NFS: Remove bogus nfs_mark_for_revalidate() in nfs_lookup
[deliverable/linux.git] / fs / nfs / dir.c
1 /*
2 * linux/fs/nfs/dir.c
3 *
4 * Copyright (C) 1992 Rick Sladkey
5 *
6 * nfs directory handling functions
7 *
8 * 10 Apr 1996 Added silly rename for unlink --okir
9 * 28 Sep 1996 Improved directory cache --okir
10 * 23 Aug 1997 Claus Heine claus@momo.math.rwth-aachen.de
11 * Re-implemented silly rename for unlink, newly implemented
12 * silly rename for nfs_rename() following the suggestions
13 * of Olaf Kirch (okir) found in this file.
14 * Following Linus comments on my original hack, this version
15 * depends only on the dcache stuff and doesn't touch the inode
16 * layer (iput() and friends).
17 * 6 Jun 1999 Cache readdir lookups in the page cache. -DaveM
18 */
19
20 #include <linux/time.h>
21 #include <linux/errno.h>
22 #include <linux/stat.h>
23 #include <linux/fcntl.h>
24 #include <linux/string.h>
25 #include <linux/kernel.h>
26 #include <linux/slab.h>
27 #include <linux/mm.h>
28 #include <linux/sunrpc/clnt.h>
29 #include <linux/nfs_fs.h>
30 #include <linux/nfs_mount.h>
31 #include <linux/pagemap.h>
32 #include <linux/smp_lock.h>
33 #include <linux/pagevec.h>
34 #include <linux/namei.h>
35 #include <linux/mount.h>
36 #include <linux/sched.h>
37
38 #include "nfs4_fs.h"
39 #include "delegation.h"
40 #include "iostat.h"
41
42 /* #define NFS_DEBUG_VERBOSE 1 */
43
44 static int nfs_opendir(struct inode *, struct file *);
45 static int nfs_readdir(struct file *, void *, filldir_t);
46 static struct dentry *nfs_lookup(struct inode *, struct dentry *, struct nameidata *);
47 static int nfs_create(struct inode *, struct dentry *, int, struct nameidata *);
48 static int nfs_mkdir(struct inode *, struct dentry *, int);
49 static int nfs_rmdir(struct inode *, struct dentry *);
50 static int nfs_unlink(struct inode *, struct dentry *);
51 static int nfs_symlink(struct inode *, struct dentry *, const char *);
52 static int nfs_link(struct dentry *, struct inode *, struct dentry *);
53 static int nfs_mknod(struct inode *, struct dentry *, int, dev_t);
54 static int nfs_rename(struct inode *, struct dentry *,
55 struct inode *, struct dentry *);
56 static int nfs_fsync_dir(struct file *, struct dentry *, int);
57 static loff_t nfs_llseek_dir(struct file *, loff_t, int);
58
59 const struct file_operations nfs_dir_operations = {
60 .llseek = nfs_llseek_dir,
61 .read = generic_read_dir,
62 .readdir = nfs_readdir,
63 .open = nfs_opendir,
64 .release = nfs_release,
65 .fsync = nfs_fsync_dir,
66 };
67
68 const struct inode_operations nfs_dir_inode_operations = {
69 .create = nfs_create,
70 .lookup = nfs_lookup,
71 .link = nfs_link,
72 .unlink = nfs_unlink,
73 .symlink = nfs_symlink,
74 .mkdir = nfs_mkdir,
75 .rmdir = nfs_rmdir,
76 .mknod = nfs_mknod,
77 .rename = nfs_rename,
78 .permission = nfs_permission,
79 .getattr = nfs_getattr,
80 .setattr = nfs_setattr,
81 };
82
83 #ifdef CONFIG_NFS_V3
84 const struct inode_operations nfs3_dir_inode_operations = {
85 .create = nfs_create,
86 .lookup = nfs_lookup,
87 .link = nfs_link,
88 .unlink = nfs_unlink,
89 .symlink = nfs_symlink,
90 .mkdir = nfs_mkdir,
91 .rmdir = nfs_rmdir,
92 .mknod = nfs_mknod,
93 .rename = nfs_rename,
94 .permission = nfs_permission,
95 .getattr = nfs_getattr,
96 .setattr = nfs_setattr,
97 .listxattr = nfs3_listxattr,
98 .getxattr = nfs3_getxattr,
99 .setxattr = nfs3_setxattr,
100 .removexattr = nfs3_removexattr,
101 };
102 #endif /* CONFIG_NFS_V3 */
103
104 #ifdef CONFIG_NFS_V4
105
106 static struct dentry *nfs_atomic_lookup(struct inode *, struct dentry *, struct nameidata *);
107 const struct inode_operations nfs4_dir_inode_operations = {
108 .create = nfs_create,
109 .lookup = nfs_atomic_lookup,
110 .link = nfs_link,
111 .unlink = nfs_unlink,
112 .symlink = nfs_symlink,
113 .mkdir = nfs_mkdir,
114 .rmdir = nfs_rmdir,
115 .mknod = nfs_mknod,
116 .rename = nfs_rename,
117 .permission = nfs_permission,
118 .getattr = nfs_getattr,
119 .setattr = nfs_setattr,
120 .getxattr = nfs4_getxattr,
121 .setxattr = nfs4_setxattr,
122 .listxattr = nfs4_listxattr,
123 };
124
125 #endif /* CONFIG_NFS_V4 */
126
127 /*
128 * Open file
129 */
130 static int
131 nfs_opendir(struct inode *inode, struct file *filp)
132 {
133 int res;
134
135 dfprintk(VFS, "NFS: opendir(%s/%ld)\n",
136 inode->i_sb->s_id, inode->i_ino);
137
138 lock_kernel();
139 /* Call generic open code in order to cache credentials */
140 res = nfs_open(inode, filp);
141 unlock_kernel();
142 return res;
143 }
144
145 typedef __be32 * (*decode_dirent_t)(__be32 *, struct nfs_entry *, int);
146 typedef struct {
147 struct file *file;
148 struct page *page;
149 unsigned long page_index;
150 __be32 *ptr;
151 u64 *dir_cookie;
152 loff_t current_index;
153 struct nfs_entry *entry;
154 decode_dirent_t decode;
155 int plus;
156 int error;
157 unsigned long timestamp;
158 int timestamp_valid;
159 } nfs_readdir_descriptor_t;
160
161 /* Now we cache directories properly, by stuffing the dirent
162 * data directly in the page cache.
163 *
164 * Inode invalidation due to refresh etc. takes care of
165 * _everything_, no sloppy entry flushing logic, no extraneous
166 * copying, network direct to page cache, the way it was meant
167 * to be.
168 *
169 * NOTE: Dirent information verification is done always by the
170 * page-in of the RPC reply, nowhere else, this simplies
171 * things substantially.
172 */
173 static
174 int nfs_readdir_filler(nfs_readdir_descriptor_t *desc, struct page *page)
175 {
176 struct file *file = desc->file;
177 struct inode *inode = file->f_path.dentry->d_inode;
178 struct rpc_cred *cred = nfs_file_cred(file);
179 unsigned long timestamp;
180 int error;
181
182 dfprintk(DIRCACHE, "NFS: %s: reading cookie %Lu into page %lu\n",
183 __FUNCTION__, (long long)desc->entry->cookie,
184 page->index);
185
186 again:
187 timestamp = jiffies;
188 error = NFS_PROTO(inode)->readdir(file->f_path.dentry, cred, desc->entry->cookie, page,
189 NFS_SERVER(inode)->dtsize, desc->plus);
190 if (error < 0) {
191 /* We requested READDIRPLUS, but the server doesn't grok it */
192 if (error == -ENOTSUPP && desc->plus) {
193 NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
194 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_FLAGS(inode));
195 desc->plus = 0;
196 goto again;
197 }
198 goto error;
199 }
200 desc->timestamp = timestamp;
201 desc->timestamp_valid = 1;
202 SetPageUptodate(page);
203 /* Ensure consistent page alignment of the data.
204 * Note: assumes we have exclusive access to this mapping either
205 * through inode->i_mutex or some other mechanism.
206 */
207 if (page->index == 0 && invalidate_inode_pages2_range(inode->i_mapping, PAGE_CACHE_SIZE, -1) < 0) {
208 /* Should never happen */
209 nfs_zap_mapping(inode, inode->i_mapping);
210 }
211 unlock_page(page);
212 return 0;
213 error:
214 SetPageError(page);
215 unlock_page(page);
216 nfs_zap_caches(inode);
217 desc->error = error;
218 return -EIO;
219 }
220
221 static inline
222 int dir_decode(nfs_readdir_descriptor_t *desc)
223 {
224 __be32 *p = desc->ptr;
225 p = desc->decode(p, desc->entry, desc->plus);
226 if (IS_ERR(p))
227 return PTR_ERR(p);
228 desc->ptr = p;
229 if (desc->timestamp_valid)
230 desc->entry->fattr->time_start = desc->timestamp;
231 else
232 desc->entry->fattr->valid &= ~NFS_ATTR_FATTR;
233 return 0;
234 }
235
236 static inline
237 void dir_page_release(nfs_readdir_descriptor_t *desc)
238 {
239 kunmap(desc->page);
240 page_cache_release(desc->page);
241 desc->page = NULL;
242 desc->ptr = NULL;
243 }
244
245 /*
246 * Given a pointer to a buffer that has already been filled by a call
247 * to readdir, find the next entry with cookie '*desc->dir_cookie'.
248 *
249 * If the end of the buffer has been reached, return -EAGAIN, if not,
250 * return the offset within the buffer of the next entry to be
251 * read.
252 */
253 static inline
254 int find_dirent(nfs_readdir_descriptor_t *desc)
255 {
256 struct nfs_entry *entry = desc->entry;
257 int loop_count = 0,
258 status;
259
260 while((status = dir_decode(desc)) == 0) {
261 dfprintk(DIRCACHE, "NFS: %s: examining cookie %Lu\n",
262 __FUNCTION__, (unsigned long long)entry->cookie);
263 if (entry->prev_cookie == *desc->dir_cookie)
264 break;
265 if (loop_count++ > 200) {
266 loop_count = 0;
267 schedule();
268 }
269 }
270 return status;
271 }
272
273 /*
274 * Given a pointer to a buffer that has already been filled by a call
275 * to readdir, find the entry at offset 'desc->file->f_pos'.
276 *
277 * If the end of the buffer has been reached, return -EAGAIN, if not,
278 * return the offset within the buffer of the next entry to be
279 * read.
280 */
281 static inline
282 int find_dirent_index(nfs_readdir_descriptor_t *desc)
283 {
284 struct nfs_entry *entry = desc->entry;
285 int loop_count = 0,
286 status;
287
288 for(;;) {
289 status = dir_decode(desc);
290 if (status)
291 break;
292
293 dfprintk(DIRCACHE, "NFS: found cookie %Lu at index %Ld\n",
294 (unsigned long long)entry->cookie, desc->current_index);
295
296 if (desc->file->f_pos == desc->current_index) {
297 *desc->dir_cookie = entry->cookie;
298 break;
299 }
300 desc->current_index++;
301 if (loop_count++ > 200) {
302 loop_count = 0;
303 schedule();
304 }
305 }
306 return status;
307 }
308
309 /*
310 * Find the given page, and call find_dirent() or find_dirent_index in
311 * order to try to return the next entry.
312 */
313 static inline
314 int find_dirent_page(nfs_readdir_descriptor_t *desc)
315 {
316 struct inode *inode = desc->file->f_path.dentry->d_inode;
317 struct page *page;
318 int status;
319
320 dfprintk(DIRCACHE, "NFS: %s: searching page %ld for target %Lu\n",
321 __FUNCTION__, desc->page_index,
322 (long long) *desc->dir_cookie);
323
324 /* If we find the page in the page_cache, we cannot be sure
325 * how fresh the data is, so we will ignore readdir_plus attributes.
326 */
327 desc->timestamp_valid = 0;
328 page = read_cache_page(inode->i_mapping, desc->page_index,
329 (filler_t *)nfs_readdir_filler, desc);
330 if (IS_ERR(page)) {
331 status = PTR_ERR(page);
332 goto out;
333 }
334
335 /* NOTE: Someone else may have changed the READDIRPLUS flag */
336 desc->page = page;
337 desc->ptr = kmap(page); /* matching kunmap in nfs_do_filldir */
338 if (*desc->dir_cookie != 0)
339 status = find_dirent(desc);
340 else
341 status = find_dirent_index(desc);
342 if (status < 0)
343 dir_page_release(desc);
344 out:
345 dfprintk(DIRCACHE, "NFS: %s: returns %d\n", __FUNCTION__, status);
346 return status;
347 }
348
349 /*
350 * Recurse through the page cache pages, and return a
351 * filled nfs_entry structure of the next directory entry if possible.
352 *
353 * The target for the search is '*desc->dir_cookie' if non-0,
354 * 'desc->file->f_pos' otherwise
355 */
356 static inline
357 int readdir_search_pagecache(nfs_readdir_descriptor_t *desc)
358 {
359 int loop_count = 0;
360 int res;
361
362 /* Always search-by-index from the beginning of the cache */
363 if (*desc->dir_cookie == 0) {
364 dfprintk(DIRCACHE, "NFS: readdir_search_pagecache() searching for offset %Ld\n",
365 (long long)desc->file->f_pos);
366 desc->page_index = 0;
367 desc->entry->cookie = desc->entry->prev_cookie = 0;
368 desc->entry->eof = 0;
369 desc->current_index = 0;
370 } else
371 dfprintk(DIRCACHE, "NFS: readdir_search_pagecache() searching for cookie %Lu\n",
372 (unsigned long long)*desc->dir_cookie);
373
374 for (;;) {
375 res = find_dirent_page(desc);
376 if (res != -EAGAIN)
377 break;
378 /* Align to beginning of next page */
379 desc->page_index ++;
380 if (loop_count++ > 200) {
381 loop_count = 0;
382 schedule();
383 }
384 }
385
386 dfprintk(DIRCACHE, "NFS: %s: returns %d\n", __FUNCTION__, res);
387 return res;
388 }
389
390 static inline unsigned int dt_type(struct inode *inode)
391 {
392 return (inode->i_mode >> 12) & 15;
393 }
394
395 static struct dentry *nfs_readdir_lookup(nfs_readdir_descriptor_t *desc);
396
397 /*
398 * Once we've found the start of the dirent within a page: fill 'er up...
399 */
400 static
401 int nfs_do_filldir(nfs_readdir_descriptor_t *desc, void *dirent,
402 filldir_t filldir)
403 {
404 struct file *file = desc->file;
405 struct nfs_entry *entry = desc->entry;
406 struct dentry *dentry = NULL;
407 u64 fileid;
408 int loop_count = 0,
409 res;
410
411 dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling starting @ cookie %Lu\n",
412 (unsigned long long)entry->cookie);
413
414 for(;;) {
415 unsigned d_type = DT_UNKNOWN;
416 /* Note: entry->prev_cookie contains the cookie for
417 * retrieving the current dirent on the server */
418 fileid = entry->ino;
419
420 /* Get a dentry if we have one */
421 if (dentry != NULL)
422 dput(dentry);
423 dentry = nfs_readdir_lookup(desc);
424
425 /* Use readdirplus info */
426 if (dentry != NULL && dentry->d_inode != NULL) {
427 d_type = dt_type(dentry->d_inode);
428 fileid = NFS_FILEID(dentry->d_inode);
429 }
430
431 res = filldir(dirent, entry->name, entry->len,
432 file->f_pos, fileid, d_type);
433 if (res < 0)
434 break;
435 file->f_pos++;
436 *desc->dir_cookie = entry->cookie;
437 if (dir_decode(desc) != 0) {
438 desc->page_index ++;
439 break;
440 }
441 if (loop_count++ > 200) {
442 loop_count = 0;
443 schedule();
444 }
445 }
446 dir_page_release(desc);
447 if (dentry != NULL)
448 dput(dentry);
449 dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n",
450 (unsigned long long)*desc->dir_cookie, res);
451 return res;
452 }
453
454 /*
455 * If we cannot find a cookie in our cache, we suspect that this is
456 * because it points to a deleted file, so we ask the server to return
457 * whatever it thinks is the next entry. We then feed this to filldir.
458 * If all goes well, we should then be able to find our way round the
459 * cache on the next call to readdir_search_pagecache();
460 *
461 * NOTE: we cannot add the anonymous page to the pagecache because
462 * the data it contains might not be page aligned. Besides,
463 * we should already have a complete representation of the
464 * directory in the page cache by the time we get here.
465 */
466 static inline
467 int uncached_readdir(nfs_readdir_descriptor_t *desc, void *dirent,
468 filldir_t filldir)
469 {
470 struct file *file = desc->file;
471 struct inode *inode = file->f_path.dentry->d_inode;
472 struct rpc_cred *cred = nfs_file_cred(file);
473 struct page *page = NULL;
474 int status;
475 unsigned long timestamp;
476
477 dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n",
478 (unsigned long long)*desc->dir_cookie);
479
480 page = alloc_page(GFP_HIGHUSER);
481 if (!page) {
482 status = -ENOMEM;
483 goto out;
484 }
485 timestamp = jiffies;
486 desc->error = NFS_PROTO(inode)->readdir(file->f_path.dentry, cred, *desc->dir_cookie,
487 page,
488 NFS_SERVER(inode)->dtsize,
489 desc->plus);
490 desc->page = page;
491 desc->ptr = kmap(page); /* matching kunmap in nfs_do_filldir */
492 if (desc->error >= 0) {
493 desc->timestamp = timestamp;
494 desc->timestamp_valid = 1;
495 if ((status = dir_decode(desc)) == 0)
496 desc->entry->prev_cookie = *desc->dir_cookie;
497 } else
498 status = -EIO;
499 if (status < 0)
500 goto out_release;
501
502 status = nfs_do_filldir(desc, dirent, filldir);
503
504 /* Reset read descriptor so it searches the page cache from
505 * the start upon the next call to readdir_search_pagecache() */
506 desc->page_index = 0;
507 desc->entry->cookie = desc->entry->prev_cookie = 0;
508 desc->entry->eof = 0;
509 out:
510 dfprintk(DIRCACHE, "NFS: %s: returns %d\n",
511 __FUNCTION__, status);
512 return status;
513 out_release:
514 dir_page_release(desc);
515 goto out;
516 }
517
518 /* The file offset position represents the dirent entry number. A
519 last cookie cache takes care of the common case of reading the
520 whole directory.
521 */
522 static int nfs_readdir(struct file *filp, void *dirent, filldir_t filldir)
523 {
524 struct dentry *dentry = filp->f_path.dentry;
525 struct inode *inode = dentry->d_inode;
526 nfs_readdir_descriptor_t my_desc,
527 *desc = &my_desc;
528 struct nfs_entry my_entry;
529 struct nfs_fh fh;
530 struct nfs_fattr fattr;
531 long res;
532
533 dfprintk(VFS, "NFS: readdir(%s/%s) starting at cookie %Lu\n",
534 dentry->d_parent->d_name.name, dentry->d_name.name,
535 (long long)filp->f_pos);
536 nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
537
538 lock_kernel();
539
540 res = nfs_revalidate_mapping_nolock(inode, filp->f_mapping);
541 if (res < 0) {
542 unlock_kernel();
543 return res;
544 }
545
546 /*
547 * filp->f_pos points to the dirent entry number.
548 * *desc->dir_cookie has the cookie for the next entry. We have
549 * to either find the entry with the appropriate number or
550 * revalidate the cookie.
551 */
552 memset(desc, 0, sizeof(*desc));
553
554 desc->file = filp;
555 desc->dir_cookie = &nfs_file_open_context(filp)->dir_cookie;
556 desc->decode = NFS_PROTO(inode)->decode_dirent;
557 desc->plus = NFS_USE_READDIRPLUS(inode);
558
559 my_entry.cookie = my_entry.prev_cookie = 0;
560 my_entry.eof = 0;
561 my_entry.fh = &fh;
562 my_entry.fattr = &fattr;
563 nfs_fattr_init(&fattr);
564 desc->entry = &my_entry;
565
566 while(!desc->entry->eof) {
567 res = readdir_search_pagecache(desc);
568
569 if (res == -EBADCOOKIE) {
570 /* This means either end of directory */
571 if (*desc->dir_cookie && desc->entry->cookie != *desc->dir_cookie) {
572 /* Or that the server has 'lost' a cookie */
573 res = uncached_readdir(desc, dirent, filldir);
574 if (res >= 0)
575 continue;
576 }
577 res = 0;
578 break;
579 }
580 if (res == -ETOOSMALL && desc->plus) {
581 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_FLAGS(inode));
582 nfs_zap_caches(inode);
583 desc->plus = 0;
584 desc->entry->eof = 0;
585 continue;
586 }
587 if (res < 0)
588 break;
589
590 res = nfs_do_filldir(desc, dirent, filldir);
591 if (res < 0) {
592 res = 0;
593 break;
594 }
595 }
596 unlock_kernel();
597 if (res > 0)
598 res = 0;
599 dfprintk(VFS, "NFS: readdir(%s/%s) returns %ld\n",
600 dentry->d_parent->d_name.name, dentry->d_name.name,
601 res);
602 return res;
603 }
604
605 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int origin)
606 {
607 mutex_lock(&filp->f_path.dentry->d_inode->i_mutex);
608 switch (origin) {
609 case 1:
610 offset += filp->f_pos;
611 case 0:
612 if (offset >= 0)
613 break;
614 default:
615 offset = -EINVAL;
616 goto out;
617 }
618 if (offset != filp->f_pos) {
619 filp->f_pos = offset;
620 nfs_file_open_context(filp)->dir_cookie = 0;
621 }
622 out:
623 mutex_unlock(&filp->f_path.dentry->d_inode->i_mutex);
624 return offset;
625 }
626
627 /*
628 * All directory operations under NFS are synchronous, so fsync()
629 * is a dummy operation.
630 */
631 static int nfs_fsync_dir(struct file *filp, struct dentry *dentry, int datasync)
632 {
633 dfprintk(VFS, "NFS: fsync_dir(%s/%s) datasync %d\n",
634 dentry->d_parent->d_name.name, dentry->d_name.name,
635 datasync);
636
637 return 0;
638 }
639
640 /*
641 * A check for whether or not the parent directory has changed.
642 * In the case it has, we assume that the dentries are untrustworthy
643 * and may need to be looked up again.
644 */
645 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry)
646 {
647 if (IS_ROOT(dentry))
648 return 1;
649 if (nfs_verify_change_attribute(dir, dentry->d_time))
650 return 1;
651 return 0;
652 }
653
654 static inline void nfs_set_verifier(struct dentry * dentry, unsigned long verf)
655 {
656 dentry->d_time = verf;
657 }
658
659 /*
660 * Return the intent data that applies to this particular path component
661 *
662 * Note that the current set of intents only apply to the very last
663 * component of the path.
664 * We check for this using LOOKUP_CONTINUE and LOOKUP_PARENT.
665 */
666 static inline unsigned int nfs_lookup_check_intent(struct nameidata *nd, unsigned int mask)
667 {
668 if (nd->flags & (LOOKUP_CONTINUE|LOOKUP_PARENT))
669 return 0;
670 return nd->flags & mask;
671 }
672
673 /*
674 * Inode and filehandle revalidation for lookups.
675 *
676 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
677 * or if the intent information indicates that we're about to open this
678 * particular file and the "nocto" mount flag is not set.
679 *
680 */
681 static inline
682 int nfs_lookup_verify_inode(struct inode *inode, struct nameidata *nd)
683 {
684 struct nfs_server *server = NFS_SERVER(inode);
685
686 if (nd != NULL) {
687 /* VFS wants an on-the-wire revalidation */
688 if (nd->flags & LOOKUP_REVAL)
689 goto out_force;
690 /* This is an open(2) */
691 if (nfs_lookup_check_intent(nd, LOOKUP_OPEN) != 0 &&
692 !(server->flags & NFS_MOUNT_NOCTO) &&
693 (S_ISREG(inode->i_mode) ||
694 S_ISDIR(inode->i_mode)))
695 goto out_force;
696 }
697 return nfs_revalidate_inode(server, inode);
698 out_force:
699 return __nfs_revalidate_inode(server, inode);
700 }
701
702 /*
703 * We judge how long we want to trust negative
704 * dentries by looking at the parent inode mtime.
705 *
706 * If parent mtime has changed, we revalidate, else we wait for a
707 * period corresponding to the parent's attribute cache timeout value.
708 */
709 static inline
710 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
711 struct nameidata *nd)
712 {
713 /* Don't revalidate a negative dentry if we're creating a new file */
714 if (nd != NULL && nfs_lookup_check_intent(nd, LOOKUP_CREATE) != 0)
715 return 0;
716 return !nfs_check_verifier(dir, dentry);
717 }
718
719 /*
720 * This is called every time the dcache has a lookup hit,
721 * and we should check whether we can really trust that
722 * lookup.
723 *
724 * NOTE! The hit can be a negative hit too, don't assume
725 * we have an inode!
726 *
727 * If the parent directory is seen to have changed, we throw out the
728 * cached dentry and do a new lookup.
729 */
730 static int nfs_lookup_revalidate(struct dentry * dentry, struct nameidata *nd)
731 {
732 struct inode *dir;
733 struct inode *inode;
734 struct dentry *parent;
735 int error;
736 struct nfs_fh fhandle;
737 struct nfs_fattr fattr;
738
739 parent = dget_parent(dentry);
740 lock_kernel();
741 dir = parent->d_inode;
742 nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
743 inode = dentry->d_inode;
744
745 /* Revalidate parent directory attribute cache */
746 if (nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
747 goto out_zap_parent;
748
749 if (!inode) {
750 if (nfs_neg_need_reval(dir, dentry, nd))
751 goto out_bad;
752 goto out_valid;
753 }
754
755 if (is_bad_inode(inode)) {
756 dfprintk(LOOKUPCACHE, "%s: %s/%s has dud inode\n",
757 __FUNCTION__, dentry->d_parent->d_name.name,
758 dentry->d_name.name);
759 goto out_bad;
760 }
761
762 /* Force a full look up iff the parent directory has changed */
763 if (nfs_check_verifier(dir, dentry)) {
764 if (nfs_lookup_verify_inode(inode, nd))
765 goto out_zap_parent;
766 goto out_valid;
767 }
768
769 if (NFS_STALE(inode))
770 goto out_bad;
771
772 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, &fhandle, &fattr);
773 if (error)
774 goto out_bad;
775 if (nfs_compare_fh(NFS_FH(inode), &fhandle))
776 goto out_bad;
777 if ((error = nfs_refresh_inode(inode, &fattr)) != 0)
778 goto out_bad;
779
780 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
781 out_valid:
782 unlock_kernel();
783 dput(parent);
784 dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is valid\n",
785 __FUNCTION__, dentry->d_parent->d_name.name,
786 dentry->d_name.name);
787 return 1;
788 out_zap_parent:
789 nfs_zap_caches(dir);
790 out_bad:
791 NFS_CACHEINV(dir);
792 if (inode && S_ISDIR(inode->i_mode)) {
793 /* Purge readdir caches. */
794 nfs_zap_caches(inode);
795 /* If we have submounts, don't unhash ! */
796 if (have_submounts(dentry))
797 goto out_valid;
798 shrink_dcache_parent(dentry);
799 }
800 d_drop(dentry);
801 unlock_kernel();
802 dput(parent);
803 dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is invalid\n",
804 __FUNCTION__, dentry->d_parent->d_name.name,
805 dentry->d_name.name);
806 return 0;
807 }
808
809 /*
810 * This is called from dput() when d_count is going to 0.
811 */
812 static int nfs_dentry_delete(struct dentry *dentry)
813 {
814 dfprintk(VFS, "NFS: dentry_delete(%s/%s, %x)\n",
815 dentry->d_parent->d_name.name, dentry->d_name.name,
816 dentry->d_flags);
817
818 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
819 /* Unhash it, so that ->d_iput() would be called */
820 return 1;
821 }
822 if (!(dentry->d_sb->s_flags & MS_ACTIVE)) {
823 /* Unhash it, so that ancestors of killed async unlink
824 * files will be cleaned up during umount */
825 return 1;
826 }
827 return 0;
828
829 }
830
831 /*
832 * Called when the dentry loses inode.
833 * We use it to clean up silly-renamed files.
834 */
835 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
836 {
837 nfs_inode_return_delegation(inode);
838 if (S_ISDIR(inode->i_mode))
839 /* drop any readdir cache as it could easily be old */
840 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA;
841
842 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
843 lock_kernel();
844 drop_nlink(inode);
845 nfs_complete_unlink(dentry, inode);
846 unlock_kernel();
847 }
848 iput(inode);
849 }
850
851 struct dentry_operations nfs_dentry_operations = {
852 .d_revalidate = nfs_lookup_revalidate,
853 .d_delete = nfs_dentry_delete,
854 .d_iput = nfs_dentry_iput,
855 };
856
857 /*
858 * Use intent information to check whether or not we're going to do
859 * an O_EXCL create using this path component.
860 */
861 static inline
862 int nfs_is_exclusive_create(struct inode *dir, struct nameidata *nd)
863 {
864 if (NFS_PROTO(dir)->version == 2)
865 return 0;
866 if (nd == NULL || nfs_lookup_check_intent(nd, LOOKUP_CREATE) == 0)
867 return 0;
868 return (nd->intent.open.flags & O_EXCL) != 0;
869 }
870
871 static inline int nfs_reval_fsid(struct inode *dir, const struct nfs_fattr *fattr)
872 {
873 struct nfs_server *server = NFS_SERVER(dir);
874
875 if (!nfs_fsid_equal(&server->fsid, &fattr->fsid))
876 /* Revalidate fsid using the parent directory */
877 return __nfs_revalidate_inode(server, dir);
878 return 0;
879 }
880
881 static struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
882 {
883 struct dentry *res;
884 struct inode *inode = NULL;
885 int error;
886 struct nfs_fh fhandle;
887 struct nfs_fattr fattr;
888
889 dfprintk(VFS, "NFS: lookup(%s/%s)\n",
890 dentry->d_parent->d_name.name, dentry->d_name.name);
891 nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
892
893 res = ERR_PTR(-ENAMETOOLONG);
894 if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
895 goto out;
896
897 res = ERR_PTR(-ENOMEM);
898 dentry->d_op = NFS_PROTO(dir)->dentry_ops;
899
900 lock_kernel();
901
902 /*
903 * If we're doing an exclusive create, optimize away the lookup
904 * but don't hash the dentry.
905 */
906 if (nfs_is_exclusive_create(dir, nd)) {
907 d_instantiate(dentry, NULL);
908 res = NULL;
909 goto out_unlock;
910 }
911
912 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, &fhandle, &fattr);
913 if (error == -ENOENT)
914 goto no_entry;
915 if (error < 0) {
916 res = ERR_PTR(error);
917 goto out_unlock;
918 }
919 error = nfs_reval_fsid(dir, &fattr);
920 if (error < 0) {
921 res = ERR_PTR(error);
922 goto out_unlock;
923 }
924 inode = nfs_fhget(dentry->d_sb, &fhandle, &fattr);
925 res = (struct dentry *)inode;
926 if (IS_ERR(res))
927 goto out_unlock;
928
929 no_entry:
930 res = d_materialise_unique(dentry, inode);
931 if (res != NULL) {
932 if (IS_ERR(res))
933 goto out_unlock;
934 dentry = res;
935 }
936 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
937 out_unlock:
938 unlock_kernel();
939 out:
940 return res;
941 }
942
943 #ifdef CONFIG_NFS_V4
944 static int nfs_open_revalidate(struct dentry *, struct nameidata *);
945
946 struct dentry_operations nfs4_dentry_operations = {
947 .d_revalidate = nfs_open_revalidate,
948 .d_delete = nfs_dentry_delete,
949 .d_iput = nfs_dentry_iput,
950 };
951
952 /*
953 * Use intent information to determine whether we need to substitute
954 * the NFSv4-style stateful OPEN for the LOOKUP call
955 */
956 static int is_atomic_open(struct inode *dir, struct nameidata *nd)
957 {
958 if (nd == NULL || nfs_lookup_check_intent(nd, LOOKUP_OPEN) == 0)
959 return 0;
960 /* NFS does not (yet) have a stateful open for directories */
961 if (nd->flags & LOOKUP_DIRECTORY)
962 return 0;
963 /* Are we trying to write to a read only partition? */
964 if (IS_RDONLY(dir) && (nd->intent.open.flags & (O_CREAT|O_TRUNC|FMODE_WRITE)))
965 return 0;
966 return 1;
967 }
968
969 static struct dentry *nfs_atomic_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd)
970 {
971 struct dentry *res = NULL;
972 int error;
973
974 dfprintk(VFS, "NFS: atomic_lookup(%s/%ld), %s\n",
975 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
976
977 /* Check that we are indeed trying to open this file */
978 if (!is_atomic_open(dir, nd))
979 goto no_open;
980
981 if (dentry->d_name.len > NFS_SERVER(dir)->namelen) {
982 res = ERR_PTR(-ENAMETOOLONG);
983 goto out;
984 }
985 dentry->d_op = NFS_PROTO(dir)->dentry_ops;
986
987 /* Let vfs_create() deal with O_EXCL. Instantiate, but don't hash
988 * the dentry. */
989 if (nd->intent.open.flags & O_EXCL) {
990 d_instantiate(dentry, NULL);
991 goto out;
992 }
993
994 /* Open the file on the server */
995 lock_kernel();
996 /* Revalidate parent directory attribute cache */
997 error = nfs_revalidate_inode(NFS_SERVER(dir), dir);
998 if (error < 0) {
999 res = ERR_PTR(error);
1000 unlock_kernel();
1001 goto out;
1002 }
1003
1004 if (nd->intent.open.flags & O_CREAT) {
1005 nfs_begin_data_update(dir);
1006 res = nfs4_atomic_open(dir, dentry, nd);
1007 nfs_end_data_update(dir);
1008 } else
1009 res = nfs4_atomic_open(dir, dentry, nd);
1010 unlock_kernel();
1011 if (IS_ERR(res)) {
1012 error = PTR_ERR(res);
1013 switch (error) {
1014 /* Make a negative dentry */
1015 case -ENOENT:
1016 res = NULL;
1017 goto out;
1018 /* This turned out not to be a regular file */
1019 case -EISDIR:
1020 case -ENOTDIR:
1021 goto no_open;
1022 case -ELOOP:
1023 if (!(nd->intent.open.flags & O_NOFOLLOW))
1024 goto no_open;
1025 /* case -EINVAL: */
1026 default:
1027 goto out;
1028 }
1029 } else if (res != NULL)
1030 dentry = res;
1031 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1032 out:
1033 return res;
1034 no_open:
1035 return nfs_lookup(dir, dentry, nd);
1036 }
1037
1038 static int nfs_open_revalidate(struct dentry *dentry, struct nameidata *nd)
1039 {
1040 struct dentry *parent = NULL;
1041 struct inode *inode = dentry->d_inode;
1042 struct inode *dir;
1043 int openflags, ret = 0;
1044
1045 parent = dget_parent(dentry);
1046 dir = parent->d_inode;
1047 if (!is_atomic_open(dir, nd))
1048 goto no_open;
1049 /* We can't create new files in nfs_open_revalidate(), so we
1050 * optimize away revalidation of negative dentries.
1051 */
1052 if (inode == NULL)
1053 goto out;
1054 /* NFS only supports OPEN on regular files */
1055 if (!S_ISREG(inode->i_mode))
1056 goto no_open;
1057 openflags = nd->intent.open.flags;
1058 /* We cannot do exclusive creation on a positive dentry */
1059 if ((openflags & (O_CREAT|O_EXCL)) == (O_CREAT|O_EXCL))
1060 goto no_open;
1061 /* We can't create new files, or truncate existing ones here */
1062 openflags &= ~(O_CREAT|O_TRUNC);
1063
1064 /*
1065 * Note: we're not holding inode->i_mutex and so may be racing with
1066 * operations that change the directory. We therefore save the
1067 * change attribute *before* we do the RPC call.
1068 */
1069 lock_kernel();
1070 ret = nfs4_open_revalidate(dir, dentry, openflags, nd);
1071 if (ret == 1)
1072 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1073 unlock_kernel();
1074 out:
1075 dput(parent);
1076 if (!ret)
1077 d_drop(dentry);
1078 return ret;
1079 no_open:
1080 dput(parent);
1081 if (inode != NULL && nfs_have_delegation(inode, FMODE_READ))
1082 return 1;
1083 return nfs_lookup_revalidate(dentry, nd);
1084 }
1085 #endif /* CONFIG_NFSV4 */
1086
1087 static struct dentry *nfs_readdir_lookup(nfs_readdir_descriptor_t *desc)
1088 {
1089 struct dentry *parent = desc->file->f_path.dentry;
1090 struct inode *dir = parent->d_inode;
1091 struct nfs_entry *entry = desc->entry;
1092 struct dentry *dentry, *alias;
1093 struct qstr name = {
1094 .name = entry->name,
1095 .len = entry->len,
1096 };
1097 struct inode *inode;
1098 unsigned long verf = nfs_save_change_attribute(dir);
1099
1100 switch (name.len) {
1101 case 2:
1102 if (name.name[0] == '.' && name.name[1] == '.')
1103 return dget_parent(parent);
1104 break;
1105 case 1:
1106 if (name.name[0] == '.')
1107 return dget(parent);
1108 }
1109
1110 spin_lock(&dir->i_lock);
1111 if (NFS_I(dir)->cache_validity & NFS_INO_INVALID_DATA) {
1112 spin_unlock(&dir->i_lock);
1113 return NULL;
1114 }
1115 spin_unlock(&dir->i_lock);
1116
1117 name.hash = full_name_hash(name.name, name.len);
1118 dentry = d_lookup(parent, &name);
1119 if (dentry != NULL) {
1120 /* Is this a positive dentry that matches the readdir info? */
1121 if (dentry->d_inode != NULL &&
1122 (NFS_FILEID(dentry->d_inode) == entry->ino ||
1123 d_mountpoint(dentry))) {
1124 if (!desc->plus || entry->fh->size == 0)
1125 return dentry;
1126 if (nfs_compare_fh(NFS_FH(dentry->d_inode),
1127 entry->fh) == 0)
1128 goto out_renew;
1129 }
1130 /* No, so d_drop to allow one to be created */
1131 d_drop(dentry);
1132 dput(dentry);
1133 }
1134 if (!desc->plus || !(entry->fattr->valid & NFS_ATTR_FATTR))
1135 return NULL;
1136 if (name.len > NFS_SERVER(dir)->namelen)
1137 return NULL;
1138 /* Note: caller is already holding the dir->i_mutex! */
1139 dentry = d_alloc(parent, &name);
1140 if (dentry == NULL)
1141 return NULL;
1142 dentry->d_op = NFS_PROTO(dir)->dentry_ops;
1143 inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr);
1144 if (IS_ERR(inode)) {
1145 dput(dentry);
1146 return NULL;
1147 }
1148
1149 alias = d_materialise_unique(dentry, inode);
1150 if (alias != NULL) {
1151 dput(dentry);
1152 if (IS_ERR(alias))
1153 return NULL;
1154 dentry = alias;
1155 }
1156
1157 out_renew:
1158 nfs_set_verifier(dentry, verf);
1159 return dentry;
1160 }
1161
1162 /*
1163 * Code common to create, mkdir, and mknod.
1164 */
1165 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
1166 struct nfs_fattr *fattr)
1167 {
1168 struct dentry *parent = dget_parent(dentry);
1169 struct inode *dir = parent->d_inode;
1170 struct inode *inode;
1171 int error = -EACCES;
1172
1173 d_drop(dentry);
1174
1175 /* We may have been initialized further down */
1176 if (dentry->d_inode)
1177 goto out;
1178 if (fhandle->size == 0) {
1179 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr);
1180 if (error)
1181 goto out_error;
1182 }
1183 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1184 if (!(fattr->valid & NFS_ATTR_FATTR)) {
1185 struct nfs_server *server = NFS_SB(dentry->d_sb);
1186 error = server->nfs_client->rpc_ops->getattr(server, fhandle, fattr);
1187 if (error < 0)
1188 goto out_error;
1189 }
1190 inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
1191 error = PTR_ERR(inode);
1192 if (IS_ERR(inode))
1193 goto out_error;
1194 d_add(dentry, inode);
1195 out:
1196 dput(parent);
1197 return 0;
1198 out_error:
1199 nfs_mark_for_revalidate(dir);
1200 dput(parent);
1201 return error;
1202 }
1203
1204 /*
1205 * Following a failed create operation, we drop the dentry rather
1206 * than retain a negative dentry. This avoids a problem in the event
1207 * that the operation succeeded on the server, but an error in the
1208 * reply path made it appear to have failed.
1209 */
1210 static int nfs_create(struct inode *dir, struct dentry *dentry, int mode,
1211 struct nameidata *nd)
1212 {
1213 struct iattr attr;
1214 int error;
1215 int open_flags = 0;
1216
1217 dfprintk(VFS, "NFS: create(%s/%ld), %s\n",
1218 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1219
1220 attr.ia_mode = mode;
1221 attr.ia_valid = ATTR_MODE;
1222
1223 if ((nd->flags & LOOKUP_CREATE) != 0)
1224 open_flags = nd->intent.open.flags;
1225
1226 lock_kernel();
1227 nfs_begin_data_update(dir);
1228 error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags, nd);
1229 nfs_end_data_update(dir);
1230 if (error != 0)
1231 goto out_err;
1232 unlock_kernel();
1233 return 0;
1234 out_err:
1235 unlock_kernel();
1236 d_drop(dentry);
1237 return error;
1238 }
1239
1240 /*
1241 * See comments for nfs_proc_create regarding failed operations.
1242 */
1243 static int
1244 nfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t rdev)
1245 {
1246 struct iattr attr;
1247 int status;
1248
1249 dfprintk(VFS, "NFS: mknod(%s/%ld), %s\n",
1250 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1251
1252 if (!new_valid_dev(rdev))
1253 return -EINVAL;
1254
1255 attr.ia_mode = mode;
1256 attr.ia_valid = ATTR_MODE;
1257
1258 lock_kernel();
1259 nfs_begin_data_update(dir);
1260 status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
1261 nfs_end_data_update(dir);
1262 if (status != 0)
1263 goto out_err;
1264 unlock_kernel();
1265 return 0;
1266 out_err:
1267 unlock_kernel();
1268 d_drop(dentry);
1269 return status;
1270 }
1271
1272 /*
1273 * See comments for nfs_proc_create regarding failed operations.
1274 */
1275 static int nfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1276 {
1277 struct iattr attr;
1278 int error;
1279
1280 dfprintk(VFS, "NFS: mkdir(%s/%ld), %s\n",
1281 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1282
1283 attr.ia_valid = ATTR_MODE;
1284 attr.ia_mode = mode | S_IFDIR;
1285
1286 lock_kernel();
1287 nfs_begin_data_update(dir);
1288 error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
1289 nfs_end_data_update(dir);
1290 if (error != 0)
1291 goto out_err;
1292 unlock_kernel();
1293 return 0;
1294 out_err:
1295 d_drop(dentry);
1296 unlock_kernel();
1297 return error;
1298 }
1299
1300 static int nfs_rmdir(struct inode *dir, struct dentry *dentry)
1301 {
1302 int error;
1303
1304 dfprintk(VFS, "NFS: rmdir(%s/%ld), %s\n",
1305 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1306
1307 lock_kernel();
1308 nfs_begin_data_update(dir);
1309 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1310 /* Ensure the VFS deletes this inode */
1311 if (error == 0 && dentry->d_inode != NULL)
1312 clear_nlink(dentry->d_inode);
1313 nfs_end_data_update(dir);
1314 unlock_kernel();
1315
1316 return error;
1317 }
1318
1319 static int nfs_sillyrename(struct inode *dir, struct dentry *dentry)
1320 {
1321 static unsigned int sillycounter;
1322 const int fileidsize = sizeof(NFS_FILEID(dentry->d_inode))*2;
1323 const int countersize = sizeof(sillycounter)*2;
1324 const int slen = sizeof(".nfs")+fileidsize+countersize-1;
1325 char silly[slen+1];
1326 struct qstr qsilly;
1327 struct dentry *sdentry;
1328 int error = -EIO;
1329
1330 dfprintk(VFS, "NFS: silly-rename(%s/%s, ct=%d)\n",
1331 dentry->d_parent->d_name.name, dentry->d_name.name,
1332 atomic_read(&dentry->d_count));
1333 nfs_inc_stats(dir, NFSIOS_SILLYRENAME);
1334
1335 /*
1336 * We don't allow a dentry to be silly-renamed twice.
1337 */
1338 error = -EBUSY;
1339 if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1340 goto out;
1341
1342 sprintf(silly, ".nfs%*.*Lx",
1343 fileidsize, fileidsize,
1344 (unsigned long long)NFS_FILEID(dentry->d_inode));
1345
1346 /* Return delegation in anticipation of the rename */
1347 nfs_inode_return_delegation(dentry->d_inode);
1348
1349 sdentry = NULL;
1350 do {
1351 char *suffix = silly + slen - countersize;
1352
1353 dput(sdentry);
1354 sillycounter++;
1355 sprintf(suffix, "%*.*x", countersize, countersize, sillycounter);
1356
1357 dfprintk(VFS, "NFS: trying to rename %s to %s\n",
1358 dentry->d_name.name, silly);
1359
1360 sdentry = lookup_one_len(silly, dentry->d_parent, slen);
1361 /*
1362 * N.B. Better to return EBUSY here ... it could be
1363 * dangerous to delete the file while it's in use.
1364 */
1365 if (IS_ERR(sdentry))
1366 goto out;
1367 } while(sdentry->d_inode != NULL); /* need negative lookup */
1368
1369 qsilly.name = silly;
1370 qsilly.len = strlen(silly);
1371 nfs_begin_data_update(dir);
1372 if (dentry->d_inode) {
1373 nfs_begin_data_update(dentry->d_inode);
1374 error = NFS_PROTO(dir)->rename(dir, &dentry->d_name,
1375 dir, &qsilly);
1376 nfs_mark_for_revalidate(dentry->d_inode);
1377 nfs_end_data_update(dentry->d_inode);
1378 } else
1379 error = NFS_PROTO(dir)->rename(dir, &dentry->d_name,
1380 dir, &qsilly);
1381 nfs_end_data_update(dir);
1382 if (!error) {
1383 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1384 d_move(dentry, sdentry);
1385 error = nfs_async_unlink(dir, dentry);
1386 /* If we return 0 we don't unlink */
1387 }
1388 dput(sdentry);
1389 out:
1390 return error;
1391 }
1392
1393 /*
1394 * Remove a file after making sure there are no pending writes,
1395 * and after checking that the file has only one user.
1396 *
1397 * We invalidate the attribute cache and free the inode prior to the operation
1398 * to avoid possible races if the server reuses the inode.
1399 */
1400 static int nfs_safe_remove(struct dentry *dentry)
1401 {
1402 struct inode *dir = dentry->d_parent->d_inode;
1403 struct inode *inode = dentry->d_inode;
1404 int error = -EBUSY;
1405
1406 dfprintk(VFS, "NFS: safe_remove(%s/%s)\n",
1407 dentry->d_parent->d_name.name, dentry->d_name.name);
1408
1409 /* If the dentry was sillyrenamed, we simply call d_delete() */
1410 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1411 error = 0;
1412 goto out;
1413 }
1414
1415 nfs_begin_data_update(dir);
1416 if (inode != NULL) {
1417 nfs_inode_return_delegation(inode);
1418 nfs_begin_data_update(inode);
1419 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1420 /* The VFS may want to delete this inode */
1421 if (error == 0)
1422 drop_nlink(inode);
1423 nfs_mark_for_revalidate(inode);
1424 nfs_end_data_update(inode);
1425 } else
1426 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1427 nfs_end_data_update(dir);
1428 out:
1429 return error;
1430 }
1431
1432 /* We do silly rename. In case sillyrename() returns -EBUSY, the inode
1433 * belongs to an active ".nfs..." file and we return -EBUSY.
1434 *
1435 * If sillyrename() returns 0, we do nothing, otherwise we unlink.
1436 */
1437 static int nfs_unlink(struct inode *dir, struct dentry *dentry)
1438 {
1439 int error;
1440 int need_rehash = 0;
1441
1442 dfprintk(VFS, "NFS: unlink(%s/%ld, %s)\n", dir->i_sb->s_id,
1443 dir->i_ino, dentry->d_name.name);
1444
1445 lock_kernel();
1446 spin_lock(&dcache_lock);
1447 spin_lock(&dentry->d_lock);
1448 if (atomic_read(&dentry->d_count) > 1) {
1449 spin_unlock(&dentry->d_lock);
1450 spin_unlock(&dcache_lock);
1451 /* Start asynchronous writeout of the inode */
1452 write_inode_now(dentry->d_inode, 0);
1453 error = nfs_sillyrename(dir, dentry);
1454 unlock_kernel();
1455 return error;
1456 }
1457 if (!d_unhashed(dentry)) {
1458 __d_drop(dentry);
1459 need_rehash = 1;
1460 }
1461 spin_unlock(&dentry->d_lock);
1462 spin_unlock(&dcache_lock);
1463 error = nfs_safe_remove(dentry);
1464 if (!error) {
1465 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1466 } else if (need_rehash)
1467 d_rehash(dentry);
1468 unlock_kernel();
1469 return error;
1470 }
1471
1472 /*
1473 * To create a symbolic link, most file systems instantiate a new inode,
1474 * add a page to it containing the path, then write it out to the disk
1475 * using prepare_write/commit_write.
1476 *
1477 * Unfortunately the NFS client can't create the in-core inode first
1478 * because it needs a file handle to create an in-core inode (see
1479 * fs/nfs/inode.c:nfs_fhget). We only have a file handle *after* the
1480 * symlink request has completed on the server.
1481 *
1482 * So instead we allocate a raw page, copy the symname into it, then do
1483 * the SYMLINK request with the page as the buffer. If it succeeds, we
1484 * now have a new file handle and can instantiate an in-core NFS inode
1485 * and move the raw page into its mapping.
1486 */
1487 static int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1488 {
1489 struct pagevec lru_pvec;
1490 struct page *page;
1491 char *kaddr;
1492 struct iattr attr;
1493 unsigned int pathlen = strlen(symname);
1494 int error;
1495
1496 dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s)\n", dir->i_sb->s_id,
1497 dir->i_ino, dentry->d_name.name, symname);
1498
1499 if (pathlen > PAGE_SIZE)
1500 return -ENAMETOOLONG;
1501
1502 attr.ia_mode = S_IFLNK | S_IRWXUGO;
1503 attr.ia_valid = ATTR_MODE;
1504
1505 lock_kernel();
1506
1507 page = alloc_page(GFP_HIGHUSER);
1508 if (!page) {
1509 unlock_kernel();
1510 return -ENOMEM;
1511 }
1512
1513 kaddr = kmap_atomic(page, KM_USER0);
1514 memcpy(kaddr, symname, pathlen);
1515 if (pathlen < PAGE_SIZE)
1516 memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
1517 kunmap_atomic(kaddr, KM_USER0);
1518
1519 nfs_begin_data_update(dir);
1520 error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
1521 nfs_end_data_update(dir);
1522 if (error != 0) {
1523 dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s) error %d\n",
1524 dir->i_sb->s_id, dir->i_ino,
1525 dentry->d_name.name, symname, error);
1526 d_drop(dentry);
1527 __free_page(page);
1528 unlock_kernel();
1529 return error;
1530 }
1531
1532 /*
1533 * No big deal if we can't add this page to the page cache here.
1534 * READLINK will get the missing page from the server if needed.
1535 */
1536 pagevec_init(&lru_pvec, 0);
1537 if (!add_to_page_cache(page, dentry->d_inode->i_mapping, 0,
1538 GFP_KERNEL)) {
1539 pagevec_add(&lru_pvec, page);
1540 pagevec_lru_add(&lru_pvec);
1541 SetPageUptodate(page);
1542 unlock_page(page);
1543 } else
1544 __free_page(page);
1545
1546 unlock_kernel();
1547 return 0;
1548 }
1549
1550 static int
1551 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1552 {
1553 struct inode *inode = old_dentry->d_inode;
1554 int error;
1555
1556 dfprintk(VFS, "NFS: link(%s/%s -> %s/%s)\n",
1557 old_dentry->d_parent->d_name.name, old_dentry->d_name.name,
1558 dentry->d_parent->d_name.name, dentry->d_name.name);
1559
1560 lock_kernel();
1561 nfs_begin_data_update(dir);
1562 nfs_begin_data_update(inode);
1563 error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
1564 if (error == 0) {
1565 atomic_inc(&inode->i_count);
1566 d_instantiate(dentry, inode);
1567 }
1568 nfs_end_data_update(inode);
1569 nfs_end_data_update(dir);
1570 unlock_kernel();
1571 return error;
1572 }
1573
1574 /*
1575 * RENAME
1576 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
1577 * different file handle for the same inode after a rename (e.g. when
1578 * moving to a different directory). A fail-safe method to do so would
1579 * be to look up old_dir/old_name, create a link to new_dir/new_name and
1580 * rename the old file using the sillyrename stuff. This way, the original
1581 * file in old_dir will go away when the last process iput()s the inode.
1582 *
1583 * FIXED.
1584 *
1585 * It actually works quite well. One needs to have the possibility for
1586 * at least one ".nfs..." file in each directory the file ever gets
1587 * moved or linked to which happens automagically with the new
1588 * implementation that only depends on the dcache stuff instead of
1589 * using the inode layer
1590 *
1591 * Unfortunately, things are a little more complicated than indicated
1592 * above. For a cross-directory move, we want to make sure we can get
1593 * rid of the old inode after the operation. This means there must be
1594 * no pending writes (if it's a file), and the use count must be 1.
1595 * If these conditions are met, we can drop the dentries before doing
1596 * the rename.
1597 */
1598 static int nfs_rename(struct inode *old_dir, struct dentry *old_dentry,
1599 struct inode *new_dir, struct dentry *new_dentry)
1600 {
1601 struct inode *old_inode = old_dentry->d_inode;
1602 struct inode *new_inode = new_dentry->d_inode;
1603 struct dentry *dentry = NULL, *rehash = NULL;
1604 int error = -EBUSY;
1605
1606 /*
1607 * To prevent any new references to the target during the rename,
1608 * we unhash the dentry and free the inode in advance.
1609 */
1610 lock_kernel();
1611 if (!d_unhashed(new_dentry)) {
1612 d_drop(new_dentry);
1613 rehash = new_dentry;
1614 }
1615
1616 dfprintk(VFS, "NFS: rename(%s/%s -> %s/%s, ct=%d)\n",
1617 old_dentry->d_parent->d_name.name, old_dentry->d_name.name,
1618 new_dentry->d_parent->d_name.name, new_dentry->d_name.name,
1619 atomic_read(&new_dentry->d_count));
1620
1621 /*
1622 * First check whether the target is busy ... we can't
1623 * safely do _any_ rename if the target is in use.
1624 *
1625 * For files, make a copy of the dentry and then do a
1626 * silly-rename. If the silly-rename succeeds, the
1627 * copied dentry is hashed and becomes the new target.
1628 */
1629 if (!new_inode)
1630 goto go_ahead;
1631 if (S_ISDIR(new_inode->i_mode)) {
1632 error = -EISDIR;
1633 if (!S_ISDIR(old_inode->i_mode))
1634 goto out;
1635 } else if (atomic_read(&new_dentry->d_count) > 2) {
1636 int err;
1637 /* copy the target dentry's name */
1638 dentry = d_alloc(new_dentry->d_parent,
1639 &new_dentry->d_name);
1640 if (!dentry)
1641 goto out;
1642
1643 /* silly-rename the existing target ... */
1644 err = nfs_sillyrename(new_dir, new_dentry);
1645 if (!err) {
1646 new_dentry = rehash = dentry;
1647 new_inode = NULL;
1648 /* instantiate the replacement target */
1649 d_instantiate(new_dentry, NULL);
1650 } else if (atomic_read(&new_dentry->d_count) > 1)
1651 /* dentry still busy? */
1652 goto out;
1653 } else
1654 drop_nlink(new_inode);
1655
1656 go_ahead:
1657 /*
1658 * ... prune child dentries and writebacks if needed.
1659 */
1660 if (atomic_read(&old_dentry->d_count) > 1) {
1661 if (S_ISREG(old_inode->i_mode))
1662 nfs_wb_all(old_inode);
1663 shrink_dcache_parent(old_dentry);
1664 }
1665 nfs_inode_return_delegation(old_inode);
1666
1667 if (new_inode != NULL) {
1668 nfs_inode_return_delegation(new_inode);
1669 d_delete(new_dentry);
1670 }
1671
1672 nfs_begin_data_update(old_dir);
1673 nfs_begin_data_update(new_dir);
1674 nfs_begin_data_update(old_inode);
1675 error = NFS_PROTO(old_dir)->rename(old_dir, &old_dentry->d_name,
1676 new_dir, &new_dentry->d_name);
1677 nfs_mark_for_revalidate(old_inode);
1678 nfs_end_data_update(old_inode);
1679 nfs_end_data_update(new_dir);
1680 nfs_end_data_update(old_dir);
1681 out:
1682 if (rehash)
1683 d_rehash(rehash);
1684 if (!error) {
1685 d_move(old_dentry, new_dentry);
1686 nfs_set_verifier(new_dentry,
1687 nfs_save_change_attribute(new_dir));
1688 }
1689
1690 /* new dentry created? */
1691 if (dentry)
1692 dput(dentry);
1693 unlock_kernel();
1694 return error;
1695 }
1696
1697 static DEFINE_SPINLOCK(nfs_access_lru_lock);
1698 static LIST_HEAD(nfs_access_lru_list);
1699 static atomic_long_t nfs_access_nr_entries;
1700
1701 static void nfs_access_free_entry(struct nfs_access_entry *entry)
1702 {
1703 put_rpccred(entry->cred);
1704 kfree(entry);
1705 smp_mb__before_atomic_dec();
1706 atomic_long_dec(&nfs_access_nr_entries);
1707 smp_mb__after_atomic_dec();
1708 }
1709
1710 int nfs_access_cache_shrinker(int nr_to_scan, gfp_t gfp_mask)
1711 {
1712 LIST_HEAD(head);
1713 struct nfs_inode *nfsi;
1714 struct nfs_access_entry *cache;
1715
1716 restart:
1717 spin_lock(&nfs_access_lru_lock);
1718 list_for_each_entry(nfsi, &nfs_access_lru_list, access_cache_inode_lru) {
1719 struct inode *inode;
1720
1721 if (nr_to_scan-- == 0)
1722 break;
1723 inode = igrab(&nfsi->vfs_inode);
1724 if (inode == NULL)
1725 continue;
1726 spin_lock(&inode->i_lock);
1727 if (list_empty(&nfsi->access_cache_entry_lru))
1728 goto remove_lru_entry;
1729 cache = list_entry(nfsi->access_cache_entry_lru.next,
1730 struct nfs_access_entry, lru);
1731 list_move(&cache->lru, &head);
1732 rb_erase(&cache->rb_node, &nfsi->access_cache);
1733 if (!list_empty(&nfsi->access_cache_entry_lru))
1734 list_move_tail(&nfsi->access_cache_inode_lru,
1735 &nfs_access_lru_list);
1736 else {
1737 remove_lru_entry:
1738 list_del_init(&nfsi->access_cache_inode_lru);
1739 clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
1740 }
1741 spin_unlock(&inode->i_lock);
1742 spin_unlock(&nfs_access_lru_lock);
1743 iput(inode);
1744 goto restart;
1745 }
1746 spin_unlock(&nfs_access_lru_lock);
1747 while (!list_empty(&head)) {
1748 cache = list_entry(head.next, struct nfs_access_entry, lru);
1749 list_del(&cache->lru);
1750 nfs_access_free_entry(cache);
1751 }
1752 return (atomic_long_read(&nfs_access_nr_entries) / 100) * sysctl_vfs_cache_pressure;
1753 }
1754
1755 static void __nfs_access_zap_cache(struct inode *inode)
1756 {
1757 struct nfs_inode *nfsi = NFS_I(inode);
1758 struct rb_root *root_node = &nfsi->access_cache;
1759 struct rb_node *n, *dispose = NULL;
1760 struct nfs_access_entry *entry;
1761
1762 /* Unhook entries from the cache */
1763 while ((n = rb_first(root_node)) != NULL) {
1764 entry = rb_entry(n, struct nfs_access_entry, rb_node);
1765 rb_erase(n, root_node);
1766 list_del(&entry->lru);
1767 n->rb_left = dispose;
1768 dispose = n;
1769 }
1770 nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
1771 spin_unlock(&inode->i_lock);
1772
1773 /* Now kill them all! */
1774 while (dispose != NULL) {
1775 n = dispose;
1776 dispose = n->rb_left;
1777 nfs_access_free_entry(rb_entry(n, struct nfs_access_entry, rb_node));
1778 }
1779 }
1780
1781 void nfs_access_zap_cache(struct inode *inode)
1782 {
1783 /* Remove from global LRU init */
1784 if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_FLAGS(inode))) {
1785 spin_lock(&nfs_access_lru_lock);
1786 list_del_init(&NFS_I(inode)->access_cache_inode_lru);
1787 spin_unlock(&nfs_access_lru_lock);
1788 }
1789
1790 spin_lock(&inode->i_lock);
1791 /* This will release the spinlock */
1792 __nfs_access_zap_cache(inode);
1793 }
1794
1795 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, struct rpc_cred *cred)
1796 {
1797 struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
1798 struct nfs_access_entry *entry;
1799
1800 while (n != NULL) {
1801 entry = rb_entry(n, struct nfs_access_entry, rb_node);
1802
1803 if (cred < entry->cred)
1804 n = n->rb_left;
1805 else if (cred > entry->cred)
1806 n = n->rb_right;
1807 else
1808 return entry;
1809 }
1810 return NULL;
1811 }
1812
1813 static int nfs_access_get_cached(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res)
1814 {
1815 struct nfs_inode *nfsi = NFS_I(inode);
1816 struct nfs_access_entry *cache;
1817 int err = -ENOENT;
1818
1819 spin_lock(&inode->i_lock);
1820 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
1821 goto out_zap;
1822 cache = nfs_access_search_rbtree(inode, cred);
1823 if (cache == NULL)
1824 goto out;
1825 if (!time_in_range(jiffies, cache->jiffies, cache->jiffies + NFS_ATTRTIMEO(inode)))
1826 goto out_stale;
1827 res->jiffies = cache->jiffies;
1828 res->cred = cache->cred;
1829 res->mask = cache->mask;
1830 list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
1831 err = 0;
1832 out:
1833 spin_unlock(&inode->i_lock);
1834 return err;
1835 out_stale:
1836 rb_erase(&cache->rb_node, &nfsi->access_cache);
1837 list_del(&cache->lru);
1838 spin_unlock(&inode->i_lock);
1839 nfs_access_free_entry(cache);
1840 return -ENOENT;
1841 out_zap:
1842 /* This will release the spinlock */
1843 __nfs_access_zap_cache(inode);
1844 return -ENOENT;
1845 }
1846
1847 static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set)
1848 {
1849 struct nfs_inode *nfsi = NFS_I(inode);
1850 struct rb_root *root_node = &nfsi->access_cache;
1851 struct rb_node **p = &root_node->rb_node;
1852 struct rb_node *parent = NULL;
1853 struct nfs_access_entry *entry;
1854
1855 spin_lock(&inode->i_lock);
1856 while (*p != NULL) {
1857 parent = *p;
1858 entry = rb_entry(parent, struct nfs_access_entry, rb_node);
1859
1860 if (set->cred < entry->cred)
1861 p = &parent->rb_left;
1862 else if (set->cred > entry->cred)
1863 p = &parent->rb_right;
1864 else
1865 goto found;
1866 }
1867 rb_link_node(&set->rb_node, parent, p);
1868 rb_insert_color(&set->rb_node, root_node);
1869 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
1870 spin_unlock(&inode->i_lock);
1871 return;
1872 found:
1873 rb_replace_node(parent, &set->rb_node, root_node);
1874 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
1875 list_del(&entry->lru);
1876 spin_unlock(&inode->i_lock);
1877 nfs_access_free_entry(entry);
1878 }
1879
1880 static void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set)
1881 {
1882 struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
1883 if (cache == NULL)
1884 return;
1885 RB_CLEAR_NODE(&cache->rb_node);
1886 cache->jiffies = set->jiffies;
1887 cache->cred = get_rpccred(set->cred);
1888 cache->mask = set->mask;
1889
1890 nfs_access_add_rbtree(inode, cache);
1891
1892 /* Update accounting */
1893 smp_mb__before_atomic_inc();
1894 atomic_long_inc(&nfs_access_nr_entries);
1895 smp_mb__after_atomic_inc();
1896
1897 /* Add inode to global LRU list */
1898 if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_FLAGS(inode))) {
1899 spin_lock(&nfs_access_lru_lock);
1900 list_add_tail(&NFS_I(inode)->access_cache_inode_lru, &nfs_access_lru_list);
1901 spin_unlock(&nfs_access_lru_lock);
1902 }
1903 }
1904
1905 static int nfs_do_access(struct inode *inode, struct rpc_cred *cred, int mask)
1906 {
1907 struct nfs_access_entry cache;
1908 int status;
1909
1910 status = nfs_access_get_cached(inode, cred, &cache);
1911 if (status == 0)
1912 goto out;
1913
1914 /* Be clever: ask server to check for all possible rights */
1915 cache.mask = MAY_EXEC | MAY_WRITE | MAY_READ;
1916 cache.cred = cred;
1917 cache.jiffies = jiffies;
1918 status = NFS_PROTO(inode)->access(inode, &cache);
1919 if (status != 0)
1920 return status;
1921 nfs_access_add_cache(inode, &cache);
1922 out:
1923 if ((cache.mask & mask) == mask)
1924 return 0;
1925 return -EACCES;
1926 }
1927
1928 static int nfs_open_permission_mask(int openflags)
1929 {
1930 int mask = 0;
1931
1932 if (openflags & FMODE_READ)
1933 mask |= MAY_READ;
1934 if (openflags & FMODE_WRITE)
1935 mask |= MAY_WRITE;
1936 if (openflags & FMODE_EXEC)
1937 mask |= MAY_EXEC;
1938 return mask;
1939 }
1940
1941 int nfs_may_open(struct inode *inode, struct rpc_cred *cred, int openflags)
1942 {
1943 return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
1944 }
1945
1946 int nfs_permission(struct inode *inode, int mask, struct nameidata *nd)
1947 {
1948 struct rpc_cred *cred;
1949 int res = 0;
1950
1951 nfs_inc_stats(inode, NFSIOS_VFSACCESS);
1952
1953 if (mask == 0)
1954 goto out;
1955 /* Is this sys_access() ? */
1956 if (nd != NULL && (nd->flags & LOOKUP_ACCESS))
1957 goto force_lookup;
1958
1959 switch (inode->i_mode & S_IFMT) {
1960 case S_IFLNK:
1961 goto out;
1962 case S_IFREG:
1963 /* NFSv4 has atomic_open... */
1964 if (nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN)
1965 && nd != NULL
1966 && (nd->flags & LOOKUP_OPEN))
1967 goto out;
1968 break;
1969 case S_IFDIR:
1970 /*
1971 * Optimize away all write operations, since the server
1972 * will check permissions when we perform the op.
1973 */
1974 if ((mask & MAY_WRITE) && !(mask & MAY_READ))
1975 goto out;
1976 }
1977
1978 force_lookup:
1979 lock_kernel();
1980
1981 if (!NFS_PROTO(inode)->access)
1982 goto out_notsup;
1983
1984 cred = rpcauth_lookupcred(NFS_CLIENT(inode)->cl_auth, 0);
1985 if (!IS_ERR(cred)) {
1986 res = nfs_do_access(inode, cred, mask);
1987 put_rpccred(cred);
1988 } else
1989 res = PTR_ERR(cred);
1990 unlock_kernel();
1991 out:
1992 dfprintk(VFS, "NFS: permission(%s/%ld), mask=0x%x, res=%d\n",
1993 inode->i_sb->s_id, inode->i_ino, mask, res);
1994 return res;
1995 out_notsup:
1996 res = nfs_revalidate_inode(NFS_SERVER(inode), inode);
1997 if (res == 0)
1998 res = generic_permission(inode, mask, NULL);
1999 unlock_kernel();
2000 goto out;
2001 }
2002
2003 /*
2004 * Local variables:
2005 * version-control: t
2006 * kept-new-versions: 5
2007 * End:
2008 */
This page took 0.072782 seconds and 6 git commands to generate.