NFS: Convert nfs_get_lock_context to return an ERR_PTR on failure
[deliverable/linux.git] / fs / nfs / direct.c
1 /*
2 * linux/fs/nfs/direct.c
3 *
4 * Copyright (C) 2003 by Chuck Lever <cel@netapp.com>
5 *
6 * High-performance uncached I/O for the Linux NFS client
7 *
8 * There are important applications whose performance or correctness
9 * depends on uncached access to file data. Database clusters
10 * (multiple copies of the same instance running on separate hosts)
11 * implement their own cache coherency protocol that subsumes file
12 * system cache protocols. Applications that process datasets
13 * considerably larger than the client's memory do not always benefit
14 * from a local cache. A streaming video server, for instance, has no
15 * need to cache the contents of a file.
16 *
17 * When an application requests uncached I/O, all read and write requests
18 * are made directly to the server; data stored or fetched via these
19 * requests is not cached in the Linux page cache. The client does not
20 * correct unaligned requests from applications. All requested bytes are
21 * held on permanent storage before a direct write system call returns to
22 * an application.
23 *
24 * Solaris implements an uncached I/O facility called directio() that
25 * is used for backups and sequential I/O to very large files. Solaris
26 * also supports uncaching whole NFS partitions with "-o forcedirectio,"
27 * an undocumented mount option.
28 *
29 * Designed by Jeff Kimmel, Chuck Lever, and Trond Myklebust, with
30 * help from Andrew Morton.
31 *
32 * 18 Dec 2001 Initial implementation for 2.4 --cel
33 * 08 Jul 2002 Version for 2.4.19, with bug fixes --trondmy
34 * 08 Jun 2003 Port to 2.5 APIs --cel
35 * 31 Mar 2004 Handle direct I/O without VFS support --cel
36 * 15 Sep 2004 Parallel async reads --cel
37 * 04 May 2005 support O_DIRECT with aio --cel
38 *
39 */
40
41 #include <linux/errno.h>
42 #include <linux/sched.h>
43 #include <linux/kernel.h>
44 #include <linux/file.h>
45 #include <linux/pagemap.h>
46 #include <linux/kref.h>
47 #include <linux/slab.h>
48 #include <linux/task_io_accounting_ops.h>
49
50 #include <linux/nfs_fs.h>
51 #include <linux/nfs_page.h>
52 #include <linux/sunrpc/clnt.h>
53
54 #include <asm/uaccess.h>
55 #include <linux/atomic.h>
56
57 #include "internal.h"
58 #include "iostat.h"
59 #include "pnfs.h"
60
61 #define NFSDBG_FACILITY NFSDBG_VFS
62
63 static struct kmem_cache *nfs_direct_cachep;
64
65 /*
66 * This represents a set of asynchronous requests that we're waiting on
67 */
68 struct nfs_direct_req {
69 struct kref kref; /* release manager */
70
71 /* I/O parameters */
72 struct nfs_open_context *ctx; /* file open context info */
73 struct nfs_lock_context *l_ctx; /* Lock context info */
74 struct kiocb * iocb; /* controlling i/o request */
75 struct inode * inode; /* target file of i/o */
76
77 /* completion state */
78 atomic_t io_count; /* i/os we're waiting for */
79 spinlock_t lock; /* protect completion state */
80 ssize_t count, /* bytes actually processed */
81 error; /* any reported error */
82 struct completion completion; /* wait for i/o completion */
83
84 /* commit state */
85 struct nfs_mds_commit_info mds_cinfo; /* Storage for cinfo */
86 struct pnfs_ds_commit_info ds_cinfo; /* Storage for cinfo */
87 struct work_struct work;
88 int flags;
89 #define NFS_ODIRECT_DO_COMMIT (1) /* an unstable reply was received */
90 #define NFS_ODIRECT_RESCHED_WRITES (2) /* write verification failed */
91 struct nfs_writeverf verf; /* unstable write verifier */
92 };
93
94 static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops;
95 static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops;
96 static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode);
97 static void nfs_direct_write_schedule_work(struct work_struct *work);
98
99 static inline void get_dreq(struct nfs_direct_req *dreq)
100 {
101 atomic_inc(&dreq->io_count);
102 }
103
104 static inline int put_dreq(struct nfs_direct_req *dreq)
105 {
106 return atomic_dec_and_test(&dreq->io_count);
107 }
108
109 /**
110 * nfs_direct_IO - NFS address space operation for direct I/O
111 * @rw: direction (read or write)
112 * @iocb: target I/O control block
113 * @iov: array of vectors that define I/O buffer
114 * @pos: offset in file to begin the operation
115 * @nr_segs: size of iovec array
116 *
117 * The presence of this routine in the address space ops vector means
118 * the NFS client supports direct I/O. However, for most direct IO, we
119 * shunt off direct read and write requests before the VFS gets them,
120 * so this method is only ever called for swap.
121 */
122 ssize_t nfs_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov, loff_t pos, unsigned long nr_segs)
123 {
124 #ifndef CONFIG_NFS_SWAP
125 dprintk("NFS: nfs_direct_IO (%s) off/no(%Ld/%lu) EINVAL\n",
126 iocb->ki_filp->f_path.dentry->d_name.name,
127 (long long) pos, nr_segs);
128
129 return -EINVAL;
130 #else
131 VM_BUG_ON(iocb->ki_left != PAGE_SIZE);
132 VM_BUG_ON(iocb->ki_nbytes != PAGE_SIZE);
133
134 if (rw == READ || rw == KERNEL_READ)
135 return nfs_file_direct_read(iocb, iov, nr_segs, pos,
136 rw == READ ? true : false);
137 return nfs_file_direct_write(iocb, iov, nr_segs, pos,
138 rw == WRITE ? true : false);
139 #endif /* CONFIG_NFS_SWAP */
140 }
141
142 static void nfs_direct_release_pages(struct page **pages, unsigned int npages)
143 {
144 unsigned int i;
145 for (i = 0; i < npages; i++)
146 page_cache_release(pages[i]);
147 }
148
149 void nfs_init_cinfo_from_dreq(struct nfs_commit_info *cinfo,
150 struct nfs_direct_req *dreq)
151 {
152 cinfo->lock = &dreq->lock;
153 cinfo->mds = &dreq->mds_cinfo;
154 cinfo->ds = &dreq->ds_cinfo;
155 cinfo->dreq = dreq;
156 cinfo->completion_ops = &nfs_direct_commit_completion_ops;
157 }
158
159 static inline struct nfs_direct_req *nfs_direct_req_alloc(void)
160 {
161 struct nfs_direct_req *dreq;
162
163 dreq = kmem_cache_zalloc(nfs_direct_cachep, GFP_KERNEL);
164 if (!dreq)
165 return NULL;
166
167 kref_init(&dreq->kref);
168 kref_get(&dreq->kref);
169 init_completion(&dreq->completion);
170 INIT_LIST_HEAD(&dreq->mds_cinfo.list);
171 INIT_WORK(&dreq->work, nfs_direct_write_schedule_work);
172 spin_lock_init(&dreq->lock);
173
174 return dreq;
175 }
176
177 static void nfs_direct_req_free(struct kref *kref)
178 {
179 struct nfs_direct_req *dreq = container_of(kref, struct nfs_direct_req, kref);
180
181 if (dreq->l_ctx != NULL)
182 nfs_put_lock_context(dreq->l_ctx);
183 if (dreq->ctx != NULL)
184 put_nfs_open_context(dreq->ctx);
185 kmem_cache_free(nfs_direct_cachep, dreq);
186 }
187
188 static void nfs_direct_req_release(struct nfs_direct_req *dreq)
189 {
190 kref_put(&dreq->kref, nfs_direct_req_free);
191 }
192
193 /*
194 * Collects and returns the final error value/byte-count.
195 */
196 static ssize_t nfs_direct_wait(struct nfs_direct_req *dreq)
197 {
198 ssize_t result = -EIOCBQUEUED;
199
200 /* Async requests don't wait here */
201 if (dreq->iocb)
202 goto out;
203
204 result = wait_for_completion_killable(&dreq->completion);
205
206 if (!result)
207 result = dreq->error;
208 if (!result)
209 result = dreq->count;
210
211 out:
212 return (ssize_t) result;
213 }
214
215 /*
216 * Synchronous I/O uses a stack-allocated iocb. Thus we can't trust
217 * the iocb is still valid here if this is a synchronous request.
218 */
219 static void nfs_direct_complete(struct nfs_direct_req *dreq)
220 {
221 if (dreq->iocb) {
222 long res = (long) dreq->error;
223 if (!res)
224 res = (long) dreq->count;
225 aio_complete(dreq->iocb, res, 0);
226 }
227 complete_all(&dreq->completion);
228
229 nfs_direct_req_release(dreq);
230 }
231
232 static void nfs_direct_readpage_release(struct nfs_page *req)
233 {
234 dprintk("NFS: direct read done (%s/%lld %d@%lld)\n",
235 req->wb_context->dentry->d_inode->i_sb->s_id,
236 (long long)NFS_FILEID(req->wb_context->dentry->d_inode),
237 req->wb_bytes,
238 (long long)req_offset(req));
239 nfs_release_request(req);
240 }
241
242 static void nfs_direct_read_completion(struct nfs_pgio_header *hdr)
243 {
244 unsigned long bytes = 0;
245 struct nfs_direct_req *dreq = hdr->dreq;
246
247 if (test_bit(NFS_IOHDR_REDO, &hdr->flags))
248 goto out_put;
249
250 spin_lock(&dreq->lock);
251 if (test_bit(NFS_IOHDR_ERROR, &hdr->flags) && (hdr->good_bytes == 0))
252 dreq->error = hdr->error;
253 else
254 dreq->count += hdr->good_bytes;
255 spin_unlock(&dreq->lock);
256
257 while (!list_empty(&hdr->pages)) {
258 struct nfs_page *req = nfs_list_entry(hdr->pages.next);
259 struct page *page = req->wb_page;
260
261 if (test_bit(NFS_IOHDR_EOF, &hdr->flags)) {
262 if (bytes > hdr->good_bytes)
263 zero_user(page, 0, PAGE_SIZE);
264 else if (hdr->good_bytes - bytes < PAGE_SIZE)
265 zero_user_segment(page,
266 hdr->good_bytes & ~PAGE_MASK,
267 PAGE_SIZE);
268 }
269 if (!PageCompound(page)) {
270 if (test_bit(NFS_IOHDR_ERROR, &hdr->flags)) {
271 if (bytes < hdr->good_bytes)
272 set_page_dirty(page);
273 } else
274 set_page_dirty(page);
275 }
276 bytes += req->wb_bytes;
277 nfs_list_remove_request(req);
278 nfs_direct_readpage_release(req);
279 }
280 out_put:
281 if (put_dreq(dreq))
282 nfs_direct_complete(dreq);
283 hdr->release(hdr);
284 }
285
286 static void nfs_read_sync_pgio_error(struct list_head *head)
287 {
288 struct nfs_page *req;
289
290 while (!list_empty(head)) {
291 req = nfs_list_entry(head->next);
292 nfs_list_remove_request(req);
293 nfs_release_request(req);
294 }
295 }
296
297 static void nfs_direct_pgio_init(struct nfs_pgio_header *hdr)
298 {
299 get_dreq(hdr->dreq);
300 }
301
302 static const struct nfs_pgio_completion_ops nfs_direct_read_completion_ops = {
303 .error_cleanup = nfs_read_sync_pgio_error,
304 .init_hdr = nfs_direct_pgio_init,
305 .completion = nfs_direct_read_completion,
306 };
307
308 /*
309 * For each rsize'd chunk of the user's buffer, dispatch an NFS READ
310 * operation. If nfs_readdata_alloc() or get_user_pages() fails,
311 * bail and stop sending more reads. Read length accounting is
312 * handled automatically by nfs_direct_read_result(). Otherwise, if
313 * no requests have been sent, just return an error.
314 */
315 static ssize_t nfs_direct_read_schedule_segment(struct nfs_pageio_descriptor *desc,
316 const struct iovec *iov,
317 loff_t pos, bool uio)
318 {
319 struct nfs_direct_req *dreq = desc->pg_dreq;
320 struct nfs_open_context *ctx = dreq->ctx;
321 struct inode *inode = ctx->dentry->d_inode;
322 unsigned long user_addr = (unsigned long)iov->iov_base;
323 size_t count = iov->iov_len;
324 size_t rsize = NFS_SERVER(inode)->rsize;
325 unsigned int pgbase;
326 int result;
327 ssize_t started = 0;
328 struct page **pagevec = NULL;
329 unsigned int npages;
330
331 do {
332 size_t bytes;
333 int i;
334
335 pgbase = user_addr & ~PAGE_MASK;
336 bytes = min(max_t(size_t, rsize, PAGE_SIZE), count);
337
338 result = -ENOMEM;
339 npages = nfs_page_array_len(pgbase, bytes);
340 if (!pagevec)
341 pagevec = kmalloc(npages * sizeof(struct page *),
342 GFP_KERNEL);
343 if (!pagevec)
344 break;
345 if (uio) {
346 down_read(&current->mm->mmap_sem);
347 result = get_user_pages(current, current->mm, user_addr,
348 npages, 1, 0, pagevec, NULL);
349 up_read(&current->mm->mmap_sem);
350 if (result < 0)
351 break;
352 } else {
353 WARN_ON(npages != 1);
354 result = get_kernel_page(user_addr, 1, pagevec);
355 if (WARN_ON(result != 1))
356 break;
357 }
358
359 if ((unsigned)result < npages) {
360 bytes = result * PAGE_SIZE;
361 if (bytes <= pgbase) {
362 nfs_direct_release_pages(pagevec, result);
363 break;
364 }
365 bytes -= pgbase;
366 npages = result;
367 }
368
369 for (i = 0; i < npages; i++) {
370 struct nfs_page *req;
371 unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase);
372 /* XXX do we need to do the eof zeroing found in async_filler? */
373 req = nfs_create_request(dreq->ctx, dreq->inode,
374 pagevec[i],
375 pgbase, req_len);
376 if (IS_ERR(req)) {
377 result = PTR_ERR(req);
378 break;
379 }
380 req->wb_index = pos >> PAGE_SHIFT;
381 req->wb_offset = pos & ~PAGE_MASK;
382 if (!nfs_pageio_add_request(desc, req)) {
383 result = desc->pg_error;
384 nfs_release_request(req);
385 break;
386 }
387 pgbase = 0;
388 bytes -= req_len;
389 started += req_len;
390 user_addr += req_len;
391 pos += req_len;
392 count -= req_len;
393 }
394 /* The nfs_page now hold references to these pages */
395 nfs_direct_release_pages(pagevec, npages);
396 } while (count != 0 && result >= 0);
397
398 kfree(pagevec);
399
400 if (started)
401 return started;
402 return result < 0 ? (ssize_t) result : -EFAULT;
403 }
404
405 static ssize_t nfs_direct_read_schedule_iovec(struct nfs_direct_req *dreq,
406 const struct iovec *iov,
407 unsigned long nr_segs,
408 loff_t pos, bool uio)
409 {
410 struct nfs_pageio_descriptor desc;
411 ssize_t result = -EINVAL;
412 size_t requested_bytes = 0;
413 unsigned long seg;
414
415 NFS_PROTO(dreq->inode)->read_pageio_init(&desc, dreq->inode,
416 &nfs_direct_read_completion_ops);
417 get_dreq(dreq);
418 desc.pg_dreq = dreq;
419
420 for (seg = 0; seg < nr_segs; seg++) {
421 const struct iovec *vec = &iov[seg];
422 result = nfs_direct_read_schedule_segment(&desc, vec, pos, uio);
423 if (result < 0)
424 break;
425 requested_bytes += result;
426 if ((size_t)result < vec->iov_len)
427 break;
428 pos += vec->iov_len;
429 }
430
431 nfs_pageio_complete(&desc);
432
433 /*
434 * If no bytes were started, return the error, and let the
435 * generic layer handle the completion.
436 */
437 if (requested_bytes == 0) {
438 nfs_direct_req_release(dreq);
439 return result < 0 ? result : -EIO;
440 }
441
442 if (put_dreq(dreq))
443 nfs_direct_complete(dreq);
444 return 0;
445 }
446
447 static ssize_t nfs_direct_read(struct kiocb *iocb, const struct iovec *iov,
448 unsigned long nr_segs, loff_t pos, bool uio)
449 {
450 ssize_t result = -ENOMEM;
451 struct inode *inode = iocb->ki_filp->f_mapping->host;
452 struct nfs_direct_req *dreq;
453 struct nfs_lock_context *l_ctx;
454
455 dreq = nfs_direct_req_alloc();
456 if (dreq == NULL)
457 goto out;
458
459 dreq->inode = inode;
460 dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
461 l_ctx = nfs_get_lock_context(dreq->ctx);
462 if (IS_ERR(l_ctx)) {
463 result = PTR_ERR(l_ctx);
464 goto out_release;
465 }
466 dreq->l_ctx = l_ctx;
467 if (!is_sync_kiocb(iocb))
468 dreq->iocb = iocb;
469
470 result = nfs_direct_read_schedule_iovec(dreq, iov, nr_segs, pos, uio);
471 if (!result)
472 result = nfs_direct_wait(dreq);
473 NFS_I(inode)->read_io += result;
474 out_release:
475 nfs_direct_req_release(dreq);
476 out:
477 return result;
478 }
479
480 static void nfs_inode_dio_write_done(struct inode *inode)
481 {
482 nfs_zap_mapping(inode, inode->i_mapping);
483 inode_dio_done(inode);
484 }
485
486 #if IS_ENABLED(CONFIG_NFS_V3) || IS_ENABLED(CONFIG_NFS_V4)
487 static void nfs_direct_write_reschedule(struct nfs_direct_req *dreq)
488 {
489 struct nfs_pageio_descriptor desc;
490 struct nfs_page *req, *tmp;
491 LIST_HEAD(reqs);
492 struct nfs_commit_info cinfo;
493 LIST_HEAD(failed);
494
495 nfs_init_cinfo_from_dreq(&cinfo, dreq);
496 pnfs_recover_commit_reqs(dreq->inode, &reqs, &cinfo);
497 spin_lock(cinfo.lock);
498 nfs_scan_commit_list(&cinfo.mds->list, &reqs, &cinfo, 0);
499 spin_unlock(cinfo.lock);
500
501 dreq->count = 0;
502 get_dreq(dreq);
503
504 NFS_PROTO(dreq->inode)->write_pageio_init(&desc, dreq->inode, FLUSH_STABLE,
505 &nfs_direct_write_completion_ops);
506 desc.pg_dreq = dreq;
507
508 list_for_each_entry_safe(req, tmp, &reqs, wb_list) {
509 if (!nfs_pageio_add_request(&desc, req)) {
510 nfs_list_remove_request(req);
511 nfs_list_add_request(req, &failed);
512 spin_lock(cinfo.lock);
513 dreq->flags = 0;
514 dreq->error = -EIO;
515 spin_unlock(cinfo.lock);
516 }
517 nfs_release_request(req);
518 }
519 nfs_pageio_complete(&desc);
520
521 while (!list_empty(&failed)) {
522 req = nfs_list_entry(failed.next);
523 nfs_list_remove_request(req);
524 nfs_unlock_and_release_request(req);
525 }
526
527 if (put_dreq(dreq))
528 nfs_direct_write_complete(dreq, dreq->inode);
529 }
530
531 static void nfs_direct_commit_complete(struct nfs_commit_data *data)
532 {
533 struct nfs_direct_req *dreq = data->dreq;
534 struct nfs_commit_info cinfo;
535 struct nfs_page *req;
536 int status = data->task.tk_status;
537
538 nfs_init_cinfo_from_dreq(&cinfo, dreq);
539 if (status < 0) {
540 dprintk("NFS: %5u commit failed with error %d.\n",
541 data->task.tk_pid, status);
542 dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
543 } else if (memcmp(&dreq->verf, &data->verf, sizeof(data->verf))) {
544 dprintk("NFS: %5u commit verify failed\n", data->task.tk_pid);
545 dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
546 }
547
548 dprintk("NFS: %5u commit returned %d\n", data->task.tk_pid, status);
549 while (!list_empty(&data->pages)) {
550 req = nfs_list_entry(data->pages.next);
551 nfs_list_remove_request(req);
552 if (dreq->flags == NFS_ODIRECT_RESCHED_WRITES) {
553 /* Note the rewrite will go through mds */
554 nfs_mark_request_commit(req, NULL, &cinfo);
555 } else
556 nfs_release_request(req);
557 nfs_unlock_and_release_request(req);
558 }
559
560 if (atomic_dec_and_test(&cinfo.mds->rpcs_out))
561 nfs_direct_write_complete(dreq, data->inode);
562 }
563
564 static void nfs_direct_error_cleanup(struct nfs_inode *nfsi)
565 {
566 /* There is no lock to clear */
567 }
568
569 static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops = {
570 .completion = nfs_direct_commit_complete,
571 .error_cleanup = nfs_direct_error_cleanup,
572 };
573
574 static void nfs_direct_commit_schedule(struct nfs_direct_req *dreq)
575 {
576 int res;
577 struct nfs_commit_info cinfo;
578 LIST_HEAD(mds_list);
579
580 nfs_init_cinfo_from_dreq(&cinfo, dreq);
581 nfs_scan_commit(dreq->inode, &mds_list, &cinfo);
582 res = nfs_generic_commit_list(dreq->inode, &mds_list, 0, &cinfo);
583 if (res < 0) /* res == -ENOMEM */
584 nfs_direct_write_reschedule(dreq);
585 }
586
587 static void nfs_direct_write_schedule_work(struct work_struct *work)
588 {
589 struct nfs_direct_req *dreq = container_of(work, struct nfs_direct_req, work);
590 int flags = dreq->flags;
591
592 dreq->flags = 0;
593 switch (flags) {
594 case NFS_ODIRECT_DO_COMMIT:
595 nfs_direct_commit_schedule(dreq);
596 break;
597 case NFS_ODIRECT_RESCHED_WRITES:
598 nfs_direct_write_reschedule(dreq);
599 break;
600 default:
601 nfs_inode_dio_write_done(dreq->inode);
602 nfs_direct_complete(dreq);
603 }
604 }
605
606 static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode)
607 {
608 schedule_work(&dreq->work); /* Calls nfs_direct_write_schedule_work */
609 }
610
611 #else
612 static void nfs_direct_write_schedule_work(struct work_struct *work)
613 {
614 }
615
616 static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode)
617 {
618 nfs_inode_dio_write_done(inode);
619 nfs_direct_complete(dreq);
620 }
621 #endif
622
623 /*
624 * NB: Return the value of the first error return code. Subsequent
625 * errors after the first one are ignored.
626 */
627 /*
628 * For each wsize'd chunk of the user's buffer, dispatch an NFS WRITE
629 * operation. If nfs_writedata_alloc() or get_user_pages() fails,
630 * bail and stop sending more writes. Write length accounting is
631 * handled automatically by nfs_direct_write_result(). Otherwise, if
632 * no requests have been sent, just return an error.
633 */
634 static ssize_t nfs_direct_write_schedule_segment(struct nfs_pageio_descriptor *desc,
635 const struct iovec *iov,
636 loff_t pos, bool uio)
637 {
638 struct nfs_direct_req *dreq = desc->pg_dreq;
639 struct nfs_open_context *ctx = dreq->ctx;
640 struct inode *inode = ctx->dentry->d_inode;
641 unsigned long user_addr = (unsigned long)iov->iov_base;
642 size_t count = iov->iov_len;
643 size_t wsize = NFS_SERVER(inode)->wsize;
644 unsigned int pgbase;
645 int result;
646 ssize_t started = 0;
647 struct page **pagevec = NULL;
648 unsigned int npages;
649
650 do {
651 size_t bytes;
652 int i;
653
654 pgbase = user_addr & ~PAGE_MASK;
655 bytes = min(max_t(size_t, wsize, PAGE_SIZE), count);
656
657 result = -ENOMEM;
658 npages = nfs_page_array_len(pgbase, bytes);
659 if (!pagevec)
660 pagevec = kmalloc(npages * sizeof(struct page *), GFP_KERNEL);
661 if (!pagevec)
662 break;
663
664 if (uio) {
665 down_read(&current->mm->mmap_sem);
666 result = get_user_pages(current, current->mm, user_addr,
667 npages, 0, 0, pagevec, NULL);
668 up_read(&current->mm->mmap_sem);
669 if (result < 0)
670 break;
671 } else {
672 WARN_ON(npages != 1);
673 result = get_kernel_page(user_addr, 0, pagevec);
674 if (WARN_ON(result != 1))
675 break;
676 }
677
678 if ((unsigned)result < npages) {
679 bytes = result * PAGE_SIZE;
680 if (bytes <= pgbase) {
681 nfs_direct_release_pages(pagevec, result);
682 break;
683 }
684 bytes -= pgbase;
685 npages = result;
686 }
687
688 for (i = 0; i < npages; i++) {
689 struct nfs_page *req;
690 unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase);
691
692 req = nfs_create_request(dreq->ctx, dreq->inode,
693 pagevec[i],
694 pgbase, req_len);
695 if (IS_ERR(req)) {
696 result = PTR_ERR(req);
697 break;
698 }
699 nfs_lock_request(req);
700 req->wb_index = pos >> PAGE_SHIFT;
701 req->wb_offset = pos & ~PAGE_MASK;
702 if (!nfs_pageio_add_request(desc, req)) {
703 result = desc->pg_error;
704 nfs_unlock_and_release_request(req);
705 break;
706 }
707 pgbase = 0;
708 bytes -= req_len;
709 started += req_len;
710 user_addr += req_len;
711 pos += req_len;
712 count -= req_len;
713 }
714 /* The nfs_page now hold references to these pages */
715 nfs_direct_release_pages(pagevec, npages);
716 } while (count != 0 && result >= 0);
717
718 kfree(pagevec);
719
720 if (started)
721 return started;
722 return result < 0 ? (ssize_t) result : -EFAULT;
723 }
724
725 static void nfs_direct_write_completion(struct nfs_pgio_header *hdr)
726 {
727 struct nfs_direct_req *dreq = hdr->dreq;
728 struct nfs_commit_info cinfo;
729 int bit = -1;
730 struct nfs_page *req = nfs_list_entry(hdr->pages.next);
731
732 if (test_bit(NFS_IOHDR_REDO, &hdr->flags))
733 goto out_put;
734
735 nfs_init_cinfo_from_dreq(&cinfo, dreq);
736
737 spin_lock(&dreq->lock);
738
739 if (test_bit(NFS_IOHDR_ERROR, &hdr->flags)) {
740 dreq->flags = 0;
741 dreq->error = hdr->error;
742 }
743 if (dreq->error != 0)
744 bit = NFS_IOHDR_ERROR;
745 else {
746 dreq->count += hdr->good_bytes;
747 if (test_bit(NFS_IOHDR_NEED_RESCHED, &hdr->flags)) {
748 dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
749 bit = NFS_IOHDR_NEED_RESCHED;
750 } else if (test_bit(NFS_IOHDR_NEED_COMMIT, &hdr->flags)) {
751 if (dreq->flags == NFS_ODIRECT_RESCHED_WRITES)
752 bit = NFS_IOHDR_NEED_RESCHED;
753 else if (dreq->flags == 0) {
754 memcpy(&dreq->verf, hdr->verf,
755 sizeof(dreq->verf));
756 bit = NFS_IOHDR_NEED_COMMIT;
757 dreq->flags = NFS_ODIRECT_DO_COMMIT;
758 } else if (dreq->flags == NFS_ODIRECT_DO_COMMIT) {
759 if (memcmp(&dreq->verf, hdr->verf, sizeof(dreq->verf))) {
760 dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
761 bit = NFS_IOHDR_NEED_RESCHED;
762 } else
763 bit = NFS_IOHDR_NEED_COMMIT;
764 }
765 }
766 }
767 spin_unlock(&dreq->lock);
768
769 while (!list_empty(&hdr->pages)) {
770 req = nfs_list_entry(hdr->pages.next);
771 nfs_list_remove_request(req);
772 switch (bit) {
773 case NFS_IOHDR_NEED_RESCHED:
774 case NFS_IOHDR_NEED_COMMIT:
775 kref_get(&req->wb_kref);
776 nfs_mark_request_commit(req, hdr->lseg, &cinfo);
777 }
778 nfs_unlock_and_release_request(req);
779 }
780
781 out_put:
782 if (put_dreq(dreq))
783 nfs_direct_write_complete(dreq, hdr->inode);
784 hdr->release(hdr);
785 }
786
787 static void nfs_write_sync_pgio_error(struct list_head *head)
788 {
789 struct nfs_page *req;
790
791 while (!list_empty(head)) {
792 req = nfs_list_entry(head->next);
793 nfs_list_remove_request(req);
794 nfs_unlock_and_release_request(req);
795 }
796 }
797
798 static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops = {
799 .error_cleanup = nfs_write_sync_pgio_error,
800 .init_hdr = nfs_direct_pgio_init,
801 .completion = nfs_direct_write_completion,
802 };
803
804 static ssize_t nfs_direct_write_schedule_iovec(struct nfs_direct_req *dreq,
805 const struct iovec *iov,
806 unsigned long nr_segs,
807 loff_t pos, bool uio)
808 {
809 struct nfs_pageio_descriptor desc;
810 struct inode *inode = dreq->inode;
811 ssize_t result = 0;
812 size_t requested_bytes = 0;
813 unsigned long seg;
814
815 NFS_PROTO(inode)->write_pageio_init(&desc, inode, FLUSH_COND_STABLE,
816 &nfs_direct_write_completion_ops);
817 desc.pg_dreq = dreq;
818 get_dreq(dreq);
819 atomic_inc(&inode->i_dio_count);
820
821 for (seg = 0; seg < nr_segs; seg++) {
822 const struct iovec *vec = &iov[seg];
823 result = nfs_direct_write_schedule_segment(&desc, vec, pos, uio);
824 if (result < 0)
825 break;
826 requested_bytes += result;
827 if ((size_t)result < vec->iov_len)
828 break;
829 pos += vec->iov_len;
830 }
831 nfs_pageio_complete(&desc);
832 NFS_I(dreq->inode)->write_io += desc.pg_bytes_written;
833
834 /*
835 * If no bytes were started, return the error, and let the
836 * generic layer handle the completion.
837 */
838 if (requested_bytes == 0) {
839 inode_dio_done(inode);
840 nfs_direct_req_release(dreq);
841 return result < 0 ? result : -EIO;
842 }
843
844 if (put_dreq(dreq))
845 nfs_direct_write_complete(dreq, dreq->inode);
846 return 0;
847 }
848
849 static ssize_t nfs_direct_write(struct kiocb *iocb, const struct iovec *iov,
850 unsigned long nr_segs, loff_t pos,
851 size_t count, bool uio)
852 {
853 ssize_t result = -ENOMEM;
854 struct inode *inode = iocb->ki_filp->f_mapping->host;
855 struct nfs_direct_req *dreq;
856 struct nfs_lock_context *l_ctx;
857
858 dreq = nfs_direct_req_alloc();
859 if (!dreq)
860 goto out;
861
862 dreq->inode = inode;
863 dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
864 l_ctx = nfs_get_lock_context(dreq->ctx);
865 if (IS_ERR(l_ctx)) {
866 result = PTR_ERR(l_ctx);
867 goto out_release;
868 }
869 dreq->l_ctx = l_ctx;
870 if (!is_sync_kiocb(iocb))
871 dreq->iocb = iocb;
872
873 result = nfs_direct_write_schedule_iovec(dreq, iov, nr_segs, pos, uio);
874 if (!result)
875 result = nfs_direct_wait(dreq);
876 out_release:
877 nfs_direct_req_release(dreq);
878 out:
879 return result;
880 }
881
882 /**
883 * nfs_file_direct_read - file direct read operation for NFS files
884 * @iocb: target I/O control block
885 * @iov: vector of user buffers into which to read data
886 * @nr_segs: size of iov vector
887 * @pos: byte offset in file where reading starts
888 *
889 * We use this function for direct reads instead of calling
890 * generic_file_aio_read() in order to avoid gfar's check to see if
891 * the request starts before the end of the file. For that check
892 * to work, we must generate a GETATTR before each direct read, and
893 * even then there is a window between the GETATTR and the subsequent
894 * READ where the file size could change. Our preference is simply
895 * to do all reads the application wants, and the server will take
896 * care of managing the end of file boundary.
897 *
898 * This function also eliminates unnecessarily updating the file's
899 * atime locally, as the NFS server sets the file's atime, and this
900 * client must read the updated atime from the server back into its
901 * cache.
902 */
903 ssize_t nfs_file_direct_read(struct kiocb *iocb, const struct iovec *iov,
904 unsigned long nr_segs, loff_t pos, bool uio)
905 {
906 ssize_t retval = -EINVAL;
907 struct file *file = iocb->ki_filp;
908 struct address_space *mapping = file->f_mapping;
909 size_t count;
910
911 count = iov_length(iov, nr_segs);
912 nfs_add_stats(mapping->host, NFSIOS_DIRECTREADBYTES, count);
913
914 dfprintk(FILE, "NFS: direct read(%s/%s, %zd@%Ld)\n",
915 file->f_path.dentry->d_parent->d_name.name,
916 file->f_path.dentry->d_name.name,
917 count, (long long) pos);
918
919 retval = 0;
920 if (!count)
921 goto out;
922
923 retval = nfs_sync_mapping(mapping);
924 if (retval)
925 goto out;
926
927 task_io_account_read(count);
928
929 retval = nfs_direct_read(iocb, iov, nr_segs, pos, uio);
930 if (retval > 0)
931 iocb->ki_pos = pos + retval;
932
933 out:
934 return retval;
935 }
936
937 /**
938 * nfs_file_direct_write - file direct write operation for NFS files
939 * @iocb: target I/O control block
940 * @iov: vector of user buffers from which to write data
941 * @nr_segs: size of iov vector
942 * @pos: byte offset in file where writing starts
943 *
944 * We use this function for direct writes instead of calling
945 * generic_file_aio_write() in order to avoid taking the inode
946 * semaphore and updating the i_size. The NFS server will set
947 * the new i_size and this client must read the updated size
948 * back into its cache. We let the server do generic write
949 * parameter checking and report problems.
950 *
951 * We eliminate local atime updates, see direct read above.
952 *
953 * We avoid unnecessary page cache invalidations for normal cached
954 * readers of this file.
955 *
956 * Note that O_APPEND is not supported for NFS direct writes, as there
957 * is no atomic O_APPEND write facility in the NFS protocol.
958 */
959 ssize_t nfs_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
960 unsigned long nr_segs, loff_t pos, bool uio)
961 {
962 ssize_t retval = -EINVAL;
963 struct file *file = iocb->ki_filp;
964 struct address_space *mapping = file->f_mapping;
965 size_t count;
966
967 count = iov_length(iov, nr_segs);
968 nfs_add_stats(mapping->host, NFSIOS_DIRECTWRITTENBYTES, count);
969
970 dfprintk(FILE, "NFS: direct write(%s/%s, %zd@%Ld)\n",
971 file->f_path.dentry->d_parent->d_name.name,
972 file->f_path.dentry->d_name.name,
973 count, (long long) pos);
974
975 retval = generic_write_checks(file, &pos, &count, 0);
976 if (retval)
977 goto out;
978
979 retval = -EINVAL;
980 if ((ssize_t) count < 0)
981 goto out;
982 retval = 0;
983 if (!count)
984 goto out;
985
986 retval = nfs_sync_mapping(mapping);
987 if (retval)
988 goto out;
989
990 task_io_account_write(count);
991
992 retval = nfs_direct_write(iocb, iov, nr_segs, pos, count, uio);
993 if (retval > 0) {
994 struct inode *inode = mapping->host;
995
996 iocb->ki_pos = pos + retval;
997 spin_lock(&inode->i_lock);
998 if (i_size_read(inode) < iocb->ki_pos)
999 i_size_write(inode, iocb->ki_pos);
1000 spin_unlock(&inode->i_lock);
1001 }
1002 out:
1003 return retval;
1004 }
1005
1006 /**
1007 * nfs_init_directcache - create a slab cache for nfs_direct_req structures
1008 *
1009 */
1010 int __init nfs_init_directcache(void)
1011 {
1012 nfs_direct_cachep = kmem_cache_create("nfs_direct_cache",
1013 sizeof(struct nfs_direct_req),
1014 0, (SLAB_RECLAIM_ACCOUNT|
1015 SLAB_MEM_SPREAD),
1016 NULL);
1017 if (nfs_direct_cachep == NULL)
1018 return -ENOMEM;
1019
1020 return 0;
1021 }
1022
1023 /**
1024 * nfs_destroy_directcache - destroy the slab cache for nfs_direct_req structures
1025 *
1026 */
1027 void nfs_destroy_directcache(void)
1028 {
1029 kmem_cache_destroy(nfs_direct_cachep);
1030 }
This page took 0.051715 seconds and 5 git commands to generate.