9d57a299824c0d57bec8822fe3832e5986274cf6
[deliverable/linux.git] / fs / nfs / direct.c
1 /*
2 * linux/fs/nfs/direct.c
3 *
4 * Copyright (C) 2003 by Chuck Lever <cel@netapp.com>
5 *
6 * High-performance uncached I/O for the Linux NFS client
7 *
8 * There are important applications whose performance or correctness
9 * depends on uncached access to file data. Database clusters
10 * (multiple copies of the same instance running on separate hosts)
11 * implement their own cache coherency protocol that subsumes file
12 * system cache protocols. Applications that process datasets
13 * considerably larger than the client's memory do not always benefit
14 * from a local cache. A streaming video server, for instance, has no
15 * need to cache the contents of a file.
16 *
17 * When an application requests uncached I/O, all read and write requests
18 * are made directly to the server; data stored or fetched via these
19 * requests is not cached in the Linux page cache. The client does not
20 * correct unaligned requests from applications. All requested bytes are
21 * held on permanent storage before a direct write system call returns to
22 * an application.
23 *
24 * Solaris implements an uncached I/O facility called directio() that
25 * is used for backups and sequential I/O to very large files. Solaris
26 * also supports uncaching whole NFS partitions with "-o forcedirectio,"
27 * an undocumented mount option.
28 *
29 * Designed by Jeff Kimmel, Chuck Lever, and Trond Myklebust, with
30 * help from Andrew Morton.
31 *
32 * 18 Dec 2001 Initial implementation for 2.4 --cel
33 * 08 Jul 2002 Version for 2.4.19, with bug fixes --trondmy
34 * 08 Jun 2003 Port to 2.5 APIs --cel
35 * 31 Mar 2004 Handle direct I/O without VFS support --cel
36 * 15 Sep 2004 Parallel async reads --cel
37 *
38 */
39
40 #include <linux/config.h>
41 #include <linux/errno.h>
42 #include <linux/sched.h>
43 #include <linux/kernel.h>
44 #include <linux/smp_lock.h>
45 #include <linux/file.h>
46 #include <linux/pagemap.h>
47 #include <linux/kref.h>
48
49 #include <linux/nfs_fs.h>
50 #include <linux/nfs_page.h>
51 #include <linux/sunrpc/clnt.h>
52
53 #include <asm/system.h>
54 #include <asm/uaccess.h>
55 #include <asm/atomic.h>
56
57 #include "iostat.h"
58
59 #define NFSDBG_FACILITY NFSDBG_VFS
60 #define MAX_DIRECTIO_SIZE (4096UL << PAGE_SHIFT)
61
62 static void nfs_free_user_pages(struct page **pages, int npages, int do_dirty);
63 static kmem_cache_t *nfs_direct_cachep;
64
65 /*
66 * This represents a set of asynchronous requests that we're waiting on
67 */
68 struct nfs_direct_req {
69 struct kref kref; /* release manager */
70 struct list_head list; /* nfs_read_data structs */
71 struct file * filp; /* file descriptor */
72 struct kiocb * iocb; /* controlling i/o request */
73 wait_queue_head_t wait; /* wait for i/o completion */
74 struct inode * inode; /* target file of I/O */
75 struct page ** pages; /* pages in our buffer */
76 unsigned int npages; /* count of pages */
77 atomic_t complete, /* i/os we're waiting for */
78 count, /* bytes actually processed */
79 error; /* any reported error */
80 };
81
82
83 /**
84 * nfs_direct_IO - NFS address space operation for direct I/O
85 * @rw: direction (read or write)
86 * @iocb: target I/O control block
87 * @iov: array of vectors that define I/O buffer
88 * @pos: offset in file to begin the operation
89 * @nr_segs: size of iovec array
90 *
91 * The presence of this routine in the address space ops vector means
92 * the NFS client supports direct I/O. However, we shunt off direct
93 * read and write requests before the VFS gets them, so this method
94 * should never be called.
95 */
96 ssize_t nfs_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov, loff_t pos, unsigned long nr_segs)
97 {
98 struct dentry *dentry = iocb->ki_filp->f_dentry;
99
100 dprintk("NFS: nfs_direct_IO (%s) off/no(%Ld/%lu) EINVAL\n",
101 dentry->d_name.name, (long long) pos, nr_segs);
102
103 return -EINVAL;
104 }
105
106 static inline int nfs_get_user_pages(int rw, unsigned long user_addr, size_t size, struct page ***pages)
107 {
108 int result = -ENOMEM;
109 unsigned long page_count;
110 size_t array_size;
111
112 /* set an arbitrary limit to prevent type overflow */
113 /* XXX: this can probably be as large as INT_MAX */
114 if (size > MAX_DIRECTIO_SIZE) {
115 *pages = NULL;
116 return -EFBIG;
117 }
118
119 page_count = (user_addr + size + PAGE_SIZE - 1) >> PAGE_SHIFT;
120 page_count -= user_addr >> PAGE_SHIFT;
121
122 array_size = (page_count * sizeof(struct page *));
123 *pages = kmalloc(array_size, GFP_KERNEL);
124 if (*pages) {
125 down_read(&current->mm->mmap_sem);
126 result = get_user_pages(current, current->mm, user_addr,
127 page_count, (rw == READ), 0,
128 *pages, NULL);
129 up_read(&current->mm->mmap_sem);
130 /*
131 * If we got fewer pages than expected from get_user_pages(),
132 * the user buffer runs off the end of a mapping; return EFAULT.
133 */
134 if (result >= 0 && result < page_count) {
135 nfs_free_user_pages(*pages, result, 0);
136 *pages = NULL;
137 result = -EFAULT;
138 }
139 }
140 return result;
141 }
142
143 static void nfs_free_user_pages(struct page **pages, int npages, int do_dirty)
144 {
145 int i;
146 for (i = 0; i < npages; i++) {
147 struct page *page = pages[i];
148 if (do_dirty && !PageCompound(page))
149 set_page_dirty_lock(page);
150 page_cache_release(page);
151 }
152 kfree(pages);
153 }
154
155 static inline struct nfs_direct_req *nfs_direct_req_alloc(void)
156 {
157 struct nfs_direct_req *dreq;
158
159 dreq = kmem_cache_alloc(nfs_direct_cachep, SLAB_KERNEL);
160 if (!dreq)
161 return NULL;
162
163 kref_init(&dreq->kref);
164 init_waitqueue_head(&dreq->wait);
165 INIT_LIST_HEAD(&dreq->list);
166 dreq->iocb = NULL;
167 atomic_set(&dreq->count, 0);
168 atomic_set(&dreq->error, 0);
169
170 return dreq;
171 }
172
173 static void nfs_direct_req_release(struct kref *kref)
174 {
175 struct nfs_direct_req *dreq = container_of(kref, struct nfs_direct_req, kref);
176 kmem_cache_free(nfs_direct_cachep, dreq);
177 }
178
179 /*
180 * Collects and returns the final error value/byte-count.
181 */
182 static ssize_t nfs_direct_wait(struct nfs_direct_req *dreq)
183 {
184 int result = -EIOCBQUEUED;
185
186 /* Async requests don't wait here */
187 if (dreq->iocb)
188 goto out;
189
190 result = wait_event_interruptible(dreq->wait,
191 (atomic_read(&dreq->complete) == 0));
192
193 if (!result)
194 result = atomic_read(&dreq->error);
195 if (!result)
196 result = atomic_read(&dreq->count);
197
198 out:
199 kref_put(&dreq->kref, nfs_direct_req_release);
200 return (ssize_t) result;
201 }
202
203 /*
204 * We must hold a reference to all the pages in this direct read request
205 * until the RPCs complete. This could be long *after* we are woken up in
206 * nfs_direct_wait (for instance, if someone hits ^C on a slow server).
207 *
208 * In addition, synchronous I/O uses a stack-allocated iocb. Thus we
209 * can't trust the iocb is still valid here if this is a synchronous
210 * request. If the waiter is woken prematurely, the iocb is long gone.
211 */
212 static void nfs_direct_complete(struct nfs_direct_req *dreq)
213 {
214 nfs_free_user_pages(dreq->pages, dreq->npages, 1);
215
216 if (dreq->iocb) {
217 long res = atomic_read(&dreq->error);
218 if (!res)
219 res = atomic_read(&dreq->count);
220 aio_complete(dreq->iocb, res, 0);
221 } else
222 wake_up(&dreq->wait);
223
224 kref_put(&dreq->kref, nfs_direct_req_release);
225 }
226
227 /*
228 * Note we also set the number of requests we have in the dreq when we are
229 * done. This prevents races with I/O completion so we will always wait
230 * until all requests have been dispatched and completed.
231 */
232 static struct nfs_direct_req *nfs_direct_read_alloc(size_t nbytes, size_t rsize)
233 {
234 struct list_head *list;
235 struct nfs_direct_req *dreq;
236 unsigned int reads = 0;
237 unsigned int rpages = (rsize + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
238
239 dreq = nfs_direct_req_alloc();
240 if (!dreq)
241 return NULL;
242
243 list = &dreq->list;
244 for(;;) {
245 struct nfs_read_data *data = nfs_readdata_alloc(rpages);
246
247 if (unlikely(!data)) {
248 while (!list_empty(list)) {
249 data = list_entry(list->next,
250 struct nfs_read_data, pages);
251 list_del(&data->pages);
252 nfs_readdata_free(data);
253 }
254 kref_put(&dreq->kref, nfs_direct_req_release);
255 return NULL;
256 }
257
258 INIT_LIST_HEAD(&data->pages);
259 list_add(&data->pages, list);
260
261 data->req = (struct nfs_page *) dreq;
262 reads++;
263 if (nbytes <= rsize)
264 break;
265 nbytes -= rsize;
266 }
267 kref_get(&dreq->kref);
268 atomic_set(&dreq->complete, reads);
269 return dreq;
270 }
271
272 static void nfs_direct_read_result(struct rpc_task *task, void *calldata)
273 {
274 struct nfs_read_data *data = calldata;
275 struct nfs_direct_req *dreq = (struct nfs_direct_req *) data->req;
276
277 if (nfs_readpage_result(task, data) != 0)
278 return;
279 if (likely(task->tk_status >= 0))
280 atomic_add(data->res.count, &dreq->count);
281 else
282 atomic_set(&dreq->error, task->tk_status);
283
284 if (unlikely(atomic_dec_and_test(&dreq->complete)))
285 nfs_direct_complete(dreq);
286 }
287
288 static const struct rpc_call_ops nfs_read_direct_ops = {
289 .rpc_call_done = nfs_direct_read_result,
290 .rpc_release = nfs_readdata_release,
291 };
292
293 /*
294 * For each nfs_read_data struct that was allocated on the list, dispatch
295 * an NFS READ operation
296 */
297 static void nfs_direct_read_schedule(struct nfs_direct_req *dreq, unsigned long user_addr, size_t count, loff_t file_offset)
298 {
299 struct file *file = dreq->filp;
300 struct inode *inode = file->f_mapping->host;
301 struct nfs_open_context *ctx = (struct nfs_open_context *)
302 file->private_data;
303 struct list_head *list = &dreq->list;
304 struct page **pages = dreq->pages;
305 size_t rsize = NFS_SERVER(inode)->rsize;
306 unsigned int curpage, pgbase;
307
308 curpage = 0;
309 pgbase = user_addr & ~PAGE_MASK;
310 do {
311 struct nfs_read_data *data;
312 size_t bytes;
313
314 bytes = rsize;
315 if (count < rsize)
316 bytes = count;
317
318 data = list_entry(list->next, struct nfs_read_data, pages);
319 list_del_init(&data->pages);
320
321 data->inode = inode;
322 data->cred = ctx->cred;
323 data->args.fh = NFS_FH(inode);
324 data->args.context = ctx;
325 data->args.offset = file_offset;
326 data->args.pgbase = pgbase;
327 data->args.pages = &pages[curpage];
328 data->args.count = bytes;
329 data->res.fattr = &data->fattr;
330 data->res.eof = 0;
331 data->res.count = bytes;
332
333 rpc_init_task(&data->task, NFS_CLIENT(inode), RPC_TASK_ASYNC,
334 &nfs_read_direct_ops, data);
335 NFS_PROTO(inode)->read_setup(data);
336
337 data->task.tk_cookie = (unsigned long) inode;
338
339 lock_kernel();
340 rpc_execute(&data->task);
341 unlock_kernel();
342
343 dfprintk(VFS, "NFS: %4d initiated direct read call (req %s/%Ld, %u bytes @ offset %Lu)\n",
344 data->task.tk_pid,
345 inode->i_sb->s_id,
346 (long long)NFS_FILEID(inode),
347 bytes,
348 (unsigned long long)data->args.offset);
349
350 file_offset += bytes;
351 pgbase += bytes;
352 curpage += pgbase >> PAGE_SHIFT;
353 pgbase &= ~PAGE_MASK;
354
355 count -= bytes;
356 } while (count != 0);
357 }
358
359 static ssize_t nfs_direct_read(struct kiocb *iocb, unsigned long user_addr, size_t count, loff_t file_offset, struct page **pages, unsigned int nr_pages)
360 {
361 ssize_t result;
362 sigset_t oldset;
363 struct inode *inode = iocb->ki_filp->f_mapping->host;
364 struct rpc_clnt *clnt = NFS_CLIENT(inode);
365 struct nfs_direct_req *dreq;
366
367 dreq = nfs_direct_read_alloc(count, NFS_SERVER(inode)->rsize);
368 if (!dreq)
369 return -ENOMEM;
370
371 dreq->pages = pages;
372 dreq->npages = nr_pages;
373 dreq->inode = inode;
374 dreq->filp = iocb->ki_filp;
375 if (!is_sync_kiocb(iocb))
376 dreq->iocb = iocb;
377
378 nfs_add_stats(inode, NFSIOS_DIRECTREADBYTES, count);
379 rpc_clnt_sigmask(clnt, &oldset);
380 nfs_direct_read_schedule(dreq, user_addr, count, file_offset);
381 result = nfs_direct_wait(dreq);
382 rpc_clnt_sigunmask(clnt, &oldset);
383
384 return result;
385 }
386
387 static struct nfs_direct_req *nfs_direct_write_alloc(size_t nbytes, size_t wsize)
388 {
389 struct list_head *list;
390 struct nfs_direct_req *dreq;
391 unsigned int writes = 0;
392 unsigned int wpages = (wsize + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
393
394 dreq = nfs_direct_req_alloc();
395 if (!dreq)
396 return NULL;
397
398 list = &dreq->list;
399 for(;;) {
400 struct nfs_write_data *data = nfs_writedata_alloc(wpages);
401
402 if (unlikely(!data)) {
403 while (!list_empty(list)) {
404 data = list_entry(list->next,
405 struct nfs_write_data, pages);
406 list_del(&data->pages);
407 nfs_writedata_free(data);
408 }
409 kref_put(&dreq->kref, nfs_direct_req_release);
410 return NULL;
411 }
412
413 INIT_LIST_HEAD(&data->pages);
414 list_add(&data->pages, list);
415
416 data->req = (struct nfs_page *) dreq;
417 writes++;
418 if (nbytes <= wsize)
419 break;
420 nbytes -= wsize;
421 }
422 kref_get(&dreq->kref);
423 atomic_set(&dreq->complete, writes);
424 return dreq;
425 }
426
427 static void nfs_direct_write_result(struct rpc_task *task, void *calldata)
428 {
429 struct nfs_write_data *data = calldata;
430 struct nfs_direct_req *dreq = (struct nfs_direct_req *) data->req;
431 int status = task->tk_status;
432
433 if (nfs_writeback_done(task, data) != 0)
434 return;
435 /* If the server fell back to an UNSTABLE write, it's an error. */
436 if (unlikely(data->res.verf->committed != NFS_FILE_SYNC))
437 status = -EIO;
438
439 if (likely(status >= 0))
440 atomic_add(data->res.count, &dreq->count);
441 else
442 atomic_set(&dreq->error, status);
443
444 if (unlikely(atomic_dec_and_test(&dreq->complete)))
445 nfs_direct_complete(dreq);
446 }
447
448 static const struct rpc_call_ops nfs_write_direct_ops = {
449 .rpc_call_done = nfs_direct_write_result,
450 .rpc_release = nfs_writedata_release,
451 };
452
453 /*
454 * For each nfs_write_data struct that was allocated on the list, dispatch
455 * an NFS WRITE operation
456 *
457 * XXX: For now, support only FILE_SYNC writes. Later we may add
458 * support for UNSTABLE + COMMIT.
459 */
460 static void nfs_direct_write_schedule(struct nfs_direct_req *dreq, unsigned long user_addr, size_t count, loff_t file_offset)
461 {
462 struct file *file = dreq->filp;
463 struct inode *inode = file->f_mapping->host;
464 struct nfs_open_context *ctx = (struct nfs_open_context *)
465 file->private_data;
466 struct list_head *list = &dreq->list;
467 struct page **pages = dreq->pages;
468 size_t wsize = NFS_SERVER(inode)->wsize;
469 unsigned int curpage, pgbase;
470
471 curpage = 0;
472 pgbase = user_addr & ~PAGE_MASK;
473 do {
474 struct nfs_write_data *data;
475 size_t bytes;
476
477 bytes = wsize;
478 if (count < wsize)
479 bytes = count;
480
481 data = list_entry(list->next, struct nfs_write_data, pages);
482 list_del_init(&data->pages);
483
484 data->inode = inode;
485 data->cred = ctx->cred;
486 data->args.fh = NFS_FH(inode);
487 data->args.context = ctx;
488 data->args.offset = file_offset;
489 data->args.pgbase = pgbase;
490 data->args.pages = &pages[curpage];
491 data->args.count = bytes;
492 data->res.fattr = &data->fattr;
493 data->res.count = bytes;
494 data->res.verf = &data->verf;
495
496 rpc_init_task(&data->task, NFS_CLIENT(inode), RPC_TASK_ASYNC,
497 &nfs_write_direct_ops, data);
498 NFS_PROTO(inode)->write_setup(data, FLUSH_STABLE);
499
500 data->task.tk_priority = RPC_PRIORITY_NORMAL;
501 data->task.tk_cookie = (unsigned long) inode;
502
503 lock_kernel();
504 rpc_execute(&data->task);
505 unlock_kernel();
506
507 dfprintk(VFS, "NFS: %4d initiated direct write call (req %s/%Ld, %u bytes @ offset %Lu)\n",
508 data->task.tk_pid,
509 inode->i_sb->s_id,
510 (long long)NFS_FILEID(inode),
511 bytes,
512 (unsigned long long)data->args.offset);
513
514 file_offset += bytes;
515 pgbase += bytes;
516 curpage += pgbase >> PAGE_SHIFT;
517 pgbase &= ~PAGE_MASK;
518
519 count -= bytes;
520 } while (count != 0);
521 }
522
523 static ssize_t nfs_direct_write(struct kiocb *iocb, unsigned long user_addr, size_t count, loff_t file_offset, struct page **pages, int nr_pages)
524 {
525 ssize_t result;
526 sigset_t oldset;
527 struct inode *inode = iocb->ki_filp->f_mapping->host;
528 struct rpc_clnt *clnt = NFS_CLIENT(inode);
529 struct nfs_direct_req *dreq;
530
531 dreq = nfs_direct_write_alloc(count, NFS_SERVER(inode)->wsize);
532 if (!dreq)
533 return -ENOMEM;
534
535 dreq->pages = pages;
536 dreq->npages = nr_pages;
537 dreq->inode = inode;
538 dreq->filp = iocb->ki_filp;
539 if (!is_sync_kiocb(iocb))
540 dreq->iocb = iocb;
541
542 nfs_add_stats(inode, NFSIOS_DIRECTWRITTENBYTES, count);
543
544 nfs_begin_data_update(inode);
545
546 rpc_clnt_sigmask(clnt, &oldset);
547 nfs_direct_write_schedule(dreq, user_addr, count, file_offset);
548 result = nfs_direct_wait(dreq);
549 rpc_clnt_sigunmask(clnt, &oldset);
550
551 nfs_end_data_update(inode);
552
553 return result;
554 }
555
556 /**
557 * nfs_file_direct_read - file direct read operation for NFS files
558 * @iocb: target I/O control block
559 * @buf: user's buffer into which to read data
560 * count: number of bytes to read
561 * pos: byte offset in file where reading starts
562 *
563 * We use this function for direct reads instead of calling
564 * generic_file_aio_read() in order to avoid gfar's check to see if
565 * the request starts before the end of the file. For that check
566 * to work, we must generate a GETATTR before each direct read, and
567 * even then there is a window between the GETATTR and the subsequent
568 * READ where the file size could change. So our preference is simply
569 * to do all reads the application wants, and the server will take
570 * care of managing the end of file boundary.
571 *
572 * This function also eliminates unnecessarily updating the file's
573 * atime locally, as the NFS server sets the file's atime, and this
574 * client must read the updated atime from the server back into its
575 * cache.
576 */
577 ssize_t nfs_file_direct_read(struct kiocb *iocb, char __user *buf, size_t count, loff_t pos)
578 {
579 ssize_t retval = -EINVAL;
580 int page_count;
581 struct page **pages;
582 struct file *file = iocb->ki_filp;
583 struct address_space *mapping = file->f_mapping;
584
585 dprintk("nfs: direct read(%s/%s, %lu@%Ld)\n",
586 file->f_dentry->d_parent->d_name.name,
587 file->f_dentry->d_name.name,
588 (unsigned long) count, (long long) pos);
589
590 if (count < 0)
591 goto out;
592 retval = -EFAULT;
593 if (!access_ok(VERIFY_WRITE, buf, count))
594 goto out;
595 retval = 0;
596 if (!count)
597 goto out;
598
599 retval = nfs_sync_mapping(mapping);
600 if (retval)
601 goto out;
602
603 page_count = nfs_get_user_pages(READ, (unsigned long) buf,
604 count, &pages);
605 if (page_count < 0) {
606 nfs_free_user_pages(pages, 0, 0);
607 retval = page_count;
608 goto out;
609 }
610
611 retval = nfs_direct_read(iocb, (unsigned long) buf, count, pos,
612 pages, page_count);
613 if (retval > 0)
614 iocb->ki_pos = pos + retval;
615
616 out:
617 return retval;
618 }
619
620 /**
621 * nfs_file_direct_write - file direct write operation for NFS files
622 * @iocb: target I/O control block
623 * @buf: user's buffer from which to write data
624 * count: number of bytes to write
625 * pos: byte offset in file where writing starts
626 *
627 * We use this function for direct writes instead of calling
628 * generic_file_aio_write() in order to avoid taking the inode
629 * semaphore and updating the i_size. The NFS server will set
630 * the new i_size and this client must read the updated size
631 * back into its cache. We let the server do generic write
632 * parameter checking and report problems.
633 *
634 * We also avoid an unnecessary invocation of generic_osync_inode(),
635 * as it is fairly meaningless to sync the metadata of an NFS file.
636 *
637 * We eliminate local atime updates, see direct read above.
638 *
639 * We avoid unnecessary page cache invalidations for normal cached
640 * readers of this file.
641 *
642 * Note that O_APPEND is not supported for NFS direct writes, as there
643 * is no atomic O_APPEND write facility in the NFS protocol.
644 */
645 ssize_t nfs_file_direct_write(struct kiocb *iocb, const char __user *buf, size_t count, loff_t pos)
646 {
647 ssize_t retval;
648 int page_count;
649 struct page **pages;
650 struct file *file = iocb->ki_filp;
651 struct address_space *mapping = file->f_mapping;
652
653 dfprintk(VFS, "nfs: direct write(%s/%s, %lu@%Ld)\n",
654 file->f_dentry->d_parent->d_name.name,
655 file->f_dentry->d_name.name,
656 (unsigned long) count, (long long) pos);
657
658 retval = -EINVAL;
659 if (!is_sync_kiocb(iocb))
660 goto out;
661
662 retval = generic_write_checks(file, &pos, &count, 0);
663 if (retval)
664 goto out;
665
666 retval = -EINVAL;
667 if ((ssize_t) count < 0)
668 goto out;
669 retval = 0;
670 if (!count)
671 goto out;
672
673 retval = -EFAULT;
674 if (!access_ok(VERIFY_READ, buf, count))
675 goto out;
676
677 retval = nfs_sync_mapping(mapping);
678 if (retval)
679 goto out;
680
681 page_count = nfs_get_user_pages(WRITE, (unsigned long) buf,
682 count, &pages);
683 if (page_count < 0) {
684 nfs_free_user_pages(pages, 0, 0);
685 retval = page_count;
686 goto out;
687 }
688
689 retval = nfs_direct_write(iocb, (unsigned long) buf, count,
690 pos, pages, page_count);
691 if (mapping->nrpages)
692 invalidate_inode_pages2(mapping);
693 if (retval > 0)
694 iocb->ki_pos = pos + retval;
695
696 out:
697 return retval;
698 }
699
700 int nfs_init_directcache(void)
701 {
702 nfs_direct_cachep = kmem_cache_create("nfs_direct_cache",
703 sizeof(struct nfs_direct_req),
704 0, SLAB_RECLAIM_ACCOUNT,
705 NULL, NULL);
706 if (nfs_direct_cachep == NULL)
707 return -ENOMEM;
708
709 return 0;
710 }
711
712 void nfs_destroy_directcache(void)
713 {
714 if (kmem_cache_destroy(nfs_direct_cachep))
715 printk(KERN_INFO "nfs_direct_cache: not all structures were freed\n");
716 }
This page took 0.044972 seconds and 4 git commands to generate.