NFSv4: Clean up nfs4_open_revalidate
[deliverable/linux.git] / fs / nfs / dir.c
1 /*
2 * linux/fs/nfs/dir.c
3 *
4 * Copyright (C) 1992 Rick Sladkey
5 *
6 * nfs directory handling functions
7 *
8 * 10 Apr 1996 Added silly rename for unlink --okir
9 * 28 Sep 1996 Improved directory cache --okir
10 * 23 Aug 1997 Claus Heine claus@momo.math.rwth-aachen.de
11 * Re-implemented silly rename for unlink, newly implemented
12 * silly rename for nfs_rename() following the suggestions
13 * of Olaf Kirch (okir) found in this file.
14 * Following Linus comments on my original hack, this version
15 * depends only on the dcache stuff and doesn't touch the inode
16 * layer (iput() and friends).
17 * 6 Jun 1999 Cache readdir lookups in the page cache. -DaveM
18 */
19
20 #include <linux/time.h>
21 #include <linux/errno.h>
22 #include <linux/stat.h>
23 #include <linux/fcntl.h>
24 #include <linux/string.h>
25 #include <linux/kernel.h>
26 #include <linux/slab.h>
27 #include <linux/mm.h>
28 #include <linux/sunrpc/clnt.h>
29 #include <linux/nfs_fs.h>
30 #include <linux/nfs_mount.h>
31 #include <linux/pagemap.h>
32 #include <linux/pagevec.h>
33 #include <linux/namei.h>
34 #include <linux/mount.h>
35 #include <linux/sched.h>
36
37 #include "nfs4_fs.h"
38 #include "delegation.h"
39 #include "iostat.h"
40 #include "internal.h"
41 #include "fscache.h"
42
43 /* #define NFS_DEBUG_VERBOSE 1 */
44
45 static int nfs_opendir(struct inode *, struct file *);
46 static int nfs_readdir(struct file *, void *, filldir_t);
47 static struct dentry *nfs_lookup(struct inode *, struct dentry *, struct nameidata *);
48 static int nfs_create(struct inode *, struct dentry *, int, struct nameidata *);
49 static int nfs_mkdir(struct inode *, struct dentry *, int);
50 static int nfs_rmdir(struct inode *, struct dentry *);
51 static int nfs_unlink(struct inode *, struct dentry *);
52 static int nfs_symlink(struct inode *, struct dentry *, const char *);
53 static int nfs_link(struct dentry *, struct inode *, struct dentry *);
54 static int nfs_mknod(struct inode *, struct dentry *, int, dev_t);
55 static int nfs_rename(struct inode *, struct dentry *,
56 struct inode *, struct dentry *);
57 static int nfs_fsync_dir(struct file *, int);
58 static loff_t nfs_llseek_dir(struct file *, loff_t, int);
59
60 const struct file_operations nfs_dir_operations = {
61 .llseek = nfs_llseek_dir,
62 .read = generic_read_dir,
63 .readdir = nfs_readdir,
64 .open = nfs_opendir,
65 .release = nfs_release,
66 .fsync = nfs_fsync_dir,
67 };
68
69 const struct inode_operations nfs_dir_inode_operations = {
70 .create = nfs_create,
71 .lookup = nfs_lookup,
72 .link = nfs_link,
73 .unlink = nfs_unlink,
74 .symlink = nfs_symlink,
75 .mkdir = nfs_mkdir,
76 .rmdir = nfs_rmdir,
77 .mknod = nfs_mknod,
78 .rename = nfs_rename,
79 .permission = nfs_permission,
80 .getattr = nfs_getattr,
81 .setattr = nfs_setattr,
82 };
83
84 #ifdef CONFIG_NFS_V3
85 const struct inode_operations nfs3_dir_inode_operations = {
86 .create = nfs_create,
87 .lookup = nfs_lookup,
88 .link = nfs_link,
89 .unlink = nfs_unlink,
90 .symlink = nfs_symlink,
91 .mkdir = nfs_mkdir,
92 .rmdir = nfs_rmdir,
93 .mknod = nfs_mknod,
94 .rename = nfs_rename,
95 .permission = nfs_permission,
96 .getattr = nfs_getattr,
97 .setattr = nfs_setattr,
98 .listxattr = nfs3_listxattr,
99 .getxattr = nfs3_getxattr,
100 .setxattr = nfs3_setxattr,
101 .removexattr = nfs3_removexattr,
102 };
103 #endif /* CONFIG_NFS_V3 */
104
105 #ifdef CONFIG_NFS_V4
106
107 static struct dentry *nfs_atomic_lookup(struct inode *, struct dentry *, struct nameidata *);
108 const struct inode_operations nfs4_dir_inode_operations = {
109 .create = nfs_create,
110 .lookup = nfs_atomic_lookup,
111 .link = nfs_link,
112 .unlink = nfs_unlink,
113 .symlink = nfs_symlink,
114 .mkdir = nfs_mkdir,
115 .rmdir = nfs_rmdir,
116 .mknod = nfs_mknod,
117 .rename = nfs_rename,
118 .permission = nfs_permission,
119 .getattr = nfs_getattr,
120 .setattr = nfs_setattr,
121 .getxattr = nfs4_getxattr,
122 .setxattr = nfs4_setxattr,
123 .listxattr = nfs4_listxattr,
124 };
125
126 #endif /* CONFIG_NFS_V4 */
127
128 /*
129 * Open file
130 */
131 static int
132 nfs_opendir(struct inode *inode, struct file *filp)
133 {
134 int res;
135
136 dfprintk(FILE, "NFS: open dir(%s/%s)\n",
137 filp->f_path.dentry->d_parent->d_name.name,
138 filp->f_path.dentry->d_name.name);
139
140 nfs_inc_stats(inode, NFSIOS_VFSOPEN);
141
142 /* Call generic open code in order to cache credentials */
143 res = nfs_open(inode, filp);
144 if (filp->f_path.dentry == filp->f_path.mnt->mnt_root) {
145 /* This is a mountpoint, so d_revalidate will never
146 * have been called, so we need to refresh the
147 * inode (for close-open consistency) ourselves.
148 */
149 __nfs_revalidate_inode(NFS_SERVER(inode), inode);
150 }
151 return res;
152 }
153
154 typedef __be32 * (*decode_dirent_t)(__be32 *, struct nfs_entry *, int);
155 typedef struct {
156 struct file *file;
157 struct page *page;
158 unsigned long page_index;
159 __be32 *ptr;
160 u64 *dir_cookie;
161 loff_t current_index;
162 struct nfs_entry *entry;
163 decode_dirent_t decode;
164 int plus;
165 unsigned long timestamp;
166 unsigned long gencount;
167 int timestamp_valid;
168 } nfs_readdir_descriptor_t;
169
170 /* Now we cache directories properly, by stuffing the dirent
171 * data directly in the page cache.
172 *
173 * Inode invalidation due to refresh etc. takes care of
174 * _everything_, no sloppy entry flushing logic, no extraneous
175 * copying, network direct to page cache, the way it was meant
176 * to be.
177 *
178 * NOTE: Dirent information verification is done always by the
179 * page-in of the RPC reply, nowhere else, this simplies
180 * things substantially.
181 */
182 static
183 int nfs_readdir_filler(nfs_readdir_descriptor_t *desc, struct page *page)
184 {
185 struct file *file = desc->file;
186 struct inode *inode = file->f_path.dentry->d_inode;
187 struct rpc_cred *cred = nfs_file_cred(file);
188 unsigned long timestamp, gencount;
189 int error;
190
191 dfprintk(DIRCACHE, "NFS: %s: reading cookie %Lu into page %lu\n",
192 __func__, (long long)desc->entry->cookie,
193 page->index);
194
195 again:
196 timestamp = jiffies;
197 gencount = nfs_inc_attr_generation_counter();
198 error = NFS_PROTO(inode)->readdir(file->f_path.dentry, cred, desc->entry->cookie, page,
199 NFS_SERVER(inode)->dtsize, desc->plus);
200 if (error < 0) {
201 /* We requested READDIRPLUS, but the server doesn't grok it */
202 if (error == -ENOTSUPP && desc->plus) {
203 NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
204 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
205 desc->plus = 0;
206 goto again;
207 }
208 goto error;
209 }
210 desc->timestamp = timestamp;
211 desc->gencount = gencount;
212 desc->timestamp_valid = 1;
213 SetPageUptodate(page);
214 /* Ensure consistent page alignment of the data.
215 * Note: assumes we have exclusive access to this mapping either
216 * through inode->i_mutex or some other mechanism.
217 */
218 if (invalidate_inode_pages2_range(inode->i_mapping, page->index + 1, -1) < 0) {
219 /* Should never happen */
220 nfs_zap_mapping(inode, inode->i_mapping);
221 }
222 unlock_page(page);
223 return 0;
224 error:
225 unlock_page(page);
226 return -EIO;
227 }
228
229 static inline
230 int dir_decode(nfs_readdir_descriptor_t *desc)
231 {
232 __be32 *p = desc->ptr;
233 p = desc->decode(p, desc->entry, desc->plus);
234 if (IS_ERR(p))
235 return PTR_ERR(p);
236 desc->ptr = p;
237 if (desc->timestamp_valid) {
238 desc->entry->fattr->time_start = desc->timestamp;
239 desc->entry->fattr->gencount = desc->gencount;
240 } else
241 desc->entry->fattr->valid &= ~NFS_ATTR_FATTR;
242 return 0;
243 }
244
245 static inline
246 void dir_page_release(nfs_readdir_descriptor_t *desc)
247 {
248 kunmap(desc->page);
249 page_cache_release(desc->page);
250 desc->page = NULL;
251 desc->ptr = NULL;
252 }
253
254 /*
255 * Given a pointer to a buffer that has already been filled by a call
256 * to readdir, find the next entry with cookie '*desc->dir_cookie'.
257 *
258 * If the end of the buffer has been reached, return -EAGAIN, if not,
259 * return the offset within the buffer of the next entry to be
260 * read.
261 */
262 static inline
263 int find_dirent(nfs_readdir_descriptor_t *desc)
264 {
265 struct nfs_entry *entry = desc->entry;
266 int loop_count = 0,
267 status;
268
269 while((status = dir_decode(desc)) == 0) {
270 dfprintk(DIRCACHE, "NFS: %s: examining cookie %Lu\n",
271 __func__, (unsigned long long)entry->cookie);
272 if (entry->prev_cookie == *desc->dir_cookie)
273 break;
274 if (loop_count++ > 200) {
275 loop_count = 0;
276 schedule();
277 }
278 }
279 return status;
280 }
281
282 /*
283 * Given a pointer to a buffer that has already been filled by a call
284 * to readdir, find the entry at offset 'desc->file->f_pos'.
285 *
286 * If the end of the buffer has been reached, return -EAGAIN, if not,
287 * return the offset within the buffer of the next entry to be
288 * read.
289 */
290 static inline
291 int find_dirent_index(nfs_readdir_descriptor_t *desc)
292 {
293 struct nfs_entry *entry = desc->entry;
294 int loop_count = 0,
295 status;
296
297 for(;;) {
298 status = dir_decode(desc);
299 if (status)
300 break;
301
302 dfprintk(DIRCACHE, "NFS: found cookie %Lu at index %Ld\n",
303 (unsigned long long)entry->cookie, desc->current_index);
304
305 if (desc->file->f_pos == desc->current_index) {
306 *desc->dir_cookie = entry->cookie;
307 break;
308 }
309 desc->current_index++;
310 if (loop_count++ > 200) {
311 loop_count = 0;
312 schedule();
313 }
314 }
315 return status;
316 }
317
318 /*
319 * Find the given page, and call find_dirent() or find_dirent_index in
320 * order to try to return the next entry.
321 */
322 static inline
323 int find_dirent_page(nfs_readdir_descriptor_t *desc)
324 {
325 struct inode *inode = desc->file->f_path.dentry->d_inode;
326 struct page *page;
327 int status;
328
329 dfprintk(DIRCACHE, "NFS: %s: searching page %ld for target %Lu\n",
330 __func__, desc->page_index,
331 (long long) *desc->dir_cookie);
332
333 /* If we find the page in the page_cache, we cannot be sure
334 * how fresh the data is, so we will ignore readdir_plus attributes.
335 */
336 desc->timestamp_valid = 0;
337 page = read_cache_page(inode->i_mapping, desc->page_index,
338 (filler_t *)nfs_readdir_filler, desc);
339 if (IS_ERR(page)) {
340 status = PTR_ERR(page);
341 goto out;
342 }
343
344 /* NOTE: Someone else may have changed the READDIRPLUS flag */
345 desc->page = page;
346 desc->ptr = kmap(page); /* matching kunmap in nfs_do_filldir */
347 if (*desc->dir_cookie != 0)
348 status = find_dirent(desc);
349 else
350 status = find_dirent_index(desc);
351 if (status < 0)
352 dir_page_release(desc);
353 out:
354 dfprintk(DIRCACHE, "NFS: %s: returns %d\n", __func__, status);
355 return status;
356 }
357
358 /*
359 * Recurse through the page cache pages, and return a
360 * filled nfs_entry structure of the next directory entry if possible.
361 *
362 * The target for the search is '*desc->dir_cookie' if non-0,
363 * 'desc->file->f_pos' otherwise
364 */
365 static inline
366 int readdir_search_pagecache(nfs_readdir_descriptor_t *desc)
367 {
368 int loop_count = 0;
369 int res;
370
371 /* Always search-by-index from the beginning of the cache */
372 if (*desc->dir_cookie == 0) {
373 dfprintk(DIRCACHE, "NFS: readdir_search_pagecache() searching for offset %Ld\n",
374 (long long)desc->file->f_pos);
375 desc->page_index = 0;
376 desc->entry->cookie = desc->entry->prev_cookie = 0;
377 desc->entry->eof = 0;
378 desc->current_index = 0;
379 } else
380 dfprintk(DIRCACHE, "NFS: readdir_search_pagecache() searching for cookie %Lu\n",
381 (unsigned long long)*desc->dir_cookie);
382
383 for (;;) {
384 res = find_dirent_page(desc);
385 if (res != -EAGAIN)
386 break;
387 /* Align to beginning of next page */
388 desc->page_index ++;
389 if (loop_count++ > 200) {
390 loop_count = 0;
391 schedule();
392 }
393 }
394
395 dfprintk(DIRCACHE, "NFS: %s: returns %d\n", __func__, res);
396 return res;
397 }
398
399 static inline unsigned int dt_type(struct inode *inode)
400 {
401 return (inode->i_mode >> 12) & 15;
402 }
403
404 static struct dentry *nfs_readdir_lookup(nfs_readdir_descriptor_t *desc);
405
406 /*
407 * Once we've found the start of the dirent within a page: fill 'er up...
408 */
409 static
410 int nfs_do_filldir(nfs_readdir_descriptor_t *desc, void *dirent,
411 filldir_t filldir)
412 {
413 struct file *file = desc->file;
414 struct nfs_entry *entry = desc->entry;
415 struct dentry *dentry = NULL;
416 u64 fileid;
417 int loop_count = 0,
418 res;
419
420 dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling starting @ cookie %Lu\n",
421 (unsigned long long)entry->cookie);
422
423 for(;;) {
424 unsigned d_type = DT_UNKNOWN;
425 /* Note: entry->prev_cookie contains the cookie for
426 * retrieving the current dirent on the server */
427 fileid = entry->ino;
428
429 /* Get a dentry if we have one */
430 if (dentry != NULL)
431 dput(dentry);
432 dentry = nfs_readdir_lookup(desc);
433
434 /* Use readdirplus info */
435 if (dentry != NULL && dentry->d_inode != NULL) {
436 d_type = dt_type(dentry->d_inode);
437 fileid = NFS_FILEID(dentry->d_inode);
438 }
439
440 res = filldir(dirent, entry->name, entry->len,
441 file->f_pos, nfs_compat_user_ino64(fileid),
442 d_type);
443 if (res < 0)
444 break;
445 file->f_pos++;
446 *desc->dir_cookie = entry->cookie;
447 if (dir_decode(desc) != 0) {
448 desc->page_index ++;
449 break;
450 }
451 if (loop_count++ > 200) {
452 loop_count = 0;
453 schedule();
454 }
455 }
456 dir_page_release(desc);
457 if (dentry != NULL)
458 dput(dentry);
459 dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n",
460 (unsigned long long)*desc->dir_cookie, res);
461 return res;
462 }
463
464 /*
465 * If we cannot find a cookie in our cache, we suspect that this is
466 * because it points to a deleted file, so we ask the server to return
467 * whatever it thinks is the next entry. We then feed this to filldir.
468 * If all goes well, we should then be able to find our way round the
469 * cache on the next call to readdir_search_pagecache();
470 *
471 * NOTE: we cannot add the anonymous page to the pagecache because
472 * the data it contains might not be page aligned. Besides,
473 * we should already have a complete representation of the
474 * directory in the page cache by the time we get here.
475 */
476 static inline
477 int uncached_readdir(nfs_readdir_descriptor_t *desc, void *dirent,
478 filldir_t filldir)
479 {
480 struct file *file = desc->file;
481 struct inode *inode = file->f_path.dentry->d_inode;
482 struct rpc_cred *cred = nfs_file_cred(file);
483 struct page *page = NULL;
484 int status;
485 unsigned long timestamp, gencount;
486
487 dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n",
488 (unsigned long long)*desc->dir_cookie);
489
490 page = alloc_page(GFP_HIGHUSER);
491 if (!page) {
492 status = -ENOMEM;
493 goto out;
494 }
495 timestamp = jiffies;
496 gencount = nfs_inc_attr_generation_counter();
497 status = NFS_PROTO(inode)->readdir(file->f_path.dentry, cred,
498 *desc->dir_cookie, page,
499 NFS_SERVER(inode)->dtsize,
500 desc->plus);
501 desc->page = page;
502 desc->ptr = kmap(page); /* matching kunmap in nfs_do_filldir */
503 if (status >= 0) {
504 desc->timestamp = timestamp;
505 desc->gencount = gencount;
506 desc->timestamp_valid = 1;
507 if ((status = dir_decode(desc)) == 0)
508 desc->entry->prev_cookie = *desc->dir_cookie;
509 } else
510 status = -EIO;
511 if (status < 0)
512 goto out_release;
513
514 status = nfs_do_filldir(desc, dirent, filldir);
515
516 /* Reset read descriptor so it searches the page cache from
517 * the start upon the next call to readdir_search_pagecache() */
518 desc->page_index = 0;
519 desc->entry->cookie = desc->entry->prev_cookie = 0;
520 desc->entry->eof = 0;
521 out:
522 dfprintk(DIRCACHE, "NFS: %s: returns %d\n",
523 __func__, status);
524 return status;
525 out_release:
526 dir_page_release(desc);
527 goto out;
528 }
529
530 /* The file offset position represents the dirent entry number. A
531 last cookie cache takes care of the common case of reading the
532 whole directory.
533 */
534 static int nfs_readdir(struct file *filp, void *dirent, filldir_t filldir)
535 {
536 struct dentry *dentry = filp->f_path.dentry;
537 struct inode *inode = dentry->d_inode;
538 nfs_readdir_descriptor_t my_desc,
539 *desc = &my_desc;
540 struct nfs_entry my_entry;
541 int res = -ENOMEM;
542
543 dfprintk(FILE, "NFS: readdir(%s/%s) starting at cookie %llu\n",
544 dentry->d_parent->d_name.name, dentry->d_name.name,
545 (long long)filp->f_pos);
546 nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
547
548 /*
549 * filp->f_pos points to the dirent entry number.
550 * *desc->dir_cookie has the cookie for the next entry. We have
551 * to either find the entry with the appropriate number or
552 * revalidate the cookie.
553 */
554 memset(desc, 0, sizeof(*desc));
555
556 desc->file = filp;
557 desc->dir_cookie = &nfs_file_open_context(filp)->dir_cookie;
558 desc->decode = NFS_PROTO(inode)->decode_dirent;
559 desc->plus = NFS_USE_READDIRPLUS(inode);
560
561 my_entry.cookie = my_entry.prev_cookie = 0;
562 my_entry.eof = 0;
563 my_entry.fh = nfs_alloc_fhandle();
564 my_entry.fattr = nfs_alloc_fattr();
565 if (my_entry.fh == NULL || my_entry.fattr == NULL)
566 goto out_alloc_failed;
567
568 desc->entry = &my_entry;
569
570 nfs_block_sillyrename(dentry);
571 res = nfs_revalidate_mapping(inode, filp->f_mapping);
572 if (res < 0)
573 goto out;
574
575 while(!desc->entry->eof) {
576 res = readdir_search_pagecache(desc);
577
578 if (res == -EBADCOOKIE) {
579 /* This means either end of directory */
580 if (*desc->dir_cookie && desc->entry->cookie != *desc->dir_cookie) {
581 /* Or that the server has 'lost' a cookie */
582 res = uncached_readdir(desc, dirent, filldir);
583 if (res >= 0)
584 continue;
585 }
586 res = 0;
587 break;
588 }
589 if (res == -ETOOSMALL && desc->plus) {
590 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
591 nfs_zap_caches(inode);
592 desc->plus = 0;
593 desc->entry->eof = 0;
594 continue;
595 }
596 if (res < 0)
597 break;
598
599 res = nfs_do_filldir(desc, dirent, filldir);
600 if (res < 0) {
601 res = 0;
602 break;
603 }
604 }
605 out:
606 nfs_unblock_sillyrename(dentry);
607 if (res > 0)
608 res = 0;
609 out_alloc_failed:
610 nfs_free_fattr(my_entry.fattr);
611 nfs_free_fhandle(my_entry.fh);
612 dfprintk(FILE, "NFS: readdir(%s/%s) returns %d\n",
613 dentry->d_parent->d_name.name, dentry->d_name.name,
614 res);
615 return res;
616 }
617
618 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int origin)
619 {
620 struct dentry *dentry = filp->f_path.dentry;
621 struct inode *inode = dentry->d_inode;
622
623 dfprintk(FILE, "NFS: llseek dir(%s/%s, %lld, %d)\n",
624 dentry->d_parent->d_name.name,
625 dentry->d_name.name,
626 offset, origin);
627
628 mutex_lock(&inode->i_mutex);
629 switch (origin) {
630 case 1:
631 offset += filp->f_pos;
632 case 0:
633 if (offset >= 0)
634 break;
635 default:
636 offset = -EINVAL;
637 goto out;
638 }
639 if (offset != filp->f_pos) {
640 filp->f_pos = offset;
641 nfs_file_open_context(filp)->dir_cookie = 0;
642 }
643 out:
644 mutex_unlock(&inode->i_mutex);
645 return offset;
646 }
647
648 /*
649 * All directory operations under NFS are synchronous, so fsync()
650 * is a dummy operation.
651 */
652 static int nfs_fsync_dir(struct file *filp, int datasync)
653 {
654 struct dentry *dentry = filp->f_path.dentry;
655
656 dfprintk(FILE, "NFS: fsync dir(%s/%s) datasync %d\n",
657 dentry->d_parent->d_name.name, dentry->d_name.name,
658 datasync);
659
660 nfs_inc_stats(dentry->d_inode, NFSIOS_VFSFSYNC);
661 return 0;
662 }
663
664 /**
665 * nfs_force_lookup_revalidate - Mark the directory as having changed
666 * @dir - pointer to directory inode
667 *
668 * This forces the revalidation code in nfs_lookup_revalidate() to do a
669 * full lookup on all child dentries of 'dir' whenever a change occurs
670 * on the server that might have invalidated our dcache.
671 *
672 * The caller should be holding dir->i_lock
673 */
674 void nfs_force_lookup_revalidate(struct inode *dir)
675 {
676 NFS_I(dir)->cache_change_attribute++;
677 }
678
679 /*
680 * A check for whether or not the parent directory has changed.
681 * In the case it has, we assume that the dentries are untrustworthy
682 * and may need to be looked up again.
683 */
684 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry)
685 {
686 if (IS_ROOT(dentry))
687 return 1;
688 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE)
689 return 0;
690 if (!nfs_verify_change_attribute(dir, dentry->d_time))
691 return 0;
692 /* Revalidate nfsi->cache_change_attribute before we declare a match */
693 if (nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
694 return 0;
695 if (!nfs_verify_change_attribute(dir, dentry->d_time))
696 return 0;
697 return 1;
698 }
699
700 /*
701 * Return the intent data that applies to this particular path component
702 *
703 * Note that the current set of intents only apply to the very last
704 * component of the path.
705 * We check for this using LOOKUP_CONTINUE and LOOKUP_PARENT.
706 */
707 static inline unsigned int nfs_lookup_check_intent(struct nameidata *nd, unsigned int mask)
708 {
709 if (nd->flags & (LOOKUP_CONTINUE|LOOKUP_PARENT))
710 return 0;
711 return nd->flags & mask;
712 }
713
714 /*
715 * Use intent information to check whether or not we're going to do
716 * an O_EXCL create using this path component.
717 */
718 static int nfs_is_exclusive_create(struct inode *dir, struct nameidata *nd)
719 {
720 if (NFS_PROTO(dir)->version == 2)
721 return 0;
722 return nd && nfs_lookup_check_intent(nd, LOOKUP_EXCL);
723 }
724
725 /*
726 * Inode and filehandle revalidation for lookups.
727 *
728 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
729 * or if the intent information indicates that we're about to open this
730 * particular file and the "nocto" mount flag is not set.
731 *
732 */
733 static inline
734 int nfs_lookup_verify_inode(struct inode *inode, struct nameidata *nd)
735 {
736 struct nfs_server *server = NFS_SERVER(inode);
737
738 if (test_bit(NFS_INO_MOUNTPOINT, &NFS_I(inode)->flags))
739 return 0;
740 if (nd != NULL) {
741 /* VFS wants an on-the-wire revalidation */
742 if (nd->flags & LOOKUP_REVAL)
743 goto out_force;
744 /* This is an open(2) */
745 if (nfs_lookup_check_intent(nd, LOOKUP_OPEN) != 0 &&
746 !(server->flags & NFS_MOUNT_NOCTO) &&
747 (S_ISREG(inode->i_mode) ||
748 S_ISDIR(inode->i_mode)))
749 goto out_force;
750 return 0;
751 }
752 return nfs_revalidate_inode(server, inode);
753 out_force:
754 return __nfs_revalidate_inode(server, inode);
755 }
756
757 /*
758 * We judge how long we want to trust negative
759 * dentries by looking at the parent inode mtime.
760 *
761 * If parent mtime has changed, we revalidate, else we wait for a
762 * period corresponding to the parent's attribute cache timeout value.
763 */
764 static inline
765 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
766 struct nameidata *nd)
767 {
768 /* Don't revalidate a negative dentry if we're creating a new file */
769 if (nd != NULL && nfs_lookup_check_intent(nd, LOOKUP_CREATE) != 0)
770 return 0;
771 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG)
772 return 1;
773 return !nfs_check_verifier(dir, dentry);
774 }
775
776 /*
777 * This is called every time the dcache has a lookup hit,
778 * and we should check whether we can really trust that
779 * lookup.
780 *
781 * NOTE! The hit can be a negative hit too, don't assume
782 * we have an inode!
783 *
784 * If the parent directory is seen to have changed, we throw out the
785 * cached dentry and do a new lookup.
786 */
787 static int nfs_lookup_revalidate(struct dentry * dentry, struct nameidata *nd)
788 {
789 struct inode *dir;
790 struct inode *inode;
791 struct dentry *parent;
792 struct nfs_fh *fhandle = NULL;
793 struct nfs_fattr *fattr = NULL;
794 int error;
795
796 parent = dget_parent(dentry);
797 dir = parent->d_inode;
798 nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
799 inode = dentry->d_inode;
800
801 if (!inode) {
802 if (nfs_neg_need_reval(dir, dentry, nd))
803 goto out_bad;
804 goto out_valid;
805 }
806
807 if (is_bad_inode(inode)) {
808 dfprintk(LOOKUPCACHE, "%s: %s/%s has dud inode\n",
809 __func__, dentry->d_parent->d_name.name,
810 dentry->d_name.name);
811 goto out_bad;
812 }
813
814 if (nfs_have_delegation(inode, FMODE_READ))
815 goto out_set_verifier;
816
817 /* Force a full look up iff the parent directory has changed */
818 if (!nfs_is_exclusive_create(dir, nd) && nfs_check_verifier(dir, dentry)) {
819 if (nfs_lookup_verify_inode(inode, nd))
820 goto out_zap_parent;
821 goto out_valid;
822 }
823
824 if (NFS_STALE(inode))
825 goto out_bad;
826
827 error = -ENOMEM;
828 fhandle = nfs_alloc_fhandle();
829 fattr = nfs_alloc_fattr();
830 if (fhandle == NULL || fattr == NULL)
831 goto out_error;
832
833 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr);
834 if (error)
835 goto out_bad;
836 if (nfs_compare_fh(NFS_FH(inode), fhandle))
837 goto out_bad;
838 if ((error = nfs_refresh_inode(inode, fattr)) != 0)
839 goto out_bad;
840
841 nfs_free_fattr(fattr);
842 nfs_free_fhandle(fhandle);
843 out_set_verifier:
844 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
845 out_valid:
846 dput(parent);
847 dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is valid\n",
848 __func__, dentry->d_parent->d_name.name,
849 dentry->d_name.name);
850 return 1;
851 out_zap_parent:
852 nfs_zap_caches(dir);
853 out_bad:
854 nfs_mark_for_revalidate(dir);
855 if (inode && S_ISDIR(inode->i_mode)) {
856 /* Purge readdir caches. */
857 nfs_zap_caches(inode);
858 /* If we have submounts, don't unhash ! */
859 if (have_submounts(dentry))
860 goto out_valid;
861 if (dentry->d_flags & DCACHE_DISCONNECTED)
862 goto out_valid;
863 shrink_dcache_parent(dentry);
864 }
865 d_drop(dentry);
866 nfs_free_fattr(fattr);
867 nfs_free_fhandle(fhandle);
868 dput(parent);
869 dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is invalid\n",
870 __func__, dentry->d_parent->d_name.name,
871 dentry->d_name.name);
872 return 0;
873 out_error:
874 nfs_free_fattr(fattr);
875 nfs_free_fhandle(fhandle);
876 dput(parent);
877 dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) lookup returned error %d\n",
878 __func__, dentry->d_parent->d_name.name,
879 dentry->d_name.name, error);
880 return error;
881 }
882
883 /*
884 * This is called from dput() when d_count is going to 0.
885 */
886 static int nfs_dentry_delete(struct dentry *dentry)
887 {
888 dfprintk(VFS, "NFS: dentry_delete(%s/%s, %x)\n",
889 dentry->d_parent->d_name.name, dentry->d_name.name,
890 dentry->d_flags);
891
892 /* Unhash any dentry with a stale inode */
893 if (dentry->d_inode != NULL && NFS_STALE(dentry->d_inode))
894 return 1;
895
896 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
897 /* Unhash it, so that ->d_iput() would be called */
898 return 1;
899 }
900 if (!(dentry->d_sb->s_flags & MS_ACTIVE)) {
901 /* Unhash it, so that ancestors of killed async unlink
902 * files will be cleaned up during umount */
903 return 1;
904 }
905 return 0;
906
907 }
908
909 static void nfs_drop_nlink(struct inode *inode)
910 {
911 spin_lock(&inode->i_lock);
912 if (inode->i_nlink > 0)
913 drop_nlink(inode);
914 spin_unlock(&inode->i_lock);
915 }
916
917 /*
918 * Called when the dentry loses inode.
919 * We use it to clean up silly-renamed files.
920 */
921 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
922 {
923 if (S_ISDIR(inode->i_mode))
924 /* drop any readdir cache as it could easily be old */
925 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA;
926
927 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
928 drop_nlink(inode);
929 nfs_complete_unlink(dentry, inode);
930 }
931 iput(inode);
932 }
933
934 const struct dentry_operations nfs_dentry_operations = {
935 .d_revalidate = nfs_lookup_revalidate,
936 .d_delete = nfs_dentry_delete,
937 .d_iput = nfs_dentry_iput,
938 };
939
940 static struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
941 {
942 struct dentry *res;
943 struct dentry *parent;
944 struct inode *inode = NULL;
945 struct nfs_fh *fhandle = NULL;
946 struct nfs_fattr *fattr = NULL;
947 int error;
948
949 dfprintk(VFS, "NFS: lookup(%s/%s)\n",
950 dentry->d_parent->d_name.name, dentry->d_name.name);
951 nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
952
953 res = ERR_PTR(-ENAMETOOLONG);
954 if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
955 goto out;
956
957 dentry->d_op = NFS_PROTO(dir)->dentry_ops;
958
959 /*
960 * If we're doing an exclusive create, optimize away the lookup
961 * but don't hash the dentry.
962 */
963 if (nfs_is_exclusive_create(dir, nd)) {
964 d_instantiate(dentry, NULL);
965 res = NULL;
966 goto out;
967 }
968
969 res = ERR_PTR(-ENOMEM);
970 fhandle = nfs_alloc_fhandle();
971 fattr = nfs_alloc_fattr();
972 if (fhandle == NULL || fattr == NULL)
973 goto out;
974
975 parent = dentry->d_parent;
976 /* Protect against concurrent sillydeletes */
977 nfs_block_sillyrename(parent);
978 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr);
979 if (error == -ENOENT)
980 goto no_entry;
981 if (error < 0) {
982 res = ERR_PTR(error);
983 goto out_unblock_sillyrename;
984 }
985 inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
986 res = (struct dentry *)inode;
987 if (IS_ERR(res))
988 goto out_unblock_sillyrename;
989
990 no_entry:
991 res = d_materialise_unique(dentry, inode);
992 if (res != NULL) {
993 if (IS_ERR(res))
994 goto out_unblock_sillyrename;
995 dentry = res;
996 }
997 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
998 out_unblock_sillyrename:
999 nfs_unblock_sillyrename(parent);
1000 out:
1001 nfs_free_fattr(fattr);
1002 nfs_free_fhandle(fhandle);
1003 return res;
1004 }
1005
1006 #ifdef CONFIG_NFS_V4
1007 static int nfs_open_revalidate(struct dentry *, struct nameidata *);
1008
1009 const struct dentry_operations nfs4_dentry_operations = {
1010 .d_revalidate = nfs_open_revalidate,
1011 .d_delete = nfs_dentry_delete,
1012 .d_iput = nfs_dentry_iput,
1013 };
1014
1015 /*
1016 * Use intent information to determine whether we need to substitute
1017 * the NFSv4-style stateful OPEN for the LOOKUP call
1018 */
1019 static int is_atomic_open(struct nameidata *nd)
1020 {
1021 if (nd == NULL || nfs_lookup_check_intent(nd, LOOKUP_OPEN) == 0)
1022 return 0;
1023 /* NFS does not (yet) have a stateful open for directories */
1024 if (nd->flags & LOOKUP_DIRECTORY)
1025 return 0;
1026 /* Are we trying to write to a read only partition? */
1027 if (__mnt_is_readonly(nd->path.mnt) &&
1028 (nd->intent.open.flags & (O_CREAT|O_TRUNC|FMODE_WRITE)))
1029 return 0;
1030 return 1;
1031 }
1032
1033 static struct nfs_open_context *nameidata_to_nfs_open_context(struct dentry *dentry, struct nameidata *nd)
1034 {
1035 struct path path = {
1036 .mnt = nd->path.mnt,
1037 .dentry = dentry,
1038 };
1039 struct nfs_open_context *ctx;
1040 struct rpc_cred *cred;
1041 fmode_t fmode = nd->intent.open.flags & (FMODE_READ | FMODE_WRITE | FMODE_EXEC);
1042
1043 cred = rpc_lookup_cred();
1044 if (IS_ERR(cred))
1045 return ERR_CAST(cred);
1046 ctx = alloc_nfs_open_context(&path, cred, fmode);
1047 put_rpccred(cred);
1048 if (ctx == NULL)
1049 return ERR_PTR(-ENOMEM);
1050 return ctx;
1051 }
1052
1053 static int do_open(struct inode *inode, struct file *filp)
1054 {
1055 nfs_fscache_set_inode_cookie(inode, filp);
1056 return 0;
1057 }
1058
1059 static int nfs_intent_set_file(struct nameidata *nd, struct nfs_open_context *ctx)
1060 {
1061 struct file *filp;
1062 int ret = 0;
1063
1064 /* If the open_intent is for execute, we have an extra check to make */
1065 if (ctx->mode & FMODE_EXEC) {
1066 ret = nfs_may_open(ctx->path.dentry->d_inode,
1067 ctx->cred,
1068 nd->intent.open.flags);
1069 if (ret < 0)
1070 goto out;
1071 }
1072 filp = lookup_instantiate_filp(nd, ctx->path.dentry, do_open);
1073 if (IS_ERR(filp))
1074 ret = PTR_ERR(filp);
1075 else
1076 nfs_file_set_open_context(filp, ctx);
1077 out:
1078 put_nfs_open_context(ctx);
1079 return ret;
1080 }
1081
1082 static struct dentry *nfs_atomic_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd)
1083 {
1084 struct nfs_open_context *ctx;
1085 struct iattr attr;
1086 struct dentry *res = NULL;
1087 struct inode *inode;
1088 int open_flags;
1089
1090 dfprintk(VFS, "NFS: atomic_lookup(%s/%ld), %s\n",
1091 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1092
1093 /* Check that we are indeed trying to open this file */
1094 if (!is_atomic_open(nd))
1095 goto no_open;
1096
1097 if (dentry->d_name.len > NFS_SERVER(dir)->namelen) {
1098 res = ERR_PTR(-ENAMETOOLONG);
1099 goto out;
1100 }
1101 dentry->d_op = NFS_PROTO(dir)->dentry_ops;
1102
1103 /* Let vfs_create() deal with O_EXCL. Instantiate, but don't hash
1104 * the dentry. */
1105 if (nd->flags & LOOKUP_EXCL) {
1106 d_instantiate(dentry, NULL);
1107 goto out;
1108 }
1109
1110 ctx = nameidata_to_nfs_open_context(dentry, nd);
1111 res = ERR_CAST(ctx);
1112 if (IS_ERR(ctx))
1113 goto out;
1114
1115 open_flags = nd->intent.open.flags;
1116 if (nd->flags & LOOKUP_CREATE) {
1117 attr.ia_mode = nd->intent.open.create_mode;
1118 attr.ia_valid = ATTR_MODE;
1119 if (!IS_POSIXACL(dir))
1120 attr.ia_mode &= ~current_umask();
1121 } else {
1122 open_flags &= ~O_EXCL;
1123 attr.ia_valid = 0;
1124 BUG_ON(open_flags & O_CREAT);
1125 }
1126
1127 /* Open the file on the server */
1128 nfs_block_sillyrename(dentry->d_parent);
1129 inode = nfs4_atomic_open(dir, ctx, open_flags, &attr);
1130 if (IS_ERR(inode)) {
1131 nfs_unblock_sillyrename(dentry->d_parent);
1132 put_nfs_open_context(ctx);
1133 switch (PTR_ERR(inode)) {
1134 /* Make a negative dentry */
1135 case -ENOENT:
1136 d_add(dentry, NULL);
1137 res = NULL;
1138 goto out;
1139 /* This turned out not to be a regular file */
1140 case -EISDIR:
1141 case -ENOTDIR:
1142 goto no_open;
1143 case -ELOOP:
1144 if (!(nd->intent.open.flags & O_NOFOLLOW))
1145 goto no_open;
1146 /* case -EINVAL: */
1147 default:
1148 res = ERR_CAST(inode);
1149 goto out;
1150 }
1151 }
1152 res = d_add_unique(dentry, inode);
1153 if (res != NULL) {
1154 dput(ctx->path.dentry);
1155 ctx->path.dentry = dget(res);
1156 dentry = res;
1157 }
1158 nfs_intent_set_file(nd, ctx);
1159 nfs_unblock_sillyrename(dentry->d_parent);
1160 out:
1161 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1162 return res;
1163 no_open:
1164 return nfs_lookup(dir, dentry, nd);
1165 }
1166
1167 static int nfs_open_revalidate(struct dentry *dentry, struct nameidata *nd)
1168 {
1169 struct dentry *parent = NULL;
1170 struct inode *inode = dentry->d_inode;
1171 struct inode *dir;
1172 struct nfs_open_context *ctx;
1173 int openflags, ret = 0;
1174
1175 if (!is_atomic_open(nd) || d_mountpoint(dentry))
1176 goto no_open;
1177 parent = dget_parent(dentry);
1178 dir = parent->d_inode;
1179 /* We can't create new files in nfs_open_revalidate(), so we
1180 * optimize away revalidation of negative dentries.
1181 */
1182 if (inode == NULL) {
1183 if (!nfs_neg_need_reval(dir, dentry, nd))
1184 ret = 1;
1185 goto out;
1186 }
1187
1188 /* NFS only supports OPEN on regular files */
1189 if (!S_ISREG(inode->i_mode))
1190 goto no_open_dput;
1191 openflags = nd->intent.open.flags;
1192 /* We cannot do exclusive creation on a positive dentry */
1193 if ((openflags & (O_CREAT|O_EXCL)) == (O_CREAT|O_EXCL))
1194 goto no_open_dput;
1195 /* We can't create new files, or truncate existing ones here */
1196 openflags &= ~(O_CREAT|O_EXCL|O_TRUNC);
1197
1198 ctx = nameidata_to_nfs_open_context(dentry, nd);
1199 ret = PTR_ERR(ctx);
1200 if (IS_ERR(ctx))
1201 goto out;
1202 /*
1203 * Note: we're not holding inode->i_mutex and so may be racing with
1204 * operations that change the directory. We therefore save the
1205 * change attribute *before* we do the RPC call.
1206 */
1207 ret = nfs4_open_revalidate(dir, ctx, openflags);
1208 if (ret == 1)
1209 nfs_intent_set_file(nd, ctx);
1210 else
1211 put_nfs_open_context(ctx);
1212 out:
1213 dput(parent);
1214 if (!ret)
1215 d_drop(dentry);
1216 return ret;
1217 no_open_dput:
1218 dput(parent);
1219 no_open:
1220 return nfs_lookup_revalidate(dentry, nd);
1221 }
1222 #endif /* CONFIG_NFSV4 */
1223
1224 static struct dentry *nfs_readdir_lookup(nfs_readdir_descriptor_t *desc)
1225 {
1226 struct dentry *parent = desc->file->f_path.dentry;
1227 struct inode *dir = parent->d_inode;
1228 struct nfs_entry *entry = desc->entry;
1229 struct dentry *dentry, *alias;
1230 struct qstr name = {
1231 .name = entry->name,
1232 .len = entry->len,
1233 };
1234 struct inode *inode;
1235 unsigned long verf = nfs_save_change_attribute(dir);
1236
1237 switch (name.len) {
1238 case 2:
1239 if (name.name[0] == '.' && name.name[1] == '.')
1240 return dget_parent(parent);
1241 break;
1242 case 1:
1243 if (name.name[0] == '.')
1244 return dget(parent);
1245 }
1246
1247 spin_lock(&dir->i_lock);
1248 if (NFS_I(dir)->cache_validity & NFS_INO_INVALID_DATA) {
1249 spin_unlock(&dir->i_lock);
1250 return NULL;
1251 }
1252 spin_unlock(&dir->i_lock);
1253
1254 name.hash = full_name_hash(name.name, name.len);
1255 dentry = d_lookup(parent, &name);
1256 if (dentry != NULL) {
1257 /* Is this a positive dentry that matches the readdir info? */
1258 if (dentry->d_inode != NULL &&
1259 (NFS_FILEID(dentry->d_inode) == entry->ino ||
1260 d_mountpoint(dentry))) {
1261 if (!desc->plus || entry->fh->size == 0)
1262 return dentry;
1263 if (nfs_compare_fh(NFS_FH(dentry->d_inode),
1264 entry->fh) == 0)
1265 goto out_renew;
1266 }
1267 /* No, so d_drop to allow one to be created */
1268 d_drop(dentry);
1269 dput(dentry);
1270 }
1271 if (!desc->plus || !(entry->fattr->valid & NFS_ATTR_FATTR))
1272 return NULL;
1273 if (name.len > NFS_SERVER(dir)->namelen)
1274 return NULL;
1275 /* Note: caller is already holding the dir->i_mutex! */
1276 dentry = d_alloc(parent, &name);
1277 if (dentry == NULL)
1278 return NULL;
1279 dentry->d_op = NFS_PROTO(dir)->dentry_ops;
1280 inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr);
1281 if (IS_ERR(inode)) {
1282 dput(dentry);
1283 return NULL;
1284 }
1285
1286 alias = d_materialise_unique(dentry, inode);
1287 if (alias != NULL) {
1288 dput(dentry);
1289 if (IS_ERR(alias))
1290 return NULL;
1291 dentry = alias;
1292 }
1293
1294 out_renew:
1295 nfs_set_verifier(dentry, verf);
1296 return dentry;
1297 }
1298
1299 /*
1300 * Code common to create, mkdir, and mknod.
1301 */
1302 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
1303 struct nfs_fattr *fattr)
1304 {
1305 struct dentry *parent = dget_parent(dentry);
1306 struct inode *dir = parent->d_inode;
1307 struct inode *inode;
1308 int error = -EACCES;
1309
1310 d_drop(dentry);
1311
1312 /* We may have been initialized further down */
1313 if (dentry->d_inode)
1314 goto out;
1315 if (fhandle->size == 0) {
1316 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr);
1317 if (error)
1318 goto out_error;
1319 }
1320 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1321 if (!(fattr->valid & NFS_ATTR_FATTR)) {
1322 struct nfs_server *server = NFS_SB(dentry->d_sb);
1323 error = server->nfs_client->rpc_ops->getattr(server, fhandle, fattr);
1324 if (error < 0)
1325 goto out_error;
1326 }
1327 inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
1328 error = PTR_ERR(inode);
1329 if (IS_ERR(inode))
1330 goto out_error;
1331 d_add(dentry, inode);
1332 out:
1333 dput(parent);
1334 return 0;
1335 out_error:
1336 nfs_mark_for_revalidate(dir);
1337 dput(parent);
1338 return error;
1339 }
1340
1341 /*
1342 * Following a failed create operation, we drop the dentry rather
1343 * than retain a negative dentry. This avoids a problem in the event
1344 * that the operation succeeded on the server, but an error in the
1345 * reply path made it appear to have failed.
1346 */
1347 static int nfs_create(struct inode *dir, struct dentry *dentry, int mode,
1348 struct nameidata *nd)
1349 {
1350 struct iattr attr;
1351 int error;
1352 int open_flags = 0;
1353
1354 dfprintk(VFS, "NFS: create(%s/%ld), %s\n",
1355 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1356
1357 attr.ia_mode = mode;
1358 attr.ia_valid = ATTR_MODE;
1359
1360 if ((nd->flags & LOOKUP_CREATE) != 0)
1361 open_flags = nd->intent.open.flags;
1362
1363 error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags, nd);
1364 if (error != 0)
1365 goto out_err;
1366 return 0;
1367 out_err:
1368 d_drop(dentry);
1369 return error;
1370 }
1371
1372 /*
1373 * See comments for nfs_proc_create regarding failed operations.
1374 */
1375 static int
1376 nfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t rdev)
1377 {
1378 struct iattr attr;
1379 int status;
1380
1381 dfprintk(VFS, "NFS: mknod(%s/%ld), %s\n",
1382 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1383
1384 if (!new_valid_dev(rdev))
1385 return -EINVAL;
1386
1387 attr.ia_mode = mode;
1388 attr.ia_valid = ATTR_MODE;
1389
1390 status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
1391 if (status != 0)
1392 goto out_err;
1393 return 0;
1394 out_err:
1395 d_drop(dentry);
1396 return status;
1397 }
1398
1399 /*
1400 * See comments for nfs_proc_create regarding failed operations.
1401 */
1402 static int nfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1403 {
1404 struct iattr attr;
1405 int error;
1406
1407 dfprintk(VFS, "NFS: mkdir(%s/%ld), %s\n",
1408 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1409
1410 attr.ia_valid = ATTR_MODE;
1411 attr.ia_mode = mode | S_IFDIR;
1412
1413 error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
1414 if (error != 0)
1415 goto out_err;
1416 return 0;
1417 out_err:
1418 d_drop(dentry);
1419 return error;
1420 }
1421
1422 static void nfs_dentry_handle_enoent(struct dentry *dentry)
1423 {
1424 if (dentry->d_inode != NULL && !d_unhashed(dentry))
1425 d_delete(dentry);
1426 }
1427
1428 static int nfs_rmdir(struct inode *dir, struct dentry *dentry)
1429 {
1430 int error;
1431
1432 dfprintk(VFS, "NFS: rmdir(%s/%ld), %s\n",
1433 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1434
1435 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1436 /* Ensure the VFS deletes this inode */
1437 if (error == 0 && dentry->d_inode != NULL)
1438 clear_nlink(dentry->d_inode);
1439 else if (error == -ENOENT)
1440 nfs_dentry_handle_enoent(dentry);
1441
1442 return error;
1443 }
1444
1445 static int nfs_sillyrename(struct inode *dir, struct dentry *dentry)
1446 {
1447 static unsigned int sillycounter;
1448 const int fileidsize = sizeof(NFS_FILEID(dentry->d_inode))*2;
1449 const int countersize = sizeof(sillycounter)*2;
1450 const int slen = sizeof(".nfs")+fileidsize+countersize-1;
1451 char silly[slen+1];
1452 struct qstr qsilly;
1453 struct dentry *sdentry;
1454 int error = -EIO;
1455
1456 dfprintk(VFS, "NFS: silly-rename(%s/%s, ct=%d)\n",
1457 dentry->d_parent->d_name.name, dentry->d_name.name,
1458 atomic_read(&dentry->d_count));
1459 nfs_inc_stats(dir, NFSIOS_SILLYRENAME);
1460
1461 /*
1462 * We don't allow a dentry to be silly-renamed twice.
1463 */
1464 error = -EBUSY;
1465 if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1466 goto out;
1467
1468 sprintf(silly, ".nfs%*.*Lx",
1469 fileidsize, fileidsize,
1470 (unsigned long long)NFS_FILEID(dentry->d_inode));
1471
1472 /* Return delegation in anticipation of the rename */
1473 nfs_inode_return_delegation(dentry->d_inode);
1474
1475 sdentry = NULL;
1476 do {
1477 char *suffix = silly + slen - countersize;
1478
1479 dput(sdentry);
1480 sillycounter++;
1481 sprintf(suffix, "%*.*x", countersize, countersize, sillycounter);
1482
1483 dfprintk(VFS, "NFS: trying to rename %s to %s\n",
1484 dentry->d_name.name, silly);
1485
1486 sdentry = lookup_one_len(silly, dentry->d_parent, slen);
1487 /*
1488 * N.B. Better to return EBUSY here ... it could be
1489 * dangerous to delete the file while it's in use.
1490 */
1491 if (IS_ERR(sdentry))
1492 goto out;
1493 } while(sdentry->d_inode != NULL); /* need negative lookup */
1494
1495 qsilly.name = silly;
1496 qsilly.len = strlen(silly);
1497 if (dentry->d_inode) {
1498 error = NFS_PROTO(dir)->rename(dir, &dentry->d_name,
1499 dir, &qsilly);
1500 nfs_mark_for_revalidate(dentry->d_inode);
1501 } else
1502 error = NFS_PROTO(dir)->rename(dir, &dentry->d_name,
1503 dir, &qsilly);
1504 if (!error) {
1505 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1506 d_move(dentry, sdentry);
1507 error = nfs_async_unlink(dir, dentry);
1508 /* If we return 0 we don't unlink */
1509 }
1510 dput(sdentry);
1511 out:
1512 return error;
1513 }
1514
1515 /*
1516 * Remove a file after making sure there are no pending writes,
1517 * and after checking that the file has only one user.
1518 *
1519 * We invalidate the attribute cache and free the inode prior to the operation
1520 * to avoid possible races if the server reuses the inode.
1521 */
1522 static int nfs_safe_remove(struct dentry *dentry)
1523 {
1524 struct inode *dir = dentry->d_parent->d_inode;
1525 struct inode *inode = dentry->d_inode;
1526 int error = -EBUSY;
1527
1528 dfprintk(VFS, "NFS: safe_remove(%s/%s)\n",
1529 dentry->d_parent->d_name.name, dentry->d_name.name);
1530
1531 /* If the dentry was sillyrenamed, we simply call d_delete() */
1532 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1533 error = 0;
1534 goto out;
1535 }
1536
1537 if (inode != NULL) {
1538 nfs_inode_return_delegation(inode);
1539 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1540 /* The VFS may want to delete this inode */
1541 if (error == 0)
1542 nfs_drop_nlink(inode);
1543 nfs_mark_for_revalidate(inode);
1544 } else
1545 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1546 if (error == -ENOENT)
1547 nfs_dentry_handle_enoent(dentry);
1548 out:
1549 return error;
1550 }
1551
1552 /* We do silly rename. In case sillyrename() returns -EBUSY, the inode
1553 * belongs to an active ".nfs..." file and we return -EBUSY.
1554 *
1555 * If sillyrename() returns 0, we do nothing, otherwise we unlink.
1556 */
1557 static int nfs_unlink(struct inode *dir, struct dentry *dentry)
1558 {
1559 int error;
1560 int need_rehash = 0;
1561
1562 dfprintk(VFS, "NFS: unlink(%s/%ld, %s)\n", dir->i_sb->s_id,
1563 dir->i_ino, dentry->d_name.name);
1564
1565 spin_lock(&dcache_lock);
1566 spin_lock(&dentry->d_lock);
1567 if (atomic_read(&dentry->d_count) > 1) {
1568 spin_unlock(&dentry->d_lock);
1569 spin_unlock(&dcache_lock);
1570 /* Start asynchronous writeout of the inode */
1571 write_inode_now(dentry->d_inode, 0);
1572 error = nfs_sillyrename(dir, dentry);
1573 return error;
1574 }
1575 if (!d_unhashed(dentry)) {
1576 __d_drop(dentry);
1577 need_rehash = 1;
1578 }
1579 spin_unlock(&dentry->d_lock);
1580 spin_unlock(&dcache_lock);
1581 error = nfs_safe_remove(dentry);
1582 if (!error || error == -ENOENT) {
1583 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1584 } else if (need_rehash)
1585 d_rehash(dentry);
1586 return error;
1587 }
1588
1589 /*
1590 * To create a symbolic link, most file systems instantiate a new inode,
1591 * add a page to it containing the path, then write it out to the disk
1592 * using prepare_write/commit_write.
1593 *
1594 * Unfortunately the NFS client can't create the in-core inode first
1595 * because it needs a file handle to create an in-core inode (see
1596 * fs/nfs/inode.c:nfs_fhget). We only have a file handle *after* the
1597 * symlink request has completed on the server.
1598 *
1599 * So instead we allocate a raw page, copy the symname into it, then do
1600 * the SYMLINK request with the page as the buffer. If it succeeds, we
1601 * now have a new file handle and can instantiate an in-core NFS inode
1602 * and move the raw page into its mapping.
1603 */
1604 static int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1605 {
1606 struct pagevec lru_pvec;
1607 struct page *page;
1608 char *kaddr;
1609 struct iattr attr;
1610 unsigned int pathlen = strlen(symname);
1611 int error;
1612
1613 dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s)\n", dir->i_sb->s_id,
1614 dir->i_ino, dentry->d_name.name, symname);
1615
1616 if (pathlen > PAGE_SIZE)
1617 return -ENAMETOOLONG;
1618
1619 attr.ia_mode = S_IFLNK | S_IRWXUGO;
1620 attr.ia_valid = ATTR_MODE;
1621
1622 page = alloc_page(GFP_HIGHUSER);
1623 if (!page)
1624 return -ENOMEM;
1625
1626 kaddr = kmap_atomic(page, KM_USER0);
1627 memcpy(kaddr, symname, pathlen);
1628 if (pathlen < PAGE_SIZE)
1629 memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
1630 kunmap_atomic(kaddr, KM_USER0);
1631
1632 error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
1633 if (error != 0) {
1634 dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s) error %d\n",
1635 dir->i_sb->s_id, dir->i_ino,
1636 dentry->d_name.name, symname, error);
1637 d_drop(dentry);
1638 __free_page(page);
1639 return error;
1640 }
1641
1642 /*
1643 * No big deal if we can't add this page to the page cache here.
1644 * READLINK will get the missing page from the server if needed.
1645 */
1646 pagevec_init(&lru_pvec, 0);
1647 if (!add_to_page_cache(page, dentry->d_inode->i_mapping, 0,
1648 GFP_KERNEL)) {
1649 pagevec_add(&lru_pvec, page);
1650 pagevec_lru_add_file(&lru_pvec);
1651 SetPageUptodate(page);
1652 unlock_page(page);
1653 } else
1654 __free_page(page);
1655
1656 return 0;
1657 }
1658
1659 static int
1660 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1661 {
1662 struct inode *inode = old_dentry->d_inode;
1663 int error;
1664
1665 dfprintk(VFS, "NFS: link(%s/%s -> %s/%s)\n",
1666 old_dentry->d_parent->d_name.name, old_dentry->d_name.name,
1667 dentry->d_parent->d_name.name, dentry->d_name.name);
1668
1669 nfs_inode_return_delegation(inode);
1670
1671 d_drop(dentry);
1672 error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
1673 if (error == 0) {
1674 atomic_inc(&inode->i_count);
1675 d_add(dentry, inode);
1676 }
1677 return error;
1678 }
1679
1680 /*
1681 * RENAME
1682 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
1683 * different file handle for the same inode after a rename (e.g. when
1684 * moving to a different directory). A fail-safe method to do so would
1685 * be to look up old_dir/old_name, create a link to new_dir/new_name and
1686 * rename the old file using the sillyrename stuff. This way, the original
1687 * file in old_dir will go away when the last process iput()s the inode.
1688 *
1689 * FIXED.
1690 *
1691 * It actually works quite well. One needs to have the possibility for
1692 * at least one ".nfs..." file in each directory the file ever gets
1693 * moved or linked to which happens automagically with the new
1694 * implementation that only depends on the dcache stuff instead of
1695 * using the inode layer
1696 *
1697 * Unfortunately, things are a little more complicated than indicated
1698 * above. For a cross-directory move, we want to make sure we can get
1699 * rid of the old inode after the operation. This means there must be
1700 * no pending writes (if it's a file), and the use count must be 1.
1701 * If these conditions are met, we can drop the dentries before doing
1702 * the rename.
1703 */
1704 static int nfs_rename(struct inode *old_dir, struct dentry *old_dentry,
1705 struct inode *new_dir, struct dentry *new_dentry)
1706 {
1707 struct inode *old_inode = old_dentry->d_inode;
1708 struct inode *new_inode = new_dentry->d_inode;
1709 struct dentry *dentry = NULL, *rehash = NULL;
1710 int error = -EBUSY;
1711
1712 dfprintk(VFS, "NFS: rename(%s/%s -> %s/%s, ct=%d)\n",
1713 old_dentry->d_parent->d_name.name, old_dentry->d_name.name,
1714 new_dentry->d_parent->d_name.name, new_dentry->d_name.name,
1715 atomic_read(&new_dentry->d_count));
1716
1717 /*
1718 * For non-directories, check whether the target is busy and if so,
1719 * make a copy of the dentry and then do a silly-rename. If the
1720 * silly-rename succeeds, the copied dentry is hashed and becomes
1721 * the new target.
1722 */
1723 if (new_inode && !S_ISDIR(new_inode->i_mode)) {
1724 /*
1725 * To prevent any new references to the target during the
1726 * rename, we unhash the dentry in advance.
1727 */
1728 if (!d_unhashed(new_dentry)) {
1729 d_drop(new_dentry);
1730 rehash = new_dentry;
1731 }
1732
1733 if (atomic_read(&new_dentry->d_count) > 2) {
1734 int err;
1735
1736 /* copy the target dentry's name */
1737 dentry = d_alloc(new_dentry->d_parent,
1738 &new_dentry->d_name);
1739 if (!dentry)
1740 goto out;
1741
1742 /* silly-rename the existing target ... */
1743 err = nfs_sillyrename(new_dir, new_dentry);
1744 if (err)
1745 goto out;
1746
1747 new_dentry = dentry;
1748 rehash = NULL;
1749 new_inode = NULL;
1750 }
1751 }
1752
1753 nfs_inode_return_delegation(old_inode);
1754 if (new_inode != NULL)
1755 nfs_inode_return_delegation(new_inode);
1756
1757 error = NFS_PROTO(old_dir)->rename(old_dir, &old_dentry->d_name,
1758 new_dir, &new_dentry->d_name);
1759 nfs_mark_for_revalidate(old_inode);
1760 out:
1761 if (rehash)
1762 d_rehash(rehash);
1763 if (!error) {
1764 if (new_inode != NULL)
1765 nfs_drop_nlink(new_inode);
1766 d_move(old_dentry, new_dentry);
1767 nfs_set_verifier(new_dentry,
1768 nfs_save_change_attribute(new_dir));
1769 } else if (error == -ENOENT)
1770 nfs_dentry_handle_enoent(old_dentry);
1771
1772 /* new dentry created? */
1773 if (dentry)
1774 dput(dentry);
1775 return error;
1776 }
1777
1778 static DEFINE_SPINLOCK(nfs_access_lru_lock);
1779 static LIST_HEAD(nfs_access_lru_list);
1780 static atomic_long_t nfs_access_nr_entries;
1781
1782 static void nfs_access_free_entry(struct nfs_access_entry *entry)
1783 {
1784 put_rpccred(entry->cred);
1785 kfree(entry);
1786 smp_mb__before_atomic_dec();
1787 atomic_long_dec(&nfs_access_nr_entries);
1788 smp_mb__after_atomic_dec();
1789 }
1790
1791 static void nfs_access_free_list(struct list_head *head)
1792 {
1793 struct nfs_access_entry *cache;
1794
1795 while (!list_empty(head)) {
1796 cache = list_entry(head->next, struct nfs_access_entry, lru);
1797 list_del(&cache->lru);
1798 nfs_access_free_entry(cache);
1799 }
1800 }
1801
1802 int nfs_access_cache_shrinker(struct shrinker *shrink, int nr_to_scan, gfp_t gfp_mask)
1803 {
1804 LIST_HEAD(head);
1805 struct nfs_inode *nfsi;
1806 struct nfs_access_entry *cache;
1807
1808 if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL)
1809 return (nr_to_scan == 0) ? 0 : -1;
1810
1811 spin_lock(&nfs_access_lru_lock);
1812 list_for_each_entry(nfsi, &nfs_access_lru_list, access_cache_inode_lru) {
1813 struct inode *inode;
1814
1815 if (nr_to_scan-- == 0)
1816 break;
1817 inode = &nfsi->vfs_inode;
1818 spin_lock(&inode->i_lock);
1819 if (list_empty(&nfsi->access_cache_entry_lru))
1820 goto remove_lru_entry;
1821 cache = list_entry(nfsi->access_cache_entry_lru.next,
1822 struct nfs_access_entry, lru);
1823 list_move(&cache->lru, &head);
1824 rb_erase(&cache->rb_node, &nfsi->access_cache);
1825 if (!list_empty(&nfsi->access_cache_entry_lru))
1826 list_move_tail(&nfsi->access_cache_inode_lru,
1827 &nfs_access_lru_list);
1828 else {
1829 remove_lru_entry:
1830 list_del_init(&nfsi->access_cache_inode_lru);
1831 smp_mb__before_clear_bit();
1832 clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
1833 smp_mb__after_clear_bit();
1834 }
1835 spin_unlock(&inode->i_lock);
1836 }
1837 spin_unlock(&nfs_access_lru_lock);
1838 nfs_access_free_list(&head);
1839 return (atomic_long_read(&nfs_access_nr_entries) / 100) * sysctl_vfs_cache_pressure;
1840 }
1841
1842 static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head)
1843 {
1844 struct rb_root *root_node = &nfsi->access_cache;
1845 struct rb_node *n;
1846 struct nfs_access_entry *entry;
1847
1848 /* Unhook entries from the cache */
1849 while ((n = rb_first(root_node)) != NULL) {
1850 entry = rb_entry(n, struct nfs_access_entry, rb_node);
1851 rb_erase(n, root_node);
1852 list_move(&entry->lru, head);
1853 }
1854 nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
1855 }
1856
1857 void nfs_access_zap_cache(struct inode *inode)
1858 {
1859 LIST_HEAD(head);
1860
1861 if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0)
1862 return;
1863 /* Remove from global LRU init */
1864 spin_lock(&nfs_access_lru_lock);
1865 if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
1866 list_del_init(&NFS_I(inode)->access_cache_inode_lru);
1867
1868 spin_lock(&inode->i_lock);
1869 __nfs_access_zap_cache(NFS_I(inode), &head);
1870 spin_unlock(&inode->i_lock);
1871 spin_unlock(&nfs_access_lru_lock);
1872 nfs_access_free_list(&head);
1873 }
1874
1875 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, struct rpc_cred *cred)
1876 {
1877 struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
1878 struct nfs_access_entry *entry;
1879
1880 while (n != NULL) {
1881 entry = rb_entry(n, struct nfs_access_entry, rb_node);
1882
1883 if (cred < entry->cred)
1884 n = n->rb_left;
1885 else if (cred > entry->cred)
1886 n = n->rb_right;
1887 else
1888 return entry;
1889 }
1890 return NULL;
1891 }
1892
1893 static int nfs_access_get_cached(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res)
1894 {
1895 struct nfs_inode *nfsi = NFS_I(inode);
1896 struct nfs_access_entry *cache;
1897 int err = -ENOENT;
1898
1899 spin_lock(&inode->i_lock);
1900 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
1901 goto out_zap;
1902 cache = nfs_access_search_rbtree(inode, cred);
1903 if (cache == NULL)
1904 goto out;
1905 if (!nfs_have_delegated_attributes(inode) &&
1906 !time_in_range_open(jiffies, cache->jiffies, cache->jiffies + nfsi->attrtimeo))
1907 goto out_stale;
1908 res->jiffies = cache->jiffies;
1909 res->cred = cache->cred;
1910 res->mask = cache->mask;
1911 list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
1912 err = 0;
1913 out:
1914 spin_unlock(&inode->i_lock);
1915 return err;
1916 out_stale:
1917 rb_erase(&cache->rb_node, &nfsi->access_cache);
1918 list_del(&cache->lru);
1919 spin_unlock(&inode->i_lock);
1920 nfs_access_free_entry(cache);
1921 return -ENOENT;
1922 out_zap:
1923 spin_unlock(&inode->i_lock);
1924 nfs_access_zap_cache(inode);
1925 return -ENOENT;
1926 }
1927
1928 static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set)
1929 {
1930 struct nfs_inode *nfsi = NFS_I(inode);
1931 struct rb_root *root_node = &nfsi->access_cache;
1932 struct rb_node **p = &root_node->rb_node;
1933 struct rb_node *parent = NULL;
1934 struct nfs_access_entry *entry;
1935
1936 spin_lock(&inode->i_lock);
1937 while (*p != NULL) {
1938 parent = *p;
1939 entry = rb_entry(parent, struct nfs_access_entry, rb_node);
1940
1941 if (set->cred < entry->cred)
1942 p = &parent->rb_left;
1943 else if (set->cred > entry->cred)
1944 p = &parent->rb_right;
1945 else
1946 goto found;
1947 }
1948 rb_link_node(&set->rb_node, parent, p);
1949 rb_insert_color(&set->rb_node, root_node);
1950 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
1951 spin_unlock(&inode->i_lock);
1952 return;
1953 found:
1954 rb_replace_node(parent, &set->rb_node, root_node);
1955 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
1956 list_del(&entry->lru);
1957 spin_unlock(&inode->i_lock);
1958 nfs_access_free_entry(entry);
1959 }
1960
1961 static void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set)
1962 {
1963 struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
1964 if (cache == NULL)
1965 return;
1966 RB_CLEAR_NODE(&cache->rb_node);
1967 cache->jiffies = set->jiffies;
1968 cache->cred = get_rpccred(set->cred);
1969 cache->mask = set->mask;
1970
1971 nfs_access_add_rbtree(inode, cache);
1972
1973 /* Update accounting */
1974 smp_mb__before_atomic_inc();
1975 atomic_long_inc(&nfs_access_nr_entries);
1976 smp_mb__after_atomic_inc();
1977
1978 /* Add inode to global LRU list */
1979 if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
1980 spin_lock(&nfs_access_lru_lock);
1981 if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
1982 list_add_tail(&NFS_I(inode)->access_cache_inode_lru,
1983 &nfs_access_lru_list);
1984 spin_unlock(&nfs_access_lru_lock);
1985 }
1986 }
1987
1988 static int nfs_do_access(struct inode *inode, struct rpc_cred *cred, int mask)
1989 {
1990 struct nfs_access_entry cache;
1991 int status;
1992
1993 status = nfs_access_get_cached(inode, cred, &cache);
1994 if (status == 0)
1995 goto out;
1996
1997 /* Be clever: ask server to check for all possible rights */
1998 cache.mask = MAY_EXEC | MAY_WRITE | MAY_READ;
1999 cache.cred = cred;
2000 cache.jiffies = jiffies;
2001 status = NFS_PROTO(inode)->access(inode, &cache);
2002 if (status != 0) {
2003 if (status == -ESTALE) {
2004 nfs_zap_caches(inode);
2005 if (!S_ISDIR(inode->i_mode))
2006 set_bit(NFS_INO_STALE, &NFS_I(inode)->flags);
2007 }
2008 return status;
2009 }
2010 nfs_access_add_cache(inode, &cache);
2011 out:
2012 if ((mask & ~cache.mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
2013 return 0;
2014 return -EACCES;
2015 }
2016
2017 static int nfs_open_permission_mask(int openflags)
2018 {
2019 int mask = 0;
2020
2021 if (openflags & FMODE_READ)
2022 mask |= MAY_READ;
2023 if (openflags & FMODE_WRITE)
2024 mask |= MAY_WRITE;
2025 if (openflags & FMODE_EXEC)
2026 mask |= MAY_EXEC;
2027 return mask;
2028 }
2029
2030 int nfs_may_open(struct inode *inode, struct rpc_cred *cred, int openflags)
2031 {
2032 return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
2033 }
2034
2035 int nfs_permission(struct inode *inode, int mask)
2036 {
2037 struct rpc_cred *cred;
2038 int res = 0;
2039
2040 nfs_inc_stats(inode, NFSIOS_VFSACCESS);
2041
2042 if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
2043 goto out;
2044 /* Is this sys_access() ? */
2045 if (mask & (MAY_ACCESS | MAY_CHDIR))
2046 goto force_lookup;
2047
2048 switch (inode->i_mode & S_IFMT) {
2049 case S_IFLNK:
2050 goto out;
2051 case S_IFREG:
2052 /* NFSv4 has atomic_open... */
2053 if (nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN)
2054 && (mask & MAY_OPEN)
2055 && !(mask & MAY_EXEC))
2056 goto out;
2057 break;
2058 case S_IFDIR:
2059 /*
2060 * Optimize away all write operations, since the server
2061 * will check permissions when we perform the op.
2062 */
2063 if ((mask & MAY_WRITE) && !(mask & MAY_READ))
2064 goto out;
2065 }
2066
2067 force_lookup:
2068 if (!NFS_PROTO(inode)->access)
2069 goto out_notsup;
2070
2071 cred = rpc_lookup_cred();
2072 if (!IS_ERR(cred)) {
2073 res = nfs_do_access(inode, cred, mask);
2074 put_rpccred(cred);
2075 } else
2076 res = PTR_ERR(cred);
2077 out:
2078 if (!res && (mask & MAY_EXEC) && !execute_ok(inode))
2079 res = -EACCES;
2080
2081 dfprintk(VFS, "NFS: permission(%s/%ld), mask=0x%x, res=%d\n",
2082 inode->i_sb->s_id, inode->i_ino, mask, res);
2083 return res;
2084 out_notsup:
2085 res = nfs_revalidate_inode(NFS_SERVER(inode), inode);
2086 if (res == 0)
2087 res = generic_permission(inode, mask, NULL);
2088 goto out;
2089 }
2090
2091 /*
2092 * Local variables:
2093 * version-control: t
2094 * kept-new-versions: 5
2095 * End:
2096 */
This page took 0.075014 seconds and 6 git commands to generate.