Merge remote-tracking branch 'mkp-scsi/4.7/scsi-fixes' into fixes
[deliverable/linux.git] / fs / nfs / direct.c
1 /*
2 * linux/fs/nfs/direct.c
3 *
4 * Copyright (C) 2003 by Chuck Lever <cel@netapp.com>
5 *
6 * High-performance uncached I/O for the Linux NFS client
7 *
8 * There are important applications whose performance or correctness
9 * depends on uncached access to file data. Database clusters
10 * (multiple copies of the same instance running on separate hosts)
11 * implement their own cache coherency protocol that subsumes file
12 * system cache protocols. Applications that process datasets
13 * considerably larger than the client's memory do not always benefit
14 * from a local cache. A streaming video server, for instance, has no
15 * need to cache the contents of a file.
16 *
17 * When an application requests uncached I/O, all read and write requests
18 * are made directly to the server; data stored or fetched via these
19 * requests is not cached in the Linux page cache. The client does not
20 * correct unaligned requests from applications. All requested bytes are
21 * held on permanent storage before a direct write system call returns to
22 * an application.
23 *
24 * Solaris implements an uncached I/O facility called directio() that
25 * is used for backups and sequential I/O to very large files. Solaris
26 * also supports uncaching whole NFS partitions with "-o forcedirectio,"
27 * an undocumented mount option.
28 *
29 * Designed by Jeff Kimmel, Chuck Lever, and Trond Myklebust, with
30 * help from Andrew Morton.
31 *
32 * 18 Dec 2001 Initial implementation for 2.4 --cel
33 * 08 Jul 2002 Version for 2.4.19, with bug fixes --trondmy
34 * 08 Jun 2003 Port to 2.5 APIs --cel
35 * 31 Mar 2004 Handle direct I/O without VFS support --cel
36 * 15 Sep 2004 Parallel async reads --cel
37 * 04 May 2005 support O_DIRECT with aio --cel
38 *
39 */
40
41 #include <linux/errno.h>
42 #include <linux/sched.h>
43 #include <linux/kernel.h>
44 #include <linux/file.h>
45 #include <linux/pagemap.h>
46 #include <linux/kref.h>
47 #include <linux/slab.h>
48 #include <linux/task_io_accounting_ops.h>
49 #include <linux/module.h>
50
51 #include <linux/nfs_fs.h>
52 #include <linux/nfs_page.h>
53 #include <linux/sunrpc/clnt.h>
54
55 #include <asm/uaccess.h>
56 #include <linux/atomic.h>
57
58 #include "internal.h"
59 #include "iostat.h"
60 #include "pnfs.h"
61
62 #define NFSDBG_FACILITY NFSDBG_VFS
63
64 static struct kmem_cache *nfs_direct_cachep;
65
66 /*
67 * This represents a set of asynchronous requests that we're waiting on
68 */
69 struct nfs_direct_mirror {
70 ssize_t count;
71 };
72
73 struct nfs_direct_req {
74 struct kref kref; /* release manager */
75
76 /* I/O parameters */
77 struct nfs_open_context *ctx; /* file open context info */
78 struct nfs_lock_context *l_ctx; /* Lock context info */
79 struct kiocb * iocb; /* controlling i/o request */
80 struct inode * inode; /* target file of i/o */
81
82 /* completion state */
83 atomic_t io_count; /* i/os we're waiting for */
84 spinlock_t lock; /* protect completion state */
85
86 struct nfs_direct_mirror mirrors[NFS_PAGEIO_DESCRIPTOR_MIRROR_MAX];
87 int mirror_count;
88
89 ssize_t count, /* bytes actually processed */
90 max_count, /* max expected count */
91 bytes_left, /* bytes left to be sent */
92 io_start, /* start of IO */
93 error; /* any reported error */
94 struct completion completion; /* wait for i/o completion */
95
96 /* commit state */
97 struct nfs_mds_commit_info mds_cinfo; /* Storage for cinfo */
98 struct pnfs_ds_commit_info ds_cinfo; /* Storage for cinfo */
99 struct work_struct work;
100 int flags;
101 #define NFS_ODIRECT_DO_COMMIT (1) /* an unstable reply was received */
102 #define NFS_ODIRECT_RESCHED_WRITES (2) /* write verification failed */
103 struct nfs_writeverf verf; /* unstable write verifier */
104 };
105
106 static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops;
107 static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops;
108 static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode);
109 static void nfs_direct_write_schedule_work(struct work_struct *work);
110
111 static inline void get_dreq(struct nfs_direct_req *dreq)
112 {
113 atomic_inc(&dreq->io_count);
114 }
115
116 static inline int put_dreq(struct nfs_direct_req *dreq)
117 {
118 return atomic_dec_and_test(&dreq->io_count);
119 }
120
121 static void
122 nfs_direct_good_bytes(struct nfs_direct_req *dreq, struct nfs_pgio_header *hdr)
123 {
124 int i;
125 ssize_t count;
126
127 WARN_ON_ONCE(dreq->count >= dreq->max_count);
128
129 if (dreq->mirror_count == 1) {
130 dreq->mirrors[hdr->pgio_mirror_idx].count += hdr->good_bytes;
131 dreq->count += hdr->good_bytes;
132 } else {
133 /* mirrored writes */
134 count = dreq->mirrors[hdr->pgio_mirror_idx].count;
135 if (count + dreq->io_start < hdr->io_start + hdr->good_bytes) {
136 count = hdr->io_start + hdr->good_bytes - dreq->io_start;
137 dreq->mirrors[hdr->pgio_mirror_idx].count = count;
138 }
139 /* update the dreq->count by finding the minimum agreed count from all
140 * mirrors */
141 count = dreq->mirrors[0].count;
142
143 for (i = 1; i < dreq->mirror_count; i++)
144 count = min(count, dreq->mirrors[i].count);
145
146 dreq->count = count;
147 }
148 }
149
150 /*
151 * nfs_direct_select_verf - select the right verifier
152 * @dreq - direct request possibly spanning multiple servers
153 * @ds_clp - nfs_client of data server or NULL if MDS / non-pnfs
154 * @commit_idx - commit bucket index for the DS
155 *
156 * returns the correct verifier to use given the role of the server
157 */
158 static struct nfs_writeverf *
159 nfs_direct_select_verf(struct nfs_direct_req *dreq,
160 struct nfs_client *ds_clp,
161 int commit_idx)
162 {
163 struct nfs_writeverf *verfp = &dreq->verf;
164
165 #ifdef CONFIG_NFS_V4_1
166 /*
167 * pNFS is in use, use the DS verf except commit_through_mds is set
168 * for layout segment where nbuckets is zero.
169 */
170 if (ds_clp && dreq->ds_cinfo.nbuckets > 0) {
171 if (commit_idx >= 0 && commit_idx < dreq->ds_cinfo.nbuckets)
172 verfp = &dreq->ds_cinfo.buckets[commit_idx].direct_verf;
173 else
174 WARN_ON_ONCE(1);
175 }
176 #endif
177 return verfp;
178 }
179
180
181 /*
182 * nfs_direct_set_hdr_verf - set the write/commit verifier
183 * @dreq - direct request possibly spanning multiple servers
184 * @hdr - pageio header to validate against previously seen verfs
185 *
186 * Set the server's (MDS or DS) "seen" verifier
187 */
188 static void nfs_direct_set_hdr_verf(struct nfs_direct_req *dreq,
189 struct nfs_pgio_header *hdr)
190 {
191 struct nfs_writeverf *verfp;
192
193 verfp = nfs_direct_select_verf(dreq, hdr->ds_clp, hdr->ds_commit_idx);
194 WARN_ON_ONCE(verfp->committed >= 0);
195 memcpy(verfp, &hdr->verf, sizeof(struct nfs_writeverf));
196 WARN_ON_ONCE(verfp->committed < 0);
197 }
198
199 /*
200 * nfs_direct_cmp_hdr_verf - compare verifier for pgio header
201 * @dreq - direct request possibly spanning multiple servers
202 * @hdr - pageio header to validate against previously seen verf
203 *
204 * set the server's "seen" verf if not initialized.
205 * returns result of comparison between @hdr->verf and the "seen"
206 * verf of the server used by @hdr (DS or MDS)
207 */
208 static int nfs_direct_set_or_cmp_hdr_verf(struct nfs_direct_req *dreq,
209 struct nfs_pgio_header *hdr)
210 {
211 struct nfs_writeverf *verfp;
212
213 verfp = nfs_direct_select_verf(dreq, hdr->ds_clp, hdr->ds_commit_idx);
214 if (verfp->committed < 0) {
215 nfs_direct_set_hdr_verf(dreq, hdr);
216 return 0;
217 }
218 return memcmp(verfp, &hdr->verf, sizeof(struct nfs_writeverf));
219 }
220
221 /*
222 * nfs_direct_cmp_commit_data_verf - compare verifier for commit data
223 * @dreq - direct request possibly spanning multiple servers
224 * @data - commit data to validate against previously seen verf
225 *
226 * returns result of comparison between @data->verf and the verf of
227 * the server used by @data (DS or MDS)
228 */
229 static int nfs_direct_cmp_commit_data_verf(struct nfs_direct_req *dreq,
230 struct nfs_commit_data *data)
231 {
232 struct nfs_writeverf *verfp;
233
234 verfp = nfs_direct_select_verf(dreq, data->ds_clp,
235 data->ds_commit_index);
236
237 /* verifier not set so always fail */
238 if (verfp->committed < 0)
239 return 1;
240
241 return memcmp(verfp, &data->verf, sizeof(struct nfs_writeverf));
242 }
243
244 /**
245 * nfs_direct_IO - NFS address space operation for direct I/O
246 * @iocb: target I/O control block
247 * @iov: array of vectors that define I/O buffer
248 * @pos: offset in file to begin the operation
249 * @nr_segs: size of iovec array
250 *
251 * The presence of this routine in the address space ops vector means
252 * the NFS client supports direct I/O. However, for most direct IO, we
253 * shunt off direct read and write requests before the VFS gets them,
254 * so this method is only ever called for swap.
255 */
256 ssize_t nfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
257 {
258 struct inode *inode = iocb->ki_filp->f_mapping->host;
259
260 /* we only support swap file calling nfs_direct_IO */
261 if (!IS_SWAPFILE(inode))
262 return 0;
263
264 VM_BUG_ON(iov_iter_count(iter) != PAGE_SIZE);
265
266 if (iov_iter_rw(iter) == READ)
267 return nfs_file_direct_read(iocb, iter);
268 return nfs_file_direct_write(iocb, iter);
269 }
270
271 static void nfs_direct_release_pages(struct page **pages, unsigned int npages)
272 {
273 unsigned int i;
274 for (i = 0; i < npages; i++)
275 put_page(pages[i]);
276 }
277
278 void nfs_init_cinfo_from_dreq(struct nfs_commit_info *cinfo,
279 struct nfs_direct_req *dreq)
280 {
281 cinfo->inode = dreq->inode;
282 cinfo->mds = &dreq->mds_cinfo;
283 cinfo->ds = &dreq->ds_cinfo;
284 cinfo->dreq = dreq;
285 cinfo->completion_ops = &nfs_direct_commit_completion_ops;
286 }
287
288 static inline void nfs_direct_setup_mirroring(struct nfs_direct_req *dreq,
289 struct nfs_pageio_descriptor *pgio,
290 struct nfs_page *req)
291 {
292 int mirror_count = 1;
293
294 if (pgio->pg_ops->pg_get_mirror_count)
295 mirror_count = pgio->pg_ops->pg_get_mirror_count(pgio, req);
296
297 dreq->mirror_count = mirror_count;
298 }
299
300 static inline struct nfs_direct_req *nfs_direct_req_alloc(void)
301 {
302 struct nfs_direct_req *dreq;
303
304 dreq = kmem_cache_zalloc(nfs_direct_cachep, GFP_KERNEL);
305 if (!dreq)
306 return NULL;
307
308 kref_init(&dreq->kref);
309 kref_get(&dreq->kref);
310 init_completion(&dreq->completion);
311 INIT_LIST_HEAD(&dreq->mds_cinfo.list);
312 dreq->verf.committed = NFS_INVALID_STABLE_HOW; /* not set yet */
313 INIT_WORK(&dreq->work, nfs_direct_write_schedule_work);
314 dreq->mirror_count = 1;
315 spin_lock_init(&dreq->lock);
316
317 return dreq;
318 }
319
320 static void nfs_direct_req_free(struct kref *kref)
321 {
322 struct nfs_direct_req *dreq = container_of(kref, struct nfs_direct_req, kref);
323
324 nfs_free_pnfs_ds_cinfo(&dreq->ds_cinfo);
325 if (dreq->l_ctx != NULL)
326 nfs_put_lock_context(dreq->l_ctx);
327 if (dreq->ctx != NULL)
328 put_nfs_open_context(dreq->ctx);
329 kmem_cache_free(nfs_direct_cachep, dreq);
330 }
331
332 static void nfs_direct_req_release(struct nfs_direct_req *dreq)
333 {
334 kref_put(&dreq->kref, nfs_direct_req_free);
335 }
336
337 ssize_t nfs_dreq_bytes_left(struct nfs_direct_req *dreq)
338 {
339 return dreq->bytes_left;
340 }
341 EXPORT_SYMBOL_GPL(nfs_dreq_bytes_left);
342
343 /*
344 * Collects and returns the final error value/byte-count.
345 */
346 static ssize_t nfs_direct_wait(struct nfs_direct_req *dreq)
347 {
348 ssize_t result = -EIOCBQUEUED;
349
350 /* Async requests don't wait here */
351 if (dreq->iocb)
352 goto out;
353
354 result = wait_for_completion_killable(&dreq->completion);
355
356 if (!result)
357 result = dreq->error;
358 if (!result)
359 result = dreq->count;
360
361 out:
362 return (ssize_t) result;
363 }
364
365 /*
366 * Synchronous I/O uses a stack-allocated iocb. Thus we can't trust
367 * the iocb is still valid here if this is a synchronous request.
368 */
369 static void nfs_direct_complete(struct nfs_direct_req *dreq, bool write)
370 {
371 struct inode *inode = dreq->inode;
372
373 if (dreq->iocb && write) {
374 loff_t pos = dreq->iocb->ki_pos + dreq->count;
375
376 spin_lock(&inode->i_lock);
377 if (i_size_read(inode) < pos)
378 i_size_write(inode, pos);
379 spin_unlock(&inode->i_lock);
380 }
381
382 if (write)
383 nfs_zap_mapping(inode, inode->i_mapping);
384
385 inode_dio_end(inode);
386
387 if (dreq->iocb) {
388 long res = (long) dreq->error;
389 if (!res)
390 res = (long) dreq->count;
391 dreq->iocb->ki_complete(dreq->iocb, res, 0);
392 }
393
394 complete_all(&dreq->completion);
395
396 nfs_direct_req_release(dreq);
397 }
398
399 static void nfs_direct_readpage_release(struct nfs_page *req)
400 {
401 dprintk("NFS: direct read done (%s/%llu %d@%lld)\n",
402 req->wb_context->dentry->d_sb->s_id,
403 (unsigned long long)NFS_FILEID(d_inode(req->wb_context->dentry)),
404 req->wb_bytes,
405 (long long)req_offset(req));
406 nfs_release_request(req);
407 }
408
409 static void nfs_direct_read_completion(struct nfs_pgio_header *hdr)
410 {
411 unsigned long bytes = 0;
412 struct nfs_direct_req *dreq = hdr->dreq;
413
414 if (test_bit(NFS_IOHDR_REDO, &hdr->flags))
415 goto out_put;
416
417 spin_lock(&dreq->lock);
418 if (test_bit(NFS_IOHDR_ERROR, &hdr->flags) && (hdr->good_bytes == 0))
419 dreq->error = hdr->error;
420 else
421 nfs_direct_good_bytes(dreq, hdr);
422
423 spin_unlock(&dreq->lock);
424
425 while (!list_empty(&hdr->pages)) {
426 struct nfs_page *req = nfs_list_entry(hdr->pages.next);
427 struct page *page = req->wb_page;
428
429 if (!PageCompound(page) && bytes < hdr->good_bytes)
430 set_page_dirty(page);
431 bytes += req->wb_bytes;
432 nfs_list_remove_request(req);
433 nfs_direct_readpage_release(req);
434 }
435 out_put:
436 if (put_dreq(dreq))
437 nfs_direct_complete(dreq, false);
438 hdr->release(hdr);
439 }
440
441 static void nfs_read_sync_pgio_error(struct list_head *head)
442 {
443 struct nfs_page *req;
444
445 while (!list_empty(head)) {
446 req = nfs_list_entry(head->next);
447 nfs_list_remove_request(req);
448 nfs_release_request(req);
449 }
450 }
451
452 static void nfs_direct_pgio_init(struct nfs_pgio_header *hdr)
453 {
454 get_dreq(hdr->dreq);
455 }
456
457 static const struct nfs_pgio_completion_ops nfs_direct_read_completion_ops = {
458 .error_cleanup = nfs_read_sync_pgio_error,
459 .init_hdr = nfs_direct_pgio_init,
460 .completion = nfs_direct_read_completion,
461 };
462
463 /*
464 * For each rsize'd chunk of the user's buffer, dispatch an NFS READ
465 * operation. If nfs_readdata_alloc() or get_user_pages() fails,
466 * bail and stop sending more reads. Read length accounting is
467 * handled automatically by nfs_direct_read_result(). Otherwise, if
468 * no requests have been sent, just return an error.
469 */
470
471 static ssize_t nfs_direct_read_schedule_iovec(struct nfs_direct_req *dreq,
472 struct iov_iter *iter,
473 loff_t pos)
474 {
475 struct nfs_pageio_descriptor desc;
476 struct inode *inode = dreq->inode;
477 ssize_t result = -EINVAL;
478 size_t requested_bytes = 0;
479 size_t rsize = max_t(size_t, NFS_SERVER(inode)->rsize, PAGE_SIZE);
480
481 nfs_pageio_init_read(&desc, dreq->inode, false,
482 &nfs_direct_read_completion_ops);
483 get_dreq(dreq);
484 desc.pg_dreq = dreq;
485 inode_dio_begin(inode);
486
487 while (iov_iter_count(iter)) {
488 struct page **pagevec;
489 size_t bytes;
490 size_t pgbase;
491 unsigned npages, i;
492
493 result = iov_iter_get_pages_alloc(iter, &pagevec,
494 rsize, &pgbase);
495 if (result < 0)
496 break;
497
498 bytes = result;
499 iov_iter_advance(iter, bytes);
500 npages = (result + pgbase + PAGE_SIZE - 1) / PAGE_SIZE;
501 for (i = 0; i < npages; i++) {
502 struct nfs_page *req;
503 unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase);
504 /* XXX do we need to do the eof zeroing found in async_filler? */
505 req = nfs_create_request(dreq->ctx, pagevec[i], NULL,
506 pgbase, req_len);
507 if (IS_ERR(req)) {
508 result = PTR_ERR(req);
509 break;
510 }
511 req->wb_index = pos >> PAGE_SHIFT;
512 req->wb_offset = pos & ~PAGE_MASK;
513 if (!nfs_pageio_add_request(&desc, req)) {
514 result = desc.pg_error;
515 nfs_release_request(req);
516 break;
517 }
518 pgbase = 0;
519 bytes -= req_len;
520 requested_bytes += req_len;
521 pos += req_len;
522 dreq->bytes_left -= req_len;
523 }
524 nfs_direct_release_pages(pagevec, npages);
525 kvfree(pagevec);
526 if (result < 0)
527 break;
528 }
529
530 nfs_pageio_complete(&desc);
531
532 /*
533 * If no bytes were started, return the error, and let the
534 * generic layer handle the completion.
535 */
536 if (requested_bytes == 0) {
537 inode_dio_end(inode);
538 nfs_direct_req_release(dreq);
539 return result < 0 ? result : -EIO;
540 }
541
542 if (put_dreq(dreq))
543 nfs_direct_complete(dreq, false);
544 return 0;
545 }
546
547 /**
548 * nfs_file_direct_read - file direct read operation for NFS files
549 * @iocb: target I/O control block
550 * @iter: vector of user buffers into which to read data
551 *
552 * We use this function for direct reads instead of calling
553 * generic_file_aio_read() in order to avoid gfar's check to see if
554 * the request starts before the end of the file. For that check
555 * to work, we must generate a GETATTR before each direct read, and
556 * even then there is a window between the GETATTR and the subsequent
557 * READ where the file size could change. Our preference is simply
558 * to do all reads the application wants, and the server will take
559 * care of managing the end of file boundary.
560 *
561 * This function also eliminates unnecessarily updating the file's
562 * atime locally, as the NFS server sets the file's atime, and this
563 * client must read the updated atime from the server back into its
564 * cache.
565 */
566 ssize_t nfs_file_direct_read(struct kiocb *iocb, struct iov_iter *iter)
567 {
568 struct file *file = iocb->ki_filp;
569 struct address_space *mapping = file->f_mapping;
570 struct inode *inode = mapping->host;
571 struct nfs_direct_req *dreq;
572 struct nfs_lock_context *l_ctx;
573 ssize_t result = -EINVAL;
574 size_t count = iov_iter_count(iter);
575 nfs_add_stats(mapping->host, NFSIOS_DIRECTREADBYTES, count);
576
577 dfprintk(FILE, "NFS: direct read(%pD2, %zd@%Ld)\n",
578 file, count, (long long) iocb->ki_pos);
579
580 result = 0;
581 if (!count)
582 goto out;
583
584 inode_lock(inode);
585 result = nfs_sync_mapping(mapping);
586 if (result)
587 goto out_unlock;
588
589 task_io_account_read(count);
590
591 result = -ENOMEM;
592 dreq = nfs_direct_req_alloc();
593 if (dreq == NULL)
594 goto out_unlock;
595
596 dreq->inode = inode;
597 dreq->bytes_left = dreq->max_count = count;
598 dreq->io_start = iocb->ki_pos;
599 dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
600 l_ctx = nfs_get_lock_context(dreq->ctx);
601 if (IS_ERR(l_ctx)) {
602 result = PTR_ERR(l_ctx);
603 goto out_release;
604 }
605 dreq->l_ctx = l_ctx;
606 if (!is_sync_kiocb(iocb))
607 dreq->iocb = iocb;
608
609 NFS_I(inode)->read_io += count;
610 result = nfs_direct_read_schedule_iovec(dreq, iter, iocb->ki_pos);
611
612 inode_unlock(inode);
613
614 if (!result) {
615 result = nfs_direct_wait(dreq);
616 if (result > 0)
617 iocb->ki_pos += result;
618 }
619
620 nfs_direct_req_release(dreq);
621 return result;
622
623 out_release:
624 nfs_direct_req_release(dreq);
625 out_unlock:
626 inode_unlock(inode);
627 out:
628 return result;
629 }
630
631 static void
632 nfs_direct_write_scan_commit_list(struct inode *inode,
633 struct list_head *list,
634 struct nfs_commit_info *cinfo)
635 {
636 spin_lock(&cinfo->inode->i_lock);
637 #ifdef CONFIG_NFS_V4_1
638 if (cinfo->ds != NULL && cinfo->ds->nwritten != 0)
639 NFS_SERVER(inode)->pnfs_curr_ld->recover_commit_reqs(list, cinfo);
640 #endif
641 nfs_scan_commit_list(&cinfo->mds->list, list, cinfo, 0);
642 spin_unlock(&cinfo->inode->i_lock);
643 }
644
645 static void nfs_direct_write_reschedule(struct nfs_direct_req *dreq)
646 {
647 struct nfs_pageio_descriptor desc;
648 struct nfs_page *req, *tmp;
649 LIST_HEAD(reqs);
650 struct nfs_commit_info cinfo;
651 LIST_HEAD(failed);
652 int i;
653
654 nfs_init_cinfo_from_dreq(&cinfo, dreq);
655 nfs_direct_write_scan_commit_list(dreq->inode, &reqs, &cinfo);
656
657 dreq->count = 0;
658 for (i = 0; i < dreq->mirror_count; i++)
659 dreq->mirrors[i].count = 0;
660 get_dreq(dreq);
661
662 nfs_pageio_init_write(&desc, dreq->inode, FLUSH_STABLE, false,
663 &nfs_direct_write_completion_ops);
664 desc.pg_dreq = dreq;
665
666 req = nfs_list_entry(reqs.next);
667 nfs_direct_setup_mirroring(dreq, &desc, req);
668 if (desc.pg_error < 0) {
669 list_splice_init(&reqs, &failed);
670 goto out_failed;
671 }
672
673 list_for_each_entry_safe(req, tmp, &reqs, wb_list) {
674 if (!nfs_pageio_add_request(&desc, req)) {
675 nfs_list_remove_request(req);
676 nfs_list_add_request(req, &failed);
677 spin_lock(&cinfo.inode->i_lock);
678 dreq->flags = 0;
679 if (desc.pg_error < 0)
680 dreq->error = desc.pg_error;
681 else
682 dreq->error = -EIO;
683 spin_unlock(&cinfo.inode->i_lock);
684 }
685 nfs_release_request(req);
686 }
687 nfs_pageio_complete(&desc);
688
689 out_failed:
690 while (!list_empty(&failed)) {
691 req = nfs_list_entry(failed.next);
692 nfs_list_remove_request(req);
693 nfs_unlock_and_release_request(req);
694 }
695
696 if (put_dreq(dreq))
697 nfs_direct_write_complete(dreq, dreq->inode);
698 }
699
700 static void nfs_direct_commit_complete(struct nfs_commit_data *data)
701 {
702 struct nfs_direct_req *dreq = data->dreq;
703 struct nfs_commit_info cinfo;
704 struct nfs_page *req;
705 int status = data->task.tk_status;
706
707 nfs_init_cinfo_from_dreq(&cinfo, dreq);
708 if (status < 0) {
709 dprintk("NFS: %5u commit failed with error %d.\n",
710 data->task.tk_pid, status);
711 dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
712 } else if (nfs_direct_cmp_commit_data_verf(dreq, data)) {
713 dprintk("NFS: %5u commit verify failed\n", data->task.tk_pid);
714 dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
715 }
716
717 dprintk("NFS: %5u commit returned %d\n", data->task.tk_pid, status);
718 while (!list_empty(&data->pages)) {
719 req = nfs_list_entry(data->pages.next);
720 nfs_list_remove_request(req);
721 if (dreq->flags == NFS_ODIRECT_RESCHED_WRITES) {
722 /* Note the rewrite will go through mds */
723 nfs_mark_request_commit(req, NULL, &cinfo, 0);
724 } else
725 nfs_release_request(req);
726 nfs_unlock_and_release_request(req);
727 }
728
729 if (atomic_dec_and_test(&cinfo.mds->rpcs_out))
730 nfs_direct_write_complete(dreq, data->inode);
731 }
732
733 static void nfs_direct_resched_write(struct nfs_commit_info *cinfo,
734 struct nfs_page *req)
735 {
736 struct nfs_direct_req *dreq = cinfo->dreq;
737
738 spin_lock(&dreq->lock);
739 dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
740 spin_unlock(&dreq->lock);
741 nfs_mark_request_commit(req, NULL, cinfo, 0);
742 }
743
744 static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops = {
745 .completion = nfs_direct_commit_complete,
746 .resched_write = nfs_direct_resched_write,
747 };
748
749 static void nfs_direct_commit_schedule(struct nfs_direct_req *dreq)
750 {
751 int res;
752 struct nfs_commit_info cinfo;
753 LIST_HEAD(mds_list);
754
755 nfs_init_cinfo_from_dreq(&cinfo, dreq);
756 nfs_scan_commit(dreq->inode, &mds_list, &cinfo);
757 res = nfs_generic_commit_list(dreq->inode, &mds_list, 0, &cinfo);
758 if (res < 0) /* res == -ENOMEM */
759 nfs_direct_write_reschedule(dreq);
760 }
761
762 static void nfs_direct_write_schedule_work(struct work_struct *work)
763 {
764 struct nfs_direct_req *dreq = container_of(work, struct nfs_direct_req, work);
765 int flags = dreq->flags;
766
767 dreq->flags = 0;
768 switch (flags) {
769 case NFS_ODIRECT_DO_COMMIT:
770 nfs_direct_commit_schedule(dreq);
771 break;
772 case NFS_ODIRECT_RESCHED_WRITES:
773 nfs_direct_write_reschedule(dreq);
774 break;
775 default:
776 nfs_direct_complete(dreq, true);
777 }
778 }
779
780 static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode)
781 {
782 schedule_work(&dreq->work); /* Calls nfs_direct_write_schedule_work */
783 }
784
785 static void nfs_direct_write_completion(struct nfs_pgio_header *hdr)
786 {
787 struct nfs_direct_req *dreq = hdr->dreq;
788 struct nfs_commit_info cinfo;
789 bool request_commit = false;
790 struct nfs_page *req = nfs_list_entry(hdr->pages.next);
791
792 if (test_bit(NFS_IOHDR_REDO, &hdr->flags))
793 goto out_put;
794
795 nfs_init_cinfo_from_dreq(&cinfo, dreq);
796
797 spin_lock(&dreq->lock);
798
799 if (test_bit(NFS_IOHDR_ERROR, &hdr->flags)) {
800 dreq->flags = 0;
801 dreq->error = hdr->error;
802 }
803 if (dreq->error == 0) {
804 nfs_direct_good_bytes(dreq, hdr);
805 if (nfs_write_need_commit(hdr)) {
806 if (dreq->flags == NFS_ODIRECT_RESCHED_WRITES)
807 request_commit = true;
808 else if (dreq->flags == 0) {
809 nfs_direct_set_hdr_verf(dreq, hdr);
810 request_commit = true;
811 dreq->flags = NFS_ODIRECT_DO_COMMIT;
812 } else if (dreq->flags == NFS_ODIRECT_DO_COMMIT) {
813 request_commit = true;
814 if (nfs_direct_set_or_cmp_hdr_verf(dreq, hdr))
815 dreq->flags =
816 NFS_ODIRECT_RESCHED_WRITES;
817 }
818 }
819 }
820 spin_unlock(&dreq->lock);
821
822 while (!list_empty(&hdr->pages)) {
823
824 req = nfs_list_entry(hdr->pages.next);
825 nfs_list_remove_request(req);
826 if (request_commit) {
827 kref_get(&req->wb_kref);
828 nfs_mark_request_commit(req, hdr->lseg, &cinfo,
829 hdr->ds_commit_idx);
830 }
831 nfs_unlock_and_release_request(req);
832 }
833
834 out_put:
835 if (put_dreq(dreq))
836 nfs_direct_write_complete(dreq, hdr->inode);
837 hdr->release(hdr);
838 }
839
840 static void nfs_write_sync_pgio_error(struct list_head *head)
841 {
842 struct nfs_page *req;
843
844 while (!list_empty(head)) {
845 req = nfs_list_entry(head->next);
846 nfs_list_remove_request(req);
847 nfs_unlock_and_release_request(req);
848 }
849 }
850
851 static void nfs_direct_write_reschedule_io(struct nfs_pgio_header *hdr)
852 {
853 struct nfs_direct_req *dreq = hdr->dreq;
854
855 spin_lock(&dreq->lock);
856 if (dreq->error == 0) {
857 dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
858 /* fake unstable write to let common nfs resend pages */
859 hdr->verf.committed = NFS_UNSTABLE;
860 hdr->good_bytes = hdr->args.count;
861 }
862 spin_unlock(&dreq->lock);
863 }
864
865 static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops = {
866 .error_cleanup = nfs_write_sync_pgio_error,
867 .init_hdr = nfs_direct_pgio_init,
868 .completion = nfs_direct_write_completion,
869 .reschedule_io = nfs_direct_write_reschedule_io,
870 };
871
872
873 /*
874 * NB: Return the value of the first error return code. Subsequent
875 * errors after the first one are ignored.
876 */
877 /*
878 * For each wsize'd chunk of the user's buffer, dispatch an NFS WRITE
879 * operation. If nfs_writedata_alloc() or get_user_pages() fails,
880 * bail and stop sending more writes. Write length accounting is
881 * handled automatically by nfs_direct_write_result(). Otherwise, if
882 * no requests have been sent, just return an error.
883 */
884 static ssize_t nfs_direct_write_schedule_iovec(struct nfs_direct_req *dreq,
885 struct iov_iter *iter,
886 loff_t pos)
887 {
888 struct nfs_pageio_descriptor desc;
889 struct inode *inode = dreq->inode;
890 ssize_t result = 0;
891 size_t requested_bytes = 0;
892 size_t wsize = max_t(size_t, NFS_SERVER(inode)->wsize, PAGE_SIZE);
893
894 nfs_pageio_init_write(&desc, inode, FLUSH_COND_STABLE, false,
895 &nfs_direct_write_completion_ops);
896 desc.pg_dreq = dreq;
897 get_dreq(dreq);
898 inode_dio_begin(inode);
899
900 NFS_I(inode)->write_io += iov_iter_count(iter);
901 while (iov_iter_count(iter)) {
902 struct page **pagevec;
903 size_t bytes;
904 size_t pgbase;
905 unsigned npages, i;
906
907 result = iov_iter_get_pages_alloc(iter, &pagevec,
908 wsize, &pgbase);
909 if (result < 0)
910 break;
911
912 bytes = result;
913 iov_iter_advance(iter, bytes);
914 npages = (result + pgbase + PAGE_SIZE - 1) / PAGE_SIZE;
915 for (i = 0; i < npages; i++) {
916 struct nfs_page *req;
917 unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase);
918
919 req = nfs_create_request(dreq->ctx, pagevec[i], NULL,
920 pgbase, req_len);
921 if (IS_ERR(req)) {
922 result = PTR_ERR(req);
923 break;
924 }
925
926 nfs_direct_setup_mirroring(dreq, &desc, req);
927 if (desc.pg_error < 0) {
928 nfs_free_request(req);
929 result = desc.pg_error;
930 break;
931 }
932
933 nfs_lock_request(req);
934 req->wb_index = pos >> PAGE_SHIFT;
935 req->wb_offset = pos & ~PAGE_MASK;
936 if (!nfs_pageio_add_request(&desc, req)) {
937 result = desc.pg_error;
938 nfs_unlock_and_release_request(req);
939 break;
940 }
941 pgbase = 0;
942 bytes -= req_len;
943 requested_bytes += req_len;
944 pos += req_len;
945 dreq->bytes_left -= req_len;
946 }
947 nfs_direct_release_pages(pagevec, npages);
948 kvfree(pagevec);
949 if (result < 0)
950 break;
951 }
952 nfs_pageio_complete(&desc);
953
954 /*
955 * If no bytes were started, return the error, and let the
956 * generic layer handle the completion.
957 */
958 if (requested_bytes == 0) {
959 inode_dio_end(inode);
960 nfs_direct_req_release(dreq);
961 return result < 0 ? result : -EIO;
962 }
963
964 if (put_dreq(dreq))
965 nfs_direct_write_complete(dreq, dreq->inode);
966 return 0;
967 }
968
969 /**
970 * nfs_file_direct_write - file direct write operation for NFS files
971 * @iocb: target I/O control block
972 * @iter: vector of user buffers from which to write data
973 *
974 * We use this function for direct writes instead of calling
975 * generic_file_aio_write() in order to avoid taking the inode
976 * semaphore and updating the i_size. The NFS server will set
977 * the new i_size and this client must read the updated size
978 * back into its cache. We let the server do generic write
979 * parameter checking and report problems.
980 *
981 * We eliminate local atime updates, see direct read above.
982 *
983 * We avoid unnecessary page cache invalidations for normal cached
984 * readers of this file.
985 *
986 * Note that O_APPEND is not supported for NFS direct writes, as there
987 * is no atomic O_APPEND write facility in the NFS protocol.
988 */
989 ssize_t nfs_file_direct_write(struct kiocb *iocb, struct iov_iter *iter)
990 {
991 ssize_t result = -EINVAL;
992 struct file *file = iocb->ki_filp;
993 struct address_space *mapping = file->f_mapping;
994 struct inode *inode = mapping->host;
995 struct nfs_direct_req *dreq;
996 struct nfs_lock_context *l_ctx;
997 loff_t pos, end;
998
999 dfprintk(FILE, "NFS: direct write(%pD2, %zd@%Ld)\n",
1000 file, iov_iter_count(iter), (long long) iocb->ki_pos);
1001
1002 nfs_add_stats(mapping->host, NFSIOS_DIRECTWRITTENBYTES,
1003 iov_iter_count(iter));
1004
1005 pos = iocb->ki_pos;
1006 end = (pos + iov_iter_count(iter) - 1) >> PAGE_SHIFT;
1007
1008 inode_lock(inode);
1009
1010 result = nfs_sync_mapping(mapping);
1011 if (result)
1012 goto out_unlock;
1013
1014 if (mapping->nrpages) {
1015 result = invalidate_inode_pages2_range(mapping,
1016 pos >> PAGE_SHIFT, end);
1017 if (result)
1018 goto out_unlock;
1019 }
1020
1021 task_io_account_write(iov_iter_count(iter));
1022
1023 result = -ENOMEM;
1024 dreq = nfs_direct_req_alloc();
1025 if (!dreq)
1026 goto out_unlock;
1027
1028 dreq->inode = inode;
1029 dreq->bytes_left = dreq->max_count = iov_iter_count(iter);
1030 dreq->io_start = pos;
1031 dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
1032 l_ctx = nfs_get_lock_context(dreq->ctx);
1033 if (IS_ERR(l_ctx)) {
1034 result = PTR_ERR(l_ctx);
1035 goto out_release;
1036 }
1037 dreq->l_ctx = l_ctx;
1038 if (!is_sync_kiocb(iocb))
1039 dreq->iocb = iocb;
1040
1041 result = nfs_direct_write_schedule_iovec(dreq, iter, pos);
1042
1043 if (mapping->nrpages) {
1044 invalidate_inode_pages2_range(mapping,
1045 pos >> PAGE_SHIFT, end);
1046 }
1047
1048 inode_unlock(inode);
1049
1050 if (!result) {
1051 result = nfs_direct_wait(dreq);
1052 if (result > 0) {
1053 struct inode *inode = mapping->host;
1054
1055 iocb->ki_pos = pos + result;
1056 spin_lock(&inode->i_lock);
1057 if (i_size_read(inode) < iocb->ki_pos)
1058 i_size_write(inode, iocb->ki_pos);
1059 spin_unlock(&inode->i_lock);
1060
1061 /* XXX: should check the generic_write_sync retval */
1062 generic_write_sync(iocb, result);
1063 }
1064 }
1065 nfs_direct_req_release(dreq);
1066 return result;
1067
1068 out_release:
1069 nfs_direct_req_release(dreq);
1070 out_unlock:
1071 inode_unlock(inode);
1072 return result;
1073 }
1074
1075 /**
1076 * nfs_init_directcache - create a slab cache for nfs_direct_req structures
1077 *
1078 */
1079 int __init nfs_init_directcache(void)
1080 {
1081 nfs_direct_cachep = kmem_cache_create("nfs_direct_cache",
1082 sizeof(struct nfs_direct_req),
1083 0, (SLAB_RECLAIM_ACCOUNT|
1084 SLAB_MEM_SPREAD),
1085 NULL);
1086 if (nfs_direct_cachep == NULL)
1087 return -ENOMEM;
1088
1089 return 0;
1090 }
1091
1092 /**
1093 * nfs_destroy_directcache - destroy the slab cache for nfs_direct_req structures
1094 *
1095 */
1096 void nfs_destroy_directcache(void)
1097 {
1098 kmem_cache_destroy(nfs_direct_cachep);
1099 }
This page took 0.129521 seconds and 6 git commands to generate.