MAINTAINERS: Add phy-miphy28lp.c and phy-miphy365x.c to ARCH/STI architecture
[deliverable/linux.git] / fs / nfs / file.c
1 /*
2 * linux/fs/nfs/file.c
3 *
4 * Copyright (C) 1992 Rick Sladkey
5 *
6 * Changes Copyright (C) 1994 by Florian La Roche
7 * - Do not copy data too often around in the kernel.
8 * - In nfs_file_read the return value of kmalloc wasn't checked.
9 * - Put in a better version of read look-ahead buffering. Original idea
10 * and implementation by Wai S Kok elekokws@ee.nus.sg.
11 *
12 * Expire cache on write to a file by Wai S Kok (Oct 1994).
13 *
14 * Total rewrite of read side for new NFS buffer cache.. Linus.
15 *
16 * nfs regular file handling functions
17 */
18
19 #include <linux/module.h>
20 #include <linux/time.h>
21 #include <linux/kernel.h>
22 #include <linux/errno.h>
23 #include <linux/fcntl.h>
24 #include <linux/stat.h>
25 #include <linux/nfs_fs.h>
26 #include <linux/nfs_mount.h>
27 #include <linux/mm.h>
28 #include <linux/pagemap.h>
29 #include <linux/aio.h>
30 #include <linux/gfp.h>
31 #include <linux/swap.h>
32
33 #include <asm/uaccess.h>
34
35 #include "delegation.h"
36 #include "internal.h"
37 #include "iostat.h"
38 #include "fscache.h"
39 #include "pnfs.h"
40
41 #include "nfstrace.h"
42
43 #define NFSDBG_FACILITY NFSDBG_FILE
44
45 static const struct vm_operations_struct nfs_file_vm_ops;
46
47 /* Hack for future NFS swap support */
48 #ifndef IS_SWAPFILE
49 # define IS_SWAPFILE(inode) (0)
50 #endif
51
52 int nfs_check_flags(int flags)
53 {
54 if ((flags & (O_APPEND | O_DIRECT)) == (O_APPEND | O_DIRECT))
55 return -EINVAL;
56
57 return 0;
58 }
59 EXPORT_SYMBOL_GPL(nfs_check_flags);
60
61 /*
62 * Open file
63 */
64 static int
65 nfs_file_open(struct inode *inode, struct file *filp)
66 {
67 int res;
68
69 dprintk("NFS: open file(%pD2)\n", filp);
70
71 nfs_inc_stats(inode, NFSIOS_VFSOPEN);
72 res = nfs_check_flags(filp->f_flags);
73 if (res)
74 return res;
75
76 res = nfs_open(inode, filp);
77 return res;
78 }
79
80 int
81 nfs_file_release(struct inode *inode, struct file *filp)
82 {
83 dprintk("NFS: release(%pD2)\n", filp);
84
85 nfs_inc_stats(inode, NFSIOS_VFSRELEASE);
86 return nfs_release(inode, filp);
87 }
88 EXPORT_SYMBOL_GPL(nfs_file_release);
89
90 /**
91 * nfs_revalidate_size - Revalidate the file size
92 * @inode - pointer to inode struct
93 * @file - pointer to struct file
94 *
95 * Revalidates the file length. This is basically a wrapper around
96 * nfs_revalidate_inode() that takes into account the fact that we may
97 * have cached writes (in which case we don't care about the server's
98 * idea of what the file length is), or O_DIRECT (in which case we
99 * shouldn't trust the cache).
100 */
101 static int nfs_revalidate_file_size(struct inode *inode, struct file *filp)
102 {
103 struct nfs_server *server = NFS_SERVER(inode);
104 struct nfs_inode *nfsi = NFS_I(inode);
105
106 if (nfs_have_delegated_attributes(inode))
107 goto out_noreval;
108
109 if (filp->f_flags & O_DIRECT)
110 goto force_reval;
111 if (nfsi->cache_validity & NFS_INO_REVAL_PAGECACHE)
112 goto force_reval;
113 if (nfs_attribute_timeout(inode))
114 goto force_reval;
115 out_noreval:
116 return 0;
117 force_reval:
118 return __nfs_revalidate_inode(server, inode);
119 }
120
121 loff_t nfs_file_llseek(struct file *filp, loff_t offset, int whence)
122 {
123 dprintk("NFS: llseek file(%pD2, %lld, %d)\n",
124 filp, offset, whence);
125
126 /*
127 * whence == SEEK_END || SEEK_DATA || SEEK_HOLE => we must revalidate
128 * the cached file length
129 */
130 if (whence != SEEK_SET && whence != SEEK_CUR) {
131 struct inode *inode = filp->f_mapping->host;
132
133 int retval = nfs_revalidate_file_size(inode, filp);
134 if (retval < 0)
135 return (loff_t)retval;
136 }
137
138 return generic_file_llseek(filp, offset, whence);
139 }
140 EXPORT_SYMBOL_GPL(nfs_file_llseek);
141
142 /*
143 * Flush all dirty pages, and check for write errors.
144 */
145 int
146 nfs_file_flush(struct file *file, fl_owner_t id)
147 {
148 struct inode *inode = file_inode(file);
149
150 dprintk("NFS: flush(%pD2)\n", file);
151
152 nfs_inc_stats(inode, NFSIOS_VFSFLUSH);
153 if ((file->f_mode & FMODE_WRITE) == 0)
154 return 0;
155
156 /*
157 * If we're holding a write delegation, then just start the i/o
158 * but don't wait for completion (or send a commit).
159 */
160 if (NFS_PROTO(inode)->have_delegation(inode, FMODE_WRITE))
161 return filemap_fdatawrite(file->f_mapping);
162
163 /* Flush writes to the server and return any errors */
164 return vfs_fsync(file, 0);
165 }
166 EXPORT_SYMBOL_GPL(nfs_file_flush);
167
168 ssize_t
169 nfs_file_read(struct kiocb *iocb, struct iov_iter *to)
170 {
171 struct inode *inode = file_inode(iocb->ki_filp);
172 ssize_t result;
173
174 if (iocb->ki_filp->f_flags & O_DIRECT)
175 return nfs_file_direct_read(iocb, to, iocb->ki_pos);
176
177 dprintk("NFS: read(%pD2, %zu@%lu)\n",
178 iocb->ki_filp,
179 iov_iter_count(to), (unsigned long) iocb->ki_pos);
180
181 result = nfs_revalidate_mapping(inode, iocb->ki_filp->f_mapping);
182 if (!result) {
183 result = generic_file_read_iter(iocb, to);
184 if (result > 0)
185 nfs_add_stats(inode, NFSIOS_NORMALREADBYTES, result);
186 }
187 return result;
188 }
189 EXPORT_SYMBOL_GPL(nfs_file_read);
190
191 ssize_t
192 nfs_file_splice_read(struct file *filp, loff_t *ppos,
193 struct pipe_inode_info *pipe, size_t count,
194 unsigned int flags)
195 {
196 struct inode *inode = file_inode(filp);
197 ssize_t res;
198
199 dprintk("NFS: splice_read(%pD2, %lu@%Lu)\n",
200 filp, (unsigned long) count, (unsigned long long) *ppos);
201
202 res = nfs_revalidate_mapping(inode, filp->f_mapping);
203 if (!res) {
204 res = generic_file_splice_read(filp, ppos, pipe, count, flags);
205 if (res > 0)
206 nfs_add_stats(inode, NFSIOS_NORMALREADBYTES, res);
207 }
208 return res;
209 }
210 EXPORT_SYMBOL_GPL(nfs_file_splice_read);
211
212 int
213 nfs_file_mmap(struct file * file, struct vm_area_struct * vma)
214 {
215 struct inode *inode = file_inode(file);
216 int status;
217
218 dprintk("NFS: mmap(%pD2)\n", file);
219
220 /* Note: generic_file_mmap() returns ENOSYS on nommu systems
221 * so we call that before revalidating the mapping
222 */
223 status = generic_file_mmap(file, vma);
224 if (!status) {
225 vma->vm_ops = &nfs_file_vm_ops;
226 status = nfs_revalidate_mapping(inode, file->f_mapping);
227 }
228 return status;
229 }
230 EXPORT_SYMBOL_GPL(nfs_file_mmap);
231
232 /*
233 * Flush any dirty pages for this process, and check for write errors.
234 * The return status from this call provides a reliable indication of
235 * whether any write errors occurred for this process.
236 *
237 * Notice that it clears the NFS_CONTEXT_ERROR_WRITE before synching to
238 * disk, but it retrieves and clears ctx->error after synching, despite
239 * the two being set at the same time in nfs_context_set_write_error().
240 * This is because the former is used to notify the _next_ call to
241 * nfs_file_write() that a write error occurred, and hence cause it to
242 * fall back to doing a synchronous write.
243 */
244 int
245 nfs_file_fsync_commit(struct file *file, loff_t start, loff_t end, int datasync)
246 {
247 struct nfs_open_context *ctx = nfs_file_open_context(file);
248 struct inode *inode = file_inode(file);
249 int have_error, do_resend, status;
250 int ret = 0;
251
252 dprintk("NFS: fsync file(%pD2) datasync %d\n", file, datasync);
253
254 nfs_inc_stats(inode, NFSIOS_VFSFSYNC);
255 do_resend = test_and_clear_bit(NFS_CONTEXT_RESEND_WRITES, &ctx->flags);
256 have_error = test_and_clear_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags);
257 status = nfs_commit_inode(inode, FLUSH_SYNC);
258 have_error |= test_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags);
259 if (have_error) {
260 ret = xchg(&ctx->error, 0);
261 if (ret)
262 goto out;
263 }
264 if (status < 0) {
265 ret = status;
266 goto out;
267 }
268 do_resend |= test_bit(NFS_CONTEXT_RESEND_WRITES, &ctx->flags);
269 if (do_resend)
270 ret = -EAGAIN;
271 out:
272 return ret;
273 }
274 EXPORT_SYMBOL_GPL(nfs_file_fsync_commit);
275
276 static int
277 nfs_file_fsync(struct file *file, loff_t start, loff_t end, int datasync)
278 {
279 int ret;
280 struct inode *inode = file_inode(file);
281
282 trace_nfs_fsync_enter(inode);
283
284 do {
285 ret = filemap_write_and_wait_range(inode->i_mapping, start, end);
286 if (ret != 0)
287 break;
288 mutex_lock(&inode->i_mutex);
289 ret = nfs_file_fsync_commit(file, start, end, datasync);
290 mutex_unlock(&inode->i_mutex);
291 /*
292 * If nfs_file_fsync_commit detected a server reboot, then
293 * resend all dirty pages that might have been covered by
294 * the NFS_CONTEXT_RESEND_WRITES flag
295 */
296 start = 0;
297 end = LLONG_MAX;
298 } while (ret == -EAGAIN);
299
300 trace_nfs_fsync_exit(inode, ret);
301 return ret;
302 }
303
304 /*
305 * Decide whether a read/modify/write cycle may be more efficient
306 * then a modify/write/read cycle when writing to a page in the
307 * page cache.
308 *
309 * The modify/write/read cycle may occur if a page is read before
310 * being completely filled by the writer. In this situation, the
311 * page must be completely written to stable storage on the server
312 * before it can be refilled by reading in the page from the server.
313 * This can lead to expensive, small, FILE_SYNC mode writes being
314 * done.
315 *
316 * It may be more efficient to read the page first if the file is
317 * open for reading in addition to writing, the page is not marked
318 * as Uptodate, it is not dirty or waiting to be committed,
319 * indicating that it was previously allocated and then modified,
320 * that there were valid bytes of data in that range of the file,
321 * and that the new data won't completely replace the old data in
322 * that range of the file.
323 */
324 static int nfs_want_read_modify_write(struct file *file, struct page *page,
325 loff_t pos, unsigned len)
326 {
327 unsigned int pglen = nfs_page_length(page);
328 unsigned int offset = pos & (PAGE_CACHE_SIZE - 1);
329 unsigned int end = offset + len;
330
331 if (pnfs_ld_read_whole_page(file->f_mapping->host)) {
332 if (!PageUptodate(page))
333 return 1;
334 return 0;
335 }
336
337 if ((file->f_mode & FMODE_READ) && /* open for read? */
338 !PageUptodate(page) && /* Uptodate? */
339 !PagePrivate(page) && /* i/o request already? */
340 pglen && /* valid bytes of file? */
341 (end < pglen || offset)) /* replace all valid bytes? */
342 return 1;
343 return 0;
344 }
345
346 /*
347 * This does the "real" work of the write. We must allocate and lock the
348 * page to be sent back to the generic routine, which then copies the
349 * data from user space.
350 *
351 * If the writer ends up delaying the write, the writer needs to
352 * increment the page use counts until he is done with the page.
353 */
354 static int nfs_write_begin(struct file *file, struct address_space *mapping,
355 loff_t pos, unsigned len, unsigned flags,
356 struct page **pagep, void **fsdata)
357 {
358 int ret;
359 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
360 struct page *page;
361 int once_thru = 0;
362
363 dfprintk(PAGECACHE, "NFS: write_begin(%pD2(%lu), %u@%lld)\n",
364 file, mapping->host->i_ino, len, (long long) pos);
365
366 start:
367 /*
368 * Prevent starvation issues if someone is doing a consistency
369 * sync-to-disk
370 */
371 ret = wait_on_bit_action(&NFS_I(mapping->host)->flags, NFS_INO_FLUSHING,
372 nfs_wait_bit_killable, TASK_KILLABLE);
373 if (ret)
374 return ret;
375
376 page = grab_cache_page_write_begin(mapping, index, flags);
377 if (!page)
378 return -ENOMEM;
379 *pagep = page;
380
381 ret = nfs_flush_incompatible(file, page);
382 if (ret) {
383 unlock_page(page);
384 page_cache_release(page);
385 } else if (!once_thru &&
386 nfs_want_read_modify_write(file, page, pos, len)) {
387 once_thru = 1;
388 ret = nfs_readpage(file, page);
389 page_cache_release(page);
390 if (!ret)
391 goto start;
392 }
393 return ret;
394 }
395
396 static int nfs_write_end(struct file *file, struct address_space *mapping,
397 loff_t pos, unsigned len, unsigned copied,
398 struct page *page, void *fsdata)
399 {
400 unsigned offset = pos & (PAGE_CACHE_SIZE - 1);
401 struct nfs_open_context *ctx = nfs_file_open_context(file);
402 int status;
403
404 dfprintk(PAGECACHE, "NFS: write_end(%pD2(%lu), %u@%lld)\n",
405 file, mapping->host->i_ino, len, (long long) pos);
406
407 /*
408 * Zero any uninitialised parts of the page, and then mark the page
409 * as up to date if it turns out that we're extending the file.
410 */
411 if (!PageUptodate(page)) {
412 unsigned pglen = nfs_page_length(page);
413 unsigned end = offset + len;
414
415 if (pglen == 0) {
416 zero_user_segments(page, 0, offset,
417 end, PAGE_CACHE_SIZE);
418 SetPageUptodate(page);
419 } else if (end >= pglen) {
420 zero_user_segment(page, end, PAGE_CACHE_SIZE);
421 if (offset == 0)
422 SetPageUptodate(page);
423 } else
424 zero_user_segment(page, pglen, PAGE_CACHE_SIZE);
425 }
426
427 status = nfs_updatepage(file, page, offset, copied);
428
429 unlock_page(page);
430 page_cache_release(page);
431
432 if (status < 0)
433 return status;
434 NFS_I(mapping->host)->write_io += copied;
435
436 if (nfs_ctx_key_to_expire(ctx)) {
437 status = nfs_wb_all(mapping->host);
438 if (status < 0)
439 return status;
440 }
441
442 return copied;
443 }
444
445 /*
446 * Partially or wholly invalidate a page
447 * - Release the private state associated with a page if undergoing complete
448 * page invalidation
449 * - Called if either PG_private or PG_fscache is set on the page
450 * - Caller holds page lock
451 */
452 static void nfs_invalidate_page(struct page *page, unsigned int offset,
453 unsigned int length)
454 {
455 dfprintk(PAGECACHE, "NFS: invalidate_page(%p, %u, %u)\n",
456 page, offset, length);
457
458 if (offset != 0 || length < PAGE_CACHE_SIZE)
459 return;
460 /* Cancel any unstarted writes on this page */
461 nfs_wb_page_cancel(page_file_mapping(page)->host, page);
462
463 nfs_fscache_invalidate_page(page, page->mapping->host);
464 }
465
466 /*
467 * Attempt to release the private state associated with a page
468 * - Called if either PG_private or PG_fscache is set on the page
469 * - Caller holds page lock
470 * - Return true (may release page) or false (may not)
471 */
472 static int nfs_release_page(struct page *page, gfp_t gfp)
473 {
474 struct address_space *mapping = page->mapping;
475
476 dfprintk(PAGECACHE, "NFS: release_page(%p)\n", page);
477
478 /* Always try to initiate a 'commit' if relevant, but only
479 * wait for it if __GFP_WAIT is set. Even then, only wait 1
480 * second and only if the 'bdi' is not congested.
481 * Waiting indefinitely can cause deadlocks when the NFS
482 * server is on this machine, when a new TCP connection is
483 * needed and in other rare cases. There is no particular
484 * need to wait extensively here. A short wait has the
485 * benefit that someone else can worry about the freezer.
486 */
487 if (mapping) {
488 struct nfs_server *nfss = NFS_SERVER(mapping->host);
489 nfs_commit_inode(mapping->host, 0);
490 if ((gfp & __GFP_WAIT) &&
491 !bdi_write_congested(&nfss->backing_dev_info)) {
492 wait_on_page_bit_killable_timeout(page, PG_private,
493 HZ);
494 if (PagePrivate(page))
495 set_bdi_congested(&nfss->backing_dev_info,
496 BLK_RW_ASYNC);
497 }
498 }
499 /* If PagePrivate() is set, then the page is not freeable */
500 if (PagePrivate(page))
501 return 0;
502 return nfs_fscache_release_page(page, gfp);
503 }
504
505 static void nfs_check_dirty_writeback(struct page *page,
506 bool *dirty, bool *writeback)
507 {
508 struct nfs_inode *nfsi;
509 struct address_space *mapping = page_file_mapping(page);
510
511 if (!mapping || PageSwapCache(page))
512 return;
513
514 /*
515 * Check if an unstable page is currently being committed and
516 * if so, have the VM treat it as if the page is under writeback
517 * so it will not block due to pages that will shortly be freeable.
518 */
519 nfsi = NFS_I(mapping->host);
520 if (test_bit(NFS_INO_COMMIT, &nfsi->flags)) {
521 *writeback = true;
522 return;
523 }
524
525 /*
526 * If PagePrivate() is set, then the page is not freeable and as the
527 * inode is not being committed, it's not going to be cleaned in the
528 * near future so treat it as dirty
529 */
530 if (PagePrivate(page))
531 *dirty = true;
532 }
533
534 /*
535 * Attempt to clear the private state associated with a page when an error
536 * occurs that requires the cached contents of an inode to be written back or
537 * destroyed
538 * - Called if either PG_private or fscache is set on the page
539 * - Caller holds page lock
540 * - Return 0 if successful, -error otherwise
541 */
542 static int nfs_launder_page(struct page *page)
543 {
544 struct inode *inode = page_file_mapping(page)->host;
545 struct nfs_inode *nfsi = NFS_I(inode);
546
547 dfprintk(PAGECACHE, "NFS: launder_page(%ld, %llu)\n",
548 inode->i_ino, (long long)page_offset(page));
549
550 nfs_fscache_wait_on_page_write(nfsi, page);
551 return nfs_wb_page(inode, page);
552 }
553
554 #ifdef CONFIG_NFS_SWAP
555 static int nfs_swap_activate(struct swap_info_struct *sis, struct file *file,
556 sector_t *span)
557 {
558 int ret;
559 struct rpc_clnt *clnt = NFS_CLIENT(file->f_mapping->host);
560
561 *span = sis->pages;
562
563 rcu_read_lock();
564 ret = xs_swapper(rcu_dereference(clnt->cl_xprt), 1);
565 rcu_read_unlock();
566
567 return ret;
568 }
569
570 static void nfs_swap_deactivate(struct file *file)
571 {
572 struct rpc_clnt *clnt = NFS_CLIENT(file->f_mapping->host);
573
574 rcu_read_lock();
575 xs_swapper(rcu_dereference(clnt->cl_xprt), 0);
576 rcu_read_unlock();
577 }
578 #endif
579
580 const struct address_space_operations nfs_file_aops = {
581 .readpage = nfs_readpage,
582 .readpages = nfs_readpages,
583 .set_page_dirty = __set_page_dirty_nobuffers,
584 .writepage = nfs_writepage,
585 .writepages = nfs_writepages,
586 .write_begin = nfs_write_begin,
587 .write_end = nfs_write_end,
588 .invalidatepage = nfs_invalidate_page,
589 .releasepage = nfs_release_page,
590 .direct_IO = nfs_direct_IO,
591 .migratepage = nfs_migrate_page,
592 .launder_page = nfs_launder_page,
593 .is_dirty_writeback = nfs_check_dirty_writeback,
594 .error_remove_page = generic_error_remove_page,
595 #ifdef CONFIG_NFS_SWAP
596 .swap_activate = nfs_swap_activate,
597 .swap_deactivate = nfs_swap_deactivate,
598 #endif
599 };
600
601 /*
602 * Notification that a PTE pointing to an NFS page is about to be made
603 * writable, implying that someone is about to modify the page through a
604 * shared-writable mapping
605 */
606 static int nfs_vm_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
607 {
608 struct page *page = vmf->page;
609 struct file *filp = vma->vm_file;
610 struct inode *inode = file_inode(filp);
611 unsigned pagelen;
612 int ret = VM_FAULT_NOPAGE;
613 struct address_space *mapping;
614
615 dfprintk(PAGECACHE, "NFS: vm_page_mkwrite(%pD2(%lu), offset %lld)\n",
616 filp, filp->f_mapping->host->i_ino,
617 (long long)page_offset(page));
618
619 /* make sure the cache has finished storing the page */
620 nfs_fscache_wait_on_page_write(NFS_I(inode), page);
621
622 lock_page(page);
623 mapping = page_file_mapping(page);
624 if (mapping != inode->i_mapping)
625 goto out_unlock;
626
627 wait_on_page_writeback(page);
628
629 pagelen = nfs_page_length(page);
630 if (pagelen == 0)
631 goto out_unlock;
632
633 ret = VM_FAULT_LOCKED;
634 if (nfs_flush_incompatible(filp, page) == 0 &&
635 nfs_updatepage(filp, page, 0, pagelen) == 0)
636 goto out;
637
638 ret = VM_FAULT_SIGBUS;
639 out_unlock:
640 unlock_page(page);
641 out:
642 return ret;
643 }
644
645 static const struct vm_operations_struct nfs_file_vm_ops = {
646 .fault = filemap_fault,
647 .map_pages = filemap_map_pages,
648 .page_mkwrite = nfs_vm_page_mkwrite,
649 };
650
651 static int nfs_need_sync_write(struct file *filp, struct inode *inode)
652 {
653 struct nfs_open_context *ctx;
654
655 if (IS_SYNC(inode) || (filp->f_flags & O_DSYNC))
656 return 1;
657 ctx = nfs_file_open_context(filp);
658 if (test_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags) ||
659 nfs_ctx_key_to_expire(ctx))
660 return 1;
661 return 0;
662 }
663
664 ssize_t nfs_file_write(struct kiocb *iocb, struct iov_iter *from)
665 {
666 struct file *file = iocb->ki_filp;
667 struct inode *inode = file_inode(file);
668 unsigned long written = 0;
669 ssize_t result;
670 size_t count = iov_iter_count(from);
671 loff_t pos = iocb->ki_pos;
672
673 result = nfs_key_timeout_notify(file, inode);
674 if (result)
675 return result;
676
677 if (file->f_flags & O_DIRECT)
678 return nfs_file_direct_write(iocb, from, pos);
679
680 dprintk("NFS: write(%pD2, %zu@%Ld)\n",
681 file, count, (long long) pos);
682
683 result = -EBUSY;
684 if (IS_SWAPFILE(inode))
685 goto out_swapfile;
686 /*
687 * O_APPEND implies that we must revalidate the file length.
688 */
689 if (file->f_flags & O_APPEND) {
690 result = nfs_revalidate_file_size(inode, file);
691 if (result)
692 goto out;
693 }
694
695 result = count;
696 if (!count)
697 goto out;
698
699 result = generic_file_write_iter(iocb, from);
700 if (result > 0)
701 written = result;
702
703 /* Return error values for O_DSYNC and IS_SYNC() */
704 if (result >= 0 && nfs_need_sync_write(file, inode)) {
705 int err = vfs_fsync(file, 0);
706 if (err < 0)
707 result = err;
708 }
709 if (result > 0)
710 nfs_add_stats(inode, NFSIOS_NORMALWRITTENBYTES, written);
711 out:
712 return result;
713
714 out_swapfile:
715 printk(KERN_INFO "NFS: attempt to write to active swap file!\n");
716 goto out;
717 }
718 EXPORT_SYMBOL_GPL(nfs_file_write);
719
720 static int
721 do_getlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
722 {
723 struct inode *inode = filp->f_mapping->host;
724 int status = 0;
725 unsigned int saved_type = fl->fl_type;
726
727 /* Try local locking first */
728 posix_test_lock(filp, fl);
729 if (fl->fl_type != F_UNLCK) {
730 /* found a conflict */
731 goto out;
732 }
733 fl->fl_type = saved_type;
734
735 if (NFS_PROTO(inode)->have_delegation(inode, FMODE_READ))
736 goto out_noconflict;
737
738 if (is_local)
739 goto out_noconflict;
740
741 status = NFS_PROTO(inode)->lock(filp, cmd, fl);
742 out:
743 return status;
744 out_noconflict:
745 fl->fl_type = F_UNLCK;
746 goto out;
747 }
748
749 static int do_vfs_lock(struct file *file, struct file_lock *fl)
750 {
751 int res = 0;
752 switch (fl->fl_flags & (FL_POSIX|FL_FLOCK)) {
753 case FL_POSIX:
754 res = posix_lock_file_wait(file, fl);
755 break;
756 case FL_FLOCK:
757 res = flock_lock_file_wait(file, fl);
758 break;
759 default:
760 BUG();
761 }
762 return res;
763 }
764
765 static int
766 do_unlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
767 {
768 struct inode *inode = filp->f_mapping->host;
769 struct nfs_lock_context *l_ctx;
770 int status;
771
772 /*
773 * Flush all pending writes before doing anything
774 * with locks..
775 */
776 nfs_sync_mapping(filp->f_mapping);
777
778 l_ctx = nfs_get_lock_context(nfs_file_open_context(filp));
779 if (!IS_ERR(l_ctx)) {
780 status = nfs_iocounter_wait(&l_ctx->io_count);
781 nfs_put_lock_context(l_ctx);
782 if (status < 0)
783 return status;
784 }
785
786 /* NOTE: special case
787 * If we're signalled while cleaning up locks on process exit, we
788 * still need to complete the unlock.
789 */
790 /*
791 * Use local locking if mounted with "-onolock" or with appropriate
792 * "-olocal_lock="
793 */
794 if (!is_local)
795 status = NFS_PROTO(inode)->lock(filp, cmd, fl);
796 else
797 status = do_vfs_lock(filp, fl);
798 return status;
799 }
800
801 static int
802 is_time_granular(struct timespec *ts) {
803 return ((ts->tv_sec == 0) && (ts->tv_nsec <= 1000));
804 }
805
806 static int
807 do_setlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
808 {
809 struct inode *inode = filp->f_mapping->host;
810 int status;
811
812 /*
813 * Flush all pending writes before doing anything
814 * with locks..
815 */
816 status = nfs_sync_mapping(filp->f_mapping);
817 if (status != 0)
818 goto out;
819
820 /*
821 * Use local locking if mounted with "-onolock" or with appropriate
822 * "-olocal_lock="
823 */
824 if (!is_local)
825 status = NFS_PROTO(inode)->lock(filp, cmd, fl);
826 else
827 status = do_vfs_lock(filp, fl);
828 if (status < 0)
829 goto out;
830
831 /*
832 * Revalidate the cache if the server has time stamps granular
833 * enough to detect subsecond changes. Otherwise, clear the
834 * cache to prevent missing any changes.
835 *
836 * This makes locking act as a cache coherency point.
837 */
838 nfs_sync_mapping(filp->f_mapping);
839 if (!NFS_PROTO(inode)->have_delegation(inode, FMODE_READ)) {
840 if (is_time_granular(&NFS_SERVER(inode)->time_delta))
841 __nfs_revalidate_inode(NFS_SERVER(inode), inode);
842 else
843 nfs_zap_caches(inode);
844 }
845 out:
846 return status;
847 }
848
849 /*
850 * Lock a (portion of) a file
851 */
852 int nfs_lock(struct file *filp, int cmd, struct file_lock *fl)
853 {
854 struct inode *inode = filp->f_mapping->host;
855 int ret = -ENOLCK;
856 int is_local = 0;
857
858 dprintk("NFS: lock(%pD2, t=%x, fl=%x, r=%lld:%lld)\n",
859 filp, fl->fl_type, fl->fl_flags,
860 (long long)fl->fl_start, (long long)fl->fl_end);
861
862 nfs_inc_stats(inode, NFSIOS_VFSLOCK);
863
864 /* No mandatory locks over NFS */
865 if (__mandatory_lock(inode) && fl->fl_type != F_UNLCK)
866 goto out_err;
867
868 if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FCNTL)
869 is_local = 1;
870
871 if (NFS_PROTO(inode)->lock_check_bounds != NULL) {
872 ret = NFS_PROTO(inode)->lock_check_bounds(fl);
873 if (ret < 0)
874 goto out_err;
875 }
876
877 if (IS_GETLK(cmd))
878 ret = do_getlk(filp, cmd, fl, is_local);
879 else if (fl->fl_type == F_UNLCK)
880 ret = do_unlk(filp, cmd, fl, is_local);
881 else
882 ret = do_setlk(filp, cmd, fl, is_local);
883 out_err:
884 return ret;
885 }
886 EXPORT_SYMBOL_GPL(nfs_lock);
887
888 /*
889 * Lock a (portion of) a file
890 */
891 int nfs_flock(struct file *filp, int cmd, struct file_lock *fl)
892 {
893 struct inode *inode = filp->f_mapping->host;
894 int is_local = 0;
895
896 dprintk("NFS: flock(%pD2, t=%x, fl=%x)\n",
897 filp, fl->fl_type, fl->fl_flags);
898
899 if (!(fl->fl_flags & FL_FLOCK))
900 return -ENOLCK;
901
902 /*
903 * The NFSv4 protocol doesn't support LOCK_MAND, which is not part of
904 * any standard. In principle we might be able to support LOCK_MAND
905 * on NFSv2/3 since NLMv3/4 support DOS share modes, but for now the
906 * NFS code is not set up for it.
907 */
908 if (fl->fl_type & LOCK_MAND)
909 return -EINVAL;
910
911 if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FLOCK)
912 is_local = 1;
913
914 /* We're simulating flock() locks using posix locks on the server */
915 if (fl->fl_type == F_UNLCK)
916 return do_unlk(filp, cmd, fl, is_local);
917 return do_setlk(filp, cmd, fl, is_local);
918 }
919 EXPORT_SYMBOL_GPL(nfs_flock);
920
921 const struct file_operations nfs_file_operations = {
922 .llseek = nfs_file_llseek,
923 .read = new_sync_read,
924 .write = new_sync_write,
925 .read_iter = nfs_file_read,
926 .write_iter = nfs_file_write,
927 .mmap = nfs_file_mmap,
928 .open = nfs_file_open,
929 .flush = nfs_file_flush,
930 .release = nfs_file_release,
931 .fsync = nfs_file_fsync,
932 .lock = nfs_lock,
933 .flock = nfs_flock,
934 .splice_read = nfs_file_splice_read,
935 .splice_write = iter_file_splice_write,
936 .check_flags = nfs_check_flags,
937 .setlease = simple_nosetlease,
938 };
939 EXPORT_SYMBOL_GPL(nfs_file_operations);
This page took 0.05054 seconds and 5 git commands to generate.