Merge tag 'stable/for-linus-3.6-rc1-tag' of git://git.kernel.org/pub/scm/linux/kernel...
[deliverable/linux.git] / fs / nfs / direct.c
1 /*
2 * linux/fs/nfs/direct.c
3 *
4 * Copyright (C) 2003 by Chuck Lever <cel@netapp.com>
5 *
6 * High-performance uncached I/O for the Linux NFS client
7 *
8 * There are important applications whose performance or correctness
9 * depends on uncached access to file data. Database clusters
10 * (multiple copies of the same instance running on separate hosts)
11 * implement their own cache coherency protocol that subsumes file
12 * system cache protocols. Applications that process datasets
13 * considerably larger than the client's memory do not always benefit
14 * from a local cache. A streaming video server, for instance, has no
15 * need to cache the contents of a file.
16 *
17 * When an application requests uncached I/O, all read and write requests
18 * are made directly to the server; data stored or fetched via these
19 * requests is not cached in the Linux page cache. The client does not
20 * correct unaligned requests from applications. All requested bytes are
21 * held on permanent storage before a direct write system call returns to
22 * an application.
23 *
24 * Solaris implements an uncached I/O facility called directio() that
25 * is used for backups and sequential I/O to very large files. Solaris
26 * also supports uncaching whole NFS partitions with "-o forcedirectio,"
27 * an undocumented mount option.
28 *
29 * Designed by Jeff Kimmel, Chuck Lever, and Trond Myklebust, with
30 * help from Andrew Morton.
31 *
32 * 18 Dec 2001 Initial implementation for 2.4 --cel
33 * 08 Jul 2002 Version for 2.4.19, with bug fixes --trondmy
34 * 08 Jun 2003 Port to 2.5 APIs --cel
35 * 31 Mar 2004 Handle direct I/O without VFS support --cel
36 * 15 Sep 2004 Parallel async reads --cel
37 * 04 May 2005 support O_DIRECT with aio --cel
38 *
39 */
40
41 #include <linux/errno.h>
42 #include <linux/sched.h>
43 #include <linux/kernel.h>
44 #include <linux/file.h>
45 #include <linux/pagemap.h>
46 #include <linux/kref.h>
47 #include <linux/slab.h>
48 #include <linux/task_io_accounting_ops.h>
49
50 #include <linux/nfs_fs.h>
51 #include <linux/nfs_page.h>
52 #include <linux/sunrpc/clnt.h>
53
54 #include <asm/uaccess.h>
55 #include <linux/atomic.h>
56
57 #include "internal.h"
58 #include "iostat.h"
59 #include "pnfs.h"
60
61 #define NFSDBG_FACILITY NFSDBG_VFS
62
63 static struct kmem_cache *nfs_direct_cachep;
64
65 /*
66 * This represents a set of asynchronous requests that we're waiting on
67 */
68 struct nfs_direct_req {
69 struct kref kref; /* release manager */
70
71 /* I/O parameters */
72 struct nfs_open_context *ctx; /* file open context info */
73 struct nfs_lock_context *l_ctx; /* Lock context info */
74 struct kiocb * iocb; /* controlling i/o request */
75 struct inode * inode; /* target file of i/o */
76
77 /* completion state */
78 atomic_t io_count; /* i/os we're waiting for */
79 spinlock_t lock; /* protect completion state */
80 ssize_t count, /* bytes actually processed */
81 error; /* any reported error */
82 struct completion completion; /* wait for i/o completion */
83
84 /* commit state */
85 struct nfs_mds_commit_info mds_cinfo; /* Storage for cinfo */
86 struct pnfs_ds_commit_info ds_cinfo; /* Storage for cinfo */
87 struct work_struct work;
88 int flags;
89 #define NFS_ODIRECT_DO_COMMIT (1) /* an unstable reply was received */
90 #define NFS_ODIRECT_RESCHED_WRITES (2) /* write verification failed */
91 struct nfs_writeverf verf; /* unstable write verifier */
92 };
93
94 static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops;
95 static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops;
96 static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode);
97 static void nfs_direct_write_schedule_work(struct work_struct *work);
98
99 static inline void get_dreq(struct nfs_direct_req *dreq)
100 {
101 atomic_inc(&dreq->io_count);
102 }
103
104 static inline int put_dreq(struct nfs_direct_req *dreq)
105 {
106 return atomic_dec_and_test(&dreq->io_count);
107 }
108
109 /**
110 * nfs_direct_IO - NFS address space operation for direct I/O
111 * @rw: direction (read or write)
112 * @iocb: target I/O control block
113 * @iov: array of vectors that define I/O buffer
114 * @pos: offset in file to begin the operation
115 * @nr_segs: size of iovec array
116 *
117 * The presence of this routine in the address space ops vector means
118 * the NFS client supports direct I/O. However, for most direct IO, we
119 * shunt off direct read and write requests before the VFS gets them,
120 * so this method is only ever called for swap.
121 */
122 ssize_t nfs_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov, loff_t pos, unsigned long nr_segs)
123 {
124 #ifndef CONFIG_NFS_SWAP
125 dprintk("NFS: nfs_direct_IO (%s) off/no(%Ld/%lu) EINVAL\n",
126 iocb->ki_filp->f_path.dentry->d_name.name,
127 (long long) pos, nr_segs);
128
129 return -EINVAL;
130 #else
131 VM_BUG_ON(iocb->ki_left != PAGE_SIZE);
132 VM_BUG_ON(iocb->ki_nbytes != PAGE_SIZE);
133
134 if (rw == READ || rw == KERNEL_READ)
135 return nfs_file_direct_read(iocb, iov, nr_segs, pos,
136 rw == READ ? true : false);
137 return nfs_file_direct_write(iocb, iov, nr_segs, pos,
138 rw == WRITE ? true : false);
139 #endif /* CONFIG_NFS_SWAP */
140 }
141
142 static void nfs_direct_release_pages(struct page **pages, unsigned int npages)
143 {
144 unsigned int i;
145 for (i = 0; i < npages; i++)
146 page_cache_release(pages[i]);
147 }
148
149 void nfs_init_cinfo_from_dreq(struct nfs_commit_info *cinfo,
150 struct nfs_direct_req *dreq)
151 {
152 cinfo->lock = &dreq->lock;
153 cinfo->mds = &dreq->mds_cinfo;
154 cinfo->ds = &dreq->ds_cinfo;
155 cinfo->dreq = dreq;
156 cinfo->completion_ops = &nfs_direct_commit_completion_ops;
157 }
158
159 static inline struct nfs_direct_req *nfs_direct_req_alloc(void)
160 {
161 struct nfs_direct_req *dreq;
162
163 dreq = kmem_cache_zalloc(nfs_direct_cachep, GFP_KERNEL);
164 if (!dreq)
165 return NULL;
166
167 kref_init(&dreq->kref);
168 kref_get(&dreq->kref);
169 init_completion(&dreq->completion);
170 INIT_LIST_HEAD(&dreq->mds_cinfo.list);
171 INIT_WORK(&dreq->work, nfs_direct_write_schedule_work);
172 spin_lock_init(&dreq->lock);
173
174 return dreq;
175 }
176
177 static void nfs_direct_req_free(struct kref *kref)
178 {
179 struct nfs_direct_req *dreq = container_of(kref, struct nfs_direct_req, kref);
180
181 if (dreq->l_ctx != NULL)
182 nfs_put_lock_context(dreq->l_ctx);
183 if (dreq->ctx != NULL)
184 put_nfs_open_context(dreq->ctx);
185 kmem_cache_free(nfs_direct_cachep, dreq);
186 }
187
188 static void nfs_direct_req_release(struct nfs_direct_req *dreq)
189 {
190 kref_put(&dreq->kref, nfs_direct_req_free);
191 }
192
193 /*
194 * Collects and returns the final error value/byte-count.
195 */
196 static ssize_t nfs_direct_wait(struct nfs_direct_req *dreq)
197 {
198 ssize_t result = -EIOCBQUEUED;
199
200 /* Async requests don't wait here */
201 if (dreq->iocb)
202 goto out;
203
204 result = wait_for_completion_killable(&dreq->completion);
205
206 if (!result)
207 result = dreq->error;
208 if (!result)
209 result = dreq->count;
210
211 out:
212 return (ssize_t) result;
213 }
214
215 /*
216 * Synchronous I/O uses a stack-allocated iocb. Thus we can't trust
217 * the iocb is still valid here if this is a synchronous request.
218 */
219 static void nfs_direct_complete(struct nfs_direct_req *dreq)
220 {
221 if (dreq->iocb) {
222 long res = (long) dreq->error;
223 if (!res)
224 res = (long) dreq->count;
225 aio_complete(dreq->iocb, res, 0);
226 }
227 complete_all(&dreq->completion);
228
229 nfs_direct_req_release(dreq);
230 }
231
232 static void nfs_direct_readpage_release(struct nfs_page *req)
233 {
234 dprintk("NFS: direct read done (%s/%lld %d@%lld)\n",
235 req->wb_context->dentry->d_inode->i_sb->s_id,
236 (long long)NFS_FILEID(req->wb_context->dentry->d_inode),
237 req->wb_bytes,
238 (long long)req_offset(req));
239 nfs_release_request(req);
240 }
241
242 static void nfs_direct_read_completion(struct nfs_pgio_header *hdr)
243 {
244 unsigned long bytes = 0;
245 struct nfs_direct_req *dreq = hdr->dreq;
246
247 if (test_bit(NFS_IOHDR_REDO, &hdr->flags))
248 goto out_put;
249
250 spin_lock(&dreq->lock);
251 if (test_bit(NFS_IOHDR_ERROR, &hdr->flags) && (hdr->good_bytes == 0))
252 dreq->error = hdr->error;
253 else
254 dreq->count += hdr->good_bytes;
255 spin_unlock(&dreq->lock);
256
257 while (!list_empty(&hdr->pages)) {
258 struct nfs_page *req = nfs_list_entry(hdr->pages.next);
259 struct page *page = req->wb_page;
260
261 if (test_bit(NFS_IOHDR_EOF, &hdr->flags)) {
262 if (bytes > hdr->good_bytes)
263 zero_user(page, 0, PAGE_SIZE);
264 else if (hdr->good_bytes - bytes < PAGE_SIZE)
265 zero_user_segment(page,
266 hdr->good_bytes & ~PAGE_MASK,
267 PAGE_SIZE);
268 }
269 if (!PageCompound(page)) {
270 if (test_bit(NFS_IOHDR_ERROR, &hdr->flags)) {
271 if (bytes < hdr->good_bytes)
272 set_page_dirty(page);
273 } else
274 set_page_dirty(page);
275 }
276 bytes += req->wb_bytes;
277 nfs_list_remove_request(req);
278 nfs_direct_readpage_release(req);
279 }
280 out_put:
281 if (put_dreq(dreq))
282 nfs_direct_complete(dreq);
283 hdr->release(hdr);
284 }
285
286 static void nfs_read_sync_pgio_error(struct list_head *head)
287 {
288 struct nfs_page *req;
289
290 while (!list_empty(head)) {
291 req = nfs_list_entry(head->next);
292 nfs_list_remove_request(req);
293 nfs_release_request(req);
294 }
295 }
296
297 static void nfs_direct_pgio_init(struct nfs_pgio_header *hdr)
298 {
299 get_dreq(hdr->dreq);
300 }
301
302 static const struct nfs_pgio_completion_ops nfs_direct_read_completion_ops = {
303 .error_cleanup = nfs_read_sync_pgio_error,
304 .init_hdr = nfs_direct_pgio_init,
305 .completion = nfs_direct_read_completion,
306 };
307
308 /*
309 * For each rsize'd chunk of the user's buffer, dispatch an NFS READ
310 * operation. If nfs_readdata_alloc() or get_user_pages() fails,
311 * bail and stop sending more reads. Read length accounting is
312 * handled automatically by nfs_direct_read_result(). Otherwise, if
313 * no requests have been sent, just return an error.
314 */
315 static ssize_t nfs_direct_read_schedule_segment(struct nfs_pageio_descriptor *desc,
316 const struct iovec *iov,
317 loff_t pos, bool uio)
318 {
319 struct nfs_direct_req *dreq = desc->pg_dreq;
320 struct nfs_open_context *ctx = dreq->ctx;
321 struct inode *inode = ctx->dentry->d_inode;
322 unsigned long user_addr = (unsigned long)iov->iov_base;
323 size_t count = iov->iov_len;
324 size_t rsize = NFS_SERVER(inode)->rsize;
325 unsigned int pgbase;
326 int result;
327 ssize_t started = 0;
328 struct page **pagevec = NULL;
329 unsigned int npages;
330
331 do {
332 size_t bytes;
333 int i;
334
335 pgbase = user_addr & ~PAGE_MASK;
336 bytes = min(max_t(size_t, rsize, PAGE_SIZE), count);
337
338 result = -ENOMEM;
339 npages = nfs_page_array_len(pgbase, bytes);
340 if (!pagevec)
341 pagevec = kmalloc(npages * sizeof(struct page *),
342 GFP_KERNEL);
343 if (!pagevec)
344 break;
345 if (uio) {
346 down_read(&current->mm->mmap_sem);
347 result = get_user_pages(current, current->mm, user_addr,
348 npages, 1, 0, pagevec, NULL);
349 up_read(&current->mm->mmap_sem);
350 if (result < 0)
351 break;
352 } else {
353 WARN_ON(npages != 1);
354 result = get_kernel_page(user_addr, 1, pagevec);
355 if (WARN_ON(result != 1))
356 break;
357 }
358
359 if ((unsigned)result < npages) {
360 bytes = result * PAGE_SIZE;
361 if (bytes <= pgbase) {
362 nfs_direct_release_pages(pagevec, result);
363 break;
364 }
365 bytes -= pgbase;
366 npages = result;
367 }
368
369 for (i = 0; i < npages; i++) {
370 struct nfs_page *req;
371 unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase);
372 /* XXX do we need to do the eof zeroing found in async_filler? */
373 req = nfs_create_request(dreq->ctx, dreq->inode,
374 pagevec[i],
375 pgbase, req_len);
376 if (IS_ERR(req)) {
377 result = PTR_ERR(req);
378 break;
379 }
380 req->wb_index = pos >> PAGE_SHIFT;
381 req->wb_offset = pos & ~PAGE_MASK;
382 if (!nfs_pageio_add_request(desc, req)) {
383 result = desc->pg_error;
384 nfs_release_request(req);
385 break;
386 }
387 pgbase = 0;
388 bytes -= req_len;
389 started += req_len;
390 user_addr += req_len;
391 pos += req_len;
392 count -= req_len;
393 }
394 /* The nfs_page now hold references to these pages */
395 nfs_direct_release_pages(pagevec, npages);
396 } while (count != 0 && result >= 0);
397
398 kfree(pagevec);
399
400 if (started)
401 return started;
402 return result < 0 ? (ssize_t) result : -EFAULT;
403 }
404
405 static ssize_t nfs_direct_read_schedule_iovec(struct nfs_direct_req *dreq,
406 const struct iovec *iov,
407 unsigned long nr_segs,
408 loff_t pos, bool uio)
409 {
410 struct nfs_pageio_descriptor desc;
411 ssize_t result = -EINVAL;
412 size_t requested_bytes = 0;
413 unsigned long seg;
414
415 NFS_PROTO(dreq->inode)->read_pageio_init(&desc, dreq->inode,
416 &nfs_direct_read_completion_ops);
417 get_dreq(dreq);
418 desc.pg_dreq = dreq;
419
420 for (seg = 0; seg < nr_segs; seg++) {
421 const struct iovec *vec = &iov[seg];
422 result = nfs_direct_read_schedule_segment(&desc, vec, pos, uio);
423 if (result < 0)
424 break;
425 requested_bytes += result;
426 if ((size_t)result < vec->iov_len)
427 break;
428 pos += vec->iov_len;
429 }
430
431 nfs_pageio_complete(&desc);
432
433 /*
434 * If no bytes were started, return the error, and let the
435 * generic layer handle the completion.
436 */
437 if (requested_bytes == 0) {
438 nfs_direct_req_release(dreq);
439 return result < 0 ? result : -EIO;
440 }
441
442 if (put_dreq(dreq))
443 nfs_direct_complete(dreq);
444 return 0;
445 }
446
447 static ssize_t nfs_direct_read(struct kiocb *iocb, const struct iovec *iov,
448 unsigned long nr_segs, loff_t pos, bool uio)
449 {
450 ssize_t result = -ENOMEM;
451 struct inode *inode = iocb->ki_filp->f_mapping->host;
452 struct nfs_direct_req *dreq;
453
454 dreq = nfs_direct_req_alloc();
455 if (dreq == NULL)
456 goto out;
457
458 dreq->inode = inode;
459 dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
460 dreq->l_ctx = nfs_get_lock_context(dreq->ctx);
461 if (dreq->l_ctx == NULL)
462 goto out_release;
463 if (!is_sync_kiocb(iocb))
464 dreq->iocb = iocb;
465
466 result = nfs_direct_read_schedule_iovec(dreq, iov, nr_segs, pos, uio);
467 if (!result)
468 result = nfs_direct_wait(dreq);
469 NFS_I(inode)->read_io += result;
470 out_release:
471 nfs_direct_req_release(dreq);
472 out:
473 return result;
474 }
475
476 static void nfs_inode_dio_write_done(struct inode *inode)
477 {
478 nfs_zap_mapping(inode, inode->i_mapping);
479 inode_dio_done(inode);
480 }
481
482 #if IS_ENABLED(CONFIG_NFS_V3) || IS_ENABLED(CONFIG_NFS_V4)
483 static void nfs_direct_write_reschedule(struct nfs_direct_req *dreq)
484 {
485 struct nfs_pageio_descriptor desc;
486 struct nfs_page *req, *tmp;
487 LIST_HEAD(reqs);
488 struct nfs_commit_info cinfo;
489 LIST_HEAD(failed);
490
491 nfs_init_cinfo_from_dreq(&cinfo, dreq);
492 pnfs_recover_commit_reqs(dreq->inode, &reqs, &cinfo);
493 spin_lock(cinfo.lock);
494 nfs_scan_commit_list(&cinfo.mds->list, &reqs, &cinfo, 0);
495 spin_unlock(cinfo.lock);
496
497 dreq->count = 0;
498 get_dreq(dreq);
499
500 NFS_PROTO(dreq->inode)->write_pageio_init(&desc, dreq->inode, FLUSH_STABLE,
501 &nfs_direct_write_completion_ops);
502 desc.pg_dreq = dreq;
503
504 list_for_each_entry_safe(req, tmp, &reqs, wb_list) {
505 if (!nfs_pageio_add_request(&desc, req)) {
506 nfs_list_remove_request(req);
507 nfs_list_add_request(req, &failed);
508 spin_lock(cinfo.lock);
509 dreq->flags = 0;
510 dreq->error = -EIO;
511 spin_unlock(cinfo.lock);
512 }
513 nfs_release_request(req);
514 }
515 nfs_pageio_complete(&desc);
516
517 while (!list_empty(&failed)) {
518 req = nfs_list_entry(failed.next);
519 nfs_list_remove_request(req);
520 nfs_unlock_and_release_request(req);
521 }
522
523 if (put_dreq(dreq))
524 nfs_direct_write_complete(dreq, dreq->inode);
525 }
526
527 static void nfs_direct_commit_complete(struct nfs_commit_data *data)
528 {
529 struct nfs_direct_req *dreq = data->dreq;
530 struct nfs_commit_info cinfo;
531 struct nfs_page *req;
532 int status = data->task.tk_status;
533
534 nfs_init_cinfo_from_dreq(&cinfo, dreq);
535 if (status < 0) {
536 dprintk("NFS: %5u commit failed with error %d.\n",
537 data->task.tk_pid, status);
538 dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
539 } else if (memcmp(&dreq->verf, &data->verf, sizeof(data->verf))) {
540 dprintk("NFS: %5u commit verify failed\n", data->task.tk_pid);
541 dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
542 }
543
544 dprintk("NFS: %5u commit returned %d\n", data->task.tk_pid, status);
545 while (!list_empty(&data->pages)) {
546 req = nfs_list_entry(data->pages.next);
547 nfs_list_remove_request(req);
548 if (dreq->flags == NFS_ODIRECT_RESCHED_WRITES) {
549 /* Note the rewrite will go through mds */
550 nfs_mark_request_commit(req, NULL, &cinfo);
551 } else
552 nfs_release_request(req);
553 nfs_unlock_and_release_request(req);
554 }
555
556 if (atomic_dec_and_test(&cinfo.mds->rpcs_out))
557 nfs_direct_write_complete(dreq, data->inode);
558 }
559
560 static void nfs_direct_error_cleanup(struct nfs_inode *nfsi)
561 {
562 /* There is no lock to clear */
563 }
564
565 static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops = {
566 .completion = nfs_direct_commit_complete,
567 .error_cleanup = nfs_direct_error_cleanup,
568 };
569
570 static void nfs_direct_commit_schedule(struct nfs_direct_req *dreq)
571 {
572 int res;
573 struct nfs_commit_info cinfo;
574 LIST_HEAD(mds_list);
575
576 nfs_init_cinfo_from_dreq(&cinfo, dreq);
577 nfs_scan_commit(dreq->inode, &mds_list, &cinfo);
578 res = nfs_generic_commit_list(dreq->inode, &mds_list, 0, &cinfo);
579 if (res < 0) /* res == -ENOMEM */
580 nfs_direct_write_reschedule(dreq);
581 }
582
583 static void nfs_direct_write_schedule_work(struct work_struct *work)
584 {
585 struct nfs_direct_req *dreq = container_of(work, struct nfs_direct_req, work);
586 int flags = dreq->flags;
587
588 dreq->flags = 0;
589 switch (flags) {
590 case NFS_ODIRECT_DO_COMMIT:
591 nfs_direct_commit_schedule(dreq);
592 break;
593 case NFS_ODIRECT_RESCHED_WRITES:
594 nfs_direct_write_reschedule(dreq);
595 break;
596 default:
597 nfs_inode_dio_write_done(dreq->inode);
598 nfs_direct_complete(dreq);
599 }
600 }
601
602 static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode)
603 {
604 schedule_work(&dreq->work); /* Calls nfs_direct_write_schedule_work */
605 }
606
607 #else
608 static void nfs_direct_write_schedule_work(struct work_struct *work)
609 {
610 }
611
612 static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode)
613 {
614 nfs_inode_dio_write_done(inode);
615 nfs_direct_complete(dreq);
616 }
617 #endif
618
619 /*
620 * NB: Return the value of the first error return code. Subsequent
621 * errors after the first one are ignored.
622 */
623 /*
624 * For each wsize'd chunk of the user's buffer, dispatch an NFS WRITE
625 * operation. If nfs_writedata_alloc() or get_user_pages() fails,
626 * bail and stop sending more writes. Write length accounting is
627 * handled automatically by nfs_direct_write_result(). Otherwise, if
628 * no requests have been sent, just return an error.
629 */
630 static ssize_t nfs_direct_write_schedule_segment(struct nfs_pageio_descriptor *desc,
631 const struct iovec *iov,
632 loff_t pos, bool uio)
633 {
634 struct nfs_direct_req *dreq = desc->pg_dreq;
635 struct nfs_open_context *ctx = dreq->ctx;
636 struct inode *inode = ctx->dentry->d_inode;
637 unsigned long user_addr = (unsigned long)iov->iov_base;
638 size_t count = iov->iov_len;
639 size_t wsize = NFS_SERVER(inode)->wsize;
640 unsigned int pgbase;
641 int result;
642 ssize_t started = 0;
643 struct page **pagevec = NULL;
644 unsigned int npages;
645
646 do {
647 size_t bytes;
648 int i;
649
650 pgbase = user_addr & ~PAGE_MASK;
651 bytes = min(max_t(size_t, wsize, PAGE_SIZE), count);
652
653 result = -ENOMEM;
654 npages = nfs_page_array_len(pgbase, bytes);
655 if (!pagevec)
656 pagevec = kmalloc(npages * sizeof(struct page *), GFP_KERNEL);
657 if (!pagevec)
658 break;
659
660 if (uio) {
661 down_read(&current->mm->mmap_sem);
662 result = get_user_pages(current, current->mm, user_addr,
663 npages, 0, 0, pagevec, NULL);
664 up_read(&current->mm->mmap_sem);
665 if (result < 0)
666 break;
667 } else {
668 WARN_ON(npages != 1);
669 result = get_kernel_page(user_addr, 0, pagevec);
670 if (WARN_ON(result != 1))
671 break;
672 }
673
674 if ((unsigned)result < npages) {
675 bytes = result * PAGE_SIZE;
676 if (bytes <= pgbase) {
677 nfs_direct_release_pages(pagevec, result);
678 break;
679 }
680 bytes -= pgbase;
681 npages = result;
682 }
683
684 for (i = 0; i < npages; i++) {
685 struct nfs_page *req;
686 unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase);
687
688 req = nfs_create_request(dreq->ctx, dreq->inode,
689 pagevec[i],
690 pgbase, req_len);
691 if (IS_ERR(req)) {
692 result = PTR_ERR(req);
693 break;
694 }
695 nfs_lock_request(req);
696 req->wb_index = pos >> PAGE_SHIFT;
697 req->wb_offset = pos & ~PAGE_MASK;
698 if (!nfs_pageio_add_request(desc, req)) {
699 result = desc->pg_error;
700 nfs_unlock_and_release_request(req);
701 break;
702 }
703 pgbase = 0;
704 bytes -= req_len;
705 started += req_len;
706 user_addr += req_len;
707 pos += req_len;
708 count -= req_len;
709 }
710 /* The nfs_page now hold references to these pages */
711 nfs_direct_release_pages(pagevec, npages);
712 } while (count != 0 && result >= 0);
713
714 kfree(pagevec);
715
716 if (started)
717 return started;
718 return result < 0 ? (ssize_t) result : -EFAULT;
719 }
720
721 static void nfs_direct_write_completion(struct nfs_pgio_header *hdr)
722 {
723 struct nfs_direct_req *dreq = hdr->dreq;
724 struct nfs_commit_info cinfo;
725 int bit = -1;
726 struct nfs_page *req = nfs_list_entry(hdr->pages.next);
727
728 if (test_bit(NFS_IOHDR_REDO, &hdr->flags))
729 goto out_put;
730
731 nfs_init_cinfo_from_dreq(&cinfo, dreq);
732
733 spin_lock(&dreq->lock);
734
735 if (test_bit(NFS_IOHDR_ERROR, &hdr->flags)) {
736 dreq->flags = 0;
737 dreq->error = hdr->error;
738 }
739 if (dreq->error != 0)
740 bit = NFS_IOHDR_ERROR;
741 else {
742 dreq->count += hdr->good_bytes;
743 if (test_bit(NFS_IOHDR_NEED_RESCHED, &hdr->flags)) {
744 dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
745 bit = NFS_IOHDR_NEED_RESCHED;
746 } else if (test_bit(NFS_IOHDR_NEED_COMMIT, &hdr->flags)) {
747 if (dreq->flags == NFS_ODIRECT_RESCHED_WRITES)
748 bit = NFS_IOHDR_NEED_RESCHED;
749 else if (dreq->flags == 0) {
750 memcpy(&dreq->verf, hdr->verf,
751 sizeof(dreq->verf));
752 bit = NFS_IOHDR_NEED_COMMIT;
753 dreq->flags = NFS_ODIRECT_DO_COMMIT;
754 } else if (dreq->flags == NFS_ODIRECT_DO_COMMIT) {
755 if (memcmp(&dreq->verf, hdr->verf, sizeof(dreq->verf))) {
756 dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
757 bit = NFS_IOHDR_NEED_RESCHED;
758 } else
759 bit = NFS_IOHDR_NEED_COMMIT;
760 }
761 }
762 }
763 spin_unlock(&dreq->lock);
764
765 while (!list_empty(&hdr->pages)) {
766 req = nfs_list_entry(hdr->pages.next);
767 nfs_list_remove_request(req);
768 switch (bit) {
769 case NFS_IOHDR_NEED_RESCHED:
770 case NFS_IOHDR_NEED_COMMIT:
771 kref_get(&req->wb_kref);
772 nfs_mark_request_commit(req, hdr->lseg, &cinfo);
773 }
774 nfs_unlock_and_release_request(req);
775 }
776
777 out_put:
778 if (put_dreq(dreq))
779 nfs_direct_write_complete(dreq, hdr->inode);
780 hdr->release(hdr);
781 }
782
783 static void nfs_write_sync_pgio_error(struct list_head *head)
784 {
785 struct nfs_page *req;
786
787 while (!list_empty(head)) {
788 req = nfs_list_entry(head->next);
789 nfs_list_remove_request(req);
790 nfs_unlock_and_release_request(req);
791 }
792 }
793
794 static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops = {
795 .error_cleanup = nfs_write_sync_pgio_error,
796 .init_hdr = nfs_direct_pgio_init,
797 .completion = nfs_direct_write_completion,
798 };
799
800 static ssize_t nfs_direct_write_schedule_iovec(struct nfs_direct_req *dreq,
801 const struct iovec *iov,
802 unsigned long nr_segs,
803 loff_t pos, bool uio)
804 {
805 struct nfs_pageio_descriptor desc;
806 struct inode *inode = dreq->inode;
807 ssize_t result = 0;
808 size_t requested_bytes = 0;
809 unsigned long seg;
810
811 NFS_PROTO(inode)->write_pageio_init(&desc, inode, FLUSH_COND_STABLE,
812 &nfs_direct_write_completion_ops);
813 desc.pg_dreq = dreq;
814 get_dreq(dreq);
815 atomic_inc(&inode->i_dio_count);
816
817 for (seg = 0; seg < nr_segs; seg++) {
818 const struct iovec *vec = &iov[seg];
819 result = nfs_direct_write_schedule_segment(&desc, vec, pos, uio);
820 if (result < 0)
821 break;
822 requested_bytes += result;
823 if ((size_t)result < vec->iov_len)
824 break;
825 pos += vec->iov_len;
826 }
827 nfs_pageio_complete(&desc);
828 NFS_I(dreq->inode)->write_io += desc.pg_bytes_written;
829
830 /*
831 * If no bytes were started, return the error, and let the
832 * generic layer handle the completion.
833 */
834 if (requested_bytes == 0) {
835 inode_dio_done(inode);
836 nfs_direct_req_release(dreq);
837 return result < 0 ? result : -EIO;
838 }
839
840 if (put_dreq(dreq))
841 nfs_direct_write_complete(dreq, dreq->inode);
842 return 0;
843 }
844
845 static ssize_t nfs_direct_write(struct kiocb *iocb, const struct iovec *iov,
846 unsigned long nr_segs, loff_t pos,
847 size_t count, bool uio)
848 {
849 ssize_t result = -ENOMEM;
850 struct inode *inode = iocb->ki_filp->f_mapping->host;
851 struct nfs_direct_req *dreq;
852
853 dreq = nfs_direct_req_alloc();
854 if (!dreq)
855 goto out;
856
857 dreq->inode = inode;
858 dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
859 dreq->l_ctx = nfs_get_lock_context(dreq->ctx);
860 if (dreq->l_ctx == NULL)
861 goto out_release;
862 if (!is_sync_kiocb(iocb))
863 dreq->iocb = iocb;
864
865 result = nfs_direct_write_schedule_iovec(dreq, iov, nr_segs, pos, uio);
866 if (!result)
867 result = nfs_direct_wait(dreq);
868 out_release:
869 nfs_direct_req_release(dreq);
870 out:
871 return result;
872 }
873
874 /**
875 * nfs_file_direct_read - file direct read operation for NFS files
876 * @iocb: target I/O control block
877 * @iov: vector of user buffers into which to read data
878 * @nr_segs: size of iov vector
879 * @pos: byte offset in file where reading starts
880 *
881 * We use this function for direct reads instead of calling
882 * generic_file_aio_read() in order to avoid gfar's check to see if
883 * the request starts before the end of the file. For that check
884 * to work, we must generate a GETATTR before each direct read, and
885 * even then there is a window between the GETATTR and the subsequent
886 * READ where the file size could change. Our preference is simply
887 * to do all reads the application wants, and the server will take
888 * care of managing the end of file boundary.
889 *
890 * This function also eliminates unnecessarily updating the file's
891 * atime locally, as the NFS server sets the file's atime, and this
892 * client must read the updated atime from the server back into its
893 * cache.
894 */
895 ssize_t nfs_file_direct_read(struct kiocb *iocb, const struct iovec *iov,
896 unsigned long nr_segs, loff_t pos, bool uio)
897 {
898 ssize_t retval = -EINVAL;
899 struct file *file = iocb->ki_filp;
900 struct address_space *mapping = file->f_mapping;
901 size_t count;
902
903 count = iov_length(iov, nr_segs);
904 nfs_add_stats(mapping->host, NFSIOS_DIRECTREADBYTES, count);
905
906 dfprintk(FILE, "NFS: direct read(%s/%s, %zd@%Ld)\n",
907 file->f_path.dentry->d_parent->d_name.name,
908 file->f_path.dentry->d_name.name,
909 count, (long long) pos);
910
911 retval = 0;
912 if (!count)
913 goto out;
914
915 retval = nfs_sync_mapping(mapping);
916 if (retval)
917 goto out;
918
919 task_io_account_read(count);
920
921 retval = nfs_direct_read(iocb, iov, nr_segs, pos, uio);
922 if (retval > 0)
923 iocb->ki_pos = pos + retval;
924
925 out:
926 return retval;
927 }
928
929 /**
930 * nfs_file_direct_write - file direct write operation for NFS files
931 * @iocb: target I/O control block
932 * @iov: vector of user buffers from which to write data
933 * @nr_segs: size of iov vector
934 * @pos: byte offset in file where writing starts
935 *
936 * We use this function for direct writes instead of calling
937 * generic_file_aio_write() in order to avoid taking the inode
938 * semaphore and updating the i_size. The NFS server will set
939 * the new i_size and this client must read the updated size
940 * back into its cache. We let the server do generic write
941 * parameter checking and report problems.
942 *
943 * We eliminate local atime updates, see direct read above.
944 *
945 * We avoid unnecessary page cache invalidations for normal cached
946 * readers of this file.
947 *
948 * Note that O_APPEND is not supported for NFS direct writes, as there
949 * is no atomic O_APPEND write facility in the NFS protocol.
950 */
951 ssize_t nfs_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
952 unsigned long nr_segs, loff_t pos, bool uio)
953 {
954 ssize_t retval = -EINVAL;
955 struct file *file = iocb->ki_filp;
956 struct address_space *mapping = file->f_mapping;
957 size_t count;
958
959 count = iov_length(iov, nr_segs);
960 nfs_add_stats(mapping->host, NFSIOS_DIRECTWRITTENBYTES, count);
961
962 dfprintk(FILE, "NFS: direct write(%s/%s, %zd@%Ld)\n",
963 file->f_path.dentry->d_parent->d_name.name,
964 file->f_path.dentry->d_name.name,
965 count, (long long) pos);
966
967 retval = generic_write_checks(file, &pos, &count, 0);
968 if (retval)
969 goto out;
970
971 retval = -EINVAL;
972 if ((ssize_t) count < 0)
973 goto out;
974 retval = 0;
975 if (!count)
976 goto out;
977
978 retval = nfs_sync_mapping(mapping);
979 if (retval)
980 goto out;
981
982 task_io_account_write(count);
983
984 retval = nfs_direct_write(iocb, iov, nr_segs, pos, count, uio);
985 if (retval > 0) {
986 struct inode *inode = mapping->host;
987
988 iocb->ki_pos = pos + retval;
989 spin_lock(&inode->i_lock);
990 if (i_size_read(inode) < iocb->ki_pos)
991 i_size_write(inode, iocb->ki_pos);
992 spin_unlock(&inode->i_lock);
993 }
994 out:
995 return retval;
996 }
997
998 /**
999 * nfs_init_directcache - create a slab cache for nfs_direct_req structures
1000 *
1001 */
1002 int __init nfs_init_directcache(void)
1003 {
1004 nfs_direct_cachep = kmem_cache_create("nfs_direct_cache",
1005 sizeof(struct nfs_direct_req),
1006 0, (SLAB_RECLAIM_ACCOUNT|
1007 SLAB_MEM_SPREAD),
1008 NULL);
1009 if (nfs_direct_cachep == NULL)
1010 return -ENOMEM;
1011
1012 return 0;
1013 }
1014
1015 /**
1016 * nfs_destroy_directcache - destroy the slab cache for nfs_direct_req structures
1017 *
1018 */
1019 void nfs_destroy_directcache(void)
1020 {
1021 kmem_cache_destroy(nfs_direct_cachep);
1022 }
This page took 0.070783 seconds and 6 git commands to generate.