Merge branch 'master' of ../linux-2.6/
[deliverable/linux.git] / fs / nfs / dir.c
1 /*
2 * linux/fs/nfs/dir.c
3 *
4 * Copyright (C) 1992 Rick Sladkey
5 *
6 * nfs directory handling functions
7 *
8 * 10 Apr 1996 Added silly rename for unlink --okir
9 * 28 Sep 1996 Improved directory cache --okir
10 * 23 Aug 1997 Claus Heine claus@momo.math.rwth-aachen.de
11 * Re-implemented silly rename for unlink, newly implemented
12 * silly rename for nfs_rename() following the suggestions
13 * of Olaf Kirch (okir) found in this file.
14 * Following Linus comments on my original hack, this version
15 * depends only on the dcache stuff and doesn't touch the inode
16 * layer (iput() and friends).
17 * 6 Jun 1999 Cache readdir lookups in the page cache. -DaveM
18 */
19
20 #include <linux/time.h>
21 #include <linux/errno.h>
22 #include <linux/stat.h>
23 #include <linux/fcntl.h>
24 #include <linux/string.h>
25 #include <linux/kernel.h>
26 #include <linux/slab.h>
27 #include <linux/mm.h>
28 #include <linux/sunrpc/clnt.h>
29 #include <linux/nfs_fs.h>
30 #include <linux/nfs_mount.h>
31 #include <linux/pagemap.h>
32 #include <linux/smp_lock.h>
33 #include <linux/pagevec.h>
34 #include <linux/namei.h>
35 #include <linux/mount.h>
36 #include <linux/sched.h>
37
38 #include "nfs4_fs.h"
39 #include "delegation.h"
40 #include "iostat.h"
41 #include "internal.h"
42
43 /* #define NFS_DEBUG_VERBOSE 1 */
44
45 static int nfs_opendir(struct inode *, struct file *);
46 static int nfs_readdir(struct file *, void *, filldir_t);
47 static struct dentry *nfs_lookup(struct inode *, struct dentry *, struct nameidata *);
48 static int nfs_create(struct inode *, struct dentry *, int, struct nameidata *);
49 static int nfs_mkdir(struct inode *, struct dentry *, int);
50 static int nfs_rmdir(struct inode *, struct dentry *);
51 static int nfs_unlink(struct inode *, struct dentry *);
52 static int nfs_symlink(struct inode *, struct dentry *, const char *);
53 static int nfs_link(struct dentry *, struct inode *, struct dentry *);
54 static int nfs_mknod(struct inode *, struct dentry *, int, dev_t);
55 static int nfs_rename(struct inode *, struct dentry *,
56 struct inode *, struct dentry *);
57 static int nfs_fsync_dir(struct file *, struct dentry *, int);
58 static loff_t nfs_llseek_dir(struct file *, loff_t, int);
59
60 const struct file_operations nfs_dir_operations = {
61 .llseek = nfs_llseek_dir,
62 .read = generic_read_dir,
63 .readdir = nfs_readdir,
64 .open = nfs_opendir,
65 .release = nfs_release,
66 .fsync = nfs_fsync_dir,
67 };
68
69 const struct inode_operations nfs_dir_inode_operations = {
70 .create = nfs_create,
71 .lookup = nfs_lookup,
72 .link = nfs_link,
73 .unlink = nfs_unlink,
74 .symlink = nfs_symlink,
75 .mkdir = nfs_mkdir,
76 .rmdir = nfs_rmdir,
77 .mknod = nfs_mknod,
78 .rename = nfs_rename,
79 .permission = nfs_permission,
80 .getattr = nfs_getattr,
81 .setattr = nfs_setattr,
82 };
83
84 #ifdef CONFIG_NFS_V3
85 const struct inode_operations nfs3_dir_inode_operations = {
86 .create = nfs_create,
87 .lookup = nfs_lookup,
88 .link = nfs_link,
89 .unlink = nfs_unlink,
90 .symlink = nfs_symlink,
91 .mkdir = nfs_mkdir,
92 .rmdir = nfs_rmdir,
93 .mknod = nfs_mknod,
94 .rename = nfs_rename,
95 .permission = nfs_permission,
96 .getattr = nfs_getattr,
97 .setattr = nfs_setattr,
98 .listxattr = nfs3_listxattr,
99 .getxattr = nfs3_getxattr,
100 .setxattr = nfs3_setxattr,
101 .removexattr = nfs3_removexattr,
102 };
103 #endif /* CONFIG_NFS_V3 */
104
105 #ifdef CONFIG_NFS_V4
106
107 static struct dentry *nfs_atomic_lookup(struct inode *, struct dentry *, struct nameidata *);
108 const struct inode_operations nfs4_dir_inode_operations = {
109 .create = nfs_create,
110 .lookup = nfs_atomic_lookup,
111 .link = nfs_link,
112 .unlink = nfs_unlink,
113 .symlink = nfs_symlink,
114 .mkdir = nfs_mkdir,
115 .rmdir = nfs_rmdir,
116 .mknod = nfs_mknod,
117 .rename = nfs_rename,
118 .permission = nfs_permission,
119 .getattr = nfs_getattr,
120 .setattr = nfs_setattr,
121 .getxattr = nfs4_getxattr,
122 .setxattr = nfs4_setxattr,
123 .listxattr = nfs4_listxattr,
124 };
125
126 #endif /* CONFIG_NFS_V4 */
127
128 /*
129 * Open file
130 */
131 static int
132 nfs_opendir(struct inode *inode, struct file *filp)
133 {
134 int res;
135
136 dfprintk(VFS, "NFS: opendir(%s/%ld)\n",
137 inode->i_sb->s_id, inode->i_ino);
138
139 lock_kernel();
140 /* Call generic open code in order to cache credentials */
141 res = nfs_open(inode, filp);
142 unlock_kernel();
143 return res;
144 }
145
146 typedef __be32 * (*decode_dirent_t)(__be32 *, struct nfs_entry *, int);
147 typedef struct {
148 struct file *file;
149 struct page *page;
150 unsigned long page_index;
151 __be32 *ptr;
152 u64 *dir_cookie;
153 loff_t current_index;
154 struct nfs_entry *entry;
155 decode_dirent_t decode;
156 int plus;
157 unsigned long timestamp;
158 int timestamp_valid;
159 } nfs_readdir_descriptor_t;
160
161 /* Now we cache directories properly, by stuffing the dirent
162 * data directly in the page cache.
163 *
164 * Inode invalidation due to refresh etc. takes care of
165 * _everything_, no sloppy entry flushing logic, no extraneous
166 * copying, network direct to page cache, the way it was meant
167 * to be.
168 *
169 * NOTE: Dirent information verification is done always by the
170 * page-in of the RPC reply, nowhere else, this simplies
171 * things substantially.
172 */
173 static
174 int nfs_readdir_filler(nfs_readdir_descriptor_t *desc, struct page *page)
175 {
176 struct file *file = desc->file;
177 struct inode *inode = file->f_path.dentry->d_inode;
178 struct rpc_cred *cred = nfs_file_cred(file);
179 unsigned long timestamp;
180 int error;
181
182 dfprintk(DIRCACHE, "NFS: %s: reading cookie %Lu into page %lu\n",
183 __FUNCTION__, (long long)desc->entry->cookie,
184 page->index);
185
186 again:
187 timestamp = jiffies;
188 error = NFS_PROTO(inode)->readdir(file->f_path.dentry, cred, desc->entry->cookie, page,
189 NFS_SERVER(inode)->dtsize, desc->plus);
190 if (error < 0) {
191 /* We requested READDIRPLUS, but the server doesn't grok it */
192 if (error == -ENOTSUPP && desc->plus) {
193 NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
194 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
195 desc->plus = 0;
196 goto again;
197 }
198 goto error;
199 }
200 desc->timestamp = timestamp;
201 desc->timestamp_valid = 1;
202 SetPageUptodate(page);
203 /* Ensure consistent page alignment of the data.
204 * Note: assumes we have exclusive access to this mapping either
205 * through inode->i_mutex or some other mechanism.
206 */
207 if (page->index == 0 && invalidate_inode_pages2_range(inode->i_mapping, PAGE_CACHE_SIZE, -1) < 0) {
208 /* Should never happen */
209 nfs_zap_mapping(inode, inode->i_mapping);
210 }
211 unlock_page(page);
212 return 0;
213 error:
214 unlock_page(page);
215 return -EIO;
216 }
217
218 static inline
219 int dir_decode(nfs_readdir_descriptor_t *desc)
220 {
221 __be32 *p = desc->ptr;
222 p = desc->decode(p, desc->entry, desc->plus);
223 if (IS_ERR(p))
224 return PTR_ERR(p);
225 desc->ptr = p;
226 if (desc->timestamp_valid)
227 desc->entry->fattr->time_start = desc->timestamp;
228 else
229 desc->entry->fattr->valid &= ~NFS_ATTR_FATTR;
230 return 0;
231 }
232
233 static inline
234 void dir_page_release(nfs_readdir_descriptor_t *desc)
235 {
236 kunmap(desc->page);
237 page_cache_release(desc->page);
238 desc->page = NULL;
239 desc->ptr = NULL;
240 }
241
242 /*
243 * Given a pointer to a buffer that has already been filled by a call
244 * to readdir, find the next entry with cookie '*desc->dir_cookie'.
245 *
246 * If the end of the buffer has been reached, return -EAGAIN, if not,
247 * return the offset within the buffer of the next entry to be
248 * read.
249 */
250 static inline
251 int find_dirent(nfs_readdir_descriptor_t *desc)
252 {
253 struct nfs_entry *entry = desc->entry;
254 int loop_count = 0,
255 status;
256
257 while((status = dir_decode(desc)) == 0) {
258 dfprintk(DIRCACHE, "NFS: %s: examining cookie %Lu\n",
259 __FUNCTION__, (unsigned long long)entry->cookie);
260 if (entry->prev_cookie == *desc->dir_cookie)
261 break;
262 if (loop_count++ > 200) {
263 loop_count = 0;
264 schedule();
265 }
266 }
267 return status;
268 }
269
270 /*
271 * Given a pointer to a buffer that has already been filled by a call
272 * to readdir, find the entry at offset 'desc->file->f_pos'.
273 *
274 * If the end of the buffer has been reached, return -EAGAIN, if not,
275 * return the offset within the buffer of the next entry to be
276 * read.
277 */
278 static inline
279 int find_dirent_index(nfs_readdir_descriptor_t *desc)
280 {
281 struct nfs_entry *entry = desc->entry;
282 int loop_count = 0,
283 status;
284
285 for(;;) {
286 status = dir_decode(desc);
287 if (status)
288 break;
289
290 dfprintk(DIRCACHE, "NFS: found cookie %Lu at index %Ld\n",
291 (unsigned long long)entry->cookie, desc->current_index);
292
293 if (desc->file->f_pos == desc->current_index) {
294 *desc->dir_cookie = entry->cookie;
295 break;
296 }
297 desc->current_index++;
298 if (loop_count++ > 200) {
299 loop_count = 0;
300 schedule();
301 }
302 }
303 return status;
304 }
305
306 /*
307 * Find the given page, and call find_dirent() or find_dirent_index in
308 * order to try to return the next entry.
309 */
310 static inline
311 int find_dirent_page(nfs_readdir_descriptor_t *desc)
312 {
313 struct inode *inode = desc->file->f_path.dentry->d_inode;
314 struct page *page;
315 int status;
316
317 dfprintk(DIRCACHE, "NFS: %s: searching page %ld for target %Lu\n",
318 __FUNCTION__, desc->page_index,
319 (long long) *desc->dir_cookie);
320
321 /* If we find the page in the page_cache, we cannot be sure
322 * how fresh the data is, so we will ignore readdir_plus attributes.
323 */
324 desc->timestamp_valid = 0;
325 page = read_cache_page(inode->i_mapping, desc->page_index,
326 (filler_t *)nfs_readdir_filler, desc);
327 if (IS_ERR(page)) {
328 status = PTR_ERR(page);
329 goto out;
330 }
331
332 /* NOTE: Someone else may have changed the READDIRPLUS flag */
333 desc->page = page;
334 desc->ptr = kmap(page); /* matching kunmap in nfs_do_filldir */
335 if (*desc->dir_cookie != 0)
336 status = find_dirent(desc);
337 else
338 status = find_dirent_index(desc);
339 if (status < 0)
340 dir_page_release(desc);
341 out:
342 dfprintk(DIRCACHE, "NFS: %s: returns %d\n", __FUNCTION__, status);
343 return status;
344 }
345
346 /*
347 * Recurse through the page cache pages, and return a
348 * filled nfs_entry structure of the next directory entry if possible.
349 *
350 * The target for the search is '*desc->dir_cookie' if non-0,
351 * 'desc->file->f_pos' otherwise
352 */
353 static inline
354 int readdir_search_pagecache(nfs_readdir_descriptor_t *desc)
355 {
356 int loop_count = 0;
357 int res;
358
359 /* Always search-by-index from the beginning of the cache */
360 if (*desc->dir_cookie == 0) {
361 dfprintk(DIRCACHE, "NFS: readdir_search_pagecache() searching for offset %Ld\n",
362 (long long)desc->file->f_pos);
363 desc->page_index = 0;
364 desc->entry->cookie = desc->entry->prev_cookie = 0;
365 desc->entry->eof = 0;
366 desc->current_index = 0;
367 } else
368 dfprintk(DIRCACHE, "NFS: readdir_search_pagecache() searching for cookie %Lu\n",
369 (unsigned long long)*desc->dir_cookie);
370
371 for (;;) {
372 res = find_dirent_page(desc);
373 if (res != -EAGAIN)
374 break;
375 /* Align to beginning of next page */
376 desc->page_index ++;
377 if (loop_count++ > 200) {
378 loop_count = 0;
379 schedule();
380 }
381 }
382
383 dfprintk(DIRCACHE, "NFS: %s: returns %d\n", __FUNCTION__, res);
384 return res;
385 }
386
387 static inline unsigned int dt_type(struct inode *inode)
388 {
389 return (inode->i_mode >> 12) & 15;
390 }
391
392 static struct dentry *nfs_readdir_lookup(nfs_readdir_descriptor_t *desc);
393
394 /*
395 * Once we've found the start of the dirent within a page: fill 'er up...
396 */
397 static
398 int nfs_do_filldir(nfs_readdir_descriptor_t *desc, void *dirent,
399 filldir_t filldir)
400 {
401 struct file *file = desc->file;
402 struct nfs_entry *entry = desc->entry;
403 struct dentry *dentry = NULL;
404 u64 fileid;
405 int loop_count = 0,
406 res;
407
408 dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling starting @ cookie %Lu\n",
409 (unsigned long long)entry->cookie);
410
411 for(;;) {
412 unsigned d_type = DT_UNKNOWN;
413 /* Note: entry->prev_cookie contains the cookie for
414 * retrieving the current dirent on the server */
415 fileid = entry->ino;
416
417 /* Get a dentry if we have one */
418 if (dentry != NULL)
419 dput(dentry);
420 dentry = nfs_readdir_lookup(desc);
421
422 /* Use readdirplus info */
423 if (dentry != NULL && dentry->d_inode != NULL) {
424 d_type = dt_type(dentry->d_inode);
425 fileid = NFS_FILEID(dentry->d_inode);
426 }
427
428 res = filldir(dirent, entry->name, entry->len,
429 file->f_pos, nfs_compat_user_ino64(fileid),
430 d_type);
431 if (res < 0)
432 break;
433 file->f_pos++;
434 *desc->dir_cookie = entry->cookie;
435 if (dir_decode(desc) != 0) {
436 desc->page_index ++;
437 break;
438 }
439 if (loop_count++ > 200) {
440 loop_count = 0;
441 schedule();
442 }
443 }
444 dir_page_release(desc);
445 if (dentry != NULL)
446 dput(dentry);
447 dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n",
448 (unsigned long long)*desc->dir_cookie, res);
449 return res;
450 }
451
452 /*
453 * If we cannot find a cookie in our cache, we suspect that this is
454 * because it points to a deleted file, so we ask the server to return
455 * whatever it thinks is the next entry. We then feed this to filldir.
456 * If all goes well, we should then be able to find our way round the
457 * cache on the next call to readdir_search_pagecache();
458 *
459 * NOTE: we cannot add the anonymous page to the pagecache because
460 * the data it contains might not be page aligned. Besides,
461 * we should already have a complete representation of the
462 * directory in the page cache by the time we get here.
463 */
464 static inline
465 int uncached_readdir(nfs_readdir_descriptor_t *desc, void *dirent,
466 filldir_t filldir)
467 {
468 struct file *file = desc->file;
469 struct inode *inode = file->f_path.dentry->d_inode;
470 struct rpc_cred *cred = nfs_file_cred(file);
471 struct page *page = NULL;
472 int status;
473 unsigned long timestamp;
474
475 dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n",
476 (unsigned long long)*desc->dir_cookie);
477
478 page = alloc_page(GFP_HIGHUSER);
479 if (!page) {
480 status = -ENOMEM;
481 goto out;
482 }
483 timestamp = jiffies;
484 status = NFS_PROTO(inode)->readdir(file->f_path.dentry, cred,
485 *desc->dir_cookie, page,
486 NFS_SERVER(inode)->dtsize,
487 desc->plus);
488 desc->page = page;
489 desc->ptr = kmap(page); /* matching kunmap in nfs_do_filldir */
490 if (status >= 0) {
491 desc->timestamp = timestamp;
492 desc->timestamp_valid = 1;
493 if ((status = dir_decode(desc)) == 0)
494 desc->entry->prev_cookie = *desc->dir_cookie;
495 } else
496 status = -EIO;
497 if (status < 0)
498 goto out_release;
499
500 status = nfs_do_filldir(desc, dirent, filldir);
501
502 /* Reset read descriptor so it searches the page cache from
503 * the start upon the next call to readdir_search_pagecache() */
504 desc->page_index = 0;
505 desc->entry->cookie = desc->entry->prev_cookie = 0;
506 desc->entry->eof = 0;
507 out:
508 dfprintk(DIRCACHE, "NFS: %s: returns %d\n",
509 __FUNCTION__, status);
510 return status;
511 out_release:
512 dir_page_release(desc);
513 goto out;
514 }
515
516 /* The file offset position represents the dirent entry number. A
517 last cookie cache takes care of the common case of reading the
518 whole directory.
519 */
520 static int nfs_readdir(struct file *filp, void *dirent, filldir_t filldir)
521 {
522 struct dentry *dentry = filp->f_path.dentry;
523 struct inode *inode = dentry->d_inode;
524 nfs_readdir_descriptor_t my_desc,
525 *desc = &my_desc;
526 struct nfs_entry my_entry;
527 struct nfs_fh fh;
528 struct nfs_fattr fattr;
529 long res;
530
531 dfprintk(VFS, "NFS: readdir(%s/%s) starting at cookie %Lu\n",
532 dentry->d_parent->d_name.name, dentry->d_name.name,
533 (long long)filp->f_pos);
534 nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
535
536 lock_kernel();
537
538 /*
539 * filp->f_pos points to the dirent entry number.
540 * *desc->dir_cookie has the cookie for the next entry. We have
541 * to either find the entry with the appropriate number or
542 * revalidate the cookie.
543 */
544 memset(desc, 0, sizeof(*desc));
545
546 desc->file = filp;
547 desc->dir_cookie = &nfs_file_open_context(filp)->dir_cookie;
548 desc->decode = NFS_PROTO(inode)->decode_dirent;
549 desc->plus = NFS_USE_READDIRPLUS(inode);
550
551 my_entry.cookie = my_entry.prev_cookie = 0;
552 my_entry.eof = 0;
553 my_entry.fh = &fh;
554 my_entry.fattr = &fattr;
555 nfs_fattr_init(&fattr);
556 desc->entry = &my_entry;
557
558 nfs_block_sillyrename(dentry);
559 res = nfs_revalidate_mapping_nolock(inode, filp->f_mapping);
560 if (res < 0)
561 goto out;
562
563 while(!desc->entry->eof) {
564 res = readdir_search_pagecache(desc);
565
566 if (res == -EBADCOOKIE) {
567 /* This means either end of directory */
568 if (*desc->dir_cookie && desc->entry->cookie != *desc->dir_cookie) {
569 /* Or that the server has 'lost' a cookie */
570 res = uncached_readdir(desc, dirent, filldir);
571 if (res >= 0)
572 continue;
573 }
574 res = 0;
575 break;
576 }
577 if (res == -ETOOSMALL && desc->plus) {
578 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
579 nfs_zap_caches(inode);
580 desc->plus = 0;
581 desc->entry->eof = 0;
582 continue;
583 }
584 if (res < 0)
585 break;
586
587 res = nfs_do_filldir(desc, dirent, filldir);
588 if (res < 0) {
589 res = 0;
590 break;
591 }
592 }
593 out:
594 nfs_unblock_sillyrename(dentry);
595 unlock_kernel();
596 if (res > 0)
597 res = 0;
598 dfprintk(VFS, "NFS: readdir(%s/%s) returns %ld\n",
599 dentry->d_parent->d_name.name, dentry->d_name.name,
600 res);
601 return res;
602 }
603
604 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int origin)
605 {
606 mutex_lock(&filp->f_path.dentry->d_inode->i_mutex);
607 switch (origin) {
608 case 1:
609 offset += filp->f_pos;
610 case 0:
611 if (offset >= 0)
612 break;
613 default:
614 offset = -EINVAL;
615 goto out;
616 }
617 if (offset != filp->f_pos) {
618 filp->f_pos = offset;
619 nfs_file_open_context(filp)->dir_cookie = 0;
620 }
621 out:
622 mutex_unlock(&filp->f_path.dentry->d_inode->i_mutex);
623 return offset;
624 }
625
626 /*
627 * All directory operations under NFS are synchronous, so fsync()
628 * is a dummy operation.
629 */
630 static int nfs_fsync_dir(struct file *filp, struct dentry *dentry, int datasync)
631 {
632 dfprintk(VFS, "NFS: fsync_dir(%s/%s) datasync %d\n",
633 dentry->d_parent->d_name.name, dentry->d_name.name,
634 datasync);
635
636 return 0;
637 }
638
639 /**
640 * nfs_force_lookup_revalidate - Mark the directory as having changed
641 * @dir - pointer to directory inode
642 *
643 * This forces the revalidation code in nfs_lookup_revalidate() to do a
644 * full lookup on all child dentries of 'dir' whenever a change occurs
645 * on the server that might have invalidated our dcache.
646 *
647 * The caller should be holding dir->i_lock
648 */
649 void nfs_force_lookup_revalidate(struct inode *dir)
650 {
651 NFS_I(dir)->cache_change_attribute = jiffies;
652 }
653
654 /*
655 * A check for whether or not the parent directory has changed.
656 * In the case it has, we assume that the dentries are untrustworthy
657 * and may need to be looked up again.
658 */
659 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry)
660 {
661 if (IS_ROOT(dentry))
662 return 1;
663 if (!nfs_verify_change_attribute(dir, dentry->d_time))
664 return 0;
665 /* Revalidate nfsi->cache_change_attribute before we declare a match */
666 if (nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
667 return 0;
668 if (!nfs_verify_change_attribute(dir, dentry->d_time))
669 return 0;
670 return 1;
671 }
672
673 /*
674 * Return the intent data that applies to this particular path component
675 *
676 * Note that the current set of intents only apply to the very last
677 * component of the path.
678 * We check for this using LOOKUP_CONTINUE and LOOKUP_PARENT.
679 */
680 static inline unsigned int nfs_lookup_check_intent(struct nameidata *nd, unsigned int mask)
681 {
682 if (nd->flags & (LOOKUP_CONTINUE|LOOKUP_PARENT))
683 return 0;
684 return nd->flags & mask;
685 }
686
687 /*
688 * Use intent information to check whether or not we're going to do
689 * an O_EXCL create using this path component.
690 */
691 static int nfs_is_exclusive_create(struct inode *dir, struct nameidata *nd)
692 {
693 if (NFS_PROTO(dir)->version == 2)
694 return 0;
695 if (nd == NULL || nfs_lookup_check_intent(nd, LOOKUP_CREATE) == 0)
696 return 0;
697 return (nd->intent.open.flags & O_EXCL) != 0;
698 }
699
700 /*
701 * Inode and filehandle revalidation for lookups.
702 *
703 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
704 * or if the intent information indicates that we're about to open this
705 * particular file and the "nocto" mount flag is not set.
706 *
707 */
708 static inline
709 int nfs_lookup_verify_inode(struct inode *inode, struct nameidata *nd)
710 {
711 struct nfs_server *server = NFS_SERVER(inode);
712
713 if (nd != NULL) {
714 /* VFS wants an on-the-wire revalidation */
715 if (nd->flags & LOOKUP_REVAL)
716 goto out_force;
717 /* This is an open(2) */
718 if (nfs_lookup_check_intent(nd, LOOKUP_OPEN) != 0 &&
719 !(server->flags & NFS_MOUNT_NOCTO) &&
720 (S_ISREG(inode->i_mode) ||
721 S_ISDIR(inode->i_mode)))
722 goto out_force;
723 return 0;
724 }
725 return nfs_revalidate_inode(server, inode);
726 out_force:
727 return __nfs_revalidate_inode(server, inode);
728 }
729
730 /*
731 * We judge how long we want to trust negative
732 * dentries by looking at the parent inode mtime.
733 *
734 * If parent mtime has changed, we revalidate, else we wait for a
735 * period corresponding to the parent's attribute cache timeout value.
736 */
737 static inline
738 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
739 struct nameidata *nd)
740 {
741 /* Don't revalidate a negative dentry if we're creating a new file */
742 if (nd != NULL && nfs_lookup_check_intent(nd, LOOKUP_CREATE) != 0)
743 return 0;
744 return !nfs_check_verifier(dir, dentry);
745 }
746
747 /*
748 * This is called every time the dcache has a lookup hit,
749 * and we should check whether we can really trust that
750 * lookup.
751 *
752 * NOTE! The hit can be a negative hit too, don't assume
753 * we have an inode!
754 *
755 * If the parent directory is seen to have changed, we throw out the
756 * cached dentry and do a new lookup.
757 */
758 static int nfs_lookup_revalidate(struct dentry * dentry, struct nameidata *nd)
759 {
760 struct inode *dir;
761 struct inode *inode;
762 struct dentry *parent;
763 int error;
764 struct nfs_fh fhandle;
765 struct nfs_fattr fattr;
766
767 parent = dget_parent(dentry);
768 lock_kernel();
769 dir = parent->d_inode;
770 nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
771 inode = dentry->d_inode;
772
773 if (!inode) {
774 if (nfs_neg_need_reval(dir, dentry, nd))
775 goto out_bad;
776 goto out_valid;
777 }
778
779 if (is_bad_inode(inode)) {
780 dfprintk(LOOKUPCACHE, "%s: %s/%s has dud inode\n",
781 __FUNCTION__, dentry->d_parent->d_name.name,
782 dentry->d_name.name);
783 goto out_bad;
784 }
785
786 /* Force a full look up iff the parent directory has changed */
787 if (!nfs_is_exclusive_create(dir, nd) && nfs_check_verifier(dir, dentry)) {
788 if (nfs_lookup_verify_inode(inode, nd))
789 goto out_zap_parent;
790 goto out_valid;
791 }
792
793 if (NFS_STALE(inode))
794 goto out_bad;
795
796 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, &fhandle, &fattr);
797 if (error)
798 goto out_bad;
799 if (nfs_compare_fh(NFS_FH(inode), &fhandle))
800 goto out_bad;
801 if ((error = nfs_refresh_inode(inode, &fattr)) != 0)
802 goto out_bad;
803
804 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
805 out_valid:
806 unlock_kernel();
807 dput(parent);
808 dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is valid\n",
809 __FUNCTION__, dentry->d_parent->d_name.name,
810 dentry->d_name.name);
811 return 1;
812 out_zap_parent:
813 nfs_zap_caches(dir);
814 out_bad:
815 nfs_mark_for_revalidate(dir);
816 if (inode && S_ISDIR(inode->i_mode)) {
817 /* Purge readdir caches. */
818 nfs_zap_caches(inode);
819 /* If we have submounts, don't unhash ! */
820 if (have_submounts(dentry))
821 goto out_valid;
822 shrink_dcache_parent(dentry);
823 }
824 d_drop(dentry);
825 unlock_kernel();
826 dput(parent);
827 dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is invalid\n",
828 __FUNCTION__, dentry->d_parent->d_name.name,
829 dentry->d_name.name);
830 return 0;
831 }
832
833 /*
834 * This is called from dput() when d_count is going to 0.
835 */
836 static int nfs_dentry_delete(struct dentry *dentry)
837 {
838 dfprintk(VFS, "NFS: dentry_delete(%s/%s, %x)\n",
839 dentry->d_parent->d_name.name, dentry->d_name.name,
840 dentry->d_flags);
841
842 /* Unhash any dentry with a stale inode */
843 if (dentry->d_inode != NULL && NFS_STALE(dentry->d_inode))
844 return 1;
845
846 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
847 /* Unhash it, so that ->d_iput() would be called */
848 return 1;
849 }
850 if (!(dentry->d_sb->s_flags & MS_ACTIVE)) {
851 /* Unhash it, so that ancestors of killed async unlink
852 * files will be cleaned up during umount */
853 return 1;
854 }
855 return 0;
856
857 }
858
859 /*
860 * Called when the dentry loses inode.
861 * We use it to clean up silly-renamed files.
862 */
863 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
864 {
865 if (S_ISDIR(inode->i_mode))
866 /* drop any readdir cache as it could easily be old */
867 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA;
868
869 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
870 lock_kernel();
871 drop_nlink(inode);
872 nfs_complete_unlink(dentry, inode);
873 unlock_kernel();
874 }
875 iput(inode);
876 }
877
878 struct dentry_operations nfs_dentry_operations = {
879 .d_revalidate = nfs_lookup_revalidate,
880 .d_delete = nfs_dentry_delete,
881 .d_iput = nfs_dentry_iput,
882 };
883
884 static struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
885 {
886 struct dentry *res;
887 struct dentry *parent;
888 struct inode *inode = NULL;
889 int error;
890 struct nfs_fh fhandle;
891 struct nfs_fattr fattr;
892
893 dfprintk(VFS, "NFS: lookup(%s/%s)\n",
894 dentry->d_parent->d_name.name, dentry->d_name.name);
895 nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
896
897 res = ERR_PTR(-ENAMETOOLONG);
898 if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
899 goto out;
900
901 res = ERR_PTR(-ENOMEM);
902 dentry->d_op = NFS_PROTO(dir)->dentry_ops;
903
904 lock_kernel();
905
906 /*
907 * If we're doing an exclusive create, optimize away the lookup
908 * but don't hash the dentry.
909 */
910 if (nfs_is_exclusive_create(dir, nd)) {
911 d_instantiate(dentry, NULL);
912 res = NULL;
913 goto out_unlock;
914 }
915
916 parent = dentry->d_parent;
917 /* Protect against concurrent sillydeletes */
918 nfs_block_sillyrename(parent);
919 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, &fhandle, &fattr);
920 if (error == -ENOENT)
921 goto no_entry;
922 if (error < 0) {
923 res = ERR_PTR(error);
924 goto out_unblock_sillyrename;
925 }
926 inode = nfs_fhget(dentry->d_sb, &fhandle, &fattr);
927 res = (struct dentry *)inode;
928 if (IS_ERR(res))
929 goto out_unblock_sillyrename;
930
931 no_entry:
932 res = d_materialise_unique(dentry, inode);
933 if (res != NULL) {
934 if (IS_ERR(res))
935 goto out_unblock_sillyrename;
936 dentry = res;
937 }
938 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
939 out_unblock_sillyrename:
940 nfs_unblock_sillyrename(parent);
941 out_unlock:
942 unlock_kernel();
943 out:
944 return res;
945 }
946
947 #ifdef CONFIG_NFS_V4
948 static int nfs_open_revalidate(struct dentry *, struct nameidata *);
949
950 struct dentry_operations nfs4_dentry_operations = {
951 .d_revalidate = nfs_open_revalidate,
952 .d_delete = nfs_dentry_delete,
953 .d_iput = nfs_dentry_iput,
954 };
955
956 /*
957 * Use intent information to determine whether we need to substitute
958 * the NFSv4-style stateful OPEN for the LOOKUP call
959 */
960 static int is_atomic_open(struct inode *dir, struct nameidata *nd)
961 {
962 if (nd == NULL || nfs_lookup_check_intent(nd, LOOKUP_OPEN) == 0)
963 return 0;
964 /* NFS does not (yet) have a stateful open for directories */
965 if (nd->flags & LOOKUP_DIRECTORY)
966 return 0;
967 /* Are we trying to write to a read only partition? */
968 if (IS_RDONLY(dir) && (nd->intent.open.flags & (O_CREAT|O_TRUNC|FMODE_WRITE)))
969 return 0;
970 return 1;
971 }
972
973 static struct dentry *nfs_atomic_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd)
974 {
975 struct dentry *res = NULL;
976 int error;
977
978 dfprintk(VFS, "NFS: atomic_lookup(%s/%ld), %s\n",
979 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
980
981 /* Check that we are indeed trying to open this file */
982 if (!is_atomic_open(dir, nd))
983 goto no_open;
984
985 if (dentry->d_name.len > NFS_SERVER(dir)->namelen) {
986 res = ERR_PTR(-ENAMETOOLONG);
987 goto out;
988 }
989 dentry->d_op = NFS_PROTO(dir)->dentry_ops;
990
991 /* Let vfs_create() deal with O_EXCL. Instantiate, but don't hash
992 * the dentry. */
993 if (nd->intent.open.flags & O_EXCL) {
994 d_instantiate(dentry, NULL);
995 goto out;
996 }
997
998 /* Open the file on the server */
999 lock_kernel();
1000 res = nfs4_atomic_open(dir, dentry, nd);
1001 unlock_kernel();
1002 if (IS_ERR(res)) {
1003 error = PTR_ERR(res);
1004 switch (error) {
1005 /* Make a negative dentry */
1006 case -ENOENT:
1007 res = NULL;
1008 goto out;
1009 /* This turned out not to be a regular file */
1010 case -EISDIR:
1011 case -ENOTDIR:
1012 goto no_open;
1013 case -ELOOP:
1014 if (!(nd->intent.open.flags & O_NOFOLLOW))
1015 goto no_open;
1016 /* case -EINVAL: */
1017 default:
1018 goto out;
1019 }
1020 } else if (res != NULL)
1021 dentry = res;
1022 out:
1023 return res;
1024 no_open:
1025 return nfs_lookup(dir, dentry, nd);
1026 }
1027
1028 static int nfs_open_revalidate(struct dentry *dentry, struct nameidata *nd)
1029 {
1030 struct dentry *parent = NULL;
1031 struct inode *inode = dentry->d_inode;
1032 struct inode *dir;
1033 int openflags, ret = 0;
1034
1035 parent = dget_parent(dentry);
1036 dir = parent->d_inode;
1037 if (!is_atomic_open(dir, nd))
1038 goto no_open;
1039 /* We can't create new files in nfs_open_revalidate(), so we
1040 * optimize away revalidation of negative dentries.
1041 */
1042 if (inode == NULL) {
1043 if (!nfs_neg_need_reval(dir, dentry, nd))
1044 ret = 1;
1045 goto out;
1046 }
1047
1048 /* NFS only supports OPEN on regular files */
1049 if (!S_ISREG(inode->i_mode))
1050 goto no_open;
1051 openflags = nd->intent.open.flags;
1052 /* We cannot do exclusive creation on a positive dentry */
1053 if ((openflags & (O_CREAT|O_EXCL)) == (O_CREAT|O_EXCL))
1054 goto no_open;
1055 /* We can't create new files, or truncate existing ones here */
1056 openflags &= ~(O_CREAT|O_TRUNC);
1057
1058 /*
1059 * Note: we're not holding inode->i_mutex and so may be racing with
1060 * operations that change the directory. We therefore save the
1061 * change attribute *before* we do the RPC call.
1062 */
1063 lock_kernel();
1064 ret = nfs4_open_revalidate(dir, dentry, openflags, nd);
1065 unlock_kernel();
1066 out:
1067 dput(parent);
1068 if (!ret)
1069 d_drop(dentry);
1070 return ret;
1071 no_open:
1072 dput(parent);
1073 if (inode != NULL && nfs_have_delegation(inode, FMODE_READ))
1074 return 1;
1075 return nfs_lookup_revalidate(dentry, nd);
1076 }
1077 #endif /* CONFIG_NFSV4 */
1078
1079 static struct dentry *nfs_readdir_lookup(nfs_readdir_descriptor_t *desc)
1080 {
1081 struct dentry *parent = desc->file->f_path.dentry;
1082 struct inode *dir = parent->d_inode;
1083 struct nfs_entry *entry = desc->entry;
1084 struct dentry *dentry, *alias;
1085 struct qstr name = {
1086 .name = entry->name,
1087 .len = entry->len,
1088 };
1089 struct inode *inode;
1090 unsigned long verf = nfs_save_change_attribute(dir);
1091
1092 switch (name.len) {
1093 case 2:
1094 if (name.name[0] == '.' && name.name[1] == '.')
1095 return dget_parent(parent);
1096 break;
1097 case 1:
1098 if (name.name[0] == '.')
1099 return dget(parent);
1100 }
1101
1102 spin_lock(&dir->i_lock);
1103 if (NFS_I(dir)->cache_validity & NFS_INO_INVALID_DATA) {
1104 spin_unlock(&dir->i_lock);
1105 return NULL;
1106 }
1107 spin_unlock(&dir->i_lock);
1108
1109 name.hash = full_name_hash(name.name, name.len);
1110 dentry = d_lookup(parent, &name);
1111 if (dentry != NULL) {
1112 /* Is this a positive dentry that matches the readdir info? */
1113 if (dentry->d_inode != NULL &&
1114 (NFS_FILEID(dentry->d_inode) == entry->ino ||
1115 d_mountpoint(dentry))) {
1116 if (!desc->plus || entry->fh->size == 0)
1117 return dentry;
1118 if (nfs_compare_fh(NFS_FH(dentry->d_inode),
1119 entry->fh) == 0)
1120 goto out_renew;
1121 }
1122 /* No, so d_drop to allow one to be created */
1123 d_drop(dentry);
1124 dput(dentry);
1125 }
1126 if (!desc->plus || !(entry->fattr->valid & NFS_ATTR_FATTR))
1127 return NULL;
1128 if (name.len > NFS_SERVER(dir)->namelen)
1129 return NULL;
1130 /* Note: caller is already holding the dir->i_mutex! */
1131 dentry = d_alloc(parent, &name);
1132 if (dentry == NULL)
1133 return NULL;
1134 dentry->d_op = NFS_PROTO(dir)->dentry_ops;
1135 inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr);
1136 if (IS_ERR(inode)) {
1137 dput(dentry);
1138 return NULL;
1139 }
1140
1141 alias = d_materialise_unique(dentry, inode);
1142 if (alias != NULL) {
1143 dput(dentry);
1144 if (IS_ERR(alias))
1145 return NULL;
1146 dentry = alias;
1147 }
1148
1149 out_renew:
1150 nfs_set_verifier(dentry, verf);
1151 return dentry;
1152 }
1153
1154 /*
1155 * Code common to create, mkdir, and mknod.
1156 */
1157 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
1158 struct nfs_fattr *fattr)
1159 {
1160 struct dentry *parent = dget_parent(dentry);
1161 struct inode *dir = parent->d_inode;
1162 struct inode *inode;
1163 int error = -EACCES;
1164
1165 d_drop(dentry);
1166
1167 /* We may have been initialized further down */
1168 if (dentry->d_inode)
1169 goto out;
1170 if (fhandle->size == 0) {
1171 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr);
1172 if (error)
1173 goto out_error;
1174 }
1175 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1176 if (!(fattr->valid & NFS_ATTR_FATTR)) {
1177 struct nfs_server *server = NFS_SB(dentry->d_sb);
1178 error = server->nfs_client->rpc_ops->getattr(server, fhandle, fattr);
1179 if (error < 0)
1180 goto out_error;
1181 }
1182 inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
1183 error = PTR_ERR(inode);
1184 if (IS_ERR(inode))
1185 goto out_error;
1186 d_add(dentry, inode);
1187 out:
1188 dput(parent);
1189 return 0;
1190 out_error:
1191 nfs_mark_for_revalidate(dir);
1192 dput(parent);
1193 return error;
1194 }
1195
1196 /*
1197 * Following a failed create operation, we drop the dentry rather
1198 * than retain a negative dentry. This avoids a problem in the event
1199 * that the operation succeeded on the server, but an error in the
1200 * reply path made it appear to have failed.
1201 */
1202 static int nfs_create(struct inode *dir, struct dentry *dentry, int mode,
1203 struct nameidata *nd)
1204 {
1205 struct iattr attr;
1206 int error;
1207 int open_flags = 0;
1208
1209 dfprintk(VFS, "NFS: create(%s/%ld), %s\n",
1210 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1211
1212 attr.ia_mode = mode;
1213 attr.ia_valid = ATTR_MODE;
1214
1215 if ((nd->flags & LOOKUP_CREATE) != 0)
1216 open_flags = nd->intent.open.flags;
1217
1218 lock_kernel();
1219 error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags, nd);
1220 if (error != 0)
1221 goto out_err;
1222 unlock_kernel();
1223 return 0;
1224 out_err:
1225 unlock_kernel();
1226 d_drop(dentry);
1227 return error;
1228 }
1229
1230 /*
1231 * See comments for nfs_proc_create regarding failed operations.
1232 */
1233 static int
1234 nfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t rdev)
1235 {
1236 struct iattr attr;
1237 int status;
1238
1239 dfprintk(VFS, "NFS: mknod(%s/%ld), %s\n",
1240 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1241
1242 if (!new_valid_dev(rdev))
1243 return -EINVAL;
1244
1245 attr.ia_mode = mode;
1246 attr.ia_valid = ATTR_MODE;
1247
1248 lock_kernel();
1249 status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
1250 if (status != 0)
1251 goto out_err;
1252 unlock_kernel();
1253 return 0;
1254 out_err:
1255 unlock_kernel();
1256 d_drop(dentry);
1257 return status;
1258 }
1259
1260 /*
1261 * See comments for nfs_proc_create regarding failed operations.
1262 */
1263 static int nfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1264 {
1265 struct iattr attr;
1266 int error;
1267
1268 dfprintk(VFS, "NFS: mkdir(%s/%ld), %s\n",
1269 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1270
1271 attr.ia_valid = ATTR_MODE;
1272 attr.ia_mode = mode | S_IFDIR;
1273
1274 lock_kernel();
1275 error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
1276 if (error != 0)
1277 goto out_err;
1278 unlock_kernel();
1279 return 0;
1280 out_err:
1281 d_drop(dentry);
1282 unlock_kernel();
1283 return error;
1284 }
1285
1286 static void nfs_dentry_handle_enoent(struct dentry *dentry)
1287 {
1288 if (dentry->d_inode != NULL && !d_unhashed(dentry))
1289 d_delete(dentry);
1290 }
1291
1292 static int nfs_rmdir(struct inode *dir, struct dentry *dentry)
1293 {
1294 int error;
1295
1296 dfprintk(VFS, "NFS: rmdir(%s/%ld), %s\n",
1297 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1298
1299 lock_kernel();
1300 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1301 /* Ensure the VFS deletes this inode */
1302 if (error == 0 && dentry->d_inode != NULL)
1303 clear_nlink(dentry->d_inode);
1304 else if (error == -ENOENT)
1305 nfs_dentry_handle_enoent(dentry);
1306 unlock_kernel();
1307
1308 return error;
1309 }
1310
1311 static int nfs_sillyrename(struct inode *dir, struct dentry *dentry)
1312 {
1313 static unsigned int sillycounter;
1314 const int fileidsize = sizeof(NFS_FILEID(dentry->d_inode))*2;
1315 const int countersize = sizeof(sillycounter)*2;
1316 const int slen = sizeof(".nfs")+fileidsize+countersize-1;
1317 char silly[slen+1];
1318 struct qstr qsilly;
1319 struct dentry *sdentry;
1320 int error = -EIO;
1321
1322 dfprintk(VFS, "NFS: silly-rename(%s/%s, ct=%d)\n",
1323 dentry->d_parent->d_name.name, dentry->d_name.name,
1324 atomic_read(&dentry->d_count));
1325 nfs_inc_stats(dir, NFSIOS_SILLYRENAME);
1326
1327 /*
1328 * We don't allow a dentry to be silly-renamed twice.
1329 */
1330 error = -EBUSY;
1331 if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1332 goto out;
1333
1334 sprintf(silly, ".nfs%*.*Lx",
1335 fileidsize, fileidsize,
1336 (unsigned long long)NFS_FILEID(dentry->d_inode));
1337
1338 /* Return delegation in anticipation of the rename */
1339 nfs_inode_return_delegation(dentry->d_inode);
1340
1341 sdentry = NULL;
1342 do {
1343 char *suffix = silly + slen - countersize;
1344
1345 dput(sdentry);
1346 sillycounter++;
1347 sprintf(suffix, "%*.*x", countersize, countersize, sillycounter);
1348
1349 dfprintk(VFS, "NFS: trying to rename %s to %s\n",
1350 dentry->d_name.name, silly);
1351
1352 sdentry = lookup_one_len(silly, dentry->d_parent, slen);
1353 /*
1354 * N.B. Better to return EBUSY here ... it could be
1355 * dangerous to delete the file while it's in use.
1356 */
1357 if (IS_ERR(sdentry))
1358 goto out;
1359 } while(sdentry->d_inode != NULL); /* need negative lookup */
1360
1361 qsilly.name = silly;
1362 qsilly.len = strlen(silly);
1363 if (dentry->d_inode) {
1364 error = NFS_PROTO(dir)->rename(dir, &dentry->d_name,
1365 dir, &qsilly);
1366 nfs_mark_for_revalidate(dentry->d_inode);
1367 } else
1368 error = NFS_PROTO(dir)->rename(dir, &dentry->d_name,
1369 dir, &qsilly);
1370 if (!error) {
1371 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1372 d_move(dentry, sdentry);
1373 error = nfs_async_unlink(dir, dentry);
1374 /* If we return 0 we don't unlink */
1375 }
1376 dput(sdentry);
1377 out:
1378 return error;
1379 }
1380
1381 /*
1382 * Remove a file after making sure there are no pending writes,
1383 * and after checking that the file has only one user.
1384 *
1385 * We invalidate the attribute cache and free the inode prior to the operation
1386 * to avoid possible races if the server reuses the inode.
1387 */
1388 static int nfs_safe_remove(struct dentry *dentry)
1389 {
1390 struct inode *dir = dentry->d_parent->d_inode;
1391 struct inode *inode = dentry->d_inode;
1392 int error = -EBUSY;
1393
1394 dfprintk(VFS, "NFS: safe_remove(%s/%s)\n",
1395 dentry->d_parent->d_name.name, dentry->d_name.name);
1396
1397 /* If the dentry was sillyrenamed, we simply call d_delete() */
1398 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1399 error = 0;
1400 goto out;
1401 }
1402
1403 if (inode != NULL) {
1404 nfs_inode_return_delegation(inode);
1405 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1406 /* The VFS may want to delete this inode */
1407 if (error == 0)
1408 drop_nlink(inode);
1409 nfs_mark_for_revalidate(inode);
1410 } else
1411 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1412 if (error == -ENOENT)
1413 nfs_dentry_handle_enoent(dentry);
1414 out:
1415 return error;
1416 }
1417
1418 /* We do silly rename. In case sillyrename() returns -EBUSY, the inode
1419 * belongs to an active ".nfs..." file and we return -EBUSY.
1420 *
1421 * If sillyrename() returns 0, we do nothing, otherwise we unlink.
1422 */
1423 static int nfs_unlink(struct inode *dir, struct dentry *dentry)
1424 {
1425 int error;
1426 int need_rehash = 0;
1427
1428 dfprintk(VFS, "NFS: unlink(%s/%ld, %s)\n", dir->i_sb->s_id,
1429 dir->i_ino, dentry->d_name.name);
1430
1431 lock_kernel();
1432 spin_lock(&dcache_lock);
1433 spin_lock(&dentry->d_lock);
1434 if (atomic_read(&dentry->d_count) > 1) {
1435 spin_unlock(&dentry->d_lock);
1436 spin_unlock(&dcache_lock);
1437 /* Start asynchronous writeout of the inode */
1438 write_inode_now(dentry->d_inode, 0);
1439 error = nfs_sillyrename(dir, dentry);
1440 unlock_kernel();
1441 return error;
1442 }
1443 if (!d_unhashed(dentry)) {
1444 __d_drop(dentry);
1445 need_rehash = 1;
1446 }
1447 spin_unlock(&dentry->d_lock);
1448 spin_unlock(&dcache_lock);
1449 error = nfs_safe_remove(dentry);
1450 if (!error || error == -ENOENT) {
1451 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1452 } else if (need_rehash)
1453 d_rehash(dentry);
1454 unlock_kernel();
1455 return error;
1456 }
1457
1458 /*
1459 * To create a symbolic link, most file systems instantiate a new inode,
1460 * add a page to it containing the path, then write it out to the disk
1461 * using prepare_write/commit_write.
1462 *
1463 * Unfortunately the NFS client can't create the in-core inode first
1464 * because it needs a file handle to create an in-core inode (see
1465 * fs/nfs/inode.c:nfs_fhget). We only have a file handle *after* the
1466 * symlink request has completed on the server.
1467 *
1468 * So instead we allocate a raw page, copy the symname into it, then do
1469 * the SYMLINK request with the page as the buffer. If it succeeds, we
1470 * now have a new file handle and can instantiate an in-core NFS inode
1471 * and move the raw page into its mapping.
1472 */
1473 static int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1474 {
1475 struct pagevec lru_pvec;
1476 struct page *page;
1477 char *kaddr;
1478 struct iattr attr;
1479 unsigned int pathlen = strlen(symname);
1480 int error;
1481
1482 dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s)\n", dir->i_sb->s_id,
1483 dir->i_ino, dentry->d_name.name, symname);
1484
1485 if (pathlen > PAGE_SIZE)
1486 return -ENAMETOOLONG;
1487
1488 attr.ia_mode = S_IFLNK | S_IRWXUGO;
1489 attr.ia_valid = ATTR_MODE;
1490
1491 lock_kernel();
1492
1493 page = alloc_page(GFP_HIGHUSER);
1494 if (!page) {
1495 unlock_kernel();
1496 return -ENOMEM;
1497 }
1498
1499 kaddr = kmap_atomic(page, KM_USER0);
1500 memcpy(kaddr, symname, pathlen);
1501 if (pathlen < PAGE_SIZE)
1502 memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
1503 kunmap_atomic(kaddr, KM_USER0);
1504
1505 error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
1506 if (error != 0) {
1507 dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s) error %d\n",
1508 dir->i_sb->s_id, dir->i_ino,
1509 dentry->d_name.name, symname, error);
1510 d_drop(dentry);
1511 __free_page(page);
1512 unlock_kernel();
1513 return error;
1514 }
1515
1516 /*
1517 * No big deal if we can't add this page to the page cache here.
1518 * READLINK will get the missing page from the server if needed.
1519 */
1520 pagevec_init(&lru_pvec, 0);
1521 if (!add_to_page_cache(page, dentry->d_inode->i_mapping, 0,
1522 GFP_KERNEL)) {
1523 pagevec_add(&lru_pvec, page);
1524 pagevec_lru_add(&lru_pvec);
1525 SetPageUptodate(page);
1526 unlock_page(page);
1527 } else
1528 __free_page(page);
1529
1530 unlock_kernel();
1531 return 0;
1532 }
1533
1534 static int
1535 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1536 {
1537 struct inode *inode = old_dentry->d_inode;
1538 int error;
1539
1540 dfprintk(VFS, "NFS: link(%s/%s -> %s/%s)\n",
1541 old_dentry->d_parent->d_name.name, old_dentry->d_name.name,
1542 dentry->d_parent->d_name.name, dentry->d_name.name);
1543
1544 lock_kernel();
1545 d_drop(dentry);
1546 error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
1547 if (error == 0) {
1548 atomic_inc(&inode->i_count);
1549 d_add(dentry, inode);
1550 }
1551 unlock_kernel();
1552 return error;
1553 }
1554
1555 /*
1556 * RENAME
1557 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
1558 * different file handle for the same inode after a rename (e.g. when
1559 * moving to a different directory). A fail-safe method to do so would
1560 * be to look up old_dir/old_name, create a link to new_dir/new_name and
1561 * rename the old file using the sillyrename stuff. This way, the original
1562 * file in old_dir will go away when the last process iput()s the inode.
1563 *
1564 * FIXED.
1565 *
1566 * It actually works quite well. One needs to have the possibility for
1567 * at least one ".nfs..." file in each directory the file ever gets
1568 * moved or linked to which happens automagically with the new
1569 * implementation that only depends on the dcache stuff instead of
1570 * using the inode layer
1571 *
1572 * Unfortunately, things are a little more complicated than indicated
1573 * above. For a cross-directory move, we want to make sure we can get
1574 * rid of the old inode after the operation. This means there must be
1575 * no pending writes (if it's a file), and the use count must be 1.
1576 * If these conditions are met, we can drop the dentries before doing
1577 * the rename.
1578 */
1579 static int nfs_rename(struct inode *old_dir, struct dentry *old_dentry,
1580 struct inode *new_dir, struct dentry *new_dentry)
1581 {
1582 struct inode *old_inode = old_dentry->d_inode;
1583 struct inode *new_inode = new_dentry->d_inode;
1584 struct dentry *dentry = NULL, *rehash = NULL;
1585 int error = -EBUSY;
1586
1587 /*
1588 * To prevent any new references to the target during the rename,
1589 * we unhash the dentry and free the inode in advance.
1590 */
1591 lock_kernel();
1592 if (!d_unhashed(new_dentry)) {
1593 d_drop(new_dentry);
1594 rehash = new_dentry;
1595 }
1596
1597 dfprintk(VFS, "NFS: rename(%s/%s -> %s/%s, ct=%d)\n",
1598 old_dentry->d_parent->d_name.name, old_dentry->d_name.name,
1599 new_dentry->d_parent->d_name.name, new_dentry->d_name.name,
1600 atomic_read(&new_dentry->d_count));
1601
1602 /*
1603 * First check whether the target is busy ... we can't
1604 * safely do _any_ rename if the target is in use.
1605 *
1606 * For files, make a copy of the dentry and then do a
1607 * silly-rename. If the silly-rename succeeds, the
1608 * copied dentry is hashed and becomes the new target.
1609 */
1610 if (!new_inode)
1611 goto go_ahead;
1612 if (S_ISDIR(new_inode->i_mode)) {
1613 error = -EISDIR;
1614 if (!S_ISDIR(old_inode->i_mode))
1615 goto out;
1616 } else if (atomic_read(&new_dentry->d_count) > 2) {
1617 int err;
1618 /* copy the target dentry's name */
1619 dentry = d_alloc(new_dentry->d_parent,
1620 &new_dentry->d_name);
1621 if (!dentry)
1622 goto out;
1623
1624 /* silly-rename the existing target ... */
1625 err = nfs_sillyrename(new_dir, new_dentry);
1626 if (!err) {
1627 new_dentry = rehash = dentry;
1628 new_inode = NULL;
1629 /* instantiate the replacement target */
1630 d_instantiate(new_dentry, NULL);
1631 } else if (atomic_read(&new_dentry->d_count) > 1)
1632 /* dentry still busy? */
1633 goto out;
1634 } else
1635 drop_nlink(new_inode);
1636
1637 go_ahead:
1638 /*
1639 * ... prune child dentries and writebacks if needed.
1640 */
1641 if (atomic_read(&old_dentry->d_count) > 1) {
1642 if (S_ISREG(old_inode->i_mode))
1643 nfs_wb_all(old_inode);
1644 shrink_dcache_parent(old_dentry);
1645 }
1646 nfs_inode_return_delegation(old_inode);
1647
1648 if (new_inode != NULL) {
1649 nfs_inode_return_delegation(new_inode);
1650 d_delete(new_dentry);
1651 }
1652
1653 error = NFS_PROTO(old_dir)->rename(old_dir, &old_dentry->d_name,
1654 new_dir, &new_dentry->d_name);
1655 nfs_mark_for_revalidate(old_inode);
1656 out:
1657 if (rehash)
1658 d_rehash(rehash);
1659 if (!error) {
1660 d_move(old_dentry, new_dentry);
1661 nfs_set_verifier(new_dentry,
1662 nfs_save_change_attribute(new_dir));
1663 } else if (error == -ENOENT)
1664 nfs_dentry_handle_enoent(old_dentry);
1665
1666 /* new dentry created? */
1667 if (dentry)
1668 dput(dentry);
1669 unlock_kernel();
1670 return error;
1671 }
1672
1673 static DEFINE_SPINLOCK(nfs_access_lru_lock);
1674 static LIST_HEAD(nfs_access_lru_list);
1675 static atomic_long_t nfs_access_nr_entries;
1676
1677 static void nfs_access_free_entry(struct nfs_access_entry *entry)
1678 {
1679 put_rpccred(entry->cred);
1680 kfree(entry);
1681 smp_mb__before_atomic_dec();
1682 atomic_long_dec(&nfs_access_nr_entries);
1683 smp_mb__after_atomic_dec();
1684 }
1685
1686 int nfs_access_cache_shrinker(int nr_to_scan, gfp_t gfp_mask)
1687 {
1688 LIST_HEAD(head);
1689 struct nfs_inode *nfsi;
1690 struct nfs_access_entry *cache;
1691
1692 restart:
1693 spin_lock(&nfs_access_lru_lock);
1694 list_for_each_entry(nfsi, &nfs_access_lru_list, access_cache_inode_lru) {
1695 struct rw_semaphore *s_umount;
1696 struct inode *inode;
1697
1698 if (nr_to_scan-- == 0)
1699 break;
1700 s_umount = &nfsi->vfs_inode.i_sb->s_umount;
1701 if (!down_read_trylock(s_umount))
1702 continue;
1703 inode = igrab(&nfsi->vfs_inode);
1704 if (inode == NULL) {
1705 up_read(s_umount);
1706 continue;
1707 }
1708 spin_lock(&inode->i_lock);
1709 if (list_empty(&nfsi->access_cache_entry_lru))
1710 goto remove_lru_entry;
1711 cache = list_entry(nfsi->access_cache_entry_lru.next,
1712 struct nfs_access_entry, lru);
1713 list_move(&cache->lru, &head);
1714 rb_erase(&cache->rb_node, &nfsi->access_cache);
1715 if (!list_empty(&nfsi->access_cache_entry_lru))
1716 list_move_tail(&nfsi->access_cache_inode_lru,
1717 &nfs_access_lru_list);
1718 else {
1719 remove_lru_entry:
1720 list_del_init(&nfsi->access_cache_inode_lru);
1721 clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
1722 }
1723 spin_unlock(&inode->i_lock);
1724 spin_unlock(&nfs_access_lru_lock);
1725 iput(inode);
1726 up_read(s_umount);
1727 goto restart;
1728 }
1729 spin_unlock(&nfs_access_lru_lock);
1730 while (!list_empty(&head)) {
1731 cache = list_entry(head.next, struct nfs_access_entry, lru);
1732 list_del(&cache->lru);
1733 nfs_access_free_entry(cache);
1734 }
1735 return (atomic_long_read(&nfs_access_nr_entries) / 100) * sysctl_vfs_cache_pressure;
1736 }
1737
1738 static void __nfs_access_zap_cache(struct inode *inode)
1739 {
1740 struct nfs_inode *nfsi = NFS_I(inode);
1741 struct rb_root *root_node = &nfsi->access_cache;
1742 struct rb_node *n, *dispose = NULL;
1743 struct nfs_access_entry *entry;
1744
1745 /* Unhook entries from the cache */
1746 while ((n = rb_first(root_node)) != NULL) {
1747 entry = rb_entry(n, struct nfs_access_entry, rb_node);
1748 rb_erase(n, root_node);
1749 list_del(&entry->lru);
1750 n->rb_left = dispose;
1751 dispose = n;
1752 }
1753 nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
1754 spin_unlock(&inode->i_lock);
1755
1756 /* Now kill them all! */
1757 while (dispose != NULL) {
1758 n = dispose;
1759 dispose = n->rb_left;
1760 nfs_access_free_entry(rb_entry(n, struct nfs_access_entry, rb_node));
1761 }
1762 }
1763
1764 void nfs_access_zap_cache(struct inode *inode)
1765 {
1766 /* Remove from global LRU init */
1767 if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
1768 spin_lock(&nfs_access_lru_lock);
1769 list_del_init(&NFS_I(inode)->access_cache_inode_lru);
1770 spin_unlock(&nfs_access_lru_lock);
1771 }
1772
1773 spin_lock(&inode->i_lock);
1774 /* This will release the spinlock */
1775 __nfs_access_zap_cache(inode);
1776 }
1777
1778 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, struct rpc_cred *cred)
1779 {
1780 struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
1781 struct nfs_access_entry *entry;
1782
1783 while (n != NULL) {
1784 entry = rb_entry(n, struct nfs_access_entry, rb_node);
1785
1786 if (cred < entry->cred)
1787 n = n->rb_left;
1788 else if (cred > entry->cred)
1789 n = n->rb_right;
1790 else
1791 return entry;
1792 }
1793 return NULL;
1794 }
1795
1796 static int nfs_access_get_cached(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res)
1797 {
1798 struct nfs_inode *nfsi = NFS_I(inode);
1799 struct nfs_access_entry *cache;
1800 int err = -ENOENT;
1801
1802 spin_lock(&inode->i_lock);
1803 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
1804 goto out_zap;
1805 cache = nfs_access_search_rbtree(inode, cred);
1806 if (cache == NULL)
1807 goto out;
1808 if (!time_in_range(jiffies, cache->jiffies, cache->jiffies + nfsi->attrtimeo))
1809 goto out_stale;
1810 res->jiffies = cache->jiffies;
1811 res->cred = cache->cred;
1812 res->mask = cache->mask;
1813 list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
1814 err = 0;
1815 out:
1816 spin_unlock(&inode->i_lock);
1817 return err;
1818 out_stale:
1819 rb_erase(&cache->rb_node, &nfsi->access_cache);
1820 list_del(&cache->lru);
1821 spin_unlock(&inode->i_lock);
1822 nfs_access_free_entry(cache);
1823 return -ENOENT;
1824 out_zap:
1825 /* This will release the spinlock */
1826 __nfs_access_zap_cache(inode);
1827 return -ENOENT;
1828 }
1829
1830 static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set)
1831 {
1832 struct nfs_inode *nfsi = NFS_I(inode);
1833 struct rb_root *root_node = &nfsi->access_cache;
1834 struct rb_node **p = &root_node->rb_node;
1835 struct rb_node *parent = NULL;
1836 struct nfs_access_entry *entry;
1837
1838 spin_lock(&inode->i_lock);
1839 while (*p != NULL) {
1840 parent = *p;
1841 entry = rb_entry(parent, struct nfs_access_entry, rb_node);
1842
1843 if (set->cred < entry->cred)
1844 p = &parent->rb_left;
1845 else if (set->cred > entry->cred)
1846 p = &parent->rb_right;
1847 else
1848 goto found;
1849 }
1850 rb_link_node(&set->rb_node, parent, p);
1851 rb_insert_color(&set->rb_node, root_node);
1852 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
1853 spin_unlock(&inode->i_lock);
1854 return;
1855 found:
1856 rb_replace_node(parent, &set->rb_node, root_node);
1857 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
1858 list_del(&entry->lru);
1859 spin_unlock(&inode->i_lock);
1860 nfs_access_free_entry(entry);
1861 }
1862
1863 static void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set)
1864 {
1865 struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
1866 if (cache == NULL)
1867 return;
1868 RB_CLEAR_NODE(&cache->rb_node);
1869 cache->jiffies = set->jiffies;
1870 cache->cred = get_rpccred(set->cred);
1871 cache->mask = set->mask;
1872
1873 nfs_access_add_rbtree(inode, cache);
1874
1875 /* Update accounting */
1876 smp_mb__before_atomic_inc();
1877 atomic_long_inc(&nfs_access_nr_entries);
1878 smp_mb__after_atomic_inc();
1879
1880 /* Add inode to global LRU list */
1881 if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
1882 spin_lock(&nfs_access_lru_lock);
1883 list_add_tail(&NFS_I(inode)->access_cache_inode_lru, &nfs_access_lru_list);
1884 spin_unlock(&nfs_access_lru_lock);
1885 }
1886 }
1887
1888 static int nfs_do_access(struct inode *inode, struct rpc_cred *cred, int mask)
1889 {
1890 struct nfs_access_entry cache;
1891 int status;
1892
1893 status = nfs_access_get_cached(inode, cred, &cache);
1894 if (status == 0)
1895 goto out;
1896
1897 /* Be clever: ask server to check for all possible rights */
1898 cache.mask = MAY_EXEC | MAY_WRITE | MAY_READ;
1899 cache.cred = cred;
1900 cache.jiffies = jiffies;
1901 status = NFS_PROTO(inode)->access(inode, &cache);
1902 if (status != 0)
1903 return status;
1904 nfs_access_add_cache(inode, &cache);
1905 out:
1906 if ((cache.mask & mask) == mask)
1907 return 0;
1908 return -EACCES;
1909 }
1910
1911 static int nfs_open_permission_mask(int openflags)
1912 {
1913 int mask = 0;
1914
1915 if (openflags & FMODE_READ)
1916 mask |= MAY_READ;
1917 if (openflags & FMODE_WRITE)
1918 mask |= MAY_WRITE;
1919 if (openflags & FMODE_EXEC)
1920 mask |= MAY_EXEC;
1921 return mask;
1922 }
1923
1924 int nfs_may_open(struct inode *inode, struct rpc_cred *cred, int openflags)
1925 {
1926 return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
1927 }
1928
1929 int nfs_permission(struct inode *inode, int mask, struct nameidata *nd)
1930 {
1931 struct rpc_cred *cred;
1932 int res = 0;
1933
1934 nfs_inc_stats(inode, NFSIOS_VFSACCESS);
1935
1936 if (mask == 0)
1937 goto out;
1938 /* Is this sys_access() ? */
1939 if (nd != NULL && (nd->flags & LOOKUP_ACCESS))
1940 goto force_lookup;
1941
1942 switch (inode->i_mode & S_IFMT) {
1943 case S_IFLNK:
1944 goto out;
1945 case S_IFREG:
1946 /* NFSv4 has atomic_open... */
1947 if (nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN)
1948 && nd != NULL
1949 && (nd->flags & LOOKUP_OPEN))
1950 goto out;
1951 break;
1952 case S_IFDIR:
1953 /*
1954 * Optimize away all write operations, since the server
1955 * will check permissions when we perform the op.
1956 */
1957 if ((mask & MAY_WRITE) && !(mask & MAY_READ))
1958 goto out;
1959 }
1960
1961 force_lookup:
1962 lock_kernel();
1963
1964 if (!NFS_PROTO(inode)->access)
1965 goto out_notsup;
1966
1967 cred = rpcauth_lookupcred(NFS_CLIENT(inode)->cl_auth, 0);
1968 if (!IS_ERR(cred)) {
1969 res = nfs_do_access(inode, cred, mask);
1970 put_rpccred(cred);
1971 } else
1972 res = PTR_ERR(cred);
1973 unlock_kernel();
1974 out:
1975 dfprintk(VFS, "NFS: permission(%s/%ld), mask=0x%x, res=%d\n",
1976 inode->i_sb->s_id, inode->i_ino, mask, res);
1977 return res;
1978 out_notsup:
1979 res = nfs_revalidate_inode(NFS_SERVER(inode), inode);
1980 if (res == 0)
1981 res = generic_permission(inode, mask, NULL);
1982 unlock_kernel();
1983 goto out;
1984 }
1985
1986 /*
1987 * Local variables:
1988 * version-control: t
1989 * kept-new-versions: 5
1990 * End:
1991 */
This page took 0.112701 seconds and 6 git commands to generate.