NFS: nfs_readdir_search_for_cookie() don't mark as eof if cookie not found
[deliverable/linux.git] / fs / nfs / dir.c
1 /*
2 * linux/fs/nfs/dir.c
3 *
4 * Copyright (C) 1992 Rick Sladkey
5 *
6 * nfs directory handling functions
7 *
8 * 10 Apr 1996 Added silly rename for unlink --okir
9 * 28 Sep 1996 Improved directory cache --okir
10 * 23 Aug 1997 Claus Heine claus@momo.math.rwth-aachen.de
11 * Re-implemented silly rename for unlink, newly implemented
12 * silly rename for nfs_rename() following the suggestions
13 * of Olaf Kirch (okir) found in this file.
14 * Following Linus comments on my original hack, this version
15 * depends only on the dcache stuff and doesn't touch the inode
16 * layer (iput() and friends).
17 * 6 Jun 1999 Cache readdir lookups in the page cache. -DaveM
18 */
19
20 #include <linux/time.h>
21 #include <linux/errno.h>
22 #include <linux/stat.h>
23 #include <linux/fcntl.h>
24 #include <linux/string.h>
25 #include <linux/kernel.h>
26 #include <linux/slab.h>
27 #include <linux/mm.h>
28 #include <linux/sunrpc/clnt.h>
29 #include <linux/nfs_fs.h>
30 #include <linux/nfs_mount.h>
31 #include <linux/pagemap.h>
32 #include <linux/pagevec.h>
33 #include <linux/namei.h>
34 #include <linux/mount.h>
35 #include <linux/sched.h>
36 #include <linux/vmalloc.h>
37 #include <linux/kmemleak.h>
38
39 #include "delegation.h"
40 #include "iostat.h"
41 #include "internal.h"
42 #include "fscache.h"
43
44 /* #define NFS_DEBUG_VERBOSE 1 */
45
46 static int nfs_opendir(struct inode *, struct file *);
47 static int nfs_readdir(struct file *, void *, filldir_t);
48 static struct dentry *nfs_lookup(struct inode *, struct dentry *, struct nameidata *);
49 static int nfs_create(struct inode *, struct dentry *, int, struct nameidata *);
50 static int nfs_mkdir(struct inode *, struct dentry *, int);
51 static int nfs_rmdir(struct inode *, struct dentry *);
52 static int nfs_unlink(struct inode *, struct dentry *);
53 static int nfs_symlink(struct inode *, struct dentry *, const char *);
54 static int nfs_link(struct dentry *, struct inode *, struct dentry *);
55 static int nfs_mknod(struct inode *, struct dentry *, int, dev_t);
56 static int nfs_rename(struct inode *, struct dentry *,
57 struct inode *, struct dentry *);
58 static int nfs_fsync_dir(struct file *, int);
59 static loff_t nfs_llseek_dir(struct file *, loff_t, int);
60 static void nfs_readdir_clear_array(struct page*);
61
62 const struct file_operations nfs_dir_operations = {
63 .llseek = nfs_llseek_dir,
64 .read = generic_read_dir,
65 .readdir = nfs_readdir,
66 .open = nfs_opendir,
67 .release = nfs_release,
68 .fsync = nfs_fsync_dir,
69 };
70
71 const struct inode_operations nfs_dir_inode_operations = {
72 .create = nfs_create,
73 .lookup = nfs_lookup,
74 .link = nfs_link,
75 .unlink = nfs_unlink,
76 .symlink = nfs_symlink,
77 .mkdir = nfs_mkdir,
78 .rmdir = nfs_rmdir,
79 .mknod = nfs_mknod,
80 .rename = nfs_rename,
81 .permission = nfs_permission,
82 .getattr = nfs_getattr,
83 .setattr = nfs_setattr,
84 };
85
86 const struct address_space_operations nfs_dir_aops = {
87 .freepage = nfs_readdir_clear_array,
88 };
89
90 #ifdef CONFIG_NFS_V3
91 const struct inode_operations nfs3_dir_inode_operations = {
92 .create = nfs_create,
93 .lookup = nfs_lookup,
94 .link = nfs_link,
95 .unlink = nfs_unlink,
96 .symlink = nfs_symlink,
97 .mkdir = nfs_mkdir,
98 .rmdir = nfs_rmdir,
99 .mknod = nfs_mknod,
100 .rename = nfs_rename,
101 .permission = nfs_permission,
102 .getattr = nfs_getattr,
103 .setattr = nfs_setattr,
104 .listxattr = nfs3_listxattr,
105 .getxattr = nfs3_getxattr,
106 .setxattr = nfs3_setxattr,
107 .removexattr = nfs3_removexattr,
108 };
109 #endif /* CONFIG_NFS_V3 */
110
111 #ifdef CONFIG_NFS_V4
112
113 static struct dentry *nfs_atomic_lookup(struct inode *, struct dentry *, struct nameidata *);
114 static int nfs_open_create(struct inode *dir, struct dentry *dentry, int mode, struct nameidata *nd);
115 const struct inode_operations nfs4_dir_inode_operations = {
116 .create = nfs_open_create,
117 .lookup = nfs_atomic_lookup,
118 .link = nfs_link,
119 .unlink = nfs_unlink,
120 .symlink = nfs_symlink,
121 .mkdir = nfs_mkdir,
122 .rmdir = nfs_rmdir,
123 .mknod = nfs_mknod,
124 .rename = nfs_rename,
125 .permission = nfs_permission,
126 .getattr = nfs_getattr,
127 .setattr = nfs_setattr,
128 .getxattr = nfs4_getxattr,
129 .setxattr = nfs4_setxattr,
130 .listxattr = nfs4_listxattr,
131 };
132
133 #endif /* CONFIG_NFS_V4 */
134
135 /*
136 * Open file
137 */
138 static int
139 nfs_opendir(struct inode *inode, struct file *filp)
140 {
141 int res;
142
143 dfprintk(FILE, "NFS: open dir(%s/%s)\n",
144 filp->f_path.dentry->d_parent->d_name.name,
145 filp->f_path.dentry->d_name.name);
146
147 nfs_inc_stats(inode, NFSIOS_VFSOPEN);
148
149 /* Call generic open code in order to cache credentials */
150 res = nfs_open(inode, filp);
151 if (filp->f_path.dentry == filp->f_path.mnt->mnt_root) {
152 /* This is a mountpoint, so d_revalidate will never
153 * have been called, so we need to refresh the
154 * inode (for close-open consistency) ourselves.
155 */
156 __nfs_revalidate_inode(NFS_SERVER(inode), inode);
157 }
158 return res;
159 }
160
161 struct nfs_cache_array_entry {
162 u64 cookie;
163 u64 ino;
164 struct qstr string;
165 unsigned char d_type;
166 };
167
168 struct nfs_cache_array {
169 unsigned int size;
170 int eof_index;
171 u64 last_cookie;
172 struct nfs_cache_array_entry array[0];
173 };
174
175 typedef __be32 * (*decode_dirent_t)(struct xdr_stream *, struct nfs_entry *, struct nfs_server *, int);
176 typedef struct {
177 struct file *file;
178 struct page *page;
179 unsigned long page_index;
180 u64 *dir_cookie;
181 u64 last_cookie;
182 loff_t current_index;
183 decode_dirent_t decode;
184
185 unsigned long timestamp;
186 unsigned long gencount;
187 unsigned int cache_entry_index;
188 unsigned int plus:1;
189 unsigned int eof:1;
190 } nfs_readdir_descriptor_t;
191
192 /*
193 * The caller is responsible for calling nfs_readdir_release_array(page)
194 */
195 static
196 struct nfs_cache_array *nfs_readdir_get_array(struct page *page)
197 {
198 void *ptr;
199 if (page == NULL)
200 return ERR_PTR(-EIO);
201 ptr = kmap(page);
202 if (ptr == NULL)
203 return ERR_PTR(-ENOMEM);
204 return ptr;
205 }
206
207 static
208 void nfs_readdir_release_array(struct page *page)
209 {
210 kunmap(page);
211 }
212
213 /*
214 * we are freeing strings created by nfs_add_to_readdir_array()
215 */
216 static
217 void nfs_readdir_clear_array(struct page *page)
218 {
219 struct nfs_cache_array *array;
220 int i;
221
222 array = kmap_atomic(page, KM_USER0);
223 for (i = 0; i < array->size; i++)
224 kfree(array->array[i].string.name);
225 kunmap_atomic(array, KM_USER0);
226 }
227
228 /*
229 * the caller is responsible for freeing qstr.name
230 * when called by nfs_readdir_add_to_array, the strings will be freed in
231 * nfs_clear_readdir_array()
232 */
233 static
234 int nfs_readdir_make_qstr(struct qstr *string, const char *name, unsigned int len)
235 {
236 string->len = len;
237 string->name = kmemdup(name, len, GFP_KERNEL);
238 if (string->name == NULL)
239 return -ENOMEM;
240 /*
241 * Avoid a kmemleak false positive. The pointer to the name is stored
242 * in a page cache page which kmemleak does not scan.
243 */
244 kmemleak_not_leak(string->name);
245 string->hash = full_name_hash(name, len);
246 return 0;
247 }
248
249 static
250 int nfs_readdir_add_to_array(struct nfs_entry *entry, struct page *page)
251 {
252 struct nfs_cache_array *array = nfs_readdir_get_array(page);
253 struct nfs_cache_array_entry *cache_entry;
254 int ret;
255
256 if (IS_ERR(array))
257 return PTR_ERR(array);
258
259 cache_entry = &array->array[array->size];
260
261 /* Check that this entry lies within the page bounds */
262 ret = -ENOSPC;
263 if ((char *)&cache_entry[1] - (char *)page_address(page) > PAGE_SIZE)
264 goto out;
265
266 cache_entry->cookie = entry->prev_cookie;
267 cache_entry->ino = entry->ino;
268 cache_entry->d_type = entry->d_type;
269 ret = nfs_readdir_make_qstr(&cache_entry->string, entry->name, entry->len);
270 if (ret)
271 goto out;
272 array->last_cookie = entry->cookie;
273 array->size++;
274 if (entry->eof == 1)
275 array->eof_index = array->size;
276 out:
277 nfs_readdir_release_array(page);
278 return ret;
279 }
280
281 static
282 int nfs_readdir_search_for_pos(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
283 {
284 loff_t diff = desc->file->f_pos - desc->current_index;
285 unsigned int index;
286
287 if (diff < 0)
288 goto out_eof;
289 if (diff >= array->size) {
290 if (array->eof_index >= 0)
291 goto out_eof;
292 desc->current_index += array->size;
293 return -EAGAIN;
294 }
295
296 index = (unsigned int)diff;
297 *desc->dir_cookie = array->array[index].cookie;
298 desc->cache_entry_index = index;
299 return 0;
300 out_eof:
301 desc->eof = 1;
302 return -EBADCOOKIE;
303 }
304
305 static
306 int nfs_readdir_search_for_cookie(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
307 {
308 int i;
309 int status = -EAGAIN;
310
311 for (i = 0; i < array->size; i++) {
312 if (array->array[i].cookie == *desc->dir_cookie) {
313 desc->cache_entry_index = i;
314 status = 0;
315 goto out;
316 }
317 }
318 if (i == array->eof_index) {
319 status = -EBADCOOKIE;
320 if (*desc->dir_cookie == array->last_cookie)
321 desc->eof = 1;
322 }
323 out:
324 return status;
325 }
326
327 static
328 int nfs_readdir_search_array(nfs_readdir_descriptor_t *desc)
329 {
330 struct nfs_cache_array *array;
331 int status = -EBADCOOKIE;
332
333 if (desc->dir_cookie == NULL)
334 goto out;
335
336 array = nfs_readdir_get_array(desc->page);
337 if (IS_ERR(array)) {
338 status = PTR_ERR(array);
339 goto out;
340 }
341
342 if (*desc->dir_cookie == 0)
343 status = nfs_readdir_search_for_pos(array, desc);
344 else
345 status = nfs_readdir_search_for_cookie(array, desc);
346
347 if (status == -EAGAIN)
348 desc->last_cookie = array->last_cookie;
349 nfs_readdir_release_array(desc->page);
350 out:
351 return status;
352 }
353
354 /* Fill a page with xdr information before transferring to the cache page */
355 static
356 int nfs_readdir_xdr_filler(struct page **pages, nfs_readdir_descriptor_t *desc,
357 struct nfs_entry *entry, struct file *file, struct inode *inode)
358 {
359 struct rpc_cred *cred = nfs_file_cred(file);
360 unsigned long timestamp, gencount;
361 int error;
362
363 again:
364 timestamp = jiffies;
365 gencount = nfs_inc_attr_generation_counter();
366 error = NFS_PROTO(inode)->readdir(file->f_path.dentry, cred, entry->cookie, pages,
367 NFS_SERVER(inode)->dtsize, desc->plus);
368 if (error < 0) {
369 /* We requested READDIRPLUS, but the server doesn't grok it */
370 if (error == -ENOTSUPP && desc->plus) {
371 NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
372 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
373 desc->plus = 0;
374 goto again;
375 }
376 goto error;
377 }
378 desc->timestamp = timestamp;
379 desc->gencount = gencount;
380 error:
381 return error;
382 }
383
384 /* Fill in an entry based on the xdr code stored in desc->page */
385 static
386 int xdr_decode(nfs_readdir_descriptor_t *desc, struct nfs_entry *entry, struct xdr_stream *stream)
387 {
388 __be32 *p = desc->decode(stream, entry, NFS_SERVER(desc->file->f_path.dentry->d_inode), desc->plus);
389 if (IS_ERR(p))
390 return PTR_ERR(p);
391
392 entry->fattr->time_start = desc->timestamp;
393 entry->fattr->gencount = desc->gencount;
394 return 0;
395 }
396
397 static
398 int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry)
399 {
400 if (dentry->d_inode == NULL)
401 goto different;
402 if (nfs_compare_fh(entry->fh, NFS_FH(dentry->d_inode)) != 0)
403 goto different;
404 return 1;
405 different:
406 return 0;
407 }
408
409 static
410 void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry)
411 {
412 struct qstr filename = {
413 .len = entry->len,
414 .name = entry->name,
415 };
416 struct dentry *dentry;
417 struct dentry *alias;
418 struct inode *dir = parent->d_inode;
419 struct inode *inode;
420
421 if (filename.name[0] == '.') {
422 if (filename.len == 1)
423 return;
424 if (filename.len == 2 && filename.name[1] == '.')
425 return;
426 }
427 filename.hash = full_name_hash(filename.name, filename.len);
428
429 dentry = d_lookup(parent, &filename);
430 if (dentry != NULL) {
431 if (nfs_same_file(dentry, entry)) {
432 nfs_refresh_inode(dentry->d_inode, entry->fattr);
433 goto out;
434 } else {
435 d_drop(dentry);
436 dput(dentry);
437 }
438 }
439
440 dentry = d_alloc(parent, &filename);
441 if (dentry == NULL)
442 return;
443
444 dentry->d_op = NFS_PROTO(dir)->dentry_ops;
445 inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr);
446 if (IS_ERR(inode))
447 goto out;
448
449 alias = d_materialise_unique(dentry, inode);
450 if (IS_ERR(alias))
451 goto out;
452 else if (alias) {
453 nfs_set_verifier(alias, nfs_save_change_attribute(dir));
454 dput(alias);
455 } else
456 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
457
458 out:
459 dput(dentry);
460 }
461
462 /* Perform conversion from xdr to cache array */
463 static
464 int nfs_readdir_page_filler(nfs_readdir_descriptor_t *desc, struct nfs_entry *entry,
465 void *xdr_page, struct page *page, unsigned int buflen)
466 {
467 struct xdr_stream stream;
468 struct xdr_buf buf;
469 __be32 *ptr = xdr_page;
470 struct nfs_cache_array *array;
471 unsigned int count = 0;
472 int status;
473
474 buf.head->iov_base = xdr_page;
475 buf.head->iov_len = buflen;
476 buf.tail->iov_len = 0;
477 buf.page_base = 0;
478 buf.page_len = 0;
479 buf.buflen = buf.head->iov_len;
480 buf.len = buf.head->iov_len;
481
482 xdr_init_decode(&stream, &buf, ptr);
483
484
485 do {
486 status = xdr_decode(desc, entry, &stream);
487 if (status != 0) {
488 if (status == -EAGAIN)
489 status = 0;
490 break;
491 }
492
493 count++;
494
495 if (desc->plus == 1)
496 nfs_prime_dcache(desc->file->f_path.dentry, entry);
497
498 status = nfs_readdir_add_to_array(entry, page);
499 if (status != 0)
500 break;
501 } while (!entry->eof);
502
503 if (count == 0 || (status == -EBADCOOKIE && entry->eof == 1)) {
504 array = nfs_readdir_get_array(page);
505 if (!IS_ERR(array)) {
506 array->eof_index = array->size;
507 status = 0;
508 nfs_readdir_release_array(page);
509 } else
510 status = PTR_ERR(array);
511 }
512 return status;
513 }
514
515 static
516 void nfs_readdir_free_pagearray(struct page **pages, unsigned int npages)
517 {
518 unsigned int i;
519 for (i = 0; i < npages; i++)
520 put_page(pages[i]);
521 }
522
523 static
524 void nfs_readdir_free_large_page(void *ptr, struct page **pages,
525 unsigned int npages)
526 {
527 vm_unmap_ram(ptr, npages);
528 nfs_readdir_free_pagearray(pages, npages);
529 }
530
531 /*
532 * nfs_readdir_large_page will allocate pages that must be freed with a call
533 * to nfs_readdir_free_large_page
534 */
535 static
536 void *nfs_readdir_large_page(struct page **pages, unsigned int npages)
537 {
538 void *ptr;
539 unsigned int i;
540
541 for (i = 0; i < npages; i++) {
542 struct page *page = alloc_page(GFP_KERNEL);
543 if (page == NULL)
544 goto out_freepages;
545 pages[i] = page;
546 }
547
548 ptr = vm_map_ram(pages, npages, 0, PAGE_KERNEL);
549 if (!IS_ERR_OR_NULL(ptr))
550 return ptr;
551 out_freepages:
552 nfs_readdir_free_pagearray(pages, i);
553 return NULL;
554 }
555
556 static
557 int nfs_readdir_xdr_to_array(nfs_readdir_descriptor_t *desc, struct page *page, struct inode *inode)
558 {
559 struct page *pages[NFS_MAX_READDIR_PAGES];
560 void *pages_ptr = NULL;
561 struct nfs_entry entry;
562 struct file *file = desc->file;
563 struct nfs_cache_array *array;
564 int status = -ENOMEM;
565 unsigned int array_size = ARRAY_SIZE(pages);
566
567 entry.prev_cookie = 0;
568 entry.cookie = desc->last_cookie;
569 entry.eof = 0;
570 entry.fh = nfs_alloc_fhandle();
571 entry.fattr = nfs_alloc_fattr();
572 if (entry.fh == NULL || entry.fattr == NULL)
573 goto out;
574
575 array = nfs_readdir_get_array(page);
576 if (IS_ERR(array)) {
577 status = PTR_ERR(array);
578 goto out;
579 }
580 memset(array, 0, sizeof(struct nfs_cache_array));
581 array->eof_index = -1;
582
583 pages_ptr = nfs_readdir_large_page(pages, array_size);
584 if (!pages_ptr)
585 goto out_release_array;
586 do {
587 unsigned int pglen;
588 status = nfs_readdir_xdr_filler(pages, desc, &entry, file, inode);
589
590 if (status < 0)
591 break;
592 pglen = status;
593 status = nfs_readdir_page_filler(desc, &entry, pages_ptr, page, pglen);
594 if (status < 0) {
595 if (status == -ENOSPC)
596 status = 0;
597 break;
598 }
599 } while (array->eof_index < 0);
600
601 nfs_readdir_free_large_page(pages_ptr, pages, array_size);
602 out_release_array:
603 nfs_readdir_release_array(page);
604 out:
605 nfs_free_fattr(entry.fattr);
606 nfs_free_fhandle(entry.fh);
607 return status;
608 }
609
610 /*
611 * Now we cache directories properly, by converting xdr information
612 * to an array that can be used for lookups later. This results in
613 * fewer cache pages, since we can store more information on each page.
614 * We only need to convert from xdr once so future lookups are much simpler
615 */
616 static
617 int nfs_readdir_filler(nfs_readdir_descriptor_t *desc, struct page* page)
618 {
619 struct inode *inode = desc->file->f_path.dentry->d_inode;
620 int ret;
621
622 ret = nfs_readdir_xdr_to_array(desc, page, inode);
623 if (ret < 0)
624 goto error;
625 SetPageUptodate(page);
626
627 if (invalidate_inode_pages2_range(inode->i_mapping, page->index + 1, -1) < 0) {
628 /* Should never happen */
629 nfs_zap_mapping(inode, inode->i_mapping);
630 }
631 unlock_page(page);
632 return 0;
633 error:
634 unlock_page(page);
635 return ret;
636 }
637
638 static
639 void cache_page_release(nfs_readdir_descriptor_t *desc)
640 {
641 if (!desc->page->mapping)
642 nfs_readdir_clear_array(desc->page);
643 page_cache_release(desc->page);
644 desc->page = NULL;
645 }
646
647 static
648 struct page *get_cache_page(nfs_readdir_descriptor_t *desc)
649 {
650 return read_cache_page(desc->file->f_path.dentry->d_inode->i_mapping,
651 desc->page_index, (filler_t *)nfs_readdir_filler, desc);
652 }
653
654 /*
655 * Returns 0 if desc->dir_cookie was found on page desc->page_index
656 */
657 static
658 int find_cache_page(nfs_readdir_descriptor_t *desc)
659 {
660 int res;
661
662 desc->page = get_cache_page(desc);
663 if (IS_ERR(desc->page))
664 return PTR_ERR(desc->page);
665
666 res = nfs_readdir_search_array(desc);
667 if (res == 0)
668 return 0;
669 cache_page_release(desc);
670 return res;
671 }
672
673 /* Search for desc->dir_cookie from the beginning of the page cache */
674 static inline
675 int readdir_search_pagecache(nfs_readdir_descriptor_t *desc)
676 {
677 int res;
678
679 if (desc->page_index == 0) {
680 desc->current_index = 0;
681 desc->last_cookie = 0;
682 }
683 while (1) {
684 res = find_cache_page(desc);
685 if (res != -EAGAIN)
686 break;
687 desc->page_index++;
688 }
689 return res;
690 }
691
692 static inline unsigned int dt_type(struct inode *inode)
693 {
694 return (inode->i_mode >> 12) & 15;
695 }
696
697 /*
698 * Once we've found the start of the dirent within a page: fill 'er up...
699 */
700 static
701 int nfs_do_filldir(nfs_readdir_descriptor_t *desc, void *dirent,
702 filldir_t filldir)
703 {
704 struct file *file = desc->file;
705 int i = 0;
706 int res = 0;
707 struct nfs_cache_array *array = NULL;
708
709 array = nfs_readdir_get_array(desc->page);
710 if (IS_ERR(array)) {
711 res = PTR_ERR(array);
712 goto out;
713 }
714
715 for (i = desc->cache_entry_index; i < array->size; i++) {
716 struct nfs_cache_array_entry *ent;
717
718 ent = &array->array[i];
719 if (filldir(dirent, ent->string.name, ent->string.len,
720 file->f_pos, nfs_compat_user_ino64(ent->ino),
721 ent->d_type) < 0) {
722 desc->eof = 1;
723 break;
724 }
725 file->f_pos++;
726 desc->cache_entry_index = i;
727 if (i < (array->size-1))
728 *desc->dir_cookie = array->array[i+1].cookie;
729 else
730 *desc->dir_cookie = array->last_cookie;
731 }
732 if (i == array->eof_index)
733 desc->eof = 1;
734
735 nfs_readdir_release_array(desc->page);
736 out:
737 cache_page_release(desc);
738 dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n",
739 (unsigned long long)*desc->dir_cookie, res);
740 return res;
741 }
742
743 /*
744 * If we cannot find a cookie in our cache, we suspect that this is
745 * because it points to a deleted file, so we ask the server to return
746 * whatever it thinks is the next entry. We then feed this to filldir.
747 * If all goes well, we should then be able to find our way round the
748 * cache on the next call to readdir_search_pagecache();
749 *
750 * NOTE: we cannot add the anonymous page to the pagecache because
751 * the data it contains might not be page aligned. Besides,
752 * we should already have a complete representation of the
753 * directory in the page cache by the time we get here.
754 */
755 static inline
756 int uncached_readdir(nfs_readdir_descriptor_t *desc, void *dirent,
757 filldir_t filldir)
758 {
759 struct page *page = NULL;
760 int status;
761 struct inode *inode = desc->file->f_path.dentry->d_inode;
762
763 dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n",
764 (unsigned long long)*desc->dir_cookie);
765
766 page = alloc_page(GFP_HIGHUSER);
767 if (!page) {
768 status = -ENOMEM;
769 goto out;
770 }
771
772 desc->page_index = 0;
773 desc->last_cookie = *desc->dir_cookie;
774 desc->page = page;
775
776 status = nfs_readdir_xdr_to_array(desc, page, inode);
777 if (status < 0)
778 goto out_release;
779
780 status = nfs_do_filldir(desc, dirent, filldir);
781
782 out:
783 dfprintk(DIRCACHE, "NFS: %s: returns %d\n",
784 __func__, status);
785 return status;
786 out_release:
787 cache_page_release(desc);
788 goto out;
789 }
790
791 /* The file offset position represents the dirent entry number. A
792 last cookie cache takes care of the common case of reading the
793 whole directory.
794 */
795 static int nfs_readdir(struct file *filp, void *dirent, filldir_t filldir)
796 {
797 struct dentry *dentry = filp->f_path.dentry;
798 struct inode *inode = dentry->d_inode;
799 nfs_readdir_descriptor_t my_desc,
800 *desc = &my_desc;
801 int res = -ENOMEM;
802
803 dfprintk(FILE, "NFS: readdir(%s/%s) starting at cookie %llu\n",
804 dentry->d_parent->d_name.name, dentry->d_name.name,
805 (long long)filp->f_pos);
806 nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
807
808 /*
809 * filp->f_pos points to the dirent entry number.
810 * *desc->dir_cookie has the cookie for the next entry. We have
811 * to either find the entry with the appropriate number or
812 * revalidate the cookie.
813 */
814 memset(desc, 0, sizeof(*desc));
815
816 desc->file = filp;
817 desc->dir_cookie = &nfs_file_open_context(filp)->dir_cookie;
818 desc->decode = NFS_PROTO(inode)->decode_dirent;
819 desc->plus = NFS_USE_READDIRPLUS(inode);
820
821 nfs_block_sillyrename(dentry);
822 res = nfs_revalidate_mapping(inode, filp->f_mapping);
823 if (res < 0)
824 goto out;
825
826 while (desc->eof != 1) {
827 res = readdir_search_pagecache(desc);
828
829 if (res == -EBADCOOKIE) {
830 res = 0;
831 /* This means either end of directory */
832 if (*desc->dir_cookie && desc->eof == 0) {
833 /* Or that the server has 'lost' a cookie */
834 res = uncached_readdir(desc, dirent, filldir);
835 if (res == 0)
836 continue;
837 }
838 break;
839 }
840 if (res == -ETOOSMALL && desc->plus) {
841 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
842 nfs_zap_caches(inode);
843 desc->page_index = 0;
844 desc->plus = 0;
845 desc->eof = 0;
846 continue;
847 }
848 if (res < 0)
849 break;
850
851 res = nfs_do_filldir(desc, dirent, filldir);
852 if (res < 0)
853 break;
854 }
855 out:
856 nfs_unblock_sillyrename(dentry);
857 if (res > 0)
858 res = 0;
859 dfprintk(FILE, "NFS: readdir(%s/%s) returns %d\n",
860 dentry->d_parent->d_name.name, dentry->d_name.name,
861 res);
862 return res;
863 }
864
865 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int origin)
866 {
867 struct dentry *dentry = filp->f_path.dentry;
868 struct inode *inode = dentry->d_inode;
869
870 dfprintk(FILE, "NFS: llseek dir(%s/%s, %lld, %d)\n",
871 dentry->d_parent->d_name.name,
872 dentry->d_name.name,
873 offset, origin);
874
875 mutex_lock(&inode->i_mutex);
876 switch (origin) {
877 case 1:
878 offset += filp->f_pos;
879 case 0:
880 if (offset >= 0)
881 break;
882 default:
883 offset = -EINVAL;
884 goto out;
885 }
886 if (offset != filp->f_pos) {
887 filp->f_pos = offset;
888 nfs_file_open_context(filp)->dir_cookie = 0;
889 }
890 out:
891 mutex_unlock(&inode->i_mutex);
892 return offset;
893 }
894
895 /*
896 * All directory operations under NFS are synchronous, so fsync()
897 * is a dummy operation.
898 */
899 static int nfs_fsync_dir(struct file *filp, int datasync)
900 {
901 struct dentry *dentry = filp->f_path.dentry;
902
903 dfprintk(FILE, "NFS: fsync dir(%s/%s) datasync %d\n",
904 dentry->d_parent->d_name.name, dentry->d_name.name,
905 datasync);
906
907 nfs_inc_stats(dentry->d_inode, NFSIOS_VFSFSYNC);
908 return 0;
909 }
910
911 /**
912 * nfs_force_lookup_revalidate - Mark the directory as having changed
913 * @dir - pointer to directory inode
914 *
915 * This forces the revalidation code in nfs_lookup_revalidate() to do a
916 * full lookup on all child dentries of 'dir' whenever a change occurs
917 * on the server that might have invalidated our dcache.
918 *
919 * The caller should be holding dir->i_lock
920 */
921 void nfs_force_lookup_revalidate(struct inode *dir)
922 {
923 NFS_I(dir)->cache_change_attribute++;
924 }
925
926 /*
927 * A check for whether or not the parent directory has changed.
928 * In the case it has, we assume that the dentries are untrustworthy
929 * and may need to be looked up again.
930 */
931 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry)
932 {
933 if (IS_ROOT(dentry))
934 return 1;
935 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE)
936 return 0;
937 if (!nfs_verify_change_attribute(dir, dentry->d_time))
938 return 0;
939 /* Revalidate nfsi->cache_change_attribute before we declare a match */
940 if (nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
941 return 0;
942 if (!nfs_verify_change_attribute(dir, dentry->d_time))
943 return 0;
944 return 1;
945 }
946
947 /*
948 * Return the intent data that applies to this particular path component
949 *
950 * Note that the current set of intents only apply to the very last
951 * component of the path.
952 * We check for this using LOOKUP_CONTINUE and LOOKUP_PARENT.
953 */
954 static inline unsigned int nfs_lookup_check_intent(struct nameidata *nd, unsigned int mask)
955 {
956 if (nd->flags & (LOOKUP_CONTINUE|LOOKUP_PARENT))
957 return 0;
958 return nd->flags & mask;
959 }
960
961 /*
962 * Use intent information to check whether or not we're going to do
963 * an O_EXCL create using this path component.
964 */
965 static int nfs_is_exclusive_create(struct inode *dir, struct nameidata *nd)
966 {
967 if (NFS_PROTO(dir)->version == 2)
968 return 0;
969 return nd && nfs_lookup_check_intent(nd, LOOKUP_EXCL);
970 }
971
972 /*
973 * Inode and filehandle revalidation for lookups.
974 *
975 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
976 * or if the intent information indicates that we're about to open this
977 * particular file and the "nocto" mount flag is not set.
978 *
979 */
980 static inline
981 int nfs_lookup_verify_inode(struct inode *inode, struct nameidata *nd)
982 {
983 struct nfs_server *server = NFS_SERVER(inode);
984
985 if (test_bit(NFS_INO_MOUNTPOINT, &NFS_I(inode)->flags))
986 return 0;
987 if (nd != NULL) {
988 /* VFS wants an on-the-wire revalidation */
989 if (nd->flags & LOOKUP_REVAL)
990 goto out_force;
991 /* This is an open(2) */
992 if (nfs_lookup_check_intent(nd, LOOKUP_OPEN) != 0 &&
993 !(server->flags & NFS_MOUNT_NOCTO) &&
994 (S_ISREG(inode->i_mode) ||
995 S_ISDIR(inode->i_mode)))
996 goto out_force;
997 return 0;
998 }
999 return nfs_revalidate_inode(server, inode);
1000 out_force:
1001 return __nfs_revalidate_inode(server, inode);
1002 }
1003
1004 /*
1005 * We judge how long we want to trust negative
1006 * dentries by looking at the parent inode mtime.
1007 *
1008 * If parent mtime has changed, we revalidate, else we wait for a
1009 * period corresponding to the parent's attribute cache timeout value.
1010 */
1011 static inline
1012 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
1013 struct nameidata *nd)
1014 {
1015 /* Don't revalidate a negative dentry if we're creating a new file */
1016 if (nd != NULL && nfs_lookup_check_intent(nd, LOOKUP_CREATE) != 0)
1017 return 0;
1018 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG)
1019 return 1;
1020 return !nfs_check_verifier(dir, dentry);
1021 }
1022
1023 /*
1024 * This is called every time the dcache has a lookup hit,
1025 * and we should check whether we can really trust that
1026 * lookup.
1027 *
1028 * NOTE! The hit can be a negative hit too, don't assume
1029 * we have an inode!
1030 *
1031 * If the parent directory is seen to have changed, we throw out the
1032 * cached dentry and do a new lookup.
1033 */
1034 static int nfs_lookup_revalidate(struct dentry * dentry, struct nameidata *nd)
1035 {
1036 struct inode *dir;
1037 struct inode *inode;
1038 struct dentry *parent;
1039 struct nfs_fh *fhandle = NULL;
1040 struct nfs_fattr *fattr = NULL;
1041 int error;
1042
1043 parent = dget_parent(dentry);
1044 dir = parent->d_inode;
1045 nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
1046 inode = dentry->d_inode;
1047
1048 if (!inode) {
1049 if (nfs_neg_need_reval(dir, dentry, nd))
1050 goto out_bad;
1051 goto out_valid;
1052 }
1053
1054 if (is_bad_inode(inode)) {
1055 dfprintk(LOOKUPCACHE, "%s: %s/%s has dud inode\n",
1056 __func__, dentry->d_parent->d_name.name,
1057 dentry->d_name.name);
1058 goto out_bad;
1059 }
1060
1061 if (nfs_have_delegation(inode, FMODE_READ))
1062 goto out_set_verifier;
1063
1064 /* Force a full look up iff the parent directory has changed */
1065 if (!nfs_is_exclusive_create(dir, nd) && nfs_check_verifier(dir, dentry)) {
1066 if (nfs_lookup_verify_inode(inode, nd))
1067 goto out_zap_parent;
1068 goto out_valid;
1069 }
1070
1071 if (NFS_STALE(inode))
1072 goto out_bad;
1073
1074 error = -ENOMEM;
1075 fhandle = nfs_alloc_fhandle();
1076 fattr = nfs_alloc_fattr();
1077 if (fhandle == NULL || fattr == NULL)
1078 goto out_error;
1079
1080 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr);
1081 if (error)
1082 goto out_bad;
1083 if (nfs_compare_fh(NFS_FH(inode), fhandle))
1084 goto out_bad;
1085 if ((error = nfs_refresh_inode(inode, fattr)) != 0)
1086 goto out_bad;
1087
1088 nfs_free_fattr(fattr);
1089 nfs_free_fhandle(fhandle);
1090 out_set_verifier:
1091 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1092 out_valid:
1093 dput(parent);
1094 dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is valid\n",
1095 __func__, dentry->d_parent->d_name.name,
1096 dentry->d_name.name);
1097 return 1;
1098 out_zap_parent:
1099 nfs_zap_caches(dir);
1100 out_bad:
1101 nfs_mark_for_revalidate(dir);
1102 if (inode && S_ISDIR(inode->i_mode)) {
1103 /* Purge readdir caches. */
1104 nfs_zap_caches(inode);
1105 /* If we have submounts, don't unhash ! */
1106 if (have_submounts(dentry))
1107 goto out_valid;
1108 if (dentry->d_flags & DCACHE_DISCONNECTED)
1109 goto out_valid;
1110 shrink_dcache_parent(dentry);
1111 }
1112 d_drop(dentry);
1113 nfs_free_fattr(fattr);
1114 nfs_free_fhandle(fhandle);
1115 dput(parent);
1116 dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is invalid\n",
1117 __func__, dentry->d_parent->d_name.name,
1118 dentry->d_name.name);
1119 return 0;
1120 out_error:
1121 nfs_free_fattr(fattr);
1122 nfs_free_fhandle(fhandle);
1123 dput(parent);
1124 dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) lookup returned error %d\n",
1125 __func__, dentry->d_parent->d_name.name,
1126 dentry->d_name.name, error);
1127 return error;
1128 }
1129
1130 /*
1131 * This is called from dput() when d_count is going to 0.
1132 */
1133 static int nfs_dentry_delete(struct dentry *dentry)
1134 {
1135 dfprintk(VFS, "NFS: dentry_delete(%s/%s, %x)\n",
1136 dentry->d_parent->d_name.name, dentry->d_name.name,
1137 dentry->d_flags);
1138
1139 /* Unhash any dentry with a stale inode */
1140 if (dentry->d_inode != NULL && NFS_STALE(dentry->d_inode))
1141 return 1;
1142
1143 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1144 /* Unhash it, so that ->d_iput() would be called */
1145 return 1;
1146 }
1147 if (!(dentry->d_sb->s_flags & MS_ACTIVE)) {
1148 /* Unhash it, so that ancestors of killed async unlink
1149 * files will be cleaned up during umount */
1150 return 1;
1151 }
1152 return 0;
1153
1154 }
1155
1156 static void nfs_drop_nlink(struct inode *inode)
1157 {
1158 spin_lock(&inode->i_lock);
1159 if (inode->i_nlink > 0)
1160 drop_nlink(inode);
1161 spin_unlock(&inode->i_lock);
1162 }
1163
1164 /*
1165 * Called when the dentry loses inode.
1166 * We use it to clean up silly-renamed files.
1167 */
1168 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
1169 {
1170 if (S_ISDIR(inode->i_mode))
1171 /* drop any readdir cache as it could easily be old */
1172 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA;
1173
1174 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1175 drop_nlink(inode);
1176 nfs_complete_unlink(dentry, inode);
1177 }
1178 iput(inode);
1179 }
1180
1181 const struct dentry_operations nfs_dentry_operations = {
1182 .d_revalidate = nfs_lookup_revalidate,
1183 .d_delete = nfs_dentry_delete,
1184 .d_iput = nfs_dentry_iput,
1185 };
1186
1187 static struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
1188 {
1189 struct dentry *res;
1190 struct dentry *parent;
1191 struct inode *inode = NULL;
1192 struct nfs_fh *fhandle = NULL;
1193 struct nfs_fattr *fattr = NULL;
1194 int error;
1195
1196 dfprintk(VFS, "NFS: lookup(%s/%s)\n",
1197 dentry->d_parent->d_name.name, dentry->d_name.name);
1198 nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
1199
1200 res = ERR_PTR(-ENAMETOOLONG);
1201 if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
1202 goto out;
1203
1204 dentry->d_op = NFS_PROTO(dir)->dentry_ops;
1205
1206 /*
1207 * If we're doing an exclusive create, optimize away the lookup
1208 * but don't hash the dentry.
1209 */
1210 if (nfs_is_exclusive_create(dir, nd)) {
1211 d_instantiate(dentry, NULL);
1212 res = NULL;
1213 goto out;
1214 }
1215
1216 res = ERR_PTR(-ENOMEM);
1217 fhandle = nfs_alloc_fhandle();
1218 fattr = nfs_alloc_fattr();
1219 if (fhandle == NULL || fattr == NULL)
1220 goto out;
1221
1222 parent = dentry->d_parent;
1223 /* Protect against concurrent sillydeletes */
1224 nfs_block_sillyrename(parent);
1225 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr);
1226 if (error == -ENOENT)
1227 goto no_entry;
1228 if (error < 0) {
1229 res = ERR_PTR(error);
1230 goto out_unblock_sillyrename;
1231 }
1232 inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
1233 res = (struct dentry *)inode;
1234 if (IS_ERR(res))
1235 goto out_unblock_sillyrename;
1236
1237 no_entry:
1238 res = d_materialise_unique(dentry, inode);
1239 if (res != NULL) {
1240 if (IS_ERR(res))
1241 goto out_unblock_sillyrename;
1242 dentry = res;
1243 }
1244 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1245 out_unblock_sillyrename:
1246 nfs_unblock_sillyrename(parent);
1247 out:
1248 nfs_free_fattr(fattr);
1249 nfs_free_fhandle(fhandle);
1250 return res;
1251 }
1252
1253 #ifdef CONFIG_NFS_V4
1254 static int nfs_open_revalidate(struct dentry *, struct nameidata *);
1255
1256 const struct dentry_operations nfs4_dentry_operations = {
1257 .d_revalidate = nfs_open_revalidate,
1258 .d_delete = nfs_dentry_delete,
1259 .d_iput = nfs_dentry_iput,
1260 };
1261
1262 /*
1263 * Use intent information to determine whether we need to substitute
1264 * the NFSv4-style stateful OPEN for the LOOKUP call
1265 */
1266 static int is_atomic_open(struct nameidata *nd)
1267 {
1268 if (nd == NULL || nfs_lookup_check_intent(nd, LOOKUP_OPEN) == 0)
1269 return 0;
1270 /* NFS does not (yet) have a stateful open for directories */
1271 if (nd->flags & LOOKUP_DIRECTORY)
1272 return 0;
1273 /* Are we trying to write to a read only partition? */
1274 if (__mnt_is_readonly(nd->path.mnt) &&
1275 (nd->intent.open.flags & (O_CREAT|O_TRUNC|FMODE_WRITE)))
1276 return 0;
1277 return 1;
1278 }
1279
1280 static struct nfs_open_context *nameidata_to_nfs_open_context(struct dentry *dentry, struct nameidata *nd)
1281 {
1282 struct path path = {
1283 .mnt = nd->path.mnt,
1284 .dentry = dentry,
1285 };
1286 struct nfs_open_context *ctx;
1287 struct rpc_cred *cred;
1288 fmode_t fmode = nd->intent.open.flags & (FMODE_READ | FMODE_WRITE | FMODE_EXEC);
1289
1290 cred = rpc_lookup_cred();
1291 if (IS_ERR(cred))
1292 return ERR_CAST(cred);
1293 ctx = alloc_nfs_open_context(&path, cred, fmode);
1294 put_rpccred(cred);
1295 if (ctx == NULL)
1296 return ERR_PTR(-ENOMEM);
1297 return ctx;
1298 }
1299
1300 static int do_open(struct inode *inode, struct file *filp)
1301 {
1302 nfs_fscache_set_inode_cookie(inode, filp);
1303 return 0;
1304 }
1305
1306 static int nfs_intent_set_file(struct nameidata *nd, struct nfs_open_context *ctx)
1307 {
1308 struct file *filp;
1309 int ret = 0;
1310
1311 /* If the open_intent is for execute, we have an extra check to make */
1312 if (ctx->mode & FMODE_EXEC) {
1313 ret = nfs_may_open(ctx->path.dentry->d_inode,
1314 ctx->cred,
1315 nd->intent.open.flags);
1316 if (ret < 0)
1317 goto out;
1318 }
1319 filp = lookup_instantiate_filp(nd, ctx->path.dentry, do_open);
1320 if (IS_ERR(filp))
1321 ret = PTR_ERR(filp);
1322 else
1323 nfs_file_set_open_context(filp, ctx);
1324 out:
1325 put_nfs_open_context(ctx);
1326 return ret;
1327 }
1328
1329 static struct dentry *nfs_atomic_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd)
1330 {
1331 struct nfs_open_context *ctx;
1332 struct iattr attr;
1333 struct dentry *res = NULL;
1334 struct inode *inode;
1335 int open_flags;
1336 int err;
1337
1338 dfprintk(VFS, "NFS: atomic_lookup(%s/%ld), %s\n",
1339 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1340
1341 /* Check that we are indeed trying to open this file */
1342 if (!is_atomic_open(nd))
1343 goto no_open;
1344
1345 if (dentry->d_name.len > NFS_SERVER(dir)->namelen) {
1346 res = ERR_PTR(-ENAMETOOLONG);
1347 goto out;
1348 }
1349 dentry->d_op = NFS_PROTO(dir)->dentry_ops;
1350
1351 /* Let vfs_create() deal with O_EXCL. Instantiate, but don't hash
1352 * the dentry. */
1353 if (nd->flags & LOOKUP_EXCL) {
1354 d_instantiate(dentry, NULL);
1355 goto out;
1356 }
1357
1358 ctx = nameidata_to_nfs_open_context(dentry, nd);
1359 res = ERR_CAST(ctx);
1360 if (IS_ERR(ctx))
1361 goto out;
1362
1363 open_flags = nd->intent.open.flags;
1364 if (nd->flags & LOOKUP_CREATE) {
1365 attr.ia_mode = nd->intent.open.create_mode;
1366 attr.ia_valid = ATTR_MODE;
1367 if (!IS_POSIXACL(dir))
1368 attr.ia_mode &= ~current_umask();
1369 } else {
1370 open_flags &= ~(O_EXCL | O_CREAT);
1371 attr.ia_valid = 0;
1372 }
1373
1374 /* Open the file on the server */
1375 nfs_block_sillyrename(dentry->d_parent);
1376 inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr);
1377 if (IS_ERR(inode)) {
1378 nfs_unblock_sillyrename(dentry->d_parent);
1379 put_nfs_open_context(ctx);
1380 switch (PTR_ERR(inode)) {
1381 /* Make a negative dentry */
1382 case -ENOENT:
1383 d_add(dentry, NULL);
1384 res = NULL;
1385 goto out;
1386 /* This turned out not to be a regular file */
1387 case -ENOTDIR:
1388 goto no_open;
1389 case -ELOOP:
1390 if (!(nd->intent.open.flags & O_NOFOLLOW))
1391 goto no_open;
1392 /* case -EISDIR: */
1393 /* case -EINVAL: */
1394 default:
1395 res = ERR_CAST(inode);
1396 goto out;
1397 }
1398 }
1399 res = d_add_unique(dentry, inode);
1400 nfs_unblock_sillyrename(dentry->d_parent);
1401 if (res != NULL) {
1402 dput(ctx->path.dentry);
1403 ctx->path.dentry = dget(res);
1404 dentry = res;
1405 }
1406 err = nfs_intent_set_file(nd, ctx);
1407 if (err < 0) {
1408 if (res != NULL)
1409 dput(res);
1410 return ERR_PTR(err);
1411 }
1412 out:
1413 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1414 return res;
1415 no_open:
1416 return nfs_lookup(dir, dentry, nd);
1417 }
1418
1419 static int nfs_open_revalidate(struct dentry *dentry, struct nameidata *nd)
1420 {
1421 struct dentry *parent = NULL;
1422 struct inode *inode = dentry->d_inode;
1423 struct inode *dir;
1424 struct nfs_open_context *ctx;
1425 int openflags, ret = 0;
1426
1427 if (!is_atomic_open(nd) || d_mountpoint(dentry))
1428 goto no_open;
1429
1430 parent = dget_parent(dentry);
1431 dir = parent->d_inode;
1432
1433 /* We can't create new files in nfs_open_revalidate(), so we
1434 * optimize away revalidation of negative dentries.
1435 */
1436 if (inode == NULL) {
1437 if (!nfs_neg_need_reval(dir, dentry, nd))
1438 ret = 1;
1439 goto out;
1440 }
1441
1442 /* NFS only supports OPEN on regular files */
1443 if (!S_ISREG(inode->i_mode))
1444 goto no_open_dput;
1445 openflags = nd->intent.open.flags;
1446 /* We cannot do exclusive creation on a positive dentry */
1447 if ((openflags & (O_CREAT|O_EXCL)) == (O_CREAT|O_EXCL))
1448 goto no_open_dput;
1449 /* We can't create new files, or truncate existing ones here */
1450 openflags &= ~(O_CREAT|O_EXCL|O_TRUNC);
1451
1452 ctx = nameidata_to_nfs_open_context(dentry, nd);
1453 ret = PTR_ERR(ctx);
1454 if (IS_ERR(ctx))
1455 goto out;
1456 /*
1457 * Note: we're not holding inode->i_mutex and so may be racing with
1458 * operations that change the directory. We therefore save the
1459 * change attribute *before* we do the RPC call.
1460 */
1461 inode = NFS_PROTO(dir)->open_context(dir, ctx, openflags, NULL);
1462 if (IS_ERR(inode)) {
1463 ret = PTR_ERR(inode);
1464 switch (ret) {
1465 case -EPERM:
1466 case -EACCES:
1467 case -EDQUOT:
1468 case -ENOSPC:
1469 case -EROFS:
1470 goto out_put_ctx;
1471 default:
1472 goto out_drop;
1473 }
1474 }
1475 iput(inode);
1476 if (inode != dentry->d_inode)
1477 goto out_drop;
1478
1479 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1480 ret = nfs_intent_set_file(nd, ctx);
1481 if (ret >= 0)
1482 ret = 1;
1483 out:
1484 dput(parent);
1485 return ret;
1486 out_drop:
1487 d_drop(dentry);
1488 ret = 0;
1489 out_put_ctx:
1490 put_nfs_open_context(ctx);
1491 goto out;
1492
1493 no_open_dput:
1494 dput(parent);
1495 no_open:
1496 return nfs_lookup_revalidate(dentry, nd);
1497 }
1498
1499 static int nfs_open_create(struct inode *dir, struct dentry *dentry, int mode,
1500 struct nameidata *nd)
1501 {
1502 struct nfs_open_context *ctx = NULL;
1503 struct iattr attr;
1504 int error;
1505 int open_flags = 0;
1506
1507 dfprintk(VFS, "NFS: create(%s/%ld), %s\n",
1508 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1509
1510 attr.ia_mode = mode;
1511 attr.ia_valid = ATTR_MODE;
1512
1513 if ((nd->flags & LOOKUP_CREATE) != 0) {
1514 open_flags = nd->intent.open.flags;
1515
1516 ctx = nameidata_to_nfs_open_context(dentry, nd);
1517 error = PTR_ERR(ctx);
1518 if (IS_ERR(ctx))
1519 goto out_err_drop;
1520 }
1521
1522 error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags, ctx);
1523 if (error != 0)
1524 goto out_put_ctx;
1525 if (ctx != NULL) {
1526 error = nfs_intent_set_file(nd, ctx);
1527 if (error < 0)
1528 goto out_err;
1529 }
1530 return 0;
1531 out_put_ctx:
1532 if (ctx != NULL)
1533 put_nfs_open_context(ctx);
1534 out_err_drop:
1535 d_drop(dentry);
1536 out_err:
1537 return error;
1538 }
1539
1540 #endif /* CONFIG_NFSV4 */
1541
1542 /*
1543 * Code common to create, mkdir, and mknod.
1544 */
1545 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
1546 struct nfs_fattr *fattr)
1547 {
1548 struct dentry *parent = dget_parent(dentry);
1549 struct inode *dir = parent->d_inode;
1550 struct inode *inode;
1551 int error = -EACCES;
1552
1553 d_drop(dentry);
1554
1555 /* We may have been initialized further down */
1556 if (dentry->d_inode)
1557 goto out;
1558 if (fhandle->size == 0) {
1559 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr);
1560 if (error)
1561 goto out_error;
1562 }
1563 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1564 if (!(fattr->valid & NFS_ATTR_FATTR)) {
1565 struct nfs_server *server = NFS_SB(dentry->d_sb);
1566 error = server->nfs_client->rpc_ops->getattr(server, fhandle, fattr);
1567 if (error < 0)
1568 goto out_error;
1569 }
1570 inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
1571 error = PTR_ERR(inode);
1572 if (IS_ERR(inode))
1573 goto out_error;
1574 d_add(dentry, inode);
1575 out:
1576 dput(parent);
1577 return 0;
1578 out_error:
1579 nfs_mark_for_revalidate(dir);
1580 dput(parent);
1581 return error;
1582 }
1583
1584 /*
1585 * Following a failed create operation, we drop the dentry rather
1586 * than retain a negative dentry. This avoids a problem in the event
1587 * that the operation succeeded on the server, but an error in the
1588 * reply path made it appear to have failed.
1589 */
1590 static int nfs_create(struct inode *dir, struct dentry *dentry, int mode,
1591 struct nameidata *nd)
1592 {
1593 struct iattr attr;
1594 int error;
1595
1596 dfprintk(VFS, "NFS: create(%s/%ld), %s\n",
1597 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1598
1599 attr.ia_mode = mode;
1600 attr.ia_valid = ATTR_MODE;
1601
1602 error = NFS_PROTO(dir)->create(dir, dentry, &attr, 0, NULL);
1603 if (error != 0)
1604 goto out_err;
1605 return 0;
1606 out_err:
1607 d_drop(dentry);
1608 return error;
1609 }
1610
1611 /*
1612 * See comments for nfs_proc_create regarding failed operations.
1613 */
1614 static int
1615 nfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t rdev)
1616 {
1617 struct iattr attr;
1618 int status;
1619
1620 dfprintk(VFS, "NFS: mknod(%s/%ld), %s\n",
1621 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1622
1623 if (!new_valid_dev(rdev))
1624 return -EINVAL;
1625
1626 attr.ia_mode = mode;
1627 attr.ia_valid = ATTR_MODE;
1628
1629 status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
1630 if (status != 0)
1631 goto out_err;
1632 return 0;
1633 out_err:
1634 d_drop(dentry);
1635 return status;
1636 }
1637
1638 /*
1639 * See comments for nfs_proc_create regarding failed operations.
1640 */
1641 static int nfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1642 {
1643 struct iattr attr;
1644 int error;
1645
1646 dfprintk(VFS, "NFS: mkdir(%s/%ld), %s\n",
1647 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1648
1649 attr.ia_valid = ATTR_MODE;
1650 attr.ia_mode = mode | S_IFDIR;
1651
1652 error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
1653 if (error != 0)
1654 goto out_err;
1655 return 0;
1656 out_err:
1657 d_drop(dentry);
1658 return error;
1659 }
1660
1661 static void nfs_dentry_handle_enoent(struct dentry *dentry)
1662 {
1663 if (dentry->d_inode != NULL && !d_unhashed(dentry))
1664 d_delete(dentry);
1665 }
1666
1667 static int nfs_rmdir(struct inode *dir, struct dentry *dentry)
1668 {
1669 int error;
1670
1671 dfprintk(VFS, "NFS: rmdir(%s/%ld), %s\n",
1672 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1673
1674 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1675 /* Ensure the VFS deletes this inode */
1676 if (error == 0 && dentry->d_inode != NULL)
1677 clear_nlink(dentry->d_inode);
1678 else if (error == -ENOENT)
1679 nfs_dentry_handle_enoent(dentry);
1680
1681 return error;
1682 }
1683
1684 /*
1685 * Remove a file after making sure there are no pending writes,
1686 * and after checking that the file has only one user.
1687 *
1688 * We invalidate the attribute cache and free the inode prior to the operation
1689 * to avoid possible races if the server reuses the inode.
1690 */
1691 static int nfs_safe_remove(struct dentry *dentry)
1692 {
1693 struct inode *dir = dentry->d_parent->d_inode;
1694 struct inode *inode = dentry->d_inode;
1695 int error = -EBUSY;
1696
1697 dfprintk(VFS, "NFS: safe_remove(%s/%s)\n",
1698 dentry->d_parent->d_name.name, dentry->d_name.name);
1699
1700 /* If the dentry was sillyrenamed, we simply call d_delete() */
1701 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1702 error = 0;
1703 goto out;
1704 }
1705
1706 if (inode != NULL) {
1707 nfs_inode_return_delegation(inode);
1708 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1709 /* The VFS may want to delete this inode */
1710 if (error == 0)
1711 nfs_drop_nlink(inode);
1712 nfs_mark_for_revalidate(inode);
1713 } else
1714 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1715 if (error == -ENOENT)
1716 nfs_dentry_handle_enoent(dentry);
1717 out:
1718 return error;
1719 }
1720
1721 /* We do silly rename. In case sillyrename() returns -EBUSY, the inode
1722 * belongs to an active ".nfs..." file and we return -EBUSY.
1723 *
1724 * If sillyrename() returns 0, we do nothing, otherwise we unlink.
1725 */
1726 static int nfs_unlink(struct inode *dir, struct dentry *dentry)
1727 {
1728 int error;
1729 int need_rehash = 0;
1730
1731 dfprintk(VFS, "NFS: unlink(%s/%ld, %s)\n", dir->i_sb->s_id,
1732 dir->i_ino, dentry->d_name.name);
1733
1734 spin_lock(&dcache_lock);
1735 spin_lock(&dentry->d_lock);
1736 if (atomic_read(&dentry->d_count) > 1) {
1737 spin_unlock(&dentry->d_lock);
1738 spin_unlock(&dcache_lock);
1739 /* Start asynchronous writeout of the inode */
1740 write_inode_now(dentry->d_inode, 0);
1741 error = nfs_sillyrename(dir, dentry);
1742 return error;
1743 }
1744 if (!d_unhashed(dentry)) {
1745 __d_drop(dentry);
1746 need_rehash = 1;
1747 }
1748 spin_unlock(&dentry->d_lock);
1749 spin_unlock(&dcache_lock);
1750 error = nfs_safe_remove(dentry);
1751 if (!error || error == -ENOENT) {
1752 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1753 } else if (need_rehash)
1754 d_rehash(dentry);
1755 return error;
1756 }
1757
1758 /*
1759 * To create a symbolic link, most file systems instantiate a new inode,
1760 * add a page to it containing the path, then write it out to the disk
1761 * using prepare_write/commit_write.
1762 *
1763 * Unfortunately the NFS client can't create the in-core inode first
1764 * because it needs a file handle to create an in-core inode (see
1765 * fs/nfs/inode.c:nfs_fhget). We only have a file handle *after* the
1766 * symlink request has completed on the server.
1767 *
1768 * So instead we allocate a raw page, copy the symname into it, then do
1769 * the SYMLINK request with the page as the buffer. If it succeeds, we
1770 * now have a new file handle and can instantiate an in-core NFS inode
1771 * and move the raw page into its mapping.
1772 */
1773 static int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1774 {
1775 struct pagevec lru_pvec;
1776 struct page *page;
1777 char *kaddr;
1778 struct iattr attr;
1779 unsigned int pathlen = strlen(symname);
1780 int error;
1781
1782 dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s)\n", dir->i_sb->s_id,
1783 dir->i_ino, dentry->d_name.name, symname);
1784
1785 if (pathlen > PAGE_SIZE)
1786 return -ENAMETOOLONG;
1787
1788 attr.ia_mode = S_IFLNK | S_IRWXUGO;
1789 attr.ia_valid = ATTR_MODE;
1790
1791 page = alloc_page(GFP_HIGHUSER);
1792 if (!page)
1793 return -ENOMEM;
1794
1795 kaddr = kmap_atomic(page, KM_USER0);
1796 memcpy(kaddr, symname, pathlen);
1797 if (pathlen < PAGE_SIZE)
1798 memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
1799 kunmap_atomic(kaddr, KM_USER0);
1800
1801 error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
1802 if (error != 0) {
1803 dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s) error %d\n",
1804 dir->i_sb->s_id, dir->i_ino,
1805 dentry->d_name.name, symname, error);
1806 d_drop(dentry);
1807 __free_page(page);
1808 return error;
1809 }
1810
1811 /*
1812 * No big deal if we can't add this page to the page cache here.
1813 * READLINK will get the missing page from the server if needed.
1814 */
1815 pagevec_init(&lru_pvec, 0);
1816 if (!add_to_page_cache(page, dentry->d_inode->i_mapping, 0,
1817 GFP_KERNEL)) {
1818 pagevec_add(&lru_pvec, page);
1819 pagevec_lru_add_file(&lru_pvec);
1820 SetPageUptodate(page);
1821 unlock_page(page);
1822 } else
1823 __free_page(page);
1824
1825 return 0;
1826 }
1827
1828 static int
1829 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1830 {
1831 struct inode *inode = old_dentry->d_inode;
1832 int error;
1833
1834 dfprintk(VFS, "NFS: link(%s/%s -> %s/%s)\n",
1835 old_dentry->d_parent->d_name.name, old_dentry->d_name.name,
1836 dentry->d_parent->d_name.name, dentry->d_name.name);
1837
1838 nfs_inode_return_delegation(inode);
1839
1840 d_drop(dentry);
1841 error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
1842 if (error == 0) {
1843 ihold(inode);
1844 d_add(dentry, inode);
1845 }
1846 return error;
1847 }
1848
1849 /*
1850 * RENAME
1851 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
1852 * different file handle for the same inode after a rename (e.g. when
1853 * moving to a different directory). A fail-safe method to do so would
1854 * be to look up old_dir/old_name, create a link to new_dir/new_name and
1855 * rename the old file using the sillyrename stuff. This way, the original
1856 * file in old_dir will go away when the last process iput()s the inode.
1857 *
1858 * FIXED.
1859 *
1860 * It actually works quite well. One needs to have the possibility for
1861 * at least one ".nfs..." file in each directory the file ever gets
1862 * moved or linked to which happens automagically with the new
1863 * implementation that only depends on the dcache stuff instead of
1864 * using the inode layer
1865 *
1866 * Unfortunately, things are a little more complicated than indicated
1867 * above. For a cross-directory move, we want to make sure we can get
1868 * rid of the old inode after the operation. This means there must be
1869 * no pending writes (if it's a file), and the use count must be 1.
1870 * If these conditions are met, we can drop the dentries before doing
1871 * the rename.
1872 */
1873 static int nfs_rename(struct inode *old_dir, struct dentry *old_dentry,
1874 struct inode *new_dir, struct dentry *new_dentry)
1875 {
1876 struct inode *old_inode = old_dentry->d_inode;
1877 struct inode *new_inode = new_dentry->d_inode;
1878 struct dentry *dentry = NULL, *rehash = NULL;
1879 int error = -EBUSY;
1880
1881 dfprintk(VFS, "NFS: rename(%s/%s -> %s/%s, ct=%d)\n",
1882 old_dentry->d_parent->d_name.name, old_dentry->d_name.name,
1883 new_dentry->d_parent->d_name.name, new_dentry->d_name.name,
1884 atomic_read(&new_dentry->d_count));
1885
1886 /*
1887 * For non-directories, check whether the target is busy and if so,
1888 * make a copy of the dentry and then do a silly-rename. If the
1889 * silly-rename succeeds, the copied dentry is hashed and becomes
1890 * the new target.
1891 */
1892 if (new_inode && !S_ISDIR(new_inode->i_mode)) {
1893 /*
1894 * To prevent any new references to the target during the
1895 * rename, we unhash the dentry in advance.
1896 */
1897 if (!d_unhashed(new_dentry)) {
1898 d_drop(new_dentry);
1899 rehash = new_dentry;
1900 }
1901
1902 if (atomic_read(&new_dentry->d_count) > 2) {
1903 int err;
1904
1905 /* copy the target dentry's name */
1906 dentry = d_alloc(new_dentry->d_parent,
1907 &new_dentry->d_name);
1908 if (!dentry)
1909 goto out;
1910
1911 /* silly-rename the existing target ... */
1912 err = nfs_sillyrename(new_dir, new_dentry);
1913 if (err)
1914 goto out;
1915
1916 new_dentry = dentry;
1917 rehash = NULL;
1918 new_inode = NULL;
1919 }
1920 }
1921
1922 nfs_inode_return_delegation(old_inode);
1923 if (new_inode != NULL)
1924 nfs_inode_return_delegation(new_inode);
1925
1926 error = NFS_PROTO(old_dir)->rename(old_dir, &old_dentry->d_name,
1927 new_dir, &new_dentry->d_name);
1928 nfs_mark_for_revalidate(old_inode);
1929 out:
1930 if (rehash)
1931 d_rehash(rehash);
1932 if (!error) {
1933 if (new_inode != NULL)
1934 nfs_drop_nlink(new_inode);
1935 d_move(old_dentry, new_dentry);
1936 nfs_set_verifier(new_dentry,
1937 nfs_save_change_attribute(new_dir));
1938 } else if (error == -ENOENT)
1939 nfs_dentry_handle_enoent(old_dentry);
1940
1941 /* new dentry created? */
1942 if (dentry)
1943 dput(dentry);
1944 return error;
1945 }
1946
1947 static DEFINE_SPINLOCK(nfs_access_lru_lock);
1948 static LIST_HEAD(nfs_access_lru_list);
1949 static atomic_long_t nfs_access_nr_entries;
1950
1951 static void nfs_access_free_entry(struct nfs_access_entry *entry)
1952 {
1953 put_rpccred(entry->cred);
1954 kfree(entry);
1955 smp_mb__before_atomic_dec();
1956 atomic_long_dec(&nfs_access_nr_entries);
1957 smp_mb__after_atomic_dec();
1958 }
1959
1960 static void nfs_access_free_list(struct list_head *head)
1961 {
1962 struct nfs_access_entry *cache;
1963
1964 while (!list_empty(head)) {
1965 cache = list_entry(head->next, struct nfs_access_entry, lru);
1966 list_del(&cache->lru);
1967 nfs_access_free_entry(cache);
1968 }
1969 }
1970
1971 int nfs_access_cache_shrinker(struct shrinker *shrink, int nr_to_scan, gfp_t gfp_mask)
1972 {
1973 LIST_HEAD(head);
1974 struct nfs_inode *nfsi, *next;
1975 struct nfs_access_entry *cache;
1976
1977 if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL)
1978 return (nr_to_scan == 0) ? 0 : -1;
1979
1980 spin_lock(&nfs_access_lru_lock);
1981 list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) {
1982 struct inode *inode;
1983
1984 if (nr_to_scan-- == 0)
1985 break;
1986 inode = &nfsi->vfs_inode;
1987 spin_lock(&inode->i_lock);
1988 if (list_empty(&nfsi->access_cache_entry_lru))
1989 goto remove_lru_entry;
1990 cache = list_entry(nfsi->access_cache_entry_lru.next,
1991 struct nfs_access_entry, lru);
1992 list_move(&cache->lru, &head);
1993 rb_erase(&cache->rb_node, &nfsi->access_cache);
1994 if (!list_empty(&nfsi->access_cache_entry_lru))
1995 list_move_tail(&nfsi->access_cache_inode_lru,
1996 &nfs_access_lru_list);
1997 else {
1998 remove_lru_entry:
1999 list_del_init(&nfsi->access_cache_inode_lru);
2000 smp_mb__before_clear_bit();
2001 clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
2002 smp_mb__after_clear_bit();
2003 }
2004 spin_unlock(&inode->i_lock);
2005 }
2006 spin_unlock(&nfs_access_lru_lock);
2007 nfs_access_free_list(&head);
2008 return (atomic_long_read(&nfs_access_nr_entries) / 100) * sysctl_vfs_cache_pressure;
2009 }
2010
2011 static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head)
2012 {
2013 struct rb_root *root_node = &nfsi->access_cache;
2014 struct rb_node *n;
2015 struct nfs_access_entry *entry;
2016
2017 /* Unhook entries from the cache */
2018 while ((n = rb_first(root_node)) != NULL) {
2019 entry = rb_entry(n, struct nfs_access_entry, rb_node);
2020 rb_erase(n, root_node);
2021 list_move(&entry->lru, head);
2022 }
2023 nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
2024 }
2025
2026 void nfs_access_zap_cache(struct inode *inode)
2027 {
2028 LIST_HEAD(head);
2029
2030 if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0)
2031 return;
2032 /* Remove from global LRU init */
2033 spin_lock(&nfs_access_lru_lock);
2034 if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2035 list_del_init(&NFS_I(inode)->access_cache_inode_lru);
2036
2037 spin_lock(&inode->i_lock);
2038 __nfs_access_zap_cache(NFS_I(inode), &head);
2039 spin_unlock(&inode->i_lock);
2040 spin_unlock(&nfs_access_lru_lock);
2041 nfs_access_free_list(&head);
2042 }
2043
2044 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, struct rpc_cred *cred)
2045 {
2046 struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
2047 struct nfs_access_entry *entry;
2048
2049 while (n != NULL) {
2050 entry = rb_entry(n, struct nfs_access_entry, rb_node);
2051
2052 if (cred < entry->cred)
2053 n = n->rb_left;
2054 else if (cred > entry->cred)
2055 n = n->rb_right;
2056 else
2057 return entry;
2058 }
2059 return NULL;
2060 }
2061
2062 static int nfs_access_get_cached(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res)
2063 {
2064 struct nfs_inode *nfsi = NFS_I(inode);
2065 struct nfs_access_entry *cache;
2066 int err = -ENOENT;
2067
2068 spin_lock(&inode->i_lock);
2069 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2070 goto out_zap;
2071 cache = nfs_access_search_rbtree(inode, cred);
2072 if (cache == NULL)
2073 goto out;
2074 if (!nfs_have_delegated_attributes(inode) &&
2075 !time_in_range_open(jiffies, cache->jiffies, cache->jiffies + nfsi->attrtimeo))
2076 goto out_stale;
2077 res->jiffies = cache->jiffies;
2078 res->cred = cache->cred;
2079 res->mask = cache->mask;
2080 list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
2081 err = 0;
2082 out:
2083 spin_unlock(&inode->i_lock);
2084 return err;
2085 out_stale:
2086 rb_erase(&cache->rb_node, &nfsi->access_cache);
2087 list_del(&cache->lru);
2088 spin_unlock(&inode->i_lock);
2089 nfs_access_free_entry(cache);
2090 return -ENOENT;
2091 out_zap:
2092 spin_unlock(&inode->i_lock);
2093 nfs_access_zap_cache(inode);
2094 return -ENOENT;
2095 }
2096
2097 static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set)
2098 {
2099 struct nfs_inode *nfsi = NFS_I(inode);
2100 struct rb_root *root_node = &nfsi->access_cache;
2101 struct rb_node **p = &root_node->rb_node;
2102 struct rb_node *parent = NULL;
2103 struct nfs_access_entry *entry;
2104
2105 spin_lock(&inode->i_lock);
2106 while (*p != NULL) {
2107 parent = *p;
2108 entry = rb_entry(parent, struct nfs_access_entry, rb_node);
2109
2110 if (set->cred < entry->cred)
2111 p = &parent->rb_left;
2112 else if (set->cred > entry->cred)
2113 p = &parent->rb_right;
2114 else
2115 goto found;
2116 }
2117 rb_link_node(&set->rb_node, parent, p);
2118 rb_insert_color(&set->rb_node, root_node);
2119 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2120 spin_unlock(&inode->i_lock);
2121 return;
2122 found:
2123 rb_replace_node(parent, &set->rb_node, root_node);
2124 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2125 list_del(&entry->lru);
2126 spin_unlock(&inode->i_lock);
2127 nfs_access_free_entry(entry);
2128 }
2129
2130 static void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set)
2131 {
2132 struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
2133 if (cache == NULL)
2134 return;
2135 RB_CLEAR_NODE(&cache->rb_node);
2136 cache->jiffies = set->jiffies;
2137 cache->cred = get_rpccred(set->cred);
2138 cache->mask = set->mask;
2139
2140 nfs_access_add_rbtree(inode, cache);
2141
2142 /* Update accounting */
2143 smp_mb__before_atomic_inc();
2144 atomic_long_inc(&nfs_access_nr_entries);
2145 smp_mb__after_atomic_inc();
2146
2147 /* Add inode to global LRU list */
2148 if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
2149 spin_lock(&nfs_access_lru_lock);
2150 if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2151 list_add_tail(&NFS_I(inode)->access_cache_inode_lru,
2152 &nfs_access_lru_list);
2153 spin_unlock(&nfs_access_lru_lock);
2154 }
2155 }
2156
2157 static int nfs_do_access(struct inode *inode, struct rpc_cred *cred, int mask)
2158 {
2159 struct nfs_access_entry cache;
2160 int status;
2161
2162 status = nfs_access_get_cached(inode, cred, &cache);
2163 if (status == 0)
2164 goto out;
2165
2166 /* Be clever: ask server to check for all possible rights */
2167 cache.mask = MAY_EXEC | MAY_WRITE | MAY_READ;
2168 cache.cred = cred;
2169 cache.jiffies = jiffies;
2170 status = NFS_PROTO(inode)->access(inode, &cache);
2171 if (status != 0) {
2172 if (status == -ESTALE) {
2173 nfs_zap_caches(inode);
2174 if (!S_ISDIR(inode->i_mode))
2175 set_bit(NFS_INO_STALE, &NFS_I(inode)->flags);
2176 }
2177 return status;
2178 }
2179 nfs_access_add_cache(inode, &cache);
2180 out:
2181 if ((mask & ~cache.mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
2182 return 0;
2183 return -EACCES;
2184 }
2185
2186 static int nfs_open_permission_mask(int openflags)
2187 {
2188 int mask = 0;
2189
2190 if (openflags & FMODE_READ)
2191 mask |= MAY_READ;
2192 if (openflags & FMODE_WRITE)
2193 mask |= MAY_WRITE;
2194 if (openflags & FMODE_EXEC)
2195 mask |= MAY_EXEC;
2196 return mask;
2197 }
2198
2199 int nfs_may_open(struct inode *inode, struct rpc_cred *cred, int openflags)
2200 {
2201 return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
2202 }
2203
2204 int nfs_permission(struct inode *inode, int mask)
2205 {
2206 struct rpc_cred *cred;
2207 int res = 0;
2208
2209 nfs_inc_stats(inode, NFSIOS_VFSACCESS);
2210
2211 if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
2212 goto out;
2213 /* Is this sys_access() ? */
2214 if (mask & (MAY_ACCESS | MAY_CHDIR))
2215 goto force_lookup;
2216
2217 switch (inode->i_mode & S_IFMT) {
2218 case S_IFLNK:
2219 goto out;
2220 case S_IFREG:
2221 /* NFSv4 has atomic_open... */
2222 if (nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN)
2223 && (mask & MAY_OPEN)
2224 && !(mask & MAY_EXEC))
2225 goto out;
2226 break;
2227 case S_IFDIR:
2228 /*
2229 * Optimize away all write operations, since the server
2230 * will check permissions when we perform the op.
2231 */
2232 if ((mask & MAY_WRITE) && !(mask & MAY_READ))
2233 goto out;
2234 }
2235
2236 force_lookup:
2237 if (!NFS_PROTO(inode)->access)
2238 goto out_notsup;
2239
2240 cred = rpc_lookup_cred();
2241 if (!IS_ERR(cred)) {
2242 res = nfs_do_access(inode, cred, mask);
2243 put_rpccred(cred);
2244 } else
2245 res = PTR_ERR(cred);
2246 out:
2247 if (!res && (mask & MAY_EXEC) && !execute_ok(inode))
2248 res = -EACCES;
2249
2250 dfprintk(VFS, "NFS: permission(%s/%ld), mask=0x%x, res=%d\n",
2251 inode->i_sb->s_id, inode->i_ino, mask, res);
2252 return res;
2253 out_notsup:
2254 res = nfs_revalidate_inode(NFS_SERVER(inode), inode);
2255 if (res == 0)
2256 res = generic_permission(inode, mask, NULL);
2257 goto out;
2258 }
2259
2260 /*
2261 * Local variables:
2262 * version-control: t
2263 * kept-new-versions: 5
2264 * End:
2265 */
This page took 0.075394 seconds and 6 git commands to generate.