Merge tag 'phy-for-4.8-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kishon...
[deliverable/linux.git] / fs / nfs / dir.c
1 /*
2 * linux/fs/nfs/dir.c
3 *
4 * Copyright (C) 1992 Rick Sladkey
5 *
6 * nfs directory handling functions
7 *
8 * 10 Apr 1996 Added silly rename for unlink --okir
9 * 28 Sep 1996 Improved directory cache --okir
10 * 23 Aug 1997 Claus Heine claus@momo.math.rwth-aachen.de
11 * Re-implemented silly rename for unlink, newly implemented
12 * silly rename for nfs_rename() following the suggestions
13 * of Olaf Kirch (okir) found in this file.
14 * Following Linus comments on my original hack, this version
15 * depends only on the dcache stuff and doesn't touch the inode
16 * layer (iput() and friends).
17 * 6 Jun 1999 Cache readdir lookups in the page cache. -DaveM
18 */
19
20 #include <linux/module.h>
21 #include <linux/time.h>
22 #include <linux/errno.h>
23 #include <linux/stat.h>
24 #include <linux/fcntl.h>
25 #include <linux/string.h>
26 #include <linux/kernel.h>
27 #include <linux/slab.h>
28 #include <linux/mm.h>
29 #include <linux/sunrpc/clnt.h>
30 #include <linux/nfs_fs.h>
31 #include <linux/nfs_mount.h>
32 #include <linux/pagemap.h>
33 #include <linux/pagevec.h>
34 #include <linux/namei.h>
35 #include <linux/mount.h>
36 #include <linux/swap.h>
37 #include <linux/sched.h>
38 #include <linux/kmemleak.h>
39 #include <linux/xattr.h>
40
41 #include "delegation.h"
42 #include "iostat.h"
43 #include "internal.h"
44 #include "fscache.h"
45
46 #include "nfstrace.h"
47
48 /* #define NFS_DEBUG_VERBOSE 1 */
49
50 static int nfs_opendir(struct inode *, struct file *);
51 static int nfs_closedir(struct inode *, struct file *);
52 static int nfs_readdir(struct file *, struct dir_context *);
53 static int nfs_fsync_dir(struct file *, loff_t, loff_t, int);
54 static loff_t nfs_llseek_dir(struct file *, loff_t, int);
55 static void nfs_readdir_clear_array(struct page*);
56
57 const struct file_operations nfs_dir_operations = {
58 .llseek = nfs_llseek_dir,
59 .read = generic_read_dir,
60 .iterate_shared = nfs_readdir,
61 .open = nfs_opendir,
62 .release = nfs_closedir,
63 .fsync = nfs_fsync_dir,
64 };
65
66 const struct address_space_operations nfs_dir_aops = {
67 .freepage = nfs_readdir_clear_array,
68 };
69
70 static struct nfs_open_dir_context *alloc_nfs_open_dir_context(struct inode *dir, struct rpc_cred *cred)
71 {
72 struct nfs_inode *nfsi = NFS_I(dir);
73 struct nfs_open_dir_context *ctx;
74 ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
75 if (ctx != NULL) {
76 ctx->duped = 0;
77 ctx->attr_gencount = nfsi->attr_gencount;
78 ctx->dir_cookie = 0;
79 ctx->dup_cookie = 0;
80 ctx->cred = get_rpccred(cred);
81 spin_lock(&dir->i_lock);
82 list_add(&ctx->list, &nfsi->open_files);
83 spin_unlock(&dir->i_lock);
84 return ctx;
85 }
86 return ERR_PTR(-ENOMEM);
87 }
88
89 static void put_nfs_open_dir_context(struct inode *dir, struct nfs_open_dir_context *ctx)
90 {
91 spin_lock(&dir->i_lock);
92 list_del(&ctx->list);
93 spin_unlock(&dir->i_lock);
94 put_rpccred(ctx->cred);
95 kfree(ctx);
96 }
97
98 /*
99 * Open file
100 */
101 static int
102 nfs_opendir(struct inode *inode, struct file *filp)
103 {
104 int res = 0;
105 struct nfs_open_dir_context *ctx;
106 struct rpc_cred *cred;
107
108 dfprintk(FILE, "NFS: open dir(%pD2)\n", filp);
109
110 nfs_inc_stats(inode, NFSIOS_VFSOPEN);
111
112 cred = rpc_lookup_cred();
113 if (IS_ERR(cred))
114 return PTR_ERR(cred);
115 ctx = alloc_nfs_open_dir_context(inode, cred);
116 if (IS_ERR(ctx)) {
117 res = PTR_ERR(ctx);
118 goto out;
119 }
120 filp->private_data = ctx;
121 if (filp->f_path.dentry == filp->f_path.mnt->mnt_root) {
122 /* This is a mountpoint, so d_revalidate will never
123 * have been called, so we need to refresh the
124 * inode (for close-open consistency) ourselves.
125 */
126 __nfs_revalidate_inode(NFS_SERVER(inode), inode);
127 }
128 out:
129 put_rpccred(cred);
130 return res;
131 }
132
133 static int
134 nfs_closedir(struct inode *inode, struct file *filp)
135 {
136 put_nfs_open_dir_context(file_inode(filp), filp->private_data);
137 return 0;
138 }
139
140 struct nfs_cache_array_entry {
141 u64 cookie;
142 u64 ino;
143 struct qstr string;
144 unsigned char d_type;
145 };
146
147 struct nfs_cache_array {
148 atomic_t refcount;
149 int size;
150 int eof_index;
151 u64 last_cookie;
152 struct nfs_cache_array_entry array[0];
153 };
154
155 typedef int (*decode_dirent_t)(struct xdr_stream *, struct nfs_entry *, int);
156 typedef struct {
157 struct file *file;
158 struct page *page;
159 struct dir_context *ctx;
160 unsigned long page_index;
161 u64 *dir_cookie;
162 u64 last_cookie;
163 loff_t current_index;
164 decode_dirent_t decode;
165
166 unsigned long timestamp;
167 unsigned long gencount;
168 unsigned int cache_entry_index;
169 unsigned int plus:1;
170 unsigned int eof:1;
171 } nfs_readdir_descriptor_t;
172
173 /*
174 * The caller is responsible for calling nfs_readdir_release_array(page)
175 */
176 static
177 struct nfs_cache_array *nfs_readdir_get_array(struct page *page)
178 {
179 void *ptr;
180 if (page == NULL)
181 return ERR_PTR(-EIO);
182 ptr = kmap(page);
183 if (ptr == NULL)
184 return ERR_PTR(-ENOMEM);
185 return ptr;
186 }
187
188 static
189 void nfs_readdir_release_array(struct page *page)
190 {
191 kunmap(page);
192 }
193
194 /*
195 * we are freeing strings created by nfs_add_to_readdir_array()
196 */
197 static
198 void nfs_readdir_clear_array(struct page *page)
199 {
200 struct nfs_cache_array *array;
201 int i;
202
203 array = kmap_atomic(page);
204 if (atomic_dec_and_test(&array->refcount))
205 for (i = 0; i < array->size; i++)
206 kfree(array->array[i].string.name);
207 kunmap_atomic(array);
208 }
209
210 static bool grab_page(struct page *page)
211 {
212 struct nfs_cache_array *array = kmap_atomic(page);
213 bool res = atomic_inc_not_zero(&array->refcount);
214 kunmap_atomic(array);
215 return res;
216 }
217
218 /*
219 * the caller is responsible for freeing qstr.name
220 * when called by nfs_readdir_add_to_array, the strings will be freed in
221 * nfs_clear_readdir_array()
222 */
223 static
224 int nfs_readdir_make_qstr(struct qstr *string, const char *name, unsigned int len)
225 {
226 string->len = len;
227 string->name = kmemdup(name, len, GFP_KERNEL);
228 if (string->name == NULL)
229 return -ENOMEM;
230 /*
231 * Avoid a kmemleak false positive. The pointer to the name is stored
232 * in a page cache page which kmemleak does not scan.
233 */
234 kmemleak_not_leak(string->name);
235 string->hash = full_name_hash(name, len);
236 return 0;
237 }
238
239 static
240 int nfs_readdir_add_to_array(struct nfs_entry *entry, struct page *page)
241 {
242 struct nfs_cache_array *array = nfs_readdir_get_array(page);
243 struct nfs_cache_array_entry *cache_entry;
244 int ret;
245
246 if (IS_ERR(array))
247 return PTR_ERR(array);
248
249 cache_entry = &array->array[array->size];
250
251 /* Check that this entry lies within the page bounds */
252 ret = -ENOSPC;
253 if ((char *)&cache_entry[1] - (char *)page_address(page) > PAGE_SIZE)
254 goto out;
255
256 cache_entry->cookie = entry->prev_cookie;
257 cache_entry->ino = entry->ino;
258 cache_entry->d_type = entry->d_type;
259 ret = nfs_readdir_make_qstr(&cache_entry->string, entry->name, entry->len);
260 if (ret)
261 goto out;
262 array->last_cookie = entry->cookie;
263 array->size++;
264 if (entry->eof != 0)
265 array->eof_index = array->size;
266 out:
267 nfs_readdir_release_array(page);
268 return ret;
269 }
270
271 static
272 int nfs_readdir_search_for_pos(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
273 {
274 loff_t diff = desc->ctx->pos - desc->current_index;
275 unsigned int index;
276
277 if (diff < 0)
278 goto out_eof;
279 if (diff >= array->size) {
280 if (array->eof_index >= 0)
281 goto out_eof;
282 return -EAGAIN;
283 }
284
285 index = (unsigned int)diff;
286 *desc->dir_cookie = array->array[index].cookie;
287 desc->cache_entry_index = index;
288 return 0;
289 out_eof:
290 desc->eof = 1;
291 return -EBADCOOKIE;
292 }
293
294 static bool
295 nfs_readdir_inode_mapping_valid(struct nfs_inode *nfsi)
296 {
297 if (nfsi->cache_validity & (NFS_INO_INVALID_ATTR|NFS_INO_INVALID_DATA))
298 return false;
299 smp_rmb();
300 return !test_bit(NFS_INO_INVALIDATING, &nfsi->flags);
301 }
302
303 static
304 int nfs_readdir_search_for_cookie(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
305 {
306 int i;
307 loff_t new_pos;
308 int status = -EAGAIN;
309
310 for (i = 0; i < array->size; i++) {
311 if (array->array[i].cookie == *desc->dir_cookie) {
312 struct nfs_inode *nfsi = NFS_I(file_inode(desc->file));
313 struct nfs_open_dir_context *ctx = desc->file->private_data;
314
315 new_pos = desc->current_index + i;
316 if (ctx->attr_gencount != nfsi->attr_gencount ||
317 !nfs_readdir_inode_mapping_valid(nfsi)) {
318 ctx->duped = 0;
319 ctx->attr_gencount = nfsi->attr_gencount;
320 } else if (new_pos < desc->ctx->pos) {
321 if (ctx->duped > 0
322 && ctx->dup_cookie == *desc->dir_cookie) {
323 if (printk_ratelimit()) {
324 pr_notice("NFS: directory %pD2 contains a readdir loop."
325 "Please contact your server vendor. "
326 "The file: %.*s has duplicate cookie %llu\n",
327 desc->file, array->array[i].string.len,
328 array->array[i].string.name, *desc->dir_cookie);
329 }
330 status = -ELOOP;
331 goto out;
332 }
333 ctx->dup_cookie = *desc->dir_cookie;
334 ctx->duped = -1;
335 }
336 desc->ctx->pos = new_pos;
337 desc->cache_entry_index = i;
338 return 0;
339 }
340 }
341 if (array->eof_index >= 0) {
342 status = -EBADCOOKIE;
343 if (*desc->dir_cookie == array->last_cookie)
344 desc->eof = 1;
345 }
346 out:
347 return status;
348 }
349
350 static
351 int nfs_readdir_search_array(nfs_readdir_descriptor_t *desc)
352 {
353 struct nfs_cache_array *array;
354 int status;
355
356 array = nfs_readdir_get_array(desc->page);
357 if (IS_ERR(array)) {
358 status = PTR_ERR(array);
359 goto out;
360 }
361
362 if (*desc->dir_cookie == 0)
363 status = nfs_readdir_search_for_pos(array, desc);
364 else
365 status = nfs_readdir_search_for_cookie(array, desc);
366
367 if (status == -EAGAIN) {
368 desc->last_cookie = array->last_cookie;
369 desc->current_index += array->size;
370 desc->page_index++;
371 }
372 nfs_readdir_release_array(desc->page);
373 out:
374 return status;
375 }
376
377 /* Fill a page with xdr information before transferring to the cache page */
378 static
379 int nfs_readdir_xdr_filler(struct page **pages, nfs_readdir_descriptor_t *desc,
380 struct nfs_entry *entry, struct file *file, struct inode *inode)
381 {
382 struct nfs_open_dir_context *ctx = file->private_data;
383 struct rpc_cred *cred = ctx->cred;
384 unsigned long timestamp, gencount;
385 int error;
386
387 again:
388 timestamp = jiffies;
389 gencount = nfs_inc_attr_generation_counter();
390 error = NFS_PROTO(inode)->readdir(file_dentry(file), cred, entry->cookie, pages,
391 NFS_SERVER(inode)->dtsize, desc->plus);
392 if (error < 0) {
393 /* We requested READDIRPLUS, but the server doesn't grok it */
394 if (error == -ENOTSUPP && desc->plus) {
395 NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
396 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
397 desc->plus = 0;
398 goto again;
399 }
400 goto error;
401 }
402 desc->timestamp = timestamp;
403 desc->gencount = gencount;
404 error:
405 return error;
406 }
407
408 static int xdr_decode(nfs_readdir_descriptor_t *desc,
409 struct nfs_entry *entry, struct xdr_stream *xdr)
410 {
411 int error;
412
413 error = desc->decode(xdr, entry, desc->plus);
414 if (error)
415 return error;
416 entry->fattr->time_start = desc->timestamp;
417 entry->fattr->gencount = desc->gencount;
418 return 0;
419 }
420
421 /* Match file and dirent using either filehandle or fileid
422 * Note: caller is responsible for checking the fsid
423 */
424 static
425 int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry)
426 {
427 struct inode *inode;
428 struct nfs_inode *nfsi;
429
430 if (d_really_is_negative(dentry))
431 return 0;
432
433 inode = d_inode(dentry);
434 if (is_bad_inode(inode) || NFS_STALE(inode))
435 return 0;
436
437 nfsi = NFS_I(inode);
438 if (entry->fattr->fileid == nfsi->fileid)
439 return 1;
440 if (nfs_compare_fh(entry->fh, &nfsi->fh) == 0)
441 return 1;
442 return 0;
443 }
444
445 static
446 bool nfs_use_readdirplus(struct inode *dir, struct dir_context *ctx)
447 {
448 if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS))
449 return false;
450 if (test_and_clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags))
451 return true;
452 if (ctx->pos == 0)
453 return true;
454 return false;
455 }
456
457 /*
458 * This function is called by the lookup code to request the use of
459 * readdirplus to accelerate any future lookups in the same
460 * directory.
461 */
462 static
463 void nfs_advise_use_readdirplus(struct inode *dir)
464 {
465 set_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags);
466 }
467
468 /*
469 * This function is mainly for use by nfs_getattr().
470 *
471 * If this is an 'ls -l', we want to force use of readdirplus.
472 * Do this by checking if there is an active file descriptor
473 * and calling nfs_advise_use_readdirplus, then forcing a
474 * cache flush.
475 */
476 void nfs_force_use_readdirplus(struct inode *dir)
477 {
478 if (!list_empty(&NFS_I(dir)->open_files)) {
479 nfs_advise_use_readdirplus(dir);
480 nfs_zap_mapping(dir, dir->i_mapping);
481 }
482 }
483
484 static
485 void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry)
486 {
487 struct qstr filename = QSTR_INIT(entry->name, entry->len);
488 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
489 struct dentry *dentry;
490 struct dentry *alias;
491 struct inode *dir = d_inode(parent);
492 struct inode *inode;
493 int status;
494
495 if (!(entry->fattr->valid & NFS_ATTR_FATTR_FILEID))
496 return;
497 if (!(entry->fattr->valid & NFS_ATTR_FATTR_FSID))
498 return;
499 if (filename.name[0] == '.') {
500 if (filename.len == 1)
501 return;
502 if (filename.len == 2 && filename.name[1] == '.')
503 return;
504 }
505 filename.hash = full_name_hash(filename.name, filename.len);
506
507 dentry = d_lookup(parent, &filename);
508 again:
509 if (!dentry) {
510 dentry = d_alloc_parallel(parent, &filename, &wq);
511 if (IS_ERR(dentry))
512 return;
513 }
514 if (!d_in_lookup(dentry)) {
515 /* Is there a mountpoint here? If so, just exit */
516 if (!nfs_fsid_equal(&NFS_SB(dentry->d_sb)->fsid,
517 &entry->fattr->fsid))
518 goto out;
519 if (nfs_same_file(dentry, entry)) {
520 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
521 status = nfs_refresh_inode(d_inode(dentry), entry->fattr);
522 if (!status)
523 nfs_setsecurity(d_inode(dentry), entry->fattr, entry->label);
524 goto out;
525 } else {
526 d_invalidate(dentry);
527 dput(dentry);
528 dentry = NULL;
529 goto again;
530 }
531 }
532
533 inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr, entry->label);
534 alias = d_splice_alias(inode, dentry);
535 d_lookup_done(dentry);
536 if (alias) {
537 if (IS_ERR(alias))
538 goto out;
539 dput(dentry);
540 dentry = alias;
541 }
542 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
543 out:
544 dput(dentry);
545 }
546
547 /* Perform conversion from xdr to cache array */
548 static
549 int nfs_readdir_page_filler(nfs_readdir_descriptor_t *desc, struct nfs_entry *entry,
550 struct page **xdr_pages, struct page *page, unsigned int buflen)
551 {
552 struct xdr_stream stream;
553 struct xdr_buf buf;
554 struct page *scratch;
555 struct nfs_cache_array *array;
556 unsigned int count = 0;
557 int status;
558
559 scratch = alloc_page(GFP_KERNEL);
560 if (scratch == NULL)
561 return -ENOMEM;
562
563 if (buflen == 0)
564 goto out_nopages;
565
566 xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen);
567 xdr_set_scratch_buffer(&stream, page_address(scratch), PAGE_SIZE);
568
569 do {
570 status = xdr_decode(desc, entry, &stream);
571 if (status != 0) {
572 if (status == -EAGAIN)
573 status = 0;
574 break;
575 }
576
577 count++;
578
579 if (desc->plus != 0)
580 nfs_prime_dcache(file_dentry(desc->file), entry);
581
582 status = nfs_readdir_add_to_array(entry, page);
583 if (status != 0)
584 break;
585 } while (!entry->eof);
586
587 out_nopages:
588 if (count == 0 || (status == -EBADCOOKIE && entry->eof != 0)) {
589 array = nfs_readdir_get_array(page);
590 if (!IS_ERR(array)) {
591 array->eof_index = array->size;
592 status = 0;
593 nfs_readdir_release_array(page);
594 } else
595 status = PTR_ERR(array);
596 }
597
598 put_page(scratch);
599 return status;
600 }
601
602 static
603 void nfs_readdir_free_pages(struct page **pages, unsigned int npages)
604 {
605 unsigned int i;
606 for (i = 0; i < npages; i++)
607 put_page(pages[i]);
608 }
609
610 /*
611 * nfs_readdir_large_page will allocate pages that must be freed with a call
612 * to nfs_readdir_free_pagearray
613 */
614 static
615 int nfs_readdir_alloc_pages(struct page **pages, unsigned int npages)
616 {
617 unsigned int i;
618
619 for (i = 0; i < npages; i++) {
620 struct page *page = alloc_page(GFP_KERNEL);
621 if (page == NULL)
622 goto out_freepages;
623 pages[i] = page;
624 }
625 return 0;
626
627 out_freepages:
628 nfs_readdir_free_pages(pages, i);
629 return -ENOMEM;
630 }
631
632 static
633 int nfs_readdir_xdr_to_array(nfs_readdir_descriptor_t *desc, struct page *page, struct inode *inode)
634 {
635 struct page *pages[NFS_MAX_READDIR_PAGES];
636 struct nfs_entry entry;
637 struct file *file = desc->file;
638 struct nfs_cache_array *array;
639 int status = -ENOMEM;
640 unsigned int array_size = ARRAY_SIZE(pages);
641
642 entry.prev_cookie = 0;
643 entry.cookie = desc->last_cookie;
644 entry.eof = 0;
645 entry.fh = nfs_alloc_fhandle();
646 entry.fattr = nfs_alloc_fattr();
647 entry.server = NFS_SERVER(inode);
648 if (entry.fh == NULL || entry.fattr == NULL)
649 goto out;
650
651 entry.label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT);
652 if (IS_ERR(entry.label)) {
653 status = PTR_ERR(entry.label);
654 goto out;
655 }
656
657 array = nfs_readdir_get_array(page);
658 if (IS_ERR(array)) {
659 status = PTR_ERR(array);
660 goto out_label_free;
661 }
662 memset(array, 0, sizeof(struct nfs_cache_array));
663 atomic_set(&array->refcount, 1);
664 array->eof_index = -1;
665
666 status = nfs_readdir_alloc_pages(pages, array_size);
667 if (status < 0)
668 goto out_release_array;
669 do {
670 unsigned int pglen;
671 status = nfs_readdir_xdr_filler(pages, desc, &entry, file, inode);
672
673 if (status < 0)
674 break;
675 pglen = status;
676 status = nfs_readdir_page_filler(desc, &entry, pages, page, pglen);
677 if (status < 0) {
678 if (status == -ENOSPC)
679 status = 0;
680 break;
681 }
682 } while (array->eof_index < 0);
683
684 nfs_readdir_free_pages(pages, array_size);
685 out_release_array:
686 nfs_readdir_release_array(page);
687 out_label_free:
688 nfs4_label_free(entry.label);
689 out:
690 nfs_free_fattr(entry.fattr);
691 nfs_free_fhandle(entry.fh);
692 return status;
693 }
694
695 /*
696 * Now we cache directories properly, by converting xdr information
697 * to an array that can be used for lookups later. This results in
698 * fewer cache pages, since we can store more information on each page.
699 * We only need to convert from xdr once so future lookups are much simpler
700 */
701 static
702 int nfs_readdir_filler(nfs_readdir_descriptor_t *desc, struct page* page)
703 {
704 struct inode *inode = file_inode(desc->file);
705 int ret;
706
707 ret = nfs_readdir_xdr_to_array(desc, page, inode);
708 if (ret < 0)
709 goto error;
710 SetPageUptodate(page);
711
712 if (invalidate_inode_pages2_range(inode->i_mapping, page->index + 1, -1) < 0) {
713 /* Should never happen */
714 nfs_zap_mapping(inode, inode->i_mapping);
715 }
716 unlock_page(page);
717 return 0;
718 error:
719 unlock_page(page);
720 return ret;
721 }
722
723 static
724 void cache_page_release(nfs_readdir_descriptor_t *desc)
725 {
726 nfs_readdir_clear_array(desc->page);
727 put_page(desc->page);
728 desc->page = NULL;
729 }
730
731 static
732 struct page *get_cache_page(nfs_readdir_descriptor_t *desc)
733 {
734 struct page *page;
735
736 for (;;) {
737 page = read_cache_page(file_inode(desc->file)->i_mapping,
738 desc->page_index, (filler_t *)nfs_readdir_filler, desc);
739 if (IS_ERR(page) || grab_page(page))
740 break;
741 put_page(page);
742 }
743 return page;
744 }
745
746 /*
747 * Returns 0 if desc->dir_cookie was found on page desc->page_index
748 */
749 static
750 int find_cache_page(nfs_readdir_descriptor_t *desc)
751 {
752 int res;
753
754 desc->page = get_cache_page(desc);
755 if (IS_ERR(desc->page))
756 return PTR_ERR(desc->page);
757
758 res = nfs_readdir_search_array(desc);
759 if (res != 0)
760 cache_page_release(desc);
761 return res;
762 }
763
764 /* Search for desc->dir_cookie from the beginning of the page cache */
765 static inline
766 int readdir_search_pagecache(nfs_readdir_descriptor_t *desc)
767 {
768 int res;
769
770 if (desc->page_index == 0) {
771 desc->current_index = 0;
772 desc->last_cookie = 0;
773 }
774 do {
775 res = find_cache_page(desc);
776 } while (res == -EAGAIN);
777 return res;
778 }
779
780 /*
781 * Once we've found the start of the dirent within a page: fill 'er up...
782 */
783 static
784 int nfs_do_filldir(nfs_readdir_descriptor_t *desc)
785 {
786 struct file *file = desc->file;
787 int i = 0;
788 int res = 0;
789 struct nfs_cache_array *array = NULL;
790 struct nfs_open_dir_context *ctx = file->private_data;
791
792 array = nfs_readdir_get_array(desc->page);
793 if (IS_ERR(array)) {
794 res = PTR_ERR(array);
795 goto out;
796 }
797
798 for (i = desc->cache_entry_index; i < array->size; i++) {
799 struct nfs_cache_array_entry *ent;
800
801 ent = &array->array[i];
802 if (!dir_emit(desc->ctx, ent->string.name, ent->string.len,
803 nfs_compat_user_ino64(ent->ino), ent->d_type)) {
804 desc->eof = 1;
805 break;
806 }
807 desc->ctx->pos++;
808 if (i < (array->size-1))
809 *desc->dir_cookie = array->array[i+1].cookie;
810 else
811 *desc->dir_cookie = array->last_cookie;
812 if (ctx->duped != 0)
813 ctx->duped = 1;
814 }
815 if (array->eof_index >= 0)
816 desc->eof = 1;
817
818 nfs_readdir_release_array(desc->page);
819 out:
820 cache_page_release(desc);
821 dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n",
822 (unsigned long long)*desc->dir_cookie, res);
823 return res;
824 }
825
826 /*
827 * If we cannot find a cookie in our cache, we suspect that this is
828 * because it points to a deleted file, so we ask the server to return
829 * whatever it thinks is the next entry. We then feed this to filldir.
830 * If all goes well, we should then be able to find our way round the
831 * cache on the next call to readdir_search_pagecache();
832 *
833 * NOTE: we cannot add the anonymous page to the pagecache because
834 * the data it contains might not be page aligned. Besides,
835 * we should already have a complete representation of the
836 * directory in the page cache by the time we get here.
837 */
838 static inline
839 int uncached_readdir(nfs_readdir_descriptor_t *desc)
840 {
841 struct page *page = NULL;
842 int status;
843 struct inode *inode = file_inode(desc->file);
844 struct nfs_open_dir_context *ctx = desc->file->private_data;
845
846 dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n",
847 (unsigned long long)*desc->dir_cookie);
848
849 page = alloc_page(GFP_HIGHUSER);
850 if (!page) {
851 status = -ENOMEM;
852 goto out;
853 }
854
855 desc->page_index = 0;
856 desc->last_cookie = *desc->dir_cookie;
857 desc->page = page;
858 ctx->duped = 0;
859
860 status = nfs_readdir_xdr_to_array(desc, page, inode);
861 if (status < 0)
862 goto out_release;
863
864 status = nfs_do_filldir(desc);
865
866 out:
867 dfprintk(DIRCACHE, "NFS: %s: returns %d\n",
868 __func__, status);
869 return status;
870 out_release:
871 cache_page_release(desc);
872 goto out;
873 }
874
875 static bool nfs_dir_mapping_need_revalidate(struct inode *dir)
876 {
877 struct nfs_inode *nfsi = NFS_I(dir);
878
879 if (nfs_attribute_cache_expired(dir))
880 return true;
881 if (nfsi->cache_validity & NFS_INO_INVALID_DATA)
882 return true;
883 return false;
884 }
885
886 /* The file offset position represents the dirent entry number. A
887 last cookie cache takes care of the common case of reading the
888 whole directory.
889 */
890 static int nfs_readdir(struct file *file, struct dir_context *ctx)
891 {
892 struct dentry *dentry = file_dentry(file);
893 struct inode *inode = d_inode(dentry);
894 nfs_readdir_descriptor_t my_desc,
895 *desc = &my_desc;
896 struct nfs_open_dir_context *dir_ctx = file->private_data;
897 int res = 0;
898
899 dfprintk(FILE, "NFS: readdir(%pD2) starting at cookie %llu\n",
900 file, (long long)ctx->pos);
901 nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
902
903 /*
904 * ctx->pos points to the dirent entry number.
905 * *desc->dir_cookie has the cookie for the next entry. We have
906 * to either find the entry with the appropriate number or
907 * revalidate the cookie.
908 */
909 memset(desc, 0, sizeof(*desc));
910
911 desc->file = file;
912 desc->ctx = ctx;
913 desc->dir_cookie = &dir_ctx->dir_cookie;
914 desc->decode = NFS_PROTO(inode)->decode_dirent;
915 desc->plus = nfs_use_readdirplus(inode, ctx) ? 1 : 0;
916
917 if (ctx->pos == 0 || nfs_dir_mapping_need_revalidate(inode))
918 res = nfs_revalidate_mapping(inode, file->f_mapping);
919 if (res < 0)
920 goto out;
921
922 do {
923 res = readdir_search_pagecache(desc);
924
925 if (res == -EBADCOOKIE) {
926 res = 0;
927 /* This means either end of directory */
928 if (*desc->dir_cookie && desc->eof == 0) {
929 /* Or that the server has 'lost' a cookie */
930 res = uncached_readdir(desc);
931 if (res == 0)
932 continue;
933 }
934 break;
935 }
936 if (res == -ETOOSMALL && desc->plus) {
937 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
938 nfs_zap_caches(inode);
939 desc->page_index = 0;
940 desc->plus = 0;
941 desc->eof = 0;
942 continue;
943 }
944 if (res < 0)
945 break;
946
947 res = nfs_do_filldir(desc);
948 if (res < 0)
949 break;
950 } while (!desc->eof);
951 out:
952 if (res > 0)
953 res = 0;
954 dfprintk(FILE, "NFS: readdir(%pD2) returns %d\n", file, res);
955 return res;
956 }
957
958 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int whence)
959 {
960 struct nfs_open_dir_context *dir_ctx = filp->private_data;
961
962 dfprintk(FILE, "NFS: llseek dir(%pD2, %lld, %d)\n",
963 filp, offset, whence);
964
965 switch (whence) {
966 case 1:
967 offset += filp->f_pos;
968 case 0:
969 if (offset >= 0)
970 break;
971 default:
972 return -EINVAL;
973 }
974 if (offset != filp->f_pos) {
975 filp->f_pos = offset;
976 dir_ctx->dir_cookie = 0;
977 dir_ctx->duped = 0;
978 }
979 return offset;
980 }
981
982 /*
983 * All directory operations under NFS are synchronous, so fsync()
984 * is a dummy operation.
985 */
986 static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end,
987 int datasync)
988 {
989 struct inode *inode = file_inode(filp);
990
991 dfprintk(FILE, "NFS: fsync dir(%pD2) datasync %d\n", filp, datasync);
992
993 inode_lock(inode);
994 nfs_inc_stats(inode, NFSIOS_VFSFSYNC);
995 inode_unlock(inode);
996 return 0;
997 }
998
999 /**
1000 * nfs_force_lookup_revalidate - Mark the directory as having changed
1001 * @dir - pointer to directory inode
1002 *
1003 * This forces the revalidation code in nfs_lookup_revalidate() to do a
1004 * full lookup on all child dentries of 'dir' whenever a change occurs
1005 * on the server that might have invalidated our dcache.
1006 *
1007 * The caller should be holding dir->i_lock
1008 */
1009 void nfs_force_lookup_revalidate(struct inode *dir)
1010 {
1011 NFS_I(dir)->cache_change_attribute++;
1012 }
1013 EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate);
1014
1015 /*
1016 * A check for whether or not the parent directory has changed.
1017 * In the case it has, we assume that the dentries are untrustworthy
1018 * and may need to be looked up again.
1019 * If rcu_walk prevents us from performing a full check, return 0.
1020 */
1021 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry,
1022 int rcu_walk)
1023 {
1024 int ret;
1025
1026 if (IS_ROOT(dentry))
1027 return 1;
1028 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE)
1029 return 0;
1030 if (!nfs_verify_change_attribute(dir, dentry->d_time))
1031 return 0;
1032 /* Revalidate nfsi->cache_change_attribute before we declare a match */
1033 if (rcu_walk)
1034 ret = nfs_revalidate_inode_rcu(NFS_SERVER(dir), dir);
1035 else
1036 ret = nfs_revalidate_inode(NFS_SERVER(dir), dir);
1037 if (ret < 0)
1038 return 0;
1039 if (!nfs_verify_change_attribute(dir, dentry->d_time))
1040 return 0;
1041 return 1;
1042 }
1043
1044 /*
1045 * Use intent information to check whether or not we're going to do
1046 * an O_EXCL create using this path component.
1047 */
1048 static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags)
1049 {
1050 if (NFS_PROTO(dir)->version == 2)
1051 return 0;
1052 return flags & LOOKUP_EXCL;
1053 }
1054
1055 /*
1056 * Inode and filehandle revalidation for lookups.
1057 *
1058 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
1059 * or if the intent information indicates that we're about to open this
1060 * particular file and the "nocto" mount flag is not set.
1061 *
1062 */
1063 static
1064 int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags)
1065 {
1066 struct nfs_server *server = NFS_SERVER(inode);
1067 int ret;
1068
1069 if (IS_AUTOMOUNT(inode))
1070 return 0;
1071 /* VFS wants an on-the-wire revalidation */
1072 if (flags & LOOKUP_REVAL)
1073 goto out_force;
1074 /* This is an open(2) */
1075 if ((flags & LOOKUP_OPEN) && !(server->flags & NFS_MOUNT_NOCTO) &&
1076 (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode)))
1077 goto out_force;
1078 out:
1079 return (inode->i_nlink == 0) ? -ENOENT : 0;
1080 out_force:
1081 if (flags & LOOKUP_RCU)
1082 return -ECHILD;
1083 ret = __nfs_revalidate_inode(server, inode);
1084 if (ret != 0)
1085 return ret;
1086 goto out;
1087 }
1088
1089 /*
1090 * We judge how long we want to trust negative
1091 * dentries by looking at the parent inode mtime.
1092 *
1093 * If parent mtime has changed, we revalidate, else we wait for a
1094 * period corresponding to the parent's attribute cache timeout value.
1095 *
1096 * If LOOKUP_RCU prevents us from performing a full check, return 1
1097 * suggesting a reval is needed.
1098 */
1099 static inline
1100 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
1101 unsigned int flags)
1102 {
1103 /* Don't revalidate a negative dentry if we're creating a new file */
1104 if (flags & LOOKUP_CREATE)
1105 return 0;
1106 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG)
1107 return 1;
1108 return !nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU);
1109 }
1110
1111 /*
1112 * This is called every time the dcache has a lookup hit,
1113 * and we should check whether we can really trust that
1114 * lookup.
1115 *
1116 * NOTE! The hit can be a negative hit too, don't assume
1117 * we have an inode!
1118 *
1119 * If the parent directory is seen to have changed, we throw out the
1120 * cached dentry and do a new lookup.
1121 */
1122 static int nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1123 {
1124 struct inode *dir;
1125 struct inode *inode;
1126 struct dentry *parent;
1127 struct nfs_fh *fhandle = NULL;
1128 struct nfs_fattr *fattr = NULL;
1129 struct nfs4_label *label = NULL;
1130 int error;
1131
1132 if (flags & LOOKUP_RCU) {
1133 parent = ACCESS_ONCE(dentry->d_parent);
1134 dir = d_inode_rcu(parent);
1135 if (!dir)
1136 return -ECHILD;
1137 } else {
1138 parent = dget_parent(dentry);
1139 dir = d_inode(parent);
1140 }
1141 nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
1142 inode = d_inode(dentry);
1143
1144 if (!inode) {
1145 if (nfs_neg_need_reval(dir, dentry, flags)) {
1146 if (flags & LOOKUP_RCU)
1147 return -ECHILD;
1148 goto out_bad;
1149 }
1150 goto out_valid_noent;
1151 }
1152
1153 if (is_bad_inode(inode)) {
1154 if (flags & LOOKUP_RCU)
1155 return -ECHILD;
1156 dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1157 __func__, dentry);
1158 goto out_bad;
1159 }
1160
1161 if (NFS_PROTO(dir)->have_delegation(inode, FMODE_READ))
1162 goto out_set_verifier;
1163
1164 /* Force a full look up iff the parent directory has changed */
1165 if (!nfs_is_exclusive_create(dir, flags) &&
1166 nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) {
1167
1168 if (nfs_lookup_verify_inode(inode, flags)) {
1169 if (flags & LOOKUP_RCU)
1170 return -ECHILD;
1171 goto out_zap_parent;
1172 }
1173 goto out_valid;
1174 }
1175
1176 if (flags & LOOKUP_RCU)
1177 return -ECHILD;
1178
1179 if (NFS_STALE(inode))
1180 goto out_bad;
1181
1182 error = -ENOMEM;
1183 fhandle = nfs_alloc_fhandle();
1184 fattr = nfs_alloc_fattr();
1185 if (fhandle == NULL || fattr == NULL)
1186 goto out_error;
1187
1188 label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT);
1189 if (IS_ERR(label))
1190 goto out_error;
1191
1192 trace_nfs_lookup_revalidate_enter(dir, dentry, flags);
1193 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, label);
1194 trace_nfs_lookup_revalidate_exit(dir, dentry, flags, error);
1195 if (error)
1196 goto out_bad;
1197 if (nfs_compare_fh(NFS_FH(inode), fhandle))
1198 goto out_bad;
1199 if ((error = nfs_refresh_inode(inode, fattr)) != 0)
1200 goto out_bad;
1201
1202 nfs_setsecurity(inode, fattr, label);
1203
1204 nfs_free_fattr(fattr);
1205 nfs_free_fhandle(fhandle);
1206 nfs4_label_free(label);
1207
1208 out_set_verifier:
1209 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1210 out_valid:
1211 /* Success: notify readdir to use READDIRPLUS */
1212 nfs_advise_use_readdirplus(dir);
1213 out_valid_noent:
1214 if (flags & LOOKUP_RCU) {
1215 if (parent != ACCESS_ONCE(dentry->d_parent))
1216 return -ECHILD;
1217 } else
1218 dput(parent);
1219 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is valid\n",
1220 __func__, dentry);
1221 return 1;
1222 out_zap_parent:
1223 nfs_zap_caches(dir);
1224 out_bad:
1225 WARN_ON(flags & LOOKUP_RCU);
1226 nfs_free_fattr(fattr);
1227 nfs_free_fhandle(fhandle);
1228 nfs4_label_free(label);
1229 nfs_mark_for_revalidate(dir);
1230 if (inode && S_ISDIR(inode->i_mode)) {
1231 /* Purge readdir caches. */
1232 nfs_zap_caches(inode);
1233 /*
1234 * We can't d_drop the root of a disconnected tree:
1235 * its d_hash is on the s_anon list and d_drop() would hide
1236 * it from shrink_dcache_for_unmount(), leading to busy
1237 * inodes on unmount and further oopses.
1238 */
1239 if (IS_ROOT(dentry))
1240 goto out_valid;
1241 }
1242 dput(parent);
1243 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is invalid\n",
1244 __func__, dentry);
1245 return 0;
1246 out_error:
1247 WARN_ON(flags & LOOKUP_RCU);
1248 nfs_free_fattr(fattr);
1249 nfs_free_fhandle(fhandle);
1250 nfs4_label_free(label);
1251 dput(parent);
1252 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) lookup returned error %d\n",
1253 __func__, dentry, error);
1254 return error;
1255 }
1256
1257 /*
1258 * A weaker form of d_revalidate for revalidating just the d_inode(dentry)
1259 * when we don't really care about the dentry name. This is called when a
1260 * pathwalk ends on a dentry that was not found via a normal lookup in the
1261 * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals).
1262 *
1263 * In this situation, we just want to verify that the inode itself is OK
1264 * since the dentry might have changed on the server.
1265 */
1266 static int nfs_weak_revalidate(struct dentry *dentry, unsigned int flags)
1267 {
1268 int error;
1269 struct inode *inode = d_inode(dentry);
1270
1271 /*
1272 * I believe we can only get a negative dentry here in the case of a
1273 * procfs-style symlink. Just assume it's correct for now, but we may
1274 * eventually need to do something more here.
1275 */
1276 if (!inode) {
1277 dfprintk(LOOKUPCACHE, "%s: %pd2 has negative inode\n",
1278 __func__, dentry);
1279 return 1;
1280 }
1281
1282 if (is_bad_inode(inode)) {
1283 dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1284 __func__, dentry);
1285 return 0;
1286 }
1287
1288 error = nfs_revalidate_inode(NFS_SERVER(inode), inode);
1289 dfprintk(LOOKUPCACHE, "NFS: %s: inode %lu is %s\n",
1290 __func__, inode->i_ino, error ? "invalid" : "valid");
1291 return !error;
1292 }
1293
1294 /*
1295 * This is called from dput() when d_count is going to 0.
1296 */
1297 static int nfs_dentry_delete(const struct dentry *dentry)
1298 {
1299 dfprintk(VFS, "NFS: dentry_delete(%pd2, %x)\n",
1300 dentry, dentry->d_flags);
1301
1302 /* Unhash any dentry with a stale inode */
1303 if (d_really_is_positive(dentry) && NFS_STALE(d_inode(dentry)))
1304 return 1;
1305
1306 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1307 /* Unhash it, so that ->d_iput() would be called */
1308 return 1;
1309 }
1310 if (!(dentry->d_sb->s_flags & MS_ACTIVE)) {
1311 /* Unhash it, so that ancestors of killed async unlink
1312 * files will be cleaned up during umount */
1313 return 1;
1314 }
1315 return 0;
1316
1317 }
1318
1319 /* Ensure that we revalidate inode->i_nlink */
1320 static void nfs_drop_nlink(struct inode *inode)
1321 {
1322 spin_lock(&inode->i_lock);
1323 /* drop the inode if we're reasonably sure this is the last link */
1324 if (inode->i_nlink == 1)
1325 clear_nlink(inode);
1326 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_ATTR;
1327 spin_unlock(&inode->i_lock);
1328 }
1329
1330 /*
1331 * Called when the dentry loses inode.
1332 * We use it to clean up silly-renamed files.
1333 */
1334 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
1335 {
1336 if (S_ISDIR(inode->i_mode))
1337 /* drop any readdir cache as it could easily be old */
1338 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA;
1339
1340 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1341 nfs_complete_unlink(dentry, inode);
1342 nfs_drop_nlink(inode);
1343 }
1344 iput(inode);
1345 }
1346
1347 static void nfs_d_release(struct dentry *dentry)
1348 {
1349 /* free cached devname value, if it survived that far */
1350 if (unlikely(dentry->d_fsdata)) {
1351 if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1352 WARN_ON(1);
1353 else
1354 kfree(dentry->d_fsdata);
1355 }
1356 }
1357
1358 const struct dentry_operations nfs_dentry_operations = {
1359 .d_revalidate = nfs_lookup_revalidate,
1360 .d_weak_revalidate = nfs_weak_revalidate,
1361 .d_delete = nfs_dentry_delete,
1362 .d_iput = nfs_dentry_iput,
1363 .d_automount = nfs_d_automount,
1364 .d_release = nfs_d_release,
1365 };
1366 EXPORT_SYMBOL_GPL(nfs_dentry_operations);
1367
1368 struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
1369 {
1370 struct dentry *res;
1371 struct inode *inode = NULL;
1372 struct nfs_fh *fhandle = NULL;
1373 struct nfs_fattr *fattr = NULL;
1374 struct nfs4_label *label = NULL;
1375 int error;
1376
1377 dfprintk(VFS, "NFS: lookup(%pd2)\n", dentry);
1378 nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
1379
1380 if (unlikely(dentry->d_name.len > NFS_SERVER(dir)->namelen))
1381 return ERR_PTR(-ENAMETOOLONG);
1382
1383 /*
1384 * If we're doing an exclusive create, optimize away the lookup
1385 * but don't hash the dentry.
1386 */
1387 if (nfs_is_exclusive_create(dir, flags))
1388 return NULL;
1389
1390 res = ERR_PTR(-ENOMEM);
1391 fhandle = nfs_alloc_fhandle();
1392 fattr = nfs_alloc_fattr();
1393 if (fhandle == NULL || fattr == NULL)
1394 goto out;
1395
1396 label = nfs4_label_alloc(NFS_SERVER(dir), GFP_NOWAIT);
1397 if (IS_ERR(label))
1398 goto out;
1399
1400 /* Protect against concurrent sillydeletes */
1401 trace_nfs_lookup_enter(dir, dentry, flags);
1402 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, label);
1403 if (error == -ENOENT)
1404 goto no_entry;
1405 if (error < 0) {
1406 res = ERR_PTR(error);
1407 goto out_unblock_sillyrename;
1408 }
1409 inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
1410 res = ERR_CAST(inode);
1411 if (IS_ERR(res))
1412 goto out_unblock_sillyrename;
1413
1414 /* Success: notify readdir to use READDIRPLUS */
1415 nfs_advise_use_readdirplus(dir);
1416
1417 no_entry:
1418 res = d_splice_alias(inode, dentry);
1419 if (res != NULL) {
1420 if (IS_ERR(res))
1421 goto out_unblock_sillyrename;
1422 dentry = res;
1423 }
1424 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1425 out_unblock_sillyrename:
1426 trace_nfs_lookup_exit(dir, dentry, flags, error);
1427 nfs4_label_free(label);
1428 out:
1429 nfs_free_fattr(fattr);
1430 nfs_free_fhandle(fhandle);
1431 return res;
1432 }
1433 EXPORT_SYMBOL_GPL(nfs_lookup);
1434
1435 #if IS_ENABLED(CONFIG_NFS_V4)
1436 static int nfs4_lookup_revalidate(struct dentry *, unsigned int);
1437
1438 const struct dentry_operations nfs4_dentry_operations = {
1439 .d_revalidate = nfs4_lookup_revalidate,
1440 .d_delete = nfs_dentry_delete,
1441 .d_iput = nfs_dentry_iput,
1442 .d_automount = nfs_d_automount,
1443 .d_release = nfs_d_release,
1444 };
1445 EXPORT_SYMBOL_GPL(nfs4_dentry_operations);
1446
1447 static fmode_t flags_to_mode(int flags)
1448 {
1449 fmode_t res = (__force fmode_t)flags & FMODE_EXEC;
1450 if ((flags & O_ACCMODE) != O_WRONLY)
1451 res |= FMODE_READ;
1452 if ((flags & O_ACCMODE) != O_RDONLY)
1453 res |= FMODE_WRITE;
1454 return res;
1455 }
1456
1457 static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags)
1458 {
1459 return alloc_nfs_open_context(dentry, flags_to_mode(open_flags));
1460 }
1461
1462 static int do_open(struct inode *inode, struct file *filp)
1463 {
1464 nfs_fscache_open_file(inode, filp);
1465 return 0;
1466 }
1467
1468 static int nfs_finish_open(struct nfs_open_context *ctx,
1469 struct dentry *dentry,
1470 struct file *file, unsigned open_flags,
1471 int *opened)
1472 {
1473 int err;
1474
1475 err = finish_open(file, dentry, do_open, opened);
1476 if (err)
1477 goto out;
1478 nfs_file_set_open_context(file, ctx);
1479
1480 out:
1481 return err;
1482 }
1483
1484 int nfs_atomic_open(struct inode *dir, struct dentry *dentry,
1485 struct file *file, unsigned open_flags,
1486 umode_t mode, int *opened)
1487 {
1488 struct nfs_open_context *ctx;
1489 struct dentry *res;
1490 struct iattr attr = { .ia_valid = ATTR_OPEN };
1491 struct inode *inode;
1492 unsigned int lookup_flags = 0;
1493 int err;
1494
1495 /* Expect a negative dentry */
1496 BUG_ON(d_inode(dentry));
1497
1498 dfprintk(VFS, "NFS: atomic_open(%s/%lu), %pd\n",
1499 dir->i_sb->s_id, dir->i_ino, dentry);
1500
1501 err = nfs_check_flags(open_flags);
1502 if (err)
1503 return err;
1504
1505 /* NFS only supports OPEN on regular files */
1506 if ((open_flags & O_DIRECTORY)) {
1507 if (!d_unhashed(dentry)) {
1508 /*
1509 * Hashed negative dentry with O_DIRECTORY: dentry was
1510 * revalidated and is fine, no need to perform lookup
1511 * again
1512 */
1513 return -ENOENT;
1514 }
1515 lookup_flags = LOOKUP_OPEN|LOOKUP_DIRECTORY;
1516 goto no_open;
1517 }
1518
1519 if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
1520 return -ENAMETOOLONG;
1521
1522 if (open_flags & O_CREAT) {
1523 attr.ia_valid |= ATTR_MODE;
1524 attr.ia_mode = mode & ~current_umask();
1525 }
1526 if (open_flags & O_TRUNC) {
1527 attr.ia_valid |= ATTR_SIZE;
1528 attr.ia_size = 0;
1529 }
1530
1531 ctx = create_nfs_open_context(dentry, open_flags);
1532 err = PTR_ERR(ctx);
1533 if (IS_ERR(ctx))
1534 goto out;
1535
1536 trace_nfs_atomic_open_enter(dir, ctx, open_flags);
1537 inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr, opened);
1538 if (IS_ERR(inode)) {
1539 err = PTR_ERR(inode);
1540 trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1541 put_nfs_open_context(ctx);
1542 d_drop(dentry);
1543 switch (err) {
1544 case -ENOENT:
1545 d_add(dentry, NULL);
1546 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1547 break;
1548 case -EISDIR:
1549 case -ENOTDIR:
1550 goto no_open;
1551 case -ELOOP:
1552 if (!(open_flags & O_NOFOLLOW))
1553 goto no_open;
1554 break;
1555 /* case -EINVAL: */
1556 default:
1557 break;
1558 }
1559 goto out;
1560 }
1561
1562 err = nfs_finish_open(ctx, ctx->dentry, file, open_flags, opened);
1563 trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1564 put_nfs_open_context(ctx);
1565 out:
1566 return err;
1567
1568 no_open:
1569 res = nfs_lookup(dir, dentry, lookup_flags);
1570 err = PTR_ERR(res);
1571 if (IS_ERR(res))
1572 goto out;
1573
1574 return finish_no_open(file, res);
1575 }
1576 EXPORT_SYMBOL_GPL(nfs_atomic_open);
1577
1578 static int nfs4_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1579 {
1580 struct inode *inode;
1581 int ret = 0;
1582
1583 if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY))
1584 goto no_open;
1585 if (d_mountpoint(dentry))
1586 goto no_open;
1587 if (NFS_SB(dentry->d_sb)->caps & NFS_CAP_ATOMIC_OPEN_V1)
1588 goto no_open;
1589
1590 inode = d_inode(dentry);
1591
1592 /* We can't create new files in nfs_open_revalidate(), so we
1593 * optimize away revalidation of negative dentries.
1594 */
1595 if (inode == NULL) {
1596 struct dentry *parent;
1597 struct inode *dir;
1598
1599 if (flags & LOOKUP_RCU) {
1600 parent = ACCESS_ONCE(dentry->d_parent);
1601 dir = d_inode_rcu(parent);
1602 if (!dir)
1603 return -ECHILD;
1604 } else {
1605 parent = dget_parent(dentry);
1606 dir = d_inode(parent);
1607 }
1608 if (!nfs_neg_need_reval(dir, dentry, flags))
1609 ret = 1;
1610 else if (flags & LOOKUP_RCU)
1611 ret = -ECHILD;
1612 if (!(flags & LOOKUP_RCU))
1613 dput(parent);
1614 else if (parent != ACCESS_ONCE(dentry->d_parent))
1615 return -ECHILD;
1616 goto out;
1617 }
1618
1619 /* NFS only supports OPEN on regular files */
1620 if (!S_ISREG(inode->i_mode))
1621 goto no_open;
1622 /* We cannot do exclusive creation on a positive dentry */
1623 if (flags & LOOKUP_EXCL)
1624 goto no_open;
1625
1626 /* Let f_op->open() actually open (and revalidate) the file */
1627 ret = 1;
1628
1629 out:
1630 return ret;
1631
1632 no_open:
1633 return nfs_lookup_revalidate(dentry, flags);
1634 }
1635
1636 #endif /* CONFIG_NFSV4 */
1637
1638 /*
1639 * Code common to create, mkdir, and mknod.
1640 */
1641 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
1642 struct nfs_fattr *fattr,
1643 struct nfs4_label *label)
1644 {
1645 struct dentry *parent = dget_parent(dentry);
1646 struct inode *dir = d_inode(parent);
1647 struct inode *inode;
1648 int error = -EACCES;
1649
1650 d_drop(dentry);
1651
1652 /* We may have been initialized further down */
1653 if (d_really_is_positive(dentry))
1654 goto out;
1655 if (fhandle->size == 0) {
1656 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, NULL);
1657 if (error)
1658 goto out_error;
1659 }
1660 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1661 if (!(fattr->valid & NFS_ATTR_FATTR)) {
1662 struct nfs_server *server = NFS_SB(dentry->d_sb);
1663 error = server->nfs_client->rpc_ops->getattr(server, fhandle, fattr, NULL);
1664 if (error < 0)
1665 goto out_error;
1666 }
1667 inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
1668 error = PTR_ERR(inode);
1669 if (IS_ERR(inode))
1670 goto out_error;
1671 d_add(dentry, inode);
1672 out:
1673 dput(parent);
1674 return 0;
1675 out_error:
1676 nfs_mark_for_revalidate(dir);
1677 dput(parent);
1678 return error;
1679 }
1680 EXPORT_SYMBOL_GPL(nfs_instantiate);
1681
1682 /*
1683 * Following a failed create operation, we drop the dentry rather
1684 * than retain a negative dentry. This avoids a problem in the event
1685 * that the operation succeeded on the server, but an error in the
1686 * reply path made it appear to have failed.
1687 */
1688 int nfs_create(struct inode *dir, struct dentry *dentry,
1689 umode_t mode, bool excl)
1690 {
1691 struct iattr attr;
1692 int open_flags = excl ? O_CREAT | O_EXCL : O_CREAT;
1693 int error;
1694
1695 dfprintk(VFS, "NFS: create(%s/%lu), %pd\n",
1696 dir->i_sb->s_id, dir->i_ino, dentry);
1697
1698 attr.ia_mode = mode;
1699 attr.ia_valid = ATTR_MODE;
1700
1701 trace_nfs_create_enter(dir, dentry, open_flags);
1702 error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags);
1703 trace_nfs_create_exit(dir, dentry, open_flags, error);
1704 if (error != 0)
1705 goto out_err;
1706 return 0;
1707 out_err:
1708 d_drop(dentry);
1709 return error;
1710 }
1711 EXPORT_SYMBOL_GPL(nfs_create);
1712
1713 /*
1714 * See comments for nfs_proc_create regarding failed operations.
1715 */
1716 int
1717 nfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t rdev)
1718 {
1719 struct iattr attr;
1720 int status;
1721
1722 dfprintk(VFS, "NFS: mknod(%s/%lu), %pd\n",
1723 dir->i_sb->s_id, dir->i_ino, dentry);
1724
1725 attr.ia_mode = mode;
1726 attr.ia_valid = ATTR_MODE;
1727
1728 trace_nfs_mknod_enter(dir, dentry);
1729 status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
1730 trace_nfs_mknod_exit(dir, dentry, status);
1731 if (status != 0)
1732 goto out_err;
1733 return 0;
1734 out_err:
1735 d_drop(dentry);
1736 return status;
1737 }
1738 EXPORT_SYMBOL_GPL(nfs_mknod);
1739
1740 /*
1741 * See comments for nfs_proc_create regarding failed operations.
1742 */
1743 int nfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1744 {
1745 struct iattr attr;
1746 int error;
1747
1748 dfprintk(VFS, "NFS: mkdir(%s/%lu), %pd\n",
1749 dir->i_sb->s_id, dir->i_ino, dentry);
1750
1751 attr.ia_valid = ATTR_MODE;
1752 attr.ia_mode = mode | S_IFDIR;
1753
1754 trace_nfs_mkdir_enter(dir, dentry);
1755 error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
1756 trace_nfs_mkdir_exit(dir, dentry, error);
1757 if (error != 0)
1758 goto out_err;
1759 return 0;
1760 out_err:
1761 d_drop(dentry);
1762 return error;
1763 }
1764 EXPORT_SYMBOL_GPL(nfs_mkdir);
1765
1766 static void nfs_dentry_handle_enoent(struct dentry *dentry)
1767 {
1768 if (simple_positive(dentry))
1769 d_delete(dentry);
1770 }
1771
1772 int nfs_rmdir(struct inode *dir, struct dentry *dentry)
1773 {
1774 int error;
1775
1776 dfprintk(VFS, "NFS: rmdir(%s/%lu), %pd\n",
1777 dir->i_sb->s_id, dir->i_ino, dentry);
1778
1779 trace_nfs_rmdir_enter(dir, dentry);
1780 if (d_really_is_positive(dentry)) {
1781 down_write(&NFS_I(d_inode(dentry))->rmdir_sem);
1782 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1783 /* Ensure the VFS deletes this inode */
1784 switch (error) {
1785 case 0:
1786 clear_nlink(d_inode(dentry));
1787 break;
1788 case -ENOENT:
1789 nfs_dentry_handle_enoent(dentry);
1790 }
1791 up_write(&NFS_I(d_inode(dentry))->rmdir_sem);
1792 } else
1793 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1794 trace_nfs_rmdir_exit(dir, dentry, error);
1795
1796 return error;
1797 }
1798 EXPORT_SYMBOL_GPL(nfs_rmdir);
1799
1800 /*
1801 * Remove a file after making sure there are no pending writes,
1802 * and after checking that the file has only one user.
1803 *
1804 * We invalidate the attribute cache and free the inode prior to the operation
1805 * to avoid possible races if the server reuses the inode.
1806 */
1807 static int nfs_safe_remove(struct dentry *dentry)
1808 {
1809 struct inode *dir = d_inode(dentry->d_parent);
1810 struct inode *inode = d_inode(dentry);
1811 int error = -EBUSY;
1812
1813 dfprintk(VFS, "NFS: safe_remove(%pd2)\n", dentry);
1814
1815 /* If the dentry was sillyrenamed, we simply call d_delete() */
1816 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1817 error = 0;
1818 goto out;
1819 }
1820
1821 trace_nfs_remove_enter(dir, dentry);
1822 if (inode != NULL) {
1823 NFS_PROTO(inode)->return_delegation(inode);
1824 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1825 if (error == 0)
1826 nfs_drop_nlink(inode);
1827 } else
1828 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1829 if (error == -ENOENT)
1830 nfs_dentry_handle_enoent(dentry);
1831 trace_nfs_remove_exit(dir, dentry, error);
1832 out:
1833 return error;
1834 }
1835
1836 /* We do silly rename. In case sillyrename() returns -EBUSY, the inode
1837 * belongs to an active ".nfs..." file and we return -EBUSY.
1838 *
1839 * If sillyrename() returns 0, we do nothing, otherwise we unlink.
1840 */
1841 int nfs_unlink(struct inode *dir, struct dentry *dentry)
1842 {
1843 int error;
1844 int need_rehash = 0;
1845
1846 dfprintk(VFS, "NFS: unlink(%s/%lu, %pd)\n", dir->i_sb->s_id,
1847 dir->i_ino, dentry);
1848
1849 trace_nfs_unlink_enter(dir, dentry);
1850 spin_lock(&dentry->d_lock);
1851 if (d_count(dentry) > 1) {
1852 spin_unlock(&dentry->d_lock);
1853 /* Start asynchronous writeout of the inode */
1854 write_inode_now(d_inode(dentry), 0);
1855 error = nfs_sillyrename(dir, dentry);
1856 goto out;
1857 }
1858 if (!d_unhashed(dentry)) {
1859 __d_drop(dentry);
1860 need_rehash = 1;
1861 }
1862 spin_unlock(&dentry->d_lock);
1863 error = nfs_safe_remove(dentry);
1864 if (!error || error == -ENOENT) {
1865 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1866 } else if (need_rehash)
1867 d_rehash(dentry);
1868 out:
1869 trace_nfs_unlink_exit(dir, dentry, error);
1870 return error;
1871 }
1872 EXPORT_SYMBOL_GPL(nfs_unlink);
1873
1874 /*
1875 * To create a symbolic link, most file systems instantiate a new inode,
1876 * add a page to it containing the path, then write it out to the disk
1877 * using prepare_write/commit_write.
1878 *
1879 * Unfortunately the NFS client can't create the in-core inode first
1880 * because it needs a file handle to create an in-core inode (see
1881 * fs/nfs/inode.c:nfs_fhget). We only have a file handle *after* the
1882 * symlink request has completed on the server.
1883 *
1884 * So instead we allocate a raw page, copy the symname into it, then do
1885 * the SYMLINK request with the page as the buffer. If it succeeds, we
1886 * now have a new file handle and can instantiate an in-core NFS inode
1887 * and move the raw page into its mapping.
1888 */
1889 int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1890 {
1891 struct page *page;
1892 char *kaddr;
1893 struct iattr attr;
1894 unsigned int pathlen = strlen(symname);
1895 int error;
1896
1897 dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s)\n", dir->i_sb->s_id,
1898 dir->i_ino, dentry, symname);
1899
1900 if (pathlen > PAGE_SIZE)
1901 return -ENAMETOOLONG;
1902
1903 attr.ia_mode = S_IFLNK | S_IRWXUGO;
1904 attr.ia_valid = ATTR_MODE;
1905
1906 page = alloc_page(GFP_USER);
1907 if (!page)
1908 return -ENOMEM;
1909
1910 kaddr = page_address(page);
1911 memcpy(kaddr, symname, pathlen);
1912 if (pathlen < PAGE_SIZE)
1913 memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
1914
1915 trace_nfs_symlink_enter(dir, dentry);
1916 error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
1917 trace_nfs_symlink_exit(dir, dentry, error);
1918 if (error != 0) {
1919 dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s) error %d\n",
1920 dir->i_sb->s_id, dir->i_ino,
1921 dentry, symname, error);
1922 d_drop(dentry);
1923 __free_page(page);
1924 return error;
1925 }
1926
1927 /*
1928 * No big deal if we can't add this page to the page cache here.
1929 * READLINK will get the missing page from the server if needed.
1930 */
1931 if (!add_to_page_cache_lru(page, d_inode(dentry)->i_mapping, 0,
1932 GFP_KERNEL)) {
1933 SetPageUptodate(page);
1934 unlock_page(page);
1935 /*
1936 * add_to_page_cache_lru() grabs an extra page refcount.
1937 * Drop it here to avoid leaking this page later.
1938 */
1939 put_page(page);
1940 } else
1941 __free_page(page);
1942
1943 return 0;
1944 }
1945 EXPORT_SYMBOL_GPL(nfs_symlink);
1946
1947 int
1948 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1949 {
1950 struct inode *inode = d_inode(old_dentry);
1951 int error;
1952
1953 dfprintk(VFS, "NFS: link(%pd2 -> %pd2)\n",
1954 old_dentry, dentry);
1955
1956 trace_nfs_link_enter(inode, dir, dentry);
1957 NFS_PROTO(inode)->return_delegation(inode);
1958
1959 d_drop(dentry);
1960 error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
1961 if (error == 0) {
1962 ihold(inode);
1963 d_add(dentry, inode);
1964 }
1965 trace_nfs_link_exit(inode, dir, dentry, error);
1966 return error;
1967 }
1968 EXPORT_SYMBOL_GPL(nfs_link);
1969
1970 /*
1971 * RENAME
1972 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
1973 * different file handle for the same inode after a rename (e.g. when
1974 * moving to a different directory). A fail-safe method to do so would
1975 * be to look up old_dir/old_name, create a link to new_dir/new_name and
1976 * rename the old file using the sillyrename stuff. This way, the original
1977 * file in old_dir will go away when the last process iput()s the inode.
1978 *
1979 * FIXED.
1980 *
1981 * It actually works quite well. One needs to have the possibility for
1982 * at least one ".nfs..." file in each directory the file ever gets
1983 * moved or linked to which happens automagically with the new
1984 * implementation that only depends on the dcache stuff instead of
1985 * using the inode layer
1986 *
1987 * Unfortunately, things are a little more complicated than indicated
1988 * above. For a cross-directory move, we want to make sure we can get
1989 * rid of the old inode after the operation. This means there must be
1990 * no pending writes (if it's a file), and the use count must be 1.
1991 * If these conditions are met, we can drop the dentries before doing
1992 * the rename.
1993 */
1994 int nfs_rename(struct inode *old_dir, struct dentry *old_dentry,
1995 struct inode *new_dir, struct dentry *new_dentry)
1996 {
1997 struct inode *old_inode = d_inode(old_dentry);
1998 struct inode *new_inode = d_inode(new_dentry);
1999 struct dentry *dentry = NULL, *rehash = NULL;
2000 struct rpc_task *task;
2001 int error = -EBUSY;
2002
2003 dfprintk(VFS, "NFS: rename(%pd2 -> %pd2, ct=%d)\n",
2004 old_dentry, new_dentry,
2005 d_count(new_dentry));
2006
2007 trace_nfs_rename_enter(old_dir, old_dentry, new_dir, new_dentry);
2008 /*
2009 * For non-directories, check whether the target is busy and if so,
2010 * make a copy of the dentry and then do a silly-rename. If the
2011 * silly-rename succeeds, the copied dentry is hashed and becomes
2012 * the new target.
2013 */
2014 if (new_inode && !S_ISDIR(new_inode->i_mode)) {
2015 /*
2016 * To prevent any new references to the target during the
2017 * rename, we unhash the dentry in advance.
2018 */
2019 if (!d_unhashed(new_dentry)) {
2020 d_drop(new_dentry);
2021 rehash = new_dentry;
2022 }
2023
2024 if (d_count(new_dentry) > 2) {
2025 int err;
2026
2027 /* copy the target dentry's name */
2028 dentry = d_alloc(new_dentry->d_parent,
2029 &new_dentry->d_name);
2030 if (!dentry)
2031 goto out;
2032
2033 /* silly-rename the existing target ... */
2034 err = nfs_sillyrename(new_dir, new_dentry);
2035 if (err)
2036 goto out;
2037
2038 new_dentry = dentry;
2039 rehash = NULL;
2040 new_inode = NULL;
2041 }
2042 }
2043
2044 NFS_PROTO(old_inode)->return_delegation(old_inode);
2045 if (new_inode != NULL)
2046 NFS_PROTO(new_inode)->return_delegation(new_inode);
2047
2048 task = nfs_async_rename(old_dir, new_dir, old_dentry, new_dentry, NULL);
2049 if (IS_ERR(task)) {
2050 error = PTR_ERR(task);
2051 goto out;
2052 }
2053
2054 error = rpc_wait_for_completion_task(task);
2055 if (error == 0)
2056 error = task->tk_status;
2057 rpc_put_task(task);
2058 nfs_mark_for_revalidate(old_inode);
2059 out:
2060 if (rehash)
2061 d_rehash(rehash);
2062 trace_nfs_rename_exit(old_dir, old_dentry,
2063 new_dir, new_dentry, error);
2064 if (!error) {
2065 if (new_inode != NULL)
2066 nfs_drop_nlink(new_inode);
2067 d_move(old_dentry, new_dentry);
2068 nfs_set_verifier(new_dentry,
2069 nfs_save_change_attribute(new_dir));
2070 } else if (error == -ENOENT)
2071 nfs_dentry_handle_enoent(old_dentry);
2072
2073 /* new dentry created? */
2074 if (dentry)
2075 dput(dentry);
2076 return error;
2077 }
2078 EXPORT_SYMBOL_GPL(nfs_rename);
2079
2080 static DEFINE_SPINLOCK(nfs_access_lru_lock);
2081 static LIST_HEAD(nfs_access_lru_list);
2082 static atomic_long_t nfs_access_nr_entries;
2083
2084 static unsigned long nfs_access_max_cachesize = ULONG_MAX;
2085 module_param(nfs_access_max_cachesize, ulong, 0644);
2086 MODULE_PARM_DESC(nfs_access_max_cachesize, "NFS access maximum total cache length");
2087
2088 static void nfs_access_free_entry(struct nfs_access_entry *entry)
2089 {
2090 put_rpccred(entry->cred);
2091 kfree_rcu(entry, rcu_head);
2092 smp_mb__before_atomic();
2093 atomic_long_dec(&nfs_access_nr_entries);
2094 smp_mb__after_atomic();
2095 }
2096
2097 static void nfs_access_free_list(struct list_head *head)
2098 {
2099 struct nfs_access_entry *cache;
2100
2101 while (!list_empty(head)) {
2102 cache = list_entry(head->next, struct nfs_access_entry, lru);
2103 list_del(&cache->lru);
2104 nfs_access_free_entry(cache);
2105 }
2106 }
2107
2108 static unsigned long
2109 nfs_do_access_cache_scan(unsigned int nr_to_scan)
2110 {
2111 LIST_HEAD(head);
2112 struct nfs_inode *nfsi, *next;
2113 struct nfs_access_entry *cache;
2114 long freed = 0;
2115
2116 spin_lock(&nfs_access_lru_lock);
2117 list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) {
2118 struct inode *inode;
2119
2120 if (nr_to_scan-- == 0)
2121 break;
2122 inode = &nfsi->vfs_inode;
2123 spin_lock(&inode->i_lock);
2124 if (list_empty(&nfsi->access_cache_entry_lru))
2125 goto remove_lru_entry;
2126 cache = list_entry(nfsi->access_cache_entry_lru.next,
2127 struct nfs_access_entry, lru);
2128 list_move(&cache->lru, &head);
2129 rb_erase(&cache->rb_node, &nfsi->access_cache);
2130 freed++;
2131 if (!list_empty(&nfsi->access_cache_entry_lru))
2132 list_move_tail(&nfsi->access_cache_inode_lru,
2133 &nfs_access_lru_list);
2134 else {
2135 remove_lru_entry:
2136 list_del_init(&nfsi->access_cache_inode_lru);
2137 smp_mb__before_atomic();
2138 clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
2139 smp_mb__after_atomic();
2140 }
2141 spin_unlock(&inode->i_lock);
2142 }
2143 spin_unlock(&nfs_access_lru_lock);
2144 nfs_access_free_list(&head);
2145 return freed;
2146 }
2147
2148 unsigned long
2149 nfs_access_cache_scan(struct shrinker *shrink, struct shrink_control *sc)
2150 {
2151 int nr_to_scan = sc->nr_to_scan;
2152 gfp_t gfp_mask = sc->gfp_mask;
2153
2154 if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL)
2155 return SHRINK_STOP;
2156 return nfs_do_access_cache_scan(nr_to_scan);
2157 }
2158
2159
2160 unsigned long
2161 nfs_access_cache_count(struct shrinker *shrink, struct shrink_control *sc)
2162 {
2163 return vfs_pressure_ratio(atomic_long_read(&nfs_access_nr_entries));
2164 }
2165
2166 static void
2167 nfs_access_cache_enforce_limit(void)
2168 {
2169 long nr_entries = atomic_long_read(&nfs_access_nr_entries);
2170 unsigned long diff;
2171 unsigned int nr_to_scan;
2172
2173 if (nr_entries < 0 || nr_entries <= nfs_access_max_cachesize)
2174 return;
2175 nr_to_scan = 100;
2176 diff = nr_entries - nfs_access_max_cachesize;
2177 if (diff < nr_to_scan)
2178 nr_to_scan = diff;
2179 nfs_do_access_cache_scan(nr_to_scan);
2180 }
2181
2182 static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head)
2183 {
2184 struct rb_root *root_node = &nfsi->access_cache;
2185 struct rb_node *n;
2186 struct nfs_access_entry *entry;
2187
2188 /* Unhook entries from the cache */
2189 while ((n = rb_first(root_node)) != NULL) {
2190 entry = rb_entry(n, struct nfs_access_entry, rb_node);
2191 rb_erase(n, root_node);
2192 list_move(&entry->lru, head);
2193 }
2194 nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
2195 }
2196
2197 void nfs_access_zap_cache(struct inode *inode)
2198 {
2199 LIST_HEAD(head);
2200
2201 if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0)
2202 return;
2203 /* Remove from global LRU init */
2204 spin_lock(&nfs_access_lru_lock);
2205 if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2206 list_del_init(&NFS_I(inode)->access_cache_inode_lru);
2207
2208 spin_lock(&inode->i_lock);
2209 __nfs_access_zap_cache(NFS_I(inode), &head);
2210 spin_unlock(&inode->i_lock);
2211 spin_unlock(&nfs_access_lru_lock);
2212 nfs_access_free_list(&head);
2213 }
2214 EXPORT_SYMBOL_GPL(nfs_access_zap_cache);
2215
2216 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, struct rpc_cred *cred)
2217 {
2218 struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
2219 struct nfs_access_entry *entry;
2220
2221 while (n != NULL) {
2222 entry = rb_entry(n, struct nfs_access_entry, rb_node);
2223
2224 if (cred < entry->cred)
2225 n = n->rb_left;
2226 else if (cred > entry->cred)
2227 n = n->rb_right;
2228 else
2229 return entry;
2230 }
2231 return NULL;
2232 }
2233
2234 static int nfs_access_get_cached(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res)
2235 {
2236 struct nfs_inode *nfsi = NFS_I(inode);
2237 struct nfs_access_entry *cache;
2238 int err = -ENOENT;
2239
2240 spin_lock(&inode->i_lock);
2241 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2242 goto out_zap;
2243 cache = nfs_access_search_rbtree(inode, cred);
2244 if (cache == NULL)
2245 goto out;
2246 if (!nfs_have_delegated_attributes(inode) &&
2247 !time_in_range_open(jiffies, cache->jiffies, cache->jiffies + nfsi->attrtimeo))
2248 goto out_stale;
2249 res->jiffies = cache->jiffies;
2250 res->cred = cache->cred;
2251 res->mask = cache->mask;
2252 list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
2253 err = 0;
2254 out:
2255 spin_unlock(&inode->i_lock);
2256 return err;
2257 out_stale:
2258 rb_erase(&cache->rb_node, &nfsi->access_cache);
2259 list_del(&cache->lru);
2260 spin_unlock(&inode->i_lock);
2261 nfs_access_free_entry(cache);
2262 return -ENOENT;
2263 out_zap:
2264 spin_unlock(&inode->i_lock);
2265 nfs_access_zap_cache(inode);
2266 return -ENOENT;
2267 }
2268
2269 static int nfs_access_get_cached_rcu(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res)
2270 {
2271 /* Only check the most recently returned cache entry,
2272 * but do it without locking.
2273 */
2274 struct nfs_inode *nfsi = NFS_I(inode);
2275 struct nfs_access_entry *cache;
2276 int err = -ECHILD;
2277 struct list_head *lh;
2278
2279 rcu_read_lock();
2280 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2281 goto out;
2282 lh = rcu_dereference(nfsi->access_cache_entry_lru.prev);
2283 cache = list_entry(lh, struct nfs_access_entry, lru);
2284 if (lh == &nfsi->access_cache_entry_lru ||
2285 cred != cache->cred)
2286 cache = NULL;
2287 if (cache == NULL)
2288 goto out;
2289 if (!nfs_have_delegated_attributes(inode) &&
2290 !time_in_range_open(jiffies, cache->jiffies, cache->jiffies + nfsi->attrtimeo))
2291 goto out;
2292 res->jiffies = cache->jiffies;
2293 res->cred = cache->cred;
2294 res->mask = cache->mask;
2295 err = 0;
2296 out:
2297 rcu_read_unlock();
2298 return err;
2299 }
2300
2301 static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set)
2302 {
2303 struct nfs_inode *nfsi = NFS_I(inode);
2304 struct rb_root *root_node = &nfsi->access_cache;
2305 struct rb_node **p = &root_node->rb_node;
2306 struct rb_node *parent = NULL;
2307 struct nfs_access_entry *entry;
2308
2309 spin_lock(&inode->i_lock);
2310 while (*p != NULL) {
2311 parent = *p;
2312 entry = rb_entry(parent, struct nfs_access_entry, rb_node);
2313
2314 if (set->cred < entry->cred)
2315 p = &parent->rb_left;
2316 else if (set->cred > entry->cred)
2317 p = &parent->rb_right;
2318 else
2319 goto found;
2320 }
2321 rb_link_node(&set->rb_node, parent, p);
2322 rb_insert_color(&set->rb_node, root_node);
2323 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2324 spin_unlock(&inode->i_lock);
2325 return;
2326 found:
2327 rb_replace_node(parent, &set->rb_node, root_node);
2328 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2329 list_del(&entry->lru);
2330 spin_unlock(&inode->i_lock);
2331 nfs_access_free_entry(entry);
2332 }
2333
2334 void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set)
2335 {
2336 struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
2337 if (cache == NULL)
2338 return;
2339 RB_CLEAR_NODE(&cache->rb_node);
2340 cache->jiffies = set->jiffies;
2341 cache->cred = get_rpccred(set->cred);
2342 cache->mask = set->mask;
2343
2344 /* The above field assignments must be visible
2345 * before this item appears on the lru. We cannot easily
2346 * use rcu_assign_pointer, so just force the memory barrier.
2347 */
2348 smp_wmb();
2349 nfs_access_add_rbtree(inode, cache);
2350
2351 /* Update accounting */
2352 smp_mb__before_atomic();
2353 atomic_long_inc(&nfs_access_nr_entries);
2354 smp_mb__after_atomic();
2355
2356 /* Add inode to global LRU list */
2357 if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
2358 spin_lock(&nfs_access_lru_lock);
2359 if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2360 list_add_tail(&NFS_I(inode)->access_cache_inode_lru,
2361 &nfs_access_lru_list);
2362 spin_unlock(&nfs_access_lru_lock);
2363 }
2364 nfs_access_cache_enforce_limit();
2365 }
2366 EXPORT_SYMBOL_GPL(nfs_access_add_cache);
2367
2368 void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result)
2369 {
2370 entry->mask = 0;
2371 if (access_result & NFS4_ACCESS_READ)
2372 entry->mask |= MAY_READ;
2373 if (access_result &
2374 (NFS4_ACCESS_MODIFY | NFS4_ACCESS_EXTEND | NFS4_ACCESS_DELETE))
2375 entry->mask |= MAY_WRITE;
2376 if (access_result & (NFS4_ACCESS_LOOKUP|NFS4_ACCESS_EXECUTE))
2377 entry->mask |= MAY_EXEC;
2378 }
2379 EXPORT_SYMBOL_GPL(nfs_access_set_mask);
2380
2381 static int nfs_do_access(struct inode *inode, struct rpc_cred *cred, int mask)
2382 {
2383 struct nfs_access_entry cache;
2384 int status;
2385
2386 trace_nfs_access_enter(inode);
2387
2388 status = nfs_access_get_cached_rcu(inode, cred, &cache);
2389 if (status != 0)
2390 status = nfs_access_get_cached(inode, cred, &cache);
2391 if (status == 0)
2392 goto out_cached;
2393
2394 status = -ECHILD;
2395 if (mask & MAY_NOT_BLOCK)
2396 goto out;
2397
2398 /* Be clever: ask server to check for all possible rights */
2399 cache.mask = MAY_EXEC | MAY_WRITE | MAY_READ;
2400 cache.cred = cred;
2401 cache.jiffies = jiffies;
2402 status = NFS_PROTO(inode)->access(inode, &cache);
2403 if (status != 0) {
2404 if (status == -ESTALE) {
2405 nfs_zap_caches(inode);
2406 if (!S_ISDIR(inode->i_mode))
2407 set_bit(NFS_INO_STALE, &NFS_I(inode)->flags);
2408 }
2409 goto out;
2410 }
2411 nfs_access_add_cache(inode, &cache);
2412 out_cached:
2413 if ((mask & ~cache.mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) != 0)
2414 status = -EACCES;
2415 out:
2416 trace_nfs_access_exit(inode, status);
2417 return status;
2418 }
2419
2420 static int nfs_open_permission_mask(int openflags)
2421 {
2422 int mask = 0;
2423
2424 if (openflags & __FMODE_EXEC) {
2425 /* ONLY check exec rights */
2426 mask = MAY_EXEC;
2427 } else {
2428 if ((openflags & O_ACCMODE) != O_WRONLY)
2429 mask |= MAY_READ;
2430 if ((openflags & O_ACCMODE) != O_RDONLY)
2431 mask |= MAY_WRITE;
2432 }
2433
2434 return mask;
2435 }
2436
2437 int nfs_may_open(struct inode *inode, struct rpc_cred *cred, int openflags)
2438 {
2439 return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
2440 }
2441 EXPORT_SYMBOL_GPL(nfs_may_open);
2442
2443 static int nfs_execute_ok(struct inode *inode, int mask)
2444 {
2445 struct nfs_server *server = NFS_SERVER(inode);
2446 int ret;
2447
2448 if (mask & MAY_NOT_BLOCK)
2449 ret = nfs_revalidate_inode_rcu(server, inode);
2450 else
2451 ret = nfs_revalidate_inode(server, inode);
2452 if (ret == 0 && !execute_ok(inode))
2453 ret = -EACCES;
2454 return ret;
2455 }
2456
2457 int nfs_permission(struct inode *inode, int mask)
2458 {
2459 struct rpc_cred *cred;
2460 int res = 0;
2461
2462 nfs_inc_stats(inode, NFSIOS_VFSACCESS);
2463
2464 if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
2465 goto out;
2466 /* Is this sys_access() ? */
2467 if (mask & (MAY_ACCESS | MAY_CHDIR))
2468 goto force_lookup;
2469
2470 switch (inode->i_mode & S_IFMT) {
2471 case S_IFLNK:
2472 goto out;
2473 case S_IFREG:
2474 if ((mask & MAY_OPEN) &&
2475 nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN))
2476 return 0;
2477 break;
2478 case S_IFDIR:
2479 /*
2480 * Optimize away all write operations, since the server
2481 * will check permissions when we perform the op.
2482 */
2483 if ((mask & MAY_WRITE) && !(mask & MAY_READ))
2484 goto out;
2485 }
2486
2487 force_lookup:
2488 if (!NFS_PROTO(inode)->access)
2489 goto out_notsup;
2490
2491 /* Always try fast lookups first */
2492 rcu_read_lock();
2493 cred = rpc_lookup_cred_nonblock();
2494 if (!IS_ERR(cred))
2495 res = nfs_do_access(inode, cred, mask|MAY_NOT_BLOCK);
2496 else
2497 res = PTR_ERR(cred);
2498 rcu_read_unlock();
2499 if (res == -ECHILD && !(mask & MAY_NOT_BLOCK)) {
2500 /* Fast lookup failed, try the slow way */
2501 cred = rpc_lookup_cred();
2502 if (!IS_ERR(cred)) {
2503 res = nfs_do_access(inode, cred, mask);
2504 put_rpccred(cred);
2505 } else
2506 res = PTR_ERR(cred);
2507 }
2508 out:
2509 if (!res && (mask & MAY_EXEC))
2510 res = nfs_execute_ok(inode, mask);
2511
2512 dfprintk(VFS, "NFS: permission(%s/%lu), mask=0x%x, res=%d\n",
2513 inode->i_sb->s_id, inode->i_ino, mask, res);
2514 return res;
2515 out_notsup:
2516 if (mask & MAY_NOT_BLOCK)
2517 return -ECHILD;
2518
2519 res = nfs_revalidate_inode(NFS_SERVER(inode), inode);
2520 if (res == 0)
2521 res = generic_permission(inode, mask);
2522 goto out;
2523 }
2524 EXPORT_SYMBOL_GPL(nfs_permission);
2525
2526 /*
2527 * Local variables:
2528 * version-control: t
2529 * kept-new-versions: 5
2530 * End:
2531 */
This page took 0.161015 seconds and 6 git commands to generate.