pnfs: pnfs_update_layout needs to consider if strict iomode checking is on
[deliverable/linux.git] / fs / nfs / direct.c
1 /*
2 * linux/fs/nfs/direct.c
3 *
4 * Copyright (C) 2003 by Chuck Lever <cel@netapp.com>
5 *
6 * High-performance uncached I/O for the Linux NFS client
7 *
8 * There are important applications whose performance or correctness
9 * depends on uncached access to file data. Database clusters
10 * (multiple copies of the same instance running on separate hosts)
11 * implement their own cache coherency protocol that subsumes file
12 * system cache protocols. Applications that process datasets
13 * considerably larger than the client's memory do not always benefit
14 * from a local cache. A streaming video server, for instance, has no
15 * need to cache the contents of a file.
16 *
17 * When an application requests uncached I/O, all read and write requests
18 * are made directly to the server; data stored or fetched via these
19 * requests is not cached in the Linux page cache. The client does not
20 * correct unaligned requests from applications. All requested bytes are
21 * held on permanent storage before a direct write system call returns to
22 * an application.
23 *
24 * Solaris implements an uncached I/O facility called directio() that
25 * is used for backups and sequential I/O to very large files. Solaris
26 * also supports uncaching whole NFS partitions with "-o forcedirectio,"
27 * an undocumented mount option.
28 *
29 * Designed by Jeff Kimmel, Chuck Lever, and Trond Myklebust, with
30 * help from Andrew Morton.
31 *
32 * 18 Dec 2001 Initial implementation for 2.4 --cel
33 * 08 Jul 2002 Version for 2.4.19, with bug fixes --trondmy
34 * 08 Jun 2003 Port to 2.5 APIs --cel
35 * 31 Mar 2004 Handle direct I/O without VFS support --cel
36 * 15 Sep 2004 Parallel async reads --cel
37 * 04 May 2005 support O_DIRECT with aio --cel
38 *
39 */
40
41 #include <linux/errno.h>
42 #include <linux/sched.h>
43 #include <linux/kernel.h>
44 #include <linux/file.h>
45 #include <linux/pagemap.h>
46 #include <linux/kref.h>
47 #include <linux/slab.h>
48 #include <linux/task_io_accounting_ops.h>
49 #include <linux/module.h>
50
51 #include <linux/nfs_fs.h>
52 #include <linux/nfs_page.h>
53 #include <linux/sunrpc/clnt.h>
54
55 #include <asm/uaccess.h>
56 #include <linux/atomic.h>
57
58 #include "internal.h"
59 #include "iostat.h"
60 #include "pnfs.h"
61
62 #define NFSDBG_FACILITY NFSDBG_VFS
63
64 static struct kmem_cache *nfs_direct_cachep;
65
66 /*
67 * This represents a set of asynchronous requests that we're waiting on
68 */
69 struct nfs_direct_mirror {
70 ssize_t count;
71 };
72
73 struct nfs_direct_req {
74 struct kref kref; /* release manager */
75
76 /* I/O parameters */
77 struct nfs_open_context *ctx; /* file open context info */
78 struct nfs_lock_context *l_ctx; /* Lock context info */
79 struct kiocb * iocb; /* controlling i/o request */
80 struct inode * inode; /* target file of i/o */
81
82 /* completion state */
83 atomic_t io_count; /* i/os we're waiting for */
84 spinlock_t lock; /* protect completion state */
85
86 struct nfs_direct_mirror mirrors[NFS_PAGEIO_DESCRIPTOR_MIRROR_MAX];
87 int mirror_count;
88
89 ssize_t count, /* bytes actually processed */
90 max_count, /* max expected count */
91 bytes_left, /* bytes left to be sent */
92 io_start, /* start of IO */
93 error; /* any reported error */
94 struct completion completion; /* wait for i/o completion */
95
96 /* commit state */
97 struct nfs_mds_commit_info mds_cinfo; /* Storage for cinfo */
98 struct pnfs_ds_commit_info ds_cinfo; /* Storage for cinfo */
99 struct work_struct work;
100 int flags;
101 #define NFS_ODIRECT_DO_COMMIT (1) /* an unstable reply was received */
102 #define NFS_ODIRECT_RESCHED_WRITES (2) /* write verification failed */
103 struct nfs_writeverf verf; /* unstable write verifier */
104 };
105
106 static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops;
107 static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops;
108 static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode);
109 static void nfs_direct_write_schedule_work(struct work_struct *work);
110
111 static inline void get_dreq(struct nfs_direct_req *dreq)
112 {
113 atomic_inc(&dreq->io_count);
114 }
115
116 static inline int put_dreq(struct nfs_direct_req *dreq)
117 {
118 return atomic_dec_and_test(&dreq->io_count);
119 }
120
121 static void
122 nfs_direct_good_bytes(struct nfs_direct_req *dreq, struct nfs_pgio_header *hdr)
123 {
124 int i;
125 ssize_t count;
126
127 WARN_ON_ONCE(dreq->count >= dreq->max_count);
128
129 if (dreq->mirror_count == 1) {
130 dreq->mirrors[hdr->pgio_mirror_idx].count += hdr->good_bytes;
131 dreq->count += hdr->good_bytes;
132 } else {
133 /* mirrored writes */
134 count = dreq->mirrors[hdr->pgio_mirror_idx].count;
135 if (count + dreq->io_start < hdr->io_start + hdr->good_bytes) {
136 count = hdr->io_start + hdr->good_bytes - dreq->io_start;
137 dreq->mirrors[hdr->pgio_mirror_idx].count = count;
138 }
139 /* update the dreq->count by finding the minimum agreed count from all
140 * mirrors */
141 count = dreq->mirrors[0].count;
142
143 for (i = 1; i < dreq->mirror_count; i++)
144 count = min(count, dreq->mirrors[i].count);
145
146 dreq->count = count;
147 }
148 }
149
150 /*
151 * nfs_direct_select_verf - select the right verifier
152 * @dreq - direct request possibly spanning multiple servers
153 * @ds_clp - nfs_client of data server or NULL if MDS / non-pnfs
154 * @commit_idx - commit bucket index for the DS
155 *
156 * returns the correct verifier to use given the role of the server
157 */
158 static struct nfs_writeverf *
159 nfs_direct_select_verf(struct nfs_direct_req *dreq,
160 struct nfs_client *ds_clp,
161 int commit_idx)
162 {
163 struct nfs_writeverf *verfp = &dreq->verf;
164
165 #ifdef CONFIG_NFS_V4_1
166 /*
167 * pNFS is in use, use the DS verf except commit_through_mds is set
168 * for layout segment where nbuckets is zero.
169 */
170 if (ds_clp && dreq->ds_cinfo.nbuckets > 0) {
171 if (commit_idx >= 0 && commit_idx < dreq->ds_cinfo.nbuckets)
172 verfp = &dreq->ds_cinfo.buckets[commit_idx].direct_verf;
173 else
174 WARN_ON_ONCE(1);
175 }
176 #endif
177 return verfp;
178 }
179
180
181 /*
182 * nfs_direct_set_hdr_verf - set the write/commit verifier
183 * @dreq - direct request possibly spanning multiple servers
184 * @hdr - pageio header to validate against previously seen verfs
185 *
186 * Set the server's (MDS or DS) "seen" verifier
187 */
188 static void nfs_direct_set_hdr_verf(struct nfs_direct_req *dreq,
189 struct nfs_pgio_header *hdr)
190 {
191 struct nfs_writeverf *verfp;
192
193 verfp = nfs_direct_select_verf(dreq, hdr->ds_clp, hdr->ds_commit_idx);
194 WARN_ON_ONCE(verfp->committed >= 0);
195 memcpy(verfp, &hdr->verf, sizeof(struct nfs_writeverf));
196 WARN_ON_ONCE(verfp->committed < 0);
197 }
198
199 /*
200 * nfs_direct_cmp_hdr_verf - compare verifier for pgio header
201 * @dreq - direct request possibly spanning multiple servers
202 * @hdr - pageio header to validate against previously seen verf
203 *
204 * set the server's "seen" verf if not initialized.
205 * returns result of comparison between @hdr->verf and the "seen"
206 * verf of the server used by @hdr (DS or MDS)
207 */
208 static int nfs_direct_set_or_cmp_hdr_verf(struct nfs_direct_req *dreq,
209 struct nfs_pgio_header *hdr)
210 {
211 struct nfs_writeverf *verfp;
212
213 verfp = nfs_direct_select_verf(dreq, hdr->ds_clp, hdr->ds_commit_idx);
214 if (verfp->committed < 0) {
215 nfs_direct_set_hdr_verf(dreq, hdr);
216 return 0;
217 }
218 return memcmp(verfp, &hdr->verf, sizeof(struct nfs_writeverf));
219 }
220
221 /*
222 * nfs_direct_cmp_commit_data_verf - compare verifier for commit data
223 * @dreq - direct request possibly spanning multiple servers
224 * @data - commit data to validate against previously seen verf
225 *
226 * returns result of comparison between @data->verf and the verf of
227 * the server used by @data (DS or MDS)
228 */
229 static int nfs_direct_cmp_commit_data_verf(struct nfs_direct_req *dreq,
230 struct nfs_commit_data *data)
231 {
232 struct nfs_writeverf *verfp;
233
234 verfp = nfs_direct_select_verf(dreq, data->ds_clp,
235 data->ds_commit_index);
236
237 /* verifier not set so always fail */
238 if (verfp->committed < 0)
239 return 1;
240
241 return memcmp(verfp, &data->verf, sizeof(struct nfs_writeverf));
242 }
243
244 /**
245 * nfs_direct_IO - NFS address space operation for direct I/O
246 * @iocb: target I/O control block
247 * @iov: array of vectors that define I/O buffer
248 * @pos: offset in file to begin the operation
249 * @nr_segs: size of iovec array
250 *
251 * The presence of this routine in the address space ops vector means
252 * the NFS client supports direct I/O. However, for most direct IO, we
253 * shunt off direct read and write requests before the VFS gets them,
254 * so this method is only ever called for swap.
255 */
256 ssize_t nfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter, loff_t pos)
257 {
258 struct inode *inode = iocb->ki_filp->f_mapping->host;
259
260 /* we only support swap file calling nfs_direct_IO */
261 if (!IS_SWAPFILE(inode))
262 return 0;
263
264 VM_BUG_ON(iov_iter_count(iter) != PAGE_SIZE);
265
266 if (iov_iter_rw(iter) == READ)
267 return nfs_file_direct_read(iocb, iter, pos);
268 return nfs_file_direct_write(iocb, iter);
269 }
270
271 static void nfs_direct_release_pages(struct page **pages, unsigned int npages)
272 {
273 unsigned int i;
274 for (i = 0; i < npages; i++)
275 put_page(pages[i]);
276 }
277
278 void nfs_init_cinfo_from_dreq(struct nfs_commit_info *cinfo,
279 struct nfs_direct_req *dreq)
280 {
281 cinfo->inode = dreq->inode;
282 cinfo->mds = &dreq->mds_cinfo;
283 cinfo->ds = &dreq->ds_cinfo;
284 cinfo->dreq = dreq;
285 cinfo->completion_ops = &nfs_direct_commit_completion_ops;
286 }
287
288 static inline void nfs_direct_setup_mirroring(struct nfs_direct_req *dreq,
289 struct nfs_pageio_descriptor *pgio,
290 struct nfs_page *req)
291 {
292 int mirror_count = 1;
293
294 if (pgio->pg_ops->pg_get_mirror_count)
295 mirror_count = pgio->pg_ops->pg_get_mirror_count(pgio, req);
296
297 dreq->mirror_count = mirror_count;
298 }
299
300 static inline struct nfs_direct_req *nfs_direct_req_alloc(void)
301 {
302 struct nfs_direct_req *dreq;
303
304 dreq = kmem_cache_zalloc(nfs_direct_cachep, GFP_KERNEL);
305 if (!dreq)
306 return NULL;
307
308 kref_init(&dreq->kref);
309 kref_get(&dreq->kref);
310 init_completion(&dreq->completion);
311 INIT_LIST_HEAD(&dreq->mds_cinfo.list);
312 dreq->verf.committed = NFS_INVALID_STABLE_HOW; /* not set yet */
313 INIT_WORK(&dreq->work, nfs_direct_write_schedule_work);
314 dreq->mirror_count = 1;
315 spin_lock_init(&dreq->lock);
316
317 return dreq;
318 }
319
320 static void nfs_direct_req_free(struct kref *kref)
321 {
322 struct nfs_direct_req *dreq = container_of(kref, struct nfs_direct_req, kref);
323
324 nfs_free_pnfs_ds_cinfo(&dreq->ds_cinfo);
325 if (dreq->l_ctx != NULL)
326 nfs_put_lock_context(dreq->l_ctx);
327 if (dreq->ctx != NULL)
328 put_nfs_open_context(dreq->ctx);
329 kmem_cache_free(nfs_direct_cachep, dreq);
330 }
331
332 static void nfs_direct_req_release(struct nfs_direct_req *dreq)
333 {
334 kref_put(&dreq->kref, nfs_direct_req_free);
335 }
336
337 ssize_t nfs_dreq_bytes_left(struct nfs_direct_req *dreq)
338 {
339 return dreq->bytes_left;
340 }
341 EXPORT_SYMBOL_GPL(nfs_dreq_bytes_left);
342
343 /*
344 * Collects and returns the final error value/byte-count.
345 */
346 static ssize_t nfs_direct_wait(struct nfs_direct_req *dreq)
347 {
348 ssize_t result = -EIOCBQUEUED;
349
350 /* Async requests don't wait here */
351 if (dreq->iocb)
352 goto out;
353
354 result = wait_for_completion_killable(&dreq->completion);
355
356 if (!result)
357 result = dreq->error;
358 if (!result)
359 result = dreq->count;
360
361 out:
362 return (ssize_t) result;
363 }
364
365 /*
366 * Synchronous I/O uses a stack-allocated iocb. Thus we can't trust
367 * the iocb is still valid here if this is a synchronous request.
368 */
369 static void nfs_direct_complete(struct nfs_direct_req *dreq, bool write)
370 {
371 struct inode *inode = dreq->inode;
372
373 if (dreq->iocb && write) {
374 loff_t pos = dreq->iocb->ki_pos + dreq->count;
375
376 spin_lock(&inode->i_lock);
377 if (i_size_read(inode) < pos)
378 i_size_write(inode, pos);
379 spin_unlock(&inode->i_lock);
380 }
381
382 if (write)
383 nfs_zap_mapping(inode, inode->i_mapping);
384
385 inode_dio_end(inode);
386
387 if (dreq->iocb) {
388 long res = (long) dreq->error;
389 if (!res)
390 res = (long) dreq->count;
391 dreq->iocb->ki_complete(dreq->iocb, res, 0);
392 }
393
394 complete_all(&dreq->completion);
395
396 nfs_direct_req_release(dreq);
397 }
398
399 static void nfs_direct_readpage_release(struct nfs_page *req)
400 {
401 dprintk("NFS: direct read done (%s/%llu %d@%lld)\n",
402 d_inode(req->wb_context->dentry)->i_sb->s_id,
403 (unsigned long long)NFS_FILEID(d_inode(req->wb_context->dentry)),
404 req->wb_bytes,
405 (long long)req_offset(req));
406 nfs_release_request(req);
407 }
408
409 static void nfs_direct_read_completion(struct nfs_pgio_header *hdr)
410 {
411 unsigned long bytes = 0;
412 struct nfs_direct_req *dreq = hdr->dreq;
413
414 if (test_bit(NFS_IOHDR_REDO, &hdr->flags))
415 goto out_put;
416
417 spin_lock(&dreq->lock);
418 if (test_bit(NFS_IOHDR_ERROR, &hdr->flags) && (hdr->good_bytes == 0))
419 dreq->error = hdr->error;
420 else
421 nfs_direct_good_bytes(dreq, hdr);
422
423 spin_unlock(&dreq->lock);
424
425 while (!list_empty(&hdr->pages)) {
426 struct nfs_page *req = nfs_list_entry(hdr->pages.next);
427 struct page *page = req->wb_page;
428
429 if (!PageCompound(page) && bytes < hdr->good_bytes)
430 set_page_dirty(page);
431 bytes += req->wb_bytes;
432 nfs_list_remove_request(req);
433 nfs_direct_readpage_release(req);
434 }
435 out_put:
436 if (put_dreq(dreq))
437 nfs_direct_complete(dreq, false);
438 hdr->release(hdr);
439 }
440
441 static void nfs_read_sync_pgio_error(struct list_head *head)
442 {
443 struct nfs_page *req;
444
445 while (!list_empty(head)) {
446 req = nfs_list_entry(head->next);
447 nfs_list_remove_request(req);
448 nfs_release_request(req);
449 }
450 }
451
452 static void nfs_direct_pgio_init(struct nfs_pgio_header *hdr)
453 {
454 get_dreq(hdr->dreq);
455 }
456
457 static const struct nfs_pgio_completion_ops nfs_direct_read_completion_ops = {
458 .error_cleanup = nfs_read_sync_pgio_error,
459 .init_hdr = nfs_direct_pgio_init,
460 .completion = nfs_direct_read_completion,
461 };
462
463 /*
464 * For each rsize'd chunk of the user's buffer, dispatch an NFS READ
465 * operation. If nfs_readdata_alloc() or get_user_pages() fails,
466 * bail and stop sending more reads. Read length accounting is
467 * handled automatically by nfs_direct_read_result(). Otherwise, if
468 * no requests have been sent, just return an error.
469 */
470
471 static ssize_t nfs_direct_read_schedule_iovec(struct nfs_direct_req *dreq,
472 struct iov_iter *iter,
473 loff_t pos)
474 {
475 struct nfs_pageio_descriptor desc;
476 struct inode *inode = dreq->inode;
477 ssize_t result = -EINVAL;
478 size_t requested_bytes = 0;
479 size_t rsize = max_t(size_t, NFS_SERVER(inode)->rsize, PAGE_SIZE);
480
481 nfs_pageio_init_read(&desc, dreq->inode, false,
482 &nfs_direct_read_completion_ops);
483 get_dreq(dreq);
484 desc.pg_dreq = dreq;
485 inode_dio_begin(inode);
486
487 while (iov_iter_count(iter)) {
488 struct page **pagevec;
489 size_t bytes;
490 size_t pgbase;
491 unsigned npages, i;
492
493 result = iov_iter_get_pages_alloc(iter, &pagevec,
494 rsize, &pgbase);
495 if (result < 0)
496 break;
497
498 bytes = result;
499 iov_iter_advance(iter, bytes);
500 npages = (result + pgbase + PAGE_SIZE - 1) / PAGE_SIZE;
501 for (i = 0; i < npages; i++) {
502 struct nfs_page *req;
503 unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase);
504 /* XXX do we need to do the eof zeroing found in async_filler? */
505 req = nfs_create_request(dreq->ctx, pagevec[i], NULL,
506 pgbase, req_len);
507 if (IS_ERR(req)) {
508 result = PTR_ERR(req);
509 break;
510 }
511 req->wb_index = pos >> PAGE_SHIFT;
512 req->wb_offset = pos & ~PAGE_MASK;
513 if (!nfs_pageio_add_request(&desc, req)) {
514 result = desc.pg_error;
515 nfs_release_request(req);
516 break;
517 }
518 pgbase = 0;
519 bytes -= req_len;
520 requested_bytes += req_len;
521 pos += req_len;
522 dreq->bytes_left -= req_len;
523 }
524 nfs_direct_release_pages(pagevec, npages);
525 kvfree(pagevec);
526 if (result < 0)
527 break;
528 }
529
530 nfs_pageio_complete(&desc);
531
532 /*
533 * If no bytes were started, return the error, and let the
534 * generic layer handle the completion.
535 */
536 if (requested_bytes == 0) {
537 inode_dio_end(inode);
538 nfs_direct_req_release(dreq);
539 return result < 0 ? result : -EIO;
540 }
541
542 if (put_dreq(dreq))
543 nfs_direct_complete(dreq, false);
544 return 0;
545 }
546
547 /**
548 * nfs_file_direct_read - file direct read operation for NFS files
549 * @iocb: target I/O control block
550 * @iter: vector of user buffers into which to read data
551 * @pos: byte offset in file where reading starts
552 *
553 * We use this function for direct reads instead of calling
554 * generic_file_aio_read() in order to avoid gfar's check to see if
555 * the request starts before the end of the file. For that check
556 * to work, we must generate a GETATTR before each direct read, and
557 * even then there is a window between the GETATTR and the subsequent
558 * READ where the file size could change. Our preference is simply
559 * to do all reads the application wants, and the server will take
560 * care of managing the end of file boundary.
561 *
562 * This function also eliminates unnecessarily updating the file's
563 * atime locally, as the NFS server sets the file's atime, and this
564 * client must read the updated atime from the server back into its
565 * cache.
566 */
567 ssize_t nfs_file_direct_read(struct kiocb *iocb, struct iov_iter *iter,
568 loff_t pos)
569 {
570 struct file *file = iocb->ki_filp;
571 struct address_space *mapping = file->f_mapping;
572 struct inode *inode = mapping->host;
573 struct nfs_direct_req *dreq;
574 struct nfs_lock_context *l_ctx;
575 ssize_t result = -EINVAL;
576 size_t count = iov_iter_count(iter);
577 nfs_add_stats(mapping->host, NFSIOS_DIRECTREADBYTES, count);
578
579 dfprintk(FILE, "NFS: direct read(%pD2, %zd@%Ld)\n",
580 file, count, (long long) pos);
581
582 result = 0;
583 if (!count)
584 goto out;
585
586 inode_lock(inode);
587 result = nfs_sync_mapping(mapping);
588 if (result)
589 goto out_unlock;
590
591 task_io_account_read(count);
592
593 result = -ENOMEM;
594 dreq = nfs_direct_req_alloc();
595 if (dreq == NULL)
596 goto out_unlock;
597
598 dreq->inode = inode;
599 dreq->bytes_left = dreq->max_count = count;
600 dreq->io_start = pos;
601 dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
602 l_ctx = nfs_get_lock_context(dreq->ctx);
603 if (IS_ERR(l_ctx)) {
604 result = PTR_ERR(l_ctx);
605 goto out_release;
606 }
607 dreq->l_ctx = l_ctx;
608 if (!is_sync_kiocb(iocb))
609 dreq->iocb = iocb;
610
611 NFS_I(inode)->read_io += count;
612 result = nfs_direct_read_schedule_iovec(dreq, iter, pos);
613
614 inode_unlock(inode);
615
616 if (!result) {
617 result = nfs_direct_wait(dreq);
618 if (result > 0)
619 iocb->ki_pos = pos + result;
620 }
621
622 nfs_direct_req_release(dreq);
623 return result;
624
625 out_release:
626 nfs_direct_req_release(dreq);
627 out_unlock:
628 inode_unlock(inode);
629 out:
630 return result;
631 }
632
633 static void
634 nfs_direct_write_scan_commit_list(struct inode *inode,
635 struct list_head *list,
636 struct nfs_commit_info *cinfo)
637 {
638 spin_lock(&cinfo->inode->i_lock);
639 #ifdef CONFIG_NFS_V4_1
640 if (cinfo->ds != NULL && cinfo->ds->nwritten != 0)
641 NFS_SERVER(inode)->pnfs_curr_ld->recover_commit_reqs(list, cinfo);
642 #endif
643 nfs_scan_commit_list(&cinfo->mds->list, list, cinfo, 0);
644 spin_unlock(&cinfo->inode->i_lock);
645 }
646
647 static void nfs_direct_write_reschedule(struct nfs_direct_req *dreq)
648 {
649 struct nfs_pageio_descriptor desc;
650 struct nfs_page *req, *tmp;
651 LIST_HEAD(reqs);
652 struct nfs_commit_info cinfo;
653 LIST_HEAD(failed);
654 int i;
655
656 nfs_init_cinfo_from_dreq(&cinfo, dreq);
657 nfs_direct_write_scan_commit_list(dreq->inode, &reqs, &cinfo);
658
659 dreq->count = 0;
660 for (i = 0; i < dreq->mirror_count; i++)
661 dreq->mirrors[i].count = 0;
662 get_dreq(dreq);
663
664 nfs_pageio_init_write(&desc, dreq->inode, FLUSH_STABLE, false,
665 &nfs_direct_write_completion_ops);
666 desc.pg_dreq = dreq;
667
668 req = nfs_list_entry(reqs.next);
669 nfs_direct_setup_mirroring(dreq, &desc, req);
670 if (desc.pg_error < 0) {
671 list_splice_init(&reqs, &failed);
672 goto out_failed;
673 }
674
675 list_for_each_entry_safe(req, tmp, &reqs, wb_list) {
676 if (!nfs_pageio_add_request(&desc, req)) {
677 nfs_list_remove_request(req);
678 nfs_list_add_request(req, &failed);
679 spin_lock(&cinfo.inode->i_lock);
680 dreq->flags = 0;
681 if (desc.pg_error < 0)
682 dreq->error = desc.pg_error;
683 else
684 dreq->error = -EIO;
685 spin_unlock(&cinfo.inode->i_lock);
686 }
687 nfs_release_request(req);
688 }
689 nfs_pageio_complete(&desc);
690
691 out_failed:
692 while (!list_empty(&failed)) {
693 req = nfs_list_entry(failed.next);
694 nfs_list_remove_request(req);
695 nfs_unlock_and_release_request(req);
696 }
697
698 if (put_dreq(dreq))
699 nfs_direct_write_complete(dreq, dreq->inode);
700 }
701
702 static void nfs_direct_commit_complete(struct nfs_commit_data *data)
703 {
704 struct nfs_direct_req *dreq = data->dreq;
705 struct nfs_commit_info cinfo;
706 struct nfs_page *req;
707 int status = data->task.tk_status;
708
709 nfs_init_cinfo_from_dreq(&cinfo, dreq);
710 if (status < 0) {
711 dprintk("NFS: %5u commit failed with error %d.\n",
712 data->task.tk_pid, status);
713 dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
714 } else if (nfs_direct_cmp_commit_data_verf(dreq, data)) {
715 dprintk("NFS: %5u commit verify failed\n", data->task.tk_pid);
716 dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
717 }
718
719 dprintk("NFS: %5u commit returned %d\n", data->task.tk_pid, status);
720 while (!list_empty(&data->pages)) {
721 req = nfs_list_entry(data->pages.next);
722 nfs_list_remove_request(req);
723 if (dreq->flags == NFS_ODIRECT_RESCHED_WRITES) {
724 /* Note the rewrite will go through mds */
725 nfs_mark_request_commit(req, NULL, &cinfo, 0);
726 } else
727 nfs_release_request(req);
728 nfs_unlock_and_release_request(req);
729 }
730
731 if (atomic_dec_and_test(&cinfo.mds->rpcs_out))
732 nfs_direct_write_complete(dreq, data->inode);
733 }
734
735 static void nfs_direct_resched_write(struct nfs_commit_info *cinfo,
736 struct nfs_page *req)
737 {
738 struct nfs_direct_req *dreq = cinfo->dreq;
739
740 spin_lock(&dreq->lock);
741 dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
742 spin_unlock(&dreq->lock);
743 nfs_mark_request_commit(req, NULL, cinfo, 0);
744 }
745
746 static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops = {
747 .completion = nfs_direct_commit_complete,
748 .resched_write = nfs_direct_resched_write,
749 };
750
751 static void nfs_direct_commit_schedule(struct nfs_direct_req *dreq)
752 {
753 int res;
754 struct nfs_commit_info cinfo;
755 LIST_HEAD(mds_list);
756
757 nfs_init_cinfo_from_dreq(&cinfo, dreq);
758 nfs_scan_commit(dreq->inode, &mds_list, &cinfo);
759 res = nfs_generic_commit_list(dreq->inode, &mds_list, 0, &cinfo);
760 if (res < 0) /* res == -ENOMEM */
761 nfs_direct_write_reschedule(dreq);
762 }
763
764 static void nfs_direct_write_schedule_work(struct work_struct *work)
765 {
766 struct nfs_direct_req *dreq = container_of(work, struct nfs_direct_req, work);
767 int flags = dreq->flags;
768
769 dreq->flags = 0;
770 switch (flags) {
771 case NFS_ODIRECT_DO_COMMIT:
772 nfs_direct_commit_schedule(dreq);
773 break;
774 case NFS_ODIRECT_RESCHED_WRITES:
775 nfs_direct_write_reschedule(dreq);
776 break;
777 default:
778 nfs_direct_complete(dreq, true);
779 }
780 }
781
782 static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode)
783 {
784 schedule_work(&dreq->work); /* Calls nfs_direct_write_schedule_work */
785 }
786
787 static void nfs_direct_write_completion(struct nfs_pgio_header *hdr)
788 {
789 struct nfs_direct_req *dreq = hdr->dreq;
790 struct nfs_commit_info cinfo;
791 bool request_commit = false;
792 struct nfs_page *req = nfs_list_entry(hdr->pages.next);
793
794 if (test_bit(NFS_IOHDR_REDO, &hdr->flags))
795 goto out_put;
796
797 nfs_init_cinfo_from_dreq(&cinfo, dreq);
798
799 spin_lock(&dreq->lock);
800
801 if (test_bit(NFS_IOHDR_ERROR, &hdr->flags)) {
802 dreq->flags = 0;
803 dreq->error = hdr->error;
804 }
805 if (dreq->error == 0) {
806 nfs_direct_good_bytes(dreq, hdr);
807 if (nfs_write_need_commit(hdr)) {
808 if (dreq->flags == NFS_ODIRECT_RESCHED_WRITES)
809 request_commit = true;
810 else if (dreq->flags == 0) {
811 nfs_direct_set_hdr_verf(dreq, hdr);
812 request_commit = true;
813 dreq->flags = NFS_ODIRECT_DO_COMMIT;
814 } else if (dreq->flags == NFS_ODIRECT_DO_COMMIT) {
815 request_commit = true;
816 if (nfs_direct_set_or_cmp_hdr_verf(dreq, hdr))
817 dreq->flags =
818 NFS_ODIRECT_RESCHED_WRITES;
819 }
820 }
821 }
822 spin_unlock(&dreq->lock);
823
824 while (!list_empty(&hdr->pages)) {
825
826 req = nfs_list_entry(hdr->pages.next);
827 nfs_list_remove_request(req);
828 if (request_commit) {
829 kref_get(&req->wb_kref);
830 nfs_mark_request_commit(req, hdr->lseg, &cinfo,
831 hdr->ds_commit_idx);
832 }
833 nfs_unlock_and_release_request(req);
834 }
835
836 out_put:
837 if (put_dreq(dreq))
838 nfs_direct_write_complete(dreq, hdr->inode);
839 hdr->release(hdr);
840 }
841
842 static void nfs_write_sync_pgio_error(struct list_head *head)
843 {
844 struct nfs_page *req;
845
846 while (!list_empty(head)) {
847 req = nfs_list_entry(head->next);
848 nfs_list_remove_request(req);
849 nfs_unlock_and_release_request(req);
850 }
851 }
852
853 static void nfs_direct_write_reschedule_io(struct nfs_pgio_header *hdr)
854 {
855 struct nfs_direct_req *dreq = hdr->dreq;
856
857 spin_lock(&dreq->lock);
858 if (dreq->error == 0) {
859 dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
860 /* fake unstable write to let common nfs resend pages */
861 hdr->verf.committed = NFS_UNSTABLE;
862 hdr->good_bytes = hdr->args.count;
863 }
864 spin_unlock(&dreq->lock);
865 }
866
867 static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops = {
868 .error_cleanup = nfs_write_sync_pgio_error,
869 .init_hdr = nfs_direct_pgio_init,
870 .completion = nfs_direct_write_completion,
871 .reschedule_io = nfs_direct_write_reschedule_io,
872 };
873
874
875 /*
876 * NB: Return the value of the first error return code. Subsequent
877 * errors after the first one are ignored.
878 */
879 /*
880 * For each wsize'd chunk of the user's buffer, dispatch an NFS WRITE
881 * operation. If nfs_writedata_alloc() or get_user_pages() fails,
882 * bail and stop sending more writes. Write length accounting is
883 * handled automatically by nfs_direct_write_result(). Otherwise, if
884 * no requests have been sent, just return an error.
885 */
886 static ssize_t nfs_direct_write_schedule_iovec(struct nfs_direct_req *dreq,
887 struct iov_iter *iter,
888 loff_t pos)
889 {
890 struct nfs_pageio_descriptor desc;
891 struct inode *inode = dreq->inode;
892 ssize_t result = 0;
893 size_t requested_bytes = 0;
894 size_t wsize = max_t(size_t, NFS_SERVER(inode)->wsize, PAGE_SIZE);
895
896 nfs_pageio_init_write(&desc, inode, FLUSH_COND_STABLE, false,
897 &nfs_direct_write_completion_ops);
898 desc.pg_dreq = dreq;
899 get_dreq(dreq);
900 inode_dio_begin(inode);
901
902 NFS_I(inode)->write_io += iov_iter_count(iter);
903 while (iov_iter_count(iter)) {
904 struct page **pagevec;
905 size_t bytes;
906 size_t pgbase;
907 unsigned npages, i;
908
909 result = iov_iter_get_pages_alloc(iter, &pagevec,
910 wsize, &pgbase);
911 if (result < 0)
912 break;
913
914 bytes = result;
915 iov_iter_advance(iter, bytes);
916 npages = (result + pgbase + PAGE_SIZE - 1) / PAGE_SIZE;
917 for (i = 0; i < npages; i++) {
918 struct nfs_page *req;
919 unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase);
920
921 req = nfs_create_request(dreq->ctx, pagevec[i], NULL,
922 pgbase, req_len);
923 if (IS_ERR(req)) {
924 result = PTR_ERR(req);
925 break;
926 }
927
928 nfs_direct_setup_mirroring(dreq, &desc, req);
929 if (desc.pg_error < 0) {
930 nfs_free_request(req);
931 result = desc.pg_error;
932 break;
933 }
934
935 nfs_lock_request(req);
936 req->wb_index = pos >> PAGE_SHIFT;
937 req->wb_offset = pos & ~PAGE_MASK;
938 if (!nfs_pageio_add_request(&desc, req)) {
939 result = desc.pg_error;
940 nfs_unlock_and_release_request(req);
941 break;
942 }
943 pgbase = 0;
944 bytes -= req_len;
945 requested_bytes += req_len;
946 pos += req_len;
947 dreq->bytes_left -= req_len;
948 }
949 nfs_direct_release_pages(pagevec, npages);
950 kvfree(pagevec);
951 if (result < 0)
952 break;
953 }
954 nfs_pageio_complete(&desc);
955
956 /*
957 * If no bytes were started, return the error, and let the
958 * generic layer handle the completion.
959 */
960 if (requested_bytes == 0) {
961 inode_dio_end(inode);
962 nfs_direct_req_release(dreq);
963 return result < 0 ? result : -EIO;
964 }
965
966 if (put_dreq(dreq))
967 nfs_direct_write_complete(dreq, dreq->inode);
968 return 0;
969 }
970
971 /**
972 * nfs_file_direct_write - file direct write operation for NFS files
973 * @iocb: target I/O control block
974 * @iter: vector of user buffers from which to write data
975 * @pos: byte offset in file where writing starts
976 *
977 * We use this function for direct writes instead of calling
978 * generic_file_aio_write() in order to avoid taking the inode
979 * semaphore and updating the i_size. The NFS server will set
980 * the new i_size and this client must read the updated size
981 * back into its cache. We let the server do generic write
982 * parameter checking and report problems.
983 *
984 * We eliminate local atime updates, see direct read above.
985 *
986 * We avoid unnecessary page cache invalidations for normal cached
987 * readers of this file.
988 *
989 * Note that O_APPEND is not supported for NFS direct writes, as there
990 * is no atomic O_APPEND write facility in the NFS protocol.
991 */
992 ssize_t nfs_file_direct_write(struct kiocb *iocb, struct iov_iter *iter)
993 {
994 ssize_t result = -EINVAL;
995 struct file *file = iocb->ki_filp;
996 struct address_space *mapping = file->f_mapping;
997 struct inode *inode = mapping->host;
998 struct nfs_direct_req *dreq;
999 struct nfs_lock_context *l_ctx;
1000 loff_t pos, end;
1001
1002 dfprintk(FILE, "NFS: direct write(%pD2, %zd@%Ld)\n",
1003 file, iov_iter_count(iter), (long long) iocb->ki_pos);
1004
1005 nfs_add_stats(mapping->host, NFSIOS_DIRECTWRITTENBYTES,
1006 iov_iter_count(iter));
1007
1008 pos = iocb->ki_pos;
1009 end = (pos + iov_iter_count(iter) - 1) >> PAGE_SHIFT;
1010
1011 inode_lock(inode);
1012
1013 result = nfs_sync_mapping(mapping);
1014 if (result)
1015 goto out_unlock;
1016
1017 if (mapping->nrpages) {
1018 result = invalidate_inode_pages2_range(mapping,
1019 pos >> PAGE_SHIFT, end);
1020 if (result)
1021 goto out_unlock;
1022 }
1023
1024 task_io_account_write(iov_iter_count(iter));
1025
1026 result = -ENOMEM;
1027 dreq = nfs_direct_req_alloc();
1028 if (!dreq)
1029 goto out_unlock;
1030
1031 dreq->inode = inode;
1032 dreq->bytes_left = dreq->max_count = iov_iter_count(iter);
1033 dreq->io_start = pos;
1034 dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
1035 l_ctx = nfs_get_lock_context(dreq->ctx);
1036 if (IS_ERR(l_ctx)) {
1037 result = PTR_ERR(l_ctx);
1038 goto out_release;
1039 }
1040 dreq->l_ctx = l_ctx;
1041 if (!is_sync_kiocb(iocb))
1042 dreq->iocb = iocb;
1043
1044 result = nfs_direct_write_schedule_iovec(dreq, iter, pos);
1045
1046 if (mapping->nrpages) {
1047 invalidate_inode_pages2_range(mapping,
1048 pos >> PAGE_SHIFT, end);
1049 }
1050
1051 inode_unlock(inode);
1052
1053 if (!result) {
1054 result = nfs_direct_wait(dreq);
1055 if (result > 0) {
1056 struct inode *inode = mapping->host;
1057
1058 iocb->ki_pos = pos + result;
1059 spin_lock(&inode->i_lock);
1060 if (i_size_read(inode) < iocb->ki_pos)
1061 i_size_write(inode, iocb->ki_pos);
1062 spin_unlock(&inode->i_lock);
1063 generic_write_sync(file, pos, result);
1064 }
1065 }
1066 nfs_direct_req_release(dreq);
1067 return result;
1068
1069 out_release:
1070 nfs_direct_req_release(dreq);
1071 out_unlock:
1072 inode_unlock(inode);
1073 return result;
1074 }
1075
1076 /**
1077 * nfs_init_directcache - create a slab cache for nfs_direct_req structures
1078 *
1079 */
1080 int __init nfs_init_directcache(void)
1081 {
1082 nfs_direct_cachep = kmem_cache_create("nfs_direct_cache",
1083 sizeof(struct nfs_direct_req),
1084 0, (SLAB_RECLAIM_ACCOUNT|
1085 SLAB_MEM_SPREAD),
1086 NULL);
1087 if (nfs_direct_cachep == NULL)
1088 return -ENOMEM;
1089
1090 return 0;
1091 }
1092
1093 /**
1094 * nfs_destroy_directcache - destroy the slab cache for nfs_direct_req structures
1095 *
1096 */
1097 void nfs_destroy_directcache(void)
1098 {
1099 kmem_cache_destroy(nfs_direct_cachep);
1100 }
This page took 0.05289 seconds and 5 git commands to generate.