NFS: re-add readdir plus
[deliverable/linux.git] / fs / nfs / dir.c
1 /*
2 * linux/fs/nfs/dir.c
3 *
4 * Copyright (C) 1992 Rick Sladkey
5 *
6 * nfs directory handling functions
7 *
8 * 10 Apr 1996 Added silly rename for unlink --okir
9 * 28 Sep 1996 Improved directory cache --okir
10 * 23 Aug 1997 Claus Heine claus@momo.math.rwth-aachen.de
11 * Re-implemented silly rename for unlink, newly implemented
12 * silly rename for nfs_rename() following the suggestions
13 * of Olaf Kirch (okir) found in this file.
14 * Following Linus comments on my original hack, this version
15 * depends only on the dcache stuff and doesn't touch the inode
16 * layer (iput() and friends).
17 * 6 Jun 1999 Cache readdir lookups in the page cache. -DaveM
18 */
19
20 #include <linux/time.h>
21 #include <linux/errno.h>
22 #include <linux/stat.h>
23 #include <linux/fcntl.h>
24 #include <linux/string.h>
25 #include <linux/kernel.h>
26 #include <linux/slab.h>
27 #include <linux/mm.h>
28 #include <linux/sunrpc/clnt.h>
29 #include <linux/nfs_fs.h>
30 #include <linux/nfs_mount.h>
31 #include <linux/pagemap.h>
32 #include <linux/pagevec.h>
33 #include <linux/namei.h>
34 #include <linux/mount.h>
35 #include <linux/sched.h>
36
37 #include "delegation.h"
38 #include "iostat.h"
39 #include "internal.h"
40 #include "fscache.h"
41
42 /* #define NFS_DEBUG_VERBOSE 1 */
43
44 static int nfs_opendir(struct inode *, struct file *);
45 static int nfs_readdir(struct file *, void *, filldir_t);
46 static struct dentry *nfs_lookup(struct inode *, struct dentry *, struct nameidata *);
47 static int nfs_create(struct inode *, struct dentry *, int, struct nameidata *);
48 static int nfs_mkdir(struct inode *, struct dentry *, int);
49 static int nfs_rmdir(struct inode *, struct dentry *);
50 static int nfs_unlink(struct inode *, struct dentry *);
51 static int nfs_symlink(struct inode *, struct dentry *, const char *);
52 static int nfs_link(struct dentry *, struct inode *, struct dentry *);
53 static int nfs_mknod(struct inode *, struct dentry *, int, dev_t);
54 static int nfs_rename(struct inode *, struct dentry *,
55 struct inode *, struct dentry *);
56 static int nfs_fsync_dir(struct file *, int);
57 static loff_t nfs_llseek_dir(struct file *, loff_t, int);
58 static int nfs_readdir_clear_array(struct page*, gfp_t);
59
60 const struct file_operations nfs_dir_operations = {
61 .llseek = nfs_llseek_dir,
62 .read = generic_read_dir,
63 .readdir = nfs_readdir,
64 .open = nfs_opendir,
65 .release = nfs_release,
66 .fsync = nfs_fsync_dir,
67 };
68
69 const struct inode_operations nfs_dir_inode_operations = {
70 .create = nfs_create,
71 .lookup = nfs_lookup,
72 .link = nfs_link,
73 .unlink = nfs_unlink,
74 .symlink = nfs_symlink,
75 .mkdir = nfs_mkdir,
76 .rmdir = nfs_rmdir,
77 .mknod = nfs_mknod,
78 .rename = nfs_rename,
79 .permission = nfs_permission,
80 .getattr = nfs_getattr,
81 .setattr = nfs_setattr,
82 };
83
84 const struct address_space_operations nfs_dir_addr_space_ops = {
85 .releasepage = nfs_readdir_clear_array,
86 };
87
88 #ifdef CONFIG_NFS_V3
89 const struct inode_operations nfs3_dir_inode_operations = {
90 .create = nfs_create,
91 .lookup = nfs_lookup,
92 .link = nfs_link,
93 .unlink = nfs_unlink,
94 .symlink = nfs_symlink,
95 .mkdir = nfs_mkdir,
96 .rmdir = nfs_rmdir,
97 .mknod = nfs_mknod,
98 .rename = nfs_rename,
99 .permission = nfs_permission,
100 .getattr = nfs_getattr,
101 .setattr = nfs_setattr,
102 .listxattr = nfs3_listxattr,
103 .getxattr = nfs3_getxattr,
104 .setxattr = nfs3_setxattr,
105 .removexattr = nfs3_removexattr,
106 };
107 #endif /* CONFIG_NFS_V3 */
108
109 #ifdef CONFIG_NFS_V4
110
111 static struct dentry *nfs_atomic_lookup(struct inode *, struct dentry *, struct nameidata *);
112 static int nfs_open_create(struct inode *dir, struct dentry *dentry, int mode, struct nameidata *nd);
113 const struct inode_operations nfs4_dir_inode_operations = {
114 .create = nfs_open_create,
115 .lookup = nfs_atomic_lookup,
116 .link = nfs_link,
117 .unlink = nfs_unlink,
118 .symlink = nfs_symlink,
119 .mkdir = nfs_mkdir,
120 .rmdir = nfs_rmdir,
121 .mknod = nfs_mknod,
122 .rename = nfs_rename,
123 .permission = nfs_permission,
124 .getattr = nfs_getattr,
125 .setattr = nfs_setattr,
126 .getxattr = nfs4_getxattr,
127 .setxattr = nfs4_setxattr,
128 .listxattr = nfs4_listxattr,
129 };
130
131 #endif /* CONFIG_NFS_V4 */
132
133 /*
134 * Open file
135 */
136 static int
137 nfs_opendir(struct inode *inode, struct file *filp)
138 {
139 int res;
140
141 dfprintk(FILE, "NFS: open dir(%s/%s)\n",
142 filp->f_path.dentry->d_parent->d_name.name,
143 filp->f_path.dentry->d_name.name);
144
145 nfs_inc_stats(inode, NFSIOS_VFSOPEN);
146
147 /* Call generic open code in order to cache credentials */
148 res = nfs_open(inode, filp);
149 if (filp->f_path.dentry == filp->f_path.mnt->mnt_root) {
150 /* This is a mountpoint, so d_revalidate will never
151 * have been called, so we need to refresh the
152 * inode (for close-open consistency) ourselves.
153 */
154 __nfs_revalidate_inode(NFS_SERVER(inode), inode);
155 }
156 return res;
157 }
158
159 struct nfs_cache_array_entry {
160 u64 cookie;
161 u64 ino;
162 struct qstr string;
163 };
164
165 struct nfs_cache_array {
166 unsigned int size;
167 int eof_index;
168 u64 last_cookie;
169 struct nfs_cache_array_entry array[0];
170 };
171
172 #define MAX_READDIR_ARRAY ((PAGE_SIZE - sizeof(struct nfs_cache_array)) / sizeof(struct nfs_cache_array_entry))
173
174 typedef __be32 * (*decode_dirent_t)(__be32 *, struct nfs_entry *, int);
175 typedef struct {
176 struct file *file;
177 struct page *page;
178 unsigned long page_index;
179 u64 *dir_cookie;
180 loff_t current_index;
181 decode_dirent_t decode;
182
183 unsigned long timestamp;
184 unsigned long gencount;
185 unsigned int cache_entry_index;
186 unsigned int plus:1;
187 unsigned int eof:1;
188 } nfs_readdir_descriptor_t;
189
190 /*
191 * The caller is responsible for calling nfs_readdir_release_array(page)
192 */
193 static
194 struct nfs_cache_array *nfs_readdir_get_array(struct page *page)
195 {
196 if (page == NULL)
197 return ERR_PTR(-EIO);
198 return (struct nfs_cache_array *)kmap(page);
199 }
200
201 static
202 void nfs_readdir_release_array(struct page *page)
203 {
204 kunmap(page);
205 }
206
207 /*
208 * we are freeing strings created by nfs_add_to_readdir_array()
209 */
210 static
211 int nfs_readdir_clear_array(struct page *page, gfp_t mask)
212 {
213 struct nfs_cache_array *array = nfs_readdir_get_array(page);
214 int i;
215 for (i = 0; i < array->size; i++)
216 kfree(array->array[i].string.name);
217 nfs_readdir_release_array(page);
218 return 0;
219 }
220
221 /*
222 * the caller is responsible for freeing qstr.name
223 * when called by nfs_readdir_add_to_array, the strings will be freed in
224 * nfs_clear_readdir_array()
225 */
226 static
227 void nfs_readdir_make_qstr(struct qstr *string, const char *name, unsigned int len)
228 {
229 string->len = len;
230 string->name = kmemdup(name, len, GFP_KERNEL);
231 string->hash = full_name_hash(string->name, string->len);
232 }
233
234 static
235 int nfs_readdir_add_to_array(struct nfs_entry *entry, struct page *page)
236 {
237 struct nfs_cache_array *array = nfs_readdir_get_array(page);
238 if (IS_ERR(array))
239 return PTR_ERR(array);
240 if (array->size >= MAX_READDIR_ARRAY) {
241 nfs_readdir_release_array(page);
242 return -EIO;
243 }
244
245 array->array[array->size].cookie = entry->prev_cookie;
246 array->last_cookie = entry->cookie;
247 array->array[array->size].ino = entry->ino;
248 nfs_readdir_make_qstr(&array->array[array->size].string, entry->name, entry->len);
249 if (entry->eof == 1)
250 array->eof_index = array->size;
251 array->size++;
252 nfs_readdir_release_array(page);
253 return 0;
254 }
255
256 static
257 int nfs_readdir_search_for_pos(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
258 {
259 loff_t diff = desc->file->f_pos - desc->current_index;
260 unsigned int index;
261
262 if (diff < 0)
263 goto out_eof;
264 if (diff >= array->size) {
265 if (array->eof_index > 0)
266 goto out_eof;
267 desc->current_index += array->size;
268 return -EAGAIN;
269 }
270
271 index = (unsigned int)diff;
272 *desc->dir_cookie = array->array[index].cookie;
273 desc->cache_entry_index = index;
274 if (index == array->eof_index)
275 desc->eof = 1;
276 return 0;
277 out_eof:
278 desc->eof = 1;
279 return -EBADCOOKIE;
280 }
281
282 static
283 int nfs_readdir_search_for_cookie(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
284 {
285 int i;
286 int status = -EAGAIN;
287
288 for (i = 0; i < array->size; i++) {
289 if (i == array->eof_index) {
290 desc->eof = 1;
291 status = -EBADCOOKIE;
292 }
293 if (array->array[i].cookie == *desc->dir_cookie) {
294 desc->cache_entry_index = i;
295 status = 0;
296 break;
297 }
298 }
299
300 return status;
301 }
302
303 static
304 int nfs_readdir_search_array(nfs_readdir_descriptor_t *desc)
305 {
306 struct nfs_cache_array *array;
307 int status = -EBADCOOKIE;
308
309 if (desc->dir_cookie == NULL)
310 goto out;
311
312 array = nfs_readdir_get_array(desc->page);
313 if (IS_ERR(array)) {
314 status = PTR_ERR(array);
315 goto out;
316 }
317
318 if (*desc->dir_cookie == 0)
319 status = nfs_readdir_search_for_pos(array, desc);
320 else
321 status = nfs_readdir_search_for_cookie(array, desc);
322
323 nfs_readdir_release_array(desc->page);
324 out:
325 return status;
326 }
327
328 /* Fill a page with xdr information before transferring to the cache page */
329 static
330 int nfs_readdir_xdr_filler(struct page *xdr_page, nfs_readdir_descriptor_t *desc,
331 struct nfs_entry *entry, struct file *file, struct inode *inode)
332 {
333 struct rpc_cred *cred = nfs_file_cred(file);
334 unsigned long timestamp, gencount;
335 int error;
336
337 again:
338 timestamp = jiffies;
339 gencount = nfs_inc_attr_generation_counter();
340 error = NFS_PROTO(inode)->readdir(file->f_path.dentry, cred, entry->cookie, xdr_page,
341 NFS_SERVER(inode)->dtsize, desc->plus);
342 if (error < 0) {
343 /* We requested READDIRPLUS, but the server doesn't grok it */
344 if (error == -ENOTSUPP && desc->plus) {
345 NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
346 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
347 desc->plus = 0;
348 goto again;
349 }
350 goto error;
351 }
352 desc->timestamp = timestamp;
353 desc->gencount = gencount;
354 error:
355 return error;
356 }
357
358 /* Fill in an entry based on the xdr code stored in desc->page */
359 static
360 int xdr_decode(nfs_readdir_descriptor_t *desc, struct nfs_entry *entry, __be32 **ptr)
361 {
362 __be32 *p = *ptr;
363 p = desc->decode(p, entry, desc->plus);
364 if (IS_ERR(p))
365 return PTR_ERR(p);
366 *ptr = p;
367
368 entry->fattr->time_start = desc->timestamp;
369 entry->fattr->gencount = desc->gencount;
370 return 0;
371 }
372
373 static
374 int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry)
375 {
376 struct nfs_inode *node;
377 if (dentry->d_inode == NULL)
378 goto different;
379 node = NFS_I(dentry->d_inode);
380 if (node->fh.size != entry->fh->size)
381 goto different;
382 if (strncmp(node->fh.data, entry->fh->data, node->fh.size) != 0)
383 goto different;
384 return 1;
385 different:
386 return 0;
387 }
388
389 static
390 void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry)
391 {
392 struct qstr filename;
393 struct dentry *dentry = NULL;
394 struct dentry *alias = NULL;
395 struct inode *dir = parent->d_inode;
396 struct inode *inode;
397
398 nfs_readdir_make_qstr(&filename, entry->name, entry->len);
399 if (filename.len == 1 && filename.name[0] == '.')
400 dentry = dget(parent);
401 else if (filename.len == 2 && filename.name[0] == '.'
402 && filename.name[1] == '.')
403 dentry = dget_parent(parent);
404 else
405 dentry = d_lookup(parent, &filename);
406
407 if (dentry != NULL) {
408 if (nfs_same_file(dentry, entry)) {
409 nfs_refresh_inode(dentry->d_inode, entry->fattr);
410 goto out;
411 } else {
412 d_drop(dentry);
413 dput(dentry);
414 }
415 }
416
417 dentry = d_alloc(parent, &filename);
418 dentry->d_op = NFS_PROTO(dir)->dentry_ops;
419 inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr);
420 if (IS_ERR(inode))
421 goto out;
422
423 alias = d_materialise_unique(dentry, inode);
424 if (IS_ERR(alias))
425 goto out;
426 else if (alias) {
427 nfs_set_verifier(alias, nfs_save_change_attribute(dir));
428 dput(alias);
429 } else
430 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
431
432 out:
433 dput(dentry);
434 kfree(filename.name);
435 return;
436 }
437
438 /* Perform conversion from xdr to cache array */
439 static
440 void nfs_readdir_page_filler(nfs_readdir_descriptor_t *desc, struct nfs_entry *entry,
441 struct page *xdr_page, struct page *page)
442 {
443 __be32 *ptr = kmap(xdr_page);
444 while (xdr_decode(desc, entry, &ptr) == 0) {
445 if (nfs_readdir_add_to_array(entry, page) == -1)
446 break;
447 if (desc->plus == 1)
448 nfs_prime_dcache(desc->file->f_path.dentry, entry);
449 }
450 kunmap(xdr_page);
451 }
452
453 static
454 int nfs_readdir_xdr_to_array(nfs_readdir_descriptor_t *desc, struct page *page, struct inode *inode)
455 {
456 struct page *xdr_page;
457 struct nfs_entry entry;
458 struct file *file = desc->file;
459 struct nfs_cache_array *array;
460 int status = 0;
461
462 entry.prev_cookie = 0;
463 entry.cookie = *desc->dir_cookie;
464 entry.eof = 0;
465 entry.fh = nfs_alloc_fhandle();
466 entry.fattr = nfs_alloc_fattr();
467 if (entry.fh == NULL || entry.fattr == NULL)
468 goto out;
469
470 array = nfs_readdir_get_array(page);
471 memset(array, 0, sizeof(struct nfs_cache_array));
472 array->eof_index = -1;
473
474 xdr_page = alloc_page(GFP_KERNEL);
475 if (!xdr_page)
476 goto out_release_array;
477 do {
478 status = nfs_readdir_xdr_filler(xdr_page, desc, &entry, file, inode);
479 if (status < 0)
480 break;
481 nfs_readdir_page_filler(desc, &entry, xdr_page, page);
482 } while (array->eof_index < 0 && array->size < MAX_READDIR_ARRAY);
483
484 put_page(xdr_page);
485 out_release_array:
486 nfs_readdir_release_array(page);
487 out:
488 nfs_free_fattr(entry.fattr);
489 nfs_free_fhandle(entry.fh);
490 return status;
491 }
492
493 /*
494 * Now we cache directories properly, by converting xdr information
495 * to an array that can be used for lookups later. This results in
496 * fewer cache pages, since we can store more information on each page.
497 * We only need to convert from xdr once so future lookups are much simpler
498 */
499 static
500 int nfs_readdir_filler(nfs_readdir_descriptor_t *desc, struct page* page)
501 {
502 struct inode *inode = desc->file->f_path.dentry->d_inode;
503
504 if (nfs_readdir_xdr_to_array(desc, page, inode) == -1)
505 goto error;
506 SetPageUptodate(page);
507
508 if (invalidate_inode_pages2_range(inode->i_mapping, page->index + 1, -1) < 0) {
509 /* Should never happen */
510 nfs_zap_mapping(inode, inode->i_mapping);
511 }
512 unlock_page(page);
513 return 0;
514 error:
515 unlock_page(page);
516 return -EIO;
517 }
518
519 static
520 void cache_page_release(nfs_readdir_descriptor_t *desc)
521 {
522 page_cache_release(desc->page);
523 desc->page = NULL;
524 }
525
526 static
527 struct page *get_cache_page(nfs_readdir_descriptor_t *desc)
528 {
529 struct page *page;
530 page = read_cache_page(desc->file->f_path.dentry->d_inode->i_mapping,
531 desc->page_index, (filler_t *)nfs_readdir_filler, desc);
532 if (IS_ERR(page))
533 desc->eof = 1;
534 return page;
535 }
536
537 /*
538 * Returns 0 if desc->dir_cookie was found on page desc->page_index
539 */
540 static
541 int find_cache_page(nfs_readdir_descriptor_t *desc)
542 {
543 int res;
544
545 desc->page = get_cache_page(desc);
546 if (IS_ERR(desc->page))
547 return PTR_ERR(desc->page);
548
549 res = nfs_readdir_search_array(desc);
550 if (res == 0)
551 return 0;
552 cache_page_release(desc);
553 return res;
554 }
555
556 /* Search for desc->dir_cookie from the beginning of the page cache */
557 static inline
558 int readdir_search_pagecache(nfs_readdir_descriptor_t *desc)
559 {
560 int res = -EAGAIN;
561
562 while (1) {
563 res = find_cache_page(desc);
564 if (res != -EAGAIN)
565 break;
566 desc->page_index++;
567 }
568 return res;
569 }
570
571 static inline unsigned int dt_type(struct inode *inode)
572 {
573 return (inode->i_mode >> 12) & 15;
574 }
575
576 /*
577 * Once we've found the start of the dirent within a page: fill 'er up...
578 */
579 static
580 int nfs_do_filldir(nfs_readdir_descriptor_t *desc, void *dirent,
581 filldir_t filldir)
582 {
583 struct file *file = desc->file;
584 int i = 0;
585 int res = 0;
586 struct nfs_cache_array *array = NULL;
587 unsigned int d_type = DT_UNKNOWN;
588 struct dentry *dentry = NULL;
589
590 array = nfs_readdir_get_array(desc->page);
591
592 for (i = desc->cache_entry_index; i < array->size; i++) {
593 d_type = DT_UNKNOWN;
594
595 res = filldir(dirent, array->array[i].string.name,
596 array->array[i].string.len, file->f_pos,
597 nfs_compat_user_ino64(array->array[i].ino), d_type);
598 if (res < 0)
599 break;
600 file->f_pos++;
601 desc->cache_entry_index = i;
602 if (i < (array->size-1))
603 *desc->dir_cookie = array->array[i+1].cookie;
604 else
605 *desc->dir_cookie = array->last_cookie;
606 if (i == array->eof_index) {
607 desc->eof = 1;
608 break;
609 }
610 }
611
612 nfs_readdir_release_array(desc->page);
613 cache_page_release(desc);
614 if (dentry != NULL)
615 dput(dentry);
616 dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n",
617 (unsigned long long)*desc->dir_cookie, res);
618 return res;
619 }
620
621 /*
622 * If we cannot find a cookie in our cache, we suspect that this is
623 * because it points to a deleted file, so we ask the server to return
624 * whatever it thinks is the next entry. We then feed this to filldir.
625 * If all goes well, we should then be able to find our way round the
626 * cache on the next call to readdir_search_pagecache();
627 *
628 * NOTE: we cannot add the anonymous page to the pagecache because
629 * the data it contains might not be page aligned. Besides,
630 * we should already have a complete representation of the
631 * directory in the page cache by the time we get here.
632 */
633 static inline
634 int uncached_readdir(nfs_readdir_descriptor_t *desc, void *dirent,
635 filldir_t filldir)
636 {
637 struct page *page = NULL;
638 int status;
639 struct inode *inode = desc->file->f_path.dentry->d_inode;
640
641 dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n",
642 (unsigned long long)*desc->dir_cookie);
643
644 page = alloc_page(GFP_HIGHUSER);
645 if (!page) {
646 status = -ENOMEM;
647 goto out;
648 }
649
650 if (nfs_readdir_xdr_to_array(desc, page, inode) == -1) {
651 status = -EIO;
652 goto out_release;
653 }
654
655 desc->page_index = 0;
656 desc->page = page;
657 status = nfs_do_filldir(desc, dirent, filldir);
658
659 out:
660 dfprintk(DIRCACHE, "NFS: %s: returns %d\n",
661 __func__, status);
662 return status;
663 out_release:
664 cache_page_release(desc);
665 goto out;
666 }
667
668 /* The file offset position represents the dirent entry number. A
669 last cookie cache takes care of the common case of reading the
670 whole directory.
671 */
672 static int nfs_readdir(struct file *filp, void *dirent, filldir_t filldir)
673 {
674 struct dentry *dentry = filp->f_path.dentry;
675 struct inode *inode = dentry->d_inode;
676 nfs_readdir_descriptor_t my_desc,
677 *desc = &my_desc;
678 int res = -ENOMEM;
679
680 dfprintk(FILE, "NFS: readdir(%s/%s) starting at cookie %llu\n",
681 dentry->d_parent->d_name.name, dentry->d_name.name,
682 (long long)filp->f_pos);
683 nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
684
685 /*
686 * filp->f_pos points to the dirent entry number.
687 * *desc->dir_cookie has the cookie for the next entry. We have
688 * to either find the entry with the appropriate number or
689 * revalidate the cookie.
690 */
691 memset(desc, 0, sizeof(*desc));
692
693 desc->file = filp;
694 desc->dir_cookie = &nfs_file_open_context(filp)->dir_cookie;
695 desc->decode = NFS_PROTO(inode)->decode_dirent;
696 desc->plus = NFS_USE_READDIRPLUS(inode);
697
698 nfs_block_sillyrename(dentry);
699 res = nfs_revalidate_mapping(inode, filp->f_mapping);
700 if (res < 0)
701 goto out;
702
703 while (desc->eof != 1) {
704 res = readdir_search_pagecache(desc);
705
706 if (res == -EBADCOOKIE) {
707 /* This means either end of directory */
708 if (*desc->dir_cookie && desc->eof == 0) {
709 /* Or that the server has 'lost' a cookie */
710 res = uncached_readdir(desc, dirent, filldir);
711 if (res >= 0)
712 continue;
713 }
714 res = 0;
715 break;
716 }
717 if (res == -ETOOSMALL && desc->plus) {
718 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
719 nfs_zap_caches(inode);
720 desc->page_index = 0;
721 desc->plus = 0;
722 desc->eof = 0;
723 continue;
724 }
725 if (res < 0)
726 break;
727
728 res = nfs_do_filldir(desc, dirent, filldir);
729 if (res < 0) {
730 res = 0;
731 break;
732 }
733 }
734 out:
735 nfs_unblock_sillyrename(dentry);
736 if (res > 0)
737 res = 0;
738 dfprintk(FILE, "NFS: readdir(%s/%s) returns %d\n",
739 dentry->d_parent->d_name.name, dentry->d_name.name,
740 res);
741 return res;
742 }
743
744 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int origin)
745 {
746 struct dentry *dentry = filp->f_path.dentry;
747 struct inode *inode = dentry->d_inode;
748
749 dfprintk(FILE, "NFS: llseek dir(%s/%s, %lld, %d)\n",
750 dentry->d_parent->d_name.name,
751 dentry->d_name.name,
752 offset, origin);
753
754 mutex_lock(&inode->i_mutex);
755 switch (origin) {
756 case 1:
757 offset += filp->f_pos;
758 case 0:
759 if (offset >= 0)
760 break;
761 default:
762 offset = -EINVAL;
763 goto out;
764 }
765 if (offset != filp->f_pos) {
766 filp->f_pos = offset;
767 nfs_file_open_context(filp)->dir_cookie = 0;
768 }
769 out:
770 mutex_unlock(&inode->i_mutex);
771 return offset;
772 }
773
774 /*
775 * All directory operations under NFS are synchronous, so fsync()
776 * is a dummy operation.
777 */
778 static int nfs_fsync_dir(struct file *filp, int datasync)
779 {
780 struct dentry *dentry = filp->f_path.dentry;
781
782 dfprintk(FILE, "NFS: fsync dir(%s/%s) datasync %d\n",
783 dentry->d_parent->d_name.name, dentry->d_name.name,
784 datasync);
785
786 nfs_inc_stats(dentry->d_inode, NFSIOS_VFSFSYNC);
787 return 0;
788 }
789
790 /**
791 * nfs_force_lookup_revalidate - Mark the directory as having changed
792 * @dir - pointer to directory inode
793 *
794 * This forces the revalidation code in nfs_lookup_revalidate() to do a
795 * full lookup on all child dentries of 'dir' whenever a change occurs
796 * on the server that might have invalidated our dcache.
797 *
798 * The caller should be holding dir->i_lock
799 */
800 void nfs_force_lookup_revalidate(struct inode *dir)
801 {
802 NFS_I(dir)->cache_change_attribute++;
803 }
804
805 /*
806 * A check for whether or not the parent directory has changed.
807 * In the case it has, we assume that the dentries are untrustworthy
808 * and may need to be looked up again.
809 */
810 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry)
811 {
812 if (IS_ROOT(dentry))
813 return 1;
814 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE)
815 return 0;
816 if (!nfs_verify_change_attribute(dir, dentry->d_time))
817 return 0;
818 /* Revalidate nfsi->cache_change_attribute before we declare a match */
819 if (nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
820 return 0;
821 if (!nfs_verify_change_attribute(dir, dentry->d_time))
822 return 0;
823 return 1;
824 }
825
826 /*
827 * Return the intent data that applies to this particular path component
828 *
829 * Note that the current set of intents only apply to the very last
830 * component of the path.
831 * We check for this using LOOKUP_CONTINUE and LOOKUP_PARENT.
832 */
833 static inline unsigned int nfs_lookup_check_intent(struct nameidata *nd, unsigned int mask)
834 {
835 if (nd->flags & (LOOKUP_CONTINUE|LOOKUP_PARENT))
836 return 0;
837 return nd->flags & mask;
838 }
839
840 /*
841 * Use intent information to check whether or not we're going to do
842 * an O_EXCL create using this path component.
843 */
844 static int nfs_is_exclusive_create(struct inode *dir, struct nameidata *nd)
845 {
846 if (NFS_PROTO(dir)->version == 2)
847 return 0;
848 return nd && nfs_lookup_check_intent(nd, LOOKUP_EXCL);
849 }
850
851 /*
852 * Inode and filehandle revalidation for lookups.
853 *
854 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
855 * or if the intent information indicates that we're about to open this
856 * particular file and the "nocto" mount flag is not set.
857 *
858 */
859 static inline
860 int nfs_lookup_verify_inode(struct inode *inode, struct nameidata *nd)
861 {
862 struct nfs_server *server = NFS_SERVER(inode);
863
864 if (test_bit(NFS_INO_MOUNTPOINT, &NFS_I(inode)->flags))
865 return 0;
866 if (nd != NULL) {
867 /* VFS wants an on-the-wire revalidation */
868 if (nd->flags & LOOKUP_REVAL)
869 goto out_force;
870 /* This is an open(2) */
871 if (nfs_lookup_check_intent(nd, LOOKUP_OPEN) != 0 &&
872 !(server->flags & NFS_MOUNT_NOCTO) &&
873 (S_ISREG(inode->i_mode) ||
874 S_ISDIR(inode->i_mode)))
875 goto out_force;
876 return 0;
877 }
878 return nfs_revalidate_inode(server, inode);
879 out_force:
880 return __nfs_revalidate_inode(server, inode);
881 }
882
883 /*
884 * We judge how long we want to trust negative
885 * dentries by looking at the parent inode mtime.
886 *
887 * If parent mtime has changed, we revalidate, else we wait for a
888 * period corresponding to the parent's attribute cache timeout value.
889 */
890 static inline
891 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
892 struct nameidata *nd)
893 {
894 /* Don't revalidate a negative dentry if we're creating a new file */
895 if (nd != NULL && nfs_lookup_check_intent(nd, LOOKUP_CREATE) != 0)
896 return 0;
897 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG)
898 return 1;
899 return !nfs_check_verifier(dir, dentry);
900 }
901
902 /*
903 * This is called every time the dcache has a lookup hit,
904 * and we should check whether we can really trust that
905 * lookup.
906 *
907 * NOTE! The hit can be a negative hit too, don't assume
908 * we have an inode!
909 *
910 * If the parent directory is seen to have changed, we throw out the
911 * cached dentry and do a new lookup.
912 */
913 static int nfs_lookup_revalidate(struct dentry * dentry, struct nameidata *nd)
914 {
915 struct inode *dir;
916 struct inode *inode;
917 struct dentry *parent;
918 struct nfs_fh *fhandle = NULL;
919 struct nfs_fattr *fattr = NULL;
920 int error;
921
922 parent = dget_parent(dentry);
923 dir = parent->d_inode;
924 nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
925 inode = dentry->d_inode;
926
927 if (!inode) {
928 if (nfs_neg_need_reval(dir, dentry, nd))
929 goto out_bad;
930 goto out_valid;
931 }
932
933 if (is_bad_inode(inode)) {
934 dfprintk(LOOKUPCACHE, "%s: %s/%s has dud inode\n",
935 __func__, dentry->d_parent->d_name.name,
936 dentry->d_name.name);
937 goto out_bad;
938 }
939
940 if (nfs_have_delegation(inode, FMODE_READ))
941 goto out_set_verifier;
942
943 /* Force a full look up iff the parent directory has changed */
944 if (!nfs_is_exclusive_create(dir, nd) && nfs_check_verifier(dir, dentry)) {
945 if (nfs_lookup_verify_inode(inode, nd))
946 goto out_zap_parent;
947 goto out_valid;
948 }
949
950 if (NFS_STALE(inode))
951 goto out_bad;
952
953 error = -ENOMEM;
954 fhandle = nfs_alloc_fhandle();
955 fattr = nfs_alloc_fattr();
956 if (fhandle == NULL || fattr == NULL)
957 goto out_error;
958
959 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr);
960 if (error)
961 goto out_bad;
962 if (nfs_compare_fh(NFS_FH(inode), fhandle))
963 goto out_bad;
964 if ((error = nfs_refresh_inode(inode, fattr)) != 0)
965 goto out_bad;
966
967 nfs_free_fattr(fattr);
968 nfs_free_fhandle(fhandle);
969 out_set_verifier:
970 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
971 out_valid:
972 dput(parent);
973 dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is valid\n",
974 __func__, dentry->d_parent->d_name.name,
975 dentry->d_name.name);
976 return 1;
977 out_zap_parent:
978 nfs_zap_caches(dir);
979 out_bad:
980 nfs_mark_for_revalidate(dir);
981 if (inode && S_ISDIR(inode->i_mode)) {
982 /* Purge readdir caches. */
983 nfs_zap_caches(inode);
984 /* If we have submounts, don't unhash ! */
985 if (have_submounts(dentry))
986 goto out_valid;
987 if (dentry->d_flags & DCACHE_DISCONNECTED)
988 goto out_valid;
989 shrink_dcache_parent(dentry);
990 }
991 d_drop(dentry);
992 nfs_free_fattr(fattr);
993 nfs_free_fhandle(fhandle);
994 dput(parent);
995 dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is invalid\n",
996 __func__, dentry->d_parent->d_name.name,
997 dentry->d_name.name);
998 return 0;
999 out_error:
1000 nfs_free_fattr(fattr);
1001 nfs_free_fhandle(fhandle);
1002 dput(parent);
1003 dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) lookup returned error %d\n",
1004 __func__, dentry->d_parent->d_name.name,
1005 dentry->d_name.name, error);
1006 return error;
1007 }
1008
1009 /*
1010 * This is called from dput() when d_count is going to 0.
1011 */
1012 static int nfs_dentry_delete(struct dentry *dentry)
1013 {
1014 dfprintk(VFS, "NFS: dentry_delete(%s/%s, %x)\n",
1015 dentry->d_parent->d_name.name, dentry->d_name.name,
1016 dentry->d_flags);
1017
1018 /* Unhash any dentry with a stale inode */
1019 if (dentry->d_inode != NULL && NFS_STALE(dentry->d_inode))
1020 return 1;
1021
1022 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1023 /* Unhash it, so that ->d_iput() would be called */
1024 return 1;
1025 }
1026 if (!(dentry->d_sb->s_flags & MS_ACTIVE)) {
1027 /* Unhash it, so that ancestors of killed async unlink
1028 * files will be cleaned up during umount */
1029 return 1;
1030 }
1031 return 0;
1032
1033 }
1034
1035 static void nfs_drop_nlink(struct inode *inode)
1036 {
1037 spin_lock(&inode->i_lock);
1038 if (inode->i_nlink > 0)
1039 drop_nlink(inode);
1040 spin_unlock(&inode->i_lock);
1041 }
1042
1043 /*
1044 * Called when the dentry loses inode.
1045 * We use it to clean up silly-renamed files.
1046 */
1047 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
1048 {
1049 if (S_ISDIR(inode->i_mode))
1050 /* drop any readdir cache as it could easily be old */
1051 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA;
1052
1053 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1054 drop_nlink(inode);
1055 nfs_complete_unlink(dentry, inode);
1056 }
1057 iput(inode);
1058 }
1059
1060 const struct dentry_operations nfs_dentry_operations = {
1061 .d_revalidate = nfs_lookup_revalidate,
1062 .d_delete = nfs_dentry_delete,
1063 .d_iput = nfs_dentry_iput,
1064 };
1065
1066 static struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
1067 {
1068 struct dentry *res;
1069 struct dentry *parent;
1070 struct inode *inode = NULL;
1071 struct nfs_fh *fhandle = NULL;
1072 struct nfs_fattr *fattr = NULL;
1073 int error;
1074
1075 dfprintk(VFS, "NFS: lookup(%s/%s)\n",
1076 dentry->d_parent->d_name.name, dentry->d_name.name);
1077 nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
1078
1079 res = ERR_PTR(-ENAMETOOLONG);
1080 if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
1081 goto out;
1082
1083 dentry->d_op = NFS_PROTO(dir)->dentry_ops;
1084
1085 /*
1086 * If we're doing an exclusive create, optimize away the lookup
1087 * but don't hash the dentry.
1088 */
1089 if (nfs_is_exclusive_create(dir, nd)) {
1090 d_instantiate(dentry, NULL);
1091 res = NULL;
1092 goto out;
1093 }
1094
1095 res = ERR_PTR(-ENOMEM);
1096 fhandle = nfs_alloc_fhandle();
1097 fattr = nfs_alloc_fattr();
1098 if (fhandle == NULL || fattr == NULL)
1099 goto out;
1100
1101 parent = dentry->d_parent;
1102 /* Protect against concurrent sillydeletes */
1103 nfs_block_sillyrename(parent);
1104 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr);
1105 if (error == -ENOENT)
1106 goto no_entry;
1107 if (error < 0) {
1108 res = ERR_PTR(error);
1109 goto out_unblock_sillyrename;
1110 }
1111 inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
1112 res = (struct dentry *)inode;
1113 if (IS_ERR(res))
1114 goto out_unblock_sillyrename;
1115
1116 no_entry:
1117 res = d_materialise_unique(dentry, inode);
1118 if (res != NULL) {
1119 if (IS_ERR(res))
1120 goto out_unblock_sillyrename;
1121 dentry = res;
1122 }
1123 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1124 out_unblock_sillyrename:
1125 nfs_unblock_sillyrename(parent);
1126 out:
1127 nfs_free_fattr(fattr);
1128 nfs_free_fhandle(fhandle);
1129 return res;
1130 }
1131
1132 #ifdef CONFIG_NFS_V4
1133 static int nfs_open_revalidate(struct dentry *, struct nameidata *);
1134
1135 const struct dentry_operations nfs4_dentry_operations = {
1136 .d_revalidate = nfs_open_revalidate,
1137 .d_delete = nfs_dentry_delete,
1138 .d_iput = nfs_dentry_iput,
1139 };
1140
1141 /*
1142 * Use intent information to determine whether we need to substitute
1143 * the NFSv4-style stateful OPEN for the LOOKUP call
1144 */
1145 static int is_atomic_open(struct nameidata *nd)
1146 {
1147 if (nd == NULL || nfs_lookup_check_intent(nd, LOOKUP_OPEN) == 0)
1148 return 0;
1149 /* NFS does not (yet) have a stateful open for directories */
1150 if (nd->flags & LOOKUP_DIRECTORY)
1151 return 0;
1152 /* Are we trying to write to a read only partition? */
1153 if (__mnt_is_readonly(nd->path.mnt) &&
1154 (nd->intent.open.flags & (O_CREAT|O_TRUNC|FMODE_WRITE)))
1155 return 0;
1156 return 1;
1157 }
1158
1159 static struct nfs_open_context *nameidata_to_nfs_open_context(struct dentry *dentry, struct nameidata *nd)
1160 {
1161 struct path path = {
1162 .mnt = nd->path.mnt,
1163 .dentry = dentry,
1164 };
1165 struct nfs_open_context *ctx;
1166 struct rpc_cred *cred;
1167 fmode_t fmode = nd->intent.open.flags & (FMODE_READ | FMODE_WRITE | FMODE_EXEC);
1168
1169 cred = rpc_lookup_cred();
1170 if (IS_ERR(cred))
1171 return ERR_CAST(cred);
1172 ctx = alloc_nfs_open_context(&path, cred, fmode);
1173 put_rpccred(cred);
1174 if (ctx == NULL)
1175 return ERR_PTR(-ENOMEM);
1176 return ctx;
1177 }
1178
1179 static int do_open(struct inode *inode, struct file *filp)
1180 {
1181 nfs_fscache_set_inode_cookie(inode, filp);
1182 return 0;
1183 }
1184
1185 static int nfs_intent_set_file(struct nameidata *nd, struct nfs_open_context *ctx)
1186 {
1187 struct file *filp;
1188 int ret = 0;
1189
1190 /* If the open_intent is for execute, we have an extra check to make */
1191 if (ctx->mode & FMODE_EXEC) {
1192 ret = nfs_may_open(ctx->path.dentry->d_inode,
1193 ctx->cred,
1194 nd->intent.open.flags);
1195 if (ret < 0)
1196 goto out;
1197 }
1198 filp = lookup_instantiate_filp(nd, ctx->path.dentry, do_open);
1199 if (IS_ERR(filp))
1200 ret = PTR_ERR(filp);
1201 else
1202 nfs_file_set_open_context(filp, ctx);
1203 out:
1204 put_nfs_open_context(ctx);
1205 return ret;
1206 }
1207
1208 static struct dentry *nfs_atomic_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd)
1209 {
1210 struct nfs_open_context *ctx;
1211 struct iattr attr;
1212 struct dentry *res = NULL;
1213 struct inode *inode;
1214 int open_flags;
1215 int err;
1216
1217 dfprintk(VFS, "NFS: atomic_lookup(%s/%ld), %s\n",
1218 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1219
1220 /* Check that we are indeed trying to open this file */
1221 if (!is_atomic_open(nd))
1222 goto no_open;
1223
1224 if (dentry->d_name.len > NFS_SERVER(dir)->namelen) {
1225 res = ERR_PTR(-ENAMETOOLONG);
1226 goto out;
1227 }
1228 dentry->d_op = NFS_PROTO(dir)->dentry_ops;
1229
1230 /* Let vfs_create() deal with O_EXCL. Instantiate, but don't hash
1231 * the dentry. */
1232 if (nd->flags & LOOKUP_EXCL) {
1233 d_instantiate(dentry, NULL);
1234 goto out;
1235 }
1236
1237 ctx = nameidata_to_nfs_open_context(dentry, nd);
1238 res = ERR_CAST(ctx);
1239 if (IS_ERR(ctx))
1240 goto out;
1241
1242 open_flags = nd->intent.open.flags;
1243 if (nd->flags & LOOKUP_CREATE) {
1244 attr.ia_mode = nd->intent.open.create_mode;
1245 attr.ia_valid = ATTR_MODE;
1246 if (!IS_POSIXACL(dir))
1247 attr.ia_mode &= ~current_umask();
1248 } else {
1249 open_flags &= ~(O_EXCL | O_CREAT);
1250 attr.ia_valid = 0;
1251 }
1252
1253 /* Open the file on the server */
1254 nfs_block_sillyrename(dentry->d_parent);
1255 inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr);
1256 if (IS_ERR(inode)) {
1257 nfs_unblock_sillyrename(dentry->d_parent);
1258 put_nfs_open_context(ctx);
1259 switch (PTR_ERR(inode)) {
1260 /* Make a negative dentry */
1261 case -ENOENT:
1262 d_add(dentry, NULL);
1263 res = NULL;
1264 goto out;
1265 /* This turned out not to be a regular file */
1266 case -EISDIR:
1267 case -ENOTDIR:
1268 goto no_open;
1269 case -ELOOP:
1270 if (!(nd->intent.open.flags & O_NOFOLLOW))
1271 goto no_open;
1272 /* case -EINVAL: */
1273 default:
1274 res = ERR_CAST(inode);
1275 goto out;
1276 }
1277 }
1278 res = d_add_unique(dentry, inode);
1279 nfs_unblock_sillyrename(dentry->d_parent);
1280 if (res != NULL) {
1281 dput(ctx->path.dentry);
1282 ctx->path.dentry = dget(res);
1283 dentry = res;
1284 }
1285 err = nfs_intent_set_file(nd, ctx);
1286 if (err < 0) {
1287 if (res != NULL)
1288 dput(res);
1289 return ERR_PTR(err);
1290 }
1291 out:
1292 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1293 return res;
1294 no_open:
1295 return nfs_lookup(dir, dentry, nd);
1296 }
1297
1298 static int nfs_open_revalidate(struct dentry *dentry, struct nameidata *nd)
1299 {
1300 struct dentry *parent = NULL;
1301 struct inode *inode = dentry->d_inode;
1302 struct inode *dir;
1303 struct nfs_open_context *ctx;
1304 int openflags, ret = 0;
1305
1306 if (!is_atomic_open(nd) || d_mountpoint(dentry))
1307 goto no_open;
1308
1309 parent = dget_parent(dentry);
1310 dir = parent->d_inode;
1311
1312 /* We can't create new files in nfs_open_revalidate(), so we
1313 * optimize away revalidation of negative dentries.
1314 */
1315 if (inode == NULL) {
1316 if (!nfs_neg_need_reval(dir, dentry, nd))
1317 ret = 1;
1318 goto out;
1319 }
1320
1321 /* NFS only supports OPEN on regular files */
1322 if (!S_ISREG(inode->i_mode))
1323 goto no_open_dput;
1324 openflags = nd->intent.open.flags;
1325 /* We cannot do exclusive creation on a positive dentry */
1326 if ((openflags & (O_CREAT|O_EXCL)) == (O_CREAT|O_EXCL))
1327 goto no_open_dput;
1328 /* We can't create new files, or truncate existing ones here */
1329 openflags &= ~(O_CREAT|O_EXCL|O_TRUNC);
1330
1331 ctx = nameidata_to_nfs_open_context(dentry, nd);
1332 ret = PTR_ERR(ctx);
1333 if (IS_ERR(ctx))
1334 goto out;
1335 /*
1336 * Note: we're not holding inode->i_mutex and so may be racing with
1337 * operations that change the directory. We therefore save the
1338 * change attribute *before* we do the RPC call.
1339 */
1340 inode = NFS_PROTO(dir)->open_context(dir, ctx, openflags, NULL);
1341 if (IS_ERR(inode)) {
1342 ret = PTR_ERR(inode);
1343 switch (ret) {
1344 case -EPERM:
1345 case -EACCES:
1346 case -EDQUOT:
1347 case -ENOSPC:
1348 case -EROFS:
1349 goto out_put_ctx;
1350 default:
1351 goto out_drop;
1352 }
1353 }
1354 iput(inode);
1355 if (inode != dentry->d_inode)
1356 goto out_drop;
1357
1358 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1359 ret = nfs_intent_set_file(nd, ctx);
1360 if (ret >= 0)
1361 ret = 1;
1362 out:
1363 dput(parent);
1364 return ret;
1365 out_drop:
1366 d_drop(dentry);
1367 ret = 0;
1368 out_put_ctx:
1369 put_nfs_open_context(ctx);
1370 goto out;
1371
1372 no_open_dput:
1373 dput(parent);
1374 no_open:
1375 return nfs_lookup_revalidate(dentry, nd);
1376 }
1377
1378 static int nfs_open_create(struct inode *dir, struct dentry *dentry, int mode,
1379 struct nameidata *nd)
1380 {
1381 struct nfs_open_context *ctx = NULL;
1382 struct iattr attr;
1383 int error;
1384 int open_flags = 0;
1385
1386 dfprintk(VFS, "NFS: create(%s/%ld), %s\n",
1387 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1388
1389 attr.ia_mode = mode;
1390 attr.ia_valid = ATTR_MODE;
1391
1392 if ((nd->flags & LOOKUP_CREATE) != 0) {
1393 open_flags = nd->intent.open.flags;
1394
1395 ctx = nameidata_to_nfs_open_context(dentry, nd);
1396 error = PTR_ERR(ctx);
1397 if (IS_ERR(ctx))
1398 goto out_err_drop;
1399 }
1400
1401 error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags, ctx);
1402 if (error != 0)
1403 goto out_put_ctx;
1404 if (ctx != NULL) {
1405 error = nfs_intent_set_file(nd, ctx);
1406 if (error < 0)
1407 goto out_err;
1408 }
1409 return 0;
1410 out_put_ctx:
1411 if (ctx != NULL)
1412 put_nfs_open_context(ctx);
1413 out_err_drop:
1414 d_drop(dentry);
1415 out_err:
1416 return error;
1417 }
1418
1419 #endif /* CONFIG_NFSV4 */
1420
1421 /*
1422 * Code common to create, mkdir, and mknod.
1423 */
1424 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
1425 struct nfs_fattr *fattr)
1426 {
1427 struct dentry *parent = dget_parent(dentry);
1428 struct inode *dir = parent->d_inode;
1429 struct inode *inode;
1430 int error = -EACCES;
1431
1432 d_drop(dentry);
1433
1434 /* We may have been initialized further down */
1435 if (dentry->d_inode)
1436 goto out;
1437 if (fhandle->size == 0) {
1438 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr);
1439 if (error)
1440 goto out_error;
1441 }
1442 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1443 if (!(fattr->valid & NFS_ATTR_FATTR)) {
1444 struct nfs_server *server = NFS_SB(dentry->d_sb);
1445 error = server->nfs_client->rpc_ops->getattr(server, fhandle, fattr);
1446 if (error < 0)
1447 goto out_error;
1448 }
1449 inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
1450 error = PTR_ERR(inode);
1451 if (IS_ERR(inode))
1452 goto out_error;
1453 d_add(dentry, inode);
1454 out:
1455 dput(parent);
1456 return 0;
1457 out_error:
1458 nfs_mark_for_revalidate(dir);
1459 dput(parent);
1460 return error;
1461 }
1462
1463 /*
1464 * Following a failed create operation, we drop the dentry rather
1465 * than retain a negative dentry. This avoids a problem in the event
1466 * that the operation succeeded on the server, but an error in the
1467 * reply path made it appear to have failed.
1468 */
1469 static int nfs_create(struct inode *dir, struct dentry *dentry, int mode,
1470 struct nameidata *nd)
1471 {
1472 struct iattr attr;
1473 int error;
1474
1475 dfprintk(VFS, "NFS: create(%s/%ld), %s\n",
1476 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1477
1478 attr.ia_mode = mode;
1479 attr.ia_valid = ATTR_MODE;
1480
1481 error = NFS_PROTO(dir)->create(dir, dentry, &attr, 0, NULL);
1482 if (error != 0)
1483 goto out_err;
1484 return 0;
1485 out_err:
1486 d_drop(dentry);
1487 return error;
1488 }
1489
1490 /*
1491 * See comments for nfs_proc_create regarding failed operations.
1492 */
1493 static int
1494 nfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t rdev)
1495 {
1496 struct iattr attr;
1497 int status;
1498
1499 dfprintk(VFS, "NFS: mknod(%s/%ld), %s\n",
1500 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1501
1502 if (!new_valid_dev(rdev))
1503 return -EINVAL;
1504
1505 attr.ia_mode = mode;
1506 attr.ia_valid = ATTR_MODE;
1507
1508 status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
1509 if (status != 0)
1510 goto out_err;
1511 return 0;
1512 out_err:
1513 d_drop(dentry);
1514 return status;
1515 }
1516
1517 /*
1518 * See comments for nfs_proc_create regarding failed operations.
1519 */
1520 static int nfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1521 {
1522 struct iattr attr;
1523 int error;
1524
1525 dfprintk(VFS, "NFS: mkdir(%s/%ld), %s\n",
1526 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1527
1528 attr.ia_valid = ATTR_MODE;
1529 attr.ia_mode = mode | S_IFDIR;
1530
1531 error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
1532 if (error != 0)
1533 goto out_err;
1534 return 0;
1535 out_err:
1536 d_drop(dentry);
1537 return error;
1538 }
1539
1540 static void nfs_dentry_handle_enoent(struct dentry *dentry)
1541 {
1542 if (dentry->d_inode != NULL && !d_unhashed(dentry))
1543 d_delete(dentry);
1544 }
1545
1546 static int nfs_rmdir(struct inode *dir, struct dentry *dentry)
1547 {
1548 int error;
1549
1550 dfprintk(VFS, "NFS: rmdir(%s/%ld), %s\n",
1551 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1552
1553 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1554 /* Ensure the VFS deletes this inode */
1555 if (error == 0 && dentry->d_inode != NULL)
1556 clear_nlink(dentry->d_inode);
1557 else if (error == -ENOENT)
1558 nfs_dentry_handle_enoent(dentry);
1559
1560 return error;
1561 }
1562
1563 /*
1564 * Remove a file after making sure there are no pending writes,
1565 * and after checking that the file has only one user.
1566 *
1567 * We invalidate the attribute cache and free the inode prior to the operation
1568 * to avoid possible races if the server reuses the inode.
1569 */
1570 static int nfs_safe_remove(struct dentry *dentry)
1571 {
1572 struct inode *dir = dentry->d_parent->d_inode;
1573 struct inode *inode = dentry->d_inode;
1574 int error = -EBUSY;
1575
1576 dfprintk(VFS, "NFS: safe_remove(%s/%s)\n",
1577 dentry->d_parent->d_name.name, dentry->d_name.name);
1578
1579 /* If the dentry was sillyrenamed, we simply call d_delete() */
1580 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1581 error = 0;
1582 goto out;
1583 }
1584
1585 if (inode != NULL) {
1586 nfs_inode_return_delegation(inode);
1587 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1588 /* The VFS may want to delete this inode */
1589 if (error == 0)
1590 nfs_drop_nlink(inode);
1591 nfs_mark_for_revalidate(inode);
1592 } else
1593 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1594 if (error == -ENOENT)
1595 nfs_dentry_handle_enoent(dentry);
1596 out:
1597 return error;
1598 }
1599
1600 /* We do silly rename. In case sillyrename() returns -EBUSY, the inode
1601 * belongs to an active ".nfs..." file and we return -EBUSY.
1602 *
1603 * If sillyrename() returns 0, we do nothing, otherwise we unlink.
1604 */
1605 static int nfs_unlink(struct inode *dir, struct dentry *dentry)
1606 {
1607 int error;
1608 int need_rehash = 0;
1609
1610 dfprintk(VFS, "NFS: unlink(%s/%ld, %s)\n", dir->i_sb->s_id,
1611 dir->i_ino, dentry->d_name.name);
1612
1613 spin_lock(&dcache_lock);
1614 spin_lock(&dentry->d_lock);
1615 if (atomic_read(&dentry->d_count) > 1) {
1616 spin_unlock(&dentry->d_lock);
1617 spin_unlock(&dcache_lock);
1618 /* Start asynchronous writeout of the inode */
1619 write_inode_now(dentry->d_inode, 0);
1620 error = nfs_sillyrename(dir, dentry);
1621 return error;
1622 }
1623 if (!d_unhashed(dentry)) {
1624 __d_drop(dentry);
1625 need_rehash = 1;
1626 }
1627 spin_unlock(&dentry->d_lock);
1628 spin_unlock(&dcache_lock);
1629 error = nfs_safe_remove(dentry);
1630 if (!error || error == -ENOENT) {
1631 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1632 } else if (need_rehash)
1633 d_rehash(dentry);
1634 return error;
1635 }
1636
1637 /*
1638 * To create a symbolic link, most file systems instantiate a new inode,
1639 * add a page to it containing the path, then write it out to the disk
1640 * using prepare_write/commit_write.
1641 *
1642 * Unfortunately the NFS client can't create the in-core inode first
1643 * because it needs a file handle to create an in-core inode (see
1644 * fs/nfs/inode.c:nfs_fhget). We only have a file handle *after* the
1645 * symlink request has completed on the server.
1646 *
1647 * So instead we allocate a raw page, copy the symname into it, then do
1648 * the SYMLINK request with the page as the buffer. If it succeeds, we
1649 * now have a new file handle and can instantiate an in-core NFS inode
1650 * and move the raw page into its mapping.
1651 */
1652 static int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1653 {
1654 struct pagevec lru_pvec;
1655 struct page *page;
1656 char *kaddr;
1657 struct iattr attr;
1658 unsigned int pathlen = strlen(symname);
1659 int error;
1660
1661 dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s)\n", dir->i_sb->s_id,
1662 dir->i_ino, dentry->d_name.name, symname);
1663
1664 if (pathlen > PAGE_SIZE)
1665 return -ENAMETOOLONG;
1666
1667 attr.ia_mode = S_IFLNK | S_IRWXUGO;
1668 attr.ia_valid = ATTR_MODE;
1669
1670 page = alloc_page(GFP_HIGHUSER);
1671 if (!page)
1672 return -ENOMEM;
1673
1674 kaddr = kmap_atomic(page, KM_USER0);
1675 memcpy(kaddr, symname, pathlen);
1676 if (pathlen < PAGE_SIZE)
1677 memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
1678 kunmap_atomic(kaddr, KM_USER0);
1679
1680 error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
1681 if (error != 0) {
1682 dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s) error %d\n",
1683 dir->i_sb->s_id, dir->i_ino,
1684 dentry->d_name.name, symname, error);
1685 d_drop(dentry);
1686 __free_page(page);
1687 return error;
1688 }
1689
1690 /*
1691 * No big deal if we can't add this page to the page cache here.
1692 * READLINK will get the missing page from the server if needed.
1693 */
1694 pagevec_init(&lru_pvec, 0);
1695 if (!add_to_page_cache(page, dentry->d_inode->i_mapping, 0,
1696 GFP_KERNEL)) {
1697 pagevec_add(&lru_pvec, page);
1698 pagevec_lru_add_file(&lru_pvec);
1699 SetPageUptodate(page);
1700 unlock_page(page);
1701 } else
1702 __free_page(page);
1703
1704 return 0;
1705 }
1706
1707 static int
1708 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1709 {
1710 struct inode *inode = old_dentry->d_inode;
1711 int error;
1712
1713 dfprintk(VFS, "NFS: link(%s/%s -> %s/%s)\n",
1714 old_dentry->d_parent->d_name.name, old_dentry->d_name.name,
1715 dentry->d_parent->d_name.name, dentry->d_name.name);
1716
1717 nfs_inode_return_delegation(inode);
1718
1719 d_drop(dentry);
1720 error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
1721 if (error == 0) {
1722 atomic_inc(&inode->i_count);
1723 d_add(dentry, inode);
1724 }
1725 return error;
1726 }
1727
1728 /*
1729 * RENAME
1730 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
1731 * different file handle for the same inode after a rename (e.g. when
1732 * moving to a different directory). A fail-safe method to do so would
1733 * be to look up old_dir/old_name, create a link to new_dir/new_name and
1734 * rename the old file using the sillyrename stuff. This way, the original
1735 * file in old_dir will go away when the last process iput()s the inode.
1736 *
1737 * FIXED.
1738 *
1739 * It actually works quite well. One needs to have the possibility for
1740 * at least one ".nfs..." file in each directory the file ever gets
1741 * moved or linked to which happens automagically with the new
1742 * implementation that only depends on the dcache stuff instead of
1743 * using the inode layer
1744 *
1745 * Unfortunately, things are a little more complicated than indicated
1746 * above. For a cross-directory move, we want to make sure we can get
1747 * rid of the old inode after the operation. This means there must be
1748 * no pending writes (if it's a file), and the use count must be 1.
1749 * If these conditions are met, we can drop the dentries before doing
1750 * the rename.
1751 */
1752 static int nfs_rename(struct inode *old_dir, struct dentry *old_dentry,
1753 struct inode *new_dir, struct dentry *new_dentry)
1754 {
1755 struct inode *old_inode = old_dentry->d_inode;
1756 struct inode *new_inode = new_dentry->d_inode;
1757 struct dentry *dentry = NULL, *rehash = NULL;
1758 int error = -EBUSY;
1759
1760 dfprintk(VFS, "NFS: rename(%s/%s -> %s/%s, ct=%d)\n",
1761 old_dentry->d_parent->d_name.name, old_dentry->d_name.name,
1762 new_dentry->d_parent->d_name.name, new_dentry->d_name.name,
1763 atomic_read(&new_dentry->d_count));
1764
1765 /*
1766 * For non-directories, check whether the target is busy and if so,
1767 * make a copy of the dentry and then do a silly-rename. If the
1768 * silly-rename succeeds, the copied dentry is hashed and becomes
1769 * the new target.
1770 */
1771 if (new_inode && !S_ISDIR(new_inode->i_mode)) {
1772 /*
1773 * To prevent any new references to the target during the
1774 * rename, we unhash the dentry in advance.
1775 */
1776 if (!d_unhashed(new_dentry)) {
1777 d_drop(new_dentry);
1778 rehash = new_dentry;
1779 }
1780
1781 if (atomic_read(&new_dentry->d_count) > 2) {
1782 int err;
1783
1784 /* copy the target dentry's name */
1785 dentry = d_alloc(new_dentry->d_parent,
1786 &new_dentry->d_name);
1787 if (!dentry)
1788 goto out;
1789
1790 /* silly-rename the existing target ... */
1791 err = nfs_sillyrename(new_dir, new_dentry);
1792 if (err)
1793 goto out;
1794
1795 new_dentry = dentry;
1796 rehash = NULL;
1797 new_inode = NULL;
1798 }
1799 }
1800
1801 nfs_inode_return_delegation(old_inode);
1802 if (new_inode != NULL)
1803 nfs_inode_return_delegation(new_inode);
1804
1805 error = NFS_PROTO(old_dir)->rename(old_dir, &old_dentry->d_name,
1806 new_dir, &new_dentry->d_name);
1807 nfs_mark_for_revalidate(old_inode);
1808 out:
1809 if (rehash)
1810 d_rehash(rehash);
1811 if (!error) {
1812 if (new_inode != NULL)
1813 nfs_drop_nlink(new_inode);
1814 d_move(old_dentry, new_dentry);
1815 nfs_set_verifier(new_dentry,
1816 nfs_save_change_attribute(new_dir));
1817 } else if (error == -ENOENT)
1818 nfs_dentry_handle_enoent(old_dentry);
1819
1820 /* new dentry created? */
1821 if (dentry)
1822 dput(dentry);
1823 return error;
1824 }
1825
1826 static DEFINE_SPINLOCK(nfs_access_lru_lock);
1827 static LIST_HEAD(nfs_access_lru_list);
1828 static atomic_long_t nfs_access_nr_entries;
1829
1830 static void nfs_access_free_entry(struct nfs_access_entry *entry)
1831 {
1832 put_rpccred(entry->cred);
1833 kfree(entry);
1834 smp_mb__before_atomic_dec();
1835 atomic_long_dec(&nfs_access_nr_entries);
1836 smp_mb__after_atomic_dec();
1837 }
1838
1839 static void nfs_access_free_list(struct list_head *head)
1840 {
1841 struct nfs_access_entry *cache;
1842
1843 while (!list_empty(head)) {
1844 cache = list_entry(head->next, struct nfs_access_entry, lru);
1845 list_del(&cache->lru);
1846 nfs_access_free_entry(cache);
1847 }
1848 }
1849
1850 int nfs_access_cache_shrinker(struct shrinker *shrink, int nr_to_scan, gfp_t gfp_mask)
1851 {
1852 LIST_HEAD(head);
1853 struct nfs_inode *nfsi, *next;
1854 struct nfs_access_entry *cache;
1855
1856 if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL)
1857 return (nr_to_scan == 0) ? 0 : -1;
1858
1859 spin_lock(&nfs_access_lru_lock);
1860 list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) {
1861 struct inode *inode;
1862
1863 if (nr_to_scan-- == 0)
1864 break;
1865 inode = &nfsi->vfs_inode;
1866 spin_lock(&inode->i_lock);
1867 if (list_empty(&nfsi->access_cache_entry_lru))
1868 goto remove_lru_entry;
1869 cache = list_entry(nfsi->access_cache_entry_lru.next,
1870 struct nfs_access_entry, lru);
1871 list_move(&cache->lru, &head);
1872 rb_erase(&cache->rb_node, &nfsi->access_cache);
1873 if (!list_empty(&nfsi->access_cache_entry_lru))
1874 list_move_tail(&nfsi->access_cache_inode_lru,
1875 &nfs_access_lru_list);
1876 else {
1877 remove_lru_entry:
1878 list_del_init(&nfsi->access_cache_inode_lru);
1879 smp_mb__before_clear_bit();
1880 clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
1881 smp_mb__after_clear_bit();
1882 }
1883 spin_unlock(&inode->i_lock);
1884 }
1885 spin_unlock(&nfs_access_lru_lock);
1886 nfs_access_free_list(&head);
1887 return (atomic_long_read(&nfs_access_nr_entries) / 100) * sysctl_vfs_cache_pressure;
1888 }
1889
1890 static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head)
1891 {
1892 struct rb_root *root_node = &nfsi->access_cache;
1893 struct rb_node *n;
1894 struct nfs_access_entry *entry;
1895
1896 /* Unhook entries from the cache */
1897 while ((n = rb_first(root_node)) != NULL) {
1898 entry = rb_entry(n, struct nfs_access_entry, rb_node);
1899 rb_erase(n, root_node);
1900 list_move(&entry->lru, head);
1901 }
1902 nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
1903 }
1904
1905 void nfs_access_zap_cache(struct inode *inode)
1906 {
1907 LIST_HEAD(head);
1908
1909 if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0)
1910 return;
1911 /* Remove from global LRU init */
1912 spin_lock(&nfs_access_lru_lock);
1913 if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
1914 list_del_init(&NFS_I(inode)->access_cache_inode_lru);
1915
1916 spin_lock(&inode->i_lock);
1917 __nfs_access_zap_cache(NFS_I(inode), &head);
1918 spin_unlock(&inode->i_lock);
1919 spin_unlock(&nfs_access_lru_lock);
1920 nfs_access_free_list(&head);
1921 }
1922
1923 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, struct rpc_cred *cred)
1924 {
1925 struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
1926 struct nfs_access_entry *entry;
1927
1928 while (n != NULL) {
1929 entry = rb_entry(n, struct nfs_access_entry, rb_node);
1930
1931 if (cred < entry->cred)
1932 n = n->rb_left;
1933 else if (cred > entry->cred)
1934 n = n->rb_right;
1935 else
1936 return entry;
1937 }
1938 return NULL;
1939 }
1940
1941 static int nfs_access_get_cached(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res)
1942 {
1943 struct nfs_inode *nfsi = NFS_I(inode);
1944 struct nfs_access_entry *cache;
1945 int err = -ENOENT;
1946
1947 spin_lock(&inode->i_lock);
1948 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
1949 goto out_zap;
1950 cache = nfs_access_search_rbtree(inode, cred);
1951 if (cache == NULL)
1952 goto out;
1953 if (!nfs_have_delegated_attributes(inode) &&
1954 !time_in_range_open(jiffies, cache->jiffies, cache->jiffies + nfsi->attrtimeo))
1955 goto out_stale;
1956 res->jiffies = cache->jiffies;
1957 res->cred = cache->cred;
1958 res->mask = cache->mask;
1959 list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
1960 err = 0;
1961 out:
1962 spin_unlock(&inode->i_lock);
1963 return err;
1964 out_stale:
1965 rb_erase(&cache->rb_node, &nfsi->access_cache);
1966 list_del(&cache->lru);
1967 spin_unlock(&inode->i_lock);
1968 nfs_access_free_entry(cache);
1969 return -ENOENT;
1970 out_zap:
1971 spin_unlock(&inode->i_lock);
1972 nfs_access_zap_cache(inode);
1973 return -ENOENT;
1974 }
1975
1976 static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set)
1977 {
1978 struct nfs_inode *nfsi = NFS_I(inode);
1979 struct rb_root *root_node = &nfsi->access_cache;
1980 struct rb_node **p = &root_node->rb_node;
1981 struct rb_node *parent = NULL;
1982 struct nfs_access_entry *entry;
1983
1984 spin_lock(&inode->i_lock);
1985 while (*p != NULL) {
1986 parent = *p;
1987 entry = rb_entry(parent, struct nfs_access_entry, rb_node);
1988
1989 if (set->cred < entry->cred)
1990 p = &parent->rb_left;
1991 else if (set->cred > entry->cred)
1992 p = &parent->rb_right;
1993 else
1994 goto found;
1995 }
1996 rb_link_node(&set->rb_node, parent, p);
1997 rb_insert_color(&set->rb_node, root_node);
1998 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
1999 spin_unlock(&inode->i_lock);
2000 return;
2001 found:
2002 rb_replace_node(parent, &set->rb_node, root_node);
2003 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2004 list_del(&entry->lru);
2005 spin_unlock(&inode->i_lock);
2006 nfs_access_free_entry(entry);
2007 }
2008
2009 static void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set)
2010 {
2011 struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
2012 if (cache == NULL)
2013 return;
2014 RB_CLEAR_NODE(&cache->rb_node);
2015 cache->jiffies = set->jiffies;
2016 cache->cred = get_rpccred(set->cred);
2017 cache->mask = set->mask;
2018
2019 nfs_access_add_rbtree(inode, cache);
2020
2021 /* Update accounting */
2022 smp_mb__before_atomic_inc();
2023 atomic_long_inc(&nfs_access_nr_entries);
2024 smp_mb__after_atomic_inc();
2025
2026 /* Add inode to global LRU list */
2027 if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
2028 spin_lock(&nfs_access_lru_lock);
2029 if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2030 list_add_tail(&NFS_I(inode)->access_cache_inode_lru,
2031 &nfs_access_lru_list);
2032 spin_unlock(&nfs_access_lru_lock);
2033 }
2034 }
2035
2036 static int nfs_do_access(struct inode *inode, struct rpc_cred *cred, int mask)
2037 {
2038 struct nfs_access_entry cache;
2039 int status;
2040
2041 status = nfs_access_get_cached(inode, cred, &cache);
2042 if (status == 0)
2043 goto out;
2044
2045 /* Be clever: ask server to check for all possible rights */
2046 cache.mask = MAY_EXEC | MAY_WRITE | MAY_READ;
2047 cache.cred = cred;
2048 cache.jiffies = jiffies;
2049 status = NFS_PROTO(inode)->access(inode, &cache);
2050 if (status != 0) {
2051 if (status == -ESTALE) {
2052 nfs_zap_caches(inode);
2053 if (!S_ISDIR(inode->i_mode))
2054 set_bit(NFS_INO_STALE, &NFS_I(inode)->flags);
2055 }
2056 return status;
2057 }
2058 nfs_access_add_cache(inode, &cache);
2059 out:
2060 if ((mask & ~cache.mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
2061 return 0;
2062 return -EACCES;
2063 }
2064
2065 static int nfs_open_permission_mask(int openflags)
2066 {
2067 int mask = 0;
2068
2069 if (openflags & FMODE_READ)
2070 mask |= MAY_READ;
2071 if (openflags & FMODE_WRITE)
2072 mask |= MAY_WRITE;
2073 if (openflags & FMODE_EXEC)
2074 mask |= MAY_EXEC;
2075 return mask;
2076 }
2077
2078 int nfs_may_open(struct inode *inode, struct rpc_cred *cred, int openflags)
2079 {
2080 return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
2081 }
2082
2083 int nfs_permission(struct inode *inode, int mask)
2084 {
2085 struct rpc_cred *cred;
2086 int res = 0;
2087
2088 nfs_inc_stats(inode, NFSIOS_VFSACCESS);
2089
2090 if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
2091 goto out;
2092 /* Is this sys_access() ? */
2093 if (mask & (MAY_ACCESS | MAY_CHDIR))
2094 goto force_lookup;
2095
2096 switch (inode->i_mode & S_IFMT) {
2097 case S_IFLNK:
2098 goto out;
2099 case S_IFREG:
2100 /* NFSv4 has atomic_open... */
2101 if (nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN)
2102 && (mask & MAY_OPEN)
2103 && !(mask & MAY_EXEC))
2104 goto out;
2105 break;
2106 case S_IFDIR:
2107 /*
2108 * Optimize away all write operations, since the server
2109 * will check permissions when we perform the op.
2110 */
2111 if ((mask & MAY_WRITE) && !(mask & MAY_READ))
2112 goto out;
2113 }
2114
2115 force_lookup:
2116 if (!NFS_PROTO(inode)->access)
2117 goto out_notsup;
2118
2119 cred = rpc_lookup_cred();
2120 if (!IS_ERR(cred)) {
2121 res = nfs_do_access(inode, cred, mask);
2122 put_rpccred(cred);
2123 } else
2124 res = PTR_ERR(cred);
2125 out:
2126 if (!res && (mask & MAY_EXEC) && !execute_ok(inode))
2127 res = -EACCES;
2128
2129 dfprintk(VFS, "NFS: permission(%s/%ld), mask=0x%x, res=%d\n",
2130 inode->i_sb->s_id, inode->i_ino, mask, res);
2131 return res;
2132 out_notsup:
2133 res = nfs_revalidate_inode(NFS_SERVER(inode), inode);
2134 if (res == 0)
2135 res = generic_permission(inode, mask, NULL);
2136 goto out;
2137 }
2138
2139 /*
2140 * Local variables:
2141 * version-control: t
2142 * kept-new-versions: 5
2143 * End:
2144 */
This page took 0.341722 seconds and 5 git commands to generate.