/namei.h>
35 #include <linux/mount.h>
36 #include <linux/sched.h>
37
38 #include "nfs4_fs.h"
39 #include "delegation.h"
40 #include "iostat.h"
41
42 /* #define NFS_DEBUG_VERBOSE 1 */
43
44 static int nfs_opendir(struct inode *, struct file *);
45 static int nfs_readdir(struct file *, void *, filldir_t);
46 static struct dentry *nfs_lookup(struct inode *, struct dentry *, struct nameidata *);
47 static int nfs_create(struct inode *, struct dentry *, int, struct nameidata *);
48 static int nfs_mkdir(struct inode *, struct dentry *, int);
49 static int nfs_rmdir(struct inode *, struct dentry *);
50 static int nfs_unlink(struct inode *, struct dentry *);
51 static int nfs_symlink(struct inode *, struct dentry *, const char *);
52 static int nfs_link(struct dentry *, struct inode *, struct dentry *);
53 static int nfs_mknod(struct inode *, struct dentry *, int, dev_t);
54 static int nfs_rename(struct inode *, struct dentry *,
55 struct inode *, struct dentry *);
56 static int nfs_fsync_dir(struct file *, struct dentry *, int);
57 static loff_t nfs_llseek_dir(struct file *, loff_t, int);
58
59 const struct file_operations nfs_dir_operations = {
60 .llseek = nfs_llseek_dir,
61 .read = generic_read_dir,
62 .readdir = nfs_readdir,
63 .open = nfs_opendir,
64 .release = nfs_release,
65 .fsync = nfs_fsync_dir,
66 };
67
68 const struct inode_operations nfs_dir_inode_operations = {
69 .create = nfs_create,
70 .lookup = nfs_lookup,
71 .link = nfs_link,
72 .unlink = nfs_unlink,
73 .symlink = nfs_symlink,
74 .mkdir = nfs_mkdir,
75 .rmdir = nfs_rmdir,
76 .mknod = nfs_mknod,
77 .rename = nfs_rename,
78 .permission = nfs_permission,
79 .getattr = nfs_getattr,
80 .setattr = nfs_setattr,
81 };
82
83 #ifdef CONFIG_NFS_V3
84 const struct inode_operations nfs3_dir_inode_operations = {
85 .create = nfs_create,
86 .lookup = nfs_lookup,
87 .link = nfs_link,
88 .unlink = nfs_unlink,
89 .symlink = nfs_symlink,
90 .mkdir = nfs_mkdir,
91 .rmdir = nfs_rmdir,
92 .mknod = nfs_mknod,
93 .rename = nfs_rename,
94 .permission = nfs_permission,
95 .getattr = nfs_getattr,
96 .setattr = nfs_setattr,
97 .listxattr = nfs3_listxattr,
98 .getxattr = nfs3_getxattr,
99 .setxattr = nfs3_setxattr,
100 .removexattr = nfs3_removexattr,
101 };
102 #endif /* CONFIG_NFS_V3 */
103
104 #ifdef CONFIG_NFS_V4
105
106 static struct dentry *nfs_atomic_lookup(struct inode *, struct dentry *, struct nameidata *);
107 const struct inode_operations nfs4_dir_inode_operations = {
108 .create = nfs_create,
109 .lookup = nfs_atomic_lookup,
110 .link = nfs_link,
111 .unlink = nfs_unlink,
112 .symlink = nfs_symlink,
113 .mkdir = nfs_mkdir,
114 .rmdir = nfs_rmdir,
115 .mknod = nfs_mknod,
116 .rename = nfs_rename,
117 .permission = nfs_permission,
118 .getattr = nfs_getattr,
119 .setattr = nfs_setattr,
120 .getxattr = nfs4_getxattr,
121 .setxattr = nfs4_setxattr,
122 .listxattr = nfs4_listxattr,
123 };
124
125 #endif /* CONFIG_NFS_V4 */
126
127 /*
128 * Open file
129 */
130 static int
131 nfs_opendir(struct inode *inode, struct file *filp)
132 {
133 int res;
134
135 dfprintk(VFS, "NFS: opendir(%s/%ld)\n",
136 inode->i_sb->s_id, inode->i_ino);
137
138 lock_kernel();
139 /* Call generic open code in order to cache credentials */
140 res = nfs_open(inode, filp);
141 unlock_kernel();
142 return res;
143 }
144
145 typedef __be32 * (*decode_dirent_t)(__be32 *, struct nfs_entry *, int);
146 typedef struct {
147 struct file *file;
148 struct page *page;
149 unsigned long page_index;
150 __be32 *ptr;
151 u64 *dir_cookie;
152 loff_t current_index;
153 struct nfs_entry *entry;
154 decode_dirent_t decode;
155 int plus;
156 int error;
157 unsigned long timestamp;
158 int timestamp_valid;
159 } nfs_readdir_descriptor_t;
160
161 /* Now we cache directories properly, by stuffing the dirent
162 * data directly in the page cache.
163 *
164 * Inode invalidation due to refresh etc. takes care of
165 * _everything_, no sloppy entry flushing logic, no extraneous
166 * copying, network direct to page cache, the way it was meant
167 * to be.
168 *
169 * NOTE: Dirent information verification is done always by the
170 * page-in of the RPC reply, nowhere else, this simplies
171 * things substantially.
172 */
173 static
174 int nfs_readdir_filler(nfs_readdir_descriptor_t *desc, struct page *page)
175 {
176 struct file *file = desc->file;
177 struct inode *inode = file->f_path.dentry->d_inode;
178 struct rpc_cred *cred = nfs_file_cred(file);
179 unsigned long timestamp;
180 int error;
181
182 dfprintk(DIRCACHE, "NFS: %s: reading cookie %Lu into page %lu\n",
183 __FUNCTION__, (long long)desc->entry->cookie,
184 page->index);
185
186 again:
187 timestamp = jiffies;
188 error = NFS_PROTO(inode)->readdir(file->f_path.dentry, cred, desc->entry->cookie, page,
189 NFS_SERVER(inode)->dtsize, desc->plus);
190 if (error < 0) {
191 /* We requested READDIRPLUS, but the server doesn't grok it */
192 if (error == -ENOTSUPP && desc->plus) {
193 NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
194 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_FLAGS(inode));
195 desc->plus = 0;
196 goto again;
197 }
198 goto error;
199 }
200 desc->timestamp = timestamp;
201 desc->timestamp_valid = 1;
202 SetPageUptodate(page);
203 /* Ensure consistent page alignment of the data.
204 * Note: assumes we have exclusive access to this mapping either
205 * through inode->i_mutex or some other mechanism.
206 */
207 if (page->index == 0 && invalidate_inode_pages2_range(inode->i_mapping, PAGE_CACHE_SIZE, -1) < 0) {
208 /* Should never happen */
209 nfs_zap_mapping(inode, inode->i_mapping);
210 }
211 unlock_page(page);
212 return 0;
213 error:
214 unlock_page(page);
215 desc->error = error;
216 return -EIO;
217 }
218
219 static inline
220 int dir_decode(nfs_readdir_descriptor_t *desc)
221 {
222 __be32 *p = desc->ptr;
223 p = desc->decode(p, desc->entry, desc->plus);
224 if (IS_ERR(p))
225 return PTR_ERR(p);
226 desc->ptr = p;
227 if (desc->timestamp_valid)
228 desc->entry->fattr->time_start = desc->timestamp;
229 else
230 desc->entry->fattr->valid &= ~NFS_ATTR_FATTR;
231 return 0;
232 }
233
234 static inline
235 void dir_page_release(nfs_readdir_descriptor_t *desc)
236 {
237 kunmap(desc->page);
238 page_cache_release(desc->page);
239 desc->page = NULL;
240 desc->ptr = NULL;
241 }
242
243 /*
244 * Given a pointer to a buffer that has already been filled by a call
245 * to readdir, find the next entry with cookie '*desc->dir_cookie'.
246 *
247 * If the end of the buffer has been reached, return -EAGAIN, if not,
248 * return the offset within the buffer of the next entry to be
249 * read.
250 */
251 static inline
252 int find_dirent(nfs_readdir_descriptor_t *desc)
253 {
254 struct nfs_entry *entry = desc->entry;
255 int loop_count = 0,
256 status;
257
258 while((status = dir_decode(desc)) == 0) {
259 dfprintk(DIRCACHE, "NFS: %s: examining cookie %Lu\n",
260 __FUNCTION__, (unsigned long long)entry->cookie);
261 if (entry->prev_cookie == *desc->dir_cookie)
262 break;
263 if (loop_count++ > 200) {
264 loop_count = 0;
265 schedule();
266 }
267 }
268 return status;
269 }
270
271 /*
272 * Given a pointer to a buffer that has already been filled by a call
273 * to readdir, find the entry at offset 'desc->file->f_pos'.
274 *
275 * If the end of the buffer has been reached, return -EAGAIN, if not,
276 * return the offset within the buffer of the next entry to be
277 * read.
278 */
279 static inline
280 int find_dirent_index(nfs_readdir_descriptor_t *desc)
281 {
282 struct nfs_entry *entry = desc->entry;
283 int loop_count = 0,
284 status;
285
286 for(;;) {
287 status = dir_decode(desc);
288 if (status)
289 break;
290
291 dfprintk(DIRCACHE, "NFS: found cookie %Lu at index %Ld\n",
292 (unsigned long long)entry->cookie, desc->current_index);
293
294 if (desc->file->f_pos == desc->current_index) {
295 *desc->dir_cookie = entry->cookie;
296 break;
297 }
298 desc->current_index++;
299 if (loop_count++ > 200) {
300 loop_count = 0;
301 schedule();
302 }
303 }
304 return status;
305 }
306
307 /*
308 * Find the given page, and call find_dirent() or find_dirent_index in
309 * order to try to return the next entry.
310 */
311 static inline
312 int find_dirent_page(nfs_readdir_descriptor_t *desc)
313 {
314 struct inode *inode = desc->file->f_path.dentry->d_inode;
315 struct page *page;
316 int status;
317
318 dfprintk(DIRCACHE, "NFS: %s: searching page %ld for target %Lu\n",
319 __FUNCTION__, desc->page_index,
320 (long long) *desc->dir_cookie);
321
322 /* If we find the page in the page_cache, we cannot be sure
323 * how fresh the data is, so we will ignore readdir_plus attributes.
324 */
325 desc->timestamp_valid = 0;
326 page = read_cache_page(inode->i_mapping, desc->page_index,
327 (filler_t *)nfs_readdir_filler, desc);
328 if (IS_ERR(page)) {
329 status = PTR_ERR(page);
330 goto out;
331 }
332
333 /* NOTE: Someone else may have changed the READDIRPLUS flag */
334 desc->page = page;
335 desc->ptr = kmap(page); /* matching kunmap in nfs_do_filldir */
336 if (*desc->dir_cookie != 0)
337 status = find_dirent(desc);
338 else
339 status = find_dirent_index(desc);
340 if (status < 0)
341 dir_page_release(desc);
342 out:
343 dfprintk(DIRCACHE, "NFS: %s: returns %d\n", __FUNCTION__, status);
344 return status;
345 }
346
347 /*
348 * Recurse through the page cache pages, and return a
349 * filled nfs_entry structure of the next directory entry if possible.
350 *
351 * The target for the search is '*desc->dir_cookie' if non-0,
352 * 'desc->file->f_pos' otherwise
353 */
354 static inline
355 int readdir_search_pagecache(nfs_readdir_descriptor_t *desc)
356 {
357 int loop_count = 0;
358 int res;
359
360 /* Always search-by-index from the beginning of the cache */
361 if (*desc->dir_cookie == 0) {
362 dfprintk(DIRCACHE, "NFS: readdir_search_pagecache() searching for offset %Ld\n",
363 (long long)desc->file->f_pos);
364 desc->page_index = 0;
365 desc->entry->cookie = desc->entry->prev_cookie = 0;
366 desc->entry->eof = 0;
367 desc->current_index = 0;
368 } else
369 dfprintk(DIRCACHE, "NFS: readdir_search_pagecache() searching for cookie %Lu\n",
370 (unsigned long long)*desc->dir_cookie);
371
372 for (;;) {
373 res = find_dirent_page(desc);
374 if (res != -EAGAIN)
375 break;
376 /* Align to beginning of next page */
377 desc->page_index ++;
378 if (loop_count++ > 200) {
379 loop_count = 0;
380 schedule();
381 }
382 }
383
384 dfprintk(DIRCACHE, "NFS: %s: returns %d\n", __FUNCTION__, res);
385 return res;
386 }
387
388 static inline unsigned int dt_type(struct inode *inode)
389 {
390 return (inode->i_mode >> 12) & 15;
391 }
392
393 static struct dentry *nfs_readdir_lookup(nfs_readdir_descriptor_t *desc);
394
395 /*
396 * Once we've found the start of the dirent within a page: fill 'er up...
397 */
398 static
399 int nfs_do_filldir(nfs_readdir_descriptor_t *desc, void *dirent,
400 filldir_t filldir)
401 {
402 struct file *file = desc->file;
403 struct nfs_entry *entry = desc->entry;
404 struct dentry *dentry = NULL;
405 u64 fileid;
406 int loop_count = 0,
407 res;
408
409 dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling starting @ cookie %Lu\n",
410 (unsigned long long)entry->cookie);
411
412 for(;;) {
413 unsigned d_type = DT_UNKNOWN;
414 /* Note: entry->prev_cookie contains the cookie for
415 * retrieving the current dirent on the server */
416 fileid = entry->ino;
417
418 /* Get a dentry if we have one */
419 if (dentry != NULL)
420 dput(dentry);
421 dentry = nfs_readdir_lookup(desc);
422
423 /* Use readdirplus info */
424 if (dentry != NULL && dentry->d_inode != NULL) {
425 d_type = dt_type(dentry->d_inode);
426 fileid = NFS_FILEID(dentry->d_inode);
427 }
428
429 res = filldir(dirent, entry->name, entry->len,
430 file->f_pos, fileid, d_type);
431 if (res < 0)
432 break;
433 file->f_pos++;
434 *desc->dir_cookie = entry->cookie;
435 if (dir_decode(desc) != 0) {
436 desc->page_index ++;
437 break;
438 }
439 if (loop_count++ > 200) {
440 loop_count = 0;
441 schedule();
442 }
443 }
444 dir_page_release(desc);
445 if (dentry != NULL)
446 dput(dentry);
447 dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n",
448 (unsigned long long)*desc->dir_cookie, res);
449 return res;
450 }
451
452 /*
453 * If we cannot find a cookie in our cache, we suspect that this is
454 * because it points to a deleted file, so we ask the server to return
455 * whatever it thinks is the next entry. We then feed this to filldir.
456 * If all goes well, we should then be able to find our way round the
457 * cache on the next call to readdir_search_pagecache();
458 *
459 * NOTE: we cannot add the anonymous page to the pagecache because
460 * the data it contains might not be page aligned. Besides,
461 * we should already have a complete representation of the
462 * directory in the page cache by the time we get here.
463 */
464 static inline
465 int uncached_readdir(nfs_readdir_descriptor_t *desc, void *dirent,
466 filldir_t filldir)
467 {
468 struct file *file = desc->file;
469 struct inode *inode = file->f_path.dentry->d_inode;
470 struct rpc_cred *cred = nfs_file_cred(file);
471 struct page *page = NULL;
472 int status;
473 unsigned long timestamp;
474
475 dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n",
476 (unsigned long long)*desc->dir_cookie);
477
478 page = alloc_page(GFP_HIGHUSER);
479 if (!page) {
480 status = -ENOMEM;
481 goto out;
482 }
483 timestamp = jiffies;
484 desc->error = NFS_PROTO(inode)->readdir(file->f_path.dentry, cred, *desc->dir_cookie,
485 page,
486 NFS_SERVER(inode)->dtsize,
487 desc->plus);
488 desc->page = page;
489 desc->ptr = kmap(page); /* matching kunmap in nfs_do_filldir */
490 if (desc->error >= 0) {
491 desc->timestamp = timestamp;
492 desc->timestamp_valid = 1;
493 if ((status = dir_decode(desc)) == 0)
494 desc->entry->prev_cookie = *desc->dir_cookie;
495 } else
496 status = -EIO;
497 if (status < 0)
498 goto out_release;
499
500 status = nfs_do_filldir(desc, dirent, filldir);
501
502 /* Reset read descriptor so it searches the page cache from
503 * the start upon the next call to readdir_search_pagecache() */
504 desc->page_index = 0;
505 desc->entry->cookie = desc->entry->prev_cookie = 0;
506 desc->entry->eof = 0;
507 out:
508 dfprintk(DIRCACHE, "NFS: %s: returns %d\n",
509 __FUNCTION__, status);
510 return status;
511 out_release:
512 dir_page_release(desc);
513 goto out;
514 }
515
516 /* The file offset position represents the dirent entry number. A
517 last cookie cache takes care of the common case of reading the
518 whole directory.
519 */
520 static int nfs_readdir(struct file *filp, void *dirent, filldir_t filldir)
521 {
522 struct dentry *dentry = filp->f_path.dentry;
523 struct inode *inode = dentry->d_inode;
524 nfs_readdir_descriptor_t my_desc,
525 *desc = &my_desc;
526 struct nfs_entry my_entry;
527 struct nfs_fh fh;
528 struct nfs_fattr fattr;
529 long res;
530
531 dfprintk(VFS, "NFS: readdir(%s/%s) starting at cookie %Lu\n",
532 dentry->d_parent->d_name.name, dentry->d_name.name,
533 (long long)filp->f_pos);
534 nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
535
536 lock_kernel();
537
538 res = nfs_revalidate_mapping_nolock(inode, filp->f_mapping);
539 if (res < 0) {
540 unlock_kernel();
541 return res;
542 }
543
544 /*
545 * filp->f_pos points to the dirent entry number.
546 * *desc->dir_cookie has the cookie for the next entry. We have
547 * to either find the entry with the appropriate number or
548 * revalidate the cookie.
549 */
550 memset(desc, 0, sizeof(*desc));
551
552 desc->file = filp;
553 desc->dir_cookie = &nfs_file_open_context(filp)->dir_cookie;
554 desc->decode = NFS_PROTO(inode)->decode_dirent;
555 desc->plus = NFS_USE_READDIRPLUS(inode);
556
557 my_entry.cookie = my_entry.prev_cookie = 0;
558 my_entry.eof = 0;
559 my_entry.fh = &fh;
560 my_entry.fattr = &fattr;
561 nfs_fattr_init(&fattr);
562 desc->entry = &my_entry;
563
564 while(!desc->entry->eof) {
565 res = readdir_search_pagecache(desc);
566
567 if (res == -EBADCOOKIE) {
568 /* This means either end of directory */
569 if (*desc->dir_cookie && desc->entry->cookie != *desc->dir_cookie) {
570 /* Or that the server has 'lost' a cookie */
571 res = uncached_readdir(desc, dirent, filldir);
572 if (res >= 0)
573 continue;
574 }
575 res = 0;
576 break;
577 }
578 if (res == -ETOOSMALL && desc->plus) {
579 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_FLAGS(inode));
580 nfs_zap_caches(inode);
581 desc->plus = 0;
582 desc->entry->eof = 0;
583 continue;
584 }
585 if (res < 0)
586 break;
587
588 res = nfs_do_filldir(desc, dirent, filldir);
589 if (res < 0) {
590 res = 0;
591 break;
592 }
593 }
594 unlock_kernel();
595 if (res > 0)
596 res = 0;
597 dfprintk(VFS, "NFS: readdir(%s/%s) returns %ld\n",
598 dentry->d_parent->d_name.name, dentry->d_name.name,
599 res);
600 return res;
601 }
602
603 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int origin)
604 {
605 mutex_lock(&filp->f_path.dentry->d_inode->i_mutex);
606 switch (origin) {
607 case 1:
608 offset += filp->f_pos;
609 case 0:
610 if (offset >= 0)
611 break;
612 default:
613 offset = -EINVAL;
614 goto out;
615 }
616 if (offset != filp->f_pos) {
617 filp->f_pos = offset;
618 nfs_file_open_context(filp)->dir_cookie = 0;
619 }
620 out:
621 mutex_unlock(&filp->f_path.dentry->d_inode->i_mutex);
622 return offset;
623 }
624
625 /*
626 * All directory operations under NFS are synchronous, so fsync()
627 * is a dummy operation.
628 */
629 static int nfs_fsync_dir(struct file *filp, struct dentry *dentry, int datasync)
630 {
631 dfprintk(VFS, "NFS: fsync_dir(%s/%s) datasync %d\n",
632 dentry->d_parent->d_name.name, dentry->d_name.name,
633 datasync);
634
635 return 0;
636 }
637
638 /*
639 * A check for whether or not the parent directory has changed.
640 * In the case it has, we assume that the dentries are untrustworthy
641 * and may need to be looked up again.
642 */
643 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry)
644 {
645 if (IS_ROOT(dentry))
646 return 1;
647 if (!nfs_verify_change_attribute(dir, dentry->d_time))
648 return 0;
649 /* Revalidate nfsi->cache_change_attribute before we declare a match */
650 if (nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
651 return 0;
652 if (!nfs_verify_change_attribute(dir, dentry->d_time))
653 return 0;
654 return 1;
655 }
656
657 /*
658 * Return the intent data that applies to this particular path component
659 *
660 * Note that the current set of intents only apply to the very last
661 * component of the path.
662 * We check for this using LOOKUP_CONTINUE and LOOKUP_PARENT.
663 */
664 static inline unsigned int nfs_lookup_check_intent(struct nameidata *nd, unsigned int mask)
665 {
666 if (nd->flags & (LOOKUP_CONTINUE|LOOKUP_PARENT))
667 return 0;
668 return nd->flags & mask;
669 }
670
671 /*
672 * Use intent information to check whether or not we're going to do
673 * an O_EXCL create using this path component.
674 */
675 static int nfs_is_exclusive_create(struct inode *dir, struct nameidata *nd)
676 {
677 if (NFS_PROTO(dir)->version == 2)
678 return 0;
679 if (nd == NULL || nfs_lookup_check_intent(nd, LOOKUP_CREATE) == 0)
680 return 0;
681 return (nd->intent.open.flags & O_EXCL) != 0;
682 }
683
684 /*
685 * Inode and filehandle revalidation for lookups.
686 *
687 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
688 * or if the intent information indicates that we're about to open this
689 * particular file and the "nocto" mount flag is not set.
690 *
691 */
692 static inline
693 int nfs_lookup_verify_inode(struct inode *inode, struct nameidata *nd)
694 {
695 struct nfs_server *server = NFS_SERVER(inode);
696
697 if (nd != NULL) {
698 /* VFS wants an on-the-wire revalidation */
699 if (nd->flags & LOOKUP_REVAL)
700 goto out_force;
701 /* This is an open(2) */
702 if (nfs_lookup_check_intent(nd, LOOKUP_OPEN) != 0 &&
703 !(server->flags & NFS_MOUNT_NOCTO) &&
704 (S_ISREG(inode->i_mode) ||
705 S_ISDIR(inode->i_mode)))
706 goto out_force;
707 }
708 return nfs_revalidate_inode(server, inode);
709 out_force:
710 return __nfs_revalidate_inode(server, inode);
711 }
712
713 /*
714 * We judge how long we want to trust negative
715 * dentries by looking at the parent inode mtime.
716 *
717 * If parent mtime has changed, we revalidate, else we wait for a
718 * period corresponding to the parent's attribute cache timeout value.
719 */
720 static inline
721 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
722 struct nameidata *nd)
723 {
724 /* Don't revalidate a negative dentry if we're creating a new file */
725 if (nd != NULL && nfs_lookup_check_intent(nd, LOOKUP_CREATE) != 0)
726 return 0;
727 return !nfs_check_verifier(dir, dentry);
728 }
729
730 /*
731 * This is called every time the dcache has a lookup hit,
732 * and we should check whether we can really trust that
733 * lookup.
734 *
735 * NOTE! The hit can be a negative hit too, don't assume
736 * we have an inode!
737 *
738 * If the parent directory is seen to have changed, we throw out the
739 * cached dentry and do a new lookup.
740 */
741 static int nfs_lookup_revalidate(struct dentry * dentry, struct nameidata *nd)
742 {
743 struct inode *dir;
744 struct inode *inode;
745 struct dentry *parent;
746 int error;
747 struct nfs_fh fhandle;
748 struct nfs_fattr fattr;
749
750 parent = dget_parent(dentry);
751 lock_kernel();
752 dir = parent->d_inode;
753 nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
754 inode = dentry->d_inode;
755
756 if (!inode) {
757 if (nfs_neg_need_reval(dir, dentry, nd))
758 goto out_bad;
759 goto out_valid;
760 }
761
762 if (is_bad_inode(inode)) {
763 dfprintk(LOOKUPCACHE, "%s: %s/%s has dud inode\n",
764 __FUNCTION__, dentry->d_parent->d_name.name,
765 dentry->d_name.name);
766 goto out_bad;
767 }
768
769 /* Force a full look up iff the parent directory has changed */
770 if (!nfs_is_exclusive_create(dir, nd) && nfs_check_verifier(dir, dentry)) {
771 if (nfs_lookup_verify_inode(inode, nd))
772 goto out_zap_parent;
773 goto out_valid;
774 }
775
776 if (NFS_STALE(inode))
777 goto out_bad;
778
779 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, &fhandle, &fattr);
780 if (error)
781 goto out_bad;
782 if (nfs_compare_fh(NFS_FH(inode), &fhandle))
783 goto out_bad;
784 if ((error = nfs_refresh_inode(inode, &fattr)) != 0)
785 goto out_bad;
786
787 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
788 out_valid:
789 unlock_kernel();
790 dput(parent);
791 dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is valid\n",
792 __FUNCTION__, dentry->d_parent->d_name.name,
793 dentry->d_name.name);
794 return 1;
795 out_zap_parent:
796 nfs_zap_caches(dir);
797 out_bad:
798 nfs_mark_for_revalidate(dir);
799 if (inode && S_ISDIR(inode->i_mode)) {
800 /* Purge readdir caches. */
801 nfs_zap_caches(inode);
802 /* If we have submounts, don't unhash ! */
803 if (have_submounts(dentry))
804 goto out_valid;
805 shrink_dcache_parent(dentry);
806 }
807 d_drop(dentry);
808 unlock_kernel();
809 dput(parent);
810 dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is invalid\n",
811 __FUNCTION__, dentry->d_parent->d_name.name,
812 dentry->d_name.name);
813 return 0;
814 }
815
816 /*
817 * This is called from dput() when d_count is going to 0.
818 */
819 static int nfs_dentry_delete(struct dentry *dentry)
820 {
821 dfprintk(VFS, "NFS: dentry_delete(%s/%s, %x)\n",
822 dentry->d_parent->d_name.name, dentry->d_name.name,
823 dentry->d_flags);
824
825 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
826 /* Unhash it, so that ->d_iput() would be called */
827 return 1;
828 }
829 if (!(dentry->d_sb->s_flags & MS_ACTIVE)) {
830 /* Unhash it, so that ancestors of killed async unlink
831 * files will be cleaned up during umount */
832 return 1;
833 }
834 return 0;
835
836 }
837
838 /*
839 * Called when the dentry loses inode.
840 * We use it to clean up silly-renamed files.
841 */
842 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
843 {
844 nfs_inode_return_delegation(inode);
845 if (S_ISDIR(inode->i_mode))
846 /* drop any readdir cache as it could easily be old */
847 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA;
848
849 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
850 lock_kernel();
851 drop_nlink(inode);
852 nfs_complete_unlink(dentry, inode);
853 unlock_kernel();
854 }
855 iput(inode);
856 }
857
858 struct dentry_operations nfs_dentry_operations = {
859 .d_revalidate = nfs_lookup_revalidate,
860 .d_delete = nfs_dentry_delete,
861 .d_iput = nfs_dentry_iput,
862 };
863
864 static struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
865 {
866 struct dentry *res;
867 struct inode *inode = NULL;
868 int error;
869 struct nfs_fh fhandle;
870 struct nfs_fattr fattr;
871
872 dfprintk(VFS, "NFS: lookup(%s/%s)\n",
873 dentry->d_parent->d_name.name, dentry->d_name.name);
874 nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
875
876 res = ERR_PTR(-ENAMETOOLONG);
877 if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
878 goto out;
879
880 res = ERR_PTR(-ENOMEM);
881 dentry->d_op = NFS_PROTO(dir)->dentry_ops;
882
883 lock_kernel();
884
885 /*
886 * If we're doing an exclusive create, optimize away the lookup
887 * but don't hash the dentry.
888 */
889 if (nfs_is_exclusive_create(dir, nd)) {
890 d_instantiate(dentry, NULL);
891 res = NULL;
892 goto out_unlock;
893 }
894
895 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, &fhandle, &fattr);
896 if (error == -ENOENT)
897 goto no_entry;
898 if (error < 0) {
899 res = ERR_PTR(error);
900 goto out_unlock;
901 }
902 inode = nfs_fhget(dentry->d_sb, &fhandle, &fattr);
903 res = (struct dentry *)inode;
904 if (IS_ERR(res))
905 goto out_unlock;
906
907 no_entry:
908 res = d_materialise_unique(dentry, inode);
909 if (res != NULL) {
910 if (IS_ERR(res))
911 goto out_unlock;
912 dentry = res;
913 }
914 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
915 out_unlock:
916 unlock_kernel();
917 out:
918 return res;
919 }
920
921 #ifdef CONFIG_NFS_V4
922 static int nfs_open_revalidate(struct dentry *, struct nameidata *);
923
924 struct dentry_operations nfs4_dentry_operations = {
925 .d_revalidate = nfs_open_revalidate,
926 .d_delete = nfs_dentry_delete,
927 .d_iput = nfs_dentry_iput,
928 };
929
930 /*
931 * Use intent information to determine whether we need to substitute
932 * the NFSv4-style stateful OPEN for the LOOKUP call
933 */
934 static int is_atomic_open(struct inode *dir, struct nameidata *nd)
935 {
936 if (nd == NULL || nfs_lookup_check_intent(nd, LOOKUP_OPEN) == 0)
937 return 0;
938 /* NFS does not (yet) have a stateful open for directories */
939 if (nd->flags & LOOKUP_DIRECTORY)
940 return 0;
941 /* Are we trying to write to a read only partition? */
942 if (IS_RDONLY(dir) && (nd->intent.open.flags & (O_CREAT|O_TRUNC|FMODE_WRITE)))
943 return 0;
944 return 1;
945 }
946
947 static struct dentry *nfs_atomic_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd)
948 {
949 struct dentry *res = NULL;
950 int error;
951
952 dfprintk(VFS, "NFS: atomic_lookup(%s/%ld), %s\n",
953 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
954
955 /* Check that we are indeed trying to open this file */
956 if (!is_atomic_open(dir, nd))
957 goto no_open;
958
959 if (dentry->d_name.len > NFS_SERVER(dir)->namelen) {
960 res = ERR_PTR(-ENAMETOOLONG);
961 goto out;
962 }
963 dentry->d_op = NFS_PROTO(dir)->dentry_ops;
964
965 /* Let vfs_create() deal with O_EXCL. Instantiate, but don't hash
966 * the dentry. */
967 if (nd->intent.open.flags & O_EXCL) {
968 d_instantiate(dentry, NULL);
969 goto out;
970 }
971
972 /* Open the file on the server */
973 lock_kernel();
974 res = nfs4_atomic_open(dir, dentry, nd);
975 unlock_kernel();
976 if (IS_ERR(res)) {
977 error = PTR_ERR(res);
978 switch (error) {
979 /* Make a negative dentry */
980 case -ENOENT:
981 res = NULL;
982 goto out;
983 /* This turned out not to be a regular file */
984 case -EISDIR:
985 case -ENOTDIR:
986 goto no_open;
987 case -ELOOP:
988 if (!(nd->intent.open.flags & O_NOFOLLOW))
989 goto no_open;
990 /* case -EINVAL: */
991 default:
992 goto out;
993 }
994 } else if (res != NULL)
995 dentry = res;
996 out:
997 return res;
998 no_open:
999 return nfs_lookup(dir, dentry, nd);
1000 }
1001
1002 static int nfs_open_revalidate(struct dentry *dentry, struct nameidata *nd)
1003 {
1004 struct dentry *parent = NULL;
1005 struct inode *inode = dentry->d_inode;
1006 struct inode *dir;
1007 int openflags, ret = 0;
1008
1009 parent = dget_parent(dentry);
1010 dir = parent->d_inode;
1011 if (!is_atomic_open(dir, nd))
1012 goto no_open;
1013 /* We can't create new files in nfs_open_revalidate(), so we
1014 * optimize away revalidation of negative dentries.
1015 */
1016 if (inode == NULL) {
1017 if (!nfs_neg_need_reval(dir, dentry, nd))
1018 ret = 1;
1019 goto out;
1020 }
1021
1022 /* NFS only supports OPEN on regular files */
1023 if (!S_ISREG(inode->i_mode))
1024 goto no_open;
1025 openflags = nd->intent.open.flags;
1026 /* We cannot do exclusive creation on a positive dentry */
1027 if ((openflags & (O_CREAT|O_EXCL)) == (O_CREAT|O_EXCL))
1028 goto no_open;
1029 /* We can't create new files, or truncate existing ones here */
1030 openflags &= ~(O_CREAT|O_TRUNC);
1031
1032 /*
1033 * Note: we're not holding inode->i_mutex and so may be racing with
1034 * operations that change the directory. We therefore save the
1035 * change attribute *before* we do the RPC call.
1036 */
1037 lock_kernel();
1038 ret = nfs4_open_revalidate(dir, dentry, openflags, nd);
1039 unlock_kernel();
1040 out:
1041 dput(parent);
1042 if (!ret)
1043 d_drop(dentry);
1044 return ret;
1045 no_open:
1046 dput(parent);
1047 if (inode != NULL && nfs_have_delegation(inode, FMODE_READ))
1048 return 1;
1049 return nfs_lookup_revalidate(dentry, nd);
1050 }
1051 #endif /* CONFIG_NFSV4 */
1052
1053 static struct dentry *nfs_readdir_lookup(nfs_readdir_descriptor_t *desc)
1054 {
1055 struct dentry *parent = desc->file->f_path.dentry;
1056 struct inode *dir = parent->d_inode;
1057 struct nfs_entry *entry = desc->entry;
1058 struct dentry *dentry, *alias;
1059 struct qstr name = {
1060 .name = entry->name,
1061 .len = entry->len,
1062 };
1063 struct inode *inode;
1064 unsigned long verf = nfs_save_change_attribute(dir);
1065
1066 switch (name.len) {
1067 case 2:
1068 if (name.name[0] == '.' && name.name[1] == '.')
1069 return dget_parent(parent);
1070 break;
1071 case 1:
1072 if (name.name[0] == '.')
1073 return dget(parent);
1074 }
1075
1076 spin_lock(&dir->i_lock);
1077 if (NFS_I(dir)->cache_validity & NFS_INO_INVALID_DATA) {
1078 spin_unlock(&dir->i_lock);
1079 return NULL;
1080 }
1081 spin_unlock(&dir->i_lock);
1082
1083 name.hash = full_name_hash(name.name, name.len);
1084 dentry = d_lookup(parent, &name);
1085 if (dentry != NULL) {
1086 /* Is this a positive dentry that matches the readdir info? */
1087 if (dentry->d_inode != NULL &&
1088 (NFS_FILEID(dentry->d_inode) == entry->ino ||
1089 d_mountpoint(dentry))) {
1090 if (!desc->plus || entry->fh->size == 0)
1091 return dentry;
1092 if (nfs_compare_fh(NFS_FH(dentry->d_inode),
1093 entry->fh) == 0)
1094 goto out_renew;
1095 }
1096 /* No, so d_drop to allow one to be created */
1097 d_drop(dentry);
1098 dput(dentry);
1099 }
1100 if (!desc->plus || !(entry->fattr->valid & NFS_ATTR_FATTR))
1101 return NULL;
1102 if (name.len > NFS_SERVER(dir)->namelen)
1103 return NULL;
1104 /* Note: caller is already holding the dir->i_mutex! */
1105 dentry = d_alloc(parent, &name);
1106 if (dentry == NULL)
1107 return NULL;
1108 dentry->d_op = NFS_PROTO(dir)->dentry_ops;
1109 inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr);
1110 if (IS_ERR(inode)) {
1111 dput(dentry);
1112 return NULL;
1113 }
1114
1115 alias = d_materialise_unique(dentry, inode);
1116 if (alias != NULL) {
1117 dput(dentry);
1118 if (IS_ERR(alias))
1119 return NULL;
1120 dentry = alias;
1121 }
1122
1123 out_renew:
1124 nfs_set_verifier(dentry, verf);
1125 return dentry;
1126 }
1127
1128 /*
1129 * Code common to create, mkdir, and mknod.
1130 */
1131 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
1132 struct nfs_fattr *fattr)
1133 {
1134 struct dentry *parent = dget_parent(dentry);
1135 struct inode *dir = parent->d_inode;
1136 struct inode *inode;
1137 int error = -EACCES;
1138
1139 d_drop(dentry);
1140
1141 /* We may have been initialized further down */
1142 if (dentry->d_inode)
1143 goto out;
1144 if (fhandle->size == 0) {
1145 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr);
1146 if (error)
1147 goto out_error;
1148 }
1149 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1150 if (!(fattr->valid & NFS_ATTR_FATTR)) {
1151 struct nfs_server *server = NFS_SB(dentry->d_sb);
1152 error = server->nfs_client->rpc_ops->getattr(server, fhandle, fattr);
1153 if (error < 0)
1154 goto out_error;
1155 }
1156 inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
1157 error = PTR_ERR(inode);
1158 if (IS_ERR(inode))
1159 goto out_error;
1160 d_add(dentry, inode);
1161 out:
1162 dput(parent);
1163 return 0;
1164 out_error:
1165 nfs_mark_for_revalidate(dir);
1166 dput(parent);
1167 return error;
1168 }
1169
1170 /*
1171 * Following a failed create operation, we drop the dentry rather
1172 * than retain a negative dentry. This avoids a problem in the event
1173 * that the operation succeeded on the server, but an error in the
1174 * reply path made it appear to have failed.
1175 */
1176 static int nfs_create(struct inode *dir, struct dentry *dentry, int mode,
1177 struct nameidata *nd)
1178 {
1179 struct iattr attr;
1180 int error;
1181 int open_flags = 0;
1182
1183 dfprintk(VFS, "NFS: create(%s/%ld), %s\n",
1184 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1185
1186 attr.ia_mode = mode;
1187 attr.ia_valid = ATTR_MODE;
1188
1189 if ((nd->flags & LOOKUP_CREATE) != 0)
1190 open_flags = nd->intent.open.flags;
1191
1192 lock_kernel();
1193 error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags, nd);
1194 if (error != 0)
1195 goto out_err;
1196 unlock_kernel();
1197 return 0;
1198 out_err:
1199 unlock_kernel();
1200 d_drop(dentry);
1201 return error;
1202 }
1203
1204 /*
1205 * See comments for nfs_proc_create regarding failed operations.
1206 */
1207 static int
1208 nfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t rdev)
1209 {
1210 struct iattr attr;
1211 int status;
1212
1213 dfprintk(VFS, "NFS: mknod(%s/%ld), %s\n",
1214 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1215
1216 if (!new_valid_dev(rdev))
1217 return -EINVAL;
1218
1219 attr.ia_mode = mode;
1220 attr.ia_valid = ATTR_MODE;
1221
1222 lock_kernel();
1223 status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
1224 if (status != 0)
1225 goto out_err;
1226 unlock_kernel();
1227 return 0;
1228 out_err:
1229 unlock_kernel();
1230 d_drop(dentry);
1231 return status;
1232 }
1233
1234 /*
1235 * See comments for nfs_proc_create regarding failed operations.
1236 */
1237 static int nfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1238 {
1239 struct iattr attr;
1240 int error;
1241
1242 dfprintk(VFS, "NFS: mkdir(%s/%ld), %s\n",
1243 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1244
1245 attr.ia_valid = ATTR_MODE;
1246 attr.ia_mode = mode | S_IFDIR;
1247
1248 lock_kernel();
1249 error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
1250 if (error != 0)
1251 goto out_err;
1252 unlock_kernel();
1253 return 0;
1254 out_err:
1255 d_drop(dentry);
1256 unlock_kernel();
1257 return error;
1258 }
1259
1260 static int nfs_rmdir(struct inode *dir, struct dentry *dentry)
1261 {
1262 int error;
1263
1264 dfprintk(VFS, "NFS: rmdir(%s/%ld), %s\n",
1265 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1266
1267 lock_kernel();
1268 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1269 /* Ensure the VFS deletes this inode */
1270 if (error == 0 && dentry->d_inode != NULL)
1271 clear_nlink(dentry->d_inode);
1272 unlock_kernel();
1273
1274 return error;
1275 }
1276
1277 static int nfs_sillyrename(struct inode *dir, struct dentry *dentry)
1278 {
1279 static unsigned int sillycounter;
1280 const int fileidsize = sizeof(NFS_FILEID(dentry->d_inode))*2;
1281 const int countersize = sizeof(sillycounter)*2;
1282 const int slen = sizeof(".nfs")+fileidsize+countersize-1;
1283 char silly[slen+1];
1284 struct qstr qsilly;
1285 struct dentry *sdentry;
1286 int error = -EIO;
1287
1288 dfprintk(VFS, "NFS: silly-rename(%s/%s, ct=%d)\n",
1289 dentry->d_parent->d_name.name, dentry->d_name.name,
1290 atomic_read(&dentry->d_count));
1291 nfs_inc_stats(dir, NFSIOS_SILLYRENAME);
1292
1293 /*
1294 * We don't allow a dentry to be silly-renamed twice.
1295 */
1296 error = -EBUSY;
1297 if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1298 goto out;
1299
1300 sprintf(silly, ".nfs%*.*Lx",
1301 fileidsize, fileidsize,
1302 (unsigned long long)NFS_FILEID(dentry->d_inode));
1303
1304 /* Return delegation in anticipation of the rename */
1305 nfs_inode_return_delegation(dentry->d_inode);
1306
1307 sdentry = NULL;
1308 do {
1309 char *suffix = silly + slen - countersize;
1310
1311 dput(sdentry);
1312 sillycounter++;
1313 sprintf(suffix, "%*.*x", countersize, countersize, sillycounter);
1314
1315 dfprintk(VFS, "NFS: trying to rename %s to %s\n",
1316 dentry->d_name.name, silly);
1317
1318 sdentry = lookup_one_len(silly, dentry->d_parent, slen);
1319 /*
1320 * N.B. Better to return EBUSY here ... it could be
1321 * dangerous to delete the file while it's in use.
1322 */
1323 if (IS_ERR(sdentry))
1324 goto out;
1325 } while(sdentry->d_inode != NULL); /* need negative lookup */
1326
1327 qsilly.name = silly;
1328 qsilly.len = strlen(silly);
1329 if (dentry->d_inode) {
1330 error = NFS_PROTO(dir)->rename(dir, &dentry->d_name,
1331 dir, &qsilly);
1332 nfs_mark_for_revalidate(dentry->d_inode);
1333 } else
1334 error = NFS_PROTO(dir)->rename(dir, &dentry->d_name,
1335 dir, &qsilly);
1336 if (!error) {
1337 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1338 d_move(dentry, sdentry);
1339 error = nfs_async_unlink(dir, dentry);
1340 /* If we return 0 we don't unlink */
1341 }
1342 dput(sdentry);
1343 out:
1344 return error;
1345 }
1346
1347 /*
1348 * Remove a file after making sure there are no pending writes,
1349 * and after checking that the file has only one user.
1350 *
1351 * We invalidate the attribute cache and free the inode prior to the operation
1352 * to avoid possible races if the server reuses the inode.
1353 */
1354 static int nfs_safe_remove(struct dentry *dentry)
1355 {
1356 struct inode *dir = dentry->d_parent->d_inode;
1357 struct inode *inode = dentry->d_inode;
1358 int error = -EBUSY;
1359
1360 dfprintk(VFS, "NFS: safe_remove(%s/%s)\n",
1361 dentry->d_parent->d_name.name, dentry->d_name.name);
1362
1363 /* If the dentry was sillyrenamed, we simply call d_delete() */
1364 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1365 error = 0;
1366 goto out;
1367 }
1368
1369 if (inode != NULL) {
1370 nfs_inode_return_delegation(inode);
1371 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1372 /* The VFS may want to delete this inode */
1373 if (error == 0)
1374 drop_nlink(inode);
1375 nfs_mark_for_revalidate(inode);
1376 } else
1377 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1378 out:
1379 return error;
1380 }
1381
1382 /* We do silly rename. In case sillyrename() returns -EBUSY, the inode
1383 * belongs to an active ".nfs..." file and we return -EBUSY.
1384 *
1385 * If sillyrename() returns 0, we do nothing, otherwise we unlink.
1386 */
1387 static int nfs_unlink(struct inode *dir, struct dentry *dentry)
1388 {
1389 int error;
1390 int need_rehash = 0;
1391
1392 dfprintk(VFS, "NFS: unlink(%s/%ld, %s)\n", dir->i_sb->s_id,
1393 dir->i_ino, dentry->d_name.name);
1394
1395 lock_kernel();
1396 spin_lock(&dcache_lock);
1397 spin_lock(&dentry->d_lock);
1398 if (atomic_read(&dentry->d_count) > 1) {
1399 spin_unlock(&dentry->d_lock);
1400 spin_unlock(&dcache_lock);
1401 /* Start asynchronous writeout of the inode */
1402 write_inode_now(dentry->d_inode, 0);
1403 error = nfs_sillyrename(dir, dentry);
1404 unlock_kernel();
1405 return error;
1406 }
1407 if (!d_unhashed(dentry)) {
1408 __d_drop(dentry);
1409 need_rehash = 1;
1410 }
1411 spin_unlock(&dentry->d_lock);
1412 spin_unlock(&dcache_lock);
1413 error = nfs_safe_remove(dentry);
1414 if (!error) {
1415 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1416 } else if (need_rehash)
1417 d_rehash(dentry);
1418 unlock_kernel();
1419 return error;
1420 }
1421
1422 /*
1423 * To create a symbolic link, most file systems instantiate a new inode,
1424 * add a page to it containing the path, then write it out to the disk
1425 * using prepare_write/commit_write.
1426 *
1427 * Unfortunately the NFS client can't create the in-core inode first
1428 * because it needs a file handle to create an in-core inode (see
1429 * fs/nfs/inode.c:nfs_fhget). We only have a file handle *after* the
1430 * symlink request has completed on the server.
1431 *
1432 * So instead we allocate a raw page, copy the symname into it, then do
1433 * the SYMLINK request with the page as the buffer. If it succeeds, we
1434 * now have a new file handle and can instantiate an in-core NFS inode
1435 * and move the raw page into its mapping.
1436 */
1437 static int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1438 {
1439 struct pagevec lru_pvec;
1440 struct page *page;
1441 char *kaddr;
1442 struct iattr attr;
1443 unsigned int pathlen = strlen(symname);
1444 int error;
1445
1446 dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s)\n", dir->i_sb->s_id,
1447 dir->i_ino, dentry->d_name.name, symname);
1448
1449 if (pathlen > PAGE_SIZE)
1450 return -ENAMETOOLONG;
1451
1452 attr.ia_mode = S_IFLNK | S_IRWXUGO;
1453 attr.ia_valid = ATTR_MODE;
1454
1455 lock_kernel();
1456
1457 page = alloc_page(GFP_HIGHUSER);
1458 if (!page) {
1459 unlock_kernel();
1460 return -ENOMEM;
1461 }
1462
1463 kaddr = kmap_atomic(page, KM_USER0);
1464 memcpy(kaddr, symname, pathlen);
1465 if (pathlen < PAGE_SIZE)
1466 memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
1467 kunmap_atomic(kaddr, KM_USER0);
1468
1469 error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
1470 if (error != 0) {
1471 dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s) error %d\n",
1472 dir->i_sb->s_id, dir->i_ino,
1473 dentry->d_name.name, symname, error);
1474 d_drop(dentry);
1475 __free_page(page);
1476 unlock_kernel();
1477 return error;
1478 }
1479
1480 /*
1481 * No big deal if we can't add this page to the page cache here.
1482 * READLINK will get the missing page from the server if needed.
1483 */
1484 pagevec_init(&lru_pvec, 0);
1485 if (!add_to_page_cache(page, dentry->d_inode->i_mapping, 0,
1486 GFP_KERNEL)) {
1487 pagevec_add(&lru_pvec, page);
1488 pagevec_lru_add(&lru_pvec);
1489 SetPageUptodate(page);
1490 unlock_page(page);
1491 } else
1492 __free_page(page);
1493
1494 unlock_kernel();
1495 return 0;
1496 }
1497
1498 static int
1499 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1500 {
1501 struct inode *inode = old_dentry->d_inode;
1502 int error;
1503
1504 dfprintk(VFS, "NFS: link(%s/%s -> %s/%s)\n",
1505 old_dentry->d_parent->d_name.name, old_dentry->d_name.name,
1506 dentry->d_parent->d_name.name, dentry->d_name.name);
1507
1508 lock_kernel();
1509 error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
1510 if (error == 0) {
1511 atomic_inc(&inode->i_count);
1512 d_instantiate(dentry, inode);
1513 }
1514 unlock_kernel();
1515 return error;
1516 }
1517
1518 /*
1519 * RENAME
1520 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
1521 * different file handle for the same inode after a rename (e.g. when
1522 * moving to a different directory). A fail-safe method to do so would
1523 * be to look up old_dir/old_name, create a link to new_dir/new_name and
1524 * rename the old file using the sillyrename stuff. This way, the original
1525 * file in old_dir will go away when the last process iput()s the inode.
1526 *
1527 * FIXED.
1528 *
1529 * It actually works quite well. One needs to have the possibility for
1530 * at least one ".nfs..." file in each directory the file ever gets
1531 * moved or linked to which happens automagically with the new
1532 * implementation that only depends on the dcache stuff instead of
1533 * using the inode layer
1534 *
1535 * Unfortunately, things are a little more complicated than indicated
1536 * above. For a cross-directory move, we want to make sure we can get
1537 * rid of the old inode after the operation. This means there must be
1538 * no pending writes (if it's a file), and the use count must be 1.
1539 * If these conditions are met, we can drop the dentries before doing
1540 * the rename.
1541 */
1542 static int nfs_rename(struct inode *old_dir, struct dentry *old_dentry,
1543 struct inode *new_dir, struct dentry *new_dentry)
1544 {
1545 struct inode *old_inode = old_dentry->d_inode;
1546 struct inode *new_inode = new_dentry->d_inode;
1547 struct dentry *dentry = NULL, *rehash = NULL;
1548 int error = -EBUSY;
1549
1550 /*
1551 * To prevent any new references to the target during the rename,
1552 * we unhash the dentry and free the inode in advance.
1553 */
1554 lock_kernel();
1555 if (!d_unhashed(new_dentry)) {
1556 d_drop(new_dentry);
1557 rehash = new_dentry;
1558 }
1559
1560 dfprintk(VFS, "NFS: rename(%s/%s -> %s/%s, ct=%d)\n",
1561 old_dentry->d_parent->d_name.name, old_dentry->d_name.name,
1562 new_dentry->d_parent->d_name.name, new_dentry->d_name.name,
1563 atomic_read(&new_dentry->d_count));
1564
1565 /*
1566 * First check whether the target is busy ... we can't
1567 * safely do _any_ rename if the target is in use.
1568 *
1569 * For files, make a copy of the dentry and then do a
1570 * silly-rename. If the silly-rename succeeds, the
1571 * copied dentry is hashed and becomes the new target.
1572 */
1573 if (!new_inode)
1574 goto go_ahead;
1575 if (S_ISDIR(new_inode->i_mode)) {
1576 error = -EISDIR;
1577 if (!S_ISDIR(old_inode->i_mode))
1578 goto out;
1579 } else if (atomic_read(&new_dentry->d_count) > 2) {
1580 int err;
1581 /* copy the target dentry's name */
1582 dentry = d_alloc(new_dentry->d_parent,
1583 &new_dentry->d_name);
1584 if (!dentry)
1585 goto out;
1586
1587 /* silly-rename the existing target ... */
1588 err = nfs_sillyrename(new_dir, new_dentry);
1589 if (!err) {
1590 new_dentry = rehash = dentry;
1591 new_inode = NULL;
1592 /* instantiate the replacement target */
1593 d_instantiate(new_dentry, NULL);
1594 } else if (atomic_read(&new_dentry->d_count) > 1)
1595 /* dentry still busy? */
1596 goto out;
1597 } else
1598 drop_nlink(new_inode);
1599
1600 go_ahead:
1601 /*
1602 * ... prune child dentries and writebacks if needed.
1603 */
1604 if (atomic_read(&old_dentry->d_count) > 1) {
1605 if (S_ISREG(old_inode->i_mode))
1606 nfs_wb_all(old_inode);
1607 shrink_dcache_parent(old_dentry);
1608 }
1609 nfs_inode_return_delegation(old_inode);
1610
1611 if (new_inode != NULL) {
1612 nfs_inode_return_delegation(new_inode);
1613 d_delete(new_dentry);
1614 }
1615
1616 error = NFS_PROTO(old_dir)->rename(old_dir, &old_dentry->d_name,
1617 new_dir, &new_dentry->d_name);
1618 nfs_mark_for_revalidate(old_inode);
1619 out:
1620 if (rehash)
1621 d_rehash(rehash);
1622 if (!error) {
1623 d_move(old_dentry, new_dentry);
1624 nfs_set_verifier(new_dentry,
1625 nfs_save_change_attribute(new_dir));
1626 }
1627
1628 /* new dentry created? */
1629 if (dentry)
1630 dput(dentry);
1631 unlock_kernel();
1632 return error;
1633 }
1634
1635 static DEFINE_SPINLOCK(nfs_access_lru_lock);
1636 static LIST_HEAD(nfs_access_lru_list);
1637 static atomic_long_t nfs_access_nr_entries;
1638
1639 static void nfs_access_free_entry(struct nfs_access_entry *entry)
1640 {
1641 put_rpccred(entry->cred);
1642 kfree(entry);
1643 smp_mb__before_atomic_dec();
1644 atomic_long_dec(&nfs_access_nr_entries);
1645 smp_mb__after_atomic_dec();
1646 }
1647
1648 int nfs_access_cache_shrinker(int nr_to_scan, gfp_t gfp_mask)
1649 {
1650 LIST_HEAD(head);
1651 struct nfs_inode *nfsi;
1652 struct nfs_access_entry *cache;
1653
1654 restart:
1655 spin_lock(&nfs_access_lru_lock);
1656 list_for_each_entry(nfsi, &nfs_access_lru_list, access_cache_inode_lru) {
1657 struct inode *inode;
1658
1659 if (nr_to_scan-- == 0)
1660 break;
1661 inode = igrab(&nfsi->vfs_inode);
1662 if (inode == NULL)
1663 continue;
1664 spin_lock(&inode->i_lock);
1665 if (list_empty(&nfsi->access_cache_entry_lru))
1666 goto remove_lru_entry;
1667 cache = list_entry(nfsi->access_cache_entry_lru.next,
1668 struct nfs_access_entry, lru);
1669 list_move(&cache->lru, &head);
1670 rb_erase(&cache->rb_node, &nfsi->access_cache);
1671 if (!list_empty(&nfsi->access_cache_entry_lru))
1672 list_move_tail(&nfsi->access_cache_inode_lru,
1673 &nfs_access_lru_list);
1674 else {
1675 remove_lru_entry:
1676 list_del_init(&nfsi->access_cache_inode_lru);
1677 clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
1678 }
1679 spin_unlock(&inode->i_lock);
1680 spin_unlock(&nfs_access_lru_lock);
1681 iput(inode);
1682 goto restart;
1683 }
1684 spin_unlock(&nfs_access_lru_lock);
1685 while (!list_empty(&head)) {
1686 cache = list_entry(head.next, struct nfs_access_entry, lru);
1687 list_del(&cache->lru);
1688 nfs_access_free_entry(cache);
1689 }
1690 return (atomic_long_read(&nfs_access_nr_entries) / 100) * sysctl_vfs_cache_pressure;
1691 }
1692
1693 static void __nfs_access_zap_cache(struct inode *inode)
1694 {
1695 struct nfs_inode *nfsi = NFS_I(inode);
1696 struct rb_root *root_node = &nfsi->access_cache;
1697 struct rb_node *n, *dispose = NULL;
1698 struct nfs_access_entry *entry;
1699
1700 /* Unhook entries from the cache */
1701 while ((n = rb_first(root_node)) != NULL) {
1702 entry = rb_entry(n, struct nfs_access_entry, rb_node);
1703 rb_erase(n, root_node);
1704 list_del(&entry->lru);
1705 n->rb_left = dispose;
1706 dispose = n;
1707 }
1708 nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
1709 spin_unlock(&inode->i_lock);
1710
1711 /* Now kill them all! */
1712 while (dispose != NULL) {
1713 n = dispose;
1714 dispose = n->rb_left;
1715 nfs_access_free_entry(rb_entry(n, struct nfs_access_entry, rb_node));
1716 }
1717 }
1718
1719 void nfs_access_zap_cache(struct inode *inode)
1720 {
1721 /* Remove from global LRU init */
1722 if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_FLAGS(inode))) {
1723 spin_lock(&nfs_access_lru_lock);
1724 list_del_init(&NFS_I(inode)->access_cache_inode_lru);
1725 spin_unlock(&nfs_access_lru_lock);
1726 }
1727
1728 spin_lock(&inode->i_lock);
1729 /* This will release the spinlock */
1730 __nfs_access_zap_cache(inode);
1731 }
1732
1733 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, struct rpc_cred *cred)
1734 {
1735 struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
1736 struct nfs_access_entry *entry;
1737
1738 while (n != NULL) {
1739 entry = rb_entry(n, struct nfs_access_entry, rb_node);
1740
1741 if (cred < entry->cred)
1742 n = n->rb_left;
1743 else if (cred > entry->cred)
1744 n = n->rb_right;
1745 else
1746 return entry;
1747 }
1748 return NULL;
1749 }
1750
1751 static int nfs_access_get_cached(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res)
1752 {
1753 struct nfs_inode *nfsi = NFS_I(inode);
1754 struct nfs_access_entry *cache;
1755 int err = -ENOENT;
1756
1757 spin_lock(&inode->i_lock);
1758 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
1759 goto out_zap;
1760 cache = nfs_access_search_rbtree(inode, cred);
1761 if (cache == NULL)
1762 goto out;
1763 if (!time_in_range(jiffies, cache->jiffies, cache->jiffies + NFS_ATTRTIMEO(inode)))
1764 goto out_stale;
1765 res->jiffies = cache->jiffies;
1766 res->cred = cache->cred;
1767 res->mask = cache->mask;
1768 list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
1769 err = 0;
1770 out:
1771 spin_unlock(&inode->i_lock);
1772 return err;
1773 out_stale:
1774 rb_erase(&cache->rb_node, &nfsi->access_cache);
1775 list_del(&cache->lru);
1776 spin_unlock(&inode->i_lock);
1777 nfs_access_free_entry(cache);
1778 return -ENOENT;
1779 out_zap:
1780 /* This will release the spinlock */
1781 __nfs_access_zap_cache(inode);
1782 return -ENOENT;
1783 }
1784
1785 static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set)
1786 {
1787 struct nfs_inode *nfsi = NFS_I(inode);
1788 struct rb_root *root_node = &nfsi->access_cache;
1789 struct rb_node **p = &root_node->rb_node;
1790 struct rb_node *parent = NULL;
1791 struct nfs_access_entry *entry;
1792
1793 spin_lock(&inode->i_lock);
1794 while (*p != NULL) {
1795 parent = *p;
1796 entry = rb_entry(parent, struct nfs_access_entry, rb_node);
1797
1798 if (set->cred < entry->cred)
1799 p = &parent->rb_left;
1800 else if (set->cred > entry->cred)
1801 p = &parent->rb_right;
1802 else
1803 goto found;
1804 }
1805 rb_link_node(&set->rb_node, parent, p);
1806 rb_insert_color(&set->rb_node, root_node);
1807 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
1808 spin_unlock(&inode->i_lock);
1809 return;
1810 found:
1811 rb_replace_node(parent, &set->rb_node, root_node);
1812 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
1813 list_del(&entry->lru);
1814 spin_unlock(&inode->i_lock);
1815 nfs_access_free_entry(entry);
1816 }
1817
1818 static void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set)
1819 {
1820 struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
1821 if (cache == NULL)
1822 return;
1823 RB_CLEAR_NODE(&cache->rb_node);
1824 cache->jiffies = set->jiffies;
1825 cache->cred = get_rpccred(set->cred);
1826 cache->mask = set->mask;
1827
1828 nfs_access_add_rbtree(inode, cache);
1829
1830 /* Update accounting */
1831 smp_mb__before_atomic_inc();
1832 atomic_long_inc(&nfs_access_nr_entries);
1833 smp_mb__after_atomic_inc();
1834
1835 /* Add inode to global LRU list */
1836 if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_FLAGS(inode))) {
1837 spin_lock(&nfs_access_lru_lock);
1838 list_add_tail(&NFS_I(inode)->access_cache_inode_lru, &nfs_access_lru_list);
1839 spin_unlock(&nfs_access_lru_lock);
1840 }
1841 }
1842
1843 static int nfs_do_access(struct inode *inode, struct rpc_cred *cred, int mask)
1844 {
1845 struct nfs_access_entry cache;
1846 int status;
1847
1848 status = nfs_access_get_cached(inode, cred, &cache);
1849 if (status == 0)
1850 goto out;
1851
1852 /* Be clever: ask server to check for all possible rights */
1853 cache.mask = MAY_EXEC | MAY_WRITE | MAY_READ;
1854 cache.cred = cred;
1855 cache.jiffies = jiffies;
1856 status = NFS_PROTO(inode)->access(inode, &cache);
1857 if (status != 0)
1858 return status;
1859 nfs_access_add_cache(inode, &cache);
1860 out:
1861 if ((cache.mask & mask) == mask)
1862 return 0;
1863 return -EACCES;
1864 }
1865
1866 static int nfs_open_permission_mask(int openflags)
1867 {
1868 int mask = 0;
1869
1870 if (openflags & FMODE_READ)
1871 mask |= MAY_READ;
1872 if (openflags & FMODE_WRITE)
1873 mask |= MAY_WRITE;
1874 if (openflags & FMODE_EXEC)
1875 mask |= MAY_EXEC;
1876 return mask;
1877 }
1878
1879 int nfs_may_open(struct inode *inode, struct rpc_cred *cred, int openflags)
1880 {
1881 return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
1882 }
1883
1884 int nfs_permission(struct inode *inode, int mask, struct nameidata *nd)
1885 {
1886 struct rpc_cred *cred;
1887 int res = 0;
1888
1889 nfs_inc_stats(inode, NFSIOS_VFSACCESS);
1890
1891 if (mask == 0)
1892 goto out;
1893 /* Is this sys_access() ? */
1894 if (nd != NULL && (nd->flags & LOOKUP_ACCESS))
1895 goto force_lookup;
1896
1897 switch (inode->i_mode & S_IFMT) {
1898 case S_IFLNK:
1899 goto out;
1900 case S_IFREG:
1901 /* NFSv4 has atomic_open... */
1902 if (nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN)
1903 && nd != NULL
1904 && (nd->flags & LOOKUP_OPEN))
1905 goto out;
1906 break;
1907 case S_IFDIR:
1908 /*
1909 * Optimize away all write operations, since the server
1910 * will check permissions when we perform the op.
1911 */
1912 if ((mask & MAY_WRITE) && !(mask & MAY_READ))
1913 goto out;
1914 }
1915
1916 force_lookup:
1917 lock_kernel();
1918
1919 if (!NFS_PROTO(inode)->access)
1920 goto out_notsup;
1921
1922 cred = rpcauth_lookupcred(NFS_CLIENT(inode)->cl_auth, 0);
1923 if (!IS_ERR(cred)) {
1924 res = nfs_do_access(inode, cred, mask);
1925 put_rpccred(cred);
1926 } else
1927 res = PTR_ERR(cred);
1928 unlock_kernel();
1929 out:
1930 dfprintk(VFS, "NFS: permission(%s/%ld), mask=0x%x, res=%d\n",
1931 inode->i_sb->s_id, inode->i_ino, mask, res);
1932 return res;
1933 out_notsup:
1934 res = nfs_revalidate_inode(NFS_SERVER(inode), inode);
1935 if (res == 0)
1936 res = generic_permission(inode, mask, NULL);
1937 unlock_kernel();
1938 goto out;
1939 }
1940
1941 /*
1942 * Local variables:
1943 * version-control: t
1944 * kept-new-versions: 5
1945 * End:
1946 */
This page took 0.071714 seconds and 5 git commands to generate.