NFS: Keep module parameters in the generic NFS client
[deliverable/linux.git] / fs / nfs / dir.c
1 /*
2 * linux/fs/nfs/dir.c
3 *
4 * Copyright (C) 1992 Rick Sladkey
5 *
6 * nfs directory handling functions
7 *
8 * 10 Apr 1996 Added silly rename for unlink --okir
9 * 28 Sep 1996 Improved directory cache --okir
10 * 23 Aug 1997 Claus Heine claus@momo.math.rwth-aachen.de
11 * Re-implemented silly rename for unlink, newly implemented
12 * silly rename for nfs_rename() following the suggestions
13 * of Olaf Kirch (okir) found in this file.
14 * Following Linus comments on my original hack, this version
15 * depends only on the dcache stuff and doesn't touch the inode
16 * layer (iput() and friends).
17 * 6 Jun 1999 Cache readdir lookups in the page cache. -DaveM
18 */
19
20 #include <linux/time.h>
21 #include <linux/errno.h>
22 #include <linux/stat.h>
23 #include <linux/fcntl.h>
24 #include <linux/string.h>
25 #include <linux/kernel.h>
26 #include <linux/slab.h>
27 #include <linux/mm.h>
28 #include <linux/sunrpc/clnt.h>
29 #include <linux/nfs_fs.h>
30 #include <linux/nfs_mount.h>
31 #include <linux/pagemap.h>
32 #include <linux/pagevec.h>
33 #include <linux/namei.h>
34 #include <linux/mount.h>
35 #include <linux/sched.h>
36 #include <linux/kmemleak.h>
37 #include <linux/xattr.h>
38
39 #include "delegation.h"
40 #include "iostat.h"
41 #include "internal.h"
42 #include "fscache.h"
43
44 /* #define NFS_DEBUG_VERBOSE 1 */
45
46 static int nfs_opendir(struct inode *, struct file *);
47 static int nfs_closedir(struct inode *, struct file *);
48 static int nfs_readdir(struct file *, void *, filldir_t);
49 static int nfs_fsync_dir(struct file *, loff_t, loff_t, int);
50 static loff_t nfs_llseek_dir(struct file *, loff_t, int);
51 static void nfs_readdir_clear_array(struct page*);
52
53 const struct file_operations nfs_dir_operations = {
54 .llseek = nfs_llseek_dir,
55 .read = generic_read_dir,
56 .readdir = nfs_readdir,
57 .open = nfs_opendir,
58 .release = nfs_closedir,
59 .fsync = nfs_fsync_dir,
60 };
61
62 const struct address_space_operations nfs_dir_aops = {
63 .freepage = nfs_readdir_clear_array,
64 };
65
66 static struct nfs_open_dir_context *alloc_nfs_open_dir_context(struct inode *dir, struct rpc_cred *cred)
67 {
68 struct nfs_open_dir_context *ctx;
69 ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
70 if (ctx != NULL) {
71 ctx->duped = 0;
72 ctx->attr_gencount = NFS_I(dir)->attr_gencount;
73 ctx->dir_cookie = 0;
74 ctx->dup_cookie = 0;
75 ctx->cred = get_rpccred(cred);
76 return ctx;
77 }
78 return ERR_PTR(-ENOMEM);
79 }
80
81 static void put_nfs_open_dir_context(struct nfs_open_dir_context *ctx)
82 {
83 put_rpccred(ctx->cred);
84 kfree(ctx);
85 }
86
87 /*
88 * Open file
89 */
90 static int
91 nfs_opendir(struct inode *inode, struct file *filp)
92 {
93 int res = 0;
94 struct nfs_open_dir_context *ctx;
95 struct rpc_cred *cred;
96
97 dfprintk(FILE, "NFS: open dir(%s/%s)\n",
98 filp->f_path.dentry->d_parent->d_name.name,
99 filp->f_path.dentry->d_name.name);
100
101 nfs_inc_stats(inode, NFSIOS_VFSOPEN);
102
103 cred = rpc_lookup_cred();
104 if (IS_ERR(cred))
105 return PTR_ERR(cred);
106 ctx = alloc_nfs_open_dir_context(inode, cred);
107 if (IS_ERR(ctx)) {
108 res = PTR_ERR(ctx);
109 goto out;
110 }
111 filp->private_data = ctx;
112 if (filp->f_path.dentry == filp->f_path.mnt->mnt_root) {
113 /* This is a mountpoint, so d_revalidate will never
114 * have been called, so we need to refresh the
115 * inode (for close-open consistency) ourselves.
116 */
117 __nfs_revalidate_inode(NFS_SERVER(inode), inode);
118 }
119 out:
120 put_rpccred(cred);
121 return res;
122 }
123
124 static int
125 nfs_closedir(struct inode *inode, struct file *filp)
126 {
127 put_nfs_open_dir_context(filp->private_data);
128 return 0;
129 }
130
131 struct nfs_cache_array_entry {
132 u64 cookie;
133 u64 ino;
134 struct qstr string;
135 unsigned char d_type;
136 };
137
138 struct nfs_cache_array {
139 int size;
140 int eof_index;
141 u64 last_cookie;
142 struct nfs_cache_array_entry array[0];
143 };
144
145 typedef int (*decode_dirent_t)(struct xdr_stream *, struct nfs_entry *, int);
146 typedef struct {
147 struct file *file;
148 struct page *page;
149 unsigned long page_index;
150 u64 *dir_cookie;
151 u64 last_cookie;
152 loff_t current_index;
153 decode_dirent_t decode;
154
155 unsigned long timestamp;
156 unsigned long gencount;
157 unsigned int cache_entry_index;
158 unsigned int plus:1;
159 unsigned int eof:1;
160 } nfs_readdir_descriptor_t;
161
162 /*
163 * The caller is responsible for calling nfs_readdir_release_array(page)
164 */
165 static
166 struct nfs_cache_array *nfs_readdir_get_array(struct page *page)
167 {
168 void *ptr;
169 if (page == NULL)
170 return ERR_PTR(-EIO);
171 ptr = kmap(page);
172 if (ptr == NULL)
173 return ERR_PTR(-ENOMEM);
174 return ptr;
175 }
176
177 static
178 void nfs_readdir_release_array(struct page *page)
179 {
180 kunmap(page);
181 }
182
183 /*
184 * we are freeing strings created by nfs_add_to_readdir_array()
185 */
186 static
187 void nfs_readdir_clear_array(struct page *page)
188 {
189 struct nfs_cache_array *array;
190 int i;
191
192 array = kmap_atomic(page);
193 for (i = 0; i < array->size; i++)
194 kfree(array->array[i].string.name);
195 kunmap_atomic(array);
196 }
197
198 /*
199 * the caller is responsible for freeing qstr.name
200 * when called by nfs_readdir_add_to_array, the strings will be freed in
201 * nfs_clear_readdir_array()
202 */
203 static
204 int nfs_readdir_make_qstr(struct qstr *string, const char *name, unsigned int len)
205 {
206 string->len = len;
207 string->name = kmemdup(name, len, GFP_KERNEL);
208 if (string->name == NULL)
209 return -ENOMEM;
210 /*
211 * Avoid a kmemleak false positive. The pointer to the name is stored
212 * in a page cache page which kmemleak does not scan.
213 */
214 kmemleak_not_leak(string->name);
215 string->hash = full_name_hash(name, len);
216 return 0;
217 }
218
219 static
220 int nfs_readdir_add_to_array(struct nfs_entry *entry, struct page *page)
221 {
222 struct nfs_cache_array *array = nfs_readdir_get_array(page);
223 struct nfs_cache_array_entry *cache_entry;
224 int ret;
225
226 if (IS_ERR(array))
227 return PTR_ERR(array);
228
229 cache_entry = &array->array[array->size];
230
231 /* Check that this entry lies within the page bounds */
232 ret = -ENOSPC;
233 if ((char *)&cache_entry[1] - (char *)page_address(page) > PAGE_SIZE)
234 goto out;
235
236 cache_entry->cookie = entry->prev_cookie;
237 cache_entry->ino = entry->ino;
238 cache_entry->d_type = entry->d_type;
239 ret = nfs_readdir_make_qstr(&cache_entry->string, entry->name, entry->len);
240 if (ret)
241 goto out;
242 array->last_cookie = entry->cookie;
243 array->size++;
244 if (entry->eof != 0)
245 array->eof_index = array->size;
246 out:
247 nfs_readdir_release_array(page);
248 return ret;
249 }
250
251 static
252 int nfs_readdir_search_for_pos(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
253 {
254 loff_t diff = desc->file->f_pos - desc->current_index;
255 unsigned int index;
256
257 if (diff < 0)
258 goto out_eof;
259 if (diff >= array->size) {
260 if (array->eof_index >= 0)
261 goto out_eof;
262 return -EAGAIN;
263 }
264
265 index = (unsigned int)diff;
266 *desc->dir_cookie = array->array[index].cookie;
267 desc->cache_entry_index = index;
268 return 0;
269 out_eof:
270 desc->eof = 1;
271 return -EBADCOOKIE;
272 }
273
274 static
275 int nfs_readdir_search_for_cookie(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
276 {
277 int i;
278 loff_t new_pos;
279 int status = -EAGAIN;
280
281 for (i = 0; i < array->size; i++) {
282 if (array->array[i].cookie == *desc->dir_cookie) {
283 struct nfs_inode *nfsi = NFS_I(desc->file->f_path.dentry->d_inode);
284 struct nfs_open_dir_context *ctx = desc->file->private_data;
285
286 new_pos = desc->current_index + i;
287 if (ctx->attr_gencount != nfsi->attr_gencount
288 || (nfsi->cache_validity & (NFS_INO_INVALID_ATTR|NFS_INO_INVALID_DATA))) {
289 ctx->duped = 0;
290 ctx->attr_gencount = nfsi->attr_gencount;
291 } else if (new_pos < desc->file->f_pos) {
292 if (ctx->duped > 0
293 && ctx->dup_cookie == *desc->dir_cookie) {
294 if (printk_ratelimit()) {
295 pr_notice("NFS: directory %s/%s contains a readdir loop."
296 "Please contact your server vendor. "
297 "The file: %s has duplicate cookie %llu\n",
298 desc->file->f_dentry->d_parent->d_name.name,
299 desc->file->f_dentry->d_name.name,
300 array->array[i].string.name,
301 *desc->dir_cookie);
302 }
303 status = -ELOOP;
304 goto out;
305 }
306 ctx->dup_cookie = *desc->dir_cookie;
307 ctx->duped = -1;
308 }
309 desc->file->f_pos = new_pos;
310 desc->cache_entry_index = i;
311 return 0;
312 }
313 }
314 if (array->eof_index >= 0) {
315 status = -EBADCOOKIE;
316 if (*desc->dir_cookie == array->last_cookie)
317 desc->eof = 1;
318 }
319 out:
320 return status;
321 }
322
323 static
324 int nfs_readdir_search_array(nfs_readdir_descriptor_t *desc)
325 {
326 struct nfs_cache_array *array;
327 int status;
328
329 array = nfs_readdir_get_array(desc->page);
330 if (IS_ERR(array)) {
331 status = PTR_ERR(array);
332 goto out;
333 }
334
335 if (*desc->dir_cookie == 0)
336 status = nfs_readdir_search_for_pos(array, desc);
337 else
338 status = nfs_readdir_search_for_cookie(array, desc);
339
340 if (status == -EAGAIN) {
341 desc->last_cookie = array->last_cookie;
342 desc->current_index += array->size;
343 desc->page_index++;
344 }
345 nfs_readdir_release_array(desc->page);
346 out:
347 return status;
348 }
349
350 /* Fill a page with xdr information before transferring to the cache page */
351 static
352 int nfs_readdir_xdr_filler(struct page **pages, nfs_readdir_descriptor_t *desc,
353 struct nfs_entry *entry, struct file *file, struct inode *inode)
354 {
355 struct nfs_open_dir_context *ctx = file->private_data;
356 struct rpc_cred *cred = ctx->cred;
357 unsigned long timestamp, gencount;
358 int error;
359
360 again:
361 timestamp = jiffies;
362 gencount = nfs_inc_attr_generation_counter();
363 error = NFS_PROTO(inode)->readdir(file->f_path.dentry, cred, entry->cookie, pages,
364 NFS_SERVER(inode)->dtsize, desc->plus);
365 if (error < 0) {
366 /* We requested READDIRPLUS, but the server doesn't grok it */
367 if (error == -ENOTSUPP && desc->plus) {
368 NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
369 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
370 desc->plus = 0;
371 goto again;
372 }
373 goto error;
374 }
375 desc->timestamp = timestamp;
376 desc->gencount = gencount;
377 error:
378 return error;
379 }
380
381 static int xdr_decode(nfs_readdir_descriptor_t *desc,
382 struct nfs_entry *entry, struct xdr_stream *xdr)
383 {
384 int error;
385
386 error = desc->decode(xdr, entry, desc->plus);
387 if (error)
388 return error;
389 entry->fattr->time_start = desc->timestamp;
390 entry->fattr->gencount = desc->gencount;
391 return 0;
392 }
393
394 static
395 int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry)
396 {
397 if (dentry->d_inode == NULL)
398 goto different;
399 if (nfs_compare_fh(entry->fh, NFS_FH(dentry->d_inode)) != 0)
400 goto different;
401 return 1;
402 different:
403 return 0;
404 }
405
406 static
407 bool nfs_use_readdirplus(struct inode *dir, struct file *filp)
408 {
409 if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS))
410 return false;
411 if (test_and_clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags))
412 return true;
413 if (filp->f_pos == 0)
414 return true;
415 return false;
416 }
417
418 /*
419 * This function is called by the lookup code to request the use of
420 * readdirplus to accelerate any future lookups in the same
421 * directory.
422 */
423 static
424 void nfs_advise_use_readdirplus(struct inode *dir)
425 {
426 set_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags);
427 }
428
429 static
430 void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry)
431 {
432 struct qstr filename = QSTR_INIT(entry->name, entry->len);
433 struct dentry *dentry;
434 struct dentry *alias;
435 struct inode *dir = parent->d_inode;
436 struct inode *inode;
437
438 if (filename.name[0] == '.') {
439 if (filename.len == 1)
440 return;
441 if (filename.len == 2 && filename.name[1] == '.')
442 return;
443 }
444 filename.hash = full_name_hash(filename.name, filename.len);
445
446 dentry = d_lookup(parent, &filename);
447 if (dentry != NULL) {
448 if (nfs_same_file(dentry, entry)) {
449 nfs_refresh_inode(dentry->d_inode, entry->fattr);
450 goto out;
451 } else {
452 d_drop(dentry);
453 dput(dentry);
454 }
455 }
456
457 dentry = d_alloc(parent, &filename);
458 if (dentry == NULL)
459 return;
460
461 inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr);
462 if (IS_ERR(inode))
463 goto out;
464
465 alias = d_materialise_unique(dentry, inode);
466 if (IS_ERR(alias))
467 goto out;
468 else if (alias) {
469 nfs_set_verifier(alias, nfs_save_change_attribute(dir));
470 dput(alias);
471 } else
472 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
473
474 out:
475 dput(dentry);
476 }
477
478 /* Perform conversion from xdr to cache array */
479 static
480 int nfs_readdir_page_filler(nfs_readdir_descriptor_t *desc, struct nfs_entry *entry,
481 struct page **xdr_pages, struct page *page, unsigned int buflen)
482 {
483 struct xdr_stream stream;
484 struct xdr_buf buf;
485 struct page *scratch;
486 struct nfs_cache_array *array;
487 unsigned int count = 0;
488 int status;
489
490 scratch = alloc_page(GFP_KERNEL);
491 if (scratch == NULL)
492 return -ENOMEM;
493
494 xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen);
495 xdr_set_scratch_buffer(&stream, page_address(scratch), PAGE_SIZE);
496
497 do {
498 status = xdr_decode(desc, entry, &stream);
499 if (status != 0) {
500 if (status == -EAGAIN)
501 status = 0;
502 break;
503 }
504
505 count++;
506
507 if (desc->plus != 0)
508 nfs_prime_dcache(desc->file->f_path.dentry, entry);
509
510 status = nfs_readdir_add_to_array(entry, page);
511 if (status != 0)
512 break;
513 } while (!entry->eof);
514
515 if (count == 0 || (status == -EBADCOOKIE && entry->eof != 0)) {
516 array = nfs_readdir_get_array(page);
517 if (!IS_ERR(array)) {
518 array->eof_index = array->size;
519 status = 0;
520 nfs_readdir_release_array(page);
521 } else
522 status = PTR_ERR(array);
523 }
524
525 put_page(scratch);
526 return status;
527 }
528
529 static
530 void nfs_readdir_free_pagearray(struct page **pages, unsigned int npages)
531 {
532 unsigned int i;
533 for (i = 0; i < npages; i++)
534 put_page(pages[i]);
535 }
536
537 static
538 void nfs_readdir_free_large_page(void *ptr, struct page **pages,
539 unsigned int npages)
540 {
541 nfs_readdir_free_pagearray(pages, npages);
542 }
543
544 /*
545 * nfs_readdir_large_page will allocate pages that must be freed with a call
546 * to nfs_readdir_free_large_page
547 */
548 static
549 int nfs_readdir_large_page(struct page **pages, unsigned int npages)
550 {
551 unsigned int i;
552
553 for (i = 0; i < npages; i++) {
554 struct page *page = alloc_page(GFP_KERNEL);
555 if (page == NULL)
556 goto out_freepages;
557 pages[i] = page;
558 }
559 return 0;
560
561 out_freepages:
562 nfs_readdir_free_pagearray(pages, i);
563 return -ENOMEM;
564 }
565
566 static
567 int nfs_readdir_xdr_to_array(nfs_readdir_descriptor_t *desc, struct page *page, struct inode *inode)
568 {
569 struct page *pages[NFS_MAX_READDIR_PAGES];
570 void *pages_ptr = NULL;
571 struct nfs_entry entry;
572 struct file *file = desc->file;
573 struct nfs_cache_array *array;
574 int status = -ENOMEM;
575 unsigned int array_size = ARRAY_SIZE(pages);
576
577 entry.prev_cookie = 0;
578 entry.cookie = desc->last_cookie;
579 entry.eof = 0;
580 entry.fh = nfs_alloc_fhandle();
581 entry.fattr = nfs_alloc_fattr();
582 entry.server = NFS_SERVER(inode);
583 if (entry.fh == NULL || entry.fattr == NULL)
584 goto out;
585
586 array = nfs_readdir_get_array(page);
587 if (IS_ERR(array)) {
588 status = PTR_ERR(array);
589 goto out;
590 }
591 memset(array, 0, sizeof(struct nfs_cache_array));
592 array->eof_index = -1;
593
594 status = nfs_readdir_large_page(pages, array_size);
595 if (status < 0)
596 goto out_release_array;
597 do {
598 unsigned int pglen;
599 status = nfs_readdir_xdr_filler(pages, desc, &entry, file, inode);
600
601 if (status < 0)
602 break;
603 pglen = status;
604 status = nfs_readdir_page_filler(desc, &entry, pages, page, pglen);
605 if (status < 0) {
606 if (status == -ENOSPC)
607 status = 0;
608 break;
609 }
610 } while (array->eof_index < 0);
611
612 nfs_readdir_free_large_page(pages_ptr, pages, array_size);
613 out_release_array:
614 nfs_readdir_release_array(page);
615 out:
616 nfs_free_fattr(entry.fattr);
617 nfs_free_fhandle(entry.fh);
618 return status;
619 }
620
621 /*
622 * Now we cache directories properly, by converting xdr information
623 * to an array that can be used for lookups later. This results in
624 * fewer cache pages, since we can store more information on each page.
625 * We only need to convert from xdr once so future lookups are much simpler
626 */
627 static
628 int nfs_readdir_filler(nfs_readdir_descriptor_t *desc, struct page* page)
629 {
630 struct inode *inode = desc->file->f_path.dentry->d_inode;
631 int ret;
632
633 ret = nfs_readdir_xdr_to_array(desc, page, inode);
634 if (ret < 0)
635 goto error;
636 SetPageUptodate(page);
637
638 if (invalidate_inode_pages2_range(inode->i_mapping, page->index + 1, -1) < 0) {
639 /* Should never happen */
640 nfs_zap_mapping(inode, inode->i_mapping);
641 }
642 unlock_page(page);
643 return 0;
644 error:
645 unlock_page(page);
646 return ret;
647 }
648
649 static
650 void cache_page_release(nfs_readdir_descriptor_t *desc)
651 {
652 if (!desc->page->mapping)
653 nfs_readdir_clear_array(desc->page);
654 page_cache_release(desc->page);
655 desc->page = NULL;
656 }
657
658 static
659 struct page *get_cache_page(nfs_readdir_descriptor_t *desc)
660 {
661 return read_cache_page(desc->file->f_path.dentry->d_inode->i_mapping,
662 desc->page_index, (filler_t *)nfs_readdir_filler, desc);
663 }
664
665 /*
666 * Returns 0 if desc->dir_cookie was found on page desc->page_index
667 */
668 static
669 int find_cache_page(nfs_readdir_descriptor_t *desc)
670 {
671 int res;
672
673 desc->page = get_cache_page(desc);
674 if (IS_ERR(desc->page))
675 return PTR_ERR(desc->page);
676
677 res = nfs_readdir_search_array(desc);
678 if (res != 0)
679 cache_page_release(desc);
680 return res;
681 }
682
683 /* Search for desc->dir_cookie from the beginning of the page cache */
684 static inline
685 int readdir_search_pagecache(nfs_readdir_descriptor_t *desc)
686 {
687 int res;
688
689 if (desc->page_index == 0) {
690 desc->current_index = 0;
691 desc->last_cookie = 0;
692 }
693 do {
694 res = find_cache_page(desc);
695 } while (res == -EAGAIN);
696 return res;
697 }
698
699 /*
700 * Once we've found the start of the dirent within a page: fill 'er up...
701 */
702 static
703 int nfs_do_filldir(nfs_readdir_descriptor_t *desc, void *dirent,
704 filldir_t filldir)
705 {
706 struct file *file = desc->file;
707 int i = 0;
708 int res = 0;
709 struct nfs_cache_array *array = NULL;
710 struct nfs_open_dir_context *ctx = file->private_data;
711
712 array = nfs_readdir_get_array(desc->page);
713 if (IS_ERR(array)) {
714 res = PTR_ERR(array);
715 goto out;
716 }
717
718 for (i = desc->cache_entry_index; i < array->size; i++) {
719 struct nfs_cache_array_entry *ent;
720
721 ent = &array->array[i];
722 if (filldir(dirent, ent->string.name, ent->string.len,
723 file->f_pos, nfs_compat_user_ino64(ent->ino),
724 ent->d_type) < 0) {
725 desc->eof = 1;
726 break;
727 }
728 file->f_pos++;
729 if (i < (array->size-1))
730 *desc->dir_cookie = array->array[i+1].cookie;
731 else
732 *desc->dir_cookie = array->last_cookie;
733 if (ctx->duped != 0)
734 ctx->duped = 1;
735 }
736 if (array->eof_index >= 0)
737 desc->eof = 1;
738
739 nfs_readdir_release_array(desc->page);
740 out:
741 cache_page_release(desc);
742 dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n",
743 (unsigned long long)*desc->dir_cookie, res);
744 return res;
745 }
746
747 /*
748 * If we cannot find a cookie in our cache, we suspect that this is
749 * because it points to a deleted file, so we ask the server to return
750 * whatever it thinks is the next entry. We then feed this to filldir.
751 * If all goes well, we should then be able to find our way round the
752 * cache on the next call to readdir_search_pagecache();
753 *
754 * NOTE: we cannot add the anonymous page to the pagecache because
755 * the data it contains might not be page aligned. Besides,
756 * we should already have a complete representation of the
757 * directory in the page cache by the time we get here.
758 */
759 static inline
760 int uncached_readdir(nfs_readdir_descriptor_t *desc, void *dirent,
761 filldir_t filldir)
762 {
763 struct page *page = NULL;
764 int status;
765 struct inode *inode = desc->file->f_path.dentry->d_inode;
766 struct nfs_open_dir_context *ctx = desc->file->private_data;
767
768 dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n",
769 (unsigned long long)*desc->dir_cookie);
770
771 page = alloc_page(GFP_HIGHUSER);
772 if (!page) {
773 status = -ENOMEM;
774 goto out;
775 }
776
777 desc->page_index = 0;
778 desc->last_cookie = *desc->dir_cookie;
779 desc->page = page;
780 ctx->duped = 0;
781
782 status = nfs_readdir_xdr_to_array(desc, page, inode);
783 if (status < 0)
784 goto out_release;
785
786 status = nfs_do_filldir(desc, dirent, filldir);
787
788 out:
789 dfprintk(DIRCACHE, "NFS: %s: returns %d\n",
790 __func__, status);
791 return status;
792 out_release:
793 cache_page_release(desc);
794 goto out;
795 }
796
797 /* The file offset position represents the dirent entry number. A
798 last cookie cache takes care of the common case of reading the
799 whole directory.
800 */
801 static int nfs_readdir(struct file *filp, void *dirent, filldir_t filldir)
802 {
803 struct dentry *dentry = filp->f_path.dentry;
804 struct inode *inode = dentry->d_inode;
805 nfs_readdir_descriptor_t my_desc,
806 *desc = &my_desc;
807 struct nfs_open_dir_context *dir_ctx = filp->private_data;
808 int res;
809
810 dfprintk(FILE, "NFS: readdir(%s/%s) starting at cookie %llu\n",
811 dentry->d_parent->d_name.name, dentry->d_name.name,
812 (long long)filp->f_pos);
813 nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
814
815 /*
816 * filp->f_pos points to the dirent entry number.
817 * *desc->dir_cookie has the cookie for the next entry. We have
818 * to either find the entry with the appropriate number or
819 * revalidate the cookie.
820 */
821 memset(desc, 0, sizeof(*desc));
822
823 desc->file = filp;
824 desc->dir_cookie = &dir_ctx->dir_cookie;
825 desc->decode = NFS_PROTO(inode)->decode_dirent;
826 desc->plus = nfs_use_readdirplus(inode, filp) ? 1 : 0;
827
828 nfs_block_sillyrename(dentry);
829 res = nfs_revalidate_mapping(inode, filp->f_mapping);
830 if (res < 0)
831 goto out;
832
833 do {
834 res = readdir_search_pagecache(desc);
835
836 if (res == -EBADCOOKIE) {
837 res = 0;
838 /* This means either end of directory */
839 if (*desc->dir_cookie && desc->eof == 0) {
840 /* Or that the server has 'lost' a cookie */
841 res = uncached_readdir(desc, dirent, filldir);
842 if (res == 0)
843 continue;
844 }
845 break;
846 }
847 if (res == -ETOOSMALL && desc->plus) {
848 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
849 nfs_zap_caches(inode);
850 desc->page_index = 0;
851 desc->plus = 0;
852 desc->eof = 0;
853 continue;
854 }
855 if (res < 0)
856 break;
857
858 res = nfs_do_filldir(desc, dirent, filldir);
859 if (res < 0)
860 break;
861 } while (!desc->eof);
862 out:
863 nfs_unblock_sillyrename(dentry);
864 if (res > 0)
865 res = 0;
866 dfprintk(FILE, "NFS: readdir(%s/%s) returns %d\n",
867 dentry->d_parent->d_name.name, dentry->d_name.name,
868 res);
869 return res;
870 }
871
872 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int origin)
873 {
874 struct dentry *dentry = filp->f_path.dentry;
875 struct inode *inode = dentry->d_inode;
876 struct nfs_open_dir_context *dir_ctx = filp->private_data;
877
878 dfprintk(FILE, "NFS: llseek dir(%s/%s, %lld, %d)\n",
879 dentry->d_parent->d_name.name,
880 dentry->d_name.name,
881 offset, origin);
882
883 mutex_lock(&inode->i_mutex);
884 switch (origin) {
885 case 1:
886 offset += filp->f_pos;
887 case 0:
888 if (offset >= 0)
889 break;
890 default:
891 offset = -EINVAL;
892 goto out;
893 }
894 if (offset != filp->f_pos) {
895 filp->f_pos = offset;
896 dir_ctx->dir_cookie = 0;
897 dir_ctx->duped = 0;
898 }
899 out:
900 mutex_unlock(&inode->i_mutex);
901 return offset;
902 }
903
904 /*
905 * All directory operations under NFS are synchronous, so fsync()
906 * is a dummy operation.
907 */
908 static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end,
909 int datasync)
910 {
911 struct dentry *dentry = filp->f_path.dentry;
912 struct inode *inode = dentry->d_inode;
913
914 dfprintk(FILE, "NFS: fsync dir(%s/%s) datasync %d\n",
915 dentry->d_parent->d_name.name, dentry->d_name.name,
916 datasync);
917
918 mutex_lock(&inode->i_mutex);
919 nfs_inc_stats(dentry->d_inode, NFSIOS_VFSFSYNC);
920 mutex_unlock(&inode->i_mutex);
921 return 0;
922 }
923
924 /**
925 * nfs_force_lookup_revalidate - Mark the directory as having changed
926 * @dir - pointer to directory inode
927 *
928 * This forces the revalidation code in nfs_lookup_revalidate() to do a
929 * full lookup on all child dentries of 'dir' whenever a change occurs
930 * on the server that might have invalidated our dcache.
931 *
932 * The caller should be holding dir->i_lock
933 */
934 void nfs_force_lookup_revalidate(struct inode *dir)
935 {
936 NFS_I(dir)->cache_change_attribute++;
937 }
938
939 /*
940 * A check for whether or not the parent directory has changed.
941 * In the case it has, we assume that the dentries are untrustworthy
942 * and may need to be looked up again.
943 */
944 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry)
945 {
946 if (IS_ROOT(dentry))
947 return 1;
948 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE)
949 return 0;
950 if (!nfs_verify_change_attribute(dir, dentry->d_time))
951 return 0;
952 /* Revalidate nfsi->cache_change_attribute before we declare a match */
953 if (nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
954 return 0;
955 if (!nfs_verify_change_attribute(dir, dentry->d_time))
956 return 0;
957 return 1;
958 }
959
960 /*
961 * Use intent information to check whether or not we're going to do
962 * an O_EXCL create using this path component.
963 */
964 static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags)
965 {
966 if (NFS_PROTO(dir)->version == 2)
967 return 0;
968 return flags & LOOKUP_EXCL;
969 }
970
971 /*
972 * Inode and filehandle revalidation for lookups.
973 *
974 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
975 * or if the intent information indicates that we're about to open this
976 * particular file and the "nocto" mount flag is not set.
977 *
978 */
979 static inline
980 int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags)
981 {
982 struct nfs_server *server = NFS_SERVER(inode);
983
984 if (IS_AUTOMOUNT(inode))
985 return 0;
986 /* VFS wants an on-the-wire revalidation */
987 if (flags & LOOKUP_REVAL)
988 goto out_force;
989 /* This is an open(2) */
990 if ((flags & LOOKUP_OPEN) && !(server->flags & NFS_MOUNT_NOCTO) &&
991 (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode)))
992 goto out_force;
993 return 0;
994 out_force:
995 return __nfs_revalidate_inode(server, inode);
996 }
997
998 /*
999 * We judge how long we want to trust negative
1000 * dentries by looking at the parent inode mtime.
1001 *
1002 * If parent mtime has changed, we revalidate, else we wait for a
1003 * period corresponding to the parent's attribute cache timeout value.
1004 */
1005 static inline
1006 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
1007 unsigned int flags)
1008 {
1009 /* Don't revalidate a negative dentry if we're creating a new file */
1010 if (flags & LOOKUP_CREATE)
1011 return 0;
1012 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG)
1013 return 1;
1014 return !nfs_check_verifier(dir, dentry);
1015 }
1016
1017 /*
1018 * This is called every time the dcache has a lookup hit,
1019 * and we should check whether we can really trust that
1020 * lookup.
1021 *
1022 * NOTE! The hit can be a negative hit too, don't assume
1023 * we have an inode!
1024 *
1025 * If the parent directory is seen to have changed, we throw out the
1026 * cached dentry and do a new lookup.
1027 */
1028 static int nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1029 {
1030 struct inode *dir;
1031 struct inode *inode;
1032 struct dentry *parent;
1033 struct nfs_fh *fhandle = NULL;
1034 struct nfs_fattr *fattr = NULL;
1035 int error;
1036
1037 if (flags & LOOKUP_RCU)
1038 return -ECHILD;
1039
1040 parent = dget_parent(dentry);
1041 dir = parent->d_inode;
1042 nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
1043 inode = dentry->d_inode;
1044
1045 if (!inode) {
1046 if (nfs_neg_need_reval(dir, dentry, flags))
1047 goto out_bad;
1048 goto out_valid_noent;
1049 }
1050
1051 if (is_bad_inode(inode)) {
1052 dfprintk(LOOKUPCACHE, "%s: %s/%s has dud inode\n",
1053 __func__, dentry->d_parent->d_name.name,
1054 dentry->d_name.name);
1055 goto out_bad;
1056 }
1057
1058 if (NFS_PROTO(dir)->have_delegation(inode, FMODE_READ))
1059 goto out_set_verifier;
1060
1061 /* Force a full look up iff the parent directory has changed */
1062 if (!nfs_is_exclusive_create(dir, flags) && nfs_check_verifier(dir, dentry)) {
1063 if (nfs_lookup_verify_inode(inode, flags))
1064 goto out_zap_parent;
1065 goto out_valid;
1066 }
1067
1068 if (NFS_STALE(inode))
1069 goto out_bad;
1070
1071 error = -ENOMEM;
1072 fhandle = nfs_alloc_fhandle();
1073 fattr = nfs_alloc_fattr();
1074 if (fhandle == NULL || fattr == NULL)
1075 goto out_error;
1076
1077 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr);
1078 if (error)
1079 goto out_bad;
1080 if (nfs_compare_fh(NFS_FH(inode), fhandle))
1081 goto out_bad;
1082 if ((error = nfs_refresh_inode(inode, fattr)) != 0)
1083 goto out_bad;
1084
1085 nfs_free_fattr(fattr);
1086 nfs_free_fhandle(fhandle);
1087 out_set_verifier:
1088 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1089 out_valid:
1090 /* Success: notify readdir to use READDIRPLUS */
1091 nfs_advise_use_readdirplus(dir);
1092 out_valid_noent:
1093 dput(parent);
1094 dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is valid\n",
1095 __func__, dentry->d_parent->d_name.name,
1096 dentry->d_name.name);
1097 return 1;
1098 out_zap_parent:
1099 nfs_zap_caches(dir);
1100 out_bad:
1101 nfs_mark_for_revalidate(dir);
1102 if (inode && S_ISDIR(inode->i_mode)) {
1103 /* Purge readdir caches. */
1104 nfs_zap_caches(inode);
1105 /* If we have submounts, don't unhash ! */
1106 if (have_submounts(dentry))
1107 goto out_valid;
1108 if (dentry->d_flags & DCACHE_DISCONNECTED)
1109 goto out_valid;
1110 shrink_dcache_parent(dentry);
1111 }
1112 d_drop(dentry);
1113 nfs_free_fattr(fattr);
1114 nfs_free_fhandle(fhandle);
1115 dput(parent);
1116 dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is invalid\n",
1117 __func__, dentry->d_parent->d_name.name,
1118 dentry->d_name.name);
1119 return 0;
1120 out_error:
1121 nfs_free_fattr(fattr);
1122 nfs_free_fhandle(fhandle);
1123 dput(parent);
1124 dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) lookup returned error %d\n",
1125 __func__, dentry->d_parent->d_name.name,
1126 dentry->d_name.name, error);
1127 return error;
1128 }
1129
1130 /*
1131 * This is called from dput() when d_count is going to 0.
1132 */
1133 static int nfs_dentry_delete(const struct dentry *dentry)
1134 {
1135 dfprintk(VFS, "NFS: dentry_delete(%s/%s, %x)\n",
1136 dentry->d_parent->d_name.name, dentry->d_name.name,
1137 dentry->d_flags);
1138
1139 /* Unhash any dentry with a stale inode */
1140 if (dentry->d_inode != NULL && NFS_STALE(dentry->d_inode))
1141 return 1;
1142
1143 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1144 /* Unhash it, so that ->d_iput() would be called */
1145 return 1;
1146 }
1147 if (!(dentry->d_sb->s_flags & MS_ACTIVE)) {
1148 /* Unhash it, so that ancestors of killed async unlink
1149 * files will be cleaned up during umount */
1150 return 1;
1151 }
1152 return 0;
1153
1154 }
1155
1156 static void nfs_drop_nlink(struct inode *inode)
1157 {
1158 spin_lock(&inode->i_lock);
1159 if (inode->i_nlink > 0)
1160 drop_nlink(inode);
1161 spin_unlock(&inode->i_lock);
1162 }
1163
1164 /*
1165 * Called when the dentry loses inode.
1166 * We use it to clean up silly-renamed files.
1167 */
1168 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
1169 {
1170 if (S_ISDIR(inode->i_mode))
1171 /* drop any readdir cache as it could easily be old */
1172 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA;
1173
1174 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1175 drop_nlink(inode);
1176 nfs_complete_unlink(dentry, inode);
1177 }
1178 iput(inode);
1179 }
1180
1181 static void nfs_d_release(struct dentry *dentry)
1182 {
1183 /* free cached devname value, if it survived that far */
1184 if (unlikely(dentry->d_fsdata)) {
1185 if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1186 WARN_ON(1);
1187 else
1188 kfree(dentry->d_fsdata);
1189 }
1190 }
1191
1192 const struct dentry_operations nfs_dentry_operations = {
1193 .d_revalidate = nfs_lookup_revalidate,
1194 .d_delete = nfs_dentry_delete,
1195 .d_iput = nfs_dentry_iput,
1196 .d_automount = nfs_d_automount,
1197 .d_release = nfs_d_release,
1198 };
1199
1200 struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
1201 {
1202 struct dentry *res;
1203 struct dentry *parent;
1204 struct inode *inode = NULL;
1205 struct nfs_fh *fhandle = NULL;
1206 struct nfs_fattr *fattr = NULL;
1207 int error;
1208
1209 dfprintk(VFS, "NFS: lookup(%s/%s)\n",
1210 dentry->d_parent->d_name.name, dentry->d_name.name);
1211 nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
1212
1213 res = ERR_PTR(-ENAMETOOLONG);
1214 if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
1215 goto out;
1216
1217 /*
1218 * If we're doing an exclusive create, optimize away the lookup
1219 * but don't hash the dentry.
1220 */
1221 if (nfs_is_exclusive_create(dir, flags)) {
1222 d_instantiate(dentry, NULL);
1223 res = NULL;
1224 goto out;
1225 }
1226
1227 res = ERR_PTR(-ENOMEM);
1228 fhandle = nfs_alloc_fhandle();
1229 fattr = nfs_alloc_fattr();
1230 if (fhandle == NULL || fattr == NULL)
1231 goto out;
1232
1233 parent = dentry->d_parent;
1234 /* Protect against concurrent sillydeletes */
1235 nfs_block_sillyrename(parent);
1236 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr);
1237 if (error == -ENOENT)
1238 goto no_entry;
1239 if (error < 0) {
1240 res = ERR_PTR(error);
1241 goto out_unblock_sillyrename;
1242 }
1243 inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
1244 res = ERR_CAST(inode);
1245 if (IS_ERR(res))
1246 goto out_unblock_sillyrename;
1247
1248 /* Success: notify readdir to use READDIRPLUS */
1249 nfs_advise_use_readdirplus(dir);
1250
1251 no_entry:
1252 res = d_materialise_unique(dentry, inode);
1253 if (res != NULL) {
1254 if (IS_ERR(res))
1255 goto out_unblock_sillyrename;
1256 dentry = res;
1257 }
1258 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1259 out_unblock_sillyrename:
1260 nfs_unblock_sillyrename(parent);
1261 out:
1262 nfs_free_fattr(fattr);
1263 nfs_free_fhandle(fhandle);
1264 return res;
1265 }
1266
1267 #ifdef CONFIG_NFS_V4
1268 static int nfs4_lookup_revalidate(struct dentry *, unsigned int);
1269
1270 const struct dentry_operations nfs4_dentry_operations = {
1271 .d_revalidate = nfs4_lookup_revalidate,
1272 .d_delete = nfs_dentry_delete,
1273 .d_iput = nfs_dentry_iput,
1274 .d_automount = nfs_d_automount,
1275 .d_release = nfs_d_release,
1276 };
1277
1278 static fmode_t flags_to_mode(int flags)
1279 {
1280 fmode_t res = (__force fmode_t)flags & FMODE_EXEC;
1281 if ((flags & O_ACCMODE) != O_WRONLY)
1282 res |= FMODE_READ;
1283 if ((flags & O_ACCMODE) != O_RDONLY)
1284 res |= FMODE_WRITE;
1285 return res;
1286 }
1287
1288 static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags)
1289 {
1290 return alloc_nfs_open_context(dentry, flags_to_mode(open_flags));
1291 }
1292
1293 static int do_open(struct inode *inode, struct file *filp)
1294 {
1295 nfs_fscache_set_inode_cookie(inode, filp);
1296 return 0;
1297 }
1298
1299 static int nfs_finish_open(struct nfs_open_context *ctx,
1300 struct dentry *dentry,
1301 struct file *file, unsigned open_flags,
1302 int *opened)
1303 {
1304 int err;
1305
1306 if (ctx->dentry != dentry) {
1307 dput(ctx->dentry);
1308 ctx->dentry = dget(dentry);
1309 }
1310
1311 /* If the open_intent is for execute, we have an extra check to make */
1312 if (ctx->mode & FMODE_EXEC) {
1313 err = nfs_may_open(dentry->d_inode, ctx->cred, open_flags);
1314 if (err < 0)
1315 goto out;
1316 }
1317
1318 err = finish_open(file, dentry, do_open, opened);
1319 if (err)
1320 goto out;
1321 nfs_file_set_open_context(file, ctx);
1322
1323 out:
1324 put_nfs_open_context(ctx);
1325 return err;
1326 }
1327
1328 int nfs_atomic_open(struct inode *dir, struct dentry *dentry,
1329 struct file *file, unsigned open_flags,
1330 umode_t mode, int *opened)
1331 {
1332 struct nfs_open_context *ctx;
1333 struct dentry *res;
1334 struct iattr attr = { .ia_valid = ATTR_OPEN };
1335 struct inode *inode;
1336 int err;
1337
1338 /* Expect a negative dentry */
1339 BUG_ON(dentry->d_inode);
1340
1341 dfprintk(VFS, "NFS: atomic_open(%s/%ld), %s\n",
1342 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1343
1344 /* NFS only supports OPEN on regular files */
1345 if ((open_flags & O_DIRECTORY)) {
1346 if (!d_unhashed(dentry)) {
1347 /*
1348 * Hashed negative dentry with O_DIRECTORY: dentry was
1349 * revalidated and is fine, no need to perform lookup
1350 * again
1351 */
1352 return -ENOENT;
1353 }
1354 goto no_open;
1355 }
1356
1357 if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
1358 return -ENAMETOOLONG;
1359
1360 if (open_flags & O_CREAT) {
1361 attr.ia_valid |= ATTR_MODE;
1362 attr.ia_mode = mode & ~current_umask();
1363 }
1364 if (open_flags & O_TRUNC) {
1365 attr.ia_valid |= ATTR_SIZE;
1366 attr.ia_size = 0;
1367 }
1368
1369 ctx = create_nfs_open_context(dentry, open_flags);
1370 err = PTR_ERR(ctx);
1371 if (IS_ERR(ctx))
1372 goto out;
1373
1374 nfs_block_sillyrename(dentry->d_parent);
1375 inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr);
1376 d_drop(dentry);
1377 if (IS_ERR(inode)) {
1378 nfs_unblock_sillyrename(dentry->d_parent);
1379 put_nfs_open_context(ctx);
1380 err = PTR_ERR(inode);
1381 switch (err) {
1382 case -ENOENT:
1383 d_add(dentry, NULL);
1384 break;
1385 case -EISDIR:
1386 case -ENOTDIR:
1387 goto no_open;
1388 case -ELOOP:
1389 if (!(open_flags & O_NOFOLLOW))
1390 goto no_open;
1391 break;
1392 /* case -EINVAL: */
1393 default:
1394 break;
1395 }
1396 goto out;
1397 }
1398 res = d_add_unique(dentry, inode);
1399 if (res != NULL)
1400 dentry = res;
1401
1402 nfs_unblock_sillyrename(dentry->d_parent);
1403 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1404
1405 err = nfs_finish_open(ctx, dentry, file, open_flags, opened);
1406
1407 dput(res);
1408 out:
1409 return err;
1410
1411 no_open:
1412 res = nfs_lookup(dir, dentry, 0);
1413 err = PTR_ERR(res);
1414 if (IS_ERR(res))
1415 goto out;
1416
1417 return finish_no_open(file, res);
1418 }
1419
1420 static int nfs4_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1421 {
1422 struct dentry *parent = NULL;
1423 struct inode *inode;
1424 struct inode *dir;
1425 int ret = 0;
1426
1427 if (flags & LOOKUP_RCU)
1428 return -ECHILD;
1429
1430 if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY))
1431 goto no_open;
1432 if (d_mountpoint(dentry))
1433 goto no_open;
1434
1435 inode = dentry->d_inode;
1436 parent = dget_parent(dentry);
1437 dir = parent->d_inode;
1438
1439 /* We can't create new files in nfs_open_revalidate(), so we
1440 * optimize away revalidation of negative dentries.
1441 */
1442 if (inode == NULL) {
1443 if (!nfs_neg_need_reval(dir, dentry, flags))
1444 ret = 1;
1445 goto out;
1446 }
1447
1448 /* NFS only supports OPEN on regular files */
1449 if (!S_ISREG(inode->i_mode))
1450 goto no_open_dput;
1451 /* We cannot do exclusive creation on a positive dentry */
1452 if (flags & LOOKUP_EXCL)
1453 goto no_open_dput;
1454
1455 /* Let f_op->open() actually open (and revalidate) the file */
1456 ret = 1;
1457
1458 out:
1459 dput(parent);
1460 return ret;
1461
1462 no_open_dput:
1463 dput(parent);
1464 no_open:
1465 return nfs_lookup_revalidate(dentry, flags);
1466 }
1467
1468 #endif /* CONFIG_NFSV4 */
1469
1470 /*
1471 * Code common to create, mkdir, and mknod.
1472 */
1473 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
1474 struct nfs_fattr *fattr)
1475 {
1476 struct dentry *parent = dget_parent(dentry);
1477 struct inode *dir = parent->d_inode;
1478 struct inode *inode;
1479 int error = -EACCES;
1480
1481 d_drop(dentry);
1482
1483 /* We may have been initialized further down */
1484 if (dentry->d_inode)
1485 goto out;
1486 if (fhandle->size == 0) {
1487 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr);
1488 if (error)
1489 goto out_error;
1490 }
1491 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1492 if (!(fattr->valid & NFS_ATTR_FATTR)) {
1493 struct nfs_server *server = NFS_SB(dentry->d_sb);
1494 error = server->nfs_client->rpc_ops->getattr(server, fhandle, fattr);
1495 if (error < 0)
1496 goto out_error;
1497 }
1498 inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
1499 error = PTR_ERR(inode);
1500 if (IS_ERR(inode))
1501 goto out_error;
1502 d_add(dentry, inode);
1503 out:
1504 dput(parent);
1505 return 0;
1506 out_error:
1507 nfs_mark_for_revalidate(dir);
1508 dput(parent);
1509 return error;
1510 }
1511
1512 /*
1513 * Following a failed create operation, we drop the dentry rather
1514 * than retain a negative dentry. This avoids a problem in the event
1515 * that the operation succeeded on the server, but an error in the
1516 * reply path made it appear to have failed.
1517 */
1518 int nfs_create(struct inode *dir, struct dentry *dentry,
1519 umode_t mode, bool excl)
1520 {
1521 struct iattr attr;
1522 int open_flags = excl ? O_CREAT | O_EXCL : O_CREAT;
1523 int error;
1524
1525 dfprintk(VFS, "NFS: create(%s/%ld), %s\n",
1526 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1527
1528 attr.ia_mode = mode;
1529 attr.ia_valid = ATTR_MODE;
1530
1531 error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags);
1532 if (error != 0)
1533 goto out_err;
1534 return 0;
1535 out_err:
1536 d_drop(dentry);
1537 return error;
1538 }
1539
1540 /*
1541 * See comments for nfs_proc_create regarding failed operations.
1542 */
1543 int
1544 nfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t rdev)
1545 {
1546 struct iattr attr;
1547 int status;
1548
1549 dfprintk(VFS, "NFS: mknod(%s/%ld), %s\n",
1550 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1551
1552 if (!new_valid_dev(rdev))
1553 return -EINVAL;
1554
1555 attr.ia_mode = mode;
1556 attr.ia_valid = ATTR_MODE;
1557
1558 status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
1559 if (status != 0)
1560 goto out_err;
1561 return 0;
1562 out_err:
1563 d_drop(dentry);
1564 return status;
1565 }
1566
1567 /*
1568 * See comments for nfs_proc_create regarding failed operations.
1569 */
1570 int nfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1571 {
1572 struct iattr attr;
1573 int error;
1574
1575 dfprintk(VFS, "NFS: mkdir(%s/%ld), %s\n",
1576 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1577
1578 attr.ia_valid = ATTR_MODE;
1579 attr.ia_mode = mode | S_IFDIR;
1580
1581 error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
1582 if (error != 0)
1583 goto out_err;
1584 return 0;
1585 out_err:
1586 d_drop(dentry);
1587 return error;
1588 }
1589
1590 static void nfs_dentry_handle_enoent(struct dentry *dentry)
1591 {
1592 if (dentry->d_inode != NULL && !d_unhashed(dentry))
1593 d_delete(dentry);
1594 }
1595
1596 int nfs_rmdir(struct inode *dir, struct dentry *dentry)
1597 {
1598 int error;
1599
1600 dfprintk(VFS, "NFS: rmdir(%s/%ld), %s\n",
1601 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1602
1603 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1604 /* Ensure the VFS deletes this inode */
1605 if (error == 0 && dentry->d_inode != NULL)
1606 clear_nlink(dentry->d_inode);
1607 else if (error == -ENOENT)
1608 nfs_dentry_handle_enoent(dentry);
1609
1610 return error;
1611 }
1612
1613 /*
1614 * Remove a file after making sure there are no pending writes,
1615 * and after checking that the file has only one user.
1616 *
1617 * We invalidate the attribute cache and free the inode prior to the operation
1618 * to avoid possible races if the server reuses the inode.
1619 */
1620 static int nfs_safe_remove(struct dentry *dentry)
1621 {
1622 struct inode *dir = dentry->d_parent->d_inode;
1623 struct inode *inode = dentry->d_inode;
1624 int error = -EBUSY;
1625
1626 dfprintk(VFS, "NFS: safe_remove(%s/%s)\n",
1627 dentry->d_parent->d_name.name, dentry->d_name.name);
1628
1629 /* If the dentry was sillyrenamed, we simply call d_delete() */
1630 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1631 error = 0;
1632 goto out;
1633 }
1634
1635 if (inode != NULL) {
1636 NFS_PROTO(inode)->return_delegation(inode);
1637 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1638 /* The VFS may want to delete this inode */
1639 if (error == 0)
1640 nfs_drop_nlink(inode);
1641 nfs_mark_for_revalidate(inode);
1642 } else
1643 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1644 if (error == -ENOENT)
1645 nfs_dentry_handle_enoent(dentry);
1646 out:
1647 return error;
1648 }
1649
1650 /* We do silly rename. In case sillyrename() returns -EBUSY, the inode
1651 * belongs to an active ".nfs..." file and we return -EBUSY.
1652 *
1653 * If sillyrename() returns 0, we do nothing, otherwise we unlink.
1654 */
1655 int nfs_unlink(struct inode *dir, struct dentry *dentry)
1656 {
1657 int error;
1658 int need_rehash = 0;
1659
1660 dfprintk(VFS, "NFS: unlink(%s/%ld, %s)\n", dir->i_sb->s_id,
1661 dir->i_ino, dentry->d_name.name);
1662
1663 spin_lock(&dentry->d_lock);
1664 if (dentry->d_count > 1) {
1665 spin_unlock(&dentry->d_lock);
1666 /* Start asynchronous writeout of the inode */
1667 write_inode_now(dentry->d_inode, 0);
1668 error = nfs_sillyrename(dir, dentry);
1669 return error;
1670 }
1671 if (!d_unhashed(dentry)) {
1672 __d_drop(dentry);
1673 need_rehash = 1;
1674 }
1675 spin_unlock(&dentry->d_lock);
1676 error = nfs_safe_remove(dentry);
1677 if (!error || error == -ENOENT) {
1678 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1679 } else if (need_rehash)
1680 d_rehash(dentry);
1681 return error;
1682 }
1683
1684 /*
1685 * To create a symbolic link, most file systems instantiate a new inode,
1686 * add a page to it containing the path, then write it out to the disk
1687 * using prepare_write/commit_write.
1688 *
1689 * Unfortunately the NFS client can't create the in-core inode first
1690 * because it needs a file handle to create an in-core inode (see
1691 * fs/nfs/inode.c:nfs_fhget). We only have a file handle *after* the
1692 * symlink request has completed on the server.
1693 *
1694 * So instead we allocate a raw page, copy the symname into it, then do
1695 * the SYMLINK request with the page as the buffer. If it succeeds, we
1696 * now have a new file handle and can instantiate an in-core NFS inode
1697 * and move the raw page into its mapping.
1698 */
1699 int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1700 {
1701 struct pagevec lru_pvec;
1702 struct page *page;
1703 char *kaddr;
1704 struct iattr attr;
1705 unsigned int pathlen = strlen(symname);
1706 int error;
1707
1708 dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s)\n", dir->i_sb->s_id,
1709 dir->i_ino, dentry->d_name.name, symname);
1710
1711 if (pathlen > PAGE_SIZE)
1712 return -ENAMETOOLONG;
1713
1714 attr.ia_mode = S_IFLNK | S_IRWXUGO;
1715 attr.ia_valid = ATTR_MODE;
1716
1717 page = alloc_page(GFP_HIGHUSER);
1718 if (!page)
1719 return -ENOMEM;
1720
1721 kaddr = kmap_atomic(page);
1722 memcpy(kaddr, symname, pathlen);
1723 if (pathlen < PAGE_SIZE)
1724 memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
1725 kunmap_atomic(kaddr);
1726
1727 error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
1728 if (error != 0) {
1729 dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s) error %d\n",
1730 dir->i_sb->s_id, dir->i_ino,
1731 dentry->d_name.name, symname, error);
1732 d_drop(dentry);
1733 __free_page(page);
1734 return error;
1735 }
1736
1737 /*
1738 * No big deal if we can't add this page to the page cache here.
1739 * READLINK will get the missing page from the server if needed.
1740 */
1741 pagevec_init(&lru_pvec, 0);
1742 if (!add_to_page_cache(page, dentry->d_inode->i_mapping, 0,
1743 GFP_KERNEL)) {
1744 pagevec_add(&lru_pvec, page);
1745 pagevec_lru_add_file(&lru_pvec);
1746 SetPageUptodate(page);
1747 unlock_page(page);
1748 } else
1749 __free_page(page);
1750
1751 return 0;
1752 }
1753
1754 int
1755 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1756 {
1757 struct inode *inode = old_dentry->d_inode;
1758 int error;
1759
1760 dfprintk(VFS, "NFS: link(%s/%s -> %s/%s)\n",
1761 old_dentry->d_parent->d_name.name, old_dentry->d_name.name,
1762 dentry->d_parent->d_name.name, dentry->d_name.name);
1763
1764 NFS_PROTO(inode)->return_delegation(inode);
1765
1766 d_drop(dentry);
1767 error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
1768 if (error == 0) {
1769 ihold(inode);
1770 d_add(dentry, inode);
1771 }
1772 return error;
1773 }
1774
1775 /*
1776 * RENAME
1777 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
1778 * different file handle for the same inode after a rename (e.g. when
1779 * moving to a different directory). A fail-safe method to do so would
1780 * be to look up old_dir/old_name, create a link to new_dir/new_name and
1781 * rename the old file using the sillyrename stuff. This way, the original
1782 * file in old_dir will go away when the last process iput()s the inode.
1783 *
1784 * FIXED.
1785 *
1786 * It actually works quite well. One needs to have the possibility for
1787 * at least one ".nfs..." file in each directory the file ever gets
1788 * moved or linked to which happens automagically with the new
1789 * implementation that only depends on the dcache stuff instead of
1790 * using the inode layer
1791 *
1792 * Unfortunately, things are a little more complicated than indicated
1793 * above. For a cross-directory move, we want to make sure we can get
1794 * rid of the old inode after the operation. This means there must be
1795 * no pending writes (if it's a file), and the use count must be 1.
1796 * If these conditions are met, we can drop the dentries before doing
1797 * the rename.
1798 */
1799 int nfs_rename(struct inode *old_dir, struct dentry *old_dentry,
1800 struct inode *new_dir, struct dentry *new_dentry)
1801 {
1802 struct inode *old_inode = old_dentry->d_inode;
1803 struct inode *new_inode = new_dentry->d_inode;
1804 struct dentry *dentry = NULL, *rehash = NULL;
1805 int error = -EBUSY;
1806
1807 dfprintk(VFS, "NFS: rename(%s/%s -> %s/%s, ct=%d)\n",
1808 old_dentry->d_parent->d_name.name, old_dentry->d_name.name,
1809 new_dentry->d_parent->d_name.name, new_dentry->d_name.name,
1810 new_dentry->d_count);
1811
1812 /*
1813 * For non-directories, check whether the target is busy and if so,
1814 * make a copy of the dentry and then do a silly-rename. If the
1815 * silly-rename succeeds, the copied dentry is hashed and becomes
1816 * the new target.
1817 */
1818 if (new_inode && !S_ISDIR(new_inode->i_mode)) {
1819 /*
1820 * To prevent any new references to the target during the
1821 * rename, we unhash the dentry in advance.
1822 */
1823 if (!d_unhashed(new_dentry)) {
1824 d_drop(new_dentry);
1825 rehash = new_dentry;
1826 }
1827
1828 if (new_dentry->d_count > 2) {
1829 int err;
1830
1831 /* copy the target dentry's name */
1832 dentry = d_alloc(new_dentry->d_parent,
1833 &new_dentry->d_name);
1834 if (!dentry)
1835 goto out;
1836
1837 /* silly-rename the existing target ... */
1838 err = nfs_sillyrename(new_dir, new_dentry);
1839 if (err)
1840 goto out;
1841
1842 new_dentry = dentry;
1843 rehash = NULL;
1844 new_inode = NULL;
1845 }
1846 }
1847
1848 NFS_PROTO(old_inode)->return_delegation(old_inode);
1849 if (new_inode != NULL)
1850 NFS_PROTO(new_inode)->return_delegation(new_inode);
1851
1852 error = NFS_PROTO(old_dir)->rename(old_dir, &old_dentry->d_name,
1853 new_dir, &new_dentry->d_name);
1854 nfs_mark_for_revalidate(old_inode);
1855 out:
1856 if (rehash)
1857 d_rehash(rehash);
1858 if (!error) {
1859 if (new_inode != NULL)
1860 nfs_drop_nlink(new_inode);
1861 d_move(old_dentry, new_dentry);
1862 nfs_set_verifier(new_dentry,
1863 nfs_save_change_attribute(new_dir));
1864 } else if (error == -ENOENT)
1865 nfs_dentry_handle_enoent(old_dentry);
1866
1867 /* new dentry created? */
1868 if (dentry)
1869 dput(dentry);
1870 return error;
1871 }
1872
1873 static DEFINE_SPINLOCK(nfs_access_lru_lock);
1874 static LIST_HEAD(nfs_access_lru_list);
1875 static atomic_long_t nfs_access_nr_entries;
1876
1877 static void nfs_access_free_entry(struct nfs_access_entry *entry)
1878 {
1879 put_rpccred(entry->cred);
1880 kfree(entry);
1881 smp_mb__before_atomic_dec();
1882 atomic_long_dec(&nfs_access_nr_entries);
1883 smp_mb__after_atomic_dec();
1884 }
1885
1886 static void nfs_access_free_list(struct list_head *head)
1887 {
1888 struct nfs_access_entry *cache;
1889
1890 while (!list_empty(head)) {
1891 cache = list_entry(head->next, struct nfs_access_entry, lru);
1892 list_del(&cache->lru);
1893 nfs_access_free_entry(cache);
1894 }
1895 }
1896
1897 int nfs_access_cache_shrinker(struct shrinker *shrink,
1898 struct shrink_control *sc)
1899 {
1900 LIST_HEAD(head);
1901 struct nfs_inode *nfsi, *next;
1902 struct nfs_access_entry *cache;
1903 int nr_to_scan = sc->nr_to_scan;
1904 gfp_t gfp_mask = sc->gfp_mask;
1905
1906 if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL)
1907 return (nr_to_scan == 0) ? 0 : -1;
1908
1909 spin_lock(&nfs_access_lru_lock);
1910 list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) {
1911 struct inode *inode;
1912
1913 if (nr_to_scan-- == 0)
1914 break;
1915 inode = &nfsi->vfs_inode;
1916 spin_lock(&inode->i_lock);
1917 if (list_empty(&nfsi->access_cache_entry_lru))
1918 goto remove_lru_entry;
1919 cache = list_entry(nfsi->access_cache_entry_lru.next,
1920 struct nfs_access_entry, lru);
1921 list_move(&cache->lru, &head);
1922 rb_erase(&cache->rb_node, &nfsi->access_cache);
1923 if (!list_empty(&nfsi->access_cache_entry_lru))
1924 list_move_tail(&nfsi->access_cache_inode_lru,
1925 &nfs_access_lru_list);
1926 else {
1927 remove_lru_entry:
1928 list_del_init(&nfsi->access_cache_inode_lru);
1929 smp_mb__before_clear_bit();
1930 clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
1931 smp_mb__after_clear_bit();
1932 }
1933 spin_unlock(&inode->i_lock);
1934 }
1935 spin_unlock(&nfs_access_lru_lock);
1936 nfs_access_free_list(&head);
1937 return (atomic_long_read(&nfs_access_nr_entries) / 100) * sysctl_vfs_cache_pressure;
1938 }
1939
1940 static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head)
1941 {
1942 struct rb_root *root_node = &nfsi->access_cache;
1943 struct rb_node *n;
1944 struct nfs_access_entry *entry;
1945
1946 /* Unhook entries from the cache */
1947 while ((n = rb_first(root_node)) != NULL) {
1948 entry = rb_entry(n, struct nfs_access_entry, rb_node);
1949 rb_erase(n, root_node);
1950 list_move(&entry->lru, head);
1951 }
1952 nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
1953 }
1954
1955 void nfs_access_zap_cache(struct inode *inode)
1956 {
1957 LIST_HEAD(head);
1958
1959 if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0)
1960 return;
1961 /* Remove from global LRU init */
1962 spin_lock(&nfs_access_lru_lock);
1963 if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
1964 list_del_init(&NFS_I(inode)->access_cache_inode_lru);
1965
1966 spin_lock(&inode->i_lock);
1967 __nfs_access_zap_cache(NFS_I(inode), &head);
1968 spin_unlock(&inode->i_lock);
1969 spin_unlock(&nfs_access_lru_lock);
1970 nfs_access_free_list(&head);
1971 }
1972
1973 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, struct rpc_cred *cred)
1974 {
1975 struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
1976 struct nfs_access_entry *entry;
1977
1978 while (n != NULL) {
1979 entry = rb_entry(n, struct nfs_access_entry, rb_node);
1980
1981 if (cred < entry->cred)
1982 n = n->rb_left;
1983 else if (cred > entry->cred)
1984 n = n->rb_right;
1985 else
1986 return entry;
1987 }
1988 return NULL;
1989 }
1990
1991 static int nfs_access_get_cached(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res)
1992 {
1993 struct nfs_inode *nfsi = NFS_I(inode);
1994 struct nfs_access_entry *cache;
1995 int err = -ENOENT;
1996
1997 spin_lock(&inode->i_lock);
1998 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
1999 goto out_zap;
2000 cache = nfs_access_search_rbtree(inode, cred);
2001 if (cache == NULL)
2002 goto out;
2003 if (!nfs_have_delegated_attributes(inode) &&
2004 !time_in_range_open(jiffies, cache->jiffies, cache->jiffies + nfsi->attrtimeo))
2005 goto out_stale;
2006 res->jiffies = cache->jiffies;
2007 res->cred = cache->cred;
2008 res->mask = cache->mask;
2009 list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
2010 err = 0;
2011 out:
2012 spin_unlock(&inode->i_lock);
2013 return err;
2014 out_stale:
2015 rb_erase(&cache->rb_node, &nfsi->access_cache);
2016 list_del(&cache->lru);
2017 spin_unlock(&inode->i_lock);
2018 nfs_access_free_entry(cache);
2019 return -ENOENT;
2020 out_zap:
2021 spin_unlock(&inode->i_lock);
2022 nfs_access_zap_cache(inode);
2023 return -ENOENT;
2024 }
2025
2026 static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set)
2027 {
2028 struct nfs_inode *nfsi = NFS_I(inode);
2029 struct rb_root *root_node = &nfsi->access_cache;
2030 struct rb_node **p = &root_node->rb_node;
2031 struct rb_node *parent = NULL;
2032 struct nfs_access_entry *entry;
2033
2034 spin_lock(&inode->i_lock);
2035 while (*p != NULL) {
2036 parent = *p;
2037 entry = rb_entry(parent, struct nfs_access_entry, rb_node);
2038
2039 if (set->cred < entry->cred)
2040 p = &parent->rb_left;
2041 else if (set->cred > entry->cred)
2042 p = &parent->rb_right;
2043 else
2044 goto found;
2045 }
2046 rb_link_node(&set->rb_node, parent, p);
2047 rb_insert_color(&set->rb_node, root_node);
2048 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2049 spin_unlock(&inode->i_lock);
2050 return;
2051 found:
2052 rb_replace_node(parent, &set->rb_node, root_node);
2053 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2054 list_del(&entry->lru);
2055 spin_unlock(&inode->i_lock);
2056 nfs_access_free_entry(entry);
2057 }
2058
2059 static void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set)
2060 {
2061 struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
2062 if (cache == NULL)
2063 return;
2064 RB_CLEAR_NODE(&cache->rb_node);
2065 cache->jiffies = set->jiffies;
2066 cache->cred = get_rpccred(set->cred);
2067 cache->mask = set->mask;
2068
2069 nfs_access_add_rbtree(inode, cache);
2070
2071 /* Update accounting */
2072 smp_mb__before_atomic_inc();
2073 atomic_long_inc(&nfs_access_nr_entries);
2074 smp_mb__after_atomic_inc();
2075
2076 /* Add inode to global LRU list */
2077 if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
2078 spin_lock(&nfs_access_lru_lock);
2079 if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2080 list_add_tail(&NFS_I(inode)->access_cache_inode_lru,
2081 &nfs_access_lru_list);
2082 spin_unlock(&nfs_access_lru_lock);
2083 }
2084 }
2085
2086 static int nfs_do_access(struct inode *inode, struct rpc_cred *cred, int mask)
2087 {
2088 struct nfs_access_entry cache;
2089 int status;
2090
2091 status = nfs_access_get_cached(inode, cred, &cache);
2092 if (status == 0)
2093 goto out;
2094
2095 /* Be clever: ask server to check for all possible rights */
2096 cache.mask = MAY_EXEC | MAY_WRITE | MAY_READ;
2097 cache.cred = cred;
2098 cache.jiffies = jiffies;
2099 status = NFS_PROTO(inode)->access(inode, &cache);
2100 if (status != 0) {
2101 if (status == -ESTALE) {
2102 nfs_zap_caches(inode);
2103 if (!S_ISDIR(inode->i_mode))
2104 set_bit(NFS_INO_STALE, &NFS_I(inode)->flags);
2105 }
2106 return status;
2107 }
2108 nfs_access_add_cache(inode, &cache);
2109 out:
2110 if ((mask & ~cache.mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
2111 return 0;
2112 return -EACCES;
2113 }
2114
2115 static int nfs_open_permission_mask(int openflags)
2116 {
2117 int mask = 0;
2118
2119 if ((openflags & O_ACCMODE) != O_WRONLY)
2120 mask |= MAY_READ;
2121 if ((openflags & O_ACCMODE) != O_RDONLY)
2122 mask |= MAY_WRITE;
2123 if (openflags & __FMODE_EXEC)
2124 mask |= MAY_EXEC;
2125 return mask;
2126 }
2127
2128 int nfs_may_open(struct inode *inode, struct rpc_cred *cred, int openflags)
2129 {
2130 return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
2131 }
2132
2133 int nfs_permission(struct inode *inode, int mask)
2134 {
2135 struct rpc_cred *cred;
2136 int res = 0;
2137
2138 if (mask & MAY_NOT_BLOCK)
2139 return -ECHILD;
2140
2141 nfs_inc_stats(inode, NFSIOS_VFSACCESS);
2142
2143 if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
2144 goto out;
2145 /* Is this sys_access() ? */
2146 if (mask & (MAY_ACCESS | MAY_CHDIR))
2147 goto force_lookup;
2148
2149 switch (inode->i_mode & S_IFMT) {
2150 case S_IFLNK:
2151 goto out;
2152 case S_IFREG:
2153 /* NFSv4 has atomic_open... */
2154 if (nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN)
2155 && (mask & MAY_OPEN)
2156 && !(mask & MAY_EXEC))
2157 goto out;
2158 break;
2159 case S_IFDIR:
2160 /*
2161 * Optimize away all write operations, since the server
2162 * will check permissions when we perform the op.
2163 */
2164 if ((mask & MAY_WRITE) && !(mask & MAY_READ))
2165 goto out;
2166 }
2167
2168 force_lookup:
2169 if (!NFS_PROTO(inode)->access)
2170 goto out_notsup;
2171
2172 cred = rpc_lookup_cred();
2173 if (!IS_ERR(cred)) {
2174 res = nfs_do_access(inode, cred, mask);
2175 put_rpccred(cred);
2176 } else
2177 res = PTR_ERR(cred);
2178 out:
2179 if (!res && (mask & MAY_EXEC) && !execute_ok(inode))
2180 res = -EACCES;
2181
2182 dfprintk(VFS, "NFS: permission(%s/%ld), mask=0x%x, res=%d\n",
2183 inode->i_sb->s_id, inode->i_ino, mask, res);
2184 return res;
2185 out_notsup:
2186 res = nfs_revalidate_inode(NFS_SERVER(inode), inode);
2187 if (res == 0)
2188 res = generic_permission(inode, mask);
2189 goto out;
2190 }
2191
2192 /*
2193 * Local variables:
2194 * version-control: t
2195 * kept-new-versions: 5
2196 * End:
2197 */
This page took 0.076422 seconds and 5 git commands to generate.