NFS: Convert v2 into a module
[deliverable/linux.git] / fs / nfs / dir.c
1 /*
2 * linux/fs/nfs/dir.c
3 *
4 * Copyright (C) 1992 Rick Sladkey
5 *
6 * nfs directory handling functions
7 *
8 * 10 Apr 1996 Added silly rename for unlink --okir
9 * 28 Sep 1996 Improved directory cache --okir
10 * 23 Aug 1997 Claus Heine claus@momo.math.rwth-aachen.de
11 * Re-implemented silly rename for unlink, newly implemented
12 * silly rename for nfs_rename() following the suggestions
13 * of Olaf Kirch (okir) found in this file.
14 * Following Linus comments on my original hack, this version
15 * depends only on the dcache stuff and doesn't touch the inode
16 * layer (iput() and friends).
17 * 6 Jun 1999 Cache readdir lookups in the page cache. -DaveM
18 */
19
20 #include <linux/module.h>
21 #include <linux/time.h>
22 #include <linux/errno.h>
23 #include <linux/stat.h>
24 #include <linux/fcntl.h>
25 #include <linux/string.h>
26 #include <linux/kernel.h>
27 #include <linux/slab.h>
28 #include <linux/mm.h>
29 #include <linux/sunrpc/clnt.h>
30 #include <linux/nfs_fs.h>
31 #include <linux/nfs_mount.h>
32 #include <linux/pagemap.h>
33 #include <linux/pagevec.h>
34 #include <linux/namei.h>
35 #include <linux/mount.h>
36 #include <linux/sched.h>
37 #include <linux/kmemleak.h>
38 #include <linux/xattr.h>
39
40 #include "delegation.h"
41 #include "iostat.h"
42 #include "internal.h"
43 #include "fscache.h"
44
45 /* #define NFS_DEBUG_VERBOSE 1 */
46
47 static int nfs_opendir(struct inode *, struct file *);
48 static int nfs_closedir(struct inode *, struct file *);
49 static int nfs_readdir(struct file *, void *, filldir_t);
50 static int nfs_fsync_dir(struct file *, loff_t, loff_t, int);
51 static loff_t nfs_llseek_dir(struct file *, loff_t, int);
52 static void nfs_readdir_clear_array(struct page*);
53
54 const struct file_operations nfs_dir_operations = {
55 .llseek = nfs_llseek_dir,
56 .read = generic_read_dir,
57 .readdir = nfs_readdir,
58 .open = nfs_opendir,
59 .release = nfs_closedir,
60 .fsync = nfs_fsync_dir,
61 };
62
63 const struct address_space_operations nfs_dir_aops = {
64 .freepage = nfs_readdir_clear_array,
65 };
66
67 static struct nfs_open_dir_context *alloc_nfs_open_dir_context(struct inode *dir, struct rpc_cred *cred)
68 {
69 struct nfs_open_dir_context *ctx;
70 ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
71 if (ctx != NULL) {
72 ctx->duped = 0;
73 ctx->attr_gencount = NFS_I(dir)->attr_gencount;
74 ctx->dir_cookie = 0;
75 ctx->dup_cookie = 0;
76 ctx->cred = get_rpccred(cred);
77 return ctx;
78 }
79 return ERR_PTR(-ENOMEM);
80 }
81
82 static void put_nfs_open_dir_context(struct nfs_open_dir_context *ctx)
83 {
84 put_rpccred(ctx->cred);
85 kfree(ctx);
86 }
87
88 /*
89 * Open file
90 */
91 static int
92 nfs_opendir(struct inode *inode, struct file *filp)
93 {
94 int res = 0;
95 struct nfs_open_dir_context *ctx;
96 struct rpc_cred *cred;
97
98 dfprintk(FILE, "NFS: open dir(%s/%s)\n",
99 filp->f_path.dentry->d_parent->d_name.name,
100 filp->f_path.dentry->d_name.name);
101
102 nfs_inc_stats(inode, NFSIOS_VFSOPEN);
103
104 cred = rpc_lookup_cred();
105 if (IS_ERR(cred))
106 return PTR_ERR(cred);
107 ctx = alloc_nfs_open_dir_context(inode, cred);
108 if (IS_ERR(ctx)) {
109 res = PTR_ERR(ctx);
110 goto out;
111 }
112 filp->private_data = ctx;
113 if (filp->f_path.dentry == filp->f_path.mnt->mnt_root) {
114 /* This is a mountpoint, so d_revalidate will never
115 * have been called, so we need to refresh the
116 * inode (for close-open consistency) ourselves.
117 */
118 __nfs_revalidate_inode(NFS_SERVER(inode), inode);
119 }
120 out:
121 put_rpccred(cred);
122 return res;
123 }
124
125 static int
126 nfs_closedir(struct inode *inode, struct file *filp)
127 {
128 put_nfs_open_dir_context(filp->private_data);
129 return 0;
130 }
131
132 struct nfs_cache_array_entry {
133 u64 cookie;
134 u64 ino;
135 struct qstr string;
136 unsigned char d_type;
137 };
138
139 struct nfs_cache_array {
140 int size;
141 int eof_index;
142 u64 last_cookie;
143 struct nfs_cache_array_entry array[0];
144 };
145
146 typedef int (*decode_dirent_t)(struct xdr_stream *, struct nfs_entry *, int);
147 typedef struct {
148 struct file *file;
149 struct page *page;
150 unsigned long page_index;
151 u64 *dir_cookie;
152 u64 last_cookie;
153 loff_t current_index;
154 decode_dirent_t decode;
155
156 unsigned long timestamp;
157 unsigned long gencount;
158 unsigned int cache_entry_index;
159 unsigned int plus:1;
160 unsigned int eof:1;
161 } nfs_readdir_descriptor_t;
162
163 /*
164 * The caller is responsible for calling nfs_readdir_release_array(page)
165 */
166 static
167 struct nfs_cache_array *nfs_readdir_get_array(struct page *page)
168 {
169 void *ptr;
170 if (page == NULL)
171 return ERR_PTR(-EIO);
172 ptr = kmap(page);
173 if (ptr == NULL)
174 return ERR_PTR(-ENOMEM);
175 return ptr;
176 }
177
178 static
179 void nfs_readdir_release_array(struct page *page)
180 {
181 kunmap(page);
182 }
183
184 /*
185 * we are freeing strings created by nfs_add_to_readdir_array()
186 */
187 static
188 void nfs_readdir_clear_array(struct page *page)
189 {
190 struct nfs_cache_array *array;
191 int i;
192
193 array = kmap_atomic(page);
194 for (i = 0; i < array->size; i++)
195 kfree(array->array[i].string.name);
196 kunmap_atomic(array);
197 }
198
199 /*
200 * the caller is responsible for freeing qstr.name
201 * when called by nfs_readdir_add_to_array, the strings will be freed in
202 * nfs_clear_readdir_array()
203 */
204 static
205 int nfs_readdir_make_qstr(struct qstr *string, const char *name, unsigned int len)
206 {
207 string->len = len;
208 string->name = kmemdup(name, len, GFP_KERNEL);
209 if (string->name == NULL)
210 return -ENOMEM;
211 /*
212 * Avoid a kmemleak false positive. The pointer to the name is stored
213 * in a page cache page which kmemleak does not scan.
214 */
215 kmemleak_not_leak(string->name);
216 string->hash = full_name_hash(name, len);
217 return 0;
218 }
219
220 static
221 int nfs_readdir_add_to_array(struct nfs_entry *entry, struct page *page)
222 {
223 struct nfs_cache_array *array = nfs_readdir_get_array(page);
224 struct nfs_cache_array_entry *cache_entry;
225 int ret;
226
227 if (IS_ERR(array))
228 return PTR_ERR(array);
229
230 cache_entry = &array->array[array->size];
231
232 /* Check that this entry lies within the page bounds */
233 ret = -ENOSPC;
234 if ((char *)&cache_entry[1] - (char *)page_address(page) > PAGE_SIZE)
235 goto out;
236
237 cache_entry->cookie = entry->prev_cookie;
238 cache_entry->ino = entry->ino;
239 cache_entry->d_type = entry->d_type;
240 ret = nfs_readdir_make_qstr(&cache_entry->string, entry->name, entry->len);
241 if (ret)
242 goto out;
243 array->last_cookie = entry->cookie;
244 array->size++;
245 if (entry->eof != 0)
246 array->eof_index = array->size;
247 out:
248 nfs_readdir_release_array(page);
249 return ret;
250 }
251
252 static
253 int nfs_readdir_search_for_pos(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
254 {
255 loff_t diff = desc->file->f_pos - desc->current_index;
256 unsigned int index;
257
258 if (diff < 0)
259 goto out_eof;
260 if (diff >= array->size) {
261 if (array->eof_index >= 0)
262 goto out_eof;
263 return -EAGAIN;
264 }
265
266 index = (unsigned int)diff;
267 *desc->dir_cookie = array->array[index].cookie;
268 desc->cache_entry_index = index;
269 return 0;
270 out_eof:
271 desc->eof = 1;
272 return -EBADCOOKIE;
273 }
274
275 static
276 int nfs_readdir_search_for_cookie(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
277 {
278 int i;
279 loff_t new_pos;
280 int status = -EAGAIN;
281
282 for (i = 0; i < array->size; i++) {
283 if (array->array[i].cookie == *desc->dir_cookie) {
284 struct nfs_inode *nfsi = NFS_I(desc->file->f_path.dentry->d_inode);
285 struct nfs_open_dir_context *ctx = desc->file->private_data;
286
287 new_pos = desc->current_index + i;
288 if (ctx->attr_gencount != nfsi->attr_gencount
289 || (nfsi->cache_validity & (NFS_INO_INVALID_ATTR|NFS_INO_INVALID_DATA))) {
290 ctx->duped = 0;
291 ctx->attr_gencount = nfsi->attr_gencount;
292 } else if (new_pos < desc->file->f_pos) {
293 if (ctx->duped > 0
294 && ctx->dup_cookie == *desc->dir_cookie) {
295 if (printk_ratelimit()) {
296 pr_notice("NFS: directory %s/%s contains a readdir loop."
297 "Please contact your server vendor. "
298 "The file: %s has duplicate cookie %llu\n",
299 desc->file->f_dentry->d_parent->d_name.name,
300 desc->file->f_dentry->d_name.name,
301 array->array[i].string.name,
302 *desc->dir_cookie);
303 }
304 status = -ELOOP;
305 goto out;
306 }
307 ctx->dup_cookie = *desc->dir_cookie;
308 ctx->duped = -1;
309 }
310 desc->file->f_pos = new_pos;
311 desc->cache_entry_index = i;
312 return 0;
313 }
314 }
315 if (array->eof_index >= 0) {
316 status = -EBADCOOKIE;
317 if (*desc->dir_cookie == array->last_cookie)
318 desc->eof = 1;
319 }
320 out:
321 return status;
322 }
323
324 static
325 int nfs_readdir_search_array(nfs_readdir_descriptor_t *desc)
326 {
327 struct nfs_cache_array *array;
328 int status;
329
330 array = nfs_readdir_get_array(desc->page);
331 if (IS_ERR(array)) {
332 status = PTR_ERR(array);
333 goto out;
334 }
335
336 if (*desc->dir_cookie == 0)
337 status = nfs_readdir_search_for_pos(array, desc);
338 else
339 status = nfs_readdir_search_for_cookie(array, desc);
340
341 if (status == -EAGAIN) {
342 desc->last_cookie = array->last_cookie;
343 desc->current_index += array->size;
344 desc->page_index++;
345 }
346 nfs_readdir_release_array(desc->page);
347 out:
348 return status;
349 }
350
351 /* Fill a page with xdr information before transferring to the cache page */
352 static
353 int nfs_readdir_xdr_filler(struct page **pages, nfs_readdir_descriptor_t *desc,
354 struct nfs_entry *entry, struct file *file, struct inode *inode)
355 {
356 struct nfs_open_dir_context *ctx = file->private_data;
357 struct rpc_cred *cred = ctx->cred;
358 unsigned long timestamp, gencount;
359 int error;
360
361 again:
362 timestamp = jiffies;
363 gencount = nfs_inc_attr_generation_counter();
364 error = NFS_PROTO(inode)->readdir(file->f_path.dentry, cred, entry->cookie, pages,
365 NFS_SERVER(inode)->dtsize, desc->plus);
366 if (error < 0) {
367 /* We requested READDIRPLUS, but the server doesn't grok it */
368 if (error == -ENOTSUPP && desc->plus) {
369 NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
370 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
371 desc->plus = 0;
372 goto again;
373 }
374 goto error;
375 }
376 desc->timestamp = timestamp;
377 desc->gencount = gencount;
378 error:
379 return error;
380 }
381
382 static int xdr_decode(nfs_readdir_descriptor_t *desc,
383 struct nfs_entry *entry, struct xdr_stream *xdr)
384 {
385 int error;
386
387 error = desc->decode(xdr, entry, desc->plus);
388 if (error)
389 return error;
390 entry->fattr->time_start = desc->timestamp;
391 entry->fattr->gencount = desc->gencount;
392 return 0;
393 }
394
395 static
396 int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry)
397 {
398 if (dentry->d_inode == NULL)
399 goto different;
400 if (nfs_compare_fh(entry->fh, NFS_FH(dentry->d_inode)) != 0)
401 goto different;
402 return 1;
403 different:
404 return 0;
405 }
406
407 static
408 bool nfs_use_readdirplus(struct inode *dir, struct file *filp)
409 {
410 if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS))
411 return false;
412 if (test_and_clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags))
413 return true;
414 if (filp->f_pos == 0)
415 return true;
416 return false;
417 }
418
419 /*
420 * This function is called by the lookup code to request the use of
421 * readdirplus to accelerate any future lookups in the same
422 * directory.
423 */
424 static
425 void nfs_advise_use_readdirplus(struct inode *dir)
426 {
427 set_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags);
428 }
429
430 static
431 void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry)
432 {
433 struct qstr filename = QSTR_INIT(entry->name, entry->len);
434 struct dentry *dentry;
435 struct dentry *alias;
436 struct inode *dir = parent->d_inode;
437 struct inode *inode;
438
439 if (filename.name[0] == '.') {
440 if (filename.len == 1)
441 return;
442 if (filename.len == 2 && filename.name[1] == '.')
443 return;
444 }
445 filename.hash = full_name_hash(filename.name, filename.len);
446
447 dentry = d_lookup(parent, &filename);
448 if (dentry != NULL) {
449 if (nfs_same_file(dentry, entry)) {
450 nfs_refresh_inode(dentry->d_inode, entry->fattr);
451 goto out;
452 } else {
453 d_drop(dentry);
454 dput(dentry);
455 }
456 }
457
458 dentry = d_alloc(parent, &filename);
459 if (dentry == NULL)
460 return;
461
462 inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr);
463 if (IS_ERR(inode))
464 goto out;
465
466 alias = d_materialise_unique(dentry, inode);
467 if (IS_ERR(alias))
468 goto out;
469 else if (alias) {
470 nfs_set_verifier(alias, nfs_save_change_attribute(dir));
471 dput(alias);
472 } else
473 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
474
475 out:
476 dput(dentry);
477 }
478
479 /* Perform conversion from xdr to cache array */
480 static
481 int nfs_readdir_page_filler(nfs_readdir_descriptor_t *desc, struct nfs_entry *entry,
482 struct page **xdr_pages, struct page *page, unsigned int buflen)
483 {
484 struct xdr_stream stream;
485 struct xdr_buf buf;
486 struct page *scratch;
487 struct nfs_cache_array *array;
488 unsigned int count = 0;
489 int status;
490
491 scratch = alloc_page(GFP_KERNEL);
492 if (scratch == NULL)
493 return -ENOMEM;
494
495 xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen);
496 xdr_set_scratch_buffer(&stream, page_address(scratch), PAGE_SIZE);
497
498 do {
499 status = xdr_decode(desc, entry, &stream);
500 if (status != 0) {
501 if (status == -EAGAIN)
502 status = 0;
503 break;
504 }
505
506 count++;
507
508 if (desc->plus != 0)
509 nfs_prime_dcache(desc->file->f_path.dentry, entry);
510
511 status = nfs_readdir_add_to_array(entry, page);
512 if (status != 0)
513 break;
514 } while (!entry->eof);
515
516 if (count == 0 || (status == -EBADCOOKIE && entry->eof != 0)) {
517 array = nfs_readdir_get_array(page);
518 if (!IS_ERR(array)) {
519 array->eof_index = array->size;
520 status = 0;
521 nfs_readdir_release_array(page);
522 } else
523 status = PTR_ERR(array);
524 }
525
526 put_page(scratch);
527 return status;
528 }
529
530 static
531 void nfs_readdir_free_pagearray(struct page **pages, unsigned int npages)
532 {
533 unsigned int i;
534 for (i = 0; i < npages; i++)
535 put_page(pages[i]);
536 }
537
538 static
539 void nfs_readdir_free_large_page(void *ptr, struct page **pages,
540 unsigned int npages)
541 {
542 nfs_readdir_free_pagearray(pages, npages);
543 }
544
545 /*
546 * nfs_readdir_large_page will allocate pages that must be freed with a call
547 * to nfs_readdir_free_large_page
548 */
549 static
550 int nfs_readdir_large_page(struct page **pages, unsigned int npages)
551 {
552 unsigned int i;
553
554 for (i = 0; i < npages; i++) {
555 struct page *page = alloc_page(GFP_KERNEL);
556 if (page == NULL)
557 goto out_freepages;
558 pages[i] = page;
559 }
560 return 0;
561
562 out_freepages:
563 nfs_readdir_free_pagearray(pages, i);
564 return -ENOMEM;
565 }
566
567 static
568 int nfs_readdir_xdr_to_array(nfs_readdir_descriptor_t *desc, struct page *page, struct inode *inode)
569 {
570 struct page *pages[NFS_MAX_READDIR_PAGES];
571 void *pages_ptr = NULL;
572 struct nfs_entry entry;
573 struct file *file = desc->file;
574 struct nfs_cache_array *array;
575 int status = -ENOMEM;
576 unsigned int array_size = ARRAY_SIZE(pages);
577
578 entry.prev_cookie = 0;
579 entry.cookie = desc->last_cookie;
580 entry.eof = 0;
581 entry.fh = nfs_alloc_fhandle();
582 entry.fattr = nfs_alloc_fattr();
583 entry.server = NFS_SERVER(inode);
584 if (entry.fh == NULL || entry.fattr == NULL)
585 goto out;
586
587 array = nfs_readdir_get_array(page);
588 if (IS_ERR(array)) {
589 status = PTR_ERR(array);
590 goto out;
591 }
592 memset(array, 0, sizeof(struct nfs_cache_array));
593 array->eof_index = -1;
594
595 status = nfs_readdir_large_page(pages, array_size);
596 if (status < 0)
597 goto out_release_array;
598 do {
599 unsigned int pglen;
600 status = nfs_readdir_xdr_filler(pages, desc, &entry, file, inode);
601
602 if (status < 0)
603 break;
604 pglen = status;
605 status = nfs_readdir_page_filler(desc, &entry, pages, page, pglen);
606 if (status < 0) {
607 if (status == -ENOSPC)
608 status = 0;
609 break;
610 }
611 } while (array->eof_index < 0);
612
613 nfs_readdir_free_large_page(pages_ptr, pages, array_size);
614 out_release_array:
615 nfs_readdir_release_array(page);
616 out:
617 nfs_free_fattr(entry.fattr);
618 nfs_free_fhandle(entry.fh);
619 return status;
620 }
621
622 /*
623 * Now we cache directories properly, by converting xdr information
624 * to an array that can be used for lookups later. This results in
625 * fewer cache pages, since we can store more information on each page.
626 * We only need to convert from xdr once so future lookups are much simpler
627 */
628 static
629 int nfs_readdir_filler(nfs_readdir_descriptor_t *desc, struct page* page)
630 {
631 struct inode *inode = desc->file->f_path.dentry->d_inode;
632 int ret;
633
634 ret = nfs_readdir_xdr_to_array(desc, page, inode);
635 if (ret < 0)
636 goto error;
637 SetPageUptodate(page);
638
639 if (invalidate_inode_pages2_range(inode->i_mapping, page->index + 1, -1) < 0) {
640 /* Should never happen */
641 nfs_zap_mapping(inode, inode->i_mapping);
642 }
643 unlock_page(page);
644 return 0;
645 error:
646 unlock_page(page);
647 return ret;
648 }
649
650 static
651 void cache_page_release(nfs_readdir_descriptor_t *desc)
652 {
653 if (!desc->page->mapping)
654 nfs_readdir_clear_array(desc->page);
655 page_cache_release(desc->page);
656 desc->page = NULL;
657 }
658
659 static
660 struct page *get_cache_page(nfs_readdir_descriptor_t *desc)
661 {
662 return read_cache_page(desc->file->f_path.dentry->d_inode->i_mapping,
663 desc->page_index, (filler_t *)nfs_readdir_filler, desc);
664 }
665
666 /*
667 * Returns 0 if desc->dir_cookie was found on page desc->page_index
668 */
669 static
670 int find_cache_page(nfs_readdir_descriptor_t *desc)
671 {
672 int res;
673
674 desc->page = get_cache_page(desc);
675 if (IS_ERR(desc->page))
676 return PTR_ERR(desc->page);
677
678 res = nfs_readdir_search_array(desc);
679 if (res != 0)
680 cache_page_release(desc);
681 return res;
682 }
683
684 /* Search for desc->dir_cookie from the beginning of the page cache */
685 static inline
686 int readdir_search_pagecache(nfs_readdir_descriptor_t *desc)
687 {
688 int res;
689
690 if (desc->page_index == 0) {
691 desc->current_index = 0;
692 desc->last_cookie = 0;
693 }
694 do {
695 res = find_cache_page(desc);
696 } while (res == -EAGAIN);
697 return res;
698 }
699
700 /*
701 * Once we've found the start of the dirent within a page: fill 'er up...
702 */
703 static
704 int nfs_do_filldir(nfs_readdir_descriptor_t *desc, void *dirent,
705 filldir_t filldir)
706 {
707 struct file *file = desc->file;
708 int i = 0;
709 int res = 0;
710 struct nfs_cache_array *array = NULL;
711 struct nfs_open_dir_context *ctx = file->private_data;
712
713 array = nfs_readdir_get_array(desc->page);
714 if (IS_ERR(array)) {
715 res = PTR_ERR(array);
716 goto out;
717 }
718
719 for (i = desc->cache_entry_index; i < array->size; i++) {
720 struct nfs_cache_array_entry *ent;
721
722 ent = &array->array[i];
723 if (filldir(dirent, ent->string.name, ent->string.len,
724 file->f_pos, nfs_compat_user_ino64(ent->ino),
725 ent->d_type) < 0) {
726 desc->eof = 1;
727 break;
728 }
729 file->f_pos++;
730 if (i < (array->size-1))
731 *desc->dir_cookie = array->array[i+1].cookie;
732 else
733 *desc->dir_cookie = array->last_cookie;
734 if (ctx->duped != 0)
735 ctx->duped = 1;
736 }
737 if (array->eof_index >= 0)
738 desc->eof = 1;
739
740 nfs_readdir_release_array(desc->page);
741 out:
742 cache_page_release(desc);
743 dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n",
744 (unsigned long long)*desc->dir_cookie, res);
745 return res;
746 }
747
748 /*
749 * If we cannot find a cookie in our cache, we suspect that this is
750 * because it points to a deleted file, so we ask the server to return
751 * whatever it thinks is the next entry. We then feed this to filldir.
752 * If all goes well, we should then be able to find our way round the
753 * cache on the next call to readdir_search_pagecache();
754 *
755 * NOTE: we cannot add the anonymous page to the pagecache because
756 * the data it contains might not be page aligned. Besides,
757 * we should already have a complete representation of the
758 * directory in the page cache by the time we get here.
759 */
760 static inline
761 int uncached_readdir(nfs_readdir_descriptor_t *desc, void *dirent,
762 filldir_t filldir)
763 {
764 struct page *page = NULL;
765 int status;
766 struct inode *inode = desc->file->f_path.dentry->d_inode;
767 struct nfs_open_dir_context *ctx = desc->file->private_data;
768
769 dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n",
770 (unsigned long long)*desc->dir_cookie);
771
772 page = alloc_page(GFP_HIGHUSER);
773 if (!page) {
774 status = -ENOMEM;
775 goto out;
776 }
777
778 desc->page_index = 0;
779 desc->last_cookie = *desc->dir_cookie;
780 desc->page = page;
781 ctx->duped = 0;
782
783 status = nfs_readdir_xdr_to_array(desc, page, inode);
784 if (status < 0)
785 goto out_release;
786
787 status = nfs_do_filldir(desc, dirent, filldir);
788
789 out:
790 dfprintk(DIRCACHE, "NFS: %s: returns %d\n",
791 __func__, status);
792 return status;
793 out_release:
794 cache_page_release(desc);
795 goto out;
796 }
797
798 /* The file offset position represents the dirent entry number. A
799 last cookie cache takes care of the common case of reading the
800 whole directory.
801 */
802 static int nfs_readdir(struct file *filp, void *dirent, filldir_t filldir)
803 {
804 struct dentry *dentry = filp->f_path.dentry;
805 struct inode *inode = dentry->d_inode;
806 nfs_readdir_descriptor_t my_desc,
807 *desc = &my_desc;
808 struct nfs_open_dir_context *dir_ctx = filp->private_data;
809 int res;
810
811 dfprintk(FILE, "NFS: readdir(%s/%s) starting at cookie %llu\n",
812 dentry->d_parent->d_name.name, dentry->d_name.name,
813 (long long)filp->f_pos);
814 nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
815
816 /*
817 * filp->f_pos points to the dirent entry number.
818 * *desc->dir_cookie has the cookie for the next entry. We have
819 * to either find the entry with the appropriate number or
820 * revalidate the cookie.
821 */
822 memset(desc, 0, sizeof(*desc));
823
824 desc->file = filp;
825 desc->dir_cookie = &dir_ctx->dir_cookie;
826 desc->decode = NFS_PROTO(inode)->decode_dirent;
827 desc->plus = nfs_use_readdirplus(inode, filp) ? 1 : 0;
828
829 nfs_block_sillyrename(dentry);
830 res = nfs_revalidate_mapping(inode, filp->f_mapping);
831 if (res < 0)
832 goto out;
833
834 do {
835 res = readdir_search_pagecache(desc);
836
837 if (res == -EBADCOOKIE) {
838 res = 0;
839 /* This means either end of directory */
840 if (*desc->dir_cookie && desc->eof == 0) {
841 /* Or that the server has 'lost' a cookie */
842 res = uncached_readdir(desc, dirent, filldir);
843 if (res == 0)
844 continue;
845 }
846 break;
847 }
848 if (res == -ETOOSMALL && desc->plus) {
849 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
850 nfs_zap_caches(inode);
851 desc->page_index = 0;
852 desc->plus = 0;
853 desc->eof = 0;
854 continue;
855 }
856 if (res < 0)
857 break;
858
859 res = nfs_do_filldir(desc, dirent, filldir);
860 if (res < 0)
861 break;
862 } while (!desc->eof);
863 out:
864 nfs_unblock_sillyrename(dentry);
865 if (res > 0)
866 res = 0;
867 dfprintk(FILE, "NFS: readdir(%s/%s) returns %d\n",
868 dentry->d_parent->d_name.name, dentry->d_name.name,
869 res);
870 return res;
871 }
872
873 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int origin)
874 {
875 struct dentry *dentry = filp->f_path.dentry;
876 struct inode *inode = dentry->d_inode;
877 struct nfs_open_dir_context *dir_ctx = filp->private_data;
878
879 dfprintk(FILE, "NFS: llseek dir(%s/%s, %lld, %d)\n",
880 dentry->d_parent->d_name.name,
881 dentry->d_name.name,
882 offset, origin);
883
884 mutex_lock(&inode->i_mutex);
885 switch (origin) {
886 case 1:
887 offset += filp->f_pos;
888 case 0:
889 if (offset >= 0)
890 break;
891 default:
892 offset = -EINVAL;
893 goto out;
894 }
895 if (offset != filp->f_pos) {
896 filp->f_pos = offset;
897 dir_ctx->dir_cookie = 0;
898 dir_ctx->duped = 0;
899 }
900 out:
901 mutex_unlock(&inode->i_mutex);
902 return offset;
903 }
904
905 /*
906 * All directory operations under NFS are synchronous, so fsync()
907 * is a dummy operation.
908 */
909 static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end,
910 int datasync)
911 {
912 struct dentry *dentry = filp->f_path.dentry;
913 struct inode *inode = dentry->d_inode;
914
915 dfprintk(FILE, "NFS: fsync dir(%s/%s) datasync %d\n",
916 dentry->d_parent->d_name.name, dentry->d_name.name,
917 datasync);
918
919 mutex_lock(&inode->i_mutex);
920 nfs_inc_stats(dentry->d_inode, NFSIOS_VFSFSYNC);
921 mutex_unlock(&inode->i_mutex);
922 return 0;
923 }
924
925 /**
926 * nfs_force_lookup_revalidate - Mark the directory as having changed
927 * @dir - pointer to directory inode
928 *
929 * This forces the revalidation code in nfs_lookup_revalidate() to do a
930 * full lookup on all child dentries of 'dir' whenever a change occurs
931 * on the server that might have invalidated our dcache.
932 *
933 * The caller should be holding dir->i_lock
934 */
935 void nfs_force_lookup_revalidate(struct inode *dir)
936 {
937 NFS_I(dir)->cache_change_attribute++;
938 }
939
940 /*
941 * A check for whether or not the parent directory has changed.
942 * In the case it has, we assume that the dentries are untrustworthy
943 * and may need to be looked up again.
944 */
945 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry)
946 {
947 if (IS_ROOT(dentry))
948 return 1;
949 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE)
950 return 0;
951 if (!nfs_verify_change_attribute(dir, dentry->d_time))
952 return 0;
953 /* Revalidate nfsi->cache_change_attribute before we declare a match */
954 if (nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
955 return 0;
956 if (!nfs_verify_change_attribute(dir, dentry->d_time))
957 return 0;
958 return 1;
959 }
960
961 /*
962 * Use intent information to check whether or not we're going to do
963 * an O_EXCL create using this path component.
964 */
965 static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags)
966 {
967 if (NFS_PROTO(dir)->version == 2)
968 return 0;
969 return flags & LOOKUP_EXCL;
970 }
971
972 /*
973 * Inode and filehandle revalidation for lookups.
974 *
975 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
976 * or if the intent information indicates that we're about to open this
977 * particular file and the "nocto" mount flag is not set.
978 *
979 */
980 static inline
981 int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags)
982 {
983 struct nfs_server *server = NFS_SERVER(inode);
984
985 if (IS_AUTOMOUNT(inode))
986 return 0;
987 /* VFS wants an on-the-wire revalidation */
988 if (flags & LOOKUP_REVAL)
989 goto out_force;
990 /* This is an open(2) */
991 if ((flags & LOOKUP_OPEN) && !(server->flags & NFS_MOUNT_NOCTO) &&
992 (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode)))
993 goto out_force;
994 return 0;
995 out_force:
996 return __nfs_revalidate_inode(server, inode);
997 }
998
999 /*
1000 * We judge how long we want to trust negative
1001 * dentries by looking at the parent inode mtime.
1002 *
1003 * If parent mtime has changed, we revalidate, else we wait for a
1004 * period corresponding to the parent's attribute cache timeout value.
1005 */
1006 static inline
1007 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
1008 unsigned int flags)
1009 {
1010 /* Don't revalidate a negative dentry if we're creating a new file */
1011 if (flags & LOOKUP_CREATE)
1012 return 0;
1013 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG)
1014 return 1;
1015 return !nfs_check_verifier(dir, dentry);
1016 }
1017
1018 /*
1019 * This is called every time the dcache has a lookup hit,
1020 * and we should check whether we can really trust that
1021 * lookup.
1022 *
1023 * NOTE! The hit can be a negative hit too, don't assume
1024 * we have an inode!
1025 *
1026 * If the parent directory is seen to have changed, we throw out the
1027 * cached dentry and do a new lookup.
1028 */
1029 static int nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1030 {
1031 struct inode *dir;
1032 struct inode *inode;
1033 struct dentry *parent;
1034 struct nfs_fh *fhandle = NULL;
1035 struct nfs_fattr *fattr = NULL;
1036 int error;
1037
1038 if (flags & LOOKUP_RCU)
1039 return -ECHILD;
1040
1041 parent = dget_parent(dentry);
1042 dir = parent->d_inode;
1043 nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
1044 inode = dentry->d_inode;
1045
1046 if (!inode) {
1047 if (nfs_neg_need_reval(dir, dentry, flags))
1048 goto out_bad;
1049 goto out_valid_noent;
1050 }
1051
1052 if (is_bad_inode(inode)) {
1053 dfprintk(LOOKUPCACHE, "%s: %s/%s has dud inode\n",
1054 __func__, dentry->d_parent->d_name.name,
1055 dentry->d_name.name);
1056 goto out_bad;
1057 }
1058
1059 if (NFS_PROTO(dir)->have_delegation(inode, FMODE_READ))
1060 goto out_set_verifier;
1061
1062 /* Force a full look up iff the parent directory has changed */
1063 if (!nfs_is_exclusive_create(dir, flags) && nfs_check_verifier(dir, dentry)) {
1064 if (nfs_lookup_verify_inode(inode, flags))
1065 goto out_zap_parent;
1066 goto out_valid;
1067 }
1068
1069 if (NFS_STALE(inode))
1070 goto out_bad;
1071
1072 error = -ENOMEM;
1073 fhandle = nfs_alloc_fhandle();
1074 fattr = nfs_alloc_fattr();
1075 if (fhandle == NULL || fattr == NULL)
1076 goto out_error;
1077
1078 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr);
1079 if (error)
1080 goto out_bad;
1081 if (nfs_compare_fh(NFS_FH(inode), fhandle))
1082 goto out_bad;
1083 if ((error = nfs_refresh_inode(inode, fattr)) != 0)
1084 goto out_bad;
1085
1086 nfs_free_fattr(fattr);
1087 nfs_free_fhandle(fhandle);
1088 out_set_verifier:
1089 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1090 out_valid:
1091 /* Success: notify readdir to use READDIRPLUS */
1092 nfs_advise_use_readdirplus(dir);
1093 out_valid_noent:
1094 dput(parent);
1095 dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is valid\n",
1096 __func__, dentry->d_parent->d_name.name,
1097 dentry->d_name.name);
1098 return 1;
1099 out_zap_parent:
1100 nfs_zap_caches(dir);
1101 out_bad:
1102 nfs_mark_for_revalidate(dir);
1103 if (inode && S_ISDIR(inode->i_mode)) {
1104 /* Purge readdir caches. */
1105 nfs_zap_caches(inode);
1106 /* If we have submounts, don't unhash ! */
1107 if (have_submounts(dentry))
1108 goto out_valid;
1109 if (dentry->d_flags & DCACHE_DISCONNECTED)
1110 goto out_valid;
1111 shrink_dcache_parent(dentry);
1112 }
1113 d_drop(dentry);
1114 nfs_free_fattr(fattr);
1115 nfs_free_fhandle(fhandle);
1116 dput(parent);
1117 dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is invalid\n",
1118 __func__, dentry->d_parent->d_name.name,
1119 dentry->d_name.name);
1120 return 0;
1121 out_error:
1122 nfs_free_fattr(fattr);
1123 nfs_free_fhandle(fhandle);
1124 dput(parent);
1125 dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) lookup returned error %d\n",
1126 __func__, dentry->d_parent->d_name.name,
1127 dentry->d_name.name, error);
1128 return error;
1129 }
1130
1131 /*
1132 * This is called from dput() when d_count is going to 0.
1133 */
1134 static int nfs_dentry_delete(const struct dentry *dentry)
1135 {
1136 dfprintk(VFS, "NFS: dentry_delete(%s/%s, %x)\n",
1137 dentry->d_parent->d_name.name, dentry->d_name.name,
1138 dentry->d_flags);
1139
1140 /* Unhash any dentry with a stale inode */
1141 if (dentry->d_inode != NULL && NFS_STALE(dentry->d_inode))
1142 return 1;
1143
1144 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1145 /* Unhash it, so that ->d_iput() would be called */
1146 return 1;
1147 }
1148 if (!(dentry->d_sb->s_flags & MS_ACTIVE)) {
1149 /* Unhash it, so that ancestors of killed async unlink
1150 * files will be cleaned up during umount */
1151 return 1;
1152 }
1153 return 0;
1154
1155 }
1156
1157 static void nfs_drop_nlink(struct inode *inode)
1158 {
1159 spin_lock(&inode->i_lock);
1160 if (inode->i_nlink > 0)
1161 drop_nlink(inode);
1162 spin_unlock(&inode->i_lock);
1163 }
1164
1165 /*
1166 * Called when the dentry loses inode.
1167 * We use it to clean up silly-renamed files.
1168 */
1169 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
1170 {
1171 if (S_ISDIR(inode->i_mode))
1172 /* drop any readdir cache as it could easily be old */
1173 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA;
1174
1175 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1176 drop_nlink(inode);
1177 nfs_complete_unlink(dentry, inode);
1178 }
1179 iput(inode);
1180 }
1181
1182 static void nfs_d_release(struct dentry *dentry)
1183 {
1184 /* free cached devname value, if it survived that far */
1185 if (unlikely(dentry->d_fsdata)) {
1186 if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1187 WARN_ON(1);
1188 else
1189 kfree(dentry->d_fsdata);
1190 }
1191 }
1192
1193 const struct dentry_operations nfs_dentry_operations = {
1194 .d_revalidate = nfs_lookup_revalidate,
1195 .d_delete = nfs_dentry_delete,
1196 .d_iput = nfs_dentry_iput,
1197 .d_automount = nfs_d_automount,
1198 .d_release = nfs_d_release,
1199 };
1200 EXPORT_SYMBOL_GPL(nfs_dentry_operations);
1201
1202 struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
1203 {
1204 struct dentry *res;
1205 struct dentry *parent;
1206 struct inode *inode = NULL;
1207 struct nfs_fh *fhandle = NULL;
1208 struct nfs_fattr *fattr = NULL;
1209 int error;
1210
1211 dfprintk(VFS, "NFS: lookup(%s/%s)\n",
1212 dentry->d_parent->d_name.name, dentry->d_name.name);
1213 nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
1214
1215 res = ERR_PTR(-ENAMETOOLONG);
1216 if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
1217 goto out;
1218
1219 /*
1220 * If we're doing an exclusive create, optimize away the lookup
1221 * but don't hash the dentry.
1222 */
1223 if (nfs_is_exclusive_create(dir, flags)) {
1224 d_instantiate(dentry, NULL);
1225 res = NULL;
1226 goto out;
1227 }
1228
1229 res = ERR_PTR(-ENOMEM);
1230 fhandle = nfs_alloc_fhandle();
1231 fattr = nfs_alloc_fattr();
1232 if (fhandle == NULL || fattr == NULL)
1233 goto out;
1234
1235 parent = dentry->d_parent;
1236 /* Protect against concurrent sillydeletes */
1237 nfs_block_sillyrename(parent);
1238 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr);
1239 if (error == -ENOENT)
1240 goto no_entry;
1241 if (error < 0) {
1242 res = ERR_PTR(error);
1243 goto out_unblock_sillyrename;
1244 }
1245 inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
1246 res = ERR_CAST(inode);
1247 if (IS_ERR(res))
1248 goto out_unblock_sillyrename;
1249
1250 /* Success: notify readdir to use READDIRPLUS */
1251 nfs_advise_use_readdirplus(dir);
1252
1253 no_entry:
1254 res = d_materialise_unique(dentry, inode);
1255 if (res != NULL) {
1256 if (IS_ERR(res))
1257 goto out_unblock_sillyrename;
1258 dentry = res;
1259 }
1260 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1261 out_unblock_sillyrename:
1262 nfs_unblock_sillyrename(parent);
1263 out:
1264 nfs_free_fattr(fattr);
1265 nfs_free_fhandle(fhandle);
1266 return res;
1267 }
1268 EXPORT_SYMBOL_GPL(nfs_lookup);
1269
1270 #ifdef CONFIG_NFS_V4
1271 static int nfs4_lookup_revalidate(struct dentry *, unsigned int);
1272
1273 const struct dentry_operations nfs4_dentry_operations = {
1274 .d_revalidate = nfs4_lookup_revalidate,
1275 .d_delete = nfs_dentry_delete,
1276 .d_iput = nfs_dentry_iput,
1277 .d_automount = nfs_d_automount,
1278 .d_release = nfs_d_release,
1279 };
1280
1281 static fmode_t flags_to_mode(int flags)
1282 {
1283 fmode_t res = (__force fmode_t)flags & FMODE_EXEC;
1284 if ((flags & O_ACCMODE) != O_WRONLY)
1285 res |= FMODE_READ;
1286 if ((flags & O_ACCMODE) != O_RDONLY)
1287 res |= FMODE_WRITE;
1288 return res;
1289 }
1290
1291 static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags)
1292 {
1293 return alloc_nfs_open_context(dentry, flags_to_mode(open_flags));
1294 }
1295
1296 static int do_open(struct inode *inode, struct file *filp)
1297 {
1298 nfs_fscache_set_inode_cookie(inode, filp);
1299 return 0;
1300 }
1301
1302 static int nfs_finish_open(struct nfs_open_context *ctx,
1303 struct dentry *dentry,
1304 struct file *file, unsigned open_flags,
1305 int *opened)
1306 {
1307 int err;
1308
1309 if (ctx->dentry != dentry) {
1310 dput(ctx->dentry);
1311 ctx->dentry = dget(dentry);
1312 }
1313
1314 /* If the open_intent is for execute, we have an extra check to make */
1315 if (ctx->mode & FMODE_EXEC) {
1316 err = nfs_may_open(dentry->d_inode, ctx->cred, open_flags);
1317 if (err < 0)
1318 goto out;
1319 }
1320
1321 err = finish_open(file, dentry, do_open, opened);
1322 if (err)
1323 goto out;
1324 nfs_file_set_open_context(file, ctx);
1325
1326 out:
1327 put_nfs_open_context(ctx);
1328 return err;
1329 }
1330
1331 int nfs_atomic_open(struct inode *dir, struct dentry *dentry,
1332 struct file *file, unsigned open_flags,
1333 umode_t mode, int *opened)
1334 {
1335 struct nfs_open_context *ctx;
1336 struct dentry *res;
1337 struct iattr attr = { .ia_valid = ATTR_OPEN };
1338 struct inode *inode;
1339 int err;
1340
1341 /* Expect a negative dentry */
1342 BUG_ON(dentry->d_inode);
1343
1344 dfprintk(VFS, "NFS: atomic_open(%s/%ld), %s\n",
1345 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1346
1347 /* NFS only supports OPEN on regular files */
1348 if ((open_flags & O_DIRECTORY)) {
1349 if (!d_unhashed(dentry)) {
1350 /*
1351 * Hashed negative dentry with O_DIRECTORY: dentry was
1352 * revalidated and is fine, no need to perform lookup
1353 * again
1354 */
1355 return -ENOENT;
1356 }
1357 goto no_open;
1358 }
1359
1360 if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
1361 return -ENAMETOOLONG;
1362
1363 if (open_flags & O_CREAT) {
1364 attr.ia_valid |= ATTR_MODE;
1365 attr.ia_mode = mode & ~current_umask();
1366 }
1367 if (open_flags & O_TRUNC) {
1368 attr.ia_valid |= ATTR_SIZE;
1369 attr.ia_size = 0;
1370 }
1371
1372 ctx = create_nfs_open_context(dentry, open_flags);
1373 err = PTR_ERR(ctx);
1374 if (IS_ERR(ctx))
1375 goto out;
1376
1377 nfs_block_sillyrename(dentry->d_parent);
1378 inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr);
1379 d_drop(dentry);
1380 if (IS_ERR(inode)) {
1381 nfs_unblock_sillyrename(dentry->d_parent);
1382 put_nfs_open_context(ctx);
1383 err = PTR_ERR(inode);
1384 switch (err) {
1385 case -ENOENT:
1386 d_add(dentry, NULL);
1387 break;
1388 case -EISDIR:
1389 case -ENOTDIR:
1390 goto no_open;
1391 case -ELOOP:
1392 if (!(open_flags & O_NOFOLLOW))
1393 goto no_open;
1394 break;
1395 /* case -EINVAL: */
1396 default:
1397 break;
1398 }
1399 goto out;
1400 }
1401 res = d_add_unique(dentry, inode);
1402 if (res != NULL)
1403 dentry = res;
1404
1405 nfs_unblock_sillyrename(dentry->d_parent);
1406 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1407
1408 err = nfs_finish_open(ctx, dentry, file, open_flags, opened);
1409
1410 dput(res);
1411 out:
1412 return err;
1413
1414 no_open:
1415 res = nfs_lookup(dir, dentry, 0);
1416 err = PTR_ERR(res);
1417 if (IS_ERR(res))
1418 goto out;
1419
1420 return finish_no_open(file, res);
1421 }
1422
1423 static int nfs4_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1424 {
1425 struct dentry *parent = NULL;
1426 struct inode *inode;
1427 struct inode *dir;
1428 int ret = 0;
1429
1430 if (flags & LOOKUP_RCU)
1431 return -ECHILD;
1432
1433 if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY))
1434 goto no_open;
1435 if (d_mountpoint(dentry))
1436 goto no_open;
1437
1438 inode = dentry->d_inode;
1439 parent = dget_parent(dentry);
1440 dir = parent->d_inode;
1441
1442 /* We can't create new files in nfs_open_revalidate(), so we
1443 * optimize away revalidation of negative dentries.
1444 */
1445 if (inode == NULL) {
1446 if (!nfs_neg_need_reval(dir, dentry, flags))
1447 ret = 1;
1448 goto out;
1449 }
1450
1451 /* NFS only supports OPEN on regular files */
1452 if (!S_ISREG(inode->i_mode))
1453 goto no_open_dput;
1454 /* We cannot do exclusive creation on a positive dentry */
1455 if (flags & LOOKUP_EXCL)
1456 goto no_open_dput;
1457
1458 /* Let f_op->open() actually open (and revalidate) the file */
1459 ret = 1;
1460
1461 out:
1462 dput(parent);
1463 return ret;
1464
1465 no_open_dput:
1466 dput(parent);
1467 no_open:
1468 return nfs_lookup_revalidate(dentry, flags);
1469 }
1470
1471 #endif /* CONFIG_NFSV4 */
1472
1473 /*
1474 * Code common to create, mkdir, and mknod.
1475 */
1476 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
1477 struct nfs_fattr *fattr)
1478 {
1479 struct dentry *parent = dget_parent(dentry);
1480 struct inode *dir = parent->d_inode;
1481 struct inode *inode;
1482 int error = -EACCES;
1483
1484 d_drop(dentry);
1485
1486 /* We may have been initialized further down */
1487 if (dentry->d_inode)
1488 goto out;
1489 if (fhandle->size == 0) {
1490 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr);
1491 if (error)
1492 goto out_error;
1493 }
1494 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1495 if (!(fattr->valid & NFS_ATTR_FATTR)) {
1496 struct nfs_server *server = NFS_SB(dentry->d_sb);
1497 error = server->nfs_client->rpc_ops->getattr(server, fhandle, fattr);
1498 if (error < 0)
1499 goto out_error;
1500 }
1501 inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
1502 error = PTR_ERR(inode);
1503 if (IS_ERR(inode))
1504 goto out_error;
1505 d_add(dentry, inode);
1506 out:
1507 dput(parent);
1508 return 0;
1509 out_error:
1510 nfs_mark_for_revalidate(dir);
1511 dput(parent);
1512 return error;
1513 }
1514 EXPORT_SYMBOL_GPL(nfs_instantiate);
1515
1516 /*
1517 * Following a failed create operation, we drop the dentry rather
1518 * than retain a negative dentry. This avoids a problem in the event
1519 * that the operation succeeded on the server, but an error in the
1520 * reply path made it appear to have failed.
1521 */
1522 int nfs_create(struct inode *dir, struct dentry *dentry,
1523 umode_t mode, bool excl)
1524 {
1525 struct iattr attr;
1526 int open_flags = excl ? O_CREAT | O_EXCL : O_CREAT;
1527 int error;
1528
1529 dfprintk(VFS, "NFS: create(%s/%ld), %s\n",
1530 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1531
1532 attr.ia_mode = mode;
1533 attr.ia_valid = ATTR_MODE;
1534
1535 error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags);
1536 if (error != 0)
1537 goto out_err;
1538 return 0;
1539 out_err:
1540 d_drop(dentry);
1541 return error;
1542 }
1543 EXPORT_SYMBOL_GPL(nfs_create);
1544
1545 /*
1546 * See comments for nfs_proc_create regarding failed operations.
1547 */
1548 int
1549 nfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t rdev)
1550 {
1551 struct iattr attr;
1552 int status;
1553
1554 dfprintk(VFS, "NFS: mknod(%s/%ld), %s\n",
1555 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1556
1557 if (!new_valid_dev(rdev))
1558 return -EINVAL;
1559
1560 attr.ia_mode = mode;
1561 attr.ia_valid = ATTR_MODE;
1562
1563 status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
1564 if (status != 0)
1565 goto out_err;
1566 return 0;
1567 out_err:
1568 d_drop(dentry);
1569 return status;
1570 }
1571 EXPORT_SYMBOL_GPL(nfs_mknod);
1572
1573 /*
1574 * See comments for nfs_proc_create regarding failed operations.
1575 */
1576 int nfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1577 {
1578 struct iattr attr;
1579 int error;
1580
1581 dfprintk(VFS, "NFS: mkdir(%s/%ld), %s\n",
1582 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1583
1584 attr.ia_valid = ATTR_MODE;
1585 attr.ia_mode = mode | S_IFDIR;
1586
1587 error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
1588 if (error != 0)
1589 goto out_err;
1590 return 0;
1591 out_err:
1592 d_drop(dentry);
1593 return error;
1594 }
1595 EXPORT_SYMBOL_GPL(nfs_mkdir);
1596
1597 static void nfs_dentry_handle_enoent(struct dentry *dentry)
1598 {
1599 if (dentry->d_inode != NULL && !d_unhashed(dentry))
1600 d_delete(dentry);
1601 }
1602
1603 int nfs_rmdir(struct inode *dir, struct dentry *dentry)
1604 {
1605 int error;
1606
1607 dfprintk(VFS, "NFS: rmdir(%s/%ld), %s\n",
1608 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1609
1610 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1611 /* Ensure the VFS deletes this inode */
1612 if (error == 0 && dentry->d_inode != NULL)
1613 clear_nlink(dentry->d_inode);
1614 else if (error == -ENOENT)
1615 nfs_dentry_handle_enoent(dentry);
1616
1617 return error;
1618 }
1619 EXPORT_SYMBOL_GPL(nfs_rmdir);
1620
1621 /*
1622 * Remove a file after making sure there are no pending writes,
1623 * and after checking that the file has only one user.
1624 *
1625 * We invalidate the attribute cache and free the inode prior to the operation
1626 * to avoid possible races if the server reuses the inode.
1627 */
1628 static int nfs_safe_remove(struct dentry *dentry)
1629 {
1630 struct inode *dir = dentry->d_parent->d_inode;
1631 struct inode *inode = dentry->d_inode;
1632 int error = -EBUSY;
1633
1634 dfprintk(VFS, "NFS: safe_remove(%s/%s)\n",
1635 dentry->d_parent->d_name.name, dentry->d_name.name);
1636
1637 /* If the dentry was sillyrenamed, we simply call d_delete() */
1638 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1639 error = 0;
1640 goto out;
1641 }
1642
1643 if (inode != NULL) {
1644 NFS_PROTO(inode)->return_delegation(inode);
1645 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1646 /* The VFS may want to delete this inode */
1647 if (error == 0)
1648 nfs_drop_nlink(inode);
1649 nfs_mark_for_revalidate(inode);
1650 } else
1651 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1652 if (error == -ENOENT)
1653 nfs_dentry_handle_enoent(dentry);
1654 out:
1655 return error;
1656 }
1657
1658 /* We do silly rename. In case sillyrename() returns -EBUSY, the inode
1659 * belongs to an active ".nfs..." file and we return -EBUSY.
1660 *
1661 * If sillyrename() returns 0, we do nothing, otherwise we unlink.
1662 */
1663 int nfs_unlink(struct inode *dir, struct dentry *dentry)
1664 {
1665 int error;
1666 int need_rehash = 0;
1667
1668 dfprintk(VFS, "NFS: unlink(%s/%ld, %s)\n", dir->i_sb->s_id,
1669 dir->i_ino, dentry->d_name.name);
1670
1671 spin_lock(&dentry->d_lock);
1672 if (dentry->d_count > 1) {
1673 spin_unlock(&dentry->d_lock);
1674 /* Start asynchronous writeout of the inode */
1675 write_inode_now(dentry->d_inode, 0);
1676 error = nfs_sillyrename(dir, dentry);
1677 return error;
1678 }
1679 if (!d_unhashed(dentry)) {
1680 __d_drop(dentry);
1681 need_rehash = 1;
1682 }
1683 spin_unlock(&dentry->d_lock);
1684 error = nfs_safe_remove(dentry);
1685 if (!error || error == -ENOENT) {
1686 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1687 } else if (need_rehash)
1688 d_rehash(dentry);
1689 return error;
1690 }
1691 EXPORT_SYMBOL_GPL(nfs_unlink);
1692
1693 /*
1694 * To create a symbolic link, most file systems instantiate a new inode,
1695 * add a page to it containing the path, then write it out to the disk
1696 * using prepare_write/commit_write.
1697 *
1698 * Unfortunately the NFS client can't create the in-core inode first
1699 * because it needs a file handle to create an in-core inode (see
1700 * fs/nfs/inode.c:nfs_fhget). We only have a file handle *after* the
1701 * symlink request has completed on the server.
1702 *
1703 * So instead we allocate a raw page, copy the symname into it, then do
1704 * the SYMLINK request with the page as the buffer. If it succeeds, we
1705 * now have a new file handle and can instantiate an in-core NFS inode
1706 * and move the raw page into its mapping.
1707 */
1708 int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1709 {
1710 struct pagevec lru_pvec;
1711 struct page *page;
1712 char *kaddr;
1713 struct iattr attr;
1714 unsigned int pathlen = strlen(symname);
1715 int error;
1716
1717 dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s)\n", dir->i_sb->s_id,
1718 dir->i_ino, dentry->d_name.name, symname);
1719
1720 if (pathlen > PAGE_SIZE)
1721 return -ENAMETOOLONG;
1722
1723 attr.ia_mode = S_IFLNK | S_IRWXUGO;
1724 attr.ia_valid = ATTR_MODE;
1725
1726 page = alloc_page(GFP_HIGHUSER);
1727 if (!page)
1728 return -ENOMEM;
1729
1730 kaddr = kmap_atomic(page);
1731 memcpy(kaddr, symname, pathlen);
1732 if (pathlen < PAGE_SIZE)
1733 memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
1734 kunmap_atomic(kaddr);
1735
1736 error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
1737 if (error != 0) {
1738 dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s) error %d\n",
1739 dir->i_sb->s_id, dir->i_ino,
1740 dentry->d_name.name, symname, error);
1741 d_drop(dentry);
1742 __free_page(page);
1743 return error;
1744 }
1745
1746 /*
1747 * No big deal if we can't add this page to the page cache here.
1748 * READLINK will get the missing page from the server if needed.
1749 */
1750 pagevec_init(&lru_pvec, 0);
1751 if (!add_to_page_cache(page, dentry->d_inode->i_mapping, 0,
1752 GFP_KERNEL)) {
1753 pagevec_add(&lru_pvec, page);
1754 pagevec_lru_add_file(&lru_pvec);
1755 SetPageUptodate(page);
1756 unlock_page(page);
1757 } else
1758 __free_page(page);
1759
1760 return 0;
1761 }
1762 EXPORT_SYMBOL_GPL(nfs_symlink);
1763
1764 int
1765 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1766 {
1767 struct inode *inode = old_dentry->d_inode;
1768 int error;
1769
1770 dfprintk(VFS, "NFS: link(%s/%s -> %s/%s)\n",
1771 old_dentry->d_parent->d_name.name, old_dentry->d_name.name,
1772 dentry->d_parent->d_name.name, dentry->d_name.name);
1773
1774 NFS_PROTO(inode)->return_delegation(inode);
1775
1776 d_drop(dentry);
1777 error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
1778 if (error == 0) {
1779 ihold(inode);
1780 d_add(dentry, inode);
1781 }
1782 return error;
1783 }
1784 EXPORT_SYMBOL_GPL(nfs_link);
1785
1786 /*
1787 * RENAME
1788 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
1789 * different file handle for the same inode after a rename (e.g. when
1790 * moving to a different directory). A fail-safe method to do so would
1791 * be to look up old_dir/old_name, create a link to new_dir/new_name and
1792 * rename the old file using the sillyrename stuff. This way, the original
1793 * file in old_dir will go away when the last process iput()s the inode.
1794 *
1795 * FIXED.
1796 *
1797 * It actually works quite well. One needs to have the possibility for
1798 * at least one ".nfs..." file in each directory the file ever gets
1799 * moved or linked to which happens automagically with the new
1800 * implementation that only depends on the dcache stuff instead of
1801 * using the inode layer
1802 *
1803 * Unfortunately, things are a little more complicated than indicated
1804 * above. For a cross-directory move, we want to make sure we can get
1805 * rid of the old inode after the operation. This means there must be
1806 * no pending writes (if it's a file), and the use count must be 1.
1807 * If these conditions are met, we can drop the dentries before doing
1808 * the rename.
1809 */
1810 int nfs_rename(struct inode *old_dir, struct dentry *old_dentry,
1811 struct inode *new_dir, struct dentry *new_dentry)
1812 {
1813 struct inode *old_inode = old_dentry->d_inode;
1814 struct inode *new_inode = new_dentry->d_inode;
1815 struct dentry *dentry = NULL, *rehash = NULL;
1816 int error = -EBUSY;
1817
1818 dfprintk(VFS, "NFS: rename(%s/%s -> %s/%s, ct=%d)\n",
1819 old_dentry->d_parent->d_name.name, old_dentry->d_name.name,
1820 new_dentry->d_parent->d_name.name, new_dentry->d_name.name,
1821 new_dentry->d_count);
1822
1823 /*
1824 * For non-directories, check whether the target is busy and if so,
1825 * make a copy of the dentry and then do a silly-rename. If the
1826 * silly-rename succeeds, the copied dentry is hashed and becomes
1827 * the new target.
1828 */
1829 if (new_inode && !S_ISDIR(new_inode->i_mode)) {
1830 /*
1831 * To prevent any new references to the target during the
1832 * rename, we unhash the dentry in advance.
1833 */
1834 if (!d_unhashed(new_dentry)) {
1835 d_drop(new_dentry);
1836 rehash = new_dentry;
1837 }
1838
1839 if (new_dentry->d_count > 2) {
1840 int err;
1841
1842 /* copy the target dentry's name */
1843 dentry = d_alloc(new_dentry->d_parent,
1844 &new_dentry->d_name);
1845 if (!dentry)
1846 goto out;
1847
1848 /* silly-rename the existing target ... */
1849 err = nfs_sillyrename(new_dir, new_dentry);
1850 if (err)
1851 goto out;
1852
1853 new_dentry = dentry;
1854 rehash = NULL;
1855 new_inode = NULL;
1856 }
1857 }
1858
1859 NFS_PROTO(old_inode)->return_delegation(old_inode);
1860 if (new_inode != NULL)
1861 NFS_PROTO(new_inode)->return_delegation(new_inode);
1862
1863 error = NFS_PROTO(old_dir)->rename(old_dir, &old_dentry->d_name,
1864 new_dir, &new_dentry->d_name);
1865 nfs_mark_for_revalidate(old_inode);
1866 out:
1867 if (rehash)
1868 d_rehash(rehash);
1869 if (!error) {
1870 if (new_inode != NULL)
1871 nfs_drop_nlink(new_inode);
1872 d_move(old_dentry, new_dentry);
1873 nfs_set_verifier(new_dentry,
1874 nfs_save_change_attribute(new_dir));
1875 } else if (error == -ENOENT)
1876 nfs_dentry_handle_enoent(old_dentry);
1877
1878 /* new dentry created? */
1879 if (dentry)
1880 dput(dentry);
1881 return error;
1882 }
1883 EXPORT_SYMBOL_GPL(nfs_rename);
1884
1885 static DEFINE_SPINLOCK(nfs_access_lru_lock);
1886 static LIST_HEAD(nfs_access_lru_list);
1887 static atomic_long_t nfs_access_nr_entries;
1888
1889 static void nfs_access_free_entry(struct nfs_access_entry *entry)
1890 {
1891 put_rpccred(entry->cred);
1892 kfree(entry);
1893 smp_mb__before_atomic_dec();
1894 atomic_long_dec(&nfs_access_nr_entries);
1895 smp_mb__after_atomic_dec();
1896 }
1897
1898 static void nfs_access_free_list(struct list_head *head)
1899 {
1900 struct nfs_access_entry *cache;
1901
1902 while (!list_empty(head)) {
1903 cache = list_entry(head->next, struct nfs_access_entry, lru);
1904 list_del(&cache->lru);
1905 nfs_access_free_entry(cache);
1906 }
1907 }
1908
1909 int nfs_access_cache_shrinker(struct shrinker *shrink,
1910 struct shrink_control *sc)
1911 {
1912 LIST_HEAD(head);
1913 struct nfs_inode *nfsi, *next;
1914 struct nfs_access_entry *cache;
1915 int nr_to_scan = sc->nr_to_scan;
1916 gfp_t gfp_mask = sc->gfp_mask;
1917
1918 if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL)
1919 return (nr_to_scan == 0) ? 0 : -1;
1920
1921 spin_lock(&nfs_access_lru_lock);
1922 list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) {
1923 struct inode *inode;
1924
1925 if (nr_to_scan-- == 0)
1926 break;
1927 inode = &nfsi->vfs_inode;
1928 spin_lock(&inode->i_lock);
1929 if (list_empty(&nfsi->access_cache_entry_lru))
1930 goto remove_lru_entry;
1931 cache = list_entry(nfsi->access_cache_entry_lru.next,
1932 struct nfs_access_entry, lru);
1933 list_move(&cache->lru, &head);
1934 rb_erase(&cache->rb_node, &nfsi->access_cache);
1935 if (!list_empty(&nfsi->access_cache_entry_lru))
1936 list_move_tail(&nfsi->access_cache_inode_lru,
1937 &nfs_access_lru_list);
1938 else {
1939 remove_lru_entry:
1940 list_del_init(&nfsi->access_cache_inode_lru);
1941 smp_mb__before_clear_bit();
1942 clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
1943 smp_mb__after_clear_bit();
1944 }
1945 spin_unlock(&inode->i_lock);
1946 }
1947 spin_unlock(&nfs_access_lru_lock);
1948 nfs_access_free_list(&head);
1949 return (atomic_long_read(&nfs_access_nr_entries) / 100) * sysctl_vfs_cache_pressure;
1950 }
1951
1952 static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head)
1953 {
1954 struct rb_root *root_node = &nfsi->access_cache;
1955 struct rb_node *n;
1956 struct nfs_access_entry *entry;
1957
1958 /* Unhook entries from the cache */
1959 while ((n = rb_first(root_node)) != NULL) {
1960 entry = rb_entry(n, struct nfs_access_entry, rb_node);
1961 rb_erase(n, root_node);
1962 list_move(&entry->lru, head);
1963 }
1964 nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
1965 }
1966
1967 void nfs_access_zap_cache(struct inode *inode)
1968 {
1969 LIST_HEAD(head);
1970
1971 if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0)
1972 return;
1973 /* Remove from global LRU init */
1974 spin_lock(&nfs_access_lru_lock);
1975 if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
1976 list_del_init(&NFS_I(inode)->access_cache_inode_lru);
1977
1978 spin_lock(&inode->i_lock);
1979 __nfs_access_zap_cache(NFS_I(inode), &head);
1980 spin_unlock(&inode->i_lock);
1981 spin_unlock(&nfs_access_lru_lock);
1982 nfs_access_free_list(&head);
1983 }
1984
1985 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, struct rpc_cred *cred)
1986 {
1987 struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
1988 struct nfs_access_entry *entry;
1989
1990 while (n != NULL) {
1991 entry = rb_entry(n, struct nfs_access_entry, rb_node);
1992
1993 if (cred < entry->cred)
1994 n = n->rb_left;
1995 else if (cred > entry->cred)
1996 n = n->rb_right;
1997 else
1998 return entry;
1999 }
2000 return NULL;
2001 }
2002
2003 static int nfs_access_get_cached(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res)
2004 {
2005 struct nfs_inode *nfsi = NFS_I(inode);
2006 struct nfs_access_entry *cache;
2007 int err = -ENOENT;
2008
2009 spin_lock(&inode->i_lock);
2010 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2011 goto out_zap;
2012 cache = nfs_access_search_rbtree(inode, cred);
2013 if (cache == NULL)
2014 goto out;
2015 if (!nfs_have_delegated_attributes(inode) &&
2016 !time_in_range_open(jiffies, cache->jiffies, cache->jiffies + nfsi->attrtimeo))
2017 goto out_stale;
2018 res->jiffies = cache->jiffies;
2019 res->cred = cache->cred;
2020 res->mask = cache->mask;
2021 list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
2022 err = 0;
2023 out:
2024 spin_unlock(&inode->i_lock);
2025 return err;
2026 out_stale:
2027 rb_erase(&cache->rb_node, &nfsi->access_cache);
2028 list_del(&cache->lru);
2029 spin_unlock(&inode->i_lock);
2030 nfs_access_free_entry(cache);
2031 return -ENOENT;
2032 out_zap:
2033 spin_unlock(&inode->i_lock);
2034 nfs_access_zap_cache(inode);
2035 return -ENOENT;
2036 }
2037
2038 static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set)
2039 {
2040 struct nfs_inode *nfsi = NFS_I(inode);
2041 struct rb_root *root_node = &nfsi->access_cache;
2042 struct rb_node **p = &root_node->rb_node;
2043 struct rb_node *parent = NULL;
2044 struct nfs_access_entry *entry;
2045
2046 spin_lock(&inode->i_lock);
2047 while (*p != NULL) {
2048 parent = *p;
2049 entry = rb_entry(parent, struct nfs_access_entry, rb_node);
2050
2051 if (set->cred < entry->cred)
2052 p = &parent->rb_left;
2053 else if (set->cred > entry->cred)
2054 p = &parent->rb_right;
2055 else
2056 goto found;
2057 }
2058 rb_link_node(&set->rb_node, parent, p);
2059 rb_insert_color(&set->rb_node, root_node);
2060 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2061 spin_unlock(&inode->i_lock);
2062 return;
2063 found:
2064 rb_replace_node(parent, &set->rb_node, root_node);
2065 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2066 list_del(&entry->lru);
2067 spin_unlock(&inode->i_lock);
2068 nfs_access_free_entry(entry);
2069 }
2070
2071 static void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set)
2072 {
2073 struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
2074 if (cache == NULL)
2075 return;
2076 RB_CLEAR_NODE(&cache->rb_node);
2077 cache->jiffies = set->jiffies;
2078 cache->cred = get_rpccred(set->cred);
2079 cache->mask = set->mask;
2080
2081 nfs_access_add_rbtree(inode, cache);
2082
2083 /* Update accounting */
2084 smp_mb__before_atomic_inc();
2085 atomic_long_inc(&nfs_access_nr_entries);
2086 smp_mb__after_atomic_inc();
2087
2088 /* Add inode to global LRU list */
2089 if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
2090 spin_lock(&nfs_access_lru_lock);
2091 if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2092 list_add_tail(&NFS_I(inode)->access_cache_inode_lru,
2093 &nfs_access_lru_list);
2094 spin_unlock(&nfs_access_lru_lock);
2095 }
2096 }
2097
2098 static int nfs_do_access(struct inode *inode, struct rpc_cred *cred, int mask)
2099 {
2100 struct nfs_access_entry cache;
2101 int status;
2102
2103 status = nfs_access_get_cached(inode, cred, &cache);
2104 if (status == 0)
2105 goto out;
2106
2107 /* Be clever: ask server to check for all possible rights */
2108 cache.mask = MAY_EXEC | MAY_WRITE | MAY_READ;
2109 cache.cred = cred;
2110 cache.jiffies = jiffies;
2111 status = NFS_PROTO(inode)->access(inode, &cache);
2112 if (status != 0) {
2113 if (status == -ESTALE) {
2114 nfs_zap_caches(inode);
2115 if (!S_ISDIR(inode->i_mode))
2116 set_bit(NFS_INO_STALE, &NFS_I(inode)->flags);
2117 }
2118 return status;
2119 }
2120 nfs_access_add_cache(inode, &cache);
2121 out:
2122 if ((mask & ~cache.mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
2123 return 0;
2124 return -EACCES;
2125 }
2126
2127 static int nfs_open_permission_mask(int openflags)
2128 {
2129 int mask = 0;
2130
2131 if ((openflags & O_ACCMODE) != O_WRONLY)
2132 mask |= MAY_READ;
2133 if ((openflags & O_ACCMODE) != O_RDONLY)
2134 mask |= MAY_WRITE;
2135 if (openflags & __FMODE_EXEC)
2136 mask |= MAY_EXEC;
2137 return mask;
2138 }
2139
2140 int nfs_may_open(struct inode *inode, struct rpc_cred *cred, int openflags)
2141 {
2142 return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
2143 }
2144
2145 int nfs_permission(struct inode *inode, int mask)
2146 {
2147 struct rpc_cred *cred;
2148 int res = 0;
2149
2150 if (mask & MAY_NOT_BLOCK)
2151 return -ECHILD;
2152
2153 nfs_inc_stats(inode, NFSIOS_VFSACCESS);
2154
2155 if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
2156 goto out;
2157 /* Is this sys_access() ? */
2158 if (mask & (MAY_ACCESS | MAY_CHDIR))
2159 goto force_lookup;
2160
2161 switch (inode->i_mode & S_IFMT) {
2162 case S_IFLNK:
2163 goto out;
2164 case S_IFREG:
2165 /* NFSv4 has atomic_open... */
2166 if (nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN)
2167 && (mask & MAY_OPEN)
2168 && !(mask & MAY_EXEC))
2169 goto out;
2170 break;
2171 case S_IFDIR:
2172 /*
2173 * Optimize away all write operations, since the server
2174 * will check permissions when we perform the op.
2175 */
2176 if ((mask & MAY_WRITE) && !(mask & MAY_READ))
2177 goto out;
2178 }
2179
2180 force_lookup:
2181 if (!NFS_PROTO(inode)->access)
2182 goto out_notsup;
2183
2184 cred = rpc_lookup_cred();
2185 if (!IS_ERR(cred)) {
2186 res = nfs_do_access(inode, cred, mask);
2187 put_rpccred(cred);
2188 } else
2189 res = PTR_ERR(cred);
2190 out:
2191 if (!res && (mask & MAY_EXEC) && !execute_ok(inode))
2192 res = -EACCES;
2193
2194 dfprintk(VFS, "NFS: permission(%s/%ld), mask=0x%x, res=%d\n",
2195 inode->i_sb->s_id, inode->i_ino, mask, res);
2196 return res;
2197 out_notsup:
2198 res = nfs_revalidate_inode(NFS_SERVER(inode), inode);
2199 if (res == 0)
2200 res = generic_permission(inode, mask);
2201 goto out;
2202 }
2203 EXPORT_SYMBOL_GPL(nfs_permission);
2204
2205 /*
2206 * Local variables:
2207 * version-control: t
2208 * kept-new-versions: 5
2209 * End:
2210 */
This page took 0.079872 seconds and 5 git commands to generate.