NFS: Clean up - simplify nfs_lock_request()
[deliverable/linux.git] / fs / nfs / direct.c
1 /*
2 * linux/fs/nfs/direct.c
3 *
4 * Copyright (C) 2003 by Chuck Lever <cel@netapp.com>
5 *
6 * High-performance uncached I/O for the Linux NFS client
7 *
8 * There are important applications whose performance or correctness
9 * depends on uncached access to file data. Database clusters
10 * (multiple copies of the same instance running on separate hosts)
11 * implement their own cache coherency protocol that subsumes file
12 * system cache protocols. Applications that process datasets
13 * considerably larger than the client's memory do not always benefit
14 * from a local cache. A streaming video server, for instance, has no
15 * need to cache the contents of a file.
16 *
17 * When an application requests uncached I/O, all read and write requests
18 * are made directly to the server; data stored or fetched via these
19 * requests is not cached in the Linux page cache. The client does not
20 * correct unaligned requests from applications. All requested bytes are
21 * held on permanent storage before a direct write system call returns to
22 * an application.
23 *
24 * Solaris implements an uncached I/O facility called directio() that
25 * is used for backups and sequential I/O to very large files. Solaris
26 * also supports uncaching whole NFS partitions with "-o forcedirectio,"
27 * an undocumented mount option.
28 *
29 * Designed by Jeff Kimmel, Chuck Lever, and Trond Myklebust, with
30 * help from Andrew Morton.
31 *
32 * 18 Dec 2001 Initial implementation for 2.4 --cel
33 * 08 Jul 2002 Version for 2.4.19, with bug fixes --trondmy
34 * 08 Jun 2003 Port to 2.5 APIs --cel
35 * 31 Mar 2004 Handle direct I/O without VFS support --cel
36 * 15 Sep 2004 Parallel async reads --cel
37 * 04 May 2005 support O_DIRECT with aio --cel
38 *
39 */
40
41 #include <linux/errno.h>
42 #include <linux/sched.h>
43 #include <linux/kernel.h>
44 #include <linux/file.h>
45 #include <linux/pagemap.h>
46 #include <linux/kref.h>
47 #include <linux/slab.h>
48 #include <linux/task_io_accounting_ops.h>
49
50 #include <linux/nfs_fs.h>
51 #include <linux/nfs_page.h>
52 #include <linux/sunrpc/clnt.h>
53
54 #include <asm/uaccess.h>
55 #include <linux/atomic.h>
56
57 #include "internal.h"
58 #include "iostat.h"
59 #include "pnfs.h"
60
61 #define NFSDBG_FACILITY NFSDBG_VFS
62
63 static struct kmem_cache *nfs_direct_cachep;
64
65 /*
66 * This represents a set of asynchronous requests that we're waiting on
67 */
68 struct nfs_direct_req {
69 struct kref kref; /* release manager */
70
71 /* I/O parameters */
72 struct nfs_open_context *ctx; /* file open context info */
73 struct nfs_lock_context *l_ctx; /* Lock context info */
74 struct kiocb * iocb; /* controlling i/o request */
75 struct inode * inode; /* target file of i/o */
76
77 /* completion state */
78 atomic_t io_count; /* i/os we're waiting for */
79 spinlock_t lock; /* protect completion state */
80 ssize_t count, /* bytes actually processed */
81 error; /* any reported error */
82 struct completion completion; /* wait for i/o completion */
83
84 /* commit state */
85 struct nfs_mds_commit_info mds_cinfo; /* Storage for cinfo */
86 struct pnfs_ds_commit_info ds_cinfo; /* Storage for cinfo */
87 struct work_struct work;
88 int flags;
89 #define NFS_ODIRECT_DO_COMMIT (1) /* an unstable reply was received */
90 #define NFS_ODIRECT_RESCHED_WRITES (2) /* write verification failed */
91 struct nfs_writeverf verf; /* unstable write verifier */
92 };
93
94 static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops;
95 static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops;
96 static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode);
97 static void nfs_direct_write_schedule_work(struct work_struct *work);
98
99 static inline void get_dreq(struct nfs_direct_req *dreq)
100 {
101 atomic_inc(&dreq->io_count);
102 }
103
104 static inline int put_dreq(struct nfs_direct_req *dreq)
105 {
106 return atomic_dec_and_test(&dreq->io_count);
107 }
108
109 /**
110 * nfs_direct_IO - NFS address space operation for direct I/O
111 * @rw: direction (read or write)
112 * @iocb: target I/O control block
113 * @iov: array of vectors that define I/O buffer
114 * @pos: offset in file to begin the operation
115 * @nr_segs: size of iovec array
116 *
117 * The presence of this routine in the address space ops vector means
118 * the NFS client supports direct I/O. However, we shunt off direct
119 * read and write requests before the VFS gets them, so this method
120 * should never be called.
121 */
122 ssize_t nfs_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov, loff_t pos, unsigned long nr_segs)
123 {
124 dprintk("NFS: nfs_direct_IO (%s) off/no(%Ld/%lu) EINVAL\n",
125 iocb->ki_filp->f_path.dentry->d_name.name,
126 (long long) pos, nr_segs);
127
128 return -EINVAL;
129 }
130
131 static void nfs_direct_release_pages(struct page **pages, unsigned int npages)
132 {
133 unsigned int i;
134 for (i = 0; i < npages; i++)
135 page_cache_release(pages[i]);
136 }
137
138 void nfs_init_cinfo_from_dreq(struct nfs_commit_info *cinfo,
139 struct nfs_direct_req *dreq)
140 {
141 cinfo->lock = &dreq->lock;
142 cinfo->mds = &dreq->mds_cinfo;
143 cinfo->ds = &dreq->ds_cinfo;
144 cinfo->dreq = dreq;
145 cinfo->completion_ops = &nfs_direct_commit_completion_ops;
146 }
147
148 static inline struct nfs_direct_req *nfs_direct_req_alloc(void)
149 {
150 struct nfs_direct_req *dreq;
151
152 dreq = kmem_cache_zalloc(nfs_direct_cachep, GFP_KERNEL);
153 if (!dreq)
154 return NULL;
155
156 kref_init(&dreq->kref);
157 kref_get(&dreq->kref);
158 init_completion(&dreq->completion);
159 INIT_LIST_HEAD(&dreq->mds_cinfo.list);
160 INIT_WORK(&dreq->work, nfs_direct_write_schedule_work);
161 spin_lock_init(&dreq->lock);
162
163 return dreq;
164 }
165
166 static void nfs_direct_req_free(struct kref *kref)
167 {
168 struct nfs_direct_req *dreq = container_of(kref, struct nfs_direct_req, kref);
169
170 if (dreq->l_ctx != NULL)
171 nfs_put_lock_context(dreq->l_ctx);
172 if (dreq->ctx != NULL)
173 put_nfs_open_context(dreq->ctx);
174 kmem_cache_free(nfs_direct_cachep, dreq);
175 }
176
177 static void nfs_direct_req_release(struct nfs_direct_req *dreq)
178 {
179 kref_put(&dreq->kref, nfs_direct_req_free);
180 }
181
182 /*
183 * Collects and returns the final error value/byte-count.
184 */
185 static ssize_t nfs_direct_wait(struct nfs_direct_req *dreq)
186 {
187 ssize_t result = -EIOCBQUEUED;
188
189 /* Async requests don't wait here */
190 if (dreq->iocb)
191 goto out;
192
193 result = wait_for_completion_killable(&dreq->completion);
194
195 if (!result)
196 result = dreq->error;
197 if (!result)
198 result = dreq->count;
199
200 out:
201 return (ssize_t) result;
202 }
203
204 /*
205 * Synchronous I/O uses a stack-allocated iocb. Thus we can't trust
206 * the iocb is still valid here if this is a synchronous request.
207 */
208 static void nfs_direct_complete(struct nfs_direct_req *dreq)
209 {
210 if (dreq->iocb) {
211 long res = (long) dreq->error;
212 if (!res)
213 res = (long) dreq->count;
214 aio_complete(dreq->iocb, res, 0);
215 }
216 complete_all(&dreq->completion);
217
218 nfs_direct_req_release(dreq);
219 }
220
221 static void nfs_direct_readpage_release(struct nfs_page *req)
222 {
223 dprintk("NFS: direct read done (%s/%lld %d@%lld)\n",
224 req->wb_context->dentry->d_inode->i_sb->s_id,
225 (long long)NFS_FILEID(req->wb_context->dentry->d_inode),
226 req->wb_bytes,
227 (long long)req_offset(req));
228 nfs_release_request(req);
229 }
230
231 static void nfs_direct_read_completion(struct nfs_pgio_header *hdr)
232 {
233 unsigned long bytes = 0;
234 struct nfs_direct_req *dreq = hdr->dreq;
235
236 if (test_bit(NFS_IOHDR_REDO, &hdr->flags))
237 goto out_put;
238
239 spin_lock(&dreq->lock);
240 if (test_bit(NFS_IOHDR_ERROR, &hdr->flags) && (hdr->good_bytes == 0))
241 dreq->error = hdr->error;
242 else
243 dreq->count += hdr->good_bytes;
244 spin_unlock(&dreq->lock);
245
246 while (!list_empty(&hdr->pages)) {
247 struct nfs_page *req = nfs_list_entry(hdr->pages.next);
248 struct page *page = req->wb_page;
249
250 if (test_bit(NFS_IOHDR_EOF, &hdr->flags)) {
251 if (bytes > hdr->good_bytes)
252 zero_user(page, 0, PAGE_SIZE);
253 else if (hdr->good_bytes - bytes < PAGE_SIZE)
254 zero_user_segment(page,
255 hdr->good_bytes & ~PAGE_MASK,
256 PAGE_SIZE);
257 }
258 if (!PageCompound(page)) {
259 if (test_bit(NFS_IOHDR_ERROR, &hdr->flags)) {
260 if (bytes < hdr->good_bytes)
261 set_page_dirty(page);
262 } else
263 set_page_dirty(page);
264 }
265 bytes += req->wb_bytes;
266 nfs_list_remove_request(req);
267 nfs_direct_readpage_release(req);
268 }
269 out_put:
270 if (put_dreq(dreq))
271 nfs_direct_complete(dreq);
272 hdr->release(hdr);
273 }
274
275 static void nfs_read_sync_pgio_error(struct list_head *head)
276 {
277 struct nfs_page *req;
278
279 while (!list_empty(head)) {
280 req = nfs_list_entry(head->next);
281 nfs_list_remove_request(req);
282 nfs_release_request(req);
283 }
284 }
285
286 static void nfs_direct_pgio_init(struct nfs_pgio_header *hdr)
287 {
288 get_dreq(hdr->dreq);
289 }
290
291 static const struct nfs_pgio_completion_ops nfs_direct_read_completion_ops = {
292 .error_cleanup = nfs_read_sync_pgio_error,
293 .init_hdr = nfs_direct_pgio_init,
294 .completion = nfs_direct_read_completion,
295 };
296
297 /*
298 * For each rsize'd chunk of the user's buffer, dispatch an NFS READ
299 * operation. If nfs_readdata_alloc() or get_user_pages() fails,
300 * bail and stop sending more reads. Read length accounting is
301 * handled automatically by nfs_direct_read_result(). Otherwise, if
302 * no requests have been sent, just return an error.
303 */
304 static ssize_t nfs_direct_read_schedule_segment(struct nfs_pageio_descriptor *desc,
305 const struct iovec *iov,
306 loff_t pos)
307 {
308 struct nfs_direct_req *dreq = desc->pg_dreq;
309 struct nfs_open_context *ctx = dreq->ctx;
310 struct inode *inode = ctx->dentry->d_inode;
311 unsigned long user_addr = (unsigned long)iov->iov_base;
312 size_t count = iov->iov_len;
313 size_t rsize = NFS_SERVER(inode)->rsize;
314 unsigned int pgbase;
315 int result;
316 ssize_t started = 0;
317 struct page **pagevec = NULL;
318 unsigned int npages;
319
320 do {
321 size_t bytes;
322 int i;
323
324 pgbase = user_addr & ~PAGE_MASK;
325 bytes = min(max_t(size_t, rsize, PAGE_SIZE), count);
326
327 result = -ENOMEM;
328 npages = nfs_page_array_len(pgbase, bytes);
329 if (!pagevec)
330 pagevec = kmalloc(npages * sizeof(struct page *),
331 GFP_KERNEL);
332 if (!pagevec)
333 break;
334 down_read(&current->mm->mmap_sem);
335 result = get_user_pages(current, current->mm, user_addr,
336 npages, 1, 0, pagevec, NULL);
337 up_read(&current->mm->mmap_sem);
338 if (result < 0)
339 break;
340 if ((unsigned)result < npages) {
341 bytes = result * PAGE_SIZE;
342 if (bytes <= pgbase) {
343 nfs_direct_release_pages(pagevec, result);
344 break;
345 }
346 bytes -= pgbase;
347 npages = result;
348 }
349
350 for (i = 0; i < npages; i++) {
351 struct nfs_page *req;
352 unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase);
353 /* XXX do we need to do the eof zeroing found in async_filler? */
354 req = nfs_create_request(dreq->ctx, dreq->inode,
355 pagevec[i],
356 pgbase, req_len);
357 if (IS_ERR(req)) {
358 result = PTR_ERR(req);
359 break;
360 }
361 req->wb_index = pos >> PAGE_SHIFT;
362 req->wb_offset = pos & ~PAGE_MASK;
363 if (!nfs_pageio_add_request(desc, req)) {
364 result = desc->pg_error;
365 nfs_release_request(req);
366 break;
367 }
368 pgbase = 0;
369 bytes -= req_len;
370 started += req_len;
371 user_addr += req_len;
372 pos += req_len;
373 count -= req_len;
374 }
375 /* The nfs_page now hold references to these pages */
376 nfs_direct_release_pages(pagevec, npages);
377 } while (count != 0 && result >= 0);
378
379 kfree(pagevec);
380
381 if (started)
382 return started;
383 return result < 0 ? (ssize_t) result : -EFAULT;
384 }
385
386 static ssize_t nfs_direct_read_schedule_iovec(struct nfs_direct_req *dreq,
387 const struct iovec *iov,
388 unsigned long nr_segs,
389 loff_t pos)
390 {
391 struct nfs_pageio_descriptor desc;
392 ssize_t result = -EINVAL;
393 size_t requested_bytes = 0;
394 unsigned long seg;
395
396 nfs_pageio_init_read(&desc, dreq->inode,
397 &nfs_direct_read_completion_ops);
398 get_dreq(dreq);
399 desc.pg_dreq = dreq;
400
401 for (seg = 0; seg < nr_segs; seg++) {
402 const struct iovec *vec = &iov[seg];
403 result = nfs_direct_read_schedule_segment(&desc, vec, pos);
404 if (result < 0)
405 break;
406 requested_bytes += result;
407 if ((size_t)result < vec->iov_len)
408 break;
409 pos += vec->iov_len;
410 }
411
412 nfs_pageio_complete(&desc);
413
414 /*
415 * If no bytes were started, return the error, and let the
416 * generic layer handle the completion.
417 */
418 if (requested_bytes == 0) {
419 nfs_direct_req_release(dreq);
420 return result < 0 ? result : -EIO;
421 }
422
423 if (put_dreq(dreq))
424 nfs_direct_complete(dreq);
425 return 0;
426 }
427
428 static ssize_t nfs_direct_read(struct kiocb *iocb, const struct iovec *iov,
429 unsigned long nr_segs, loff_t pos)
430 {
431 ssize_t result = -ENOMEM;
432 struct inode *inode = iocb->ki_filp->f_mapping->host;
433 struct nfs_direct_req *dreq;
434
435 dreq = nfs_direct_req_alloc();
436 if (dreq == NULL)
437 goto out;
438
439 dreq->inode = inode;
440 dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
441 dreq->l_ctx = nfs_get_lock_context(dreq->ctx);
442 if (dreq->l_ctx == NULL)
443 goto out_release;
444 if (!is_sync_kiocb(iocb))
445 dreq->iocb = iocb;
446
447 result = nfs_direct_read_schedule_iovec(dreq, iov, nr_segs, pos);
448 if (!result)
449 result = nfs_direct_wait(dreq);
450 out_release:
451 nfs_direct_req_release(dreq);
452 out:
453 return result;
454 }
455
456 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
457 static void nfs_direct_write_reschedule(struct nfs_direct_req *dreq)
458 {
459 struct nfs_pageio_descriptor desc;
460 struct nfs_page *req, *tmp;
461 LIST_HEAD(reqs);
462 struct nfs_commit_info cinfo;
463 LIST_HEAD(failed);
464
465 nfs_init_cinfo_from_dreq(&cinfo, dreq);
466 pnfs_recover_commit_reqs(dreq->inode, &reqs, &cinfo);
467 spin_lock(cinfo.lock);
468 nfs_scan_commit_list(&cinfo.mds->list, &reqs, &cinfo, 0);
469 spin_unlock(cinfo.lock);
470
471 dreq->count = 0;
472 get_dreq(dreq);
473
474 nfs_pageio_init_write(&desc, dreq->inode, FLUSH_STABLE,
475 &nfs_direct_write_completion_ops);
476 desc.pg_dreq = dreq;
477
478 list_for_each_entry_safe(req, tmp, &reqs, wb_list) {
479 if (!nfs_pageio_add_request(&desc, req)) {
480 nfs_list_add_request(req, &failed);
481 spin_lock(cinfo.lock);
482 dreq->flags = 0;
483 dreq->error = -EIO;
484 spin_unlock(cinfo.lock);
485 }
486 }
487 nfs_pageio_complete(&desc);
488
489 while (!list_empty(&failed)) {
490 nfs_release_request(req);
491 nfs_unlock_request(req);
492 }
493
494 if (put_dreq(dreq))
495 nfs_direct_write_complete(dreq, dreq->inode);
496 }
497
498 static void nfs_direct_commit_complete(struct nfs_commit_data *data)
499 {
500 struct nfs_direct_req *dreq = data->dreq;
501 struct nfs_commit_info cinfo;
502 struct nfs_page *req;
503 int status = data->task.tk_status;
504
505 nfs_init_cinfo_from_dreq(&cinfo, dreq);
506 if (status < 0) {
507 dprintk("NFS: %5u commit failed with error %d.\n",
508 data->task.tk_pid, status);
509 dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
510 } else if (memcmp(&dreq->verf, &data->verf, sizeof(data->verf))) {
511 dprintk("NFS: %5u commit verify failed\n", data->task.tk_pid);
512 dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
513 }
514
515 dprintk("NFS: %5u commit returned %d\n", data->task.tk_pid, status);
516 while (!list_empty(&data->pages)) {
517 req = nfs_list_entry(data->pages.next);
518 nfs_list_remove_request(req);
519 if (dreq->flags == NFS_ODIRECT_RESCHED_WRITES) {
520 /* Note the rewrite will go through mds */
521 nfs_mark_request_commit(req, NULL, &cinfo);
522 } else
523 nfs_release_request(req);
524 nfs_unlock_request(req);
525 }
526
527 if (atomic_dec_and_test(&cinfo.mds->rpcs_out))
528 nfs_direct_write_complete(dreq, data->inode);
529 }
530
531 static void nfs_direct_error_cleanup(struct nfs_inode *nfsi)
532 {
533 /* There is no lock to clear */
534 }
535
536 static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops = {
537 .completion = nfs_direct_commit_complete,
538 .error_cleanup = nfs_direct_error_cleanup,
539 };
540
541 static void nfs_direct_commit_schedule(struct nfs_direct_req *dreq)
542 {
543 int res;
544 struct nfs_commit_info cinfo;
545 LIST_HEAD(mds_list);
546
547 nfs_init_cinfo_from_dreq(&cinfo, dreq);
548 nfs_scan_commit(dreq->inode, &mds_list, &cinfo);
549 res = nfs_generic_commit_list(dreq->inode, &mds_list, 0, &cinfo);
550 if (res < 0) /* res == -ENOMEM */
551 nfs_direct_write_reschedule(dreq);
552 }
553
554 static void nfs_direct_write_schedule_work(struct work_struct *work)
555 {
556 struct nfs_direct_req *dreq = container_of(work, struct nfs_direct_req, work);
557 int flags = dreq->flags;
558
559 dreq->flags = 0;
560 switch (flags) {
561 case NFS_ODIRECT_DO_COMMIT:
562 nfs_direct_commit_schedule(dreq);
563 break;
564 case NFS_ODIRECT_RESCHED_WRITES:
565 nfs_direct_write_reschedule(dreq);
566 break;
567 default:
568 nfs_zap_mapping(dreq->inode, dreq->inode->i_mapping);
569 nfs_direct_complete(dreq);
570 }
571 }
572
573 static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode)
574 {
575 schedule_work(&dreq->work); /* Calls nfs_direct_write_schedule_work */
576 }
577
578 #else
579 static void nfs_direct_write_schedule_work(struct work_struct *work)
580 {
581 }
582
583 static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode)
584 {
585 nfs_zap_mapping(inode, inode->i_mapping);
586 nfs_direct_complete(dreq);
587 }
588 #endif
589
590 /*
591 * NB: Return the value of the first error return code. Subsequent
592 * errors after the first one are ignored.
593 */
594 /*
595 * For each wsize'd chunk of the user's buffer, dispatch an NFS WRITE
596 * operation. If nfs_writedata_alloc() or get_user_pages() fails,
597 * bail and stop sending more writes. Write length accounting is
598 * handled automatically by nfs_direct_write_result(). Otherwise, if
599 * no requests have been sent, just return an error.
600 */
601 static ssize_t nfs_direct_write_schedule_segment(struct nfs_pageio_descriptor *desc,
602 const struct iovec *iov,
603 loff_t pos)
604 {
605 struct nfs_direct_req *dreq = desc->pg_dreq;
606 struct nfs_open_context *ctx = dreq->ctx;
607 struct inode *inode = ctx->dentry->d_inode;
608 unsigned long user_addr = (unsigned long)iov->iov_base;
609 size_t count = iov->iov_len;
610 size_t wsize = NFS_SERVER(inode)->wsize;
611 unsigned int pgbase;
612 int result;
613 ssize_t started = 0;
614 struct page **pagevec = NULL;
615 unsigned int npages;
616
617 do {
618 size_t bytes;
619 int i;
620
621 pgbase = user_addr & ~PAGE_MASK;
622 bytes = min(max_t(size_t, wsize, PAGE_SIZE), count);
623
624 result = -ENOMEM;
625 npages = nfs_page_array_len(pgbase, bytes);
626 if (!pagevec)
627 pagevec = kmalloc(npages * sizeof(struct page *), GFP_KERNEL);
628 if (!pagevec)
629 break;
630
631 down_read(&current->mm->mmap_sem);
632 result = get_user_pages(current, current->mm, user_addr,
633 npages, 0, 0, pagevec, NULL);
634 up_read(&current->mm->mmap_sem);
635 if (result < 0)
636 break;
637
638 if ((unsigned)result < npages) {
639 bytes = result * PAGE_SIZE;
640 if (bytes <= pgbase) {
641 nfs_direct_release_pages(pagevec, result);
642 break;
643 }
644 bytes -= pgbase;
645 npages = result;
646 }
647
648 for (i = 0; i < npages; i++) {
649 struct nfs_page *req;
650 unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase);
651
652 req = nfs_create_request(dreq->ctx, dreq->inode,
653 pagevec[i],
654 pgbase, req_len);
655 if (IS_ERR(req)) {
656 result = PTR_ERR(req);
657 break;
658 }
659 nfs_lock_request(req);
660 kref_get(&req->wb_kref);
661 req->wb_index = pos >> PAGE_SHIFT;
662 req->wb_offset = pos & ~PAGE_MASK;
663 if (!nfs_pageio_add_request(desc, req)) {
664 result = desc->pg_error;
665 nfs_unlock_request(req);
666 nfs_release_request(req);
667 break;
668 }
669 pgbase = 0;
670 bytes -= req_len;
671 started += req_len;
672 user_addr += req_len;
673 pos += req_len;
674 count -= req_len;
675 }
676 /* The nfs_page now hold references to these pages */
677 nfs_direct_release_pages(pagevec, npages);
678 } while (count != 0 && result >= 0);
679
680 kfree(pagevec);
681
682 if (started)
683 return started;
684 return result < 0 ? (ssize_t) result : -EFAULT;
685 }
686
687 static void nfs_direct_write_completion(struct nfs_pgio_header *hdr)
688 {
689 struct nfs_direct_req *dreq = hdr->dreq;
690 struct nfs_commit_info cinfo;
691 int bit = -1;
692 struct nfs_page *req = nfs_list_entry(hdr->pages.next);
693
694 if (test_bit(NFS_IOHDR_REDO, &hdr->flags))
695 goto out_put;
696
697 nfs_init_cinfo_from_dreq(&cinfo, dreq);
698
699 spin_lock(&dreq->lock);
700
701 if (test_bit(NFS_IOHDR_ERROR, &hdr->flags)) {
702 dreq->flags = 0;
703 dreq->error = hdr->error;
704 }
705 if (dreq->error != 0)
706 bit = NFS_IOHDR_ERROR;
707 else {
708 dreq->count += hdr->good_bytes;
709 if (test_bit(NFS_IOHDR_NEED_RESCHED, &hdr->flags)) {
710 dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
711 bit = NFS_IOHDR_NEED_RESCHED;
712 } else if (test_bit(NFS_IOHDR_NEED_COMMIT, &hdr->flags)) {
713 if (dreq->flags == NFS_ODIRECT_RESCHED_WRITES)
714 bit = NFS_IOHDR_NEED_RESCHED;
715 else if (dreq->flags == 0) {
716 memcpy(&dreq->verf, &req->wb_verf,
717 sizeof(dreq->verf));
718 bit = NFS_IOHDR_NEED_COMMIT;
719 dreq->flags = NFS_ODIRECT_DO_COMMIT;
720 } else if (dreq->flags == NFS_ODIRECT_DO_COMMIT) {
721 if (memcmp(&dreq->verf, &req->wb_verf, sizeof(dreq->verf))) {
722 dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
723 bit = NFS_IOHDR_NEED_RESCHED;
724 } else
725 bit = NFS_IOHDR_NEED_COMMIT;
726 }
727 }
728 }
729 spin_unlock(&dreq->lock);
730
731 while (!list_empty(&hdr->pages)) {
732 req = nfs_list_entry(hdr->pages.next);
733 nfs_list_remove_request(req);
734 switch (bit) {
735 case NFS_IOHDR_NEED_RESCHED:
736 case NFS_IOHDR_NEED_COMMIT:
737 nfs_mark_request_commit(req, hdr->lseg, &cinfo);
738 break;
739 default:
740 nfs_release_request(req);
741 }
742 nfs_unlock_request(req);
743 }
744
745 out_put:
746 if (put_dreq(dreq))
747 nfs_direct_write_complete(dreq, hdr->inode);
748 hdr->release(hdr);
749 }
750
751 static void nfs_write_sync_pgio_error(struct list_head *head)
752 {
753 struct nfs_page *req;
754
755 while (!list_empty(head)) {
756 req = nfs_list_entry(head->next);
757 nfs_list_remove_request(req);
758 nfs_release_request(req);
759 nfs_unlock_request(req);
760 }
761 }
762
763 static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops = {
764 .error_cleanup = nfs_write_sync_pgio_error,
765 .init_hdr = nfs_direct_pgio_init,
766 .completion = nfs_direct_write_completion,
767 };
768
769 static ssize_t nfs_direct_write_schedule_iovec(struct nfs_direct_req *dreq,
770 const struct iovec *iov,
771 unsigned long nr_segs,
772 loff_t pos)
773 {
774 struct nfs_pageio_descriptor desc;
775 ssize_t result = 0;
776 size_t requested_bytes = 0;
777 unsigned long seg;
778
779 nfs_pageio_init_write(&desc, dreq->inode, FLUSH_COND_STABLE,
780 &nfs_direct_write_completion_ops);
781 desc.pg_dreq = dreq;
782 get_dreq(dreq);
783
784 for (seg = 0; seg < nr_segs; seg++) {
785 const struct iovec *vec = &iov[seg];
786 result = nfs_direct_write_schedule_segment(&desc, vec, pos);
787 if (result < 0)
788 break;
789 requested_bytes += result;
790 if ((size_t)result < vec->iov_len)
791 break;
792 pos += vec->iov_len;
793 }
794 nfs_pageio_complete(&desc);
795
796 /*
797 * If no bytes were started, return the error, and let the
798 * generic layer handle the completion.
799 */
800 if (requested_bytes == 0) {
801 nfs_direct_req_release(dreq);
802 return result < 0 ? result : -EIO;
803 }
804
805 if (put_dreq(dreq))
806 nfs_direct_write_complete(dreq, dreq->inode);
807 return 0;
808 }
809
810 static ssize_t nfs_direct_write(struct kiocb *iocb, const struct iovec *iov,
811 unsigned long nr_segs, loff_t pos,
812 size_t count)
813 {
814 ssize_t result = -ENOMEM;
815 struct inode *inode = iocb->ki_filp->f_mapping->host;
816 struct nfs_direct_req *dreq;
817
818 dreq = nfs_direct_req_alloc();
819 if (!dreq)
820 goto out;
821
822 dreq->inode = inode;
823 dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
824 dreq->l_ctx = nfs_get_lock_context(dreq->ctx);
825 if (dreq->l_ctx == NULL)
826 goto out_release;
827 if (!is_sync_kiocb(iocb))
828 dreq->iocb = iocb;
829
830 result = nfs_direct_write_schedule_iovec(dreq, iov, nr_segs, pos);
831 if (!result)
832 result = nfs_direct_wait(dreq);
833 out_release:
834 nfs_direct_req_release(dreq);
835 out:
836 return result;
837 }
838
839 /**
840 * nfs_file_direct_read - file direct read operation for NFS files
841 * @iocb: target I/O control block
842 * @iov: vector of user buffers into which to read data
843 * @nr_segs: size of iov vector
844 * @pos: byte offset in file where reading starts
845 *
846 * We use this function for direct reads instead of calling
847 * generic_file_aio_read() in order to avoid gfar's check to see if
848 * the request starts before the end of the file. For that check
849 * to work, we must generate a GETATTR before each direct read, and
850 * even then there is a window between the GETATTR and the subsequent
851 * READ where the file size could change. Our preference is simply
852 * to do all reads the application wants, and the server will take
853 * care of managing the end of file boundary.
854 *
855 * This function also eliminates unnecessarily updating the file's
856 * atime locally, as the NFS server sets the file's atime, and this
857 * client must read the updated atime from the server back into its
858 * cache.
859 */
860 ssize_t nfs_file_direct_read(struct kiocb *iocb, const struct iovec *iov,
861 unsigned long nr_segs, loff_t pos)
862 {
863 ssize_t retval = -EINVAL;
864 struct file *file = iocb->ki_filp;
865 struct address_space *mapping = file->f_mapping;
866 size_t count;
867
868 count = iov_length(iov, nr_segs);
869 nfs_add_stats(mapping->host, NFSIOS_DIRECTREADBYTES, count);
870
871 dfprintk(FILE, "NFS: direct read(%s/%s, %zd@%Ld)\n",
872 file->f_path.dentry->d_parent->d_name.name,
873 file->f_path.dentry->d_name.name,
874 count, (long long) pos);
875
876 retval = 0;
877 if (!count)
878 goto out;
879
880 retval = nfs_sync_mapping(mapping);
881 if (retval)
882 goto out;
883
884 task_io_account_read(count);
885
886 retval = nfs_direct_read(iocb, iov, nr_segs, pos);
887 if (retval > 0)
888 iocb->ki_pos = pos + retval;
889
890 out:
891 return retval;
892 }
893
894 /**
895 * nfs_file_direct_write - file direct write operation for NFS files
896 * @iocb: target I/O control block
897 * @iov: vector of user buffers from which to write data
898 * @nr_segs: size of iov vector
899 * @pos: byte offset in file where writing starts
900 *
901 * We use this function for direct writes instead of calling
902 * generic_file_aio_write() in order to avoid taking the inode
903 * semaphore and updating the i_size. The NFS server will set
904 * the new i_size and this client must read the updated size
905 * back into its cache. We let the server do generic write
906 * parameter checking and report problems.
907 *
908 * We eliminate local atime updates, see direct read above.
909 *
910 * We avoid unnecessary page cache invalidations for normal cached
911 * readers of this file.
912 *
913 * Note that O_APPEND is not supported for NFS direct writes, as there
914 * is no atomic O_APPEND write facility in the NFS protocol.
915 */
916 ssize_t nfs_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
917 unsigned long nr_segs, loff_t pos)
918 {
919 ssize_t retval = -EINVAL;
920 struct file *file = iocb->ki_filp;
921 struct address_space *mapping = file->f_mapping;
922 size_t count;
923
924 count = iov_length(iov, nr_segs);
925 nfs_add_stats(mapping->host, NFSIOS_DIRECTWRITTENBYTES, count);
926
927 dfprintk(FILE, "NFS: direct write(%s/%s, %zd@%Ld)\n",
928 file->f_path.dentry->d_parent->d_name.name,
929 file->f_path.dentry->d_name.name,
930 count, (long long) pos);
931
932 retval = generic_write_checks(file, &pos, &count, 0);
933 if (retval)
934 goto out;
935
936 retval = -EINVAL;
937 if ((ssize_t) count < 0)
938 goto out;
939 retval = 0;
940 if (!count)
941 goto out;
942
943 retval = nfs_sync_mapping(mapping);
944 if (retval)
945 goto out;
946
947 task_io_account_write(count);
948
949 retval = nfs_direct_write(iocb, iov, nr_segs, pos, count);
950 if (retval > 0) {
951 struct inode *inode = mapping->host;
952
953 iocb->ki_pos = pos + retval;
954 spin_lock(&inode->i_lock);
955 if (i_size_read(inode) < iocb->ki_pos)
956 i_size_write(inode, iocb->ki_pos);
957 spin_unlock(&inode->i_lock);
958 }
959 out:
960 return retval;
961 }
962
963 /**
964 * nfs_init_directcache - create a slab cache for nfs_direct_req structures
965 *
966 */
967 int __init nfs_init_directcache(void)
968 {
969 nfs_direct_cachep = kmem_cache_create("nfs_direct_cache",
970 sizeof(struct nfs_direct_req),
971 0, (SLAB_RECLAIM_ACCOUNT|
972 SLAB_MEM_SPREAD),
973 NULL);
974 if (nfs_direct_cachep == NULL)
975 return -ENOMEM;
976
977 return 0;
978 }
979
980 /**
981 * nfs_destroy_directcache - destroy the slab cache for nfs_direct_req structures
982 *
983 */
984 void nfs_destroy_directcache(void)
985 {
986 kmem_cache_destroy(nfs_direct_cachep);
987 }
This page took 0.052141 seconds and 5 git commands to generate.