NFS: Remove BKL from the symlink code
[deliverable/linux.git] / fs / nfs / dir.c
1 /*
2 * linux/fs/nfs/dir.c
3 *
4 * Copyright (C) 1992 Rick Sladkey
5 *
6 * nfs directory handling functions
7 *
8 * 10 Apr 1996 Added silly rename for unlink --okir
9 * 28 Sep 1996 Improved directory cache --okir
10 * 23 Aug 1997 Claus Heine claus@momo.math.rwth-aachen.de
11 * Re-implemented silly rename for unlink, newly implemented
12 * silly rename for nfs_rename() following the suggestions
13 * of Olaf Kirch (okir) found in this file.
14 * Following Linus comments on my original hack, this version
15 * depends only on the dcache stuff and doesn't touch the inode
16 * layer (iput() and friends).
17 * 6 Jun 1999 Cache readdir lookups in the page cache. -DaveM
18 */
19
20 #include <linux/time.h>
21 #include <linux/errno.h>
22 #include <linux/stat.h>
23 #include <linux/fcntl.h>
24 #include <linux/string.h>
25 #include <linux/kernel.h>
26 #include <linux/slab.h>
27 #include <linux/mm.h>
28 #include <linux/sunrpc/clnt.h>
29 #include <linux/nfs_fs.h>
30 #include <linux/nfs_mount.h>
31 #include <linux/pagemap.h>
32 #include <linux/smp_lock.h>
33 #include <linux/pagevec.h>
34 #include <linux/namei.h>
35 #include <linux/mount.h>
36 #include <linux/sched.h>
37
38 #include "nfs4_fs.h"
39 #include "delegation.h"
40 #include "iostat.h"
41 #include "internal.h"
42
43 /* #define NFS_DEBUG_VERBOSE 1 */
44
45 static int nfs_opendir(struct inode *, struct file *);
46 static int nfs_readdir(struct file *, void *, filldir_t);
47 static struct dentry *nfs_lookup(struct inode *, struct dentry *, struct nameidata *);
48 static int nfs_create(struct inode *, struct dentry *, int, struct nameidata *);
49 static int nfs_mkdir(struct inode *, struct dentry *, int);
50 static int nfs_rmdir(struct inode *, struct dentry *);
51 static int nfs_unlink(struct inode *, struct dentry *);
52 static int nfs_symlink(struct inode *, struct dentry *, const char *);
53 static int nfs_link(struct dentry *, struct inode *, struct dentry *);
54 static int nfs_mknod(struct inode *, struct dentry *, int, dev_t);
55 static int nfs_rename(struct inode *, struct dentry *,
56 struct inode *, struct dentry *);
57 static int nfs_fsync_dir(struct file *, struct dentry *, int);
58 static loff_t nfs_llseek_dir(struct file *, loff_t, int);
59
60 const struct file_operations nfs_dir_operations = {
61 .llseek = nfs_llseek_dir,
62 .read = generic_read_dir,
63 .readdir = nfs_readdir,
64 .open = nfs_opendir,
65 .release = nfs_release,
66 .fsync = nfs_fsync_dir,
67 };
68
69 const struct inode_operations nfs_dir_inode_operations = {
70 .create = nfs_create,
71 .lookup = nfs_lookup,
72 .link = nfs_link,
73 .unlink = nfs_unlink,
74 .symlink = nfs_symlink,
75 .mkdir = nfs_mkdir,
76 .rmdir = nfs_rmdir,
77 .mknod = nfs_mknod,
78 .rename = nfs_rename,
79 .permission = nfs_permission,
80 .getattr = nfs_getattr,
81 .setattr = nfs_setattr,
82 };
83
84 #ifdef CONFIG_NFS_V3
85 const struct inode_operations nfs3_dir_inode_operations = {
86 .create = nfs_create,
87 .lookup = nfs_lookup,
88 .link = nfs_link,
89 .unlink = nfs_unlink,
90 .symlink = nfs_symlink,
91 .mkdir = nfs_mkdir,
92 .rmdir = nfs_rmdir,
93 .mknod = nfs_mknod,
94 .rename = nfs_rename,
95 .permission = nfs_permission,
96 .getattr = nfs_getattr,
97 .setattr = nfs_setattr,
98 .listxattr = nfs3_listxattr,
99 .getxattr = nfs3_getxattr,
100 .setxattr = nfs3_setxattr,
101 .removexattr = nfs3_removexattr,
102 };
103 #endif /* CONFIG_NFS_V3 */
104
105 #ifdef CONFIG_NFS_V4
106
107 static struct dentry *nfs_atomic_lookup(struct inode *, struct dentry *, struct nameidata *);
108 const struct inode_operations nfs4_dir_inode_operations = {
109 .create = nfs_create,
110 .lookup = nfs_atomic_lookup,
111 .link = nfs_link,
112 .unlink = nfs_unlink,
113 .symlink = nfs_symlink,
114 .mkdir = nfs_mkdir,
115 .rmdir = nfs_rmdir,
116 .mknod = nfs_mknod,
117 .rename = nfs_rename,
118 .permission = nfs_permission,
119 .getattr = nfs_getattr,
120 .setattr = nfs_setattr,
121 .getxattr = nfs4_getxattr,
122 .setxattr = nfs4_setxattr,
123 .listxattr = nfs4_listxattr,
124 };
125
126 #endif /* CONFIG_NFS_V4 */
127
128 /*
129 * Open file
130 */
131 static int
132 nfs_opendir(struct inode *inode, struct file *filp)
133 {
134 int res;
135
136 dfprintk(FILE, "NFS: open dir(%s/%s)\n",
137 filp->f_path.dentry->d_parent->d_name.name,
138 filp->f_path.dentry->d_name.name);
139
140 nfs_inc_stats(inode, NFSIOS_VFSOPEN);
141
142 /* Call generic open code in order to cache credentials */
143 res = nfs_open(inode, filp);
144 return res;
145 }
146
147 typedef __be32 * (*decode_dirent_t)(__be32 *, struct nfs_entry *, int);
148 typedef struct {
149 struct file *file;
150 struct page *page;
151 unsigned long page_index;
152 __be32 *ptr;
153 u64 *dir_cookie;
154 loff_t current_index;
155 struct nfs_entry *entry;
156 decode_dirent_t decode;
157 int plus;
158 unsigned long timestamp;
159 int timestamp_valid;
160 } nfs_readdir_descriptor_t;
161
162 /* Now we cache directories properly, by stuffing the dirent
163 * data directly in the page cache.
164 *
165 * Inode invalidation due to refresh etc. takes care of
166 * _everything_, no sloppy entry flushing logic, no extraneous
167 * copying, network direct to page cache, the way it was meant
168 * to be.
169 *
170 * NOTE: Dirent information verification is done always by the
171 * page-in of the RPC reply, nowhere else, this simplies
172 * things substantially.
173 */
174 static
175 int nfs_readdir_filler(nfs_readdir_descriptor_t *desc, struct page *page)
176 {
177 struct file *file = desc->file;
178 struct inode *inode = file->f_path.dentry->d_inode;
179 struct rpc_cred *cred = nfs_file_cred(file);
180 unsigned long timestamp;
181 int error;
182
183 dfprintk(DIRCACHE, "NFS: %s: reading cookie %Lu into page %lu\n",
184 __func__, (long long)desc->entry->cookie,
185 page->index);
186
187 again:
188 timestamp = jiffies;
189 error = NFS_PROTO(inode)->readdir(file->f_path.dentry, cred, desc->entry->cookie, page,
190 NFS_SERVER(inode)->dtsize, desc->plus);
191 if (error < 0) {
192 /* We requested READDIRPLUS, but the server doesn't grok it */
193 if (error == -ENOTSUPP && desc->plus) {
194 NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
195 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
196 desc->plus = 0;
197 goto again;
198 }
199 goto error;
200 }
201 desc->timestamp = timestamp;
202 desc->timestamp_valid = 1;
203 SetPageUptodate(page);
204 /* Ensure consistent page alignment of the data.
205 * Note: assumes we have exclusive access to this mapping either
206 * through inode->i_mutex or some other mechanism.
207 */
208 if (invalidate_inode_pages2_range(inode->i_mapping, page->index + 1, -1) < 0) {
209 /* Should never happen */
210 nfs_zap_mapping(inode, inode->i_mapping);
211 }
212 unlock_page(page);
213 return 0;
214 error:
215 unlock_page(page);
216 return -EIO;
217 }
218
219 static inline
220 int dir_decode(nfs_readdir_descriptor_t *desc)
221 {
222 __be32 *p = desc->ptr;
223 p = desc->decode(p, desc->entry, desc->plus);
224 if (IS_ERR(p))
225 return PTR_ERR(p);
226 desc->ptr = p;
227 if (desc->timestamp_valid)
228 desc->entry->fattr->time_start = desc->timestamp;
229 else
230 desc->entry->fattr->valid &= ~NFS_ATTR_FATTR;
231 return 0;
232 }
233
234 static inline
235 void dir_page_release(nfs_readdir_descriptor_t *desc)
236 {
237 kunmap(desc->page);
238 page_cache_release(desc->page);
239 desc->page = NULL;
240 desc->ptr = NULL;
241 }
242
243 /*
244 * Given a pointer to a buffer that has already been filled by a call
245 * to readdir, find the next entry with cookie '*desc->dir_cookie'.
246 *
247 * If the end of the buffer has been reached, return -EAGAIN, if not,
248 * return the offset within the buffer of the next entry to be
249 * read.
250 */
251 static inline
252 int find_dirent(nfs_readdir_descriptor_t *desc)
253 {
254 struct nfs_entry *entry = desc->entry;
255 int loop_count = 0,
256 status;
257
258 while((status = dir_decode(desc)) == 0) {
259 dfprintk(DIRCACHE, "NFS: %s: examining cookie %Lu\n",
260 __func__, (unsigned long long)entry->cookie);
261 if (entry->prev_cookie == *desc->dir_cookie)
262 break;
263 if (loop_count++ > 200) {
264 loop_count = 0;
265 schedule();
266 }
267 }
268 return status;
269 }
270
271 /*
272 * Given a pointer to a buffer that has already been filled by a call
273 * to readdir, find the entry at offset 'desc->file->f_pos'.
274 *
275 * If the end of the buffer has been reached, return -EAGAIN, if not,
276 * return the offset within the buffer of the next entry to be
277 * read.
278 */
279 static inline
280 int find_dirent_index(nfs_readdir_descriptor_t *desc)
281 {
282 struct nfs_entry *entry = desc->entry;
283 int loop_count = 0,
284 status;
285
286 for(;;) {
287 status = dir_decode(desc);
288 if (status)
289 break;
290
291 dfprintk(DIRCACHE, "NFS: found cookie %Lu at index %Ld\n",
292 (unsigned long long)entry->cookie, desc->current_index);
293
294 if (desc->file->f_pos == desc->current_index) {
295 *desc->dir_cookie = entry->cookie;
296 break;
297 }
298 desc->current_index++;
299 if (loop_count++ > 200) {
300 loop_count = 0;
301 schedule();
302 }
303 }
304 return status;
305 }
306
307 /*
308 * Find the given page, and call find_dirent() or find_dirent_index in
309 * order to try to return the next entry.
310 */
311 static inline
312 int find_dirent_page(nfs_readdir_descriptor_t *desc)
313 {
314 struct inode *inode = desc->file->f_path.dentry->d_inode;
315 struct page *page;
316 int status;
317
318 dfprintk(DIRCACHE, "NFS: %s: searching page %ld for target %Lu\n",
319 __func__, desc->page_index,
320 (long long) *desc->dir_cookie);
321
322 /* If we find the page in the page_cache, we cannot be sure
323 * how fresh the data is, so we will ignore readdir_plus attributes.
324 */
325 desc->timestamp_valid = 0;
326 page = read_cache_page(inode->i_mapping, desc->page_index,
327 (filler_t *)nfs_readdir_filler, desc);
328 if (IS_ERR(page)) {
329 status = PTR_ERR(page);
330 goto out;
331 }
332
333 /* NOTE: Someone else may have changed the READDIRPLUS flag */
334 desc->page = page;
335 desc->ptr = kmap(page); /* matching kunmap in nfs_do_filldir */
336 if (*desc->dir_cookie != 0)
337 status = find_dirent(desc);
338 else
339 status = find_dirent_index(desc);
340 if (status < 0)
341 dir_page_release(desc);
342 out:
343 dfprintk(DIRCACHE, "NFS: %s: returns %d\n", __func__, status);
344 return status;
345 }
346
347 /*
348 * Recurse through the page cache pages, and return a
349 * filled nfs_entry structure of the next directory entry if possible.
350 *
351 * The target for the search is '*desc->dir_cookie' if non-0,
352 * 'desc->file->f_pos' otherwise
353 */
354 static inline
355 int readdir_search_pagecache(nfs_readdir_descriptor_t *desc)
356 {
357 int loop_count = 0;
358 int res;
359
360 /* Always search-by-index from the beginning of the cache */
361 if (*desc->dir_cookie == 0) {
362 dfprintk(DIRCACHE, "NFS: readdir_search_pagecache() searching for offset %Ld\n",
363 (long long)desc->file->f_pos);
364 desc->page_index = 0;
365 desc->entry->cookie = desc->entry->prev_cookie = 0;
366 desc->entry->eof = 0;
367 desc->current_index = 0;
368 } else
369 dfprintk(DIRCACHE, "NFS: readdir_search_pagecache() searching for cookie %Lu\n",
370 (unsigned long long)*desc->dir_cookie);
371
372 for (;;) {
373 res = find_dirent_page(desc);
374 if (res != -EAGAIN)
375 break;
376 /* Align to beginning of next page */
377 desc->page_index ++;
378 if (loop_count++ > 200) {
379 loop_count = 0;
380 schedule();
381 }
382 }
383
384 dfprintk(DIRCACHE, "NFS: %s: returns %d\n", __func__, res);
385 return res;
386 }
387
388 static inline unsigned int dt_type(struct inode *inode)
389 {
390 return (inode->i_mode >> 12) & 15;
391 }
392
393 static struct dentry *nfs_readdir_lookup(nfs_readdir_descriptor_t *desc);
394
395 /*
396 * Once we've found the start of the dirent within a page: fill 'er up...
397 */
398 static
399 int nfs_do_filldir(nfs_readdir_descriptor_t *desc, void *dirent,
400 filldir_t filldir)
401 {
402 struct file *file = desc->file;
403 struct nfs_entry *entry = desc->entry;
404 struct dentry *dentry = NULL;
405 u64 fileid;
406 int loop_count = 0,
407 res;
408
409 dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling starting @ cookie %Lu\n",
410 (unsigned long long)entry->cookie);
411
412 for(;;) {
413 unsigned d_type = DT_UNKNOWN;
414 /* Note: entry->prev_cookie contains the cookie for
415 * retrieving the current dirent on the server */
416 fileid = entry->ino;
417
418 /* Get a dentry if we have one */
419 if (dentry != NULL)
420 dput(dentry);
421 dentry = nfs_readdir_lookup(desc);
422
423 /* Use readdirplus info */
424 if (dentry != NULL && dentry->d_inode != NULL) {
425 d_type = dt_type(dentry->d_inode);
426 fileid = NFS_FILEID(dentry->d_inode);
427 }
428
429 res = filldir(dirent, entry->name, entry->len,
430 file->f_pos, nfs_compat_user_ino64(fileid),
431 d_type);
432 if (res < 0)
433 break;
434 file->f_pos++;
435 *desc->dir_cookie = entry->cookie;
436 if (dir_decode(desc) != 0) {
437 desc->page_index ++;
438 break;
439 }
440 if (loop_count++ > 200) {
441 loop_count = 0;
442 schedule();
443 }
444 }
445 dir_page_release(desc);
446 if (dentry != NULL)
447 dput(dentry);
448 dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n",
449 (unsigned long long)*desc->dir_cookie, res);
450 return res;
451 }
452
453 /*
454 * If we cannot find a cookie in our cache, we suspect that this is
455 * because it points to a deleted file, so we ask the server to return
456 * whatever it thinks is the next entry. We then feed this to filldir.
457 * If all goes well, we should then be able to find our way round the
458 * cache on the next call to readdir_search_pagecache();
459 *
460 * NOTE: we cannot add the anonymous page to the pagecache because
461 * the data it contains might not be page aligned. Besides,
462 * we should already have a complete representation of the
463 * directory in the page cache by the time we get here.
464 */
465 static inline
466 int uncached_readdir(nfs_readdir_descriptor_t *desc, void *dirent,
467 filldir_t filldir)
468 {
469 struct file *file = desc->file;
470 struct inode *inode = file->f_path.dentry->d_inode;
471 struct rpc_cred *cred = nfs_file_cred(file);
472 struct page *page = NULL;
473 int status;
474 unsigned long timestamp;
475
476 dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n",
477 (unsigned long long)*desc->dir_cookie);
478
479 page = alloc_page(GFP_HIGHUSER);
480 if (!page) {
481 status = -ENOMEM;
482 goto out;
483 }
484 timestamp = jiffies;
485 status = NFS_PROTO(inode)->readdir(file->f_path.dentry, cred,
486 *desc->dir_cookie, page,
487 NFS_SERVER(inode)->dtsize,
488 desc->plus);
489 desc->page = page;
490 desc->ptr = kmap(page); /* matching kunmap in nfs_do_filldir */
491 if (status >= 0) {
492 desc->timestamp = timestamp;
493 desc->timestamp_valid = 1;
494 if ((status = dir_decode(desc)) == 0)
495 desc->entry->prev_cookie = *desc->dir_cookie;
496 } else
497 status = -EIO;
498 if (status < 0)
499 goto out_release;
500
501 status = nfs_do_filldir(desc, dirent, filldir);
502
503 /* Reset read descriptor so it searches the page cache from
504 * the start upon the next call to readdir_search_pagecache() */
505 desc->page_index = 0;
506 desc->entry->cookie = desc->entry->prev_cookie = 0;
507 desc->entry->eof = 0;
508 out:
509 dfprintk(DIRCACHE, "NFS: %s: returns %d\n",
510 __func__, status);
511 return status;
512 out_release:
513 dir_page_release(desc);
514 goto out;
515 }
516
517 /* The file offset position represents the dirent entry number. A
518 last cookie cache takes care of the common case of reading the
519 whole directory.
520 */
521 static int nfs_readdir(struct file *filp, void *dirent, filldir_t filldir)
522 {
523 struct dentry *dentry = filp->f_path.dentry;
524 struct inode *inode = dentry->d_inode;
525 nfs_readdir_descriptor_t my_desc,
526 *desc = &my_desc;
527 struct nfs_entry my_entry;
528 struct nfs_fh fh;
529 struct nfs_fattr fattr;
530 long res;
531
532 dfprintk(FILE, "NFS: readdir(%s/%s) starting at cookie %llu\n",
533 dentry->d_parent->d_name.name, dentry->d_name.name,
534 (long long)filp->f_pos);
535 nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
536
537 lock_kernel();
538
539 /*
540 * filp->f_pos points to the dirent entry number.
541 * *desc->dir_cookie has the cookie for the next entry. We have
542 * to either find the entry with the appropriate number or
543 * revalidate the cookie.
544 */
545 memset(desc, 0, sizeof(*desc));
546
547 desc->file = filp;
548 desc->dir_cookie = &nfs_file_open_context(filp)->dir_cookie;
549 desc->decode = NFS_PROTO(inode)->decode_dirent;
550 desc->plus = NFS_USE_READDIRPLUS(inode);
551
552 my_entry.cookie = my_entry.prev_cookie = 0;
553 my_entry.eof = 0;
554 my_entry.fh = &fh;
555 my_entry.fattr = &fattr;
556 nfs_fattr_init(&fattr);
557 desc->entry = &my_entry;
558
559 nfs_block_sillyrename(dentry);
560 res = nfs_revalidate_mapping_nolock(inode, filp->f_mapping);
561 if (res < 0)
562 goto out;
563
564 while(!desc->entry->eof) {
565 res = readdir_search_pagecache(desc);
566
567 if (res == -EBADCOOKIE) {
568 /* This means either end of directory */
569 if (*desc->dir_cookie && desc->entry->cookie != *desc->dir_cookie) {
570 /* Or that the server has 'lost' a cookie */
571 res = uncached_readdir(desc, dirent, filldir);
572 if (res >= 0)
573 continue;
574 }
575 res = 0;
576 break;
577 }
578 if (res == -ETOOSMALL && desc->plus) {
579 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
580 nfs_zap_caches(inode);
581 desc->plus = 0;
582 desc->entry->eof = 0;
583 continue;
584 }
585 if (res < 0)
586 break;
587
588 res = nfs_do_filldir(desc, dirent, filldir);
589 if (res < 0) {
590 res = 0;
591 break;
592 }
593 }
594 out:
595 nfs_unblock_sillyrename(dentry);
596 unlock_kernel();
597 if (res > 0)
598 res = 0;
599 dfprintk(FILE, "NFS: readdir(%s/%s) returns %ld\n",
600 dentry->d_parent->d_name.name, dentry->d_name.name,
601 res);
602 return res;
603 }
604
605 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int origin)
606 {
607 struct dentry *dentry = filp->f_path.dentry;
608 struct inode *inode = dentry->d_inode;
609
610 dfprintk(FILE, "NFS: llseek dir(%s/%s, %lld, %d)\n",
611 dentry->d_parent->d_name.name,
612 dentry->d_name.name,
613 offset, origin);
614
615 mutex_lock(&inode->i_mutex);
616 switch (origin) {
617 case 1:
618 offset += filp->f_pos;
619 case 0:
620 if (offset >= 0)
621 break;
622 default:
623 offset = -EINVAL;
624 goto out;
625 }
626 if (offset != filp->f_pos) {
627 filp->f_pos = offset;
628 nfs_file_open_context(filp)->dir_cookie = 0;
629 }
630 out:
631 mutex_unlock(&inode->i_mutex);
632 return offset;
633 }
634
635 /*
636 * All directory operations under NFS are synchronous, so fsync()
637 * is a dummy operation.
638 */
639 static int nfs_fsync_dir(struct file *filp, struct dentry *dentry, int datasync)
640 {
641 dfprintk(FILE, "NFS: fsync dir(%s/%s) datasync %d\n",
642 dentry->d_parent->d_name.name, dentry->d_name.name,
643 datasync);
644
645 nfs_inc_stats(dentry->d_inode, NFSIOS_VFSFSYNC);
646 return 0;
647 }
648
649 /**
650 * nfs_force_lookup_revalidate - Mark the directory as having changed
651 * @dir - pointer to directory inode
652 *
653 * This forces the revalidation code in nfs_lookup_revalidate() to do a
654 * full lookup on all child dentries of 'dir' whenever a change occurs
655 * on the server that might have invalidated our dcache.
656 *
657 * The caller should be holding dir->i_lock
658 */
659 void nfs_force_lookup_revalidate(struct inode *dir)
660 {
661 NFS_I(dir)->cache_change_attribute = jiffies;
662 }
663
664 /*
665 * A check for whether or not the parent directory has changed.
666 * In the case it has, we assume that the dentries are untrustworthy
667 * and may need to be looked up again.
668 */
669 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry)
670 {
671 if (IS_ROOT(dentry))
672 return 1;
673 if (!nfs_verify_change_attribute(dir, dentry->d_time))
674 return 0;
675 /* Revalidate nfsi->cache_change_attribute before we declare a match */
676 if (nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
677 return 0;
678 if (!nfs_verify_change_attribute(dir, dentry->d_time))
679 return 0;
680 return 1;
681 }
682
683 /*
684 * Return the intent data that applies to this particular path component
685 *
686 * Note that the current set of intents only apply to the very last
687 * component of the path.
688 * We check for this using LOOKUP_CONTINUE and LOOKUP_PARENT.
689 */
690 static inline unsigned int nfs_lookup_check_intent(struct nameidata *nd, unsigned int mask)
691 {
692 if (nd->flags & (LOOKUP_CONTINUE|LOOKUP_PARENT))
693 return 0;
694 return nd->flags & mask;
695 }
696
697 /*
698 * Use intent information to check whether or not we're going to do
699 * an O_EXCL create using this path component.
700 */
701 static int nfs_is_exclusive_create(struct inode *dir, struct nameidata *nd)
702 {
703 if (NFS_PROTO(dir)->version == 2)
704 return 0;
705 if (nd == NULL || nfs_lookup_check_intent(nd, LOOKUP_CREATE) == 0)
706 return 0;
707 return (nd->intent.open.flags & O_EXCL) != 0;
708 }
709
710 /*
711 * Inode and filehandle revalidation for lookups.
712 *
713 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
714 * or if the intent information indicates that we're about to open this
715 * particular file and the "nocto" mount flag is not set.
716 *
717 */
718 static inline
719 int nfs_lookup_verify_inode(struct inode *inode, struct nameidata *nd)
720 {
721 struct nfs_server *server = NFS_SERVER(inode);
722
723 if (test_bit(NFS_INO_MOUNTPOINT, &NFS_I(inode)->flags))
724 return 0;
725 if (nd != NULL) {
726 /* VFS wants an on-the-wire revalidation */
727 if (nd->flags & LOOKUP_REVAL)
728 goto out_force;
729 /* This is an open(2) */
730 if (nfs_lookup_check_intent(nd, LOOKUP_OPEN) != 0 &&
731 !(server->flags & NFS_MOUNT_NOCTO) &&
732 (S_ISREG(inode->i_mode) ||
733 S_ISDIR(inode->i_mode)))
734 goto out_force;
735 return 0;
736 }
737 return nfs_revalidate_inode(server, inode);
738 out_force:
739 return __nfs_revalidate_inode(server, inode);
740 }
741
742 /*
743 * We judge how long we want to trust negative
744 * dentries by looking at the parent inode mtime.
745 *
746 * If parent mtime has changed, we revalidate, else we wait for a
747 * period corresponding to the parent's attribute cache timeout value.
748 */
749 static inline
750 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
751 struct nameidata *nd)
752 {
753 /* Don't revalidate a negative dentry if we're creating a new file */
754 if (nd != NULL && nfs_lookup_check_intent(nd, LOOKUP_CREATE) != 0)
755 return 0;
756 return !nfs_check_verifier(dir, dentry);
757 }
758
759 /*
760 * This is called every time the dcache has a lookup hit,
761 * and we should check whether we can really trust that
762 * lookup.
763 *
764 * NOTE! The hit can be a negative hit too, don't assume
765 * we have an inode!
766 *
767 * If the parent directory is seen to have changed, we throw out the
768 * cached dentry and do a new lookup.
769 */
770 static int nfs_lookup_revalidate(struct dentry * dentry, struct nameidata *nd)
771 {
772 struct inode *dir;
773 struct inode *inode;
774 struct dentry *parent;
775 int error;
776 struct nfs_fh fhandle;
777 struct nfs_fattr fattr;
778
779 parent = dget_parent(dentry);
780 dir = parent->d_inode;
781 nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
782 inode = dentry->d_inode;
783
784 if (!inode) {
785 if (nfs_neg_need_reval(dir, dentry, nd))
786 goto out_bad;
787 goto out_valid;
788 }
789
790 if (is_bad_inode(inode)) {
791 dfprintk(LOOKUPCACHE, "%s: %s/%s has dud inode\n",
792 __func__, dentry->d_parent->d_name.name,
793 dentry->d_name.name);
794 goto out_bad;
795 }
796
797 /* Force a full look up iff the parent directory has changed */
798 if (!nfs_is_exclusive_create(dir, nd) && nfs_check_verifier(dir, dentry)) {
799 if (nfs_lookup_verify_inode(inode, nd))
800 goto out_zap_parent;
801 goto out_valid;
802 }
803
804 if (NFS_STALE(inode))
805 goto out_bad;
806
807 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, &fhandle, &fattr);
808 if (error)
809 goto out_bad;
810 if (nfs_compare_fh(NFS_FH(inode), &fhandle))
811 goto out_bad;
812 if ((error = nfs_refresh_inode(inode, &fattr)) != 0)
813 goto out_bad;
814
815 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
816 out_valid:
817 dput(parent);
818 dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is valid\n",
819 __func__, dentry->d_parent->d_name.name,
820 dentry->d_name.name);
821 return 1;
822 out_zap_parent:
823 nfs_zap_caches(dir);
824 out_bad:
825 nfs_mark_for_revalidate(dir);
826 if (inode && S_ISDIR(inode->i_mode)) {
827 /* Purge readdir caches. */
828 nfs_zap_caches(inode);
829 /* If we have submounts, don't unhash ! */
830 if (have_submounts(dentry))
831 goto out_valid;
832 shrink_dcache_parent(dentry);
833 }
834 d_drop(dentry);
835 dput(parent);
836 dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is invalid\n",
837 __func__, dentry->d_parent->d_name.name,
838 dentry->d_name.name);
839 return 0;
840 }
841
842 /*
843 * This is called from dput() when d_count is going to 0.
844 */
845 static int nfs_dentry_delete(struct dentry *dentry)
846 {
847 dfprintk(VFS, "NFS: dentry_delete(%s/%s, %x)\n",
848 dentry->d_parent->d_name.name, dentry->d_name.name,
849 dentry->d_flags);
850
851 /* Unhash any dentry with a stale inode */
852 if (dentry->d_inode != NULL && NFS_STALE(dentry->d_inode))
853 return 1;
854
855 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
856 /* Unhash it, so that ->d_iput() would be called */
857 return 1;
858 }
859 if (!(dentry->d_sb->s_flags & MS_ACTIVE)) {
860 /* Unhash it, so that ancestors of killed async unlink
861 * files will be cleaned up during umount */
862 return 1;
863 }
864 return 0;
865
866 }
867
868 static void nfs_drop_nlink(struct inode *inode)
869 {
870 spin_lock(&inode->i_lock);
871 if (inode->i_nlink > 0)
872 drop_nlink(inode);
873 spin_unlock(&inode->i_lock);
874 }
875
876 /*
877 * Called when the dentry loses inode.
878 * We use it to clean up silly-renamed files.
879 */
880 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
881 {
882 if (S_ISDIR(inode->i_mode))
883 /* drop any readdir cache as it could easily be old */
884 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA;
885
886 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
887 drop_nlink(inode);
888 nfs_complete_unlink(dentry, inode);
889 }
890 iput(inode);
891 }
892
893 struct dentry_operations nfs_dentry_operations = {
894 .d_revalidate = nfs_lookup_revalidate,
895 .d_delete = nfs_dentry_delete,
896 .d_iput = nfs_dentry_iput,
897 };
898
899 static struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
900 {
901 struct dentry *res;
902 struct dentry *parent;
903 struct inode *inode = NULL;
904 int error;
905 struct nfs_fh fhandle;
906 struct nfs_fattr fattr;
907
908 dfprintk(VFS, "NFS: lookup(%s/%s)\n",
909 dentry->d_parent->d_name.name, dentry->d_name.name);
910 nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
911
912 res = ERR_PTR(-ENAMETOOLONG);
913 if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
914 goto out;
915
916 res = ERR_PTR(-ENOMEM);
917 dentry->d_op = NFS_PROTO(dir)->dentry_ops;
918
919 /*
920 * If we're doing an exclusive create, optimize away the lookup
921 * but don't hash the dentry.
922 */
923 if (nfs_is_exclusive_create(dir, nd)) {
924 d_instantiate(dentry, NULL);
925 res = NULL;
926 goto out;
927 }
928
929 parent = dentry->d_parent;
930 /* Protect against concurrent sillydeletes */
931 nfs_block_sillyrename(parent);
932 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, &fhandle, &fattr);
933 if (error == -ENOENT)
934 goto no_entry;
935 if (error < 0) {
936 res = ERR_PTR(error);
937 goto out_unblock_sillyrename;
938 }
939 inode = nfs_fhget(dentry->d_sb, &fhandle, &fattr);
940 res = (struct dentry *)inode;
941 if (IS_ERR(res))
942 goto out_unblock_sillyrename;
943
944 no_entry:
945 res = d_materialise_unique(dentry, inode);
946 if (res != NULL) {
947 if (IS_ERR(res))
948 goto out_unblock_sillyrename;
949 dentry = res;
950 }
951 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
952 out_unblock_sillyrename:
953 nfs_unblock_sillyrename(parent);
954 out:
955 return res;
956 }
957
958 #ifdef CONFIG_NFS_V4
959 static int nfs_open_revalidate(struct dentry *, struct nameidata *);
960
961 struct dentry_operations nfs4_dentry_operations = {
962 .d_revalidate = nfs_open_revalidate,
963 .d_delete = nfs_dentry_delete,
964 .d_iput = nfs_dentry_iput,
965 };
966
967 /*
968 * Use intent information to determine whether we need to substitute
969 * the NFSv4-style stateful OPEN for the LOOKUP call
970 */
971 static int is_atomic_open(struct inode *dir, struct nameidata *nd)
972 {
973 if (nd == NULL || nfs_lookup_check_intent(nd, LOOKUP_OPEN) == 0)
974 return 0;
975 /* NFS does not (yet) have a stateful open for directories */
976 if (nd->flags & LOOKUP_DIRECTORY)
977 return 0;
978 /* Are we trying to write to a read only partition? */
979 if (__mnt_is_readonly(nd->path.mnt) &&
980 (nd->intent.open.flags & (O_CREAT|O_TRUNC|FMODE_WRITE)))
981 return 0;
982 return 1;
983 }
984
985 static struct dentry *nfs_atomic_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd)
986 {
987 struct dentry *res = NULL;
988 int error;
989
990 dfprintk(VFS, "NFS: atomic_lookup(%s/%ld), %s\n",
991 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
992
993 /* Check that we are indeed trying to open this file */
994 if (!is_atomic_open(dir, nd))
995 goto no_open;
996
997 if (dentry->d_name.len > NFS_SERVER(dir)->namelen) {
998 res = ERR_PTR(-ENAMETOOLONG);
999 goto out;
1000 }
1001 dentry->d_op = NFS_PROTO(dir)->dentry_ops;
1002
1003 /* Let vfs_create() deal with O_EXCL. Instantiate, but don't hash
1004 * the dentry. */
1005 if (nd->intent.open.flags & O_EXCL) {
1006 d_instantiate(dentry, NULL);
1007 goto out;
1008 }
1009
1010 /* Open the file on the server */
1011 res = nfs4_atomic_open(dir, dentry, nd);
1012 if (IS_ERR(res)) {
1013 error = PTR_ERR(res);
1014 switch (error) {
1015 /* Make a negative dentry */
1016 case -ENOENT:
1017 res = NULL;
1018 goto out;
1019 /* This turned out not to be a regular file */
1020 case -EISDIR:
1021 case -ENOTDIR:
1022 goto no_open;
1023 case -ELOOP:
1024 if (!(nd->intent.open.flags & O_NOFOLLOW))
1025 goto no_open;
1026 /* case -EINVAL: */
1027 default:
1028 goto out;
1029 }
1030 } else if (res != NULL)
1031 dentry = res;
1032 out:
1033 return res;
1034 no_open:
1035 return nfs_lookup(dir, dentry, nd);
1036 }
1037
1038 static int nfs_open_revalidate(struct dentry *dentry, struct nameidata *nd)
1039 {
1040 struct dentry *parent = NULL;
1041 struct inode *inode = dentry->d_inode;
1042 struct inode *dir;
1043 int openflags, ret = 0;
1044
1045 parent = dget_parent(dentry);
1046 dir = parent->d_inode;
1047 if (!is_atomic_open(dir, nd))
1048 goto no_open;
1049 /* We can't create new files in nfs_open_revalidate(), so we
1050 * optimize away revalidation of negative dentries.
1051 */
1052 if (inode == NULL) {
1053 if (!nfs_neg_need_reval(dir, dentry, nd))
1054 ret = 1;
1055 goto out;
1056 }
1057
1058 /* NFS only supports OPEN on regular files */
1059 if (!S_ISREG(inode->i_mode))
1060 goto no_open;
1061 openflags = nd->intent.open.flags;
1062 /* We cannot do exclusive creation on a positive dentry */
1063 if ((openflags & (O_CREAT|O_EXCL)) == (O_CREAT|O_EXCL))
1064 goto no_open;
1065 /* We can't create new files, or truncate existing ones here */
1066 openflags &= ~(O_CREAT|O_TRUNC);
1067
1068 /*
1069 * Note: we're not holding inode->i_mutex and so may be racing with
1070 * operations that change the directory. We therefore save the
1071 * change attribute *before* we do the RPC call.
1072 */
1073 ret = nfs4_open_revalidate(dir, dentry, openflags, nd);
1074 out:
1075 dput(parent);
1076 if (!ret)
1077 d_drop(dentry);
1078 return ret;
1079 no_open:
1080 dput(parent);
1081 if (inode != NULL && nfs_have_delegation(inode, FMODE_READ))
1082 return 1;
1083 return nfs_lookup_revalidate(dentry, nd);
1084 }
1085 #endif /* CONFIG_NFSV4 */
1086
1087 static struct dentry *nfs_readdir_lookup(nfs_readdir_descriptor_t *desc)
1088 {
1089 struct dentry *parent = desc->file->f_path.dentry;
1090 struct inode *dir = parent->d_inode;
1091 struct nfs_entry *entry = desc->entry;
1092 struct dentry *dentry, *alias;
1093 struct qstr name = {
1094 .name = entry->name,
1095 .len = entry->len,
1096 };
1097 struct inode *inode;
1098 unsigned long verf = nfs_save_change_attribute(dir);
1099
1100 switch (name.len) {
1101 case 2:
1102 if (name.name[0] == '.' && name.name[1] == '.')
1103 return dget_parent(parent);
1104 break;
1105 case 1:
1106 if (name.name[0] == '.')
1107 return dget(parent);
1108 }
1109
1110 spin_lock(&dir->i_lock);
1111 if (NFS_I(dir)->cache_validity & NFS_INO_INVALID_DATA) {
1112 spin_unlock(&dir->i_lock);
1113 return NULL;
1114 }
1115 spin_unlock(&dir->i_lock);
1116
1117 name.hash = full_name_hash(name.name, name.len);
1118 dentry = d_lookup(parent, &name);
1119 if (dentry != NULL) {
1120 /* Is this a positive dentry that matches the readdir info? */
1121 if (dentry->d_inode != NULL &&
1122 (NFS_FILEID(dentry->d_inode) == entry->ino ||
1123 d_mountpoint(dentry))) {
1124 if (!desc->plus || entry->fh->size == 0)
1125 return dentry;
1126 if (nfs_compare_fh(NFS_FH(dentry->d_inode),
1127 entry->fh) == 0)
1128 goto out_renew;
1129 }
1130 /* No, so d_drop to allow one to be created */
1131 d_drop(dentry);
1132 dput(dentry);
1133 }
1134 if (!desc->plus || !(entry->fattr->valid & NFS_ATTR_FATTR))
1135 return NULL;
1136 if (name.len > NFS_SERVER(dir)->namelen)
1137 return NULL;
1138 /* Note: caller is already holding the dir->i_mutex! */
1139 dentry = d_alloc(parent, &name);
1140 if (dentry == NULL)
1141 return NULL;
1142 dentry->d_op = NFS_PROTO(dir)->dentry_ops;
1143 inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr);
1144 if (IS_ERR(inode)) {
1145 dput(dentry);
1146 return NULL;
1147 }
1148
1149 alias = d_materialise_unique(dentry, inode);
1150 if (alias != NULL) {
1151 dput(dentry);
1152 if (IS_ERR(alias))
1153 return NULL;
1154 dentry = alias;
1155 }
1156
1157 out_renew:
1158 nfs_set_verifier(dentry, verf);
1159 return dentry;
1160 }
1161
1162 /*
1163 * Code common to create, mkdir, and mknod.
1164 */
1165 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
1166 struct nfs_fattr *fattr)
1167 {
1168 struct dentry *parent = dget_parent(dentry);
1169 struct inode *dir = parent->d_inode;
1170 struct inode *inode;
1171 int error = -EACCES;
1172
1173 d_drop(dentry);
1174
1175 /* We may have been initialized further down */
1176 if (dentry->d_inode)
1177 goto out;
1178 if (fhandle->size == 0) {
1179 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr);
1180 if (error)
1181 goto out_error;
1182 }
1183 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1184 if (!(fattr->valid & NFS_ATTR_FATTR)) {
1185 struct nfs_server *server = NFS_SB(dentry->d_sb);
1186 error = server->nfs_client->rpc_ops->getattr(server, fhandle, fattr);
1187 if (error < 0)
1188 goto out_error;
1189 }
1190 inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
1191 error = PTR_ERR(inode);
1192 if (IS_ERR(inode))
1193 goto out_error;
1194 d_add(dentry, inode);
1195 out:
1196 dput(parent);
1197 return 0;
1198 out_error:
1199 nfs_mark_for_revalidate(dir);
1200 dput(parent);
1201 return error;
1202 }
1203
1204 /*
1205 * Following a failed create operation, we drop the dentry rather
1206 * than retain a negative dentry. This avoids a problem in the event
1207 * that the operation succeeded on the server, but an error in the
1208 * reply path made it appear to have failed.
1209 */
1210 static int nfs_create(struct inode *dir, struct dentry *dentry, int mode,
1211 struct nameidata *nd)
1212 {
1213 struct iattr attr;
1214 int error;
1215 int open_flags = 0;
1216
1217 dfprintk(VFS, "NFS: create(%s/%ld), %s\n",
1218 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1219
1220 attr.ia_mode = mode;
1221 attr.ia_valid = ATTR_MODE;
1222
1223 if ((nd->flags & LOOKUP_CREATE) != 0)
1224 open_flags = nd->intent.open.flags;
1225
1226 error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags, nd);
1227 if (error != 0)
1228 goto out_err;
1229 return 0;
1230 out_err:
1231 d_drop(dentry);
1232 return error;
1233 }
1234
1235 /*
1236 * See comments for nfs_proc_create regarding failed operations.
1237 */
1238 static int
1239 nfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t rdev)
1240 {
1241 struct iattr attr;
1242 int status;
1243
1244 dfprintk(VFS, "NFS: mknod(%s/%ld), %s\n",
1245 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1246
1247 if (!new_valid_dev(rdev))
1248 return -EINVAL;
1249
1250 attr.ia_mode = mode;
1251 attr.ia_valid = ATTR_MODE;
1252
1253 status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
1254 if (status != 0)
1255 goto out_err;
1256 return 0;
1257 out_err:
1258 d_drop(dentry);
1259 return status;
1260 }
1261
1262 /*
1263 * See comments for nfs_proc_create regarding failed operations.
1264 */
1265 static int nfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1266 {
1267 struct iattr attr;
1268 int error;
1269
1270 dfprintk(VFS, "NFS: mkdir(%s/%ld), %s\n",
1271 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1272
1273 attr.ia_valid = ATTR_MODE;
1274 attr.ia_mode = mode | S_IFDIR;
1275
1276 error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
1277 if (error != 0)
1278 goto out_err;
1279 return 0;
1280 out_err:
1281 d_drop(dentry);
1282 return error;
1283 }
1284
1285 static void nfs_dentry_handle_enoent(struct dentry *dentry)
1286 {
1287 if (dentry->d_inode != NULL && !d_unhashed(dentry))
1288 d_delete(dentry);
1289 }
1290
1291 static int nfs_rmdir(struct inode *dir, struct dentry *dentry)
1292 {
1293 int error;
1294
1295 dfprintk(VFS, "NFS: rmdir(%s/%ld), %s\n",
1296 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1297
1298 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1299 /* Ensure the VFS deletes this inode */
1300 if (error == 0 && dentry->d_inode != NULL)
1301 clear_nlink(dentry->d_inode);
1302 else if (error == -ENOENT)
1303 nfs_dentry_handle_enoent(dentry);
1304
1305 return error;
1306 }
1307
1308 static int nfs_sillyrename(struct inode *dir, struct dentry *dentry)
1309 {
1310 static unsigned int sillycounter;
1311 const int fileidsize = sizeof(NFS_FILEID(dentry->d_inode))*2;
1312 const int countersize = sizeof(sillycounter)*2;
1313 const int slen = sizeof(".nfs")+fileidsize+countersize-1;
1314 char silly[slen+1];
1315 struct qstr qsilly;
1316 struct dentry *sdentry;
1317 int error = -EIO;
1318
1319 dfprintk(VFS, "NFS: silly-rename(%s/%s, ct=%d)\n",
1320 dentry->d_parent->d_name.name, dentry->d_name.name,
1321 atomic_read(&dentry->d_count));
1322 nfs_inc_stats(dir, NFSIOS_SILLYRENAME);
1323
1324 /*
1325 * We don't allow a dentry to be silly-renamed twice.
1326 */
1327 error = -EBUSY;
1328 if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1329 goto out;
1330
1331 sprintf(silly, ".nfs%*.*Lx",
1332 fileidsize, fileidsize,
1333 (unsigned long long)NFS_FILEID(dentry->d_inode));
1334
1335 /* Return delegation in anticipation of the rename */
1336 nfs_inode_return_delegation(dentry->d_inode);
1337
1338 sdentry = NULL;
1339 do {
1340 char *suffix = silly + slen - countersize;
1341
1342 dput(sdentry);
1343 sillycounter++;
1344 sprintf(suffix, "%*.*x", countersize, countersize, sillycounter);
1345
1346 dfprintk(VFS, "NFS: trying to rename %s to %s\n",
1347 dentry->d_name.name, silly);
1348
1349 sdentry = lookup_one_len(silly, dentry->d_parent, slen);
1350 /*
1351 * N.B. Better to return EBUSY here ... it could be
1352 * dangerous to delete the file while it's in use.
1353 */
1354 if (IS_ERR(sdentry))
1355 goto out;
1356 } while(sdentry->d_inode != NULL); /* need negative lookup */
1357
1358 qsilly.name = silly;
1359 qsilly.len = strlen(silly);
1360 if (dentry->d_inode) {
1361 error = NFS_PROTO(dir)->rename(dir, &dentry->d_name,
1362 dir, &qsilly);
1363 nfs_mark_for_revalidate(dentry->d_inode);
1364 } else
1365 error = NFS_PROTO(dir)->rename(dir, &dentry->d_name,
1366 dir, &qsilly);
1367 if (!error) {
1368 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1369 d_move(dentry, sdentry);
1370 error = nfs_async_unlink(dir, dentry);
1371 /* If we return 0 we don't unlink */
1372 }
1373 dput(sdentry);
1374 out:
1375 return error;
1376 }
1377
1378 /*
1379 * Remove a file after making sure there are no pending writes,
1380 * and after checking that the file has only one user.
1381 *
1382 * We invalidate the attribute cache and free the inode prior to the operation
1383 * to avoid possible races if the server reuses the inode.
1384 */
1385 static int nfs_safe_remove(struct dentry *dentry)
1386 {
1387 struct inode *dir = dentry->d_parent->d_inode;
1388 struct inode *inode = dentry->d_inode;
1389 int error = -EBUSY;
1390
1391 dfprintk(VFS, "NFS: safe_remove(%s/%s)\n",
1392 dentry->d_parent->d_name.name, dentry->d_name.name);
1393
1394 /* If the dentry was sillyrenamed, we simply call d_delete() */
1395 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1396 error = 0;
1397 goto out;
1398 }
1399
1400 if (inode != NULL) {
1401 nfs_inode_return_delegation(inode);
1402 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1403 /* The VFS may want to delete this inode */
1404 if (error == 0)
1405 nfs_drop_nlink(inode);
1406 nfs_mark_for_revalidate(inode);
1407 } else
1408 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1409 if (error == -ENOENT)
1410 nfs_dentry_handle_enoent(dentry);
1411 out:
1412 return error;
1413 }
1414
1415 /* We do silly rename. In case sillyrename() returns -EBUSY, the inode
1416 * belongs to an active ".nfs..." file and we return -EBUSY.
1417 *
1418 * If sillyrename() returns 0, we do nothing, otherwise we unlink.
1419 */
1420 static int nfs_unlink(struct inode *dir, struct dentry *dentry)
1421 {
1422 int error;
1423 int need_rehash = 0;
1424
1425 dfprintk(VFS, "NFS: unlink(%s/%ld, %s)\n", dir->i_sb->s_id,
1426 dir->i_ino, dentry->d_name.name);
1427
1428 spin_lock(&dcache_lock);
1429 spin_lock(&dentry->d_lock);
1430 if (atomic_read(&dentry->d_count) > 1) {
1431 spin_unlock(&dentry->d_lock);
1432 spin_unlock(&dcache_lock);
1433 /* Start asynchronous writeout of the inode */
1434 write_inode_now(dentry->d_inode, 0);
1435 error = nfs_sillyrename(dir, dentry);
1436 return error;
1437 }
1438 if (!d_unhashed(dentry)) {
1439 __d_drop(dentry);
1440 need_rehash = 1;
1441 }
1442 spin_unlock(&dentry->d_lock);
1443 spin_unlock(&dcache_lock);
1444 error = nfs_safe_remove(dentry);
1445 if (!error || error == -ENOENT) {
1446 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1447 } else if (need_rehash)
1448 d_rehash(dentry);
1449 return error;
1450 }
1451
1452 /*
1453 * To create a symbolic link, most file systems instantiate a new inode,
1454 * add a page to it containing the path, then write it out to the disk
1455 * using prepare_write/commit_write.
1456 *
1457 * Unfortunately the NFS client can't create the in-core inode first
1458 * because it needs a file handle to create an in-core inode (see
1459 * fs/nfs/inode.c:nfs_fhget). We only have a file handle *after* the
1460 * symlink request has completed on the server.
1461 *
1462 * So instead we allocate a raw page, copy the symname into it, then do
1463 * the SYMLINK request with the page as the buffer. If it succeeds, we
1464 * now have a new file handle and can instantiate an in-core NFS inode
1465 * and move the raw page into its mapping.
1466 */
1467 static int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1468 {
1469 struct pagevec lru_pvec;
1470 struct page *page;
1471 char *kaddr;
1472 struct iattr attr;
1473 unsigned int pathlen = strlen(symname);
1474 int error;
1475
1476 dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s)\n", dir->i_sb->s_id,
1477 dir->i_ino, dentry->d_name.name, symname);
1478
1479 if (pathlen > PAGE_SIZE)
1480 return -ENAMETOOLONG;
1481
1482 attr.ia_mode = S_IFLNK | S_IRWXUGO;
1483 attr.ia_valid = ATTR_MODE;
1484
1485 page = alloc_page(GFP_HIGHUSER);
1486 if (!page)
1487 return -ENOMEM;
1488
1489 kaddr = kmap_atomic(page, KM_USER0);
1490 memcpy(kaddr, symname, pathlen);
1491 if (pathlen < PAGE_SIZE)
1492 memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
1493 kunmap_atomic(kaddr, KM_USER0);
1494
1495 error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
1496 if (error != 0) {
1497 dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s) error %d\n",
1498 dir->i_sb->s_id, dir->i_ino,
1499 dentry->d_name.name, symname, error);
1500 d_drop(dentry);
1501 __free_page(page);
1502 return error;
1503 }
1504
1505 /*
1506 * No big deal if we can't add this page to the page cache here.
1507 * READLINK will get the missing page from the server if needed.
1508 */
1509 pagevec_init(&lru_pvec, 0);
1510 if (!add_to_page_cache(page, dentry->d_inode->i_mapping, 0,
1511 GFP_KERNEL)) {
1512 pagevec_add(&lru_pvec, page);
1513 pagevec_lru_add(&lru_pvec);
1514 SetPageUptodate(page);
1515 unlock_page(page);
1516 } else
1517 __free_page(page);
1518
1519 return 0;
1520 }
1521
1522 static int
1523 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1524 {
1525 struct inode *inode = old_dentry->d_inode;
1526 int error;
1527
1528 dfprintk(VFS, "NFS: link(%s/%s -> %s/%s)\n",
1529 old_dentry->d_parent->d_name.name, old_dentry->d_name.name,
1530 dentry->d_parent->d_name.name, dentry->d_name.name);
1531
1532 d_drop(dentry);
1533 error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
1534 if (error == 0) {
1535 atomic_inc(&inode->i_count);
1536 d_add(dentry, inode);
1537 }
1538 return error;
1539 }
1540
1541 /*
1542 * RENAME
1543 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
1544 * different file handle for the same inode after a rename (e.g. when
1545 * moving to a different directory). A fail-safe method to do so would
1546 * be to look up old_dir/old_name, create a link to new_dir/new_name and
1547 * rename the old file using the sillyrename stuff. This way, the original
1548 * file in old_dir will go away when the last process iput()s the inode.
1549 *
1550 * FIXED.
1551 *
1552 * It actually works quite well. One needs to have the possibility for
1553 * at least one ".nfs..." file in each directory the file ever gets
1554 * moved or linked to which happens automagically with the new
1555 * implementation that only depends on the dcache stuff instead of
1556 * using the inode layer
1557 *
1558 * Unfortunately, things are a little more complicated than indicated
1559 * above. For a cross-directory move, we want to make sure we can get
1560 * rid of the old inode after the operation. This means there must be
1561 * no pending writes (if it's a file), and the use count must be 1.
1562 * If these conditions are met, we can drop the dentries before doing
1563 * the rename.
1564 */
1565 static int nfs_rename(struct inode *old_dir, struct dentry *old_dentry,
1566 struct inode *new_dir, struct dentry *new_dentry)
1567 {
1568 struct inode *old_inode = old_dentry->d_inode;
1569 struct inode *new_inode = new_dentry->d_inode;
1570 struct dentry *dentry = NULL, *rehash = NULL;
1571 int error = -EBUSY;
1572
1573 /*
1574 * To prevent any new references to the target during the rename,
1575 * we unhash the dentry and free the inode in advance.
1576 */
1577 if (!d_unhashed(new_dentry)) {
1578 d_drop(new_dentry);
1579 rehash = new_dentry;
1580 }
1581
1582 dfprintk(VFS, "NFS: rename(%s/%s -> %s/%s, ct=%d)\n",
1583 old_dentry->d_parent->d_name.name, old_dentry->d_name.name,
1584 new_dentry->d_parent->d_name.name, new_dentry->d_name.name,
1585 atomic_read(&new_dentry->d_count));
1586
1587 /*
1588 * First check whether the target is busy ... we can't
1589 * safely do _any_ rename if the target is in use.
1590 *
1591 * For files, make a copy of the dentry and then do a
1592 * silly-rename. If the silly-rename succeeds, the
1593 * copied dentry is hashed and becomes the new target.
1594 */
1595 if (!new_inode)
1596 goto go_ahead;
1597 if (S_ISDIR(new_inode->i_mode)) {
1598 error = -EISDIR;
1599 if (!S_ISDIR(old_inode->i_mode))
1600 goto out;
1601 } else if (atomic_read(&new_dentry->d_count) > 2) {
1602 int err;
1603 /* copy the target dentry's name */
1604 dentry = d_alloc(new_dentry->d_parent,
1605 &new_dentry->d_name);
1606 if (!dentry)
1607 goto out;
1608
1609 /* silly-rename the existing target ... */
1610 err = nfs_sillyrename(new_dir, new_dentry);
1611 if (!err) {
1612 new_dentry = rehash = dentry;
1613 new_inode = NULL;
1614 /* instantiate the replacement target */
1615 d_instantiate(new_dentry, NULL);
1616 } else if (atomic_read(&new_dentry->d_count) > 1)
1617 /* dentry still busy? */
1618 goto out;
1619 } else
1620 nfs_drop_nlink(new_inode);
1621
1622 go_ahead:
1623 /*
1624 * ... prune child dentries and writebacks if needed.
1625 */
1626 if (atomic_read(&old_dentry->d_count) > 1) {
1627 if (S_ISREG(old_inode->i_mode))
1628 nfs_wb_all(old_inode);
1629 shrink_dcache_parent(old_dentry);
1630 }
1631 nfs_inode_return_delegation(old_inode);
1632
1633 if (new_inode != NULL) {
1634 nfs_inode_return_delegation(new_inode);
1635 d_delete(new_dentry);
1636 }
1637
1638 error = NFS_PROTO(old_dir)->rename(old_dir, &old_dentry->d_name,
1639 new_dir, &new_dentry->d_name);
1640 nfs_mark_for_revalidate(old_inode);
1641 out:
1642 if (rehash)
1643 d_rehash(rehash);
1644 if (!error) {
1645 d_move(old_dentry, new_dentry);
1646 nfs_set_verifier(new_dentry,
1647 nfs_save_change_attribute(new_dir));
1648 } else if (error == -ENOENT)
1649 nfs_dentry_handle_enoent(old_dentry);
1650
1651 /* new dentry created? */
1652 if (dentry)
1653 dput(dentry);
1654 return error;
1655 }
1656
1657 static DEFINE_SPINLOCK(nfs_access_lru_lock);
1658 static LIST_HEAD(nfs_access_lru_list);
1659 static atomic_long_t nfs_access_nr_entries;
1660
1661 static void nfs_access_free_entry(struct nfs_access_entry *entry)
1662 {
1663 put_rpccred(entry->cred);
1664 kfree(entry);
1665 smp_mb__before_atomic_dec();
1666 atomic_long_dec(&nfs_access_nr_entries);
1667 smp_mb__after_atomic_dec();
1668 }
1669
1670 int nfs_access_cache_shrinker(int nr_to_scan, gfp_t gfp_mask)
1671 {
1672 LIST_HEAD(head);
1673 struct nfs_inode *nfsi;
1674 struct nfs_access_entry *cache;
1675
1676 restart:
1677 spin_lock(&nfs_access_lru_lock);
1678 list_for_each_entry(nfsi, &nfs_access_lru_list, access_cache_inode_lru) {
1679 struct rw_semaphore *s_umount;
1680 struct inode *inode;
1681
1682 if (nr_to_scan-- == 0)
1683 break;
1684 s_umount = &nfsi->vfs_inode.i_sb->s_umount;
1685 if (!down_read_trylock(s_umount))
1686 continue;
1687 inode = igrab(&nfsi->vfs_inode);
1688 if (inode == NULL) {
1689 up_read(s_umount);
1690 continue;
1691 }
1692 spin_lock(&inode->i_lock);
1693 if (list_empty(&nfsi->access_cache_entry_lru))
1694 goto remove_lru_entry;
1695 cache = list_entry(nfsi->access_cache_entry_lru.next,
1696 struct nfs_access_entry, lru);
1697 list_move(&cache->lru, &head);
1698 rb_erase(&cache->rb_node, &nfsi->access_cache);
1699 if (!list_empty(&nfsi->access_cache_entry_lru))
1700 list_move_tail(&nfsi->access_cache_inode_lru,
1701 &nfs_access_lru_list);
1702 else {
1703 remove_lru_entry:
1704 list_del_init(&nfsi->access_cache_inode_lru);
1705 clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
1706 }
1707 spin_unlock(&inode->i_lock);
1708 spin_unlock(&nfs_access_lru_lock);
1709 iput(inode);
1710 up_read(s_umount);
1711 goto restart;
1712 }
1713 spin_unlock(&nfs_access_lru_lock);
1714 while (!list_empty(&head)) {
1715 cache = list_entry(head.next, struct nfs_access_entry, lru);
1716 list_del(&cache->lru);
1717 nfs_access_free_entry(cache);
1718 }
1719 return (atomic_long_read(&nfs_access_nr_entries) / 100) * sysctl_vfs_cache_pressure;
1720 }
1721
1722 static void __nfs_access_zap_cache(struct inode *inode)
1723 {
1724 struct nfs_inode *nfsi = NFS_I(inode);
1725 struct rb_root *root_node = &nfsi->access_cache;
1726 struct rb_node *n, *dispose = NULL;
1727 struct nfs_access_entry *entry;
1728
1729 /* Unhook entries from the cache */
1730 while ((n = rb_first(root_node)) != NULL) {
1731 entry = rb_entry(n, struct nfs_access_entry, rb_node);
1732 rb_erase(n, root_node);
1733 list_del(&entry->lru);
1734 n->rb_left = dispose;
1735 dispose = n;
1736 }
1737 nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
1738 spin_unlock(&inode->i_lock);
1739
1740 /* Now kill them all! */
1741 while (dispose != NULL) {
1742 n = dispose;
1743 dispose = n->rb_left;
1744 nfs_access_free_entry(rb_entry(n, struct nfs_access_entry, rb_node));
1745 }
1746 }
1747
1748 void nfs_access_zap_cache(struct inode *inode)
1749 {
1750 /* Remove from global LRU init */
1751 if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
1752 spin_lock(&nfs_access_lru_lock);
1753 list_del_init(&NFS_I(inode)->access_cache_inode_lru);
1754 spin_unlock(&nfs_access_lru_lock);
1755 }
1756
1757 spin_lock(&inode->i_lock);
1758 /* This will release the spinlock */
1759 __nfs_access_zap_cache(inode);
1760 }
1761
1762 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, struct rpc_cred *cred)
1763 {
1764 struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
1765 struct nfs_access_entry *entry;
1766
1767 while (n != NULL) {
1768 entry = rb_entry(n, struct nfs_access_entry, rb_node);
1769
1770 if (cred < entry->cred)
1771 n = n->rb_left;
1772 else if (cred > entry->cred)
1773 n = n->rb_right;
1774 else
1775 return entry;
1776 }
1777 return NULL;
1778 }
1779
1780 static int nfs_access_get_cached(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res)
1781 {
1782 struct nfs_inode *nfsi = NFS_I(inode);
1783 struct nfs_access_entry *cache;
1784 int err = -ENOENT;
1785
1786 spin_lock(&inode->i_lock);
1787 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
1788 goto out_zap;
1789 cache = nfs_access_search_rbtree(inode, cred);
1790 if (cache == NULL)
1791 goto out;
1792 if (!time_in_range(jiffies, cache->jiffies, cache->jiffies + nfsi->attrtimeo))
1793 goto out_stale;
1794 res->jiffies = cache->jiffies;
1795 res->cred = cache->cred;
1796 res->mask = cache->mask;
1797 list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
1798 err = 0;
1799 out:
1800 spin_unlock(&inode->i_lock);
1801 return err;
1802 out_stale:
1803 rb_erase(&cache->rb_node, &nfsi->access_cache);
1804 list_del(&cache->lru);
1805 spin_unlock(&inode->i_lock);
1806 nfs_access_free_entry(cache);
1807 return -ENOENT;
1808 out_zap:
1809 /* This will release the spinlock */
1810 __nfs_access_zap_cache(inode);
1811 return -ENOENT;
1812 }
1813
1814 static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set)
1815 {
1816 struct nfs_inode *nfsi = NFS_I(inode);
1817 struct rb_root *root_node = &nfsi->access_cache;
1818 struct rb_node **p = &root_node->rb_node;
1819 struct rb_node *parent = NULL;
1820 struct nfs_access_entry *entry;
1821
1822 spin_lock(&inode->i_lock);
1823 while (*p != NULL) {
1824 parent = *p;
1825 entry = rb_entry(parent, struct nfs_access_entry, rb_node);
1826
1827 if (set->cred < entry->cred)
1828 p = &parent->rb_left;
1829 else if (set->cred > entry->cred)
1830 p = &parent->rb_right;
1831 else
1832 goto found;
1833 }
1834 rb_link_node(&set->rb_node, parent, p);
1835 rb_insert_color(&set->rb_node, root_node);
1836 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
1837 spin_unlock(&inode->i_lock);
1838 return;
1839 found:
1840 rb_replace_node(parent, &set->rb_node, root_node);
1841 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
1842 list_del(&entry->lru);
1843 spin_unlock(&inode->i_lock);
1844 nfs_access_free_entry(entry);
1845 }
1846
1847 static void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set)
1848 {
1849 struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
1850 if (cache == NULL)
1851 return;
1852 RB_CLEAR_NODE(&cache->rb_node);
1853 cache->jiffies = set->jiffies;
1854 cache->cred = get_rpccred(set->cred);
1855 cache->mask = set->mask;
1856
1857 nfs_access_add_rbtree(inode, cache);
1858
1859 /* Update accounting */
1860 smp_mb__before_atomic_inc();
1861 atomic_long_inc(&nfs_access_nr_entries);
1862 smp_mb__after_atomic_inc();
1863
1864 /* Add inode to global LRU list */
1865 if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
1866 spin_lock(&nfs_access_lru_lock);
1867 list_add_tail(&NFS_I(inode)->access_cache_inode_lru, &nfs_access_lru_list);
1868 spin_unlock(&nfs_access_lru_lock);
1869 }
1870 }
1871
1872 static int nfs_do_access(struct inode *inode, struct rpc_cred *cred, int mask)
1873 {
1874 struct nfs_access_entry cache;
1875 int status;
1876
1877 status = nfs_access_get_cached(inode, cred, &cache);
1878 if (status == 0)
1879 goto out;
1880
1881 /* Be clever: ask server to check for all possible rights */
1882 cache.mask = MAY_EXEC | MAY_WRITE | MAY_READ;
1883 cache.cred = cred;
1884 cache.jiffies = jiffies;
1885 status = NFS_PROTO(inode)->access(inode, &cache);
1886 if (status != 0)
1887 return status;
1888 nfs_access_add_cache(inode, &cache);
1889 out:
1890 if ((cache.mask & mask) == mask)
1891 return 0;
1892 return -EACCES;
1893 }
1894
1895 static int nfs_open_permission_mask(int openflags)
1896 {
1897 int mask = 0;
1898
1899 if (openflags & FMODE_READ)
1900 mask |= MAY_READ;
1901 if (openflags & FMODE_WRITE)
1902 mask |= MAY_WRITE;
1903 if (openflags & FMODE_EXEC)
1904 mask |= MAY_EXEC;
1905 return mask;
1906 }
1907
1908 int nfs_may_open(struct inode *inode, struct rpc_cred *cred, int openflags)
1909 {
1910 return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
1911 }
1912
1913 int nfs_permission(struct inode *inode, int mask, struct nameidata *nd)
1914 {
1915 struct rpc_cred *cred;
1916 int res = 0;
1917
1918 nfs_inc_stats(inode, NFSIOS_VFSACCESS);
1919
1920 if (mask == 0)
1921 goto out;
1922 /* Is this sys_access() ? */
1923 if (nd != NULL && (nd->flags & LOOKUP_ACCESS))
1924 goto force_lookup;
1925
1926 switch (inode->i_mode & S_IFMT) {
1927 case S_IFLNK:
1928 goto out;
1929 case S_IFREG:
1930 /* NFSv4 has atomic_open... */
1931 if (nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN)
1932 && nd != NULL
1933 && (nd->flags & LOOKUP_OPEN))
1934 goto out;
1935 break;
1936 case S_IFDIR:
1937 /*
1938 * Optimize away all write operations, since the server
1939 * will check permissions when we perform the op.
1940 */
1941 if ((mask & MAY_WRITE) && !(mask & MAY_READ))
1942 goto out;
1943 }
1944
1945 force_lookup:
1946 if (!NFS_PROTO(inode)->access)
1947 goto out_notsup;
1948
1949 cred = rpc_lookup_cred();
1950 if (!IS_ERR(cred)) {
1951 res = nfs_do_access(inode, cred, mask);
1952 put_rpccred(cred);
1953 } else
1954 res = PTR_ERR(cred);
1955 out:
1956 dfprintk(VFS, "NFS: permission(%s/%ld), mask=0x%x, res=%d\n",
1957 inode->i_sb->s_id, inode->i_ino, mask, res);
1958 return res;
1959 out_notsup:
1960 res = nfs_revalidate_inode(NFS_SERVER(inode), inode);
1961 if (res == 0)
1962 res = generic_permission(inode, mask, NULL);
1963 goto out;
1964 }
1965
1966 /*
1967 * Local variables:
1968 * version-control: t
1969 * kept-new-versions: 5
1970 * End:
1971 */
This page took 0.073776 seconds and 5 git commands to generate.