1e3725e51df18688cfb8222b1414ad1fe9c03ee9
[deliverable/linux.git] / fs / nfs / direct.c
1 /*
2 * linux/fs/nfs/direct.c
3 *
4 * Copyright (C) 2003 by Chuck Lever <cel@netapp.com>
5 *
6 * High-performance uncached I/O for the Linux NFS client
7 *
8 * There are important applications whose performance or correctness
9 * depends on uncached access to file data. Database clusters
10 * (multiple copies of the same instance running on separate hosts)
11 * implement their own cache coherency protocol that subsumes file
12 * system cache protocols. Applications that process datasets
13 * considerably larger than the client's memory do not always benefit
14 * from a local cache. A streaming video server, for instance, has no
15 * need to cache the contents of a file.
16 *
17 * When an application requests uncached I/O, all read and write requests
18 * are made directly to the server; data stored or fetched via these
19 * requests is not cached in the Linux page cache. The client does not
20 * correct unaligned requests from applications. All requested bytes are
21 * held on permanent storage before a direct write system call returns to
22 * an application.
23 *
24 * Solaris implements an uncached I/O facility called directio() that
25 * is used for backups and sequential I/O to very large files. Solaris
26 * also supports uncaching whole NFS partitions with "-o forcedirectio,"
27 * an undocumented mount option.
28 *
29 * Designed by Jeff Kimmel, Chuck Lever, and Trond Myklebust, with
30 * help from Andrew Morton.
31 *
32 * 18 Dec 2001 Initial implementation for 2.4 --cel
33 * 08 Jul 2002 Version for 2.4.19, with bug fixes --trondmy
34 * 08 Jun 2003 Port to 2.5 APIs --cel
35 * 31 Mar 2004 Handle direct I/O without VFS support --cel
36 * 15 Sep 2004 Parallel async reads --cel
37 * 04 May 2005 support O_DIRECT with aio --cel
38 *
39 */
40
41 #include <linux/config.h>
42 #include <linux/errno.h>
43 #include <linux/sched.h>
44 #include <linux/kernel.h>
45 #include <linux/smp_lock.h>
46 #include <linux/file.h>
47 #include <linux/pagemap.h>
48 #include <linux/kref.h>
49
50 #include <linux/nfs_fs.h>
51 #include <linux/nfs_page.h>
52 #include <linux/sunrpc/clnt.h>
53
54 #include <asm/system.h>
55 #include <asm/uaccess.h>
56 #include <asm/atomic.h>
57
58 #include "iostat.h"
59
60 #define NFSDBG_FACILITY NFSDBG_VFS
61
62 static void nfs_free_user_pages(struct page **pages, int npages, int do_dirty);
63 static kmem_cache_t *nfs_direct_cachep;
64
65 /*
66 * This represents a set of asynchronous requests that we're waiting on
67 */
68 struct nfs_direct_req {
69 struct kref kref; /* release manager */
70
71 /* I/O parameters */
72 struct list_head list, /* nfs_read/write_data structs */
73 rewrite_list; /* saved nfs_write_data structs */
74 struct nfs_open_context *ctx; /* file open context info */
75 struct kiocb * iocb; /* controlling i/o request */
76 wait_queue_head_t wait; /* wait for i/o completion */
77 struct inode * inode; /* target file of i/o */
78 unsigned long user_addr; /* location of user's buffer */
79 size_t user_count; /* total bytes to move */
80 loff_t pos; /* starting offset in file */
81 struct page ** pages; /* pages in our buffer */
82 unsigned int npages; /* count of pages */
83
84 /* completion state */
85 spinlock_t lock; /* protect completion state */
86 int outstanding; /* i/os we're waiting for */
87 ssize_t count, /* bytes actually processed */
88 error; /* any reported error */
89
90 /* commit state */
91 struct nfs_write_data * commit_data; /* special write_data for commits */
92 int flags;
93 #define NFS_ODIRECT_DO_COMMIT (1) /* an unstable reply was received */
94 #define NFS_ODIRECT_RESCHED_WRITES (2) /* write verification failed */
95 struct nfs_writeverf verf; /* unstable write verifier */
96 };
97
98 static void nfs_direct_write_schedule(struct nfs_direct_req *dreq, int sync);
99 static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode);
100
101 /**
102 * nfs_direct_IO - NFS address space operation for direct I/O
103 * @rw: direction (read or write)
104 * @iocb: target I/O control block
105 * @iov: array of vectors that define I/O buffer
106 * @pos: offset in file to begin the operation
107 * @nr_segs: size of iovec array
108 *
109 * The presence of this routine in the address space ops vector means
110 * the NFS client supports direct I/O. However, we shunt off direct
111 * read and write requests before the VFS gets them, so this method
112 * should never be called.
113 */
114 ssize_t nfs_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov, loff_t pos, unsigned long nr_segs)
115 {
116 struct dentry *dentry = iocb->ki_filp->f_dentry;
117
118 dprintk("NFS: nfs_direct_IO (%s) off/no(%Ld/%lu) EINVAL\n",
119 dentry->d_name.name, (long long) pos, nr_segs);
120
121 return -EINVAL;
122 }
123
124 static inline int nfs_get_user_pages(int rw, unsigned long user_addr, size_t size, struct page ***pages)
125 {
126 int result = -ENOMEM;
127 unsigned long page_count;
128 size_t array_size;
129
130 page_count = (user_addr + size + PAGE_SIZE - 1) >> PAGE_SHIFT;
131 page_count -= user_addr >> PAGE_SHIFT;
132
133 array_size = (page_count * sizeof(struct page *));
134 *pages = kmalloc(array_size, GFP_KERNEL);
135 if (*pages) {
136 down_read(&current->mm->mmap_sem);
137 result = get_user_pages(current, current->mm, user_addr,
138 page_count, (rw == READ), 0,
139 *pages, NULL);
140 up_read(&current->mm->mmap_sem);
141 /*
142 * If we got fewer pages than expected from get_user_pages(),
143 * the user buffer runs off the end of a mapping; return EFAULT.
144 */
145 if (result >= 0 && result < page_count) {
146 nfs_free_user_pages(*pages, result, 0);
147 *pages = NULL;
148 result = -EFAULT;
149 }
150 }
151 return result;
152 }
153
154 static void nfs_free_user_pages(struct page **pages, int npages, int do_dirty)
155 {
156 int i;
157 for (i = 0; i < npages; i++) {
158 struct page *page = pages[i];
159 if (do_dirty && !PageCompound(page))
160 set_page_dirty_lock(page);
161 page_cache_release(page);
162 }
163 kfree(pages);
164 }
165
166 static inline struct nfs_direct_req *nfs_direct_req_alloc(void)
167 {
168 struct nfs_direct_req *dreq;
169
170 dreq = kmem_cache_alloc(nfs_direct_cachep, SLAB_KERNEL);
171 if (!dreq)
172 return NULL;
173
174 kref_init(&dreq->kref);
175 init_waitqueue_head(&dreq->wait);
176 INIT_LIST_HEAD(&dreq->list);
177 INIT_LIST_HEAD(&dreq->rewrite_list);
178 dreq->iocb = NULL;
179 dreq->ctx = NULL;
180 spin_lock_init(&dreq->lock);
181 dreq->outstanding = 0;
182 dreq->count = 0;
183 dreq->error = 0;
184 dreq->flags = 0;
185
186 return dreq;
187 }
188
189 static void nfs_direct_req_release(struct kref *kref)
190 {
191 struct nfs_direct_req *dreq = container_of(kref, struct nfs_direct_req, kref);
192
193 if (dreq->ctx != NULL)
194 put_nfs_open_context(dreq->ctx);
195 kmem_cache_free(nfs_direct_cachep, dreq);
196 }
197
198 /*
199 * Collects and returns the final error value/byte-count.
200 */
201 static ssize_t nfs_direct_wait(struct nfs_direct_req *dreq)
202 {
203 ssize_t result = -EIOCBQUEUED;
204
205 /* Async requests don't wait here */
206 if (dreq->iocb)
207 goto out;
208
209 result = wait_event_interruptible(dreq->wait, (dreq->outstanding == 0));
210
211 if (!result)
212 result = dreq->error;
213 if (!result)
214 result = dreq->count;
215
216 out:
217 kref_put(&dreq->kref, nfs_direct_req_release);
218 return (ssize_t) result;
219 }
220
221 /*
222 * We must hold a reference to all the pages in this direct read request
223 * until the RPCs complete. This could be long *after* we are woken up in
224 * nfs_direct_wait (for instance, if someone hits ^C on a slow server).
225 *
226 * In addition, synchronous I/O uses a stack-allocated iocb. Thus we
227 * can't trust the iocb is still valid here if this is a synchronous
228 * request. If the waiter is woken prematurely, the iocb is long gone.
229 */
230 static void nfs_direct_complete(struct nfs_direct_req *dreq)
231 {
232 nfs_free_user_pages(dreq->pages, dreq->npages, 1);
233
234 if (dreq->iocb) {
235 long res = (long) dreq->error;
236 if (!res)
237 res = (long) dreq->count;
238 aio_complete(dreq->iocb, res, 0);
239 } else
240 wake_up(&dreq->wait);
241
242 kref_put(&dreq->kref, nfs_direct_req_release);
243 }
244
245 /*
246 * Note we also set the number of requests we have in the dreq when we are
247 * done. This prevents races with I/O completion so we will always wait
248 * until all requests have been dispatched and completed.
249 */
250 static struct nfs_direct_req *nfs_direct_read_alloc(size_t nbytes, size_t rsize)
251 {
252 struct list_head *list;
253 struct nfs_direct_req *dreq;
254 unsigned int rpages = (rsize + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
255
256 dreq = nfs_direct_req_alloc();
257 if (!dreq)
258 return NULL;
259
260 list = &dreq->list;
261 for(;;) {
262 struct nfs_read_data *data = nfs_readdata_alloc(rpages);
263
264 if (unlikely(!data)) {
265 while (!list_empty(list)) {
266 data = list_entry(list->next,
267 struct nfs_read_data, pages);
268 list_del(&data->pages);
269 nfs_readdata_free(data);
270 }
271 kref_put(&dreq->kref, nfs_direct_req_release);
272 return NULL;
273 }
274
275 INIT_LIST_HEAD(&data->pages);
276 list_add(&data->pages, list);
277
278 data->req = (struct nfs_page *) dreq;
279 dreq->outstanding++;
280 if (nbytes <= rsize)
281 break;
282 nbytes -= rsize;
283 }
284 kref_get(&dreq->kref);
285 return dreq;
286 }
287
288 static void nfs_direct_read_result(struct rpc_task *task, void *calldata)
289 {
290 struct nfs_read_data *data = calldata;
291 struct nfs_direct_req *dreq = (struct nfs_direct_req *) data->req;
292
293 if (nfs_readpage_result(task, data) != 0)
294 return;
295
296 spin_lock(&dreq->lock);
297
298 if (likely(task->tk_status >= 0))
299 dreq->count += data->res.count;
300 else
301 dreq->error = task->tk_status;
302
303 if (--dreq->outstanding) {
304 spin_unlock(&dreq->lock);
305 return;
306 }
307
308 spin_unlock(&dreq->lock);
309 nfs_direct_complete(dreq);
310 }
311
312 static const struct rpc_call_ops nfs_read_direct_ops = {
313 .rpc_call_done = nfs_direct_read_result,
314 .rpc_release = nfs_readdata_release,
315 };
316
317 /*
318 * For each nfs_read_data struct that was allocated on the list, dispatch
319 * an NFS READ operation
320 */
321 static void nfs_direct_read_schedule(struct nfs_direct_req *dreq)
322 {
323 struct nfs_open_context *ctx = dreq->ctx;
324 struct inode *inode = ctx->dentry->d_inode;
325 struct list_head *list = &dreq->list;
326 struct page **pages = dreq->pages;
327 size_t count = dreq->user_count;
328 loff_t pos = dreq->pos;
329 size_t rsize = NFS_SERVER(inode)->rsize;
330 unsigned int curpage, pgbase;
331
332 curpage = 0;
333 pgbase = dreq->user_addr & ~PAGE_MASK;
334 do {
335 struct nfs_read_data *data;
336 size_t bytes;
337
338 bytes = rsize;
339 if (count < rsize)
340 bytes = count;
341
342 BUG_ON(list_empty(list));
343 data = list_entry(list->next, struct nfs_read_data, pages);
344 list_del_init(&data->pages);
345
346 data->inode = inode;
347 data->cred = ctx->cred;
348 data->args.fh = NFS_FH(inode);
349 data->args.context = ctx;
350 data->args.offset = pos;
351 data->args.pgbase = pgbase;
352 data->args.pages = &pages[curpage];
353 data->args.count = bytes;
354 data->res.fattr = &data->fattr;
355 data->res.eof = 0;
356 data->res.count = bytes;
357
358 rpc_init_task(&data->task, NFS_CLIENT(inode), RPC_TASK_ASYNC,
359 &nfs_read_direct_ops, data);
360 NFS_PROTO(inode)->read_setup(data);
361
362 data->task.tk_cookie = (unsigned long) inode;
363
364 lock_kernel();
365 rpc_execute(&data->task);
366 unlock_kernel();
367
368 dfprintk(VFS, "NFS: %4d initiated direct read call (req %s/%Ld, %u bytes @ offset %Lu)\n",
369 data->task.tk_pid,
370 inode->i_sb->s_id,
371 (long long)NFS_FILEID(inode),
372 bytes,
373 (unsigned long long)data->args.offset);
374
375 pos += bytes;
376 pgbase += bytes;
377 curpage += pgbase >> PAGE_SHIFT;
378 pgbase &= ~PAGE_MASK;
379
380 count -= bytes;
381 } while (count != 0);
382 BUG_ON(!list_empty(list));
383 }
384
385 static ssize_t nfs_direct_read(struct kiocb *iocb, unsigned long user_addr, size_t count, loff_t pos, struct page **pages, unsigned int nr_pages)
386 {
387 ssize_t result;
388 sigset_t oldset;
389 struct inode *inode = iocb->ki_filp->f_mapping->host;
390 struct rpc_clnt *clnt = NFS_CLIENT(inode);
391 struct nfs_direct_req *dreq;
392
393 dreq = nfs_direct_read_alloc(count, NFS_SERVER(inode)->rsize);
394 if (!dreq)
395 return -ENOMEM;
396
397 dreq->user_addr = user_addr;
398 dreq->user_count = count;
399 dreq->pos = pos;
400 dreq->pages = pages;
401 dreq->npages = nr_pages;
402 dreq->inode = inode;
403 dreq->ctx = get_nfs_open_context((struct nfs_open_context *)iocb->ki_filp->private_data);
404 if (!is_sync_kiocb(iocb))
405 dreq->iocb = iocb;
406
407 nfs_add_stats(inode, NFSIOS_DIRECTREADBYTES, count);
408 rpc_clnt_sigmask(clnt, &oldset);
409 nfs_direct_read_schedule(dreq);
410 result = nfs_direct_wait(dreq);
411 rpc_clnt_sigunmask(clnt, &oldset);
412
413 return result;
414 }
415
416 static void nfs_direct_free_writedata(struct nfs_direct_req *dreq)
417 {
418 list_splice_init(&dreq->rewrite_list, &dreq->list);
419 while (!list_empty(&dreq->list)) {
420 struct nfs_write_data *data = list_entry(dreq->list.next, struct nfs_write_data, pages);
421 list_del(&data->pages);
422 nfs_writedata_release(data);
423 }
424 }
425
426 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
427 static void nfs_direct_write_reschedule(struct nfs_direct_req *dreq)
428 {
429 struct list_head *pos;
430
431 list_splice_init(&dreq->rewrite_list, &dreq->list);
432 list_for_each(pos, &dreq->list)
433 dreq->outstanding++;
434 dreq->count = 0;
435
436 nfs_direct_write_schedule(dreq, FLUSH_STABLE);
437 }
438
439 static void nfs_direct_commit_result(struct rpc_task *task, void *calldata)
440 {
441 struct nfs_write_data *data = calldata;
442 struct nfs_direct_req *dreq = (struct nfs_direct_req *) data->req;
443
444 /* Call the NFS version-specific code */
445 if (NFS_PROTO(data->inode)->commit_done(task, data) != 0)
446 return;
447 if (unlikely(task->tk_status < 0)) {
448 dreq->error = task->tk_status;
449 dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
450 }
451 if (memcmp(&dreq->verf, &data->verf, sizeof(data->verf))) {
452 dprintk("NFS: %5u commit verify failed\n", task->tk_pid);
453 dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
454 }
455
456 dprintk("NFS: %5u commit returned %d\n", task->tk_pid, task->tk_status);
457 nfs_direct_write_complete(dreq, data->inode);
458 }
459
460 static const struct rpc_call_ops nfs_commit_direct_ops = {
461 .rpc_call_done = nfs_direct_commit_result,
462 .rpc_release = nfs_commit_release,
463 };
464
465 static void nfs_direct_commit_schedule(struct nfs_direct_req *dreq)
466 {
467 struct nfs_write_data *data = dreq->commit_data;
468 struct rpc_task *task = &data->task;
469
470 data->inode = dreq->inode;
471 data->cred = dreq->ctx->cred;
472
473 data->args.fh = NFS_FH(data->inode);
474 data->args.offset = dreq->pos;
475 data->args.count = dreq->user_count;
476 data->res.count = 0;
477 data->res.fattr = &data->fattr;
478 data->res.verf = &data->verf;
479
480 rpc_init_task(&data->task, NFS_CLIENT(dreq->inode), RPC_TASK_ASYNC,
481 &nfs_commit_direct_ops, data);
482 NFS_PROTO(data->inode)->commit_setup(data, 0);
483
484 data->task.tk_priority = RPC_PRIORITY_NORMAL;
485 data->task.tk_cookie = (unsigned long)data->inode;
486 /* Note: task.tk_ops->rpc_release will free dreq->commit_data */
487 dreq->commit_data = NULL;
488
489 dprintk("NFS: %5u initiated commit call\n", task->tk_pid);
490
491 lock_kernel();
492 rpc_execute(&data->task);
493 unlock_kernel();
494 }
495
496 static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode)
497 {
498 int flags = dreq->flags;
499
500 dreq->flags = 0;
501 switch (flags) {
502 case NFS_ODIRECT_DO_COMMIT:
503 nfs_direct_commit_schedule(dreq);
504 break;
505 case NFS_ODIRECT_RESCHED_WRITES:
506 nfs_direct_write_reschedule(dreq);
507 break;
508 default:
509 nfs_end_data_update(inode);
510 if (dreq->commit_data != NULL)
511 nfs_commit_free(dreq->commit_data);
512 nfs_direct_free_writedata(dreq);
513 nfs_direct_complete(dreq);
514 }
515 }
516
517 static void nfs_alloc_commit_data(struct nfs_direct_req *dreq)
518 {
519 dreq->commit_data = nfs_commit_alloc(0);
520 if (dreq->commit_data != NULL)
521 dreq->commit_data->req = (struct nfs_page *) dreq;
522 }
523 #else
524 static inline void nfs_alloc_commit_data(struct nfs_direct_req *dreq)
525 {
526 dreq->commit_data = NULL;
527 }
528
529 static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode)
530 {
531 nfs_end_data_update(inode);
532 nfs_direct_free_writedata(dreq);
533 nfs_direct_complete(dreq);
534 }
535 #endif
536
537 static struct nfs_direct_req *nfs_direct_write_alloc(size_t nbytes, size_t wsize)
538 {
539 struct list_head *list;
540 struct nfs_direct_req *dreq;
541 unsigned int wpages = (wsize + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
542
543 dreq = nfs_direct_req_alloc();
544 if (!dreq)
545 return NULL;
546
547 list = &dreq->list;
548 for(;;) {
549 struct nfs_write_data *data = nfs_writedata_alloc(wpages);
550
551 if (unlikely(!data)) {
552 while (!list_empty(list)) {
553 data = list_entry(list->next,
554 struct nfs_write_data, pages);
555 list_del(&data->pages);
556 nfs_writedata_free(data);
557 }
558 kref_put(&dreq->kref, nfs_direct_req_release);
559 return NULL;
560 }
561
562 INIT_LIST_HEAD(&data->pages);
563 list_add(&data->pages, list);
564
565 data->req = (struct nfs_page *) dreq;
566 dreq->outstanding++;
567 if (nbytes <= wsize)
568 break;
569 nbytes -= wsize;
570 }
571
572 nfs_alloc_commit_data(dreq);
573
574 kref_get(&dreq->kref);
575 return dreq;
576 }
577
578 static void nfs_direct_write_result(struct rpc_task *task, void *calldata)
579 {
580 struct nfs_write_data *data = calldata;
581 struct nfs_direct_req *dreq = (struct nfs_direct_req *) data->req;
582 int status = task->tk_status;
583
584 if (nfs_writeback_done(task, data) != 0)
585 return;
586
587 spin_lock(&dreq->lock);
588
589 if (likely(status >= 0))
590 dreq->count += data->res.count;
591 else
592 dreq->error = task->tk_status;
593
594 if (data->res.verf->committed != NFS_FILE_SYNC) {
595 switch (dreq->flags) {
596 case 0:
597 memcpy(&dreq->verf, &data->verf, sizeof(dreq->verf));
598 dreq->flags = NFS_ODIRECT_DO_COMMIT;
599 break;
600 case NFS_ODIRECT_DO_COMMIT:
601 if (memcmp(&dreq->verf, &data->verf, sizeof(dreq->verf))) {
602 dprintk("NFS: %5u write verify failed\n", task->tk_pid);
603 dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
604 }
605 }
606 }
607 /* In case we have to resend */
608 data->args.stable = NFS_FILE_SYNC;
609
610 spin_unlock(&dreq->lock);
611 }
612
613 /*
614 * NB: Return the value of the first error return code. Subsequent
615 * errors after the first one are ignored.
616 */
617 static void nfs_direct_write_release(void *calldata)
618 {
619 struct nfs_write_data *data = calldata;
620 struct nfs_direct_req *dreq = (struct nfs_direct_req *) data->req;
621
622 spin_lock(&dreq->lock);
623 if (--dreq->outstanding) {
624 spin_unlock(&dreq->lock);
625 return;
626 }
627 spin_unlock(&dreq->lock);
628
629 nfs_direct_write_complete(dreq, data->inode);
630 }
631
632 static const struct rpc_call_ops nfs_write_direct_ops = {
633 .rpc_call_done = nfs_direct_write_result,
634 .rpc_release = nfs_direct_write_release,
635 };
636
637 /*
638 * For each nfs_write_data struct that was allocated on the list, dispatch
639 * an NFS WRITE operation
640 */
641 static void nfs_direct_write_schedule(struct nfs_direct_req *dreq, int sync)
642 {
643 struct nfs_open_context *ctx = dreq->ctx;
644 struct inode *inode = ctx->dentry->d_inode;
645 struct list_head *list = &dreq->list;
646 struct page **pages = dreq->pages;
647 size_t count = dreq->user_count;
648 loff_t pos = dreq->pos;
649 size_t wsize = NFS_SERVER(inode)->wsize;
650 unsigned int curpage, pgbase;
651
652 curpage = 0;
653 pgbase = dreq->user_addr & ~PAGE_MASK;
654 do {
655 struct nfs_write_data *data;
656 size_t bytes;
657
658 bytes = wsize;
659 if (count < wsize)
660 bytes = count;
661
662 BUG_ON(list_empty(list));
663 data = list_entry(list->next, struct nfs_write_data, pages);
664 list_move_tail(&data->pages, &dreq->rewrite_list);
665
666 data->inode = inode;
667 data->cred = ctx->cred;
668 data->args.fh = NFS_FH(inode);
669 data->args.context = ctx;
670 data->args.offset = pos;
671 data->args.pgbase = pgbase;
672 data->args.pages = &pages[curpage];
673 data->args.count = bytes;
674 data->res.fattr = &data->fattr;
675 data->res.count = bytes;
676 data->res.verf = &data->verf;
677
678 rpc_init_task(&data->task, NFS_CLIENT(inode), RPC_TASK_ASYNC,
679 &nfs_write_direct_ops, data);
680 NFS_PROTO(inode)->write_setup(data, sync);
681
682 data->task.tk_priority = RPC_PRIORITY_NORMAL;
683 data->task.tk_cookie = (unsigned long) inode;
684
685 lock_kernel();
686 rpc_execute(&data->task);
687 unlock_kernel();
688
689 dfprintk(VFS, "NFS: %4d initiated direct write call (req %s/%Ld, %u bytes @ offset %Lu)\n",
690 data->task.tk_pid,
691 inode->i_sb->s_id,
692 (long long)NFS_FILEID(inode),
693 bytes,
694 (unsigned long long)data->args.offset);
695
696 pos += bytes;
697 pgbase += bytes;
698 curpage += pgbase >> PAGE_SHIFT;
699 pgbase &= ~PAGE_MASK;
700
701 count -= bytes;
702 } while (count != 0);
703 BUG_ON(!list_empty(list));
704 }
705
706 static ssize_t nfs_direct_write(struct kiocb *iocb, unsigned long user_addr, size_t count, loff_t pos, struct page **pages, int nr_pages)
707 {
708 ssize_t result;
709 sigset_t oldset;
710 struct inode *inode = iocb->ki_filp->f_mapping->host;
711 struct rpc_clnt *clnt = NFS_CLIENT(inode);
712 struct nfs_direct_req *dreq;
713 size_t wsize = NFS_SERVER(inode)->wsize;
714 int sync = 0;
715
716 dreq = nfs_direct_write_alloc(count, wsize);
717 if (!dreq)
718 return -ENOMEM;
719 if (dreq->commit_data == NULL || count < wsize)
720 sync = FLUSH_STABLE;
721
722 dreq->user_addr = user_addr;
723 dreq->user_count = count;
724 dreq->pos = pos;
725 dreq->pages = pages;
726 dreq->npages = nr_pages;
727 dreq->inode = inode;
728 dreq->ctx = get_nfs_open_context((struct nfs_open_context *)iocb->ki_filp->private_data);
729 if (!is_sync_kiocb(iocb))
730 dreq->iocb = iocb;
731
732 nfs_add_stats(inode, NFSIOS_DIRECTWRITTENBYTES, count);
733
734 nfs_begin_data_update(inode);
735
736 rpc_clnt_sigmask(clnt, &oldset);
737 nfs_direct_write_schedule(dreq, sync);
738 result = nfs_direct_wait(dreq);
739 rpc_clnt_sigunmask(clnt, &oldset);
740
741 return result;
742 }
743
744 /**
745 * nfs_file_direct_read - file direct read operation for NFS files
746 * @iocb: target I/O control block
747 * @buf: user's buffer into which to read data
748 * @count: number of bytes to read
749 * @pos: byte offset in file where reading starts
750 *
751 * We use this function for direct reads instead of calling
752 * generic_file_aio_read() in order to avoid gfar's check to see if
753 * the request starts before the end of the file. For that check
754 * to work, we must generate a GETATTR before each direct read, and
755 * even then there is a window between the GETATTR and the subsequent
756 * READ where the file size could change. Our preference is simply
757 * to do all reads the application wants, and the server will take
758 * care of managing the end of file boundary.
759 *
760 * This function also eliminates unnecessarily updating the file's
761 * atime locally, as the NFS server sets the file's atime, and this
762 * client must read the updated atime from the server back into its
763 * cache.
764 */
765 ssize_t nfs_file_direct_read(struct kiocb *iocb, char __user *buf, size_t count, loff_t pos)
766 {
767 ssize_t retval = -EINVAL;
768 int page_count;
769 struct page **pages;
770 struct file *file = iocb->ki_filp;
771 struct address_space *mapping = file->f_mapping;
772
773 dprintk("nfs: direct read(%s/%s, %lu@%Ld)\n",
774 file->f_dentry->d_parent->d_name.name,
775 file->f_dentry->d_name.name,
776 (unsigned long) count, (long long) pos);
777
778 if (count < 0)
779 goto out;
780 retval = -EFAULT;
781 if (!access_ok(VERIFY_WRITE, buf, count))
782 goto out;
783 retval = 0;
784 if (!count)
785 goto out;
786
787 retval = nfs_sync_mapping(mapping);
788 if (retval)
789 goto out;
790
791 page_count = nfs_get_user_pages(READ, (unsigned long) buf,
792 count, &pages);
793 if (page_count < 0) {
794 nfs_free_user_pages(pages, 0, 0);
795 retval = page_count;
796 goto out;
797 }
798
799 retval = nfs_direct_read(iocb, (unsigned long) buf, count, pos,
800 pages, page_count);
801 if (retval > 0)
802 iocb->ki_pos = pos + retval;
803
804 out:
805 return retval;
806 }
807
808 /**
809 * nfs_file_direct_write - file direct write operation for NFS files
810 * @iocb: target I/O control block
811 * @buf: user's buffer from which to write data
812 * @count: number of bytes to write
813 * @pos: byte offset in file where writing starts
814 *
815 * We use this function for direct writes instead of calling
816 * generic_file_aio_write() in order to avoid taking the inode
817 * semaphore and updating the i_size. The NFS server will set
818 * the new i_size and this client must read the updated size
819 * back into its cache. We let the server do generic write
820 * parameter checking and report problems.
821 *
822 * We also avoid an unnecessary invocation of generic_osync_inode(),
823 * as it is fairly meaningless to sync the metadata of an NFS file.
824 *
825 * We eliminate local atime updates, see direct read above.
826 *
827 * We avoid unnecessary page cache invalidations for normal cached
828 * readers of this file.
829 *
830 * Note that O_APPEND is not supported for NFS direct writes, as there
831 * is no atomic O_APPEND write facility in the NFS protocol.
832 */
833 ssize_t nfs_file_direct_write(struct kiocb *iocb, const char __user *buf, size_t count, loff_t pos)
834 {
835 ssize_t retval;
836 int page_count;
837 struct page **pages;
838 struct file *file = iocb->ki_filp;
839 struct address_space *mapping = file->f_mapping;
840
841 dfprintk(VFS, "nfs: direct write(%s/%s, %lu@%Ld)\n",
842 file->f_dentry->d_parent->d_name.name,
843 file->f_dentry->d_name.name,
844 (unsigned long) count, (long long) pos);
845
846 retval = generic_write_checks(file, &pos, &count, 0);
847 if (retval)
848 goto out;
849
850 retval = -EINVAL;
851 if ((ssize_t) count < 0)
852 goto out;
853 retval = 0;
854 if (!count)
855 goto out;
856
857 retval = -EFAULT;
858 if (!access_ok(VERIFY_READ, buf, count))
859 goto out;
860
861 retval = nfs_sync_mapping(mapping);
862 if (retval)
863 goto out;
864
865 page_count = nfs_get_user_pages(WRITE, (unsigned long) buf,
866 count, &pages);
867 if (page_count < 0) {
868 nfs_free_user_pages(pages, 0, 0);
869 retval = page_count;
870 goto out;
871 }
872
873 retval = nfs_direct_write(iocb, (unsigned long) buf, count,
874 pos, pages, page_count);
875
876 /*
877 * XXX: nfs_end_data_update() already ensures this file's
878 * cached data is subsequently invalidated. Do we really
879 * need to call invalidate_inode_pages2() again here?
880 *
881 * For aio writes, this invalidation will almost certainly
882 * occur before the writes complete. Kind of racey.
883 */
884 if (mapping->nrpages)
885 invalidate_inode_pages2(mapping);
886
887 if (retval > 0)
888 iocb->ki_pos = pos + retval;
889
890 out:
891 return retval;
892 }
893
894 /**
895 * nfs_init_directcache - create a slab cache for nfs_direct_req structures
896 *
897 */
898 int nfs_init_directcache(void)
899 {
900 nfs_direct_cachep = kmem_cache_create("nfs_direct_cache",
901 sizeof(struct nfs_direct_req),
902 0, SLAB_RECLAIM_ACCOUNT,
903 NULL, NULL);
904 if (nfs_direct_cachep == NULL)
905 return -ENOMEM;
906
907 return 0;
908 }
909
910 /**
911 * nfs_init_directcache - destroy the slab cache for nfs_direct_req structures
912 *
913 */
914 void nfs_destroy_directcache(void)
915 {
916 if (kmem_cache_destroy(nfs_direct_cachep))
917 printk(KERN_INFO "nfs_direct_cache: not all structures were freed\n");
918 }
This page took 0.071449 seconds and 4 git commands to generate.